Sample records for laboratories microelectronics development

  1. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  2. Relevance of microelectronic education to industrial needs

    NASA Technical Reports Server (NTRS)

    Prince, J. L.; Lathrop, J. W.

    1977-01-01

    The relevance of microelectronic education to industrial needs was evaluated, and four categories were surveyed: (1) facts and rules; (2) skills; (3) personality; and (4) deductive-inductive reasoning. Examples of specific items in each category are given to illustrate their meaning and it was indicated as to which items in each category are strongly impacted by microelectronics courses and laboratories.

  3. Center for Space Microelectronics Technology. 1993 Technical Report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents. The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents.

  4. Microelectronics bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.

    1977-01-01

    Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.

  5. Center for Space Microelectronics Technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The 1990 technical report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during 1990. The report lists 130 publications, 226 presentations, and 87 new technology reports and patents.

  6. Center for Space Microelectronics Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1991 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 193 publications, 211 presentations, and 125 new technology reports and patents.

  7. Microelectronics and Computers in Medicine.

    ERIC Educational Resources Information Center

    Meindl, James D.

    1982-01-01

    The use of microelectronics and computers in medicine is reviewed, focusing on medical research; medical data collection, storage, retrieval, and manipulation; medical decision making; computed tomography; ultrasonic imaging; role in clinical laboratories; and use as adjuncts for diagnostic tests, monitors of critically-ill patients, and with the…

  8. Goals, achievements of microelectronics program

    NASA Astrophysics Data System (ADS)

    Schronk, L.

    1985-05-01

    Besides reviewing the objectives of the government's microelectronics program, the Microelectronics Enterprise, the production of metal oxide semiconductors and bipolar integrated-circuit chips, specific research and development results to date, and the plans for future activity are discussed. Marketing and domestic demand are discussed.

  9. Center for space microelectronics technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The 1992 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center during the past year. The report lists 187 publications, 253 presentations, and 111 new technology reports and patents in the areas of solid-state devices, photonics, advanced computing, and custom microcircuits.

  10. The Legacy of the Microelectronics Education Programme.

    ERIC Educational Resources Information Center

    Thorne, Michael

    1987-01-01

    Describes the Microelectronics Education Programme (MEP), a plan developed to help British secondary school students learn about microcomputers and the role of technology in society, and its successor, the Microelectronics Support Unit (MESU). Highlights include curriculum development, teacher training, computer assisted instruction and the…

  11. Flexible packaging for microelectronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Benjamin John; Nielson, Gregory N.; Cruz-Campa, Jose Luis

    An apparatus, method, and system, the apparatus and system including a flexible microsystems enabled microelectronic device package including a microelectronic device positioned on a substrate; an encapsulation layer encapsulating the microelectronic device and the substrate; a protective layer positioned around the encapsulating layer; and a reinforcing layer coupled to the protective layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device. The method including encapsulating a microelectronic device positioned on a substrate within an encapsulation layer; sealing the encapsulated microelectronic device within a protective layer; and coupling themore » protective layer to a reinforcing layer, wherein the substrate, encapsulation layer, protective layer and reinforcing layer form a flexible and optically transparent package around the microelectronic device.« less

  12. Microelectronics in Education

    ERIC Educational Resources Information Center

    Orton, Richard J. J.

    2011-01-01

    The history and meaning of the term "microelectronics" is reviewed, followed by a discussion of the key inventions of the Intel microprocessor in 1971 and the Texas Instruments electronic pocket calculator in 1975. The six characteristic features of microelectronic components are then defined. The UK prime minister Jim Callaghan's…

  13. Microelectronics and Special Education. CET/MEP Information Sheet.

    ERIC Educational Resources Information Center

    Council for Educational Technology, London (England).

    Used as an additional aid by the teacher, microelectronics can assist mentally and physically handicapped children to meet educational objectives that have been specifically agreed upon for the individual child. Microelectronics can help deaf children develop speech production, communication skills, and grammar and sentence construction;…

  14. Apparatus for assembly of microelectronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis

    An apparatus including a carrier substrate configured to move a microelectronic device. The apparatus further includes a rotatable body configured to receive the microelectronic device. Additionally, the apparatus includes a second substrate configured to receive the microelectronic device from the rotatable body.

  15. Photoemission-based microelectronic devices

    PubMed Central

    Forati, Ebrahim; Dill, Tyler J.; Tao, Andrea R.; Sievenpiper, Dan

    2016-01-01

    The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices. PMID:27811946

  16. 1996 Laboratory directed research and development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  17. Microelectronics and Music Education.

    ERIC Educational Resources Information Center

    Hofstetter, Fred T.

    1979-01-01

    This look at the impact of microelectronics on computer-assisted instruction (CAI) in music notes trends toward new applications and lower costs. Included are: a rationale for CAI in music, a list of sample programs, comparison of five microelectronic music systems, PLATO cost projections, and sources of further information. (SJL)

  18. Microelectronic bioinstrumentation system

    NASA Technical Reports Server (NTRS)

    Ko, W. H.; Yon, E. T.; Rodriguez, R. J.

    1974-01-01

    The progess made from April 1973 to June 1974 on a microelectronics bioinstrumentation system is reported and includes data for the following three individual projects: (1) a radio frequency powered implant telemetry system; (2) an ingestible temperature telemeter; and (3) development of pO2 and pH sensors. Proposed activities for continuation of the research for the period September 1, 1974 to August 31, 1975 are also discussed.

  19. Educational Implications of Microelectronics and Microprocessors.

    ERIC Educational Resources Information Center

    Harris, N. D. C., Ed.

    This conference report explores microelectronic technology, its effect on educational methods and objectives, and its implications for educator responsibilities. Two main areas were considered: the significance of the likely impact of the large scale introduction of microprocessors and microelectronics on commercial and industrial processes, the…

  20. Macro management of microelectronics in India in 1990s

    NASA Astrophysics Data System (ADS)

    Gupta, Parmod K.

    1992-08-01

    Development of microelectronics is taking place at a very fast rate all over the globe, including India. New technologies are introduced at very short intervals in order to capture the consumer market. It is essential that these technologies are managed properly at the macro level in order to bring the desired results. Microelectronics plays a very vital role in office automation for achieving cost effective results in a highly competitive environment. Introduction of various facilities like laser printers, photo copiers, dictaphone-selectronic boards, electronic telexes, teleconference rooms, telephone answering machines, computer, word processors, sensors, etc. have all revolutionized the industry. Keeping the above in view, the present and future status of microelectronics, with special emphasis on its role in office automation in India, are discussed in detail in this paper.

  1. Evaluation of advanced microelectronics for inclusion in MIL-STD-975

    NASA Technical Reports Server (NTRS)

    Scott, W. Richard

    1991-01-01

    The approach taken by NASA and JPL (Jet Propulsion Laboratory) in the development of a MIL-STD-975 section which contains advanced technology such as Large Scale Integration and Very Large Scale Integration (LSI/VLSI) microelectronic devices is described. The parts listed in this section are recommended as satisfactory for NASA flight applications, in the absence of alternate qualified devices, based on satisfactory results of a vendor capability audit, the availability of sufficient characterization and reliability data from the manufacturers and users and negotiated detail procurement specifications. The criteria used in the selection and evaluation of the vendors and candidate parts, the preparation of procurement specifications, and the status of this activity are discussed.

  2. The Tao of Microelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin

    2014-12-01

    Microelectronics is a challenging course to many undergraduate students and is often described as very messy. Before taking this course, all the students have learned circuit analysis, where basically all the problems can be solved by applying Kirchhoff's laws. In addition, most engineering students have also learned engineering mechanics: statics and dynamics, where Newton's laws and related principles can be applied in solving all the problems. However, microelectronics is not as clean as these courses. There are hundreds of equations for different circuits, and it is impossible to remember which equation should be applied to which circuit. One of the common pitfalls in learning this course is over-focusing at the equation level and ignoring the ideas (Tao) behind it. Unfortunately, these ideas are not summarized and emphasized in most microelectronics textbooks, though they cover various electronic circuits comprehensively. Therefore, most undergraduate students feel at a loss when they start to learn this topic. This book tries to illustrate the major ideas and the basic analysis techniques, so that students can derive the right equations easily when facing an electronic circuit.

  3. Protection of microelectronic devices during packaging

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  4. Government Microelectronics Assessment for Trust (GOMAT)

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth A.

    2018-01-01

    NASA Electronic Parts and Packaging (NEPP) is developing a process to be employed in critical applications. The framework assesses levels of trust and assurance in microelectronic systems. The process is being created with participation from a variety of organizations. We present a synopsis of the framework that includes contributions from The Aerospace Corporation.

  5. Microelectronics used for Semiconductor Imaging Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heijne, Erik H. M.

    Semiconductor crystal technology, microelectronics developments and nuclear particle detection have been in a relation of symbiosis, all the way from the beginning. The increase of complexity in electronics chips can now be applied to obtain much more information on the incident nuclear radiation. Some basic technologies are described, in order to acquire insight in possibilities and limitations for the most recent detectors.

  6. Design, processing and testing of LSI arrays, hybrid microelectronics task

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.; Rothrock, C. W.

    1979-01-01

    Mathematical cost models previously developed for hybrid microelectronic subsystems were refined and expanded. Rework terms related to substrate fabrication, nonrecurring developmental and manufacturing operations, and prototype production are included. Sample computer programs were written to demonstrate hybrid microelectric applications of these cost models. Computer programs were generated to calculate and analyze values for the total microelectronics costs. Large scale integrated (LST) chips utilizing tape chip carrier technology were studied. The feasibility of interconnecting arrays of LSU chips utilizing tape chip carrier and semiautomatic wire bonding technology was demonstrated.

  7. Teaching and Learning in a Microelectronic Age.

    ERIC Educational Resources Information Center

    Shane, Harold G.

    General background information on microtechnologies with implications for educators provides an introduction to this review of past and current developments in microelectronics and specific ways in which the microchip is permeating society, creating problems and opportunities both in the workplace and the home. Topics discussed in the first of two…

  8. Microelectronics: The Nature of Work, Skills and Training. An Analysis of Case Studies from Developed and Developing Countries. Training Discussion Paper No. 51.

    ERIC Educational Resources Information Center

    Acero, Liliana

    Microelectronic technologies have had an impact on the nature of work in industry for both white-collar and blue-collar workers. Evidence from sector- and enterprise-level studies shows changes in skills and job content for blue-collar workers involved with numerically controlled machine tools, robots, and other microelectronics applications.…

  9. Moore's law and the impact on trusted and radiation-hardened microelectronics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Kwok Kee

    2011-12-01

    In 1965 Gordon Moore wrote an article claiming that integrated circuit density would scale exponentially. His prediction has remained valid for more than four decades. Integrated circuits have changed all aspects of everyday life. They are also the 'heart and soul' of modern systems for defense, national infrastructure, and intelligence applications. The United States government needs an assured and trusted microelectronics supply for military systems. However, migration of microelectronics design and manufacturing from the United States to other countries in recent years has placed the supply of trusted microelectronics in jeopardy. Prevailing wisdom dictates that it is necessary to usemore » microelectronics fabricated in a state-of-the-art technology for highest performance and military system superiority. Close examination of silicon microelectronics technology evolution and Moore's Law reveals that this prevailing wisdom is not necessarily true. This presents the US government the possibility of a totally new approach to acquire trusted microelectronics.« less

  10. Microelectronics Reliability

    DTIC Science & Technology

    2017-01-17

    2016-0155 Kirtland AFB, NM 87117-5776 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL /RVSW 11...22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSW/Clay Mayberry 1 cy Approved for... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0155 TR-2016-0155 MICROELECTRONICS RELIABILITY Clay Mayberry and Joseph Bernstein 17 Jan 2017 Interim Report

  11. Microelectronics in the Curriculum--The Science Teacher's Contribution.

    ERIC Educational Resources Information Center

    Association for Science Education, Cambridge (England).

    Rapid advances in microelectronics over the past few years have generally been beneficial, but they have also created some problems, and questions must be asked about the philosophy for including aspects of the new technology in the school curriculum. This statement, prepared by the Microelectronics and Science Education Subcommittee of the…

  12. PREFACE: The Second Conference on Microelectronics, Microsystems and Nanotechnology

    NASA Astrophysics Data System (ADS)

    Nassiopoulou, Androula G.; Papanikolaou, Nikos; Tsamis, Christos

    2005-01-01

    The Second Conference on Microelectronics, Microsystems and Nanotechnology took place at the National Centre for Scientific Research `Demokritos', in Athens, Greece, between 14 and 17 November 2004. The conference was organized by the Institute of Microelectronics (IMEL) with the aim to bring together scientists and engineers working in the above exciting fields in an interactive forum. The conference included 45 oral presentations with 9 invited papers and was attended by 146 participants from 16 countries. The topics covered were nanotechnologies, quantum devices, sensors, micro- and nano-systems, semiconductor devices, C-MOS fabrication and characterization techniques, new materials, and IC design. Quantum devices and nanostructured materials attracted considerable attention. Both theoretical and experimental studies of metallic and semiconducting quantum systems were presented, with emphasis on their applications in electronics, optoelectronics, and nanocrystal memory devices. Another exciting topic was the recent developments in biocompatible lithographic processes for applications in biosensors. In particular novel processes for bio-friendly lithography, together with innovations in Si sensors for applications in medicine and food industry were presented. Recent developments and perspectives in CMOS technology towards the ultimate limit were also discussed. The conference covered issues and concepts of IC design with two invited talks on RF design and cryptography.The conference included presentations from several companies active in the field of microelectronics and systems in Greece.

  13. Uses of ceramics in microelectronics: A survey

    NASA Technical Reports Server (NTRS)

    Bratschun, W. R.; Mountvala, A. J.; Pincus, A. G.

    1971-01-01

    The properties and behavior of ceramic materials used in components for electronic circuitry are examined to appraise the present and future directions for microelectronics, and to suggest further product development, and how innovations may be useful in other technologies. Ceramic and glass insulators, resistors, capacitors, and the use of ceramics and glasses in microcircuitry are discussed along with technology transfer to nonaerospace uses.

  14. Laser processing of ceramics for microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Sposili, Robert S.; Bovatsek, James; Patel, Rajesh

    2017-03-01

    Ceramic materials are used extensively in the microelectronics, semiconductor, and LED lighting industries because of their electrically insulating and thermally conductive properties, as well as for their high-temperature-service capabilities. However, their brittleness presents significant challenges for conventional machining processes. In this paper we report on a series of experiments that demonstrate and characterize the efficacy of pulsed nanosecond UV and green lasers in machining ceramics commonly used in microelectronics manufacturing, such as aluminum oxide (alumina) and aluminum nitride. With a series of laser pocket milling experiments, fundamental volume ablation rate and ablation efficiency data were generated. In addition, techniques for various industrial machining processes, such as shallow scribing and deep scribing, were developed and demonstrated. We demonstrate that lasers with higher average powers offer higher processing rates with the one exception of deep scribes in aluminum nitride, where a lower average power but higher pulse energy source outperformed a higher average power laser.

  15. Delidding and resealing hybrid microelectronic packages

    NASA Astrophysics Data System (ADS)

    Luce, W. F.

    1982-05-01

    The objective of this single phase MM and T contract was to develop the manufacturing technology necessary for the precision removal (delidding) and replacement (resealing) of covers on hermetically sealed hybrid microelectronic packages. The equipment and processes developed provide a rework technique which does not degrade the reliability of the package of the enclosed circuitry. A qualification test was conducted on 88 functional hybrid packages, with excellent results. A petition will be filed, accompanied by this report, requesting Mil-M-38510 be amended to allow this rework method.

  16. Single level microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2003-12-09

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.

  17. Bi-level microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2004-01-06

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).

  18. Photopolymerizable liquid encapsulants for microelectronic devices

    NASA Astrophysics Data System (ADS)

    Baikerikar, Kiran K.

    2000-10-01

    Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion

  19. Multilayered Microelectronic Device Package With An Integral Window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2004-10-26

    A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.

  20. Comparative Advantages in Microelectronics,

    DTIC Science & Technology

    The initial point of departure for analyzing comparative advantages in microelectronics is to make certain explicit assumptions. First, technology...changes conditions but does not determine comparative advantages . Secondly, the entire industrial infrastructure is becoming increasingly abstract...that informatics will profoundly affect the productive infrastructure and the international division of labour.

  1. Temporary coatings for protection of microelectronic devices during packaging

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2005-01-18

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, temporary protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  2. Modeling biology with HDL languages: a first step toward a genetic design automation tool inspired from microelectronics.

    PubMed

    Gendrault, Yves; Madec, Morgan; Lallement, Christophe; Haiech, Jacques

    2014-04-01

    Nowadays, synthetic biology is a hot research topic. Each day, progresses are made to improve the complexity of artificial biological functions in order to tend to complex biodevices and biosystems. Up to now, these systems are handmade by bioengineers, which require strong technical skills and leads to nonreusable development. Besides, scientific fields that share the same design approach, such as microelectronics, have already overcome several issues and designers succeed in building extremely complex systems with many evolved functions. On the other hand, in systems engineering and more specifically in microelectronics, the development of the domain has been promoted by both the improvement of technological processes and electronic design automation tools. The work presented in this paper paves the way for the adaptation of microelectronics design tools to synthetic biology. Considering the similarities and differences between the synthetic biology and microelectronics, the milestones of this adaptation are described. The first one concerns the modeling of biological mechanisms. To do so, a new formalism is proposed, based on an extension of the generalized Kirchhoff laws to biology. This way, a description of all biological mechanisms can be made with languages widely used in microelectronics. Our approach is therefore successfully validated on specific examples drawn from the literature.

  3. Microelectronics in F. E.: Some Personal Perceptions. An Occasional Paper.

    ERIC Educational Resources Information Center

    Dean, K. J.

    The recent microelectronics developments are having, and will continue to have, a sharp impact on various industries in Great Britain, and thus on the capacity of the Further Education System to produce qualified graduates. To maintain a high quality of education, instructors must learn of these new developments and teach them to their vocational…

  4. Using federal technology policy to strength the US microelectronics industry

    NASA Astrophysics Data System (ADS)

    Gover, J. E.; Gwyn, C. W.

    1994-07-01

    A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan's government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

  5. Using federal technology policy to strength the US microelectronics industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gover, J.E.; Gwyn, C.W.

    1994-07-01

    A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for andmore » often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.« less

  6. Trusted Defense Microelectronics: Future Access and Capabilities Are Uncertain

    DTIC Science & Technology

    2015-10-28

    Board Task Force on High Performance Microchip Supply and documentation and discussions with industry and DOD officials in September and October...the defense and microelectronics industry . DOD’s review of this report deemed some of this information as sensitive but unclassified. What GAO...increased specialization and industry consolidation. • Once dominated by domestic sources, the supply chain for microelectronics manufacturing is a global one

  7. MIT Lincoln Laboratory Annual Report 2013

    DTIC Science & Technology

    2013-01-01

    A small-scale demonstration FPGA is currently being fabricated in the Microelectronics Laboratory, and a larger array is being designed for fabri ...year, the first Friday of February is a day to call attention to heart disease . Efforts of the six-member team, MIT Lincoln Laboratory for the Heart

  8. Microelectronics, radiation, and superconductivity.

    PubMed Central

    Gochfeld, M

    1990-01-01

    Among the costs of technology are health hazards that face employees and consumers. New advances in the highly competitive field of microelectronics involve exposure to a variety of hazards such as gallium arsenide. Small high-technology industries appear unprepared to invest in health and safety. Although stray electromagnetic fields are not a new development, researchers are beginning to assemble data indicating that such fields pose a significant cancer risk under certain circumstances. Data have been obtained on fields associated with power lines on the one hand and consumer products on the other. Although not conclusive, the data are sufficient to warrant carefully designed research into the risks posed by electromagnetic fields. Because the scientific issues require research, there is a need to make basic social value decisions that will determine which technologies will be developed and which ones may be set aside because of their danger at the present time. PMID:2401267

  9. A microelectronics approach for the ROSETTA surface science package

    NASA Technical Reports Server (NTRS)

    Sandau, Rainer (Editor); Alkalaj, Leon

    1996-01-01

    In relation to the Rosetta surface science package, the benefits of the application of advanced microelectronics packaging technologies and other output from the Mars environmental survey (MESUR) integrated microelectronics study are reported on. The surface science package will be designed to operate for tens of hours. Its limited mass and power consumption make necessary a highly integrated design with all the instruments and subunits operated from a centralized control and information management subsystem.

  10. Physical Limitations in Lithography for Microelectronics.

    ERIC Educational Resources Information Center

    Flavin, P. G.

    1981-01-01

    Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)

  11. Microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  12. Evidence for adverse reproductive outcomes among women microelectronic assembly workers.

    PubMed Central

    Huel, G; Mergler, D; Bowler, R

    1990-01-01

    Microelectronics assembly entails complex processes where several potentially fetotoxic chemical compounds are used extensively. This study was undertaken to assess the potential adverse reproductive outcomes among former women workers in a microelectronics assembly plant in New Mexico with respect to a comparable population from the same geographical region and to examine the relation between these outcomes and employment history in this plant. After matching a pool of 143 former microelectronic female workers and 105 referents, 90 former microelectronic female worker-referent pairs were constituted (representing 302 and 324 pregnancies in former workers and referents respectively). The odds ratio (for pair matching design) of spontaneous abortion among women workers, before beginning to assemble microelectronic components, was 0.9 (chi 2 = 0.04; NS). After the beginning of employment this odds ratio became 5.6 (chi 2 = 9.8; p less than 1%). This estimated odds ratio decreased to 4.0, taking into account the increased risk for spontaneous abortion in previous pregnancies before employment (chi 2 = 5.4; p less than 5%). It was not possible to determine if this effect was reversible owing to the small number of pairs available after employment. The findings of this study corroborate the results of former studies that suggest a potential association between electronic manufacturing activity and risk of spontaneous abortion. Although the organic solvents were suspected of being the potential risk factor, this study was inconclusive from this point of view. Nevertheless, these investigations may provide some insight into reproductive outcomes among female workers exposed to solvents. PMID:2378817

  13. A Survey of Current Trends in Master's Programs in Microelectronics

    ERIC Educational Resources Information Center

    Bozanic, Mladen; Sinha, Saurabh

    2018-01-01

    Contribution: This paper brings forward a paradigm shift in microelectronic and nanoelectronic engineering education. Background: An increasing number of universities are offering graduate-level electrical engineering degree programs with multi-disciplinary Master's-level specialization in microelectronics or nanoelectronics. The paradigm shift…

  14. Towards co-packaging of photonics and microelectronics in existing manufacturing facilities

    NASA Astrophysics Data System (ADS)

    Janta-Polczynski, Alexander; Cyr, Elaine; Bougie, Jerome; Drouin, Alain; Langlois, Richard; Childers, Darrell; Takenobu, Shotaro; Taira, Yoichi; Lichoulas, Ted W.; Kamlapurkar, Swetha; Engelmann, Sebastian; Fortier, Paul; Boyer, Nicolas; Barwicz, Tymon

    2018-02-01

    The impact of integrated photonics on optical interconnects is currently muted by challenges in photonic packaging and in the dense integration of photonic modules with microelectronic components on printed circuit boards. Single mode optics requires tight alignment tolerance for optical coupling and maintaining this alignment in a cost-efficient package can be challenging during thermal excursions arising from downstream microelectronic assembly processes. In addition, the form factor of typical fiber connectors is incompatible with the dense module integration expected on printed circuit boards. We have implemented novel approaches to interfacing photonic chips to standard optical fibers. These leverage standard high throughput microelectronic assembly tooling and self-alignment techniques resulting in photonic packaging that is scalable in manufacturing volume and in the number of optical IOs per chip. In addition, using dense optical fiber connectors with space-efficient latching of fiber patch cables results in compact module size and efficient board integration, bringing the optics closer to the logic chip to alleviate bandwidth bottlenecks. This packaging direction is also well suited for embedding optics in multi-chip modules, including both photonic and microelectronic chips. We discuss the challenges and rewards in this type of configuration such as thermal management and signal integrity.

  15. Reproductive Hazards Still Persist in the Microelectronics Industry: Increased Risk of Spontaneous Abortion and Menstrual Aberration among Female Workers in the Microelectronics Industry in South Korea

    PubMed Central

    Kim, Inah; Kim, Myoung-Hee; Lim, Sinye

    2015-01-01

    Objectives Despite the global expansion of supply chains and changes to the production process, few studies since the mid-1990s and 2000s have examined reproductive risks of the microelectronics industry; we examined the reproductive risks among female microelectronics workers in South Korea. Methods Based on claim data from the National Health Insurance (2008–2012), we estimated age-specific rates of spontaneous abortion (SAB) and menstrual aberration (MA) among women aged 20 to 39 years. We compared data between microelectronics workers and three different control groups: economically inactive women, the working population as a whole, and workers employed in the bank industry. For an effect measure, age-stratified relative risks (RRs) were estimated. Results Female workers in the microelectronics industry showed significantly higher risk for SAB and MA compared to control groups. The RRs for SAB with reference to economically inactive women, working population, and bank workers in their twenties were 1.57, 1.40, and 1.37, respectively, and the RRs for MA among females in their twenties were 1.54, 1.38, and 1.48, respectively. For women in their thirties, RRs for SAB were 1.58, 1.67, and 1.13, and those for MA were 1.25, 1.35, and 1.23 compared to the three control populations, respectively. All RRs were statistically significant at a level of 0.05, except for the SAB case comparison with bank workers in their thirties. Conclusions Despite technical innovations and health and safety measures, female workers in microelectronics industry in South Korea have high rates of SAB and MA, suggesting continued exposure to reproductive hazards. Further etiologic studies based on primary data collection and careful surveillance are required to confirm these results. PMID:25938673

  16. Reproductive Hazards Still Persist in the Microelectronics Industry: Increased Risk of Spontaneous Abortion and Menstrual Aberration among Female Workers in the Microelectronics Industry in South Korea.

    PubMed

    Kim, Inah; Kim, Myoung-Hee; Lim, Sinye

    2015-01-01

    Despite the global expansion of supply chains and changes to the production process, few studies since the mid-1990 s and 2000s have examined reproductive risks of the microelectronics industry; we examined the reproductive risks among female microelectronics workers in South Korea. Based on claim data from the National Health Insurance (2008-2012), we estimated age-specific rates of spontaneous abortion (SAB) and menstrual aberration (MA) among women aged 20 to 39 years. We compared data between microelectronics workers and three different control groups: economically inactive women, the working population as a whole, and workers employed in the bank industry. For an effect measure, age-stratified relative risks (RRs) were estimated. Female workers in the microelectronics industry showed significantly higher risk for SAB and MA compared to control groups. The RRs for SAB with reference to economically inactive women, working population, and bank workers in their twenties were 1.57, 1.40, and 1.37, respectively, and the RRs for MA among females in their twenties were 1.54, 1.38, and 1.48, respectively. For women in their thirties, RRs for SAB were 1.58, 1.67, and 1.13, and those for MA were 1.25, 1.35, and 1.23 compared to the three control populations, respectively. All RRs were statistically significant at a level of 0.05, except for the SAB case comparison with bank workers in their thirties. Despite technical innovations and health and safety measures, female workers in microelectronics industry in South Korea have high rates of SAB and MA, suggesting continued exposure to reproductive hazards. Further etiologic studies based on primary data collection and careful surveillance are required to confirm these results.

  17. Microelectronics Revolution And The Impact Of Automation In The New Industrialized Countries

    NASA Astrophysics Data System (ADS)

    Baranauskas, Vitor

    1984-08-01

    A brief review of some important historical points on the origin of the Factories and the Industrial Revolution is presented with emphasis in the social problems related to the automation of the human labor. Until the World War I, the social changes provoked by the Industrial Revolution caused one division of the World in developed and underdeveloped countries. After that period, the less developed nations began their industrialization mainly through the Multinationals Corporations (MC). These enterprises were very important to the production and exportation of utilities and manufactures in general, mainly in those products which required intensive and direct human labor. At present time, with the pervasiveness of microelectronics in the automation, this age seems to reaching an end because all continous processes in industry tend economicaly toward total automation. This fact will cause a retraction in long-term investments and, beyond massive unemployment, there is a tendency for these MC industries to return to their original countries. The most promising alternative to avoid these events, and perhaps the unique, is to incentive an autonomous development in areas of high technology, as for instance, the microelectronics itself.

  18. Microelectronics and nanotechnology, and the fractal-like structure of information, knowledge, and science

    NASA Astrophysics Data System (ADS)

    Nutu, Catalin Silviu; Axinte, Tiberiu

    2016-12-01

    The article is centralizing and is concentrating the information from a considerable amount of papers related to the field of microelectronics and nanotechnology and also provides an approach to science and to the future evolution of science, based on the theory of the fractals. The new science of microelectronics and nanotechnology is one of the best examples of how the science of future will look like, namely at the confluence of increasingly more other sciences, where increasingly more sciences are to be added in the structure of the new science and the role of the multidisciplinary and interdisciplinary is becoming more and more important. Although not giving explicit details (e.g. specific formulas) the theory of fractals is used in the paper to explain the way of generation of new science for the specific case of microelectronics and nanotechnology, but is also used in the paper to outline a different way to approach new science and eventually to approach new sciences to come. There are mainly two motivations for the present article, namely: on the one hand, the position of the microelectronics and nanotechnologies in the fractal-like structure of science, and, on the other hand, that much of the communication, information, knowledge and science transfer, dissemination and advancement in sciences are taking place using the new technologies related to microelectronics and nanotechnologies.

  19. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  20. Electromagnetic Compatibility (EMC) in Microelectronics.

    DTIC Science & Technology

    1983-02-01

    Fault Tree Analysis", System Saftey Symposium, June 8-9, 1965, Seattle: The Boeing Company . 12. Fussell, J.B., "Fault Tree Analysis-Concepts and...procedure for assessing EMC in microelectronics and for applying DD, 1473 EOiTO OP I, NOV6 IS OESOL.ETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS...CRITERIA 2.1 Background 2 2.2 The Probabilistic Nature of EMC 2 2.3 The Probabilistic Approach 5 2.4 The Compatibility Factor 6 3 APPLYING PROBABILISTIC

  1. Fighting blindness with microelectronics.

    PubMed

    Zrenner, Eberhart

    2013-11-06

    There is no approved cure for blindness caused by degeneration of the photoreceptor cells of the retina. However, there has been encouraging progress with attempts to restore vision using microelectronic retinal implant devices. Yet many questions remain to be addressed. Where is the best location to implant multielectrode arrays? How can spatial and temporal resolution be improved? What are the best ways to ensure the safety and longevity of these devices? Will color vision be possible? This Perspective discusses the current state of the art of retinal implants and attempts to address some of the outstanding questions.

  2. PREFACE: E-MRS 2012 Spring Meeting, Symposium M: More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics

    NASA Astrophysics Data System (ADS)

    Wenger, Christian; Fompeyrine, Jean; Vallée, Christophe; Locquet, Jean-Pierre

    2012-12-01

    More than Moore explores a new area of Silicon based microelectronics, which reaches beyond the boundaries of conventional semiconductor applications. Creating new functionality to semiconductor circuits, More than Moore focuses on motivating new technological possibilities. In the past decades, the main stream of microelectronics progresses was mainly powered by Moore's law, with two focused development arenas, namely, IC miniaturization down to nano scale, and SoC based system integration. While the microelectronics community continues to invent new solutions around the world to keep Moore's law alive, there is increasing momentum for the development of 'More than Moore' technologies which are based on silicon technologies but do not simply scale with Moore's law. Typical examples are RF, Power/HV, Passives, Sensor/Actuator/MEMS or Bio-chips. The More than Moore strategy is driven by the increasing social needs for high level heterogeneous system integration including non-digital functions, the necessity to speed up innovative product creation and to broaden the product portfolio of wafer fabs, and the limiting cost and time factors of advanced SoC development. It is believed that More than Moore will add value to society on top of and beyond advanced CMOS with fast increasing marketing potentials. Important key challenges for the realization of the 'More than Moore' strategy are: perspective materials for future THz devices materials systems for embedded sensors and actuators perspective materials for epitaxial approaches material systems for embedded innovative memory technologies development of new materials with customized characteristics The Hot topics covered by the symposium M (More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics) at E-MRS 2012 Spring Meeting, 14-18 May 2012 have been: development of functional ceramics thin films New dielectric materials for advanced microelectronics bio- and CMOS compatible

  3. Sealed symmetric multilayered microelectronic device package with integral windows

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.

  4. Microelectronic superconducting crossover and coil

    DOEpatents

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1994-03-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.

  5. Self-healable electrically conducting wires for wearable microelectronics.

    PubMed

    Sun, Hao; You, Xiao; Jiang, Yishu; Guan, Guozhen; Fang, Xin; Deng, Jue; Chen, Peining; Luo, Yongfeng; Peng, Huisheng

    2014-09-01

    Electrically conducting wires play a critical role in the advancement of modern electronics and in particular are an important key to the development of next-generation wearable microelectronics. However, the thin conducting wires can easily break during use, and the whole device fails to function as a result. Herein, a new family of high-performance conducting wires that can self-heal after breaking has been developed by wrapping sheets of aligned carbon nanotubes around polymer fibers. The aligned carbon nanotubes offer an effective strategy for the self-healing of the electric conductivity, whereas the polymer fiber recovers its mechanical strength. A self-healable wire-shaped supercapacitor fabricated from a wire electrode of this type maintained a high capacitance after breaking and self-healing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Implications of Pb-free microelectronics assembly in aerospace applications

    NASA Technical Reports Server (NTRS)

    Shapiro, A. A.; Bonner, J. K.; Ogunseitan, D.; Saphores, J. D.; Schoenung, J.

    2003-01-01

    The commercial microelectronics industry is rapidly moving to completely Pb-free assembly strategies within the next decade. This trend is being driven by existing and proposed legislation in Europe and in Japan. The microelectronics industry has become truly global, as indicated by major U .S. firms who already adopted Pb-free implementation programs. Among these forward-looking firms are AT&T, IBM, Motorola, HP and Intel to name a few.Following Moore's law, advances in microelectronics are happening very rapidly. In many cases, commercial industry is ahead of the aerospace sector in technology. Progress by commercial industry, along with cost, drives the use of Commercial Off-The-Shelf (COTS) parts for military and space applications. We can thus anticipate that the aerospace industry will, at some point, be forced to use Pb-free components and subsystems as part of their standard business practices. In this paper we attempt to provide a snapshot of the commercial industry trends and how they may impact electronics in the aerospace environment. In addition, we also look at different strategies for implementation. Finally we present data collected on a recent NASA project to focus on finding suitable alternatives to eutectic tin-lead solders and solder pastes. The world is moving toward implementation of environmentally friendly manufacturing techniques. The aerospace industry will be forced to deal with issues related with Pb free assembly, either by availability or legislation. This paper provides some insight into some of the tradeoffs that should be considered.

  7. Multilayered microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.

  8. Center for Space Microelectronics Technology 1988-1989 technical report

    NASA Technical Reports Server (NTRS)

    Olsen, Peggy

    1990-01-01

    The 1988 to 1989 Technical Report of the JPL Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the center. Listed are 321 publications, 282 presentations, and 140 new technology reports and patents.

  9. Applicability of LET to single events in microelectronic structures

    NASA Astrophysics Data System (ADS)

    Xapsos, Michael A.

    1992-12-01

    LET is often used as a single parameter to determine the energy deposited in a microelectronic structure by a single event. The accuracy of this assumption is examined for ranges of ion energies and volumes of silicon appropriate for modern microelectronics. It is shown to be accurate only under very restricted conditions. Significant differences arise because (1) LET is related to energy lost by the ion, not energy deposited in the volume; and (2) LET is an average value and does not account for statistical variations in energy deposition. Criteria are suggested for determining when factors other than LET should be considered, and new analytical approaches are presented to account for them. One implication of these results is that improvements can be made in space upset rate predictions by incorporating the new methods into currently used codes such as CREME and CRUP.

  10. Labour-Saving versus Work-Amplifying Effects of Micro-Electronics.

    ERIC Educational Resources Information Center

    Watanabe, Susumu

    1986-01-01

    This article argues that the labor-displacement effect of microelectronic machinery, especially numerically controlled machine tools and robots, has been exaggerated and that people tend to confuse the impact of intensified international competition with that of the new technology. (Author/CT)

  11. Complex VLSI Feature Comparison for Commercial Microelectronics Verification

    DTIC Science & Technology

    2014-03-27

    69 4.2.4 Circuit E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3 Summary...used for high-performance consumer microelectronics. Volume is a significant factor in constraining the technology limit for defense circuits, but it...surveyed in a 2010 Department of Commerce report found counterfeit chips difficult to identify due to improved fabrication quality in overseas counterfeit

  12. Job stress models, depressive disorders and work performance of engineers in microelectronics industry.

    PubMed

    Chen, Sung-Wei; Wang, Po-Chuan; Hsin, Ping-Lung; Oates, Anthony; Sun, I-Wen; Liu, Shen-Ing

    2011-01-01

    Microelectronic engineers are considered valuable human capital contributing significantly toward economic development, but they may encounter stressful work conditions in the context of a globalized industry. The study aims at identifying risk factors of depressive disorders primarily based on job stress models, the Demand-Control-Support and Effort-Reward Imbalance models, and at evaluating whether depressive disorders impair work performance in microelectronics engineers in Taiwan. The case-control study was conducted among 678 microelectronics engineers, 452 controls and 226 cases with depressive disorders which were defined by a score 17 or more on the Beck Depression Inventory and a psychiatrist's diagnosis. The self-administered questionnaires included the Job Content Questionnaire, Effort-Reward Imbalance Questionnaire, demography, psychosocial factors, health behaviors and work performance. Hierarchical logistic regression was applied to identify risk factors of depressive disorders. Multivariate linear regressions were used to determine factors affecting work performance. By hierarchical logistic regression, risk factors of depressive disorders are high demands, low work social support, high effort/reward ratio and low frequency of physical exercise. Combining the two job stress models may have better predictive power for depressive disorders than adopting either model alone. Three multivariate linear regressions provide similar results indicating that depressive disorders are associated with impaired work performance in terms of absence, role limitation and social functioning limitation. The results may provide insight into the applicability of job stress models in a globalized high-tech industry considerably focused in non-Western countries, and the design of workplace preventive strategies for depressive disorders in Asian electronics engineering population.

  13. Development of a hybrid microelectronics solid state relay for 2500 volts isolation and minus 120 C to 80 C thermal cycling range

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Riley, T. J.; Janssen, W.

    1973-01-01

    A hybrid microelectronics solid state relay was developed in a TO-116 package for the MINX project. The relay provides 2500 Vdc input to output isolation and operated from a MHTL logic signal to switch a load of 400 Vdc at 2 mA. The relay is designed to operate in space and survive 1000 thermal cycles of 120 C to 80 C. The use of X-rays for failure analysis in small hybrid circuits proved valuable and the applications of vacuum deposited Parylene as a dielectric coating proved extremely valuable.

  14. Nanocharacterization Challenges in a Changing Microelectronics Landscape

    NASA Astrophysics Data System (ADS)

    Brilloüt, Michel

    2011-11-01

    As the microelectronics industry enters the "nano"-era new challenges emerge. Traditional scaling of the MOS transistor faces major obstacles in fulfilling "Moore's law". New features like strain and new materials (e.g. high k—metal gate stack) are introduced in order to sustain performance increases. For a better electrostatic control, devices will use the third dimension, e.g., in gate-all-around nanowire structures. Due to the escalating cost and complexity of sub-28 nm technologies fewer industrial players can afford the development and production of advanced CMOS processes and many companies acknowledge the fact that the value in products can also be obtained in using more diversified non-digital technologies (the so-called "More-than-Moore" domain). This evolving landscape brings new requirements—discussed in this paper—in terms of physical characterization of technologies and devices.

  15. Reparable, high-density microelectronic module provides effective heat sink

    NASA Technical Reports Server (NTRS)

    Carlson, K. J.; Maytone, F. F.

    1967-01-01

    Reparable modular system is used for packaging microelectronic flat packs and miniature discrete components. This three-dimensional compartmented structure incorporates etched phosphor bronze sheets and frames with etched wire conductors. It provides an effective heat sink for electric power dissipation in the absence of convective cooling means.

  16. Managing the Manpower Aspects of Applying Micro-Electronics Technology.

    ERIC Educational Resources Information Center

    Thornton, P.; Routledge, C.

    1980-01-01

    Outlines major effects that the application of micro-electronics devices in products/processes and in office systems will have on future manpower and skill requirements in manufacturing organizations. Identifies the type of problems these changes will pose for manpower managers. Provides general guidelines for the successful management of these…

  17. Monitoring Composite Material Pressure Vessels with a Fiber-Optic/Microelectronic Sensor System

    NASA Technical Reports Server (NTRS)

    Klimcak, C.; Jaduszliwer, B.

    1995-01-01

    We discuss the concept of an integrated, fiber-optic/microelectronic distributed sensor system that can monitor composite material pressure vessels for Air Force space systems to provide assessments of the overall health and integrity of the vessel throughout its entire operating history from birth to end of life. The fiber optic component would include either a semiconductor light emitting diode or diode laser and a multiplexed fiber optic sensing network incorporating Bragg grating sensors capable of detecting internal temperature and strain. The microelectronic components include a power source, a pulsed laser driver, time domain data acquisition hardware, a microprocessor, a data storage device, and a communication interface. The sensing system would be incorporated within the composite during its manufacture. The microelectronic data acquisition and logging system would record the environmental conditions to which the vessel has been subjected to during its storage and transit, e.g., the history of thermal excursions, pressure loading data, the occurrence of mechanical impacts, the presence of changing internal strain due to aging, delamination, material decomposition, etc. Data would be maintained din non-volatile memory for subsequent readout through a microcomputer interface.

  18. Trends in Dielectric Etch for Microelectronics Processing

    NASA Astrophysics Data System (ADS)

    Hudson, Eric A.

    2003-10-01

    Dielectric etch technology faces many challenges to meet the requirements for leading-edge microelectronics processing. The move to sub 100-nm device design rules increases the aspect ratios of certain features, imposes tighter restrictions on etched features' critical dimensions, and increases the density of closely packed arrays of features. Changes in photolithography are driving transitions to new photoresist materials and novel multilayer resist methods. The increasing use of copper metallization and low-k interlayer dielectric materials has introduced dual-damascene integration methods, with specialized dielectric etch applications. A common need is the selective removal of multiple layers which have very different compositions, while maintaining close control of the etched features' profiles. To increase productivity, there is a growing trend toward in-situ processing, which allows several films to be successively etched during a single pass through the process module. Dielectric etch systems mainly utilize capacitively coupled etch reactors, operating with medium-density plasmas and low gas residence time. Commercial technology development increasingly relies upon plasma diagnostics and modeling to reduce development cycle time and maximize performance.

  19. [Application of microelectronics CAD tools to synthetic biology].

    PubMed

    Madec, Morgan; Haiech, Jacques; Rosati, Élise; Rezgui, Abir; Gendrault, Yves; Lallement, Christophe

    2017-02-01

    Synthetic biology is an emerging science that aims to create new biological functions that do not exist in nature, based on the knowledge acquired in life science over the last century. Since the beginning of this century, several projects in synthetic biology have emerged. The complexity of the developed artificial bio-functions is relatively low so that empirical design methods could be used for the design process. Nevertheless, with the increasing complexity of biological circuits, this is no longer the case and a large number of computer aided design softwares have been developed in the past few years. These tools include languages for the behavioral description and the mathematical modelling of biological systems, simulators at different levels of abstraction, libraries of biological devices and circuit design automation algorithms. All of these tools already exist in other fields of engineering sciences, particularly in microelectronics. This is the approach that is put forward in this paper. © 2017 médecine/sciences – Inserm.

  20. Assessing Advanced High School and Undergraduate Students' Thinking Skills: The Chemistry--From the Nanoscale to Microelectronics Module

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Dangur, Vered; Avargil, Shirly; Peskin, Uri

    2014-01-01

    Chemistry students in Israel have two options for studying chemistry: basic or honors (advanced placement). For instruction in high school honors chemistry courses, we developed a module focusing on abstract topics in quantum mechanics: Chemistry--From the Nanoscale to Microelectronics. The module adopts a visual-conceptual approach, which…

  1. Radiofrequency and microwave radiation in the microelectronics industry.

    PubMed

    Cohen, R

    1986-01-01

    The microscopic precision required to produce minute integrated circuits is dependent on several processes utilizing radiofrequency and microwave radiation. This article provides a review of radiofrequency and microwave exposures in microelectronics and of the physical and biologic properties of these types of radiation; summarizes the existing, relevant medical literature; and provides the clinician with guidelines for diagnosis and treatment of excessive exposures to microwave and radiofrequency radiation.

  2. Bi-level multilayered microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A bi-level, multilayered package with an integral window for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that the light-sensitive side is optically accessible through the window. A second chip can be bonded to the backside of the first chip, with the second chip being wirebonded to the second level of the bi-level package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed.

  3. From Microelectronics to Nanoelectronics

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    We highlight key events in over 100 years of electronic amplifiers and their incorporation in computers and communication in order to appreciate the electron as man's most powerful token of information. We recognize that it has taken about 25 years or almost a generation for inventions to make it into new products, and that, within these periods, it still took major campaigns, like the Sputnik effect or what we shall call 10× programs, to achieve major technology steps. From Lilienfeld's invention 1926 of the solid-state field-effect triode to its realization 1959 in Kahng's MOS field-effect transistor, it took 33 years, and this pivotal year also saw the first planar integrated silicon circuit as patented by Noyce. This birth of the integrated microchip launched the unparalleled exponential growth of microelectronics with many great milestones. Among these, we point out the 3D integration of CMOS transistors by Gibbons in 1979 and the related Japanese program on Future Electron Devices (FED). The 3D domain has finally arrived as a broad development since 2005. Consecutively, we mark the neural networks on-chip of 1989 by Mead and others, now, 20 years later, a major project by DARPA. We highlight cooperatives like SRC and SEMATECH, their impact on progress and more recent nanoelectronic milestones until 2010.

  4. Radiation Effects and Hardening Techniques for Spacecraft Microelectronics

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Maki, G. K.

    2002-01-01

    The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.

  5. Application of analytical redundancy management to Shuttle crafts. [computerized simulation of microelectronic implementation

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Tabak, D.

    1979-01-01

    The study involves the bank of filters approach to analytical redundancy management since this is amenable to microelectronic implementation. Attention is given to a study of the UD factorized filter to determine if it gives more accurate estimates than the standard Kalman filter when data processing word size is reduced. It is reported that, as the word size is reduced, the effect of modeling error dominates the filter performance of the two filters. However, the UD filter is shown to maintain a slight advantage in tracking performance. It is concluded that because of the UD filter's stability in the serial processing mode, it remains the leading candidate for microelectronic implementation.

  6. Method of fabricating a microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.

  7. Using SDI-12 with ST microelectronics MCU's

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saari, Alexandra; Hinzey, Shawn Adrian; Frigo, Janette Rose

    2015-09-03

    ST Microelectronics microcontrollers and processors are readily available, capable and economical processors. Unfortunately they lack a broad user base like similar offerings from Texas Instrument, Atmel, or Microchip. All of these devices could be useful in economical devices for remote sensing applications used with environmental sensing. With the increased need for environmental studies, and limited budgets, flexibility in hardware is very important. To that end, and in an effort to increase open support of ST devices, I am sharing my teams' experience in interfacing a common environmental sensor communication protocol (SDI-12) with ST devices.

  8. Microelectronic superconducting device with multi-layer contact

    DOEpatents

    Wellstood, Frederick C.; Kingston, John J.; Clarke, John

    1993-01-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T.sub.c superconductor thin film, a second insulating thin film comprising SrTiO.sub.3 ; and a third high T.sub.c superconducting film which has strips which crossover one or more areas of the first superconductor film. An insitu method for depositing all three films on a substrate is provided which does not require annealing steps. The photolithographic process is used to separately pattern the high T.sub.c superconductor thin films.

  9. Microelectronic superconducting device with multi-layer contact

    DOEpatents

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1993-10-26

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3] ; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps. The photolithographic process is used to separately pattern the high T[sub c] superconductor thin films. 14 figures.

  10. Free-world microelectronic manufacturing equipment

    NASA Astrophysics Data System (ADS)

    Kilby, J. S.; Arnold, W. H.; Booth, W. T.; Cunningham, J. A.; Hutcheson, J. D.; Owen, R. W.; Runyan, W. R.; McKenney, Barbara L.; McGrain, Moira; Taub, Renee G.

    1988-12-01

    Equipment is examined and evaluated for the manufacture of microelectronic integrated circuit devices and sources for that equipment within the Free World. Equipment suitable for the following are examined: single-crystal silicon slice manufacturing and processing; required lithographic processes; wafer processing; device packaging; and test of digital integrated circuits. Availability of the equipment is also discussed, now and in the near future. Very adequate equipment for most stages of the integrated circuit manufacturing process is available from several sources, in different countries, although the best and most widely used versions of most manufacturing equipment are made in the United States or Japan. There is also an active market in used equipment, suitable for manufacture of capable integrated circuits with performance somewhat short of the present state of the art.

  11. Single-event effects experienced by astronauts and microelectronic circuits flown in space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNulty, P.J.

    Models developed for explaining the light flashes experienced by astronauts on Apollo and Skylab missions were used with slight modification to explain upsets observed in microelectronic circuits. Both phenomena can be explained by the simple assumption that an event occurs whenever a threshold number of ionizations or isomerizations are generated within a sensitive volume. Evidence is consistent with the threshold being sharp in both cases, but fluctuations in the physical stimuli lead to a gradual rather than sharp increase in cross section with LET. Successful use of the model requires knowledge of the dimensions of the sensitive volume and themore » value of threshold. Techniques have been developed to determine these SEU parameters in modern circuits.« less

  12. Photovoltaic energy converter as a chipscale high efficiency power source for implanted active microelectronic devices.

    PubMed

    Hwang, N-J; Patterson, W R; Song, Y-K; Atay, T; Nurmikko, A V

    2004-01-01

    We report the development of a microscale photovoltaic energy converter which has been designed and implemented to deliver power to CMOS-based microelectronic chips. The design targets the delivery of voltages on the order of 3V with power levels in excess of 10 mW. The geometry of the prototype device, which has been fabricated and tested, is specifically designed for coupling to an optical fiber, to facilitate remote power delivery in implantable component environment.

  13. The large scale microelectronics Computer-Aided Design and Test (CADAT) system

    NASA Technical Reports Server (NTRS)

    Gould, J. M.

    1978-01-01

    The CADAT system consists of a number of computer programs written in FORTRAN that provide the capability to simulate, lay out, analyze, and create the artwork for large scale microelectronics. The function of each software component of the system is described with references to specific documentation for each software component.

  14. Microelectronic electroporation array

    NASA Astrophysics Data System (ADS)

    Johnson, Lee J.; Shaffer, Kara J.; Skeath, Perry; Perkins, Frank K.; Pancrazio, Joseph; Scribner, Dean

    2004-06-01

    Gene Array technology has allowed for the study of gene binding by creating thousands of potential binding sites on a single device. A limitation of the current technology is that the effects of the gene and the gene-derived proteins cannot be studied in situ the same way, thousand site cell arrays are not readily available. We propose a new device structure to study the effects of gene modification on cells. This new array technology uses electroporation to target specific areas within a cell culture for transfection of genes. Electroporation arrays will allow high throughput analysis of gene effects on a given cell's response to a stress or a genes ability to restore normal cell function in disease modeling cells. Fluorescent imaging of dye labeled indicator molecules or cell viability will provide results indicating the most effective genes. The electroporation array consists of a microelectronic circuit, ancillary electronics, protecting electrode surface for cell culturing and a perfusion system for gene or drug delivery. The advantages of the current device are that there are 3200 sites for electroporation, all or any subsets of the electrodes can be activated. The cells are held in place by the electrode material. This technology could also be applied to high throughput screening of cell impermeant drugs.

  15. Data encryption standard ASIC design and development report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Perry J.; Pierson, Lyndon George; Witzke, Edward L.

    2003-10-01

    This document describes the design, fabrication, and testing of the SNL Data Encryption Standard (DES) ASIC. This device was fabricated in Sandia's Microelectronics Development Laboratory using 0.6 {micro}m CMOS technology. The SNL DES ASIC was modeled using VHDL, then simulated, and synthesized using Synopsys, Inc. software and finally IC layout was performed using Compass Design Automation's CAE tools. IC testing was performed by Sandia's Microelectronic Validation Department using a HP 82000 computer aided test system. The device is a single integrated circuit, pipelined realization of DES encryption and decryption capable of throughputs greater than 6.5 Gb/s. Several enhancements accommodate ATMmore » or IP network operation and performance scaling. This design is the latest step in the evolution of DES modules.« less

  16. CRRES microelectronics package flight data analysis

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Brucker, G. J.; Stauffer, C. A.

    1993-01-01

    A detailed in-depth analysis was performed on the data from some of the CRRES MEP (Microelectronics Package) devices. These space flight measurements covered a period of about fourteen months of mission lifetime. Several types of invalid data were identified and corrections were made. Other problems were noted and adjustments applied, as necessary. Particularly important and surprising were observations of abnormal device behavior in many parts that could neither be explained nor correlated to causative events. Also, contrary to prevailing theory, proton effects appeared to be far more significant and numerous than cosmic ray effects. Another unexpected result was the realization that only nine out of thirty-two p-MOS dosimeters on the MEP indicated a valid operation. Comments, conclusions, and recommendations are given.

  17. Carbon-ionogel supercapacitors for integrated microelectronics.

    PubMed

    Leung, Greg; Smith, Leland; Lau, Jonathan; Dunn, Bruce; Chui, Chi On

    2016-01-22

    To exceed the performance limits of dielectric capacitors in microelectronic circuit applications, we design and demonstrate on-chip coplanar electric double-layer capacitors (EDLCs), or supercapacitors, employing carbon-coated gold electrodes with ionogel electrolyte. The formation of carbon-coated microelectrodes is accomplished by solution processing and results in a ten-fold increase in EDLC capacitance compared to bare gold electrodes without carbon. At frequencies up to 10 Hz, an areal capacitance of 2.1 pF μm(-2) is achieved for coplanar carbon-ionogel EDLCs with 10 μm electrode gaps and 0.14 mm(2) electrode area. Our smallest devices, comprised of 5 μm electrode gaps and 80 μm(2) of active electrode area, reach areal capacitance values of ∼0.3 pF μm(-2) at frequencies up to 1 kHz, even without carbon. To our knowledge, these are the highest reported values to date for on-chip EDLCs with sub-mm(2) areas. A physical EDLC model is developed through the use of computer-aided simulations for design exploration and optimization of coplanar EDLCs. Through modeling and comparison with experimental data, we highlight the importance of reducing the electrode gap and electrolyte resistance to achieve maximum performance from on-chip EDLCs.

  18. Carbon-ionogel supercapacitors for integrated microelectronics

    NASA Astrophysics Data System (ADS)

    Leung, Greg; Smith, Leland; Lau, Jonathan; Dunn, Bruce; Chui, Chi On

    2016-01-01

    To exceed the performance limits of dielectric capacitors in microelectronic circuit applications, we design and demonstrate on-chip coplanar electric double-layer capacitors (EDLCs), or supercapacitors, employing carbon-coated gold electrodes with ionogel electrolyte. The formation of carbon-coated microelectrodes is accomplished by solution processing and results in a ten-fold increase in EDLC capacitance compared to bare gold electrodes without carbon. At frequencies up to 10 Hz, an areal capacitance of 2.1 pF μm-2 is achieved for coplanar carbon-ionogel EDLCs with 10 μm electrode gaps and 0.14 mm2 electrode area. Our smallest devices, comprised of 5 μm electrode gaps and 80 μm2 of active electrode area, reach areal capacitance values of ˜0.3 pF μm-2 at frequencies up to 1 kHz, even without carbon. To our knowledge, these are the highest reported values to date for on-chip EDLCs with sub-mm2 areas. A physical EDLC model is developed through the use of computer-aided simulations for design exploration and optimization of coplanar EDLCs. Through modeling and comparison with experimental data, we highlight the importance of reducing the electrode gap and electrolyte resistance to achieve maximum performance from on-chip EDLCs.

  19. REVIEW ARTICLE: How will physics be involved in silicon microelectronics

    NASA Astrophysics Data System (ADS)

    Kamarinos, Georges; Felix, Pierre

    1996-03-01

    By the year 2000 electronics will probably be the basis of the largest industry in the world. Silicon microelectronics will continue to keep a dominant place covering 99% of the `semiconductor market'. The aim of this review article is to indicate for the next decade the domains in which research work in `physics' is needed for a technological advance towards increasing speed, complexity and density of silicon ultra large scale integration (ULSI) integrated circuits (ICs). By `physics' we mean here not only condensed matter physics but also the basic physical chemistry and thermodynamics. The review begins with a brief and general introduction in which we elucidate the current state of the art and the trends in silicon microelectronics. Afterwards we examine the involvement of physics in silicon microelectronics in the two main sections. The first section concerns the processes of fabrication of ICs: lithography, oxidation, diffusion, chemical and physical vapour deposition, rapid thermal processing, etching, interconnections, ultra-clean processing and microcontamination. The second section concerns the electrical operation of the ULSI devices. It defines the integration scales and points out the importance of the intermediate scale of integration which is the scale of the next generation of ICs. The emergence of cryomicroelectronics is also reviewed and an extended paragraph is dedicated to the problem of reliability and ageing of devices and ICs: hot carrier degradation, interdevice coupling and noise are considered. It is shown, during our analysis, that the next generation of silicon ICs needs mainly: (i) `scientific' fabrication and (ii) microscopic modelling and simulation of the electrical characteristics of the scaled down devices. To attain the above objectives a return to the `first principles' of physics as well as a recourse to nonlinear and non-equilibrium thermodynamics are mandatory. In the references we list numerous review papers and references of

  20. Proceedings of the International Conference on Vacuum Microelectronics (2nd) Held in Bath England on 24-26 July 1989: Vacuum Microelectronics

    DTIC Science & Technology

    1989-07-26

    resulting Laplacian matrix. This © 1989 lOP Publishing Ltd l • m m i m mIlia ItoI 110 Vacuum microelectronics 89 approach does not easily yield accurate...Schottky diodes p-InP-Ag A L Musatov, S L Filippov and VL Korotkikh 57-60 Stimulated cold-cathode emission from metal electrodes coated with Langmuir...quantum transport K L Jensen and FA Buot 141-144 Silicon cold cathodes based on PIN diodes P A M van der Heide, G G P van Gorkom, A M E Hoeberechts, A A

  1. GeNeDA: An Open-Source Workflow for Design Automation of Gene Regulatory Networks Inspired from Microelectronics.

    PubMed

    Madec, Morgan; Pecheux, François; Gendrault, Yves; Rosati, Elise; Lallement, Christophe; Haiech, Jacques

    2016-10-01

    The topic of this article is the development of an open-source automated design framework for synthetic biology, specifically for the design of artificial gene regulatory networks based on a digital approach. In opposition to other tools, GeNeDA is an open-source online software based on existing tools used in microelectronics that have proven their efficiency over the last 30 years. The complete framework is composed of a computation core directly adapted from an Electronic Design Automation tool, input and output interfaces, a library of elementary parts that can be achieved with gene regulatory networks, and an interface with an electrical circuit simulator. Each of these modules is an extension of microelectronics tools and concepts: ODIN II, ABC, the Verilog language, SPICE simulator, and SystemC-AMS. GeNeDA is first validated on a benchmark of several combinatorial circuits. The results highlight the importance of the part library. Then, this framework is used for the design of a sequential circuit including a biological state machine.

  2. Microelectronic Information Processing Systems: Computing Systems. Summary of Awards Fiscal Year 1994.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Directorate for Computer and Information Science and Engineering.

    The purpose of this summary of awards is to provide the scientific and engineering communities with a summary of the grants awarded in 1994 by the National Science Foundation's Division of Microelectronic Information Processing Systems. Similar areas of research are grouped together. Grantee institutions and principal investigators are identified…

  3. Integrated microelectronics for smart textiles.

    PubMed

    Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner

    2005-01-01

    The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.

  4. Microelectronic components and metallic oxide studies and applications

    NASA Technical Reports Server (NTRS)

    Williams, L., Jr.

    1976-01-01

    The project involved work in two basic areas: (1) Evaluation of commercial screen printable thick film conductors, resistors, thermistors and dielectrics as well as alumina substrates used in hybird microelectronics industries. Results of tests made on materials produced by seven companies are presented. (2) Experimental studies on metallic oxides of copper and vanadium, in an effort to determine their electrochemical properties in crystalline, powder mixtures and as screen printable thick films constituted the second phase of the research effort. Oxide investigations were aimed at finding possible applications of these materials as switching devices memory elements and sensors.

  5. Nano-interconnection for microelectronics and polymers with benzo-triazole

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Choi, Sang H.; Noh, Hyunpil; Kuk, Young

    2006-01-01

    Benzo-Triazole (BTA) is considered as an important bridging material that can connect an organic polymer to the metal electrode on silicon wafers as a part of the microelectronics fabrication technology. We report a detailed process of surface induced 3-D polymerization of BTA on the Cu electrode material which was measured with the Ultraviolet Photoemission Spectroscopy (UPS), X-ray Photoemission Spectroscopy (XPS), and Scanning Tunneling Microscope (STM). The electric utilization of shield and chain polymerization of BTA on Cu surface is contemplated in this study.

  6. The Case for Laboratory Developed Procedures

    PubMed Central

    Sabatini, Linda M.; Tsongalis, Gregory J.; Caliendo, Angela M.; Olsen, Randall J.; Ashwood, Edward R.; Bale, Sherri; Benirschke, Robert; Carlow, Dean; Funke, Birgit H.; Grody, Wayne W.; Hayden, Randall T.; Hegde, Madhuri; Lyon, Elaine; Pessin, Melissa; Press, Richard D.; Thomson, Richard B.

    2017-01-01

    An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories. PMID:28815200

  7. Carbon nanotubes for thermal interface materials in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Lin, Wei

    As the integration scale of transistors/devices in a chip/system keeps increasing, effective cooling has become more and more important in microelectronics. To address the thermal dissipation issue, one important solution is to develop thermal interface materials with higher performance. Carbon nanotubes, given their high intrinsic thermal and mechanical properties, and their high thermal and chemical stabilities, have received extensive attention from both academia and industry as a candidate for high-performance thermal interface materials. The thesis is devoted to addressing some challenges related to the potential application of carbon nanotubes as thermal interface materials in microelectronics. These challenges include: 1) controlled synthesis of vertically aligned carbon nanotubes on various bulk substrates via chemical vapor deposition and the fundamental understanding involved; 2) development of a scalable annealing process to improve the intrinsic properties of synthesized carbon nanotubes; 3) development of a state-of-art assembling process to effectively implement high-quality vertically aligned carbon nanotubes into a flip-chip assembly; 4) a reliable thermal measurement of intrinsic thermal transport property of vertically aligned carbon nanotube films; 5) improvement of interfacial thermal transport between carbon nanotubes and other materials. The major achievements are summarized. 1. Based on the fundamental understanding of catalytic chemical vapor deposition processes and the growth mechanism of carbon nanotube, fast synthesis of high-quality vertically aligned carbon nanotubes on various bulk substrates (e.g., copper, quartz, silicon, aluminum oxide, etc.) has been successfully achieved. The synthesis of vertically aligned carbon nanotubes on the bulk copper substrate by the thermal chemical vapor deposition process has set a world record. In order to functionalize the synthesized carbon nanotubes while maintaining their good vertical alignment

  8. Displacement Damage Effects in Solar Cells: Mining Damage From the Microelectronics and Photonics Test Bed Space Experiment

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Walters, R. J.; Morton, T. L.; Messenger, S. R.

    2004-01-01

    The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.

  9. A software upgrade method for micro-electronics medical implants.

    PubMed

    Cao, Yang; Hao, Hongwei; Xue, Lin; Li, Luming; Ma, Bozhi

    2006-01-01

    A software upgrade method for micro-electronics medical implants is designed to enhance the devices' function or renew the software if there are some bugs found, the software updating or some memory units disabled. The implants needn't be replaced by operations if the faults can be corrected through reprogramming, which reduces the patients' pain and improves the safety effectively. This paper introduces the software upgrade method using in-application programming (IAP) and emphasizes how to insure the system, especially the implanted part's reliability and stability while upgrading.

  10. Gold-based electrical interconnections for microelectronic devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.; Watson, Robert D.

    2002-01-01

    A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.

  11. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages

    DOE PAGES

    Carlton, Holly D.; Elmer, John W.; Li, Yan; ...

    2016-04-13

    For this study synchrotron radiation micro-­tomography, a non-destructive three-dimensional imaging technique, is employed to investigate an entire microelectronic package with a cross-sectional area of 16 x 16 mm. Due to the synchrotron’s high flux and brightness the sample was imaged in just 3 minutes with an 8.7 μm spatial resolution.

  12. Molten-Metal Droplet Deposition on a Moving Substrate in Microgravity: Aiding the Development of Novel Technologies for Microelectronic Assembly

    NASA Technical Reports Server (NTRS)

    Megaridis, C. M.; Bayer, I. S.; Poulikakos, D.; Nayagam, V.

    2002-01-01

    Driven by advancements in microelectronics manufacturing, this research investigates the oblique (non-axisymmetric) impact of liquid-metal droplets on flat substrates. The problem of interest is relevant to the development of the novel technology of on-demand dispension (printing) of microscopic solder deposits for the surface mounting of microelectronic devices. The technology, known as solder jetting, features on-demand deposition of miniature solder droplets (30 to 120 microns in diameter) in very fine, very accurate patterns using techniques analogous to those developed for the ink-jet printing industry. Despite its promise, severe limitations exist currently with regards to the throughput rates of the technology; some of these limitations are largely due to the lack of the capability for reliable prediction of solder bump positioning and shapes, especially under ballistic deposition conditions where the droplet impact phenomena are inherently three-dimensional. The study consists of a theoretical and an experimental component. The theoretical work uses a finite element formulation to simulate numerically the non-axisymmetric (3-D) fluid mechanics and heat transfer phenomena of a liquid solder droplet impacting at an angle alpha on a flat substrate. The work focuses on the pre-solidification regime. The modeling of the most challenging fluid mechanics part of the process has been completed successfully. It is based upon the full laminar Navier-Stokes equations employing a Lagrangian frame of reference. Due to the large droplet deformation, the surface (skin) as well as the volumetric mesh have to be regenerated during the calculations in order to maintain the high accuracy of the numerical scheme. The pressure and velocity fields are then interpolated on the newly created mesh. The numerical predictions are being tested against experiments, for cases where wetting phenomena are not important. For the impact parameters used in the example shown (We = 2.38, Fr

  13. High-speed high-efficiency 500-W cw CO2 laser hermetization of metal frames of microelectronics devices

    NASA Astrophysics Data System (ADS)

    Levin, Andrey V.

    1996-04-01

    High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.

  14. Emerging epidemic in a growing industry: cigarette smoking among female micro-electronics workers in Taiwan.

    PubMed

    Lin, Y-P; Yen, L-L; Pan, L-Y; Chang, P-J; Cheng, T-J

    2005-03-01

    To explore the emerging tobacco epidemic in female workers in the growing micro-electronics industry of Taiwan. Workers were surveyed regarding their smoking status, sociodemographics and work characteristics. In total, 1950 female employees in two large micro-electronics companies in Taiwan completed the survey. Approximately 9.3% of the female employees were occasional or daily smokers at the time of the survey. The prevalence of smoking was higher in those aged 16-19 years (20.9%), those not married (12.9%), those with a high school education or less (11.7%), those employed by Company A (11.7%), shift workers (14.3%), and those who had been in their present employment for 1 year or less (13.6%). Results of multivariate adjusted logistic regression indicated that younger age, lower level of education, shorter periods of employment with the company and shift working were the important factors in determining cigarette smoking among the study participants. The odds ratio of being a daily smoker was similar to that of being a current smoker. Marital status was the only significant variable when comparing former smokers with current smokers. Smoking prevalence in female workers in the two micro-electronics companies studied was much higher than previous reports have suggested about female smoking prevalence in Taiwan and China. We suggest that smoking is no longer a 'male problem' in Taiwan. Future smoking cessation and prevention programmes should target young working women as well as men.

  15. Image analysis for microelectronic retinal prosthesis.

    PubMed

    Hallum, L E; Cloherty, S L; Lovell, N H

    2008-01-01

    By way of extracellular, stimulating electrodes, a microelectronic retinal prosthesis aims to render discrete, luminous spots-so-called phosphenes-in the visual field, thereby providing a phosphene image (PI) as a rudimentary remediation of profound blindness. As part thereof, a digital camera, or some other photosensitive array, captures frames, frames are analyzed, and phosphenes are actuated accordingly by way of modulated charge injections. Here, we present a method that allows the assessment of image analysis schemes for integration with a prosthetic device, that is, the means of converting the captured image (high resolution) to modulated charge injections (low resolution). We use the mutual-information function to quantify the amount of information conveyed to the PI observer (device implantee), while accounting for the statistics of visual stimuli. We demonstrate an effective scheme involving overlapping, Gaussian kernels, and discuss extensions of the method to account for shortterm visual memory in observers, and their perceptual errors of omission and commission.

  16. Developing laboratory networks: a practical guide and application.

    PubMed

    Kirk, Carol J; Shult, Peter A

    2010-01-01

    The role of the public health laboratory (PHL) in support of public health response has expanded beyond testing to include a number of other core functions, such as emergency response, training and outreach, communications, laboratory-based surveillance, and laboratory data management. These functions can only be accomplished by a network that includes public health and other agency laboratories and clinical laboratories. It is a primary responsibility of the PHL to develop and maintain such a network. In this article, we present practical recommendations-based on 17 years of network development experience-for the development of statewide laboratory networks. These recommendations, and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of laboratory networks will enhance each state's public health system and is critical to the development of a robust national Laboratory Response Network.

  17. Development of the Global Measles Laboratory Network.

    PubMed

    Featherstone, David; Brown, David; Sanders, Ray

    2003-05-15

    The routine reporting of suspected measles cases and laboratory testing of samples from these cases is the backbone of measles surveillance. The Global Measles Laboratory Network (GMLN) has developed standards for laboratory confirmation of measles and provides training resources for staff of network laboratories, reference materials and expertise for the development and quality control of testing procedures, and accurate information for the Measles Mortality Reduction and Regional Elimination Initiative. The GMLN was developed along the lines of the successful Global Polio Laboratory Network, and much of the polio laboratory infrastructure was utilized for measles. The GMLN has developed as countries focus on measles control activities following successful eradication of polio. Currently more than 100 laboratories are part of the global network and follow standardized testing and reporting procedures. A comprehensive laboratory accreditation process will be introduced in 2002 with six quality assurance and performance indicators.

  18. Investigation of “benign” ionic content in epoxy that induces microelectronic device failure

    Treesearch

    Gregory T. Schueneman; Jeffery Kingsbury; Edmund Klinkerch

    2011-01-01

    Microelectronics and the devices dependent upon them have the extremely challenging requirements of becoming more capable and less expensive every year. This drives the industry to pack more functions into an ever smaller footprint until the next technological revolution. Adding to this situation is the removal of lead from the bill of materials followed closely by...

  19. Designing a chevron unit for a microelectronic position-sensitive detector with two microchannel plates

    NASA Astrophysics Data System (ADS)

    Kosulya, A. V.; Verbitskii, V. G.

    2017-09-01

    The dependence of the transverse section of an electron beam on the distance between plates and on the accelerating potential difference is determined for a chevron unit of a microelectronic position-sensitive detector (MPSD) with two microchannel plates. The geometry of the MPSD chevron unit is designed and optimized.

  20. Sub-Shot Noise Power Source for Microelectronics

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan; Mansour, Kamjou

    2011-01-01

    Low-current, high-impedance microelectronic devices can be affected by electric current shot noise more than they are affected by Nyquist noise, even at room temperature. An approach to implementing a sub-shot noise current source for powering such devices is based on direct conversion of amplitude-squeezed light to photocurrent. The phenomenon of optical squeezing allows for the optical measurements below the fundamental shot noise limit, which would be impossible in the domain of classical optics. This becomes possible by affecting the statistical properties of photons in an optical mode, which can be considered as a case of information encoding. Once encoded, the information describing the photon (or any other elementary excitations) statistics can be also transmitted. In fact, it is such information transduction from optics to an electronics circuit, via photoelectric effect, that has allowed the observation of the optical squeezing. It is very difficult, if not technically impossible, to directly measure the statistical distribution of optical photons except at extremely low light level. The photoelectric current, on the other hand, can be easily analyzed using RF spectrum analyzers. Once it was observed that the photocurrent noise generated by a tested light source in question is below the shot noise limit (e.g. produced by a coherent light beam), it was concluded that the light source in question possess the property of amplitude squeezing. The main novelty of this technology is to turn this well-known information transduction approach around. Instead of studying the statistical property of an optical mode by measuring the photoelectron statistics, an amplitude-squeezed light source and a high-efficiency linear photodiode are used to generate photocurrent with sub-Poissonian electron statistics. By powering microelectronic devices with this current source, their performance can be improved, especially their noise parameters. Therefore, a room-temperature sub

  1. A professional development model for medical laboratory scientists working in the microbiology laboratory.

    PubMed

    Amerson, Megan H; Pulido, Lila; Garza, Melinda N; Ali, Faheem A; Greenhill, Brandy; Einspahr, Christopher L; Yarsa, Joseph; Sood, Pramilla K; Hu, Peter C

    2012-01-01

    The University of Texas M.D. Anderson Cancer Center, Division of Pathology and Laboratory Medicine is committed to providing the best pathology and medicine through: state-of-the art techniques, progressive ground-breaking research, education and training for the clinical diagnosis and research of cancer and related diseases. After surveying the laboratory staff and other hospital professionals, the Department administrators and Human Resource generalists developed a professional development model for Microbiology to support laboratory skills, behavior, certification, and continual education within its staff. This model sets high standards for the laboratory professionals to allow the labs to work at their fullest potential; it provides organization to training technologists based on complete laboratory needs instead of training technologists in individual areas in which more training is required if the laboratory needs them to work in other areas. This model is a working example for all microbiology based laboratories who want to set high standards and want their staff to be acknowledged for demonstrated excellence and professional development in the laboratory. The PDM model is designed to focus on the needs of the laboratory as well as the laboratory professionals.

  2. Nanoscale temperature mapping in operating microelectronic devices

    DOE PAGES

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; ...

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz ₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  3. Microelectronic DNA assay for the detection of BRCA1 gene mutations

    NASA Technical Reports Server (NTRS)

    Chen, Hua; Han, Jie; Li, Jun; Meyyappan, Meyya

    2004-01-01

    Mutations in BRCA1 are characterized by predisposition to breast cancer, ovarian cancer and prostate cancer as well as colon cancer. Prognosis for this cancer survival depends upon the stage at which cancer is diagnosed. Reliable and rapid mutation detection is crucial for the early diagnosis and treatment. We developed an electronic assay for the detection of a representative single nucleotide polymorphism (SNP), deletion and insertion in BRCA1 gene by the microelectronics microarray instrumentation. The assay is rapid, and it takes 30 minutes for the immobilization of target DNA samples, hybridization, washing and readout. The assay is multiplexing since it is carried out at the same temperature and buffer conditions for each step. The assay is also highly specific, as the signal-to-noise ratio is much larger than recommended value (72.86 to 321.05 vs. 5) for homozygotes genotyping, and signal ratio close to the perfect value 1 for heterozygotes genotyping (1.04).

  4. Microelectronics Status Analysis and Secondary Part Procureability Assessment of the THAAD Weapon System

    DTIC Science & Technology

    1999-10-01

    Technical Report 5-20448 & 5- 20449 Contract No. DAAH01-98-D-R001 Delivery Order No. 34 Microelectronics Status Analysis and Secondary Part...Procureability Assessment of the THAAD Weapon System. (5-20448 & 5- 20449 ) Final Technical Report for Period 21 January 1999 through 30 September 1999...Huntsville Huntsville, AL 35899 5. FUNDING NUMBERS 8. PERFORMING ORGANIZATION REPORT NUMBER 5-20448 & 5- 20449 9. SPONSORING/MONITORING AGENCY

  5. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    PubMed

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  6. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    PubMed Central

    Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  7. Development opportunities for hospital clinical laboratory joint ventures.

    PubMed

    Van Riper, J A

    1995-01-01

    Regional health-care providers are being given the opportunity to collaborate in specialty health-care services. Collaboration to achieve superior economies of scale is very effective in the clinical laboratory industry. National laboratory chains are consolidating and enhancing their control of the industry to ensure their historic profitability. National companies have closed many laboratory facilities and have laid off substantial numbers of laboratory personnel. Health-care providers can regain control of their locally generated laboratory health-care dollars by joining forces with clinical laboratory joint ventures. Laboratorians can assist the healthcare providers in bringing laboratory services and employment back to the local community. New capital for operational development and laboratory information systems will help bring the laboratory to the point of care. The independent regional laboratory is focused on supporting the medical needs of the community. The profit generated from a laboratory joint venture is shared among local health-care providers, supporting their economic viability. The laboratories' ability to contribute to the development of profit-making ventures will provide capital for new laboratory development. All of the above will ensure the clinical laboratories' role in providing quality health care to our communities and employment opportunities for laboratory personnel.

  8. A professional development model for medical laboratory scientists working in the immunohematology laboratory.

    PubMed

    Garza, Melinda N; Pulido, Lila A; Amerson, Megan; Ali, Faheem A; Greenhill, Brandy A; Griffin, Gary; Alvarez, Enrique; Whatley, Marsha; Hu, Peter C

    2012-01-01

    Transfusion medicine, a section of the Department of Laboratory Medicine at The University of Texas MD Anderson Cancer Center is committed to the education and advancement of its health care professionals. It is our belief that giving medical laboratory professionals a path for advancement leads to excellence and increases overall professionalism in the Immunohematology Laboratory. As a result of this strong commitment to excellence and professionalism, the Immunohematology laboratory has instituted a Professional Development Model (PDM) that aims to create Medical Laboratory Scientists (MLS) that are not only more knowledgeable, but are continually striving for excellence. In addition, these MLS are poised for advancement in their careers. The professional development model consists of four levels: Discovery, Application, Maturation, and Expert. The model was formulated to serve as a detailed path to the mastery of all process and methods in the Immunohematology Laboratory. Each level in the professional development model consists of tasks that optimize the laboratory workflow and allow for concurrent training. Completion of a level in the PDM is rewarded with financial incentive and further advancement in the field. The PDM for Medical Laboratory Scientists in the Immunohematology Laboratory fosters personal development, rewards growth and competency, and sets high standards for all services and skills provided. This model is a vital component of the Immunohematology Laboratory and aims to ensure the highest quality of care and standards in their testing. It is because of the success of this model and the robustness of its content that we hope other medical laboratories aim to reach the same level of excellence and professionalism, and adapt this model into their own environment.

  9. Laboratory development and testing of spacecraft diagnostics

    NASA Astrophysics Data System (ADS)

    Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric

    2017-10-01

    The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.

  10. Eye vision system using programmable micro-optics and micro-electronics

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.

    2014-02-01

    Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.

  11. FOREWORD: Proceedings of the 39th International Microelectronics and Packaging IMAPS Poland Conference

    NASA Astrophysics Data System (ADS)

    Jasiński, Piotr; Górecki, Krzysztof; Bogdanowicz, Robert

    2016-01-01

    These proceedings are a collection of the selected articles presented at the 39th International Microelectronics and Packaging IMAPS Poland Conference, held in Gdansk, Poland on September 20-23, 2015 (IMAPS Poland 2015). The conference has been held under the scientific patronage of the International Microelectronics and Packaging Society Poland Chapter and the Committee of Electronics and Telecommunication, Polish Academy of Science and jointly hosted by the Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics (GUT) and the Gdynia Maritime University, Faculty of Electrical Engineering (GMU). The IMAPS Poland conference series aims to advance interdisciplinary scientific information exchange and the discussion of the science and technology of advanced electronics. The IMAPS Poland 2015 conference took place in the heart of Gdansk, two minutes walking distance from the beach. The surroundings and location of the venue guaranteed excellent working and leisure conditions. The three-day conference highlighted invited talks by outstanding scientists working in important areas of electronics and electronic material science. The eight sessions covered areas in the fields of electronics packaging, interconnects on PCB, Low Temperature Co-fired Ceramic (LTCC), MEMS devices, transducers, sensors and modelling of electronic devices. The conference was attended by 99 participants from 11 countries. The conference schedule included 18 invited presentations and 78 poster presentations.

  12. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel a fuel cell test in the Fuel Cell Development and Test Laboratory. Capability Hubs The Fuel Cell

  13. Geckoprinting: assembly of microelectronic devices on unconventional surfaces by transfer printing with isolated gecko setal arrays

    PubMed Central

    Jeong, Jaeyoung; Kim, Juho; Song, Kwangsun; Autumn, Kellar; Lee, Jongho

    2014-01-01

    Developing electronics in unconventional forms provides opportunities to expand the use of electronics in diverse applications including bio-integrated or implanted electronics. One of the key challenges lies in integrating semiconductor microdevices onto unconventional substrates without glue, high pressure or temperature that may cause damage to microdevices, substrates or interfaces. This paper describes a solution based on natural gecko setal arrays that switch adhesion mechanically on and off, enabling pick and place manipulation of thin microscale semiconductor materials onto diverse surfaces including plants and insects whose surfaces are usually rough and irregular. A demonstration of functional ‘geckoprinted’ microelectronic devices provides a proof of concept of our results in practical applications. PMID:25056216

  14. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics.

    PubMed

    Fu, Haoran; Nan, Kewang; Bai, Wubin; Huang, Wen; Bai, Ke; Lu, Luyao; Zhou, Chaoqun; Liu, Yunpeng; Liu, Fei; Wang, Juntong; Han, Mengdi; Yan, Zheng; Luan, Haiwen; Zhang, Yijie; Zhang, Yutong; Zhao, Jianing; Cheng, Xu; Li, Moyang; Lee, Jung Woo; Liu, Yuan; Fang, Daining; Li, Xiuling; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2018-03-01

    Three-dimensional (3D) structures capable of reversible transformations in their geometrical layouts have important applications across a broad range of areas. Most morphable 3D systems rely on concepts inspired by origami/kirigami or techniques of 3D printing with responsive materials. The development of schemes that can simultaneously apply across a wide range of size scales and with classes of advanced materials found in state-of-the-art microsystem technologies remains challenging. Here, we introduce a set of concepts for morphable 3D mesostructures in diverse materials and fully formed planar devices spanning length scales from micrometres to millimetres. The approaches rely on elastomer platforms deformed in different time sequences to elastically alter the 3D geometries of supported mesostructures via nonlinear mechanical buckling. Over 20 examples have been experimentally and theoretically investigated, including mesostructures that can be reshaped between different geometries as well as those that can morph into three or more distinct states. An adaptive radiofrequency circuit and a concealable electromagnetic device provide examples of functionally reconfigurable microelectronic devices.

  15. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics

    NASA Astrophysics Data System (ADS)

    Fu, Haoran; Nan, Kewang; Bai, Wubin; Huang, Wen; Bai, Ke; Lu, Luyao; Zhou, Chaoqun; Liu, Yunpeng; Liu, Fei; Wang, Juntong; Han, Mengdi; Yan, Zheng; Luan, Haiwen; Zhang, Yijie; Zhang, Yutong; Zhao, Jianing; Cheng, Xu; Li, Moyang; Lee, Jung Woo; Liu, Yuan; Fang, Daining; Li, Xiuling; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2018-03-01

    Three-dimensional (3D) structures capable of reversible transformations in their geometrical layouts have important applications across a broad range of areas. Most morphable 3D systems rely on concepts inspired by origami/kirigami or techniques of 3D printing with responsive materials. The development of schemes that can simultaneously apply across a wide range of size scales and with classes of advanced materials found in state-of-the-art microsystem technologies remains challenging. Here, we introduce a set of concepts for morphable 3D mesostructures in diverse materials and fully formed planar devices spanning length scales from micrometres to millimetres. The approaches rely on elastomer platforms deformed in different time sequences to elastically alter the 3D geometries of supported mesostructures via nonlinear mechanical buckling. Over 20 examples have been experimentally and theoretically investigated, including mesostructures that can be reshaped between different geometries as well as those that can morph into three or more distinct states. An adaptive radiofrequency circuit and a concealable electromagnetic device provide examples of functionally reconfigurable microelectronic devices.

  16. Wetting properties of Au/Sn solders for microelectronics

    NASA Astrophysics Data System (ADS)

    Peterson, K. A.; Williams, C. B.

    Hermetic sealing of microelectronic packages with Au/Sn solder is critically dependent upon good wetting. In studying specific problems in hermetic sealing, a solderability test based on ASTM standard F-357-78 has proven useful. The test has helped isolate and quantify the effects of contamination due to epoxy die attach and related handling, thermal preconditioning of packages, gold plating thickness, time and temperature during sealing, and solder alloy composition as they affect wetting. Some differences in hardware have been documented between manufacturing lots, but the overriding factors have been contamination which occurs during packaging process flows and thermal preconditioning during processing. The paper includes a review of metallurgical aspects of soldering to a non-inert surface and an examination of microstructural differences in seal joints. The results also quantify the conventional wisdom that alloys which are on the tin-rich side of the eutectic composition offer superior wetting properties.

  17. West Europe report: Science and technology. FRG: Concept paper on microelectronics, communications technology

    NASA Astrophysics Data System (ADS)

    1984-07-01

    Precisely because the Federal Republic of Germany is a nation with a strong export orientation the capability to develop and apply, with an eye to the market, modern information and communication technologies and microelectronics which provides the basis for them has a very important bearing on the nations competitive position. To attain a leadership position in information technology, the men and women of the FRG must take up the challenge of this technology in terms of training and continuing education as well as in the media and in public life. Industry must agressively seek out markets and engage in international competition and the state must remove existing obstacles and create the kind of conditions that will make its assistance programs most effective. Programs which reflect the government's resolve to meet the challenge of information technology and to help improve the FRG's competitive position in this field are outlined.

  18. Thin film microelectronics materials production in the vacuum of space

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.; Sterling, M.; Horton, C.; Freundlich, A.; Pei, S.; Hill, R.

    1997-01-01

    The international Space Station era will open up a new dimension in the use of one of the unique attributes of space, vacuum, for the production of advanced semiconductor materials and devices for microelectronics applications. Ultra-vacuum is required for the fabrication in thin film form of high quality semiconductors. This can be accomplished behind a free flying platform similar to the current Wake Shield Facility which is specifically designed to support in-space production. The platform will require apparatus for thin film growth, a robotics interface to allow for the change out of raw materials and the harvesting of finished product, and a servicing plant incorporating Space Station that will support long-term utilization of the platform.

  19. Laboratory directed research and development program, FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less

  20. Laboratory Activities for Life Span Motor Development.

    ERIC Educational Resources Information Center

    Haywood, Kathleen M.

    This manual describes motor development laboratory activities to help future physical education teachers observe, assess, measure, and test students' motor skills. A total of 20 laboratory activities are described under five sections geared toward: (1) physical growth and maturation; (2) assessing early motor development; (3) assessing basic motor…

  1. Enabling laser applications in microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Brune, Jan; Fechner, Burkhard; Senczuk, Rolf

    2016-02-01

    In this experimental study, we report on high-pulse-energy excimer laser drilling into high-performance build-up films which are pivotal in microelectronics manufacturing. Build-up materials ABF-GX13 from Ajinomoto as well as ZS-100 from Zeon Corporation are evaluated with respect to their viability for economic excimer laser-based micro-via formation. Excimer laser mask imaging projection at laser wavelengths of 193, 248 and 308 nm is employed to generate matrices of smaller micro-vias with different diameters and via pitches. High drilling quality is achievable for all excimer laser wavelengths with the fastest ablation rates measured in the case of 248 and 308 nm wavelengths. The presence of glass fillers in build-up films as in the ABF-GX13 material poses some limitations to the minimum achievable via diameter. However, surprisingly good drilling results are obtainable as long as the filler dimensions are well below the diameter of the micro-vias. Sidewall angles of vias are controllable by adjusting the laser energy density and pulse number. In this work, the structuring capabilities of excimer lasers in build-up films as to taper angle variations, attainable via diameters, edge-stop behavior and ablation rates will be elucidated.

  2. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  3. Corti's organ physiology-based cochlear model: a microelectronic prosthetic implant

    NASA Astrophysics Data System (ADS)

    Rios, Francisco; Fernandez-Ramos, Raquel; Romero-Sanchez, Jorge; Martin, Jose Francisco

    2003-04-01

    Corti"s Organ is an Electro-Mechanical transducer that allows the energy coupling between acoustical stimuli and auditory nerve. Although the structure and funtionality of this organ are complex, state of the art models have been currently developed and tested. Cochlea model presented in this paper is based on the theories of Bekesy and others and concerns on the behaviour of auditory system on frequency-place domain and mechanisms of lateral inhibition. At the same time, present state of technology will permit us developing a microsystem that reproduce this phenomena applied to hearing aid prosthesis. Corti"s Organ is composed of more than 20.000 cilia excited by mean of travelling waves. These waves produce relative pressures distributed along the cochlea, exciting an specific number of cilia in a local way. Nonlinear mechanisms of local adaptation to the intensity (external cilia cells) and lateral inhibition (internal cilia cells) allow the selection of very few elements excited. These transmit a very precise intensity and frequency information. These signals are the only ones coupled to the auditory nerve. Distribution of pressure waves matches a quasilogaritmic law due to Cochlea morphology. Microsystem presented in this paper takes Bark"s law as an approximation to this behaviour consisting on grouped arbitrary elements composed of a set of selective coupled exciters (bank of filters according to Patterson"s model).These sets apply the intensity adaptation principles and lateral inhibition. Elements excited during the process generate a bioelectric signal in the same way than cilia cell. A microelectronic solution is presented for the development of an implantable prosthesis device.

  4. Microelectronics (Electronic Devices) Research, Development, Test, and Evaluation Laboratories with DoD

    DTIC Science & Technology

    1994-04-08

    Range, New Mexico , the National Aeronautics and Space Administration Langley Research Center in Hampton, Virginia, and the Lewis Research Center in...SUBMITTED TO CONGRESS MARCH 1993 40 Appendix £. Excerpt from the Army’s Justification for DoD Base Realignment and Closure SEXt BYSASD iNLi i/Ba

  5. Measuring laboratory-based influenza surveillance capacity: development of the 'International Influenza Laboratory Capacity Review' Tool.

    PubMed

    Muir-Paulik, S A; Johnson, L E A; Kennedy, P; Aden, T; Villanueva, J; Reisdorf, E; Humes, R; Moen, A C

    2016-01-01

    The 2005 International Health Regulations (IHR 2005) emphasized the importance of laboratory capacity to detect emerging diseases including novel influenza viruses. To support IHR 2005 requirements and the need to enhance influenza laboratory surveillance capacity, the Association of Public Health Laboratories (APHL) and the Centers for Disease Control and Prevention (CDC) Influenza Division developed the International Influenza Laboratory Capacity Review (Tool). Data from 37 assessments were reviewed and analyzed to verify that the quantitative analysis results accurately depicted a laboratory's capacity and capabilities. Subject matter experts in influenza and laboratory practice used an iterative approach to develop the Tool incorporating feedback and lessons learnt through piloting and implementation. To systematically analyze assessment data, a quantitative framework for analysis was added to the Tool. The review indicated that changes in scores consistently reflected enhanced or decreased capacity. The review process also validated the utility of adding a quantitative analysis component to the assessments and the benefit of establishing a baseline from which to compare future assessments in a standardized way. Use of the Tool has provided APHL, CDC and each assessed laboratory with a standardized analysis of the laboratory's capacity. The information generated is used to improve laboratory systems for laboratory testing and enhance influenza surveillance globally. We describe the development of the Tool and lessons learnt. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Development of Drop/Shock Test in Microelectronics and Impact Dynamic Analysis for Uniform Board Response

    NASA Astrophysics Data System (ADS)

    Kallolimath, Sharan Chandrashekar

    -joints. No ring test conditions was proposed and verified for the current widely used JEDEC standard. The significance of impact loading parameters such as pulse magnitude, pulse duration, pulse shapes and board dynamic parameter such as linear hysteretic damping and dynamic stiffness were discussed. Third, Kirchhoff's plate theory by principle of minimum potential energy was adopted to develop the FEA formulation to consider the effect of material hysteretic damping for the currently used JEDEC board test and proposed no-ring response test condition. Fourth, a hexagonal symmetrical board model was proposed to address the uniform stress and strain distribution throughout the test board and identify the critical failure factors. Dynamic stress and strain of the hexagonal board model were then compared with standard JEDEC board for both standard and proposed no-ring test conditions. In general, this line of research demonstrates that advanced techniques of FEA analysis can provide useful insights concerning the optimal design of drop test in microelectronics.

  7. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  8. Configurations of high-frequency ultrasonics complex vibration systems for packaging in microelectronics.

    PubMed

    Tsujino, Jiromaru; Harada, Yoshiki; Ihara, Shigeru; Kasahara, Kohei; Shimizu, Masanori; Ueoka, Tetsugi

    2004-04-01

    Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk.

  9. Research Activities at Plasma Research Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya

    2000-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental

  10. Improving quality management systems of laboratories in developing countries: an innovative training approach to accelerate laboratory accreditation.

    PubMed

    Yao, Katy; McKinney, Barbara; Murphy, Anna; Rotz, Phil; Wafula, Winnie; Sendagire, Hakim; Okui, Scolastica; Nkengasong, John N

    2010-09-01

    The Strengthening Laboratory Management Toward Accreditation (SLMTA) program was developed to promote immediate, measurable improvement in laboratories of developing countries. The laboratory management framework, a tool that prescribes managerial job tasks, forms the basis of the hands-on, activity-based curriculum. SLMTA is implemented through multiple workshops with intervening site visits to support improvement projects. To evaluate the effectiveness of SLMTA, the laboratory accreditation checklist was developed and subsequently adopted by the World Health Organization Regional Office for Africa (WHO AFRO). The SLMTA program and the implementation model were validated through a pilot in Uganda. SLMTA yielded observable, measurable results in the laboratories and improved patient flow and turnaround time in a laboratory simulation. The laboratory staff members were empowered to improve their own laboratories by using existing resources, communicate with clinicians and hospital administrators, and advocate for system strengthening. The SLMTA program supports laboratories by improving management and building preparedness for accreditation.

  11. Photovoltaic module certification and laboratory accreditation criteria development

    NASA Astrophysics Data System (ADS)

    Osterwald, Carl R.; Zerlaut, Gene; Hammond, Robert; D'Aiello, Robert

    1996-01-01

    This paper overviews a model product certification and test laboratory accreditation program for photovoltaic (PV) modules that was recently developed by the National Renewable Energy Laboratory and Arizona State University. The specific objective of this project was to produce a document that details the equipment, facilities, quality assurance procedures, and technical expertise an accredited laboratory needs for performance and qualification testing of PV modules, along with the specific tests needed for a module design to be certified. The document was developed in conjunction with a criteria development committee consisting of representatives from 30 U.S. PV manufacturers, end users, standards and codes organizations, and testing laboratories. The intent is to lay the groundwork for a future U.S. PV certification and accreditation program that will be beneficial to the PV industry as a whole.

  12. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-03-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100° C, 1300° C and 1500° C for about 20 hours using heating and cooling rates of 2° C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  13. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics.

    PubMed

    Xu, Sheng; Hansen, Benjamin J; Wang, Zhong Lin

    2010-10-19

    Harvesting energy from irregular/random mechanical actions in variable and uncontrollable environments is an effective approach for powering wireless mobile electronics to meet a wide range of applications in our daily life. Piezoelectric nanowires are robust and can be stimulated by tiny physical motions/disturbances over a range of frequencies. Here, we demonstrate the first chemical epitaxial growth of PbZr(x)Ti(1-x)O(3) (PZT) nanowire arrays at 230 °C and their application as high-output energy converters. The nanogenerators fabricated using a single array of PZT nanowires produce a peak output voltage of ~0.7 V, current density of 4 μA cm(-2) and an average power density of 2.8 mW cm(-3). The alternating current output of the nanogenerator is rectified, and the harvested energy is stored and later used to light up a commercial laser diode. This work demonstrates the feasibility of using nanogenerators for powering mobile and even personal microelectronics.

  14. Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces

    PubMed Central

    Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.

    2010-01-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  15. Quality politics: an immaterial investment for companies in (micro)electronics

    NASA Astrophysics Data System (ADS)

    Bacivarov, I. C.; Lupan, R.; Robledo, C.; Bacivarov, Angelica

    2010-11-01

    With the globalization of the markets and the growth of competitiveness in the manufacturing sector, quality has become a key factor of success. Quality is particularly important for the companies which activate in the micro(electronics) field. The quality management system holds a vital place in the company's structure. Implementing such a system requires important operating costs. These costs are known as Quality Obtaining Costs (QOC) and may be considered as an investment. Planning an investment, means evaluating its return in order to see if it is profitable or not. Measuring the return of quality politics investment raise some delicate problems. We may calculate some aspects of the return of investment by measuring the shape of non-quality costs. An eventual decrease of these costs could be synonym with a profitable investment. But the advantages of good quality politics cannot be measured only by taking into consideration the non-quality costs (even if they include direct and indirect costs). There are also intangible advantages (like mark image, competences, polyvalence, client's satisfaction...) that derive from quality approaches. How to evaluate this type of consequences / advantages? The idea developed in this article is to considerate the quality politics like un immaterial/intelligent investment. Therefore could it be advantageous / possible to use the immaterial investment's measuring and evaluation techniques for studying the quality politics return of investment?

  16. Nanosatellite program at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, D.A.; Kern, J.P.; Schoeneman, J.L.

    1999-11-11

    The concept of building extremely small satellites which, either independently or as a collective, can perform missions which are comparable to their much larger cousins, has fascinated scientists and engineers for several years now. In addition to the now commonplace microelectronic integrated circuits, the more recent advent of technologies such as photonic integrated circuits (PIC's) and micro-electromechanical systems (MEMS) have placed such a goal within their grasp. Key to the acceptance of this technology will be the ability to manufacture these very small satellites in quantity without sacrificing their performance or versatility. In support of its nuclear treaty verification, proliferationmore » monitoring and other remote sensing missions, Sandia National laboratories has had a 35-year history of providing highly capable systems, densely packaged for unintrusive piggyback missions on government satellites. As monitoring requirements have become more challenging and remote sensing technologies become more sophisticated, packaging greater capability into these systems has become a requirement. Likewise, dwindling budgets are pushing satellite programs toward smaller and smaller platforms, reinforcing the need for smaller, cheaper satellite systems. In the next step of its miniaturization plan, Sandia has begun development of technologies for a highly integrated miniature satellite. The focus of this development is to achieve nanosat or smaller dimensions while maintaining significant capability utilizing semiconductor wafer-level integration and, at the same time promoting affordability through modular generic construction.« less

  17. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages.

    PubMed

    Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A

    2016-04-13

    Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials.

  18. Laboratory Directed Research and Development FY-10 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  19. Laboratory Activities for Developing Process Skills.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC.

    This workbook contains laboratory exercises designed for use in a college introductory biology course. Each exercise helps the student develop a basic science skill. The exercises are arranged in a hierarchical sequence suggesting the scientific method. Each skill facilitates the development of succeeding ones. Activities include Use of the…

  20. Laboratory Directed Research and Development Annual Report FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  1. Laboratory Directed Research and Development Annual Report FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  2. Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.

    NASA Astrophysics Data System (ADS)

    Mancusi, Joseph Edward

    This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model

  3. Laboratory Directed Research and Development FY2001 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts thatmore » started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.« less

  4. Development of a laboratory demonstration model active cleaning device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1975-01-01

    A laboratory demonstration model of a device for removing contaminant films from optical surfaces in space was developed. The development of a plasma tube, which would produce the desired cleaning effects under high vacuum conditions, represented the major problem in the program. This plasma tube development is discussed, and the resulting laboratory demonstration-model device is described.

  5. The Development of Laboratory Safety Questionnaire for Middle School Science Teachers

    ERIC Educational Resources Information Center

    Akpullukcu, Simge; Cavas, Bulent

    2017-01-01

    The purpose of this paper is to develop a "valid and reliable laboratory safety questionnaire" which could be used to identify science teachers' understanding about laboratory safety issues during their science laboratory activities. The questionnaire was developed from a literature review and prior instruments developed on laboratory…

  6. Vacuum microelectronics for beam power and rectennas

    NASA Technical Reports Server (NTRS)

    Gray, Henry F.

    1989-01-01

    Vacuum Microelectronic devices can be described as vacuum transistors or micro-miniature vacuum tubes, as one chooses. The fundamental reason behind this new technology is the very large current densities available from field emitters, namely as high as 10(8) A/sq cm. Array current densities as high as 1000 A/sq cm have been measured. Total electron transit times from source to drain for 1 micron feature size devices have been predicted to be about 150fs. This very short transit time implies the possibility of submillimeter wave transmitters and rectennas in devices which can operate with reasonably high voltages and which are small in size and are lightweight. In addition, they are expected to be extremely radiation hard and very temperature insensitive. That is, they are expected to have radiation hardness characteristics similar to vacuum tubes, and both the high temperature and low temperature limits should be determined by the package. That is, there should be no practical intrinsic temperature or carrier freezeout problems for devices based on metals or composites. But the technology is difficult to implement at the present time because it is based on 300 to 500 angstrom radius field emitters which must be relatively uniform. There is also the need to understand the non-equilibrium transport physics in the near-surface regions of the field emitters.

  7. Laboratory Directed Research and Development annual report, fiscal year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through themore » appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.« less

  8. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  9. Preliminary Flight Results of the Microelectronics and Photonics Test Bed: NASA DR1773 Fiber Optic Data Bus Experiment

    NASA Technical Reports Server (NTRS)

    Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul

    1998-01-01

    NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.

  10. Can zinc aluminate-titania composite be an alternative for alumina as microelectronic substrate?

    PubMed Central

    Roshni, Satheesh Babu; Sebastian, Mailadil Thomas; Surendran, Kuzhichalil Peethambharan

    2017-01-01

    Alumina, thanks to its superior thermal and dielectric properties, has been the leading substrate over several decades, for power and microelectronics circuits. However, alumina lacks thermal stability since its temperature coefficient of resonant frequency (τf) is far from zero (−60 ppmK−1). The present paper explores the potentiality of a ceramic composite 0.83ZnAl2O4-0.17TiO2 (in moles, abbreviated as ZAT) substrates for electronic applications over other commercially-used alumina-based substrates and synthesized using a non-aqueous tape casting method. The present substrate has τf of + 3.9 ppmK−1 and is a valuable addition to the group of thermo-stable substrates. The ZAT substrate shows a high thermal conductivity of 31.3 Wm−1K−1 (thermal conductivity of alumina is about 24.5 Wm−1K−1), along with promising mechanical, electrical and microwave dielectric properties comparable to that of alumina-based commercial substrates. Furthermore, the newly-developed substrate material shows exceptionally good thermal stability of dielectric constant, which cannot be met with any of the alumina-based HTCC substrates. PMID:28084459

  11. Study of a two-stage photobase generator for photolithography in microelectronics.

    PubMed

    Turro, Nicholas J; Li, Yongjun; Jockusch, Steffen; Hagiwara, Yuji; Okazaki, Masahiro; Mesch, Ryan A; Schuster, David I; Willson, C Grant

    2013-03-01

    The investigation of the photochemistry of a two-stage photobase generator (PBG) is described. Absorption of a photon by a latent PBG (1) (first step) produces a PBG (2). Irradiation of 2 in the presence of water produces a base (second step). This two-photon sequence (1 + hν → 2 + hν → base) is an important component in the design of photoresists for pitch division technology, a method that doubles the resolution of projection photolithography for the production of microelectronic chips. In the present system, the excitation of 1 results in a Norrish type II intramolecular hydrogen abstraction to generate a 1,4-biradiacal that undergoes cleavage to form 2 and acetophenone (Φ ∼ 0.04). In the second step, excitation of 2 causes cleavage of the oxime ester (Φ = 0.56) followed by base generation after reaction with water.

  12. Evaluation of advanced microelectronic fluxless solder-bump contacts for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Mandal, R. P.

    1976-01-01

    Technology for interconnecting monolithic integrated circuit chips with other components is investigated. The advantages and disadvantages of the current flip-chip approach as compared to other interconnection methods are outlined. A fluxless solder-bump contact technology is evaluated. Multiple solder-bump contacts were formed on silicon integrated circuit chips. The solder-bumps, comprised of a rigid nickel under layer and a compliant solder overlayer, were electroformed onto gold device pads with the aid of thick dry film photomasks. Different solder alloys and the use of conductive epoxy for bonding were explored. Fluxless solder-bump bond quality and reliability were evaluated by measuring the effects of centrifuge, thermal cycling, and high temperature storage on bond visual characteristics, bond electrical continuity, and bond shear tests. The applicability and suitability of this technology for hybrid microelectronic packaging is discussed.

  13. Advanced system on a chip microelectronics for spacecraft and science instruments

    NASA Astrophysics Data System (ADS)

    Paschalidis, Nikolaos P.

    2003-01-01

    The explosive growth of the modern microelectronics field opens new horizons for the development of new lightweight, low power, and smart spacecraft and science instrumentation systems in the new millennium explorations. Although this growth is mostly driven by the commercial need for low power, portable and computationally intensive products, the applicability is obvious in the space sector. The additional difficulties needed to be overcome for applicability in space include radiation hardness for total ionizing dose and single event effects (SEE), and reliability. Additionally, this new capability introduces a whole new philosophy of design and R&D, with strong implications in organizational and inter-agency program management. One key component specifically developed towards low power, small size, highly autonomous spacecraft systems, is the smart sensor remote input/output (TRIO) chip. TRIO can interface to 32 transducers with current sources/sinks and voltage sensing. It includes front-end analog signal processing, a 10-bit ADC, memory, and standard serial and parallel I/Os. These functions are very useful for spacecraft and subsystems health and status monitoring, and control actions. The key contributions of the TRIO are feasibility of modular architectures, elimination of several miles of wire harnessing, and power savings by orders of magnitude. TRIO freely operates from a single power supply 2.5- 5.5 V with power dissipation <10 mW. This system on a chip device rapidly becomes a NASA and Commercial Space standard as it is already selected by thousands in several new millennium missions, including Europa Orbiter, Mars Surveyor Program, Solar Probe, Pluto Express, Stereo, Contour, Messenger, etc. In the Science Instrumentation field common instruments that can greatly take advantage of the new technologies are: energetic-particle/plasma and wave instruments, imagers, mass spectrometers, X-ray and UV spectrographs, magnetometers, laser rangefinding

  14. 1995 Laboratory-Directed Research and Development Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  15. 24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass, Climatic Building, First Floor Plan, Architectural. Drawing No. 35-07-01, Sheet 2 of 72, 1952, updated to 1985. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  16. 25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass. Climatic Building, First Floor Plan, Refrigeration and Engineering. Drawing No. 35-07-01, Sheet 52 of 72, 1952. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  17. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  18. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  19. Development of a laboratory niche Web site.

    PubMed

    Dimenstein, Izak B; Dimenstein, Simon I

    2013-10-01

    This technical note presents the development of a methodological laboratory niche Web site. The "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) Web site is used as an example. Although common steps in creation of most Web sites are followed, there are particular requirements for structuring the template's menu on methodological laboratory Web sites. The "nested doll principle," in which one object is placed inside another, most adequately describes the methodological approach to laboratory Web site design. Fragmentation in presenting the Web site's material highlights the discrete parts of the laboratory procedure. An optimally minimal triad of components can be recommended for the creation of a laboratory niche Web site: a main set of media, a blog, and an ancillary component (host, contact, and links). The inclusion of a blog makes the Web site a dynamic forum for professional communication. By forming links and portals, cloud computing opens opportunities for connecting a niche Web site with other Web sites and professional organizations. As an additional source of information exchange, methodological laboratory niche Web sites are destined to parallel both traditional and new forms, such as books, journals, seminars, webinars, and internal educational materials. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Laboratory Directed Research and Development Program FY 2006 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about themore » FY 2006 projects and an internal evaluation of the program's management process.« less

  1. Laboratory Directed Research and Development FY 2000 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

  2. [Development of novel laboratory technology--Chairmen's introductory remarks].

    PubMed

    Maekawa, Masato; Ando, Yukio

    2012-07-01

    The theme of the 58th annual meeting is, "Mission and Challenge of Laboratory Medicine". This symposium is named, "Development of Novel Laboratory Technology" and is held under the joint sponsorship of the Japanese Society of Clinical Chemistry and the Japanese Electrophoresis Society. Both societies have superior skills at developing methodology and technology. The tools used in the lectures are a carbon nanotube sensor, immunochromatography, direct measurement using polyanions and detergents, epigenomic analysis and fluorescent two-dimensional electrophoresis. All of the lectures will be very helpful and interesting.

  3. Public health laboratory quality management in a developing country.

    PubMed

    Wangkahat, Khwanjai; Nookhai, Somboon; Pobkeeree, Vallerut

    2012-01-01

    The article aims to give an overview of the system of public health laboratory quality management in Thailand and to produce a strengths, weaknesses, opportunities and threats (SWOT) analysis that is relevant to public health laboratories in the country. The systems for managing laboratory quality that are currently employed were described in the first component. The second component was a SWOT analysis, which used the opinions of laboratory professionals to identify any areas that could be improved to meet quality management systems. Various quality management systems were identified and the number of laboratories that met both international and national quality management requirements was different. The SWOT analysis found the opportunities and strengths factors offered the best chance to improve laboratory quality management in the country. The results are based on observations and brainstorming with medical laboratory professionals who can assist laboratories in accomplishing quality management. The factors derived from the analysis can help improve laboratory quality management in the country. This paper provides viewpoints and evidence-based approaches for the development of best possible practice of services in public health laboratories.

  4. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  5. Vertical and bevel-structured SiC etching techniques incorporating different gas mixture plasmas for various microelectronic applications.

    PubMed

    Sung, Ho-Kun; Qiang, Tian; Yao, Zhao; Li, Yang; Wu, Qun; Lee, Hee-Kwan; Park, Bum-Doo; Lim, Woong-Sun; Park, Kyung-Ho; Wang, Cong

    2017-06-20

    This study presents a detailed fabrication method, together with validation, discussion, and analysis, for state-of-the-art silicon carbide (SiC) etching of vertical and bevelled structures by using inductively coupled plasma reactive ion etching (ICP-RIE) for microelectronic applications. Applying different gas mixtures, a maximum bevel angle of 87° (almost vertical), large-angle bevels ranging from 40° to 80°, and small-angel bevels ranging from 7° to 17° were achieved separately using distinct gas mixtures at different ratios. We found that SF 6 with additive O 2 was effective for vertical etching, with a best etching rate of 3050 Å/min. As for the large-angle bevel structures, BCl 3  + N 2 gas mixtures show better characteristics, exhibiting a controllable and large etching angle range from 40° to 80° through the adjustment of the mixture ratio. Additionally, a Cl 2  + O 2 mixture at different ratios is applied to achieve a small-angel bevels ranging from 7° to 17°. A minimum bevel angel of approximately 7° was achieved under the specific volume of 2.4 sccm Cl 2 and 3.6 sccm O 2 . These results can be used to improve performance in various microelectronic applications including MMIC via holes, PIN diodes, Schottky diodes, JFETs' bevel mesa, and avalanche photodiode fabrication.

  6. Laboratory Directed Research and Development Program Activities for FY 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and

  7. Laboratory Directed Research and Development FY-15 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  8. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  9. Experiences with integral microelectronics on smart structures for space

    NASA Astrophysics Data System (ADS)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  10. Retrospective cohort study of a microelectronics and business machine facility.

    PubMed

    Silver, Sharon R; Pinkerton, Lynne E; Fleming, Donald A; Jones, James H; Allee, Steven; Luo, Lian; Bertke, Stephen J

    2014-04-01

    We examined health outcomes among 34,494 workers employed at a microelectronics and business machine facility 1969-2001. Standardized mortality ratio (SMR) and standardized incidence ratios were used to evaluate health outcomes in the cohort and Cox regression modeling to evaluate relations between scores for occupational exposures and outcomes of a priori interest. Just over 17% of the cohort (5,966 people) had died through 2009. All cause, all cancer, and many cause-specific SMRs showed statistically significant deficits. In hourly males, SMRs were significantly elevated for non-Hodgkin's lymphoma and rectal cancer. Salaried males had excess testicular cancer incidence. Pleural cancer and mesothelioma excesses were observed in workers hired before 1969, but no available records substantiate use of asbestos in manufacturing processes. A positive, statistically significant relation was observed between exposure scores for tetrachloroethylene and nervous system diseases. Few significant exposure-outcome relations were observed, but risks from occupational exposures cannot be ruled out due to data limitations and the relative youth of the cohort. © 2013 Wiley Periodicals, Inc.

  11. The Principle of the Micro-Electronic Neural Bridge and a Prototype System Design.

    PubMed

    Huang, Zong-Hao; Wang, Zhi-Gong; Lu, Xiao-Ying; Li, Wen-Yuan; Zhou, Yu-Xuan; Shen, Xiao-Yan; Zhao, Xin-Tai

    2016-01-01

    The micro-electronic neural bridge (MENB) aims to rebuild lost motor function of paralyzed humans by routing movement-related signals from the brain, around the damage part in the spinal cord, to the external effectors. This study focused on the prototype system design of the MENB, including the principle of the MENB, the neural signal detecting circuit and the functional electrical stimulation (FES) circuit design, and the spike detecting and sorting algorithm. In this study, we developed a novel improved amplitude threshold spike detecting method based on variable forward difference threshold for both training and bridging phase. The discrete wavelet transform (DWT), a new level feature coefficient selection method based on Lilliefors test, and the k-means clustering method based on Mahalanobis distance were used for spike sorting. A real-time online spike detecting and sorting algorithm based on DWT and Euclidean distance was also implemented for the bridging phase. Tested by the data sets available at Caltech, in the training phase, the average sensitivity, specificity, and clustering accuracies are 99.43%, 97.83%, and 95.45%, respectively. Validated by the three-fold cross-validation method, the average sensitivity, specificity, and classification accuracy are 99.43%, 97.70%, and 96.46%, respectively.

  12. Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development

    DTIC Science & Technology

    2016-09-01

    ARL-TN-0779 ● SEP 2016 US Army Research Laboratory Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and...Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development by Neal Tesny Sensors and Electron Devices Directorate...TITLE AND SUBTITLE Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development 5a. CONTRACT NUMBER 5b

  13. Laboratory Directed Research and Development Program Assessment for FY 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities

  14. Thermal shock testing for assuring reliability of glass-sealed microelectronic packages

    NASA Technical Reports Server (NTRS)

    Thomas, Walter B., III; Lewis, Michael D.

    1991-01-01

    Tests were performed to determine if thermal shocking is destructive to glass-to-metal seal microelectronic packages and if thermal shock step stressing can compare package reliabilities. Thermal shocking was shown to be not destructive to highly reliable glass seals. Pin-pull tests used to compare the interfacial pin glass strengths showed no differences between thermal shocked and not-thermal shocked headers. A 'critical stress resistance temperature' was not exhibited by the 14 pin Dual In-line Package (DIP) headers evaluated. Headers manufactured in cryogenic nitrogen based and exothermically generated atmospheres showed differences in as-received leak rates, residual oxide depths and pin glass interfacial strengths; these were caused by the different manufacturing methods, in particular, by the chemically etched pins used by one manufacturer. Both header types passed thermal shock tests to temperature differentials of 646 C. The sensitivity of helium leak rate measurements was improved up to 70 percent by baking headers for two hours at 200 C after thermal shocking.

  15. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility

    NASA Astrophysics Data System (ADS)

    Olejník, K.; Schuler, V.; Marti, X.; Novák, V.; Kašpar, Z.; Wadley, P.; Campion, R. P.; Edmonds, K. W.; Gallagher, B. L.; Garces, J.; Baumgartner, M.; Gambardella, P.; Jungwirth, T.

    2017-05-01

    Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III-V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets.

  16. Wireless link and microelectronics design for retinal prostheses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wentai

    2012-02-29

    This project focuses on delivering power and data to the artificial retinal implant inside the eye and the implant microstimulator electronics which delivers the current pulses to stimulate the retinal layer to elicit visual perception. Since the use of invasive means such as tethering wires to transmit power and data results in discomfort to the patients which could eventually cause infection due to the abrasion caused by the wire and contact of the internals of the eye to the external environment, a completely wireless approach is used to transfer both power and data. Power is required inside the eye formore » the microelectronic implant which uses a dual voltage supply scheme (positive and negative) to deliver biphasic (anodic and cathodic) current pulses. Data in the form of digital bits from the data transmitter external to the eye, carries information about the amplitude, phase width, interphase delay, stimulation sequence for each implant electrode. The data receiver unit decodes the digital stream and the microstimulator unit generates the appropriate current stimuli. Since the external unit consisting of the power transmitter can experience coupling a variation with the power receiver due to the patient’s movements, a closed loop approach is used which varies the transmitted power dynamically to automatically compensate for such movements. This report presents the salient features of this research activities and results.« less

  17. Laboratory directed research and development fy1999 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensuremore » that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD

  18. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Wester

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals thatmore » were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.« less

  19. The SLMTA programme: Transforming the laboratory landscape in developing countries

    PubMed Central

    Maruta, Talkmore; Luman, Elizabeth T.; Nkengasong, John N.

    2014-01-01

    Background Efficient and reliable laboratory services are essential to effective and well-functioning health systems. Laboratory managers play a critical role in ensuring the quality and timeliness of these services. However, few laboratory management programmes focus on the competencies required for the daily operations of a laboratory in resource-limited settings. This report provides a detailed description of an innovative laboratory management training tool called Strengthening Laboratory Management Toward Accreditation (SLMTA) and highlights some challenges, achievements and lessons learned during the first five years of implementation (2009–2013) in developing countries. Programme SLMTA is a competency-based programme that uses a series of short courses and work-based learning projects to effect immediate and measurable laboratory improvement, while empowering laboratory managers to implement practical quality management systems to ensure better patient care. A SLMTA training programme spans from 12 to 18 months; after each workshop, participants implement improvement projects supported by regular supervisory visits or on-site mentoring. In order to assess strengths, weaknesses and progress made by the laboratory, audits are conducted using the World Health Organization’s Regional Office for Africa (WHO AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist, which is based on International Organization for Standardization (ISO) 15189 requirements. These internal audits are conducted at the beginning and end of the SLMTA training programme. Conclusion Within five years, SLMTA had been implemented in 617 laboratories in 47 countries, transforming the laboratory landscape in developing countries. To our knowledge, SLMTA is the first programme that makes an explicit connection between the performance of specific management behaviours and routines and ISO 15189 requirements. Because of this close relationship, SLMTA is

  20. Process Development in the Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Klein, Leonard C.; Dana, Susanne M.

    1998-06-01

    Many experiences in high school and undergraduate laboratories are well-tested cookbook recipes that have already been designed to yield optimal results; the well-known synthesis of aspirin is such an example. In this project for advanced placement or second-year high school chemistry students, students mimic the process development in industrial laboratories by investigating the effect of varying conditions in the synthesis of aspirin. The class decides on criteria that should be explored (quantity of catalyst, temperature of reaction, etc.). The class is then divided into several teams with each team assigned a variable to study. Each team must submit a proposal describing how they will explore the variable before they start their study. After data on yield and purity has been gathered and evaluated, students discuss which method is most desirable, based on their agreed-upon criteria. This exercise provides an opportunity for students to review many topics from the course (rate of reaction, limiting reagents, Beer's Law) while participating in a cooperative exercise designed to imitate industrial process development.

  1. Laboratory Directed Research and Development Program FY98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less

  2. Development of mobile laboratory for viral haemorrhagic fever detection in Africa.

    PubMed

    Weidmann, Manfred; Faye, Ousmane; Faye, Oumar; Abd El Wahed, Ahmed; Patel, Pranav; Batejat, Christophe; Manugerra, Jean Claude; Adjami, Aimee; Niedrig, Matthias; Hufert, Frank T; Sall, Amadou A

    2018-06-15

    In order to enable local response to viral haemorrhagic fever outbreaks a mobile laboratory transportable on commercial flights was developed. The development progressed from use of mobile real time RT-PCR to mobile Recombinase Polymerase Amplification (RT-RPA). The various stages of the mobile laboratory development are described. A brief overview of its deployments, which culminated in the first on site detection of Ebola virus disease (EVD) in March 2014 and a successful use in a campaign to roll back EVD cases in Conakry in the West-Africa Ebola virus outbreak are described. The developed mobile laboratory successfully enabled local teams to perform rapid viral haemorrhagic fever disgnostics.

  3. Development of the Design Laboratory.

    ERIC Educational Resources Information Center

    Silla, Harry

    1986-01-01

    Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)

  4. Sandia National Laboratories: Cooperative Research and Development

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  5. Laboratory practice at the periphery in developing countries.

    PubMed

    Lewis, S M

    2002-08-01

    An effective national health service structure requires a comprehensive programme for primary health care in peripheral and rural areas. This is especially important in under-resourced countries where facilities are sparse, the population is widely dispersed and transport is limited. Haematology has a key role in diagnosis and patient management by selecting tests for their clinical relevance and utility for the specific circumstances, and ensuring their technical reliability when used in health clinics and point-of-care testing. WHO has proposed a basic menu of tests in three categories: (a) tests such as haemoglobin screen which can be performed by nurses, midwives, health-aides or community doctors, (b) tests such as haemoglobinometry, microhaematocrit and microscopic examination of stained preparations which can be performed by a technician or laboratory assistant in a health centre, (c) tests requiring greater technical expertise of a laboratory technician or trained doctor. The peripheral health clinics and district laboratories must be familiar with the guidelines on standardized methods for collecting and storing specimens and transporting them to a regional laboratory or a reference centre. A training syllabus should be provided at the health centres and district laboratories, and this should include on-site instruction from supervisors and access to training manuals and distance-learning material. A co-ordinated programme of quality assurance and standardization of test methods should be established by a reference centre or national health authority with a network which encompasses all laboratories and health clinics undertaking any tests. Each regional laboratory should foster lower level laboratories or clinics within its neighbourhood. Of particular concern is the reliable diagnosis and management of anaemia. WHO reports indicate that 40% of the world population suffer from anaemia, especially affecting pregnant women, and a high proportion of infants

  6. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investmentmore » in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their

  7. Porous electrode apparatus for electrodeposition of detailed metal structures or microelectronic interconnections

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.

    2002-01-01

    An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.

  8. Electrochemical investigations of advanced materials for microelectronic and energy storage devices

    NASA Astrophysics Data System (ADS)

    Goonetilleke, Pubudu Chaminda

    A broad range of electrochemical techniques are employed in this work to study a selected set of advanced materials for applications in microelectronics and energy storage devices. The primary motivation of this study has been to explore the capabilities of certain modern electrochemical techniques in a number of emerging areas of material processing and characterization. The work includes both aqueous and non-aqueous systems, with applications in two rather general areas of technology, namely microelectronics and energy storage. The sub-systems selected for investigation are: (i) Electrochemical mechanical and chemical mechanical planarization (ECMP and CMP, respectively), (ii) Carbon nanotubes in combination with room temperature ionic liquids (ILs), and (iii) Cathode materials for high-performance Li ion batteries. The first group of systems represents an important building block in the fabrication of microelectronic devices. The second and third groups of systems are relevant for new energy storage technologies, and have generated immense interests in recent years. A common feature of these different systems is that they all are associated with complex surface reactions that dictate the performance of the devices based on them. Fundamental understanding of these reactions is crucial to further development and expansion of their associated technologies. It is the complex mechanistic details of these surface reactions that we address using a judicious combination of a number of state of the art electrochemical techniques. The main electrochemical techniques used in this work include: (i) Cyclic voltammetry (CV) and slow scan cyclic voltammetry (SSCV, a special case of CV); (ii) Galvanostatic (or current-controlled) measurements; (iii) Electrochemical impedance spectroscopy (EIS), based on two different methodologies, namely, Fourier transform EIS (FT-EIS, capable of studying fast reaction kinetics in a time-resolved mode), and EIS using frequency response

  9. Information Systems and Development in the Third World.

    ERIC Educational Resources Information Center

    Heitzman, James

    1990-01-01

    Discussion of the relationship between information and development in Third World countries highlights information systems development in four South Asian nations: India, Pakistan, Sri Lanka, and Bangladesh. The impact of microelectronics technology, development theories, multinational corporations, international information agencies, and…

  10. [Strategy Development for International Cooperation in the Clinical Laboratory Field].

    PubMed

    Kudo, Yoshiko; Osawa, Susumu

    2015-10-01

    The strategy of international cooperation in the clinical laboratory field was analyzed to improve the quality of intervention by reviewing documents from international organizations and the Japanese government. Based on the world development agenda, the target of action for health has shifted from communicable diseases to non-communicable diseases (NCD). This emphasizes the importance of comprehensive clinical laboratories instead of disease-specific examinations in developing countries. To achieve this goal, the World Health Organization (WHO) has disseminated to the African and Asian regions the Laboratory Quality Management System (LQMS), which is based on the same principles of the International Organization of Standardization (ISO) 15189. To execute this strategy, international experts must have competence in project management, analyze information regarding the target country, and develop a strategy for management of the LQMS with an understanding of the technical aspects of laboratory work. However, there is no appropriate pre- and post-educational system of international health for Japanese international workers. Universities and academic organizations should cooperate with the government to establish a system of education for international workers. Objectives of this education system must include: (1) training for the organization and understanding of global health issues, (2) education of the principles regarding comprehensive management of clinical laboratories, and (3) understanding the LQMS which was employed based on WHO's initiative. Achievement of these objectives will help improve the quality of international cooperation in the clinical laboratory field.

  11. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  12. Nanoscale Microelectronic Circuit Development

    DTIC Science & Technology

    2011-06-17

    structure to obtain a one-hot-encoded output instead of a thermometer code …………………………………………………………………………44 Figure 37. A folded ...thermometer code Figure 37. A folded PLINCO cell. The output of the PLINCO is 8-wide, but only the left half or right half is passed on. A carry...noise figure requirements are not stringent since the GPS signal is spread spectrum coded , providing over 40 dB of processing gain and easing the

  13. Developing a customised approach for strengthening tuberculosis laboratory quality management systems toward accreditation

    PubMed Central

    Trollip, Andre; Erni, Donatelle; Kao, Kekeletso

    2017-01-01

    Background Quality-assured tuberculosis laboratory services are critical to achieve global and national goals for tuberculosis prevention and care. Implementation of a quality management system (QMS) in laboratories leads to improved quality of diagnostic tests and better patient care. The Strengthening Laboratory Management Toward Accreditation (SLMTA) programme has led to measurable improvements in the QMS of clinical laboratories. However, progress in tuberculosis laboratories has been slower, which may be attributed to the need for a structured tuberculosis-specific approach to implementing QMS. We describe the development and early implementation of the Strengthening Tuberculosis Laboratory Management Toward Accreditation (TB SLMTA) programme. Development The TB SLMTA curriculum was developed by customizing the SLMTA curriculum to include specific tools, job aids and supplementary materials specific to the tuberculosis laboratory. The TB SLMTA Harmonized Checklist was developed from the World Health Organisation Regional Office for Africa Stepwise Laboratory Quality Improvement Process Towards Accreditation checklist, and incorporated tuberculosis-specific requirements from the Global Laboratory Initiative Stepwise Process Towards Tuberculosis Laboratory Accreditation online tool. Implementation Four regional training-of-trainers workshops have been conducted since 2013. The TB SLMTA programme has been rolled out in 37 tuberculosis laboratories in 10 countries using the Workshop approach in 32 laboratories in five countries and the Facility-based approach in five tuberculosis laboratories in five countries. Conclusion Lessons learnt from early implementation of TB SLMTA suggest that a structured training and mentoring programme can build a foundation towards further quality improvement in tuberculosis laboratories. Structured mentoring, and institutionalisation of QMS into country programmes, is needed to support tuberculosis laboratories to achieve

  14. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W.

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple ofmore » years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.« less

  15. Laboratory Directed Research and Development Program Assessment for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, Diane; Flynn, Liz

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2C, and this report fulfills that requirement.

  16. Laboratory Directed Research and Development Program Assessment for FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Jack; Flynn, Liz

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2C. This report fulfills that requirement.

  17. Development and implications of technology in reform-based physics laboratories

    NASA Astrophysics Data System (ADS)

    Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung

    2012-12-01

    Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.

  18. Sandia QIS Capabilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Richard P.

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  19. Incremental development and prototyping in current laboratory software development projects: Preliminary analysis

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann

    1988-01-01

    Several Laboratory software development projects that followed nonstandard development processes, which were hybrids of incremental development and prototyping, are being studied. Factors in the project environment leading to the decision to use a nonstandard development process and affecting its success are analyzed. A simple characterization of project environment based on this analysis is proposed, together with software development approaches which have been found effective for each category. These approaches include both documentation and review requirements.

  20. Ultrasound aided smooth dispensing for high viscoelastic epoxy in microelectronic packaging.

    PubMed

    Chen, Yun; Li, Han-Xiong; Shan, Xiuyang; Gao, Jian; Chen, Xin; Wang, Fuliang

    2016-01-01

    Epoxy dispensing is one of the most critical processes in microelectronic packaging. However, due its high viscoelasticity, dispensing of epoxy is extremely difficult, and a lower viscoelasticity epoxy is desired to improve the process. In this paper, a novel method is proposed to achieve a lowered viscoelastic epoxy by using ultrasound. The viscoelasticity and molecular structures of the epoxies were compared and analyzed before and after experimentation. Different factors of the ultrasonic process, including power, processing time and ultrasonic energy, were studied in this study. It is found that elasticity is more sensitive to ultrasonic processing while viscosity is little affected. Further, large power and long processing time can minimize the viscoelasticity to ideal values. Due to the reduced loss modulus and storage modulus after ultrasonic processing, smooth dispensing is demonstrated for the processed epoxy. The subsequently color temperature experiments show that ultrasonic processing will not affect LED's lighting. It is clear that the ultrasonic processing will have good potential to aide smooth dispensing for high viscoelastic epoxy in electronic industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Laboratory-Directed Research and Development 2016 Summary Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear

  2. Development of an Environmental Virtual Field Laboratory

    ERIC Educational Resources Information Center

    Ramasundaram, V.; Grunwald, S.; Mangeot, A.; Comerford, N. B.; Bliss, C. M.

    2005-01-01

    Laboratory exercises, field observations and field trips are a fundamental part of many earth science and environmental science courses. Field observations and field trips can be constrained because of distance, time, expense, scale, safety, or complexity of real-world environments. Our objectives were to develop an environmental virtual field…

  3. Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory for Cancer Research, that helps fine-tune nanomedicine formulations and overcomes a key hurdle on the pat

  4. Health and safety in clinical laboratories in developing countries: safety considerations.

    PubMed

    Ejilemele, A A; Ojule, A C

    2004-01-01

    Clinical laboratories are potentially hazardous work areas. Health and safety in clinical laboratories is becoming an increasingly important subject as a result of the emergence of highly infectious diseases such as hepatitis and HIV. This is even more so in developing countries where health and safety have traditionally been regarded as low priority issues, considering the more important health problems confronting the health authorities in these countries. We conducted a literature search using the medical subheadings titles on the INTERNET over a period of twenty years and summarized our findings. This article identifies hazards in the laboratories and highlights measures to make the laboratory a safer work place. It also emphasizes the mandatory obligations of employers and employees towards the attainment of acceptable safety standards in clinical laboratories in Third World countries in the face of the current HIV/AIDS epidemic in many of these developing countries especially in the sub-Saharan Africa while accommodating the increasing work load in these laboratories. Both the employer and the employee have major roles to play in the maintenance of a safe working environment. This can be achieved if measures discussed are incorporated into everyday laboratory practice.

  5. Development of performance assessment instrument based contextual learning for measuring students laboratory skills

    NASA Astrophysics Data System (ADS)

    Susilaningsih, E.; Khotimah, K.; Nurhayati, S.

    2018-04-01

    The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.

  6. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  7. Design and development of a solar powered mobile laboratory

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Simon, A.; Barrera, H.; Acharya, V.; Repke, W.

    2016-08-01

    This paper describes the design and development of a solar powered mobile laboratory (SPML) system. The SPML provides a mobile platform that schools, universities, and communities can use to give students and staff access to laboratory environments where dedicated laboratories are not available. The lab includes equipment like 3D printers, computers, and soldering stations. The primary power source of the system is solar PV which allows the laboratory to be operated in places where the grid power is not readily available or not sufficient to power all the equipment. The main system components include PV panels, junction box, battery, charge controller, and inverter. Not only is it used to teach students and staff how to use the lab equipment, but it is also a great tool to educate the public about solar PV technologies.

  8. Methodology of Education and R&D in Mechatronics.

    ERIC Educational Resources Information Center

    Yamazaki, K.; And Others

    1985-01-01

    Describes the concept and methodology of "mechatronics" (application of microelectronics to mechanism control) and research and development (R&D) projects through the activities initiated at the Precision Machining Laboratory of the Department of Production Systems Engineering of the new Toyohashi University of Technology. (JN)

  9. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  10. Ceramic materials of low-temperature synthesis for dielectric coating applied by 3D aerosol printing used in nano- and microelectronics, lighting engineering, and spacecraft control devices

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Tuev, V. I.; Nisan, A. V.; Potapov, G. N.

    2016-11-01

    A synthesis technique of low-temperature ceramic material based on aluminosilicates of dendrimer morphology capable to contain up to 80 wt % of nitrides and oxides of high-melting compounds as filler has been developed. The synthesis is based on a sol-gel method followed by mechanochemical treatment and ultrasonic dispersing. Dielectric ceramic layers with the layer thickness in the nanometer range and high thermal conductivity have been obtained for the first time by 3D aerosol printing of the synthesized material. The study of the obtained ceramic coating on the metal surface (Al) has proved its use prospects in microelectronics, light engineering, and devices for special purposes.

  11. Continuing professional development training needs of medical laboratory personnel in Botswana

    PubMed Central

    2014-01-01

    Background Laboratory professionals are expected to maintain their knowledge on the most recent advances in laboratory testing and continuing professional development (CPD) programs can address this expectation. In developing countries, accessing CPD programs is a major challenge for laboratory personnel, partly due to their limited availability. An assessment was conducted among clinical laboratory workforce in Botswana to identify and prioritize CPD training needs as well as preferred modes of CPD delivery. Methods A self-administered questionnaire was disseminated to medical laboratory scientists and technicians registered with the Botswana Health Professions Council. Questions were organized into domains of competency related to (i) quality management systems, (ii) technical competence, (iii) laboratory management, leadership, and coaching, and (iv) pathophysiology, data interpretation, and research. Participants were asked to rank their self-perceived training needs using a 3-point scale in order of importance (most, moderate, and least). Furthermore, participants were asked to select any three preferences for delivery formats for the CPD. Results Out of 350 questionnaires that were distributed, 275 were completed and returned giving an overall response rate of 79%. The most frequently selected topics for training in rank order according to key themes were (mean, range) (i) quality management systems, most important (79%, 74–84%); (ii) pathophysiology, data interpretation, and research (68%, 52–78%); (iii) technical competence (65%, 44–73%); and (iv) laboratory management, leadership, and coaching (60%, 37–77%). The top three topics selected by the participants were (i) quality systems essentials for medical laboratory, (ii) implementing a quality management system, and (iii) techniques to identify and control sources of error in laboratory procedures. The top three preferred CPD delivery modes, in rank order, were training workshops, hands

  12. Phase transformation in SiOx/SiO₂ multilayers for optoelectronics and microelectronics applications.

    PubMed

    Roussel, M; Talbot, E; Pratibha Nalini, R; Gourbilleau, F; Pareige, P

    2013-09-01

    Due to the quantum confinement, silicon nanoclusters (Si-ncs) embedded in a dielectric matrix are of prime interest for new optoelectronics and microelectronics applications. In this context, SiO(x)/SiO₂ multilayers have been prepared by magnetron sputtering and subsequently annealed to induce phase separation and Si clusters growth. The aim of this paper is to study phase separation processes and formation of nanoclusters in SiO(x)/SiO₂ multilayers by atom probe tomography. Influences of the silicon supersaturation, annealing temperature and SiO(x) and SiO₂ layer thicknesses on the final microstructure have been investigated. It is shown that supersaturation directly determines phase separation regime between nucleation/classical growth and spinodal decomposition. Annealing temperature controls size of the particles and interface with the surrounding matrix. Layer thicknesses directly control Si-nc shapes from spherical to spinodal-like structures. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Space Radiation Environment Prediction for VLSI microelectronics devices onboard a LEO Satellite using OMERE-Trad Software

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.

  14. Interconnect mechanisms in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Roma, Maria Penafrancia C.

    Global economic, environmental and market developments caused major impact in the microelectronics industry. Astronomical rise of gold metal prices over the last decade shifted the use of copper and silver alloys as bonding wires. Environmental legislation on the restriction of the use of Pb launched worldwide search for lead-free solders and platings. Finally, electrical and digital uses demanded smaller, faster and cheaper devices. Ultra-fine pitch bonding, decreasing bond wire sizes and hard to bond substrates have put the once-robust stitch bond in the center of reliability issues due to stitch bond lift or open wires .Unlike the ball bond, stitch bonding does not lead to intermetallic compound formation but adhesion is dependent on mechanical deformation, interdiffusion, solid solution formation, void formation and mechanical interlocking depending on the wire material, bond configuration, substrate type , thickness and surface condition. Using Au standoff stitch bonds on NiPdAu plated substrates eliminated stitch bond lift even when the Au and Pd layers are reduced. Using the Matano-Boltzmann analysis on a STEM (Scanning Transmission Analysis) concentration profile the interdiffusion coefficient is measured to be 10-16 cm 2/s. Wire pull strength data showed that the wire pull strength is 0.062N and increases upon stress testing. Meanwhile, coating the Cu wire with Pd, not only increases oxidation resistance but also improved adhesion due to the formation of a unique interfacial adhesion layers. Adhesion strength as measured by pull showed the Cu wire bonded to Ag plated Cu substrate (0.132N) to be stronger than the Au wire bonded on the same substrate (0.124N). Ag stitch bonded to Au is predicted to be strong but surface modification made the adhesion stronger. However, on the Ag ball bonded to Al showed multiple IMC formation with unique morphology exposed by ion milling and backscattered scanning electron microscopy. Adding alloying elements in the Ag wire

  15. Laboratory directed research and development 2006 annual report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  16. Nanotechnology Laboratory Collaborates with Army to Develop Botulism Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Nanotechnology Characterization Laboratory (NCL) is collaborating with the Army to develop a candidate vaccine against botulism. Under a collaboration agreement between the National Cancer Institute and the U.S. Army Medical Research Institute of

  17. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema

    None

    2018-05-23

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  18. Tiger Team assessment of the Sandia National Laboratories, Albuquerque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-01

    This report documents the Tiger Team Assessment of Sandia National Laboratories (SNL), Albuquerque, located in Albuquerque, New Mexico. SNL, Albuquerque, is operated by the Sandia Corporation (a wholly owned subsidiary of the American Telephone and Telegraph Company) for the US Department of Energy (DOE). The environmental assessment also included DOE tenant facilities at Ross Aviation, Albuquerque Microelectronics Operation, and the Central Training Academy. The assessment was conducted from April 15 to May 24, 1991, under the auspices of DOE's Office of Special Projects under the Assistant Secretary for Environment, Safety and Health (ES H). The assessment was comprehensive, encompassing ESmore » H disciplines, management, self-assessments, and quality assurance; transportation; and waste management operations. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal SNL, Albuquerque, requirements were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and SNL, Albuquerque management of ES H programs was conducted.« less

  19. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Valerie

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources neededmore » to be successful at the national laboratories.« less

  20. Development of Robotics Applications in a Solid Propellant Mixing Laboratory

    DTIC Science & Technology

    1988-06-01

    implementation of robotic hardware and software into a laboratory environment requires a carefully structured series of phases which examines, in...strategy. The general methodology utilized in this project is discussed in Appendix A. The proposed laboratory robotics development program was structured ...Accessibility - Potential modifications - Safety precautions e) Robot Transport - Slider mechanisms - Linear tracks - Gantry configuration - Mobility f

  1. [Development of laboratory sequence analysis software based on WWW and UNIX].

    PubMed

    Huang, Y; Gu, J R

    2001-01-01

    Sequence analysis tools based on WWW and UNIX were developed in our laboratory to meet the needs of molecular genetics research in our laboratory. General principles of computer analysis of DNA and protein sequences were also briefly discussed in this paper.

  2. A Radiation Laboratory Curriculum Development at Western Kentucky University

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  3. Developing a cardiopulmonary exercise testing laboratory.

    PubMed

    Diamond, Edward

    2007-12-01

    Cardiopulmonary exercise testing is a noninvasive and cost-effective technique that adds significant value to the assessment and management of a variety of symptoms and diseases. The penetration of this testing in medical practice may be limited by perceived operational and financial barriers. This article reviews coding and supervision requirements related to both simple and complex pulmonary stress testing. A program evaluation and review technique diagram is used to describe the work flow process. Data from our laboratory are used to generate an income statement that separates fixed and variable costs and calculates the contribution margin. A cost-volume-profit (break-even) analysis is then performed. Using data from our laboratory including fixed and variable costs, payer mix, reimbursements by payer, and the assumption that the studies are divided evenly between simple and complex pulmonary stress tests, the break-even number is calculated to be 300 tests per year. A calculator with embedded formulas has been designed by the author and is available on request. Developing a cardiopulmonary exercise laboratory is challenging but achievable and potentially profitable. It should be considered by a practice that seeks to distinguish itself as a quality leader. Providing this clinically valuable service may yield indirect benefits such as increased patient volume and increased utilization of other services provided by the practice. The decision for a medical practice to commit resources to managerial accounting support requires a cost-benefit analysis, but may be a worthwhile investment in our challenging economic environment.

  4. Crystallization Process of Superlattice-Like Sb/SiO2 Thin Films for Phase Change Memory Application

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Qin; Zhang, Rui; Hu, Yi-Feng; Lai, Tian-Shu; Zhang, Jian-Hao; Zou, Hua; Song, Zhi-Tang

    2018-05-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 11774438, the Natural Science Foundation of Jiangsu Province under Grant No BK20151172, the Changzhou Science and Technology Bureau under Grant No CJ20160028, the Qing Lan Project, the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04, and the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences.

  5. Laboratory directed research and development: Annual report to the Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    As one of the premier scientific laboratories of the DOE, Brookhaven must continuously foster the development of new ideas and technologies, promote the early exploration and exploitation of creative and innovative concepts, and develop new fundable R and D projects and programs. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achievingmore » and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments are described in this report. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.« less

  6. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data andmore » an internal evaluation of the program’s management process.« less

  7. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  8. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and anmore » internal evaluation of the program’s management process.« less

  9. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  10. Laboratory Directed Research and Development 1998 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work inmore » atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.« less

  11. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  12. Electromigration of intergranular voids in metal films for microelectronic interconnects

    NASA Astrophysics Data System (ADS)

    Averbuch, Amir; Israeli, Moshe; Ravve, Igor

    2003-04-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the voltage distribution is required only along the interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the intergranular void was studied for different ratios between the diffusion and the electric field forces, and for different initial configurations of the void.

  13. Development of guided inquiry-based laboratory worksheet on topic of heat of combustion

    NASA Astrophysics Data System (ADS)

    Sofiani, D.; Nurhayati; Sunarya, Y.; Suryatna, A.

    2018-03-01

    Chemistry curriculum reform shows an explicit shift from traditional approach to scientific inquiry. This study aims to develop a guided inquiry-based laboratory worksheet on topic of heat of combustion. Implementation of this topic in high school laboratory is new because previously some teachers only focused the experiment on determining the heat of neutralization. The method used in this study was development research consisted of three stages: define, design, and develop. In the define stage, curriculum analysis and material analysis were performed. In the design stage, laboratory optimization and product preparation were conducted. In the development stage, the product was evaluated by the experts and tested to a total of 20 eleventh-grade students. The instruments used in this study were assessment sheet and students’ response questionnaire. The assessment results showed that the guided inquiry-based laboratory worksheet has very good quality based on the aspects of content, linguistic, and graphics. The students reacted positively to the use of this guided inquiry-based worksheet as demonstrated by the results from questionnaire. The implications of this study is the laboratory activity should be directed to development of scientific inquiry skills in order to enhance students’ competences as well as the quality of science education.

  14. A method for developing outcome measures in the clinical laboratory.

    PubMed

    Jones, J

    1996-01-01

    Measuring and reporting outcomes in health care is becoming more important for quality assessment, utilization assessment, accreditation standards, and negotiating contracts in managed care. How does one develop an outcome measure for the laboratory to assess the value of the services? A method is described which outlines seven steps in developing outcome measures for a laboratory service or process. These steps include the following: 1. Identify the process or service to be monitored for performance and outcome assessment. 2. If necessary, form an multidisciplinary team of laboratory staff, other department staff, physicians, and pathologists. 3. State the purpose of the test or service including a review of published data for the clinical pathological correlation. 4. Prepare a process cause and effect diagram including steps critical to the outcome. 5. Identify key process variables that contribute to positive or negative outcomes. 6. Identify outcome measures that are not process measures. 7. Develop an operational definition, identify data sources, and collect data. Examples, including a process cause and effect diagram, process variables, and outcome measures, are given using the Therapeutic Drug Monitoring service (TDM). A summary of conclusions and precautions for outcome measurement is then provided.

  15. Adaptive Mesh Refinement for Microelectronic Device Design

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Lou, John; Norton, Charles

    1999-01-01

    Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of

  16. Listening to Brain Microcircuits for Interfacing With External World—Progress in Wireless Implantable Microelectronic Neuroengineering Devices

    PubMed Central

    Nurmikko, Arto V.; Donoghue, John P.; Hochberg, Leigh R.; Patterson, William R.; Song, Yoon-Kyu; Bull, Christopher W.; Borton, David A.; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2011-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature’s amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic “brain-interfaces” within the body, a point of special emphasis of this paper. PMID:21654935

  17. Developments in laboratory diagnostics for isocyanate asthma

    PubMed Central

    Wisnewski, Adam V.

    2011-01-01

    Purpose of review Isocyanates, reactive chemicals used to generate polyurethane, are a leading cause of occupational asthma worldwide. Workplace exposure is the best-recognized risk factor for disease development, but is challenging to monitor. Clinical diagnosis and differentiation of isocyanates as the cause of asthma can be difficult. The gold-standard test, specific inhalation challenge, is technically and economically demanding, and is thus only available in a few specialized centers in the world. With the increasing use of isocyanates, efficient laboratory tests for isocyanate asthma and exposure are urgently needed. Recent findings The review focuses on literature published in 2005 and 2006. Over 150 articles, identified by searching PubMed using keywords ‘diphenylmethane’, ‘toluene’ or ‘hexamethylene diisocyanate’, were screened for relevance to isocyanate asthma diagnostics. New advances in understanding isocyanate asthma pathogenesis are described, which help improve conventional radioallergosorbent and enzyme-linked immunosorbent assay approaches for measuring isocyanate-specific IgE and IgG. Newer immunoassays, based on cellular responses and discovery science readouts are also in development. Summary Contemporary laboratory tests that measure isocyanate-specific human IgE and IgG are of utility in diagnosing a subset of workers with isocyanate asthma, and may serve as a biomarker of exposure in a larger proportion of occupationally exposed workers. PMID:17351466

  18. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael F. Simpson

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  19. Computation for Electromigration in Interconnects of Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Averbuch, Amir; Israeli, Moshe; Ravve, Igor; Yavneh, Irad

    2001-03-01

    Reliability and performance of microelectronic devices depend to a large extent on the resistance of interconnect lines. Voids and cracks may occur in the interconnects, causing a severe increase in the total resistance and even open circuits. In this work we analyze void motion and evolution due to surface diffusion effects and applied external voltage. The interconnects under consideration are three-dimensional (sandwich) constructs made of a very thin metal film of possibly variable thickness attached to a substrate of nonvanishing conductance. A two-dimensional level set approach was applied to study the dynamics of the moving (assumed one-dimensional) boundary of a void in the metal film. The level set formulation of an electromigration and diffusion model results in a fourth-order nonlinear (two-dimensional) time-dependent PDE. This equation was discretized by finite differences on a regular grid in space and a Runge-Kutta integration scheme in time, and solved simultaneously with a second-order static elliptic PDE describing the electric potential distribution throughout the interconnect line. The well-posed three-dimensional problem for the potential was approximated via singular perturbations, in the limit of small aspect ratio, by a two-dimensional elliptic equation with variable coefficients describing the combined local conductivity of metal and substrate (which is allowed to vary in time and space). The difference scheme for the elliptic PDE was solved by a multigrid technique at each time step. Motion of voids in both weak and strong electric fields was examined, and different initial void configurations were considered, including circles, ellipses, polygons with rounded corners, a butterfly, and long grooves. Analysis of the void behavior and its influence on the resistance gives the circuit designer a tool for choosing the proper parameters of an interconnect (width-to-length ratio, properties of the line material, conductivity of the underlayer

  20. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOX, K.J.

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE)more » annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.« less

  1. Laboratory automation of high-quality and efficient ligand-binding assays for biotherapeutic drug development.

    PubMed

    Wang, Jin; Patel, Vimal; Burns, Daniel; Laycock, John; Pandya, Kinnari; Tsoi, Jennifer; DeSilva, Binodh; Ma, Mark; Lee, Jean

    2013-07-01

    Regulated bioanalytical laboratories that run ligand-binding assays in support of biotherapeutics development face ever-increasing demand to support more projects with increased efficiency. Laboratory automation is a tool that has the potential to improve both quality and efficiency in a bioanalytical laboratory. The success of laboratory automation requires thoughtful evaluation of program needs and fit-for-purpose strategies, followed by pragmatic implementation plans and continuous user support. In this article, we present the development of fit-for-purpose automation of total walk-away and flexible modular modes. We shared the sustaining experience of vendor collaboration and team work to educate, promote and track the use of automation. The implementation of laboratory automation improves assay performance, data quality, process efficiency and method transfer to CRO in a regulated bioanalytical laboratory environment.

  2. Analysis of LDLR mutations in familial hypercholesterolemia patients in Greece by use of the NanoChip microelectronic array technology.

    PubMed

    Laios, Eleftheria; Drogari, Euridiki

    2006-12-01

    Three mutations in the low density lipoprotein receptor (LDLR) gene account for 49% of familial hypercholesterolemia (FH) cases in Greece. We used the microelectronic array technology of the NanoChip Molecular Biology Workstation to develop a multiplex method to analyze these single-nucleotide polymorphisms (SNPs). Primer pairs amplified the region encompassing each SNP. The biotinylated PCR amplicon was electronically addressed to streptavidin-coated microarray sites. Allele-specific fluorescently labeled oligonucleotide reporters were designed and used for detection of wild-type and SNP sequences. Genotypes were compared to PCR-restriction fragment length polymorphism (PCR-RFLP). We developed three monoplex assays (1 SNP/site) and an optimized multiplex assay (3SNPs/site). We performed 92 Greece II, 100 Genoa, and 98 Afrikaner-2 NanoChip monoplex assays (addressed to duplicate sites and analyzed separately). Of the 580 monoplex genotypings (290 samples), 579 agreed with RFLP. Duplicate sites of one sample were not in agreement with each other. Of the 580 multiplex genotypings, 576 agreed with the monoplex results. Duplicate sites of three samples were not in agreement with each other, indicating requirement for repetition upon which discrepancies were resolved. The multiplex assay detects common LDLR mutations in Greek FH patients and can be extended to accommodate additional mutations.

  3. WORK SITE CLINICAL AND NEUROBEHAVIORAL ASSESSMENT OF SOLVENT EXPOSED MICROELECTRONICS WORKERS

    EPA Science Inventory

    A group of 25 workers currently (5), or formerly (20), involved in the manufacture of hybrid microcircuits underwent clinical evaluations at the request of a management-union committee concerned about chronic solvent exposures in a research and development laboratory. attery of n...

  4. Laboratory Directed Research and Development FY2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammeraad, J E; Jackson, K J; Sketchley, J A

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal yearmore » 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  5. Laser ultrasonic characterization of membranes for use as micro-electronic mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Edwards, R. S.; Zhou, L. Q.; Pearce, M. J.; Prince, R. G.; Colston, G.; Myronov, M.; Leadley, D. R.; Trushkevych, O.

    2017-02-01

    Germanium (Ge) on Silicon (Si) has the potential to produce a wide variety of devices, including sensors, solar cells and transistors. Modification of these materials so that a suspended membrane layer is formed, through removing regions of the Si substrate, offers the potential for sensors with a more rapid response and higher sensitivity. Such membranes are a very simple micro-electronic mechanical system (MEMS). It is essential to ensure that the membranes are robust against shock and vibration, with well-characterised resonant frequencies, prior to any practical application. We present work using laser interferometry to characterise the resonant modes of membranes produced from Ge or silicon carbide (SiC) on a Si substrate, with the membranes typically having around 1 mm lateral dimensions. Two dimensional scanning of the sample enables visualisation of each mode. The stress measured from the resonant frequencies agrees well with that calculated from the growth conditions. SiC provides a more robust platform for electronics, while Ge offers better resonant properties. This offers a potential technique for characterising production quality or lifetime testing for the MEMS produced.

  6. Development of a solid-phase microextraction gas chromatography with microelectron-capture detection method for a multiresidue analysis of pesticides in bovine milk.

    PubMed

    Fernandez-Alvarez, Maria; Llompart, Maria; Lamas, J Pablo; Lores, Marta; Garcia-Jares, Carmen; Cela, Rafael; Dagnac, Thierry

    2008-06-09

    A simple and rapid method based on solid-phase microextraction (SPME) technique followed by gas chromatography with microelectron-capture detection (GC-microECD) was developed for the simultaneous determination of more than 30 pesticides (pyrethroids and organochlorinated among others) in milk. To our knowledge, this is the first application of SPME for the determination of pyrethroid pesticides in milk. Negative matrix effects due to the complexity and lipophility of the studied matrix were reduced by diluting the sample with distilled water. A 2(5-1) fractional factorial design was performed to assess the influence of several factors (type of fiber coating, sampling mode, stirring, extraction temperature, and addition of sodium chloride) on the SPME procedure and to determine the optimal extraction conditions. After optimization of all the significant variables and interactions, the recommended procedure was established as follows: DSPME (using a polydimethylsiloxane (PDMS)/divinylbenzene (DVB) coating) of 1 mL of milk sample diluted with Milli-Q water (1:10 dilution ratio), at 100 degrees C, under stirring for 30 min. The proposed method showed good linearity and high sensitivity, with limits of detection (LOD) at the sub-ng mL(-1) level. Within a day and among days precisions were also evaluated (R.S.D.<15%). One of the most important attainments of this work was the use of external calibration with milk-matched standards to quantify the levels of the target analytes. The method was tested with liquid and powdered milk samples with different fat contents covering the whole commercial range. The efficiency of the extraction process was studied at several analyte concentration levels obtaining high recoveries (>80% in most cases) for different types of full-fat milks. The optimized procedure was validated with powdered milk certified reference material, which was quantified using external calibration and standard addition protocols. Finally, the DSPME

  7. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  8. Nano-Nucleation Characteristic of Cu-Ag Alloy Directly Electrodeposited on W Diffusion Barrier for Microelectronic Device Interconnect.

    PubMed

    Kim, Kang O; Kim, Sunjung

    2016-05-01

    Cu-Ag alloy interconnect is promising for ultra-large-scale integration (ULSI) microelectronic system of which device dimension keeps shrinking. In this study, seedless electrodeposition of Cu-Ag alloy directly on W diffusion barrier as interconnect technology is presented in respect of nano-nucleation control. Chemical equilibrium state of electrolyte was fundamentally investigated according to the pH of electrolyte because direct nano-nucleation of Cu-Ag alloy on W surface is challenging. Chelation behavior of Cu2+ and Ag+ ions with citrate (Cit) and ammonia ligands was dependent on the pH of electrolyte. The amount and kind of Cu- and Ag-based complexes determine the deposition rate, size, elemental composition, and surface morphology of Cu-Ag alloy nano-nuclei formed on W surface.

  9. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  10. Development of sensorial experiments and their implementation into undergraduate laboratories

    NASA Astrophysics Data System (ADS)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  11. Development and Operation of a MUMPS Laboratory Information System: A Decade's Experience

    PubMed Central

    Miller, R. E.; Causey, J. P.; Moore, G. W.; Wilk, G. E.

    1988-01-01

    We describe more than a decade's experience with inhouse development and operation of a clinical laboratory computer system written in the MUMPS programming language for a 1000 bed teaching hospital. The JHLIS is a networked minicomputer system that supports accessioning, instrument monitoring, and result reporting for over 3000 specimens and 30,000 test results daily. Development and operation of the system accounts for 6% of the budget of the laboratories which have had a 70% increase in workload over the past decade. Our experience with purchased MUMPS software maintained and enhanced inhouse suggests an attractive alternative to lengthy inhouse development.

  12. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laloum, D., E-mail: david.laloum@cea.fr; CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9; STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  13. Laboratories and Demonstrations in Child Development with Unedited Videotapes.

    ERIC Educational Resources Information Center

    Poole, Debra Ann

    1986-01-01

    Multipurpose demonstrations of child development are easy to produce by videotaping children while they interact with parents, siblings, or friends. Unlike commercial films, videotapes without narration allow students to formulate and test their own research questions. This article describes how to use unedited videotapes for laboratories in…

  14. Laboratory Directed Research and Development FY2010 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less

  15. SHynergie: Development of a virtual project laboratory for monitoring hydraulic stimulations

    NASA Astrophysics Data System (ADS)

    Renner, Jörg; Friederich, Wolfgang; Meschke, Günther; Müller, Thomas; Steeb, Holger

    2016-04-01

    Hydraulic stimulations are the primary means of developing subsurface reservoirs regarding the extent of fluid transport in them. The associated creation or conditioning of a system of hydraulic conduits involves a range of hydraulic and mechanical processes but also chemical reactions, such as dissolution and precipitation, may affect the stimulation result on time scales as short as hours. In the light of the extent and complexity of these processes, the steering potential for the operator of a stimulation critically depends on the ability to integrate the maximum amount of site-specific information with profound process understanding and a large spectrum of experience. We report on the development of a virtual project laboratory for monitoring hydraulic stimulations within the project SHynergie (http://www.ruhr-uni-bochum.de/shynergie/). The concept of the laboratory envisioned product that constitutes a preparing and accompanying rather than post-processing instrument ultimately accessible to persons responsible for a project over a web-repository. The virtual laboratory consists of a data base, a toolbox, and a model-building environment. Entries in the data base are of two categories. On the one hand, selected mineral and rock properties are provided from the literature. On the other hand, project-specific entries of any format can be made that are assigned attributes regarding their use in a stimulation problem at hand. The toolbox is interactive and allows the user to perform calculations of effective properties and simulations of different types (e.g., wave propagation in a reservoir, hydraulic test). The model component is also hybrid. The laboratory provides a library of models reflecting a range of scenarios but also allows the user to develop a site-specific model constituting the basis for simulations. The laboratory offers the option to use its components following the typical workflow of a stimulation project. The toolbox incorporates simulation

  16. Developing Digital Courseware for a Virtual Nano-Biotechnology Laboratory: A Design-Based Research Approach

    ERIC Educational Resources Information Center

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Lin, Weijane; Sheen, Horn-Jiunn

    2014-01-01

    This paper first reviews applications of multimedia in engineering education, especially in laboratory learning. It then illustrates a model and accreditation criteria adopted for developing a specific set of nanotechnology laboratory courseware and reports the design-based research approach used in designing and developing the e-learning…

  17. 75 FR 39954 - Oversight of Laboratory Developed Tests; Public Meeting; Change of Meeting Location

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ...] Oversight of Laboratory Developed Tests; Public Meeting; Change of Meeting Location AGENCY: Food and Drug... location for the upcoming public meeting entitled ``Oversight of Laboratory Developed Tests.'' A new... the public meeting, FDA is announcing in this notice a new location for the public meeting. II. New...

  18. Artificial Retina Project: Final Report for CRADA ORNL 01-0625

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, E; Little, J

    The U.S. Department of Energy’s Artificial Retina Project is a collaborative, multi-institutional effort to develop an implantable microelectronic retinal prosthesis that restores useful vision to people blinded by retinal diseases. The ultimate goal of the project is to restore reading ability, facial recognition, and unaided mobility in people with retinitis pigmentosa and age-related macular degeneration. The project taps into the unique research technologies and resources developed at DOE national laboratories to surmount the many technical challenges involved with developing a safe, effective, and durable product. The research team includes six DOE national laboratories, four universities, and private industry.

  19. Abstract - Cooperative Research and Development Agreement between Ames National Laboratory and National Energy Technology Laboratory AGMT-0609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryden, Mark; Tucker, David A.

    The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.

  20. Three-dimensional modeling of n+-nu-n+ and p+-pi-p+ semiconducting devices for analog ULSI microelectronics

    NASA Astrophysics Data System (ADS)

    Gillet, Jean-Numa; Degorce, Jean-Yves; Belisle, Jonathan; Meunier, Michel

    2004-03-01

    Three-dimensional modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting devices for analog ULSI microelectronics Jean-Numa Gillet,^a,b Jean-Yves Degorce,^a Jonathan Bélisle^a and Michel Meunier.^a,c ^a École Polytechnique de Montréal, Dept. of Engineering Physics, CP 6079, Succ. Centre-vile, Montréal, Québec H3C 3A7, Canada. ^b Corresponding author. Email: Jean-Numa.Gillet@polymtl.ca ^c Also with LTRIM Technologies, 140-440, boul. A.-Frappier, Laval, Québec H7V 4B4, Canada. We present for the first time three-dimensional (3-D) modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting resistors, which are fabricated by laser-induced doping in a gateless MOSFET and present significant applications for analog ULSI microelectronics. Our modeling software is made up of three steps. The two first concerns modeling of a new laser-trimming fabrication process. With the molten-silicon temperature distribution obtained from the first, we compute in the second the 3-D dopant distribution, which creates the electrical link through the device gap. In this paper the emphasis is on the third step, which concerns 3-D modeling of the resistor electronic behavior with a new tube multiplexing algorithm (TMA). The device current-voltage (I-V) curve is usually obtained by solving three coupled partial differential equations with a finite-element method. A 3-D device as our resistor cannot be modeled with this classical method owing to its prohibitive computational cost in three dimensions. This problem is however avoided by our TMA, which divides the 3-D device into one-dimensional (1-D) multiplexed tubes. In our TMA 1-D systems of three ordinary differential equations are solved to determine the 3-D device I-V curve, which substantially increases computation speed compared with the classical method. Numerical results show a good agreement with experiments.

  1. Recent Developments at the Accelerator Laboratory in Jyvaeskylae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trzaska, Wladyslaw Henryk

    Recent developments at the Accelerator Laboratory in Jyvaeskylae are described. In addition to the existing K = 130 a new cyclotron has been added. It is capable of producing of high current proton and deuteron beams at 30 and 15 MeV correspondingly. It should be fully operational in 2010. A new development in Jyvaeskylae is the growing commitment to astroparticle physics. Jyvaeskylae took the main scientific responsibility for a new cosmic-ray experiment EMMA and has joined the LAGUNA project working on the design of the next generation of very large volume detectors for underground observatories.

  2. Project development laboratories energy fuels and oils based on NRU “MPEI”

    NASA Astrophysics Data System (ADS)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Khomenkov, A. M.; Paramonova, A. O.; Khtoo Naing, Aung

    2017-11-01

    In the process of improving the efficiency of power plants a hot topic is the use of high-quality fuels and lubricants. In the process of transportation, preparation for use, storage and maintenance of the properties of fuels and lubricants may deteriorate, which entails a reduction in the efficiency of power plants. One of the ways to prevent the deterioration of the properties is a timely analysis of the relevant laboratories. In this day, the existence of laboratories of energy fuels and energy laboratory oil at thermal power stations is satisfactory character. However, the training of qualified personnel to work in these laboratories is a serious problem, as the lack of opportunities in these laboratories a complete list of required tests. The solution to this problem is to explore the possibility of application of methods of analysis of the properties of fuels and lubricants in the stage of training and re-training of qualified personnel. In this regard, on the basis of MPEI developed laboratory projects of solid, liquid and gaseous fuels, power and energy oils and lubricants. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties. Assess the financial component of the implementation of the developed projects based on the use of modern equipment used for tests. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties.

  3. Development and Implementation of a Quality Improvement Process for Echocardiographic Laboratory Accreditation.

    PubMed

    Gilliland, Yvonne E; Lavie, Carl J; Ahmad, Homaa; Bernal, Jose A; Cash, Michael E; Dinshaw, Homeyar; Milani, Richard V; Shah, Sangeeta; Bienvenu, Lisa; White, Christopher J

    2016-03-01

    We describe our process for quality improvement (QI) for a 3-year accreditation cycle in echocardiography by the Intersocietal Accreditation Commission (IAC) for a large group practice. Echocardiographic laboratory accreditation by the IAC was introduced in 1996, which is not required but could impact reimbursement. To ensure high-quality patient care and community recognition as a facility committed to providing high-quality echocardiographic services, we applied for IAC accreditation in 2010. Currently, there is little published data regarding the IAC process to meet echocardiography standards. We describe our approach for developing a multicampus QI process for echocardiographic laboratory accreditation during the 3-year cycle of accreditation by the IAC. We developed a quarterly review assessing (1) the variability of the interpretations, (2) the quality of the examinations, (3) a correlation of echocardiographic studies with other imaging modalities, (4) the timely completion of reports, (5) procedure volume, (6) maintenance of Continuing Medical Education credits by faculty, and (7) meeting Appropriate Use Criteria. We developed and implemented a multicampus process for QI during the 3-year accreditation cycle by the IAC for Echocardiography. We documented both the process and the achievement of those metrics by the Echocardiography Laboratories at the Ochsner Medical Institutions. We found the QI process using IAC standards to be a continuous educational experience for our Echocardiography Laboratory physicians and staff. We offer our process as an example and guide for other echocardiography laboratories who wish to apply for such accreditation or reaccreditation. © 2016, Wiley Periodicals, Inc.

  4. Effects of rapid thermal annealing on crystallinity and Sn surface segregation of {{Ge}}_{1-{\\boldsymbol{x}}}{{Sn}}_{{\\boldsymbol{x}}} films on Si (100) and Si (111)

    NASA Astrophysics Data System (ADS)

    Miao, Yuan-Hao; Hu, Hui-Yong; Song, Jian-Jun; Xuan, Rong-Xi; Zhang, He-Ming

    2017-12-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61474085 and 61704130), the Science Research Plan in Shaanxi Province, China (Grant No. 2016GY-085), the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (Grant No. 90109162905), and the Fundamental Research Funds for the Central Universities, China (Grant No. 61704130).

  5. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  6. Developing a lean culture in the laboratory.

    PubMed

    Napoles, Leyda; Quintana, Maria

    2006-07-25

    The Director of Pathology at Jackson Memorial Hospital was interested in improving the operational efficiencies of the department in order to enhance the department's level of service in conjunction with the expansion of the overall health system. The decision was made to implement proven Lean practices in the laboratory under the direction of a major consulting firm. This article details the scope of the initial project as well as the operating principles of Lean manufacturing practices as applied to the clinical laboratory. The goals of the project were to improve turnaround times of laboratory results, reduce inventory and supply costs, improve staff productivity, maximize workflow, and eliminate waste. Extensive data gathering and analysis guided the work process by highlighting the areas of highest opportunity. This systematic approach resulted in recommendations for the workflow and physical layout of the laboratory. It also included the introduction of "standard workflow" and "visual controls" as critical items that streamlined operational efficiencies. The authors provide actual photographs and schematics of the reorganization and improvements to the physical layout of the laboratory. In conclusion, this project resulted in decreased turnaround times and increased productivity, as well as significant savings in the overall laboratory operations.

  7. Development of Rhizo-Columns for Nondestructive Root System Architecture Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Johnson, T. J.; Varga, T.; Hess, N. J.; Wietsma, T. W.

    2016-12-01

    Numerical models for root water uptake in plant-soil systems have been developing rapidly, increasing the demand for laboratory experimental data to test and verify these models. Most of the increasingly detailed models are either compared to long-term field crop data or do not involve comparisons at all. Ideally, experiments would provide information on dynamic root system architecture (RSA) in combination with soil-pant hydraulics such as water pressures and volumetric water contents. Data obtained from emerging methods such as Spectral Induced Polarization (SIP) and x-ray computed tomography (x-ray CT) may be used to provide laboratory RSA data needed for model comparisons. Point measurements such as polymer tensiometers (PT) may provide soil moisture information over a large range of water pressures, from field capacity to the wilting point under drought conditions. In the presentation, we demonstrate a novel laboratory capability allowing for detailed RSA studies in large columns under controlled conditions using automated SIP, X-ray CT, and PT methods. Examples are shown for pea and corn root development under various moisture regimes.

  8. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  9. Laboratory Directed Research and Development FY2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser

  10. Assessing Investigative Skill Development in Inquiry-Based and Traditional College Science Laboratory Courses

    ERIC Educational Resources Information Center

    Suits, Jerry P.

    2004-01-01

    A laboratory practical examination was used to compare the investigative skills developed in two different types of general-chemistry laboratory courses. Science and engineering majors (SEM) in the control group used a traditional verification approach (SEM-Ctrl), whereas those in the treatment group learned from an innovative, inquiry-based…

  11. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  12. The Development and Implementation of an Integrating Pharmacy Practice Laboratory.

    ERIC Educational Resources Information Center

    Newton, Gail D.; And Others

    1990-01-01

    The intent of an integrating laboratory was to help pharmacy students learn to solve problems, make decisions, and develop good communication skills. Educational units included exercises in guided design, patient profile review, patient inquiries, extemporaneous prescription compounding, clinical literature evaluation, and videotapes of simulated…

  13. Development and Score Validation of a Chemistry Laboratory Anxiety Instrument (CLAI) for College Chemistry Students.

    ERIC Educational Resources Information Center

    Bowen, Craig W.

    1999-01-01

    Reports the development and score validation of an instrument for measuring anxieties students experience in college chemistry laboratories. Factor analysis of scores from 361 college students shows that the developed Chemistry Laboratory Anxiety Instrument measures five constructs. Results from a second sample of 598 students show that scores on…

  14. Development and Evaluation of an Interactive Electronic Laboratory Manual for Cooperative Learning of Medical Histology

    ERIC Educational Resources Information Center

    Khalil, Mohammed K.; Kirkley, Debbie L.; Kibble, Jonathan D.

    2013-01-01

    This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual…

  15. Developing Therapies for Brain Tumors: The Impact of the Johns Hopkins Hunterian Neurosurgical Research Laboratory.

    PubMed

    Brem, Henry; Sankey, Eric W; Liu, Ann; Mangraviti, Antonella; Tyler, Betty M

    2017-01-01

    The Johns Hopkins Hunterian Neurosurgical Laboratory at the Johns Hopkins University School of Medicine was created in 1904 by Harvey Cushing and William Halsted and has had a long history of fostering surgical training, encouraging basis science research, and facilitating translational application. Over the past 30 years, the laboratory has addressed the paucity of brain tumor therapies. Pre-clinical work from the laboratory led to the development of carmustine wafers with initial US Food and Drug Administration (FDA) approval in 1996. Combining carmustine wafers, radiation, and temozolomide led to a significant increase in the median survival of patients with glioblastoma. The laboratory has also developed microchips and immunotherapy to further extend survival in this heretofore underserved population. These achievements were made possible by the dedication, commitment, and creativity of more than 300 trainees of the Hunterian Neurosurgical Laboratory. The laboratory demonstrates the beneficial influence of research experience as well its substantial impact on the field of biomedical research.

  16. Technology transfer of military space microprocessor developments

    NASA Astrophysics Data System (ADS)

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  17. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  18. LBNL Laboratory Directed Research and Development Program FY2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  19. Arctic Energy Technology Development Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. Inmore » the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.« less

  20. Naval Research Laboratory Industrial Chemical Analysis and Respiratory Filter Standards Development

    DTIC Science & Technology

    2017-09-29

    Filter Standards Development September 29, 2017 Approved for public release; distribution is unlimited. Thomas E. suTTo Materials and Systems Branch...LIMITATION OF ABSTRACT Naval Research Laboratory Industrial Chemical Analysis and Respiratory Filter Standards Development Thomas E. Sutto Naval Research...approach, developed by NRL, is tested by examining the filter behavior against a number of chemicals to determine if the NRL approach resulted in the

  1. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  2. Development of Sensorial Experiments and Their Implementation into Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Bromfield Lee, Deborah Christina

    2009-01-01

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only…

  3. Firing Room Remote Application Software Development & Swamp Works Laboratory Robot Software Development

    NASA Technical Reports Server (NTRS)

    Garcia, Janette

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.

  4. Preliminary investigation of polystyrene/MoS{sub 2}-Oleylamine polymer composite for potential application as low-dielectric material in microelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landi, Giovanni, E-mail: glandi@unisa.it; Department of Industrial Engineering, University of Salerno, Via G. Paolo II 132, 84084 Fisciano; Altavilla, Claudia

    2015-12-17

    Insulating materials play a vital role in the design and performance of electrical systems for both steady and transient state conditions. Among the other properties, also in this field, polymer nanocomposites promise to offer exciting improvements. Many studies in the last decade has witnessed significant developments in the area of nano-dielectric materials and significant effects of nano-scale fillers on electric, thermal and mechanical properties of polymeric materials have been observed. However, the developments of new and advanced materials to be used the miniaturization of electronic devices fabrication require extensive studies on electrical insulation characteristics of these materials before they canmore » be used in commercial systems. In this work, Polystyrene (PS) composites were prepared by the blend solution method using MoS{sub 2}@Oleylamine nanosheets as filler. The dielectric properties of the resulting comoposite have been investigated at 300K and in the frequency range between 1000 Hz and 1 MHz. The addition of the MoS{sub 2}@Oleylamine nanosheets leads to a decreasing of the relative dielectric constant and of the electrical conductivity measured in the voltage range between ±500V. Thanks to a possibility to tune the electrical permittivity with the control of MoS{sub 2} concentration, these materials could be used as a low-dielectric material in the microelectronics applications.« less

  5. Development of a Portable Motor Learning Laboratory (PoMLab)

    PubMed Central

    Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves

  6. Development of a Portable Motor Learning Laboratory (PoMLab).

    PubMed

    Takiyama, Ken; Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves

  7. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, Diane

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  8. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bookless, William

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  9. Lasers, their development, and applications at M.I.T. Lincoln Laboratory

    NASA Technical Reports Server (NTRS)

    Rediker, R. H.; Melngailis, I.; Mooradian, A.

    1984-01-01

    A historical account of the work on lasers at MIT Lincoln Laboratory is presented. Highlighted are the efforts that led to the coinvention of the semiconductor laser and the Laboratory's later role in establishing the feasibility of GaInAsP/InP semiconductor lasers for use in fiber telecommunications at 1.3-1.5 micron wavelengths. Descriptions of other important developments include tunable lead-salt semiconductor and solid-state lasers for spectroscopy and LIDAR applications, respectively, as well as ultrastable CO2 lasers for coherent infrared radar.

  10. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, D.

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  11. Development, integrated investigation, laboratory and in-flight testing of Chibis-M microsatellite ADCS

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Ivanov, D. S.; Ivlev, N. A.; Karpenko, S. O.; Roldugin, D. S.; Tkachev, S. S.

    2014-01-01

    Design, analytical investigation, laboratory and in-flight testing of the attitude determination and control system (ADCS) of a microsatellites are considered. The system consists of three pairs of reaction wheels, three magnetorquers, a set of Sun sensors, a three-axis magnetometer and a control unit. The ADCS is designed for a small 10-50 kg LEO satellite. System development is accomplished in several steps: satellite dynamics preliminary study using asymptotical and numerical techniques, hardware and software design, laboratory testing of each actuator and sensor and the whole ADCS. Laboratory verification is carried out on the specially designed test-bench. In-flight ADCS exploitation results onboard the Russian microsatellite "Chibis-M" are presented. The satellite was developed, designed and manufactured by the Institute of Space Research of RAS. "Chibis-M" was launched by the "Progress-13M" cargo vehicle on January 25, 2012 after undocking from the International Space Station (ISS). This paper assess both the satellite and the ADCS mock-up dynamics. Analytical, numerical and laboratory study results are in good correspondence with in-flight data.

  12. Development of space simulation / net-laboratory system

    NASA Astrophysics Data System (ADS)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  13. Development of Laboratory Investigations in Disorders of Sex Development.

    PubMed

    Audí, Laura; Camats, Núria; Fernández-Cancio, Mónica; Granada, María L

    2018-01-01

    Scientific knowledge to understand the biological basis of sex development was prompted by the observation of variants different from the 2 most frequent body types, and this became one of the fields first studied by modern pediatric endocrinology. The clinical observation was supported by professionals working in different areas of laboratory sciences which led to the description of adrenal and gonadal steroidogenesis, the enzymes involved, and the different deficiencies. Steroid hormone measurements evolved from colorimetry to radioimmunoassay (RIA) and automated immunoassays, although gas and liquid chromatography coupled to mass spectrometry are now the gold standard techniques for steroid measurements. Peptide hormones and growth factors were purified, and their measurement evolved from RIA to automated immunoassays. Hormone action mechanisms were described, and their specific receptors were characterized and assayed in experimental materials and in patient tissues and cell cultures. The discovery of the genetic basis for variant sex developments began with the description of the sex chromosomes. Molecular technology allowed cloning of genes coding for the different proteins involved in sex determination and development. Experimental animal models aided in verifying the roles of proteins and also suggested new genes to be investigated. New candidate genes continue to be described based on experimental models and on next-generation sequencing of patient DNAs. © 2017 S. Karger AG, Basel.

  14. The role of the independent clinical laboratory in new assay development and commercialization.

    PubMed

    Ellis, David G

    2003-01-01

    Most would agree that these are exciting times in the field of laboratory medicine. As the body of scientific knowledge expands and research activities, such as those catalyzed by the sequencing of the human genome, bring us closer to the promise of personalized medicine, the clinical laboratory industry will have increasing opportunities to partner with owners of intellectual property to develop and commercialize new diagnostic tests. The large, independent clinical laboratories are particularly well positioned to commercialize important new tests, with their broad market penetration, infrastructure, and the scale to run esoteric tests cost-effectively.

  15. Latest developments at the ALBA magnetic measurements laboratory

    NASA Astrophysics Data System (ADS)

    Marcos, J.; Massana, V.; García, L.; Campmany, J.

    2018-02-01

    ALBA is a third-generation synchrotron light source that has been in operation since 2012 near Barcelona. A magnetic measurements laboratory has been associated with the facility since its very early stages and has been active for the last 20 years. In the first part of this work, the different instruments available at the laboratory are described, and a brief overview of the measurement campaigns carried out during its 20 years of history is presented. In the second part, a more detailed description of the approach to Hall probe measurements adopted at ALBA is offered, with an explanation of the methods and ancillary equipment that have been developed along the years in order to improve the accuracy of the system. In the third part, a new concept of Hall probe bench devoted to the measurement of closed structures is presented. The in-house design and building of a prototype for such a bench is described, together with its mechanical and magnetic characterization. As a conclusion, the first results obtained with this bench are discussed.

  16. Curriculum Development of a Research Laboratory Methodology Course for Complementary and Integrative Medicine Students

    PubMed Central

    Vasilevsky, Nicole; Schafer, Morgan; Tibbitts, Deanne; Wright, Kirsten; Zwickey, Heather

    2015-01-01

    Training in fundamental laboratory methodologies is valuable to medical students because it enables them to understand the published literature, critically evaluate clinical studies, and make informed decisions regarding patient care. It also prepares them for research opportunities that may complement their medical practice. The National College of Natural Medicine's (NCNM) Master of Science in Integrative Medicine Research (MSiMR) program has developed an Introduction to Laboratory Methods course. The objective of the course it to train clinical students how to perform basic laboratory skills, analyze and manage data, and judiciously assess biomedical studies. Here we describe the course development and implementation as it applies to complementary and integrative medicine students. PMID:26500806

  17. Development and Evaluation of Computer-Based Laboratory Practical Learning Tool

    ERIC Educational Resources Information Center

    Gandole, Y. B.

    2006-01-01

    Effective evaluation of educational software is a key issue for successful introduction of advanced tools in the curriculum. This paper details to developing and evaluating a tool for computer assisted learning of science laboratory courses. The process was based on the generic instructional system design model. Various categories of educational…

  18. FY2007 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W W; Sketchley, J A; Kotta, P R

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted frommore » the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.« less

  19. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  20. Development of collaborative-creative learning model using virtual laboratory media for instrumental analytical chemistry lectures

    NASA Astrophysics Data System (ADS)

    Zurweni, Wibawa, Basuki; Erwin, Tuti Nurian

    2017-08-01

    The framework for teaching and learning in the 21st century was prepared with 4Cs criteria. Learning providing opportunity for the development of students' optimal creative skills is by implementing collaborative learning. Learners are challenged to be able to compete, work independently to bring either individual or group excellence and master the learning material. Virtual laboratory is used for the media of Instrumental Analytical Chemistry (Vis, UV-Vis-AAS etc) lectures through simulations computer application and used as a substitution for the laboratory if the equipment and instruments are not available. This research aims to design and develop collaborative-creative learning model using virtual laboratory media for Instrumental Analytical Chemistry lectures, to know the effectiveness of this design model adapting the Dick & Carey's model and Hannafin & Peck's model. The development steps of this model are: needs analyze, design collaborative-creative learning, virtual laboratory media using macromedia flash, formative evaluation and test of learning model effectiveness. While, the development stages of collaborative-creative learning model are: apperception, exploration, collaboration, creation, evaluation, feedback. Development of collaborative-creative learning model using virtual laboratory media can be used to improve the quality learning in the classroom, overcome the limitation of lab instruments for the real instrumental analysis. Formative test results show that the Collaborative-Creative Learning Model developed meets the requirements. The effectiveness test of students' pretest and posttest proves significant at 95% confidence level, t-test higher than t-table. It can be concluded that this learning model is effective to use for Instrumental Analytical Chemistry lectures.

  1. Critical role of developing national strategic plans as a guide to strengthen laboratory health systems in resource-poor settings.

    PubMed

    Nkengasong, John N; Mesele, Tsehaynesh; Orloff, Sherry; Kebede, Yenew; Fonjungo, Peter N; Timperi, Ralph; Birx, Deborah

    2009-06-01

    Medical laboratory services are an essential, yet often neglected, component of health systems in developing countries. Their central role in public health, disease control and surveillance, and patient management is often poorly recognized by governments and donors. However, medical laboratory services in developing countries can be strengthened by leveraging funding from other sources of HIV/AIDS prevention, care, surveillance, and treatment programs. Strengthening these services will require coordinated efforts by national governments and partners and can be achieved by establishing and implementing national laboratory strategic plans and policies that integrate laboratory systems to combat major infectious diseases. These plans should take into account policy, legal, and regulatory frameworks; the administrative and technical management structure of the laboratories; human resources and retention strategies; laboratory quality management systems; monitoring and evaluation systems; procurement and maintenance of equipment; and laboratory infrastructure enhancement. Several countries have developed or are in the process of developing their laboratory plans, and others, such as Ethiopia, have implemented and evaluated their plan.

  2. Symmetric miniaturized heating system for active microelectronic devices.

    PubMed

    McCracken, Michael; Mayer, Michael; Jourard, Isaac; Moon, Jeong-Tak; Persic, John

    2010-07-01

    To qualify interconnect technologies such as microelectronic fine wire bonds for mass production of integrated circuit (IC) packages, it is necessary to perform accelerated aging tests, e.g., to age a device at an elevated temperature or to subject the device to thermal cycling and measure the decrease of interconnect quality. There are downsides to using conventional ovens for this as they are relatively large and have relatively slow temperature change rates, and if electrical connections are required between monitoring equipment and the device being heated, they must be located inside the oven and may be aged by the high temperatures. Addressing these downsides, a miniaturized heating system (minioven) is presented, which can heat individual IC packages containing the interconnects to be tested. The core of this system is a piece of copper cut from a square shaped tube with high resistance heating wire looped around it. Ceramic dual in-line packages are clamped against either open end of the core. One package contains a Pt100 temperature sensor and the other package contains the device to be aged placed in symmetry to the temperature sensor. According to the temperature detected by the Pt100, a proportional-integral-derivative controller adjusts the power supplied to the heating wire. The system maintains a dynamic temperature balance with the core hot and the two symmetric sides with electrical connections to the device under test at a cooler temperature. Only the face of the package containing the device is heated, while the socket holding it remains below 75 degrees C when the oven operates at 200 degrees C. The minioven can heat packages from room temperature up to 200 degrees C in less than 5 min and maintain this temperature at 28 W power. During long term aging, a temperature of 200 degrees C was maintained for 1120 h with negligible resistance change of the heating wires after 900 h (heating wire resistance increased 0.2% over the final 220 h). The

  3. ["How can hospitals develop a beneficial relationship with laboratory testing companies?" - Chairmen's introductory remarks].

    PubMed

    Morita, Toshisuke; Kawano, Seiji

    2014-12-01

    The symposium was held with the Japanese Society of Laboratory Medicine and JACLaP to discuss the way to develop a beneficial relationship between hospitals and laboratory testing companies with co-chairing by Seiji Kawano, Kobe University and Toshisuke Morita, Toho University. Clinical testing is considered to be essential for medical diagnosis and treatment; however, it is difficult for a hospital to perform all clinical testing for various reasons, including cost-effectiveness. In this session, 4 guest speakers gave a talk from their viewpoints. Doctor Kawano talked about the results of a questionnaire filled out by 114 university hospitals on how to develop a beneficial relationship between hospitalsoand laboratory testing companies. Next, Mr. Shinji Ogawa, president and CEO of SRL, talked about favorable ways to utilize laboratory testing companies, sayingthat such companies, which have a variety of skills, are expected to offer new and advanced technologies to hospitals continuously, and abundant data which laboratory testing companies have should be used for the advancement of community medicine. Professor Koshiba, Hyogo Medical School, expressed his apprehension to develop a so-called branch lab. in university hospitals from his own experience, and concluded that a beneficial relationship with companies to perform tasks required by hospitals should be sought. The last speaker, Yuichi Setoyama, Mitsubishi Chemical Medience, talked about the new relationship between hospitals and laboratory testing companies, and emphasized that hospitals and such companies should know the strong and weak points of each other and build a mutually complementary system. After all presentations were over, a discussion with participants was held. Doctors of clinics said that the role of laboratory testing companies for large hospitals is different from that for small clinics, and such companies are indispensable for his everyday medical activities. Each medical institute has its

  4. Building Transnational Bodies: Norway and the International Development of Laboratory Animal Science, ca. 1956–1980

    PubMed Central

    Druglitrø, Tone; Kirk, Robert G. W.

    2015-01-01

    Argument This article adopts a historical perspective to examine the development of Laboratory Animal Science and Medicine, an auxiliary field which formed to facilitate the work of the biomedical sciences by systematically improving laboratory animal production, provision, and maintenance in the post Second World War period. We investigate how Laboratory Animal Science and Medicine co-developed at the local level (responding to national needs and concerns) yet was simultaneously transnational in orientation (responding to the scientific need that knowledge, practices, objects and animals circulate freely). Adapting the work of Tsing (2004), we argue that national differences provided the creative “friction” that helped drive the formation of Laboratory Animal Science and Medicine as a transnational endeavor. Our analysis engages with the themes of this special issue by focusing on the development of Laboratory Animal Science and Medicine in Norway, which both informed wider transnational developments and was formed by them. We show that Laboratory Animal Science and Medicine can only be properly understood from a spatial perspective; whilst it developed and was structured through national “centers,” its orientation was transnational necessitating international networks through which knowledge, practice, technologies, and animals circulated. More and better laboratory animals are today required than ever before, and this demand will continue to rise if it is to keep pace with the quickening tempo of biological and veterinary research. The provision of this living experimental material is no longer a local problem; local, that is, to the research institute. It has become a national concern, and, in some of its aspects . . . even international. (William Lane-Petter 1957, 240) PMID:24941794

  5. Developing a competency framework for U.S. state food and feed testing laboratory personnel.

    PubMed

    Kaml, Craig; Weiss, Christopher C; Dezendorf, Paul; Ishida, Maria; Rice, Daniel H; Klein, Ron; Salfinger, Yvonne

    2014-01-01

    A competency-based training curriculum framework for U.S. state food and feed testing laboratories personnel is being developed by the International Food Protection Training Institute (IFPTI) and three partners. The framework will help laboratories catalog existing training courses/modules, identify training gaps, inform training curricula, and create career-spanning professional development learning paths, ensuring consistent performance expectations and increasing confidence in shared test results. Ultimately, the framework will aid laboratories in meeting the requirements of ISO/IEC 17025 (2005) international accreditation and the U.S. Food Safety Modernization Act (U.S. Public Law 111-353). In collaboration with the Association of Food and Drug Officials, the Association of Public Health Laboratories, and the Association of American Feed Control Officials, IFPTI is carrying out the project in two phases. In 2013, an expert panel of seven subject matter experts developed competency and curriculum frameworks for five professional levels (entry, mid-level, expert, supervisor/manager, and senior administration) across four competency domains (technical, communication, programmatic, and leadership) including approximately 80 competencies. In 2014 the expert panel will elicit feedback from peers and finalize the framework.

  6. The Development and Deployment of a Virtual Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Vaidyanath, Sreeram; Williams, Jason; Hilliard, Marcus; Wiesner, Theodore

    2007-01-01

    Computer-simulated experiments offer many benefits to engineering curricula in the areas of safety, cost, and flexibility. We report our experience in developing and deploying a computer-simulated unit operations laboratory, driven by the guiding principle of maximum fidelity to the physical lab. We find that, while the up-front investment in…

  7. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOX,K.J.

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually inmore » March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff

  8. Develop virtual joint laboratory for education like distance engineering system for robotic applications

    NASA Astrophysics Data System (ADS)

    Latinovic, T. S.; Deaconu, S. I.; Latinović, M. T.; Malešević, N.; Barz, C.

    2015-06-01

    This paper work with a new system that provides distance learning and online training engineers. The purpose of this paper is to develop and provide web-based system for the handling and control of remote devices via the Internet. Remote devices are currently the industry or mobile robots [13]. For future product development machine in the factory will be included in the system. This article also discusses the current use of virtual reality tools in the fields of science and engineering education. One programming tool in particular, virtual reality modeling language (VRML) is presented in the light of its applications and capabilities in the development of computer visualization tool for education. One contribution of this paper is to present the software tools and examples that can encourage educators to develop a virtual reality model to improve teaching in their discipline. [12] This paper aims to introduce a software platform, called VALIP where users can build, share, and manipulate 3D content in cooperation with the interaction processes in a 3D context, while participating hardware and software devices can be physical and / or logical distributed and connected together via the Internet. VALIP the integration of virtual laboratories to appropriate partners; therefore, allowing access to all laboratories in any of the partners in the project. VALIP provides advanced laboratory for training and research within robotics and production engineering, and thus, provides a great laboratory facilities with only having to invest a limited amount of resources at the local level to the partner site.

  9. Developing a Remote Laboratory for Engineering Education

    ERIC Educational Resources Information Center

    Fabregas, E.; Farias, G.; Dormido-Canto, S.; Dormido, S.; Esquembre, F.

    2011-01-01

    New information technologies provide great opportunities for education. One such opportunity is the use of remote control laboratories for teaching students about control systems. This paper describes the creation of interactive remote laboratories (RLs). Two main software tools are used: Simulink and Easy Java Simulations (EJS). The first is a…

  10. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  11. Development of Laboratory Seismic Exploration Experiment for Education and Demonstration

    NASA Astrophysics Data System (ADS)

    Kuwano, O.; Nakanishi, A.

    2016-12-01

    We developed a laboratory experiment to simulate a seismic refraction survey for educational purposes. The experiment is tabletop scaled experiment using the soft hydrogel as an analogue material of a layered crust. So, we can conduct the seismic exploration experiment in a laboratory or a classroom. The softness and the transparency of the gel material enable us to observe the wave propagation with our naked eyes, using the photoelastic technique. By analyzing the waveforms obtained by the image analysis of the movie of the experiment, one can estimate the velocities and the structure of the gel specimen in the same way as an actual seismic survey. We report details of the practical course and the public outreach activities using the experiment.

  12. Developing an online chemistry laboratory for non-chemistry majors

    NASA Astrophysics Data System (ADS)

    Poole, Jacqueline H.

    Distance education, also known as online learning, is student-centered/self-directed educational opportunities. This style of learning is expanding in scope and is increasingly being accepted throughout the academic curriculum as a result of its flexibility for the student as well as the cost-effectiveness for the institution. Nevertheless, the introduction of online science courses including chemistry and physics have lagged behind due to the challenge of re-creation of the hands-on laboratory learning experience. This dissertation looks at the effectiveness of the design of a series of chemistry laboratory experiments for possible online delivery that provide students with simulated hands-on experiences. One class of college Chemistry 101 students conducted chemistry experiments inside and outside of the physical laboratory using instructions on Blackboard and Late Nite Labs(TM). Learning outcomes measured by (a) pretests, (b) written laboratory reports, (c) posttest assessments, (d) student reactions as determined by a questionnaire, and (e) a focus group interview were utilized to compare both types of laboratory experiences. The research findings indicated learning outcomes achieved by students outside of the traditional physical laboratory were statistically greater than the equivalent face-to-face instruction in the traditional laboratory. Evidence from student reactions comparing both types of laboratory formats (online and traditional face-to-face) indicated student preference for the online laboratory format. The results are an initial contribution to the design of a complete sequence of experiments that can be performed independently by online students outside of the traditional face-to-face laboratory that will satisfy the laboratory requirement for the two-semester college Chemistry 101 laboratory course.

  13. Thermo-mechanical properties and integrity of metallic interconnects in microelectronics

    NASA Astrophysics Data System (ADS)

    Ege, Efe Sinan

    In this dissertation, combined numerical (Finite Element Method) and experimental efforts were undertaken to study thermo-mechanical behavior in microelectronic devices. Interconnects, including chip-level metallization and package-level solder joints, are used to join many of the circuit parts in modern equipment. The dissertation is structured into six independent studies after the introductory chapter. The first two studies focus on thermo-mechanical fatigue of solder joints. Thermo-mechanical fatigue, in the form of damage along a microstructurally coarsened region in tin-lead solder, is analyzed along with the effects of intermetallic morphology. Also, lap-shear testing is modeled to characterize the joint and to investigate the validity of experimental data from different solder and substrate geometries. In the third study, the effects of pre-machined holes on strain localization and overall ductility in bulk eutectic tin-lead alloy is examined. Finite element analyses, taking into account the viscoplastic response, were carried out to provide a mechanistic rationale to corroborate the experimental findings. The fourth study concerns chip-level copper interconnects. Various combinations of oxide and polymer-based low-k dielectric schemes, with and without the thin barrier layers surrounding the Cu line, are considered. Attention is devoted to the thermal stress and strain fields and their dependency on material properties, geometry, and modeling details. This study is followed by a chapter on atomistics of interface-mediated plasticity in thin metallic films. The objective is to gain fundamental insight into the underlying mechanisms affecting the mechanical response of nanoscale thin films. The final study investigates the effect of microstructural heterogeneity on indentation response, for the purpose of raising awareness of the uncertainties involved in applying indentation techniques in probing mechanical properties of miniaturized devices.

  14. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  15. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    NASA Astrophysics Data System (ADS)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the

  16. Development of a Laboratory Project to Determine Human ABO Genotypes--Limitations Lead to Further Student Explorations

    ERIC Educational Resources Information Center

    Salerno, Theresa A.

    2009-01-01

    A multiplex allele-specific PCR analysis was developed to identify six "common" genotypes: AA, AO, BB, BO, OO, and AB. This project included a pre-laboratory exercise that provided active learning experiences and developed critical thinking skills. This laboratory resulted in many successful analyses, which were verified by student knowledge of…

  17. Developing Learning Tool of Control System Engineering Using Matrix Laboratory Software Oriented on Industrial Needs

    NASA Astrophysics Data System (ADS)

    Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi

    2018-04-01

    The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.

  18. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, D.

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’smore » strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.« less

  19. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    NASA Technical Reports Server (NTRS)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  20. Laboratory Directed Research and Development LDRD-FY-2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  1. Technology Development Activities for the Space Environment and its Effects on Spacecraft

    NASA Technical Reports Server (NTRS)

    Kauffman, Billy; Hardage, Donna; Minor, Jody; Barth, Janet; LaBel, Ken

    2003-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how emerging microelectronics will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the push to use Commercial-off-the-shelf (COTS) and shrinking microelectronics behind less shielding and the potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will describe the relationship between the Living With a Star (LWS): Space Environment Testbeds (SET) Project and NASA's Space Environments and Effects (SEE) Program and their technology development activities funded as a result from the recent SEE Program's NASA Research Announcement.

  2. Laboratory Directed Research & Development (LDRD)

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  3. 1/f noise measurements for faster evaluation of electromigration in advanced microelectronics interconnections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyne, Sofie, E-mail: sofie.beyne@imec.be; De Wolf, Ingrid; imec, Kapeldreef 75, B-3001 Leuven

    The use of 1/f noise measurements is explored for the purpose of finding faster techniques for electromigration (EM) characterization in advanced microelectronic interconnects, which also enable a better understanding of its underlying physical mechanisms. Three different applications of 1/f noise for EM characterization are explored. First, whether 1/f noise measurements during EM stress can serve as an early indicator of EM damage. Second, whether the current dependence of the noise power spectral density (PSD) can be used for a qualitative comparison of the defect concentration of different interconnects and consequently also their EM lifetime t50. Third, whether the activation energiesmore » obtained from the temperature dependence of the 1/f noise PSD correspond to the activation energies found by means of classic EM tests. In this paper, the 1/f noise technique has been used to assess and compare the EM properties of various advanced integration schemes and different materials, as they are being explored by the industry to enable advanced interconnect scaling. More concrete, different types of copper interconnects and one type of tungsten interconnect are compared. The 1/f noise measurements confirm the excellent electromigration properties of tungsten and demonstrate a dependence of the EM failure mechanism on copper grain size and distribution, where grain boundary diffusion is found to be a dominant failure mechanism.« less

  4. Meteorological Development Laboratory Student Career Experience Program

    NASA Astrophysics Data System (ADS)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  5. Development of a low background liquid scintillation counter for a shallow underground laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erchinger, Jennifer L.; Aalseth, Craig E.; Bernacki, Bruce E.

    2015-08-20

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of lowconcentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., B, a) emitting isotopes with no (orvery weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunitymore » for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35-meter water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the instrumental shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.« less

  6. Comparison of CREME (cosmic-ray effects on microelectronics) model LET (linear energy transfer) spaceflight dosimetry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letaw, J.R.; Adams, J.H.

    The galactic cosmic radiation (GCR) component of space radiation is the dominant cause of single-event phenomena in microelectronic circuits when Earth's magnetic shielding is low. Spaceflights outside the magnetosphere and in high inclination orbits are examples of such circumstances. In high-inclination orbits, low-energy (high LET) particles are transmitted through the field only at extreme latitudes, but can dominate the orbit-averaged dose. GCR is an important part of the radiation dose to astronauts under the same conditions. As a test of the CREME environmental model and particle transport codes used to estimate single event upsets, we have compiled existing measurements ofmore » HZE doses were compiled where GCR is expected to be important: Apollo 16 and 17, Skylab, Apollo Soyuz Test Project, and Kosmos 782. The LET spectra, due to direct ionization from GCR, for each of these missions has been estimated. The resulting comparisons with data validate the CREME model predictions of high-LET galactic cosmic-ray fluxes to within a factor of two. Some systematic differences between the model and data are identified.« less

  7. Pathfinder radar development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Castillo, Steven

    2016-05-01

    Since the invention of Synthetic Aperture Radar imaging in the 1950's, users or potential users have sought to exploit SAR imagery for a variety of applications including the earth sciences and defense. At Sandia Laboratories, SAR Research and Development and associated defense applications grew out of the nuclear weapons program in the 1980's and over the years has become a highly viable ISR sensor for a variety of tactical applications. Sandia SAR systems excel where real-­-time, high-­-resolution, all-­-weather, day or night surveillance is required for developing situational awareness. This presentation will discuss the various aspects of Sandia's airborne ISR capability with respect to issues related to current operational success as well as the future direction of the capability as Sandia seeks to improve the SAR capability it delivers into multiple mission scenarios. Issues discussed include fundamental radar capabilities, advanced exploitation techniques and human-­-computer interface (HMI) challenges that are part of the advances required to maintain Sandia's ability to continue to support ever changing and demanding mission challenges.

  8. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    PubMed Central

    Amolins, Michael W.; Ezrailson, Cathy M.; Pearce, David A.; Elliott, Amy J.

    2015-01-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. PMID:26628658

  9. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging.

    PubMed

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid

    2015-04-01

    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.

  10. The Language Laboratory.

    ERIC Educational Resources Information Center

    Hughes, John P.

    Concepts pertaining to the language laboratory are clarified for the layman unfamiliar with recent educational developments in foreign language instruction. These include discussion of: (1) language laboratory components and functions, (2) techniques used in the laboratory, (3) new linguistic methods, (4) laboratory exercises, (5) traditional…

  11. Calendar Year 2001 Annual Site Environmental Report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VIGIL, FRANCINE S.; SANCHEZ, REBECCA D.; WAGNER, KATRINA

    2002-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility overseen by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) through the Albuquerque Operations Office (AL), Office of Kirtland Site Operations (OKSO). Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. Work performed at SNL/NM is in support of the DOE and Sandia Corporation's mission to provide weapon component technology and hardware for the needs of the nation's security. Sandia Corporation also conducts fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safetymore » for hazardous and nuclear components. In support of Sandia Corporation's mission, the Integrated Safety and Security (ISS) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist Sandia Corporation's line organizations in meeting all applicable local, state, and federal environmental regulations and DOE requirements. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2001. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental remediation, oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).« less

  12. Frederick National Laboratory Collaboration Success Stories | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory, that helps fine-tune nano

  13. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and

  14. Laboratory directed research and development annual report 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Densitymore » Sciences; and (15) Corporate Objectives.« less

  15. Research at Lincoln Laboratory leading up to the development of the injection laser in 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rediker, R.H.

    1987-06-01

    In 1958 the semiconductor device group at Lincoln Laboratory began to concentrate its efforts on exploiting GaAs. These efforts, in addition to yielding diodes with ns switching speeds, led to the development in early 1962 of diodes which emitted near-bandgap radiation with very high efficiency, and to the development in October 1962 of the diode laser. The theory of the semiconductor laser developed at Lincoln Laboratory in the mid-to-late 1950's provided the foundation necessary for the design of the diode laser structure after the highly efficient production of near-bandgap radiation was demonstrated.

  16. Research at Lincoln Laboratory leading up to the development of the injection laser in 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rediker, R.H.

    1987-06-01

    In 1958 the Semiconductor Device Group at Lincoln Laboratory began to concentrate its efforts on exploiting GaAs. these efforts, in addition to yielding diodes which ns switching speeds, led to the development in early 1962 of diodes that emitted near-bandgap radiation with very high efficiency, and to the development in October 1962 of the diode laser. The theory of the semiconductor laser developed at Lincoln Laboratory in the mid-to-late 1950's provided the foundation necessary for the design of the diode laser structure after the highly efficient production of near-bandgap radiation was demonstrated.

  17. An innovative educational approach to professional development of medical laboratory scientists in Botswana.

    PubMed

    Magowe, Mabel Km; Ledikwe, Jenny H; Kasvosve, Ishmael; Martin, Robert; Thankane, Kabo; Semo, Bazghina-Werq

    2014-01-01

    To address the shortage of laboratory scientists in Botswana, an innovative, one-year academic bridging program was initiated at the University of Botswana, to advance diploma-holding laboratory technicians towards becoming laboratory scientists holding Bachelor's degrees. An evaluation was conducted, which described the outcomes of the program and the lessons learned from this novel approach to meeting human resource needs. This was a cross-sectional, mixed-methods evaluation. Qualitative interviews were conducted with graduates of the Bachelor of Science (BSc) Medical Laboratory Sciences (MLS) bridging program, along with the graduates' current supervisors, and key informants who were involved in program development or implementation. The quantitative data collected included a written questionnaire, completed by program graduates, with a retrospective pre-test/post-test survey of graduates' confidence, in terms of key laboratory competencies. The BSc MLS bridging program produced thirty-three laboratory scientists over 3 years. There was a significant increase in confidence among graduates, for specified competencies, after the program (P<0.05). Graduates reported acquiring new skills and, often, accepting new responsibilities at their former workplace, particularly in relationship to leadership and management. Five graduates enrolled in advanced degree programs. Most graduates assumed increased responsibility. However, only two graduates were promoted after completing the training program. The lessons learned include: the importance of stakeholder involvement, the need for data to identify local needs, financial sustainability, catering for the needs of adult learners, and ensuring a technically challenging work environment, conducive to the application of skills learned during training. A strong public health and clinical laboratory system is essential for the rapid detection and control of emerging health threats, and for patient care. However, there is a need

  18. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  19. Developing School Laboratories To Promote the Establishment of Individual Experience Programs. Final Report.

    ERIC Educational Resources Information Center

    Valley Springs School District 2, AR.

    A project was conducted to promote and develop individual Supervised Agricultural Experience (SAE) programs in Arkansas through the development of laboratories. It was felt that strong SAE programs enhance the instructional portion of agriculture education, serve as a motivational tool, and improve the relations between the local school and…

  20. Evaluating the effectiveness of a laboratory-based professional development program for science educators.

    PubMed

    Amolins, Michael W; Ezrailson, Cathy M; Pearce, David A; Elliott, Amy J; Vitiello, Peter F

    2015-12-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. Copyright © 2015 The American Physiological Society.

  1. Development, Implementation, and Evaluation of an Interdisciplinary Women's Health and Laboratory Course.

    PubMed

    Guarner, Jeannette; Winkler, Ann M; Flowers, Lisa; Hill, Charles E; Ellis, Jane E; Workowski, Kimberly; Reid, Michelle D; Goedken, Jennifer

    2016-09-01

    To describe the creation, implementation, and evaluation of a case-based, interdisciplinary course that highlights laboratory principles for students who have selected a career in obstetrics and gynecology. We developed four case-based modules with questions that emphasize laboratory principles required to establish a diagnosis and treat and monitor each case-based scenario. The cases were offered as a 4-hour elective course during the medical school capstone. A clinician and a clinical pathologist pair facilitated the case discussions with groups of six to nine medical students during 2 consecutive years. Pre- and postknowledge quizzes were given to the students. In addition, a structured evaluation of the course was performed. Twenty-two students participated in the courses. Most found the format effective and the information useful. There was a significant increase in their related knowledge as established by pre- and posttesting. Case-based discussions gave learners a better understanding of the function and complexity of the clinical laboratories, and multidisciplinary facilitation highlighted the value of interacting with laboratory professionals to enhance clinical care. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. THE DEVELOPMENT AND INTER-LABORATORY VERIFICATION OF LC-MS LIBRARIES FOR ORGANIC CHEMICALS OF ENVIRONMENTAL CONCERN

    EPA Science Inventory

    The development, verification, and comparison study between LC-MS libraries for two manufacturers’ instruments and a verified protocol are discussed. The LC-MS library protocol was verified through an inter-laboratory study that involved Federal, State, and private laboratories. ...

  3. The development of Metacognition test in genetics laboratory for undergraduate students

    NASA Astrophysics Data System (ADS)

    A-nongwech, Nattapong; Pruekpramool, Chaninan

    2018-01-01

    The purpose of this research was to develop a Metacognition test in a Genetics Laboratory for undergraduate students. The participants were 30 undergraduate students of a Rajabhat university in Rattanakosin group in the second semester of the 2016 academic year using purposive sampling. The research instrument consisted of 1) Metacognition test and 2) a Metacognition test evaluation form for experts focused on three main points which were an accurate evaluation form of content, a consistency between Metacognition experiences and questions and the appropriateness of the test. The quality of the test was analyzed by using the Index of Consistency (IOC), discrimination and reliability. The results of developing Metacognition test were summarized as 1) The result of developing Metacognition test in a Genetics Laboratory for undergraduate students found that the Metacognition test contained 56 items of open - ended questions. The test composed of 1) four scientific situations, 2) fourteen items of open - ended questions in each scientific situation for evaluating components of Metacognition. The components of Metacognition consisted of Metacognitive knowledge, which were divided into person knowledge, task knowledge and strategy knowledge and Metacognitive experience, which were divided into planning, monitoring and evaluating, and 3) fourteen items of scoring criteria divided into four scales. 2) The results of the item analysis of Metacognition in Genetics Laboratory for undergraduate students found that Index of Consistency between Metacognitive experiences and questions were in the range between 0.75 - 1.00. An accuracy of content equaled 1.00. The appropriateness of the test equaled 1.00 in all situations and items. The discrimination of the test was in the range between 0.00 - 0.73. Furthermore, the reliability of the test equaled 0.97.

  4. Point-Counterpoint: The FDA Has a Role in Regulation of Laboratory-Developed Tests.

    PubMed

    Caliendo, Angela M; Hanson, Kimberly E

    2016-04-01

    Since the Food and Drug Administration (FDA) released its draft guidance on the regulation of laboratory-developed tests (LDTs) in October 2014, there has been a flurry of responses from commercial and hospital-based laboratory directors, clinicians, professional organizations, and diagnostic companies. The FDA defines an LDT as an "in vitrodiagnostic device that is intended for clinical use and is designed, manufactured, and used within a single laboratory." The draft guidance outlines a risk-based approach, with oversight of high-risk and moderate-risk tests being phased in over 9 years. High-risk tests would be regulated first and require premarket approval. Subsequently, moderate-risk tests would require a 510(k) premarket submission to the FDA and low-risk tests would need only to be registered. Oversight discretion would be exercised for LDTs focused on rare diseases (defined as fewer than 4,000 tests, not cases, per year nationally) and unmet clinical needs (defined as those tests for which there is no alternative FDA-cleared or -approved test). There was an open comment period followed by a public hearing in early January of 2015, and we are currently awaiting the final decision regarding the regulation of LDTs. Given that LDTs have been developed by many laboratories and are essential for the diagnosis and monitoring of an array of infectious diseases, changes in their regulation will have far-reaching implications for clinical microbiology laboratories. In this Point-Counterpoint, Angela Caliendo discusses the potential benefits of the FDA guidance for LDTs whereas Kim Hanson discusses the concerns associated with implementing the guidance and why these regulations may not improve clinical care. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Sensor development at the semiconductor laboratory of the Max-Planck-Society

    NASA Astrophysics Data System (ADS)

    Bähr, A.; Lechner, P.; Ninkovic, J.

    2017-12-01

    For more than twenty years the semiconductor laboratory of the Max-Planck Society (MPG-HLL) is developing high-performing, specialised, scientific silicon sensors including the integration of amplifying electronics on the sensor chip. This paper summarises the actual status of these devices like pnCCDs and DePFET Active Pixel Sensors and their applications.

  6. Developing a gate-array capability at a research and development laboratory

    NASA Astrophysics Data System (ADS)

    Balch, J. W.; Current, K. W.; Magnuson, W. G., Jr.; Pocha, M. D.

    1983-03-01

    Experiences in developing a gate array capability for low volume applications in a research and development (R and D) laboratory are described. By purchasing unfinished wafers and doing the customization steps in-house. Turnaround time was shortened to as little as one week and the direct costs reduced to as low as $5K per design. Designs generally require fast turnaround (a few weeks to a few months) and very low volumes (1 to 25). Design costs must be kept at a minimum. After reviewing available commercial gate array design and fabrication services, it was determined that objectives would best be met by using existing internal integrated circuit fabrication facilities, the COMPUTERVISION interactive graphics layout system, and extensive computational capabilities. The reasons and the approach taken for; selection for a particular gate array wafer, adapting a particular logic simulation program, and how layout aids were enhanced are discussed. Testing of the customized chips is described. The content, schedule, and results of the internal gate array course recently completed are discussed. Finally, problem areas and near term plans are presented.

  7. Development, Implementation, and Analysis of a National Survey of Faculty Goals for Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bruck, Aaron D.; Towns, Marcy

    2013-01-01

    This work reports the development of a survey for laboratory goals in undergraduate chemistry, the analysis of reliable and valid data collected from a national survey of college chemistry faculty, and a synthesis of the findings. The study used a sequential exploratory mixed-methods design. Faculty goals for laboratory emerged across seven…

  8. Enhanced laboratory capacity development: a boost for effective tuberculosis control in resource-limited settings.

    PubMed

    Alabi, Abraham Sunday; Traoré, Afsatou Ndama; Loembe, Marguerite Massinga; Ateba-Ngoa, Ulysse; Frank, Matthias; Adegnika, Ayola Akim; Lell, Bertrand; Mahoumbou, Jocelyn; Köhler, Carsten; Kremsner, Peter Gottfried; Grobusch, Martin Peter

    2017-03-01

    Both routine and research tuberculosis (TB) laboratory capacity urgently need to be expanded in large parts of Sub-Saharan Africa. In 2009, the Centre de Recherches Médicales de Lambaréné (CERMEL) took a strategic decision to expand its activities by building TB laboratory capacity to address research questions and to improve routine diagnostic and treatment capacity. Over the past 7 years, a standard laboratory has been developed that is contributing significantly to TB diagnosis, treatment, and control in Gabon; training has also been provided for TB research staff in Central Africa. CERMEL has a cordial relationship with the Gabon National TB Control Programme (PNLT), which has culminated in a successful Global Fund joint application. This endeavour is considered a model for similar developments needed in areas of high TB prevalence and where TB control remains poor to date. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Mars Science Laboratory Rover Mobility Bushing Development

    NASA Technical Reports Server (NTRS)

    Riggs, Benjamin

    2008-01-01

    NASA s Mars Science Laboratory (MSL) Project will send a six-wheeled rover to Mars in 2009. The rover will carry a scientific payload designed to search for organic molecules on the Martian surface during its primary mission. This paper describes the development and testing of a bonded film lubricated bushing system to be used in the mobility system of the rover. The MSL Rover Mobility System contains several pivots that are tightly constrained with respect to mass and volume. These pivots are also exposed to relatively low temperatures (-135 C) during operation. The combination of these constraints led the mobility team to consider the use of solid film lubricated metallic bushings and dry running polymeric bushings in several flight pivot applications. A test program was developed to mitigate the risk associated with using these materials in critical pivots on the MSL vehicle. The program was designed to characterize bushing friction and wear performance over the expected operational temperature range (-135 C to +70 C). Seven different bushing material / lubricant combinations were evaluated to aid in the selection of the final flight pivot bushing material / lubricant combination.

  10. DEVELOPMENT OF A NEW MOBILE LABORATORY FOR CHARACTERIZATION OF THE FINE PARTICULATE EMISSIONS FROM HEAVY-DUTY DIESEL TRUCKS.

    EPA Science Inventory

    This paper describes the development of a new mobile laboratory for the determination of the fine particle and gaseous emissions from a Class 8 diesel tractor-trailer research vehicle. The new laboratory (Diesel Emissions Aerosol Laboratory or DEAL) incorporates plume sampling ca...

  11. Porous Diblock Copolymer Thin Films in High-Performance Semiconductor Microelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, C.T.

    2011-02-01

    The engine fueling more than 40 years of performance improvements in semiconductor integrated circuits (ICs) has been industry's ability to pattern circuit elements at ever-higher resolution and with ever-greater precision. Steady advances in photolithography - the process wherein ultraviolet light chemically changes a photosensitive polymer resist material in order to create a latent image - have resulted in scaling of minimum printed feature sizes from tens of microns during the 1980s to sub-50 nanometer transistor gate lengths in today's state-of-the-art ICs. The history of semiconductor technology scaling as well as future technology requirements is documented in the International Technology Roadmapmore » for Semiconductors (ITRS). The progression of the semiconductor industry to the realm of nanometer-scale sizes has brought enormous challenges to device and circuit fabrication, rendering performance improvements by conventional scaling alone increasingly difficult. Most often this discussion is couched in terms of field effect transistor (FET) feature sizes such as the gate length or gate oxide thickness, however these challenges extend to many other aspects of the IC, including interconnect dimensions and pitch, device packing density, power consumption, and heat dissipation. The ITRS Technology Roadmap forecasts a difficult set of scientific and engineering challenges with no presently-known solutions. The primary focus of this chapter is the research performed at IBM on diblock copolymer films composed of polystyrene (PS) and poly(methyl-methacrylate) (PMMA) (PS-b-PMMA) with total molecular weights M{sub n} in the range of {approx}60K (g/mol) and polydispersities (PD) of {approx}1.1. These materials self assemble to form patterns having feature sizes in the range of 15-20nm. PS-b-PMMA was selected as a self-assembling patterning material due to its compatibility with the semiconductor microelectronics manufacturing infrastructure, as well as the

  12. Renewable energy technology development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  13. Development and Multi-laboratory Verification of US EPA ...

    EPA Pesticide Factsheets

    A drinking water method for seven pesticides and pesticide degradates is presented that addresses the occurrence monitoring needs of the US Environmental Protection Agency (EPA) for a future Unregulated Contaminant Monitoring Regulation (UCMR). The method employs online solid phase extraction-liquid chromatography–tandem mass spectrometry (SPE-LC–MS-MS). Online SPE-LC–MS-MS has the potential to offer cost-effective, faster, more sensitive and more rugged methods than the traditional offline SPE approach due to complete automation of the SPE process, as well as seamless integration with the LC–MS-MS system. The method uses 2-chloroacetamide, ascorbic acid and Trizma to preserve the drinking water samples for up to 28 days. The mean recoveries in drinking water (from a surface water source) fortified with method analytes are 87.1–112% with relative standard deviations of <14%. Single laboratory lowest concentration minimum reporting levels of 0.27–1.7 ng/L are demonstrated with this methodology. Multi-laboratory data are presented that demonstrate method ruggedness and transferability. The final method meets all of the EPA's UCMR survey requirements for sample collection and storage, precision, accuracy, and sensitivity. The journal article describes the development of drinking water Method 543 for analysis of selected CCL 3 chemicals. It is anticipated this method may be used in a future Unregulated Contaminant Monitoring Regulation to gather nationw

  14. Development of a competency based training programme to support multidisciplinary working in a combined biochemistry/haematology laboratory

    PubMed Central

    Woods, R; Longmire, W; Galloway, M; Smellie, W

    2000-01-01

    The aim of this study was to develop a competency based training programme to support multidisciplinary working in a combined biochemistry and haematology laboratory. The training programme was developed to document that staff were trained in the full range of laboratory tests that they were expected to perform. This programme subsequently formed the basis for the annual performance review of all staff. All staff successfully completed the first phase of the programme. This allowed laboratory staff to work unsupervised at night as part of a partial shift system. All staff are now working towards achieving a level of competence equivalent to the training level required for state registration by the Council for Professions Supplementary to Medicine. External evaluation of the training programme has included accreditation by the Council for Professions Supplementary to Medicine and reinspection by Clinical Pathology Accreditation (UK) Ltd. The development of a competency based training system has facilitated the introduction of multidisciplinary working in the laboratory. In addition, it enables the documentation of all staff to ensure that they are fully trained and are keeping up to date, because the continuing professional development programme in use in our laboratory has been linked to this training scheme. This approach to documentation of training facilitated a recent reinspection by Clinical Pathology Accreditation (UK) Ltd. Key Words: Keyword: multidisciplinary working • competency based training PMID:10889827

  15. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board Panel for Eligibility; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under the Public Law 92-463 (Federal Advisory...

  16. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings The Department of Veterans Affairs gives notice under the Public Law 92-463 (Federal Advisory Committee Act) that...

  17. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings The Department of Veterans Affairs gives notice under the Public Law 92-463 (Federal Advisory Committee Act) that...

  18. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The Department of Veterans Affairs (VA) gives notice under the Public Law 92-463 (Federal Advisory Committee Act...

  19. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board Panel for Eligibility, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory...

  20. Cytotoxicity and mitogenicity assays with real-time and label-free monitoring of human granulosa cells with an impedance-based signal processing technology intergrating micro-electronics and cell biology.

    PubMed

    Oktem, Ozgur; Bildik, Gamze; Senbabaoglu, Filiz; Lack, Nathan A; Akin, Nazli; Yakar, Feridun; Urman, Defne; Guzel, Yilmaz; Balaban, Basak; Iwase, Akira; Urman, Bulent

    2016-04-01

    A recently developed technology (xCelligence) integrating micro-electronics and cell biology allows real-time, uninterrupted and quantitative analysis of cell proliferation, viability and cytotoxicity by measuring the electrical impedance of the cell population in the wells without using any labeling agent. In this study we investigated if this system is a suitable model to analyze the effects of mitogenic (FSH) and cytotoxic (chemotherapy) agents with different toxicity profiles on human granulosa cells in comparison to conventional methods of assessing cell viability, DNA damage, apoptosis and steroidogenesis. The system generated the real-time growth curves of the cells, and determined their doubling times, mean cell indices and generated dose-response curves after exposure to cytotoxic and mitogenic stimuli. It accurately predicted the gonadotoxicity of the drugs and distinguished less toxic agents (5-FU and paclitaxel) from more toxic ones (cisplatin and cyclophosphamide). This platform can be a useful tool for specific end-point assays in reproductive toxicology. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The Development of Virtual Laboratory Using ICT for Physics in Senior High School

    NASA Astrophysics Data System (ADS)

    Masril, M.; Hidayati, H.; Darvina, Y.

    2018-04-01

    One of the problems found in the implementation of the curriculum in 2013 is not all competency skills can be performed well. Therefore, to overcome these problems, virtual laboratory designed to improve the mastery of concepts of physics. One of the design objectives virtual laboratories is to improve the quality of education and learning in physics in high school. The method used in this study is a research method development four D model with the definition phase, design phase, development phase, and dissemination phase. Research has reached the stage of development and has been tested valid specialist. The instrument used in the research is a questionnaire consisting of: 1) the material substance; 2) The display of visual communication; 3) instructional design; 4) the use of software; and 5) Linguistic. The research results is validity in general has been a very good category (85.6), so that the design of virtual labs designed can already be used in high school.

  2. Status of research and development in coordinate-measurement technology

    NASA Astrophysics Data System (ADS)

    Dich, L. Z.; Latyev, S. M.

    1994-09-01

    This paper discusses problems involved in developing and operating coordinate-measuring machines. The status of this area of precision instrumentation is analyzed. These problems are made critical not only by the requirements of the machine-tool industry but also by those of the microelectronics industry, both of which use coordinate tables, step-up gears, and other equipment in which precise coordinate measurements are necessary.

  3. A Process for Developing Introductory Science Laboratory Learning Goals to Enhance Student Learning and Instructional Alignment

    ERIC Educational Resources Information Center

    Duis, Jennifer M.; Schafer, Laurel L.; Nussbaum, Sophia; Stewart, Jaclyn J.

    2013-01-01

    Learning goal (LG) identification can greatly inform curriculum, teaching, and evaluation practices. The complex laboratory course setting, however, presents unique obstacles in developing appropriate LGs. For example, in addition to the large quantity and variety of content supported in the general chemistry laboratory program, the interests of…

  4. Development and Cross-National Validation of a Laboratory Classroom Environment Instrument for Senior High School Science.

    ERIC Educational Resources Information Center

    Fraser, Barry J.; And Others

    1993-01-01

    Describes the development of the Science Laboratory Environment Inventory (SLEI) instrument for assessing perceptions of the psychosocial environment in science laboratory classrooms, and reports validation information for samples of senior high school students from six different countries. The SLEI assesses five dimensions of the actual and…

  5. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    NASA Astrophysics Data System (ADS)

    Amolins, Michael Wayne

    The development of effective science educators has been a long-standing goal of the American education system. Numerous studies have suggested a breadth of professional development programs that have sought to utilize constructivist principles in order to orchestrate movement toward student-led, inquiry-based instruction. Very few, however, have addressed a missing link between the modern scientific laboratory and the traditional science classroom. While several laboratory-based training programs have begun to emerge in recent years, the skills necessary to translate this information into the classroom are rarely addressed. The result is that participants are often left without an outlet or the confidence to integrate these into their lessons. The purpose of this study was to examine the effectiveness of a laboratory-based professional development program focused on classroom integration and reformed science teaching principles. This was measured by the ability to invigorate its seven participants in order to achieve higher levels of success and fulfillment in the classroom. These participants all taught at public high schools in South Dakota, including both rural and urban locations, and taught a variety of courses. Participants were selected for this study through their participation in the Sanford Research/USD Science Educator Research Fellowship Program. Through the use of previously collected data acquired by Sanford Research, this study attempted to detail the convergence of three assessments in order to demonstrate the growth and development of its participants. First, pre- and post-program surveys were completed in order to display the personal and professional growth of its participants. Second, pre- and post-program classroom observations employing the Reformed Teaching Observation Protocol allowed for the assessment of pedagogical modifications being integrated by each participant, as well as the success of such modifications in constructively

  6. Custom software development for use in a clinical laboratory

    PubMed Central

    Sinard, John H.; Gershkovich, Peter

    2012-01-01

    In-house software development for use in a clinical laboratory is a controversial issue. Many of the objections raised are based on outdated software development practices, an exaggeration of the risks involved, and an underestimation of the benefits that can be realized. Buy versus build analyses typically do not consider total costs of ownership, and unfortunately decisions are often made by people who are not directly affected by the workflow obstacles or benefits that result from those decisions. We have been developing custom software for clinical use for over a decade, and this article presents our perspective on this practice. A complete analysis of the decision to develop or purchase must ultimately examine how the end result will mesh with the departmental workflow, and custom-developed solutions typically can have the greater positive impact on efficiency and productivity, substantially altering the decision balance sheet. Involving the end-users in preparation of the functional specifications is crucial to the success of the process. A large development team is not needed, and even a single programmer can develop significant solutions. Many of the risks associated with custom development can be mitigated by a well-structured development process, use of open-source tools, and embracing an agile development philosophy. In-house solutions have the significant advantage of being adaptable to changing departmental needs, contributing to efficient and higher quality patient care. PMID:23372985

  7. Custom software development for use in a clinical laboratory.

    PubMed

    Sinard, John H; Gershkovich, Peter

    2012-01-01

    In-house software development for use in a clinical laboratory is a controversial issue. Many of the objections raised are based on outdated software development practices, an exaggeration of the risks involved, and an underestimation of the benefits that can be realized. Buy versus build analyses typically do not consider total costs of ownership, and unfortunately decisions are often made by people who are not directly affected by the workflow obstacles or benefits that result from those decisions. We have been developing custom software for clinical use for over a decade, and this article presents our perspective on this practice. A complete analysis of the decision to develop or purchase must ultimately examine how the end result will mesh with the departmental workflow, and custom-developed solutions typically can have the greater positive impact on efficiency and productivity, substantially altering the decision balance sheet. Involving the end-users in preparation of the functional specifications is crucial to the success of the process. A large development team is not needed, and even a single programmer can develop significant solutions. Many of the risks associated with custom development can be mitigated by a well-structured development process, use of open-source tools, and embracing an agile development philosophy. In-house solutions have the significant advantage of being adaptable to changing departmental needs, contributing to efficient and higher quality patient care.

  8. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The Department of Veterans Affairs (VA) gives notice under the Federal Advisory Committee Act, 5 U.S.C. App...

  9. Aligning Perceptions of Laboratory Demonstrators' Responsibilities to Inform the Design of a Laboratory Teacher Development Program

    ERIC Educational Resources Information Center

    Flaherty, Aishling; O'Dwyer, Anne; Mannix-McNamara, Patricia; Leahy, J. J.

    2017-01-01

    Throughout countries such as Ireland, the U.K., and Australia, graduate students who fulfill teaching roles in the undergraduate laboratory are often referred to as "laboratory demonstrators". The laboratory demonstrator (LD) model of graduate teaching is similar to the more commonly known graduate teaching assistant (GTA) model that is…

  10. Roles of laboratories and laboratory systems in effective tuberculosis programmes.

    PubMed

    Ridderhof, John C; van Deun, Armand; Kam, Kai Man; Narayanan, P R; Aziz, Mohamed Abdul

    2007-05-01

    Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB.

  11. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  12. Environmental Technology (Laboratory Analysis and Environmental Sampling) Curriculum Development Project. Final Report.

    ERIC Educational Resources Information Center

    Hinojosa, Oscar V.; Guillen, Alfonso

    A project assessed the need and developed a curriculum for environmental technology (laboratory analysis and environmental sampling) in the emerging high technology centered around environmental safety and health in Texas. Initial data were collected through interviews by telephone and in person and through onsite visits. Additional data was…

  13. Influenza surveillance: alternative laboratory techniques for a developing country*

    PubMed Central

    Canil, K. A.; Pratt, D.; Sungu, M. S.; Phillips, P. A.

    1985-01-01

    In developing countries it is often impractical to use conventional methods to isolate and identify influenza viruses. The use of trypsin-treated LLC-MK2 cells for the isolation of myxoviruses, in conjunction with the indirect fluorescent antibody technique for identification of isolates and for direct detection of viral antigens in specimens, was an effective combination of techniques which enabled our laboratory in Papua New Guinea to participate in an influenza surveillance programme. The application of these techniques in routine respiratory virus surveillance and in the investigation of an outbreak of influenza-like illness is described. PMID:3872737

  14. Valid methods: the quality assurance of test method development, validation, approval, and transfer for veterinary testing laboratories.

    PubMed

    Wiegers, Ann L

    2003-07-01

    Third-party accreditation is a valuable tool to demonstrate a laboratory's competence to conduct testing. Accreditation, internationally and in the United States, has been discussed previously. However, accreditation is only I part of establishing data credibility. A validated test method is the first component of a valid measurement system. Validation is defined as confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled. The international and national standard ISO/IEC 17025 recognizes the importance of validated methods and requires that laboratory-developed methods or methods adopted by the laboratory be appropriate for the intended use. Validated methods are therefore required and their use agreed to by the client (i.e., end users of the test results such as veterinarians, animal health programs, and owners). ISO/IEC 17025 also requires that the introduction of methods developed by the laboratory for its own use be a planned activity conducted by qualified personnel with adequate resources. This article discusses considerations and recommendations for the conduct of veterinary diagnostic test method development, validation, evaluation, approval, and transfer to the user laboratory in the ISO/IEC 17025 environment. These recommendations are based on those of nationally and internationally accepted standards and guidelines, as well as those of reputable and experienced technical bodies. They are also based on the author's experience in the evaluation of method development and transfer projects, validation data, and the implementation of quality management systems in the area of method development.

  15. Development and evaluation of an interactive electronic laboratory manual for cooperative learning of medical histology.

    PubMed

    Khalil, Mohammed K; Kirkley, Debbie L; Kibble, Jonathan D

    2013-01-01

    This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual includes guided instruction for students to navigate virtual slides, exercises for students to monitor learning, and cases to provide clinical relevance. At the end of the laboratory activities, student groups can generate a laboratory report that may be used to provide formative feedback. The instructional value of the manual was evaluated by a questionnaire containing both closed-ended and open-ended items. Closed-ended items using a five-point Likert-scale assessed the format and navigation, instructional contents, group process, and learning process. Open-ended items assessed student's perception on the effectiveness of the manual in facilitating their learning. After implementation for two consecutive years, student evaluation of the manual was highly positive and indicated that it facilitated their learning by reinforcing and clarifying classroom sessions, improved their understanding, facilitated active and cooperative learning, and supported self-monitoring of their learning. Copyright © 2013 American Association of Anatomists.

  16. Implementation of a configurable laboratory information management system for use in cellular process development and manufacturing.

    PubMed

    Russom, Diana; Ahmed, Amira; Gonzalez, Nancy; Alvarnas, Joseph; DiGiusto, David

    2012-01-01

    Regulatory requirements for the manufacturing of cell products for clinical investigation require a significant level of record-keeping, starting early in process development and continuing through to the execution and requisite follow-up of patients on clinical trials. Central to record-keeping is the management of documentation related to patients, raw materials, processes, assays and facilities. To support these requirements, we evaluated several laboratory information management systems (LIMS), including their cost, flexibility, regulatory compliance, ongoing programming requirements and ability to integrate with laboratory equipment. After selecting a system, we performed a pilot study to develop a user-configurable LIMS for our laboratory in support of our pre-clinical and clinical cell-production activities. We report here on the design and utilization of this system to manage accrual with a healthy blood-donor protocol, as well as manufacturing operations for the production of a master cell bank and several patient-specific stem cell products. The system was used successfully to manage blood donor eligibility, recruiting, appointments, billing and serology, and to provide annual accrual reports. Quality management reporting features of the system were used to capture, report and investigate process and equipment deviations that occurred during the production of a master cell bank and patient products. Overall the system has served to support the compliance requirements of process development and phase I/II clinical trial activities for our laboratory and can be easily modified to meet the needs of similar laboratories.

  17. Theme: Laboratory Instruction.

    ERIC Educational Resources Information Center

    Bruening, Thomas H.; And Others

    1992-01-01

    A series of theme articles discuss setting up laboratory hydroponics units, the school farm at the Zuni Pueblo in New Mexico, laboratory experiences in natural resources management and urban horticulture, the development of teaching labs at Derry (PA) High School, management of instructional laboratories, and industry involvement in agricultural…

  18. Development of an Instrument for Assessing Senior High School Students' Preferred and Perceived Laboratory Classroom Environment

    ERIC Educational Resources Information Center

    Hsiao, Chien-Hua; Wu, Ying-Tien; Lin, Chung-Yen; Wong, Terrence William; Fu, Hsieh-Hai; Yeh, Ting-Kuang; Chang, Chung-Yen

    2014-01-01

    This study aimed to develop an instrument, named the inquiry-based laboratory classroom environment instrument (ILEI), for assessing senior high-school science students' preferred and perceived laboratory environment. A total of 262 second-year students, from a senior-high school in Taiwan, were recruited for this study. Four stages were included…

  19. MIT Lincoln Laboratory Annual Report 2010

    DTIC Science & Technology

    2010-01-01

    Research and Development Center (FFRDC) and a DoD Research and Development Laboratory. The Laboratory conducts research and development pertinent to...year, the Laboratory restruc- tured three divisions to focus research and development in areas that are increasingly important to the nation...the Director 3 Collaborations with MIT campus continue to grow, leveraging the strengths of researchers at both the Laboratory and campus. The

  20. Roles of laboratories and laboratory systems in effective tuberculosis programmes

    PubMed Central

    van Deun, Armand; Kam, Kai Man; Narayanan, PR; Aziz, Mohamed Abdul

    2007-01-01

    Abstract Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories’ functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB. PMID:17639219

  1. Laboratory observation on spawning, fecundity and larval development of amphioxus ( Branchiostoma belcheri Tsingtaunese)

    NASA Astrophysics Data System (ADS)

    Wu, Xian-Han; Zhang, Shi-Cui; Wang, Yong-Yuan; Zhang, Bao-Lu; Qu, Yan-Mei; Jiang, Xin-Ji

    1994-12-01

    Although amphioxus is widespread in temperate and tropical seas, its population is diminishing because of environmental pollution. To keep the population of this evolutionarily important animal from diminishing, study on its reproduction and development is necessary. The main findings in this study on the spawning and fecundity of the amphioxus reared in laboratory and its larval development are as follows. 1. Water temperature markedly affected the spawning. It spawned only when water temperature reached 21°C. 2. Spawning of the amphioxus in laboratory was markedly extended. Initially, the amphioxus spawned at about 7:00 PM, but spawning time was postponed as spawning days went on. 3. The number of eggs produced by a female ranged from 1400 to 12800, average of 5800. This also represents the fecundity of the amphioxus because it shedded all eggs within the ovary at a time. 4. During the first few months of life of the amphioxus, its growth rate changed seasonally. The growth rate in summer and fall was greater than that in winter. 5. The pelagic larva became a benthic adult after 50 days. 6. The amphioxus reared in laboratory from fertilized eggs could produce fertile eggs and sperms. These findings can be a foundation for measures to address the problem of diminishing amphioxus population.

  2. New developments in digital pathology: from telepathology to virtual pathology laboratory.

    PubMed

    Kayser, Klaus; Kayser, Gian; Radziszowski, Dominik; Oehmann, Alexander

    2004-01-01

    To analyse the present status and future development of computerized diagnostic pathology in terms of work-flow integrative telepathology and virtual laboratory. Telepathology has left its childhood. The technical development of telepathology is mature, in contrast to that of virtual pathology. Two kinds of virtual pathology laboratories are emerging: a) those with distributed pathologists and distributed (>=1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists working in a centralized laboratory. Both are under technical development. Telepathology can be used for e-learning and e-training in pathology, as exemplarily demonstrated on Digital Lung Pathology Pathology (www.pathology-online.org). A virtual pathology institution (mode a) accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size of images has to be limited, and usual different magnifications have to be used. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. First experiences of a virtual pathology institution group working with the iPATH server (Dr. L. Banach, Dr. G. Haroske, Dr. I. Hurwitz, Dr. K. Kayser, Dr. K.D. Kunze, Dr. M. Oberholzer,) working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalisation of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalisation is still under

  3. Development of a Fan-Filter Unit Test Standard, LaboratoryValidations, and its Applications across Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tengfang

    2006-10-20

    Lawrence Berkeley National Laboratory (LBNL) is now finalizing the Phase 2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method developed at LBNL.[1][2][3] Fan-filter units deliver re-circulated air and provide particle filtration control for clean environments. Much of the energy in cleanrooms (and minienvironments) is consumed by 2-foot x 4-foot (61-cm x 122-cm) or 4-foot x 4-foot (122-cm x 122-cm) fan-filter units that are typically located in the ceiling (25-100% coverage) of cleanroom controlled environments. Thanks to funding support by the California Energy Commission's Industrialmore » Program of the Public Interest Energy Research (PIER) Program, and significant participation from manufacturers and users of fan-filter units from around the world, LBNL has developed and performed a series of standard laboratory tests and reporting on a variety of 2-foot x 4-foot (61-cm x 122-cm) fan-filter units (FFUs). Standard laboratory testing reports have been completed and reported back to anonymous individual participants in this project. To date, such reports on standard testing of FFU performance have provided rigorous and useful data for suppliers and end users to better understand, and more importantly, to quantitatively characterize performance of FFU products under a variety of operating conditions.[1] In the course of the project, the standard laboratory method previously developed at LBNL has been under continuous evaluation and update.[2][3] Based upon the updated standard, it becomes feasible for users and suppliers to characterize and evaluate energy performance of FFUs in a consistent way.« less

  4. Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development

    NASA Technical Reports Server (NTRS)

    Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu

    2008-01-01

    The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.

  5. Development of Photoacoustic Sensing Platforms at the US Army Research Laboratory

    DTIC Science & Technology

    2016-09-01

    RDX and TNT explosives with carbon dioxide laser. J Appl Spectrosc. 2006;73(1):123–129. 45. Petzold A, Niessner R. Photoacoustic soot sensor for in...Development of Photoacoustic Sensing Platforms at the US Army Research Laboratory by Ellen L Holthoff and Paul M Pellegrino Sensors and Electron Devices...NOTES 14. ABSTRACT Traditionally, chemical sensing platforms have been hampered by the opposing concerns of increasing sensor capability while

  6. A Virtual Embedded Microcontroller Laboratory for Undergraduate Education: Development and Evaluation

    ERIC Educational Resources Information Center

    Richardson, Jeffrey J.; Adamo-Villani, Nicoletta

    2010-01-01

    Laboratory instruction is a major component of the engineering and technology undergraduate curricula. Traditional laboratory instruction is hampered by several factors including limited access to resources by students and high laboratory maintenance cost. A photorealistic 3D computer-simulated laboratory for undergraduate instruction in…

  7. A comprehensive Laboratory Services Survey of State Public Health Laboratories.

    PubMed

    Inhorn, Stanley L; Wilcke, Burton W; Downes, Frances Pouch; Adjanor, Oluwatosin Omolade; Cada, Ronald; Ford, James R

    2006-01-01

    In November 2004, the Association of Public Health Laboratories (APHL) conducted a Comprehensive Laboratory Services Survey of State Public Health Laboratories (SPHLs) in order to establish the baseline data necessary for Healthy People 2010 Objective 23-13. This objective aims to measure the increase in the proportion of health agencies that provide or assure access to comprehensive laboratory services to support essential public health services. This assessment addressed only SPHLs and served as a baseline to periodically evaluate the level of improvement in the provision of laboratory services over the decade ending 2010. The 2004 survey used selected questions that were identified as key indicators of provision of comprehensive laboratory services. The survey was developed in consultation with the Centers for Disease Control and Prevention National Center for Health Statistics, based on newly developed data sources. Forty-seven states and one territory responded to the survey. The survey was based on the 11 core functions of SPHLs as previously defined by APHL. The range of performance among individual laboratories for the 11 core functions (subobjectives) reflects the challenging issues that have confronted SPHLs in the first half of this decade. APHL is now working on a coordinated effort with other stakeholders to create seamless state and national systems for the provision of laboratory services in support of public health programs. These services are necessary to help face the threats raised by the specter of terrorism, emerging infections, and natural disasters.

  8. Adding Vectors across the North: Development of Laboratory Component of Distance Education Physics Course

    NASA Astrophysics Data System (ADS)

    Spencer, V. K.; Solie, D. J.

    2010-12-01

    Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.

  9. The Curriculum Development Project for the Medical Laboratory Technology Program at Miami-Dade Junior College, Miami, Florida. Final Report.

    ERIC Educational Resources Information Center

    Miami-Dade Junior Coll., FL. Div. of Allied Health Studies.

    During Phase I of an Allied Health Professions Basic Improvement Grant, a five-member committee developed a curriculum for a medical laboratory technology program at Miami-Dade Junior College by: (1) defining competencies which differentiate a certified laboratory assistant from a medical laboratory technician, (2) translating expected laboratory…

  10. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  11. Development and ESCC evaluation of a monolithic silicon phototransistor array for optical encoders

    NASA Astrophysics Data System (ADS)

    Bregoli, M.; Ceriani, S.; Erspan, M.; Collini, A.; Ficorella, F.; Giacomini, G.; Bellutti, P.; How, L. S.; Hernandez, S.; Lundmark, K.

    2017-11-01

    Optoelettronica Italia Srl, better known as Optoi, is an Italian Company dealing with optoelectronics and microelectronics and focusing on back-end technologies. The growing volume of activities concerning the aerospace field has recently brought to the creation of a company unit, with collaborations with ESA, CNES and ASI. In this context, Optoi's key partner for the microelectronic front-end is Fondazione Bruno Kessler (FBK) and specifically its Micro Nano Facility (MNF).

  12. SINGLE EVENT EFFECTS TEST FACILITY AT OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X; Dominik, Laura J

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of ICs and systems for use in radiation environments requiresmore » the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.« less

  13. Development of a solid-phase microextraction gas chromatography with microelectron-capture detection method for the determination of 5-bromo-5-nitro-1,3-dioxane in rinse-off cosmetics.

    PubMed

    Fernandez-Alvarez, Maria; Lamas, J Pablo; Sanchez-Prado, Lucia; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta

    2010-10-22

    5-Bromo-5-nitro-1,3-dioxane (bronidox) is a bromine-containing preservative often used in rinse-off cosmetics but also subjected to several restrictions according to the European Cosmetic Products Regulation. Thus, as a part of a quality control procedure, analytical methods for the determination of this compound in different types of cosmetics are required. In the present work, a solvent-free and simple methodology based on solid-phase microextraction (SPME) followed by gas chromatography with microelectron capture detection (GC-μECD) has been developed and validated for the determination of bronidox in cosmetic samples such as shampoos, body cleansers or facial exfoliants. As far as we know, this is the first application of SPME to this preservative. Negative matrix effects due to the complexity of the studied samples were reduced by dilution with ultrapure water. The influence of several factors on the SPME procedure such as fiber coating, extraction temperature, salt addition (NaCl) and sampling mode has been assessed by performing a 2(4)-factorial design. After optimization, the recommended procedure was established as follows: direct solid-phase microextraction (DSPME), using a PDMS/DVB coating, of 10 mL of diluted cosmetic with 20% NaCl, at room temperature, under stirring for 30 min. Using these suggested extraction conditions, linear calibration could be achieved, with limits of detection (LOD) and quantification (LOQ) well below the maximum authorized concentration (0.1%) established by the European legislation. Relative standard deviations (RSD) lower than 10% were obtained for both within a day and among days precision. The method was applied to diverse types of formulations spiked with bronidox at different concentration levels (0.008-0.10%); these samples were quantified by external calibration and satisfactory recoveries (≥ 70%) were obtained in all cases. Finally, the SPME-GC-μECD methodology was applied to the analysis of several cosmetics

  14. The role of nanotechnology and nano and micro-electronics in monitoring and control of cardiovascular diseases and neurological disorders

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2007-04-01

    Nanotechnology has been broadly defined as the one for not only the creation of functional materials and devices as well as systems through control of matter at the scale of 1-100 nm, but also the exploitation of novel properties and phenomena at the same scale. Growing needs in the point-of-care (POC) that is an increasing market for improving patient's quality of life, are driving the development of nanotechnologies for diagnosis and treatment of various life threatening diseases. This paper addresses the recent development of nanodiagnostic sensors and nanotherapeutic devices with functionalized carbon nanotube and/or nanowire on a flexible organic thin film electronics to monitor and control of the three leading diseases namely 1) neurodegenerative diseases, 2) cardiovascular diseases, and 3) diabetes and metabolic diseases. The sensors developed include implantable and biocompatible devices, light weight wearable devices in wrist-watches, hats, shoes and clothes. The nanotherapeutics devices include nanobased drug delivery system. Many of these sensors are integrated with the wireless systems for the remote physiological monitoring. The author's research team has also developed a wireless neural probe using nanowires and nanotubes for monitoring and control of Parkinson's disease. Light weight and compact EEG, EOG and EMG monitoring system in a hat developed is capable of monitoring real time epileptic patients and patients with neurological and movement disorders using the Internet and cellular network. Physicians could be able to monitor these signals in realtime using portable computers or cell phones and will give early warning signal if these signals cross a pre-determined threshold level. In addition the potential impact of nanotechnology for applications in medicine is that, the devices can be designed to interact with cells and tissues at the molecular level, which allows high degree of functionality. Devices engineered at nanometer scale imply a

  15. Controlling microstructure and mechanical properties of the new microelectronic interconnect alloys

    NASA Astrophysics Data System (ADS)

    Mutuku, Francis M.

    An in-depth understanding of the physics of solidification could lead to the optimization of the properties of micro-electronic interconnects. Sn is the base material in the billions of interconnects in devices such as smart phones. These interconnects are formed by melting and solidifying a solder alloy (e.g. SnAgCu) in situ. But Sn has a low symmetry structure, Sn nucleation from the solder melt is complex and the morphology of the Sn and Sn alloys precipitates that form during solidification can vary tremendously (along with resultant mechanical properties). The effect of processing parameters on the solidification behavior, microstructure, and properties must be carefully addressed. Strong evidence adduced in this study shows that under many conditions, when cooling near eutectic SnAgCu from the melt, Ag3Sn nucleates before beta-Sn. The difficulty in the nucleation of beta-Sn provides a window of time between the nucleation of Ag3Sn precipitates and of beta-Sn solidification within which the Ag3Sn precipitate morphology can be manipulated. Thus distinct variations in precipitate number density, and inter-particle spacing were observed for different thermal histories, e.g. for different cooling rates. The average number density of Ag3Sn particles and the area of the pseudo-eutectic phase were observed to increase with increase in the Ag concentration, and with increase in the cooling rate. The shear strength and shear fatigue life increased with increase in the area fraction of the pseudo-eutectic phase. Upon aging of SnAgCu solder joints at an elevated temperature, the Ag3Sn particles coarsened, and became less effective in impeding dislocation motion. Consequently, the shear strength and shear fatigue performance degraded. On the other hand, alloys with constituents that formed solid solutions in Sn, such as small concentrations of Bi or Sb registered less degradation in both shear strength and shear fatigue life upon aging.

  16. Development and implementation of the Caribbean Laboratory Quality Management Systems Stepwise Improvement Process (LQMS-SIP) Towards Accreditation.

    PubMed

    Alemnji, George; Edghill, Lisa; Guevara, Giselle; Wallace-Sankarsingh, Sacha; Albalak, Rachel; Cognat, Sebastien; Nkengasong, John; Gabastou, Jean-Marc

    2017-01-01

    Implementing quality management systems and accrediting laboratories in the Caribbean has been a challenge. We report the development of a stepwise process for quality systems improvement in the Caribbean Region. The Caribbean Laboratory Stakeholders met under a joint Pan American Health Organization/US Centers for Disease Control and Prevention initiative and developed a user-friendly framework called 'Laboratory Quality Management System - Stepwise Improvement Process (LQMS-SIP) Towards Accreditation' to support countries in strengthening laboratory services through a stepwise approach toward fulfilling the ISO 15189: 2012 requirements. This approach consists of a three-tiered framework. Tier 1 represents the minimum requirements corresponding to the mandatory criteria for obtaining a licence from the Ministry of Health of the participating country. The next two tiers are quality improvement milestones that are achieved through the implementation of specific quality management system requirements. Laboratories that meet the requirements of the three tiers will be encouraged to apply for accreditation. The Caribbean Regional Organisation for Standards and Quality hosts the LQMS-SIP Secretariat and will work with countries, including the Ministry of Health and stakeholders, including laboratory staff, to coordinate and implement LQMS-SIP activities. The Caribbean Public Health Agency will coordinate and advocate for the LQMS-SIP implementation. This article presents the Caribbean LQMS-SIP framework and describes how it will be implemented among various countries in the region to achieve quality improvement.

  17. Development of Laboratory Model Ecosystems as Early Warning Elements of Environmental Pollution

    DTIC Science & Technology

    1974-12-01

    AD-AOll 851 DEVELOPMENT OF LABORATORY MODEL ECOSYSTEMS AS EARLY WARNING ELEMENTS OF ENVIRONMENTAL POLLUTION Robert L. Metcalf... ENVIRONMENTAL POLLUTION Robert L. Metcalf, Ph. D. University of Illinois Urbana-Champaign, Illinois INTRODUCTION Problems of environmental pollution with...house dust is unsafe to breathe (Ewing and Pearson, 1974). Most of the source of our concern about environmental pollution by trace substances relates

  18. Microelectronic bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.

    1976-01-01

    Progress was made in the development of an RF cage, a single channel RF powered ECG telemetry system, and a three channel RF powered ECG, aortic blood pressure, and body temperature telemetry system. Encapsulation materials for chronic implantation of electronic circuits in the body were also evaluated.

  19. Developing Critical Thinking Skills Using the Science Writing Heuristic in the Chemistry Laboratory

    ERIC Educational Resources Information Center

    Stephenson, N. S.; Sadler-McKnight, N. P.

    2016-01-01

    The Science Writing Heuristic (SWH) laboratory approach is a teaching and learning tool which combines writing, inquiry, collaboration and reflection, and provides scaffolding for the development of critical thinking skills. In this study, the California Critical Thinking Skills Test (CCTST) was used to measure the critical thinking skills of…

  20. Tapping Recent Alumni for the Development of Cutting-Edge, Investigative Teaching Laboratory Experiments

    ERIC Educational Resources Information Center

    Brodl, Mark R.

    2005-01-01

    This project presents a model for the development of an innovative, highly-experimental teaching laboratory course that centers upon collaborative efforts between recent alumni currently enrolled in Ph. D. programs (consultants) and current faculty. Because these consultants are involved in cutting-edge research, their combined talents represent a…

  1. Historical return on investment and improved quality resulting from development and mining of a hospital laboratory relational database.

    PubMed

    Brimhall, Bradley B; Hall, Timothy E; Walczak, Steven

    2006-01-01

    A hospital laboratory relational database, developed over eight years, has demonstrated significant cost savings and a substantial financial return on investment (ROI). In addition, the database has been used to measurably improve laboratory operations and the quality of patient care.

  2. CRRES microelectronic test chip orbital data. II

    NASA Technical Reports Server (NTRS)

    Soli, G. A.; Blaes, B. R.; Buehler, M. G.; Ray, K.; Lin, Y.-S.

    1992-01-01

    Data from a MOSFET matrix on two JPL (CIT Jet Propulsion Laboratory) CRRES (Combined Release and Radiation Effects Satellite) chips, each behind different amounts of shielding, are presented. Space damage factors are nearly identical to ground test values for pMOSFETs. The results from neighboring rows of MOSFETs show similar radiation degradation. The SRD (Space Radiation Dosimeter) is used to measure the total dose accumulated by the JPL chips. A parameter extraction algorithm that does not underestimate threshold voltage shifts is used. Temperature effects are removed from the MOSFET data.

  3. Space Environment Effects: Model for Emission of Solar Protons (ESP): Cumulative and Worst Case Event Fluences

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, E. A.; Gee, G. B.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.

  4. Space Environment Effects: Model for Emission of Solar Protons (ESP)--Cumulative and Worst-Case Event Fluences

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, Edward A.; Gee, G. B.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.

  5. Developing and Implementing a Simple, Affordable Hydrogen Fuel Cell Laboratory in Introductory Chemistry

    ERIC Educational Resources Information Center

    Klara, Kristina; Hou, Ning; Lawman, Allison; Wu, Liheng; Morrill, Drew; Tente, Alfred; Wang, Li-Qiong

    2014-01-01

    A simple, affordable hydrogen proton exchange membrane (PEM) fuel cell laboratory was developed through a collaborative effort between faculty and undergraduate students at Brown University. It has been incorporated into the introductory chemistry curriculum and successfully implemented in a class of over 500 students per academic year for over 3…

  6. Contributions to the initial development of a microelectromechanical loop heat pipe, which is based on coherent porous silicon

    NASA Astrophysics Data System (ADS)

    Cytrynowicz, Debra G.

    The research project itself was the initiation of the development of a planar miniature loop heat pipe based on a capillary wick structure made of coherent porous silicon. Work on this project fell into four main categories, which were component fabrication, test system construction, characterization testing and test data collection, performance analysis and thermal modeling. Component fabrication involved the production of various components for the evaporator. When applicable, these components were to be produced by microelectronic and MEMS or microelectromechanical fabrication techniques. Required work involved analyses and, where necessary, modifications to the wafer processing sequence, the photo-electrochemical etching process, system and controlling computer program to make it more reliable, flexible and efficient. The development of more than one wick production process was also extremely necessary in the event of equipment failure. Work on developing this alternative also involved investigations into various details of the photo-electrochemical etching process itself. Test system construction involved the actual assembly of open and closed loop test systems. Characterization involved developing and administering a series of tests to evaluate the performance of the wicks and test systems. Although there were some indications that the devices were operating according to loop heat pipe theory, they were transient and unstable. Performance analysis involved the construction of a transparent evaporator, which enabled the visual observation of the phenomena, which occurred in the evaporator during operation. It also involved investigating the effect of the quartz wool secondary wick on the operation of the device. Observations made during the visualization study indicated that the capillary and boiling limits were being reached at extremely low values of input power. The work was performed in a collaborative effort between the Biomedical Nanotechnology Research

  7. Bone development in laboratory mammals used in developmental toxicity studies.

    PubMed

    DeSesso, John M; Scialli, Anthony R

    2018-06-19

    Evaluation of the skeleton in laboratory animals is a standard component of developmental toxicology testing. Standard methods of performing the evaluation have been established, and modification of the evaluation using imaging technologies is under development. The embryology of the rodent, rabbit, and primate skeleton has been characterized in detail and summarized herein. The rich literature on variations and malformations in skeletal development that can occur in the offspring of normal animals and animals exposed to test articles in toxicology studies is reviewed. These perturbations of skeletal development include ossification delays, alterations in number, shape, and size of ossification centers, and alterations in numbers of ribs and vertebrae. Because the skeleton is undergoing developmental changes at the time fetuses are evaluated in most study designs, transient delays in development can produce apparent findings of abnormal skeletal structure. The determination of whether a finding represents a permanent change in embryo development with adverse consequences for the organism is important in study interpretation. Knowledge of embryological processes and schedules can assist in interpretation of skeletal findings. © 2018 The Authors. Birth Defects Research Published by Wiley Periodicals, Inc.

  8. Metal hydride reasearch and development program at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Reilly, J.J.

    1978-01-01

    A progress report is presented covering work performed in the hydrogen materials development program at Brookhaven National Laboratory (BNL) for FY78 which encompasses the time period from October 1, 1977 through September 30, 1978. The subjects to be discussed here concern properties of importance in the utilization of metal hydrides as energy storage media. Most of the areas of research were initiated prior to FY78, however all of the results contained in this manuscript were obtained during the aforementioned period of time. The following subjects will be discussed: the properties of ferro-titanium and chrome-titanium alloy hydrides.

  9. Implementing the Science Assessment Standards: Developing and validating a set of laboratory assessment tasks in high school biology

    NASA Astrophysics Data System (ADS)

    Saha, Gouranga Chandra

    Very often a number of factors, especially time, space and money, deter many science educators from using inquiry-based, hands-on, laboratory practical tasks as alternative assessment instruments in science. A shortage of valid inquiry-based laboratory tasks for high school biology has been cited. Driven by this need, this study addressed the following three research questions: (1) How can laboratory-based performance tasks be designed and developed that are doable by students for whom they are designed/written? (2) Do student responses to the laboratory-based performance tasks validly represent at least some of the intended process skills that new biology learning goals want students to acquire? (3) Are the laboratory-based performance tasks psychometrically consistent as individual tasks and as a set? To answer these questions, three tasks were used from the six biology tasks initially designed and developed by an iterative process of trial testing. Analyses of data from 224 students showed that performance-based laboratory tasks that are doable by all students require careful and iterative process of development. Although the students demonstrated more skill in performing than planning and reasoning, their performances at the item level were very poor for some items. Possible reasons for the poor performances have been discussed and suggestions on how to remediate the deficiencies have been made. Empirical evidences for validity and reliability of the instrument have been presented both from the classical and the modern validity criteria point of view. Limitations of the study have been identified. Finally implications of the study and directions for further research have been discussed.

  10. Child Development Laboratory Schools as Generators of Knowledge in Early Childhood Education: New Models and Approaches

    ERIC Educational Resources Information Center

    McBride, Brent A.; Groves, Melissa; Barbour, Nancy; Horm, Diane; Stremmel, Andrew; Lash, Martha; Bersani, Carol; Ratekin, Cynthia; Moran, James; Elicker, James; Toussaint, Susan

    2012-01-01

    Research Findings: University-based child development laboratory programs have a long and rich history of supporting teaching, research, and outreach activities in the child development/early childhood education fields. Although these programs were originally developed in order to conduct research on children and families to inform policy and…

  11. Development and implementation of the Caribbean Laboratory Quality Management Systems Stepwise Improvement Process (LQMS-SIP) Towards Accreditation

    PubMed Central

    Alemnji, George; Edghill, Lisa; Wallace-Sankarsingh, Sacha; Albalak, Rachel; Cognat, Sebastien; Nkengasong, John; Gabastou, Jean-Marc

    2017-01-01

    Background Implementing quality management systems and accrediting laboratories in the Caribbean has been a challenge. Objectives We report the development of a stepwise process for quality systems improvement in the Caribbean Region. Methods The Caribbean Laboratory Stakeholders met under a joint Pan American Health Organization/US Centers for Disease Control and Prevention initiative and developed a user-friendly framework called ‘Laboratory Quality Management System – Stepwise Improvement Process (LQMS-SIP) Towards Accreditation’ to support countries in strengthening laboratory services through a stepwise approach toward fulfilling the ISO 15189: 2012 requirements. Results This approach consists of a three-tiered framework. Tier 1 represents the minimum requirements corresponding to the mandatory criteria for obtaining a licence from the Ministry of Health of the participating country. The next two tiers are quality improvement milestones that are achieved through the implementation of specific quality management system requirements. Laboratories that meet the requirements of the three tiers will be encouraged to apply for accreditation. The Caribbean Regional Organisation for Standards and Quality hosts the LQMS-SIP Secretariat and will work with countries, including the Ministry of Health and stakeholders, including laboratory staff, to coordinate and implement LQMS-SIP activities. The Caribbean Public Health Agency will coordinate and advocate for the LQMS-SIP implementation. Conclusion This article presents the Caribbean LQMS-SIP framework and describes how it will be implemented among various countries in the region to achieve quality improvement. PMID:28879149

  12. The continued value of disk diffusion for assessing antimicrobial susceptibility in clinical laboratories: report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group.

    PubMed

    Humphries, Romney M; Kircher, Susan; Ferrell, Andrea; Krause, Kevin M; Malherbe, Rianna; Hsiung, Andre; Burnham, C A

    2018-05-09

    Expedited pathways to antimicrobial agent approval by the United States Food and Drug Administration (FDA) have led to increased delays between drug approval and the availability of FDA-cleared antimicrobial susceptibility testing (AST) devices. Antimicrobial disks for use with disk diffusion testing are among the first AST devices available to clinical laboratories. However, many laboratories are reluctant to implement a disk diffusion method for a variety of reasons, including dwindling proficiency with this method, interruptions to laboratory workflow, uncertainty surrounding the quality and reliability of a disk diffusion test, and perceived need to report an MIC to clinicians. This mini-review provides a report from the Clinical and Laboratory Standards Institute Working Group on Methods Development and Standardization on the current standards and clinical utility of disk diffusion testing. Copyright © 2018 American Society for Microbiology.

  13. The Early Development of Satellite Characterization Capabilities at the Air Force Laboratories

    NASA Astrophysics Data System (ADS)

    Lambert, J.; Kissell, K.

    This presentation overviews the development of optical Space Object Identification (SOI) techniques at the Air Force laboratories during the two-decade "pre-operational" period prior to 1980 when the Groundbased Electro-Optical Deep Space Surveillance (GEODSS) sensors were deployed. Beginning with the launch of Sputnik in 1957, the United States Air Force has actively pursued the development and application of optical sensor technology for the detection, tracking, and characterization of artificial satellites. Until the mid-1980s, these activities were primarily conducted within Air Force research and development laboratories which supplied data to the operational components on a contributing basis. This presentation traces the early evolution of the optical space surveillance technologies from the early experimental sensors that led to the current generation of operationally deployed and research systems. The contributions of the participating Air Force organizations and facilities will be reviewed with special emphasis on the development of technologies for the characterization of spacecraft using optical signatures and imagery. The presentation will include descriptions and photographs of the early facilities and instrumentation, and examples of the SOI collection and analysis techniques employed. In this early period, computer support was limited so all aspects of space surveillance relied heavily on manual interaction. Many military, government, educational, and contractor agencies supported the development of instrumentation and analysis techniques. This overview focuses mainly on the role played by Air Force System Command and Office of Aerospace Research, and the closely related activities at the Department of Defense Advanced Research Projects Agency. The omission of other agencies from this review reflects the limitations of this presentation, not the significance of their contributions.

  14. Development of a solar charged laboratory bench power supply

    NASA Astrophysics Data System (ADS)

    Ayara, W. A.; Omotosho, T. V.; Usikalu, M. R.; Singh, M. S. J.; Suparta, W.

    2017-05-01

    This product is an improvement on available DC laboratory bench power supply. It is capable of delivering low voltage Alternating Current (AC) and Direct Current (DC) to carry out basic laboratory experiment for both secondary schools and also at higher education institutions. The power supply is capable of delivering fixed DC voltages of 5V, 9V, 12V, variable voltage of between 1.25-30V and a 12V AC voltage. Also Incorporated is a USB port that allows for charging cell phones and other mobile devices, and a dedicated 12V DC output to power 5-7 Watt LED bulb to provide illumination in the laboratory for the instructor who may need to work at night in the absence of utility power.

  15. Laboratories | Energy Systems Integration Facility | NREL

    Science.gov Websites

    laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing

  16. Harmonization of good laboratory practice requirements and laboratory accreditation programs.

    PubMed

    Royal, P D

    1994-09-01

    Efforts to harmonize Good Laboratory Practice (GLP) requirements have been underway through the Organization for Economic Cooperation and Development (OECD) since 1981. In 1985, a GLP panel was established to facilitate the practical implementation of the OECD/GLP program. Through the OECD/GLP program, Memoranda of Understanding (MOU) agreements which foster requirements for reciprocal data and study acceptance and unified GLP standards have been developed among member countries. Three OECD Consensus Workshops and three inspectors training workshops have been held. In concert with these efforts, several OECD countries have developed GLP accreditation programs, managed by local health and environmental ministries. In addition, Canada and the United States are investigating Laboratory Accreditation programs for environmental monitoring assessment and GLP-regulated studies. In the European Community (EC), the need for quality standards specifying requirements for production and international trade has promoted International Standards Organization (ISO) certification for certain products. ISO-9000 standards identify requirements for certification of quality systems. These certification programs may affect the trade and market of laboratories conducting GLP studies. Two goals identified by these efforts are common to both programs: first, harmonization and recognition of requirements, and second, confidence in the rigor of program components used to assess the integrity of data produced and study activities. This confidence can be promoted, in part, through laboratory inspection and screening processes. However, the question remains, will data produced by sanctioned laboratories be mutually accepted on an international basis?(ABSTRACT TRUNCATED AT 250 WORDS)

  17. USING THE LANGUAGE LABORATORY.

    ERIC Educational Resources Information Center

    LADU, TORA TUVE

    TO ENCOURAGE UTILIZATION OF THE LANGUAGE LABORATORY AS A TEACHING TECHNIQUE, THIS BULLETIN DESCRIBES SUCH POSSIBLE USES OF THE LABORATORY AS PROGRAMING LESSONS, RECORDING, AND TESTING LANGUAGE SKILL DEVELOPMENT. ONE OF THE MOST IMPORTANT FUNCTIONS OF THE LABORATORY IS THE PATTERN DRILL, DESCRIBED HERE FOR FRENCH, GERMAN, AND SPANISH. EXAMPLES ARE…

  18. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    PubMed Central

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-01-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123

  19. Revitalizing chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  20. Idaho National Laboratory Directed Research and Development FY-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefitmore » each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  1. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, D. K.

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC ismore » the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.« less

  2. Highest integration in microelectronics: Development of digital ASICs for PARS3-LR

    NASA Astrophysics Data System (ADS)

    Scholler, Peter; Vonlutz, Rainer

    Essential electronic system components by PARS3-LR, show high requirements in calculation power, power consumption and reliability, by immediately increasing integration thicknesses. These problems are solved by using integrated circuits, developed by LSI LOGIC, that uses the technical and economic advantages of this leading edge technology.

  3. Laboratory Waste Management. A Guidebook.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  4. Strategic Computing. New-Generation Computing Technology: A Strategic Plan for Its Development and Application to Critical Problems in Defense

    DTIC Science & Technology

    1983-10-28

    Computing. By seizing an opportunity to leverage recent advances in artificial intelligence, computer science, and microelectronics, the Agency plans...occurred in many separated areas of artificial intelligence, computer science, and microelectronics. Advances in "expert system" technology now...and expert knowledge o Advances in Artificial Intelligence: Mechanization of speech recognition, vision, and natural language understanding. o

  5. Development of Wave Turbine Emulator in a Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Vinatha, U.; Vittal K, P.

    2013-07-01

    Wave turbine emulator (WTE) is an important equipment for developing wave energy conversion system. The emulator reflects the actual behavior of the wave turbine by reproducing the characteristics of real wave turbine without reliance on natural wave resources and actual wave turbine. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators. The emulator can be used for research applications to drive an electrical generator in a similar way as a practical wave turbine. This article presents the development of a WTE in a laboratory environment and studies on the behavior of electrical generator coupled to the emulator. The structure of a WTE consists of a PC where the characteristics of the turbine are implemented, ac drive to emulate the turbine rotor, feedback mechanism from the drive and power electronic equipment to control the drive. The feedback signal is acquired by the PC through an A/D converter, and the signal for driving the power electronic device comes from the PC through a D/A converter.

  6. Universal immunogenicity validation and assessment during early biotherapeutic development to support a green laboratory.

    PubMed

    Bautista, Ami C; Zhou, Lei; Jawa, Vibha

    2013-10-01

    Immunogenicity support during nonclinical biotherapeutic development can be resource intensive if supported by conventional methodologies. A universal indirect species-specific immunoassay can eliminate the need for biotherapeutic-specific anti-drug antibody immunoassays without compromising quality. By implementing the R's of sustainability (reduce, reuse, rethink), conservation of resources and greener laboratory practices were achieved in this study. Statistical analysis across four biotherapeutics supported identification of consistent product performance standards (cut points, sensitivity and reference limits) and a streamlined universal anti-drug antibody immunoassay method implementation strategy. We propose an efficient, fit-for-purpose, scientifically and statistically supported nonclinical immunogenicity assessment strategy. Utilization of a universal method and streamlined validation, while retaining comparability to conventional immunoassays and meeting the industry recommended standards, provides environmental credits in the scientific laboratory. Collectively, individual reductions in critical material consumption, energy usage, waste and non-environment friendly consumables, such as plastic and paper, support a greener laboratory environment.

  7. The development and assessment of constructivist-based curriculum changes in a university general biology laboratory course

    NASA Astrophysics Data System (ADS)

    Herron, Sherry Shelton

    1999-11-01

    This study describes the processes involved in transforming the curriculum of the second semester general biology laboratory course for science majors, BSC 111L, at the University of Southern Mississippi from one based on the behaviorist model of teaching and learning to one based on the constructivist model. The study encompasses pilot and research phases. During the pilot phase conducted fall semester of 1997, the researcher presented to graduate teaching assistants an overview of the need for curriculum reform and some of the theoretical underpinnings for the movement. The researcher worked with all of the general biology teaching assistants to determine factors they considered supportive of the effort, identified specific goals and exercises, and developed a mission statement. The researcher then worked with two of the teaching assistants to write the new curriculum materials and pilot them in a designated laboratory section each week. During the research phase, the researcher facilitated the use of constructivist teaching methods and interviewed the teaching assistants during weekly group meetings. The researcher videotaped and observed the laboratories at various times throughout spring semester of 1998. Student responses to survey questions about the laboratories were collected during the observation sessions. Data derived from self-assessments on teaching beliefs completed by the teaching assistants, interview transcripts, videotaped laboratory sessions, and student surveys were used to assess the effectiveness of the new curriculum and the intervention program. It was observed that despite being given the same instructions, curriculum, and materials, each teaching assistant conducted his laboratory section in a unique way and rarely conducted the complete laboratory in the intended manner. It was also observed that one TA in particular needed more training in interpersonal skill development and content than was provided during the weekly intervention

  8. Complexity of Reasoning about Children's Development: Links with Teacher-Preparation Content Courses and Supervised Laboratory Experience

    ERIC Educational Resources Information Center

    Guzell, Jacqueline R.; Stringer, Sharon A.

    2004-01-01

    In a sample of 74 university students studying early childhood and pre-kindergarten education, researchers assessed the relationships between child development knowledge, complexity of reasoning about development, prior work experience with children, and teacher-preparation content courses and laboratory courses. There was no statistically…

  9. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  10. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  11. A New Method for the Fast Analysis of Trihalomethanes in Tap and Recycled Waters Using Headspace Gas Chromatography with Micro-Electron Capture Detection.

    PubMed

    Alexandrou, Lydon D; Meehan, Barry J; Morrison, Paul D; Jones, Oliver A H

    2017-05-15

    Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid-liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9-9.3 µg/L).

  12. A New Method for the Fast Analysis of Trihalomethanes in Tap and Recycled Waters Using Headspace Gas Chromatography with Micro-Electron Capture Detection

    PubMed Central

    Alexandrou, Lydon D.; Meehan, Barry J.; Morrison, Paul D.; Jones, Oliver A. H.

    2017-01-01

    Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid–liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9–9.3 µg/L). PMID:28505068

  13. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  14. Developing best practice for fungal specimen management: audit of UK microbiology laboratories.

    PubMed

    Lasseter, G; Palmer, M; Morgan, J; Watts, J; Yoxall, H; Kibbler, C; McNulty, C

    2011-01-01

    This study represents an audit of microbiology laboratories in the UK to ascertain whether they are aware of, or follow, the Health Protection Agency (HPA) National Standard Methods Standard Operating Procedure (NSM SOP) for the investigation of dermatological specimens for superficial mycoses, or use a locally adapted version. A questionnaire audit was distributed to 179 NHS microbiology laboratories throughout England, Wales, Scotland and Northern Ireland. The NSM SOP was followed by 92% of laboratories for the microscopy of dermatological samples; light microscopy/ KOH digestion was used by 63% and fluorescence microscopy/KOH digestion by 29% of laboratories. Preliminary reports post-microscopy were issued by 98% of laboratories, with 93% issuing reports within 48 hours. Adherence to the NSM SOP guidelines for culture was low; only 34% of laboratories incubated microscopy-negative specimens for the recommended 14 days, while approximately 60% incubated microscopy-positive specimens for 21 days. The culture medium recommended by the NSM SOP was used in 82% of laboratories. Comments were added to culture reports by 51% of laboratories; most were added manually and comments varied between laboratories. Nail samples were the most common sample received from primary care, followed by skin and hair. These results show no significant difference in the rate of microscopy positives versus culture positives. Microscopy and culture are the easiest and cheapest methods available to UK laboratories for the investigation of suspected superficial fungal infections. Although most laboratories included in this audit claimed to follow the NSM SOP for microscopy and culture, these results show that the techniques used vary throughout the UK. To maximise the service provided to primary care, UK laboratories should use standardise methods based on the NSM SOP.

  15. Development of the HERMIES III mobile robot research testbed at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manges, W.W.; Hamel, W.R.; Weisbin, C.R.

    1988-01-01

    The latest robot in the Hostile Environment Robotic Machine Intelligence Experiment Series (HERMIES) is now under development at the Center for Engineering Systems Advanced Research (CESAR) in the Oak Ridge National Laboratory. The HERMIES III robot incorporates a larger than human size 7-degree-of-freedom manipulator mounted on a 2-degree-of-freedom mobile platform including a variety of sensors and computers. The deployment of this robot represents a significant increase in research capabilities for the CESAR laboratory. The initial on-board computer capacity of the robot exceeds that of 20 Vax 11/780s. The navigation and vision algorithms under development make extensive use of the on-boardmore » NCUBE hypercube computer while the sensors are interfaced through five VME computers running the OS-9 real-time, multitasking operating system. This paper describes the motivation, key issues, and detailed design trade-offs of implementing the first phase (basic functionality) of the HERMIES III robot. 10 refs., 7 figs.« less

  16. Tritium technology development in EEC laboratories contributions to design goals for NET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinner, P.; Chazalon, M.; Leger, D.

    1988-09-01

    An overview is given of the tritium technology activities carried out in the European national laboratories associated with the European Fusion Programme and in the European Joint Research Center. The relationship of these activities to the Next European Torus (NET) design priorities is discussed, and the current status of the research is summarised. Future developments, required for NET, which will be addressed in the definition of the next 5-year programme are also presented.

  17. Development and analysis of a meteorological database, Argonne National Laboratory, Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Price, Thomas H.; Ishii, Audrey L.

    2010-01-01

    A database of hourly values of air temperature, dewpoint temperature, wind speed, and solar radiation from January 1, 1948, to September 30, 2003, primarily using data collected at the Argonne National Laboratory station, was developed for use in continuous-time hydrologic modeling in northeastern Illinois. Missing and apparently erroneous data values were replaced with adjusted values from nearby stations used as 'backup'. Temporal variations in the statistical properties of the data resulting from changes in measurement and data-storage methodologies were adjusted to match the statistical properties resulting from the data-collection procedures that have been in place since January 1, 1989. The adjustments were computed based on the regressions between the primary data series from Argonne National Laboratory and the backup series using data obtained during common periods; the statistical properties of the regressions were used to assign estimated standard errors to values that were adjusted or filled from other series. Each hourly value was assigned a corresponding data-source flag that indicates the source of the value and its transformations. An analysis of the data-source flags indicates that all the series in the database except dewpoint have a similar fraction of Argonne National Laboratory data, with about 89 percent for the entire period, about 86 percent from 1949 through 1988, and about 98 percent from 1989 through 2003. The dewpoint series, for which observations at Argonne National Laboratory did not begin until 1958, has only about 71 percent Argonne National Laboratory data for the entire period, about 63 percent from 1948 through 1988, and about 93 percent from 1989 through 2003, indicating a lower reliability of the dewpoint sensor. A basic statistical analysis of the filled and adjusted data series in the database, and a series of potential evapotranspiration computed from them using the computer program LXPET (Lamoreux Potential

  18. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  19. Medical Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of medical laboratory technician, lists technical competencies and competency builders for 18 units pertinent to the health technologies cluster in general and 8 units specific to the occupation of medical laboratory technician. The following…

  20. Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2013-09-01

    Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.

  1. The State Public Health Laboratory System.

    PubMed

    Inhorn, Stanley L; Astles, J Rex; Gradus, Stephen; Malmberg, Veronica; Snippes, Paula M; Wilcke, Burton W; White, Vanessa A

    2010-01-01

    This article describes the development since 2000 of the State Public Health Laboratory System in the United States. These state systems collectively are related to several other recent public health laboratory (PHL) initiatives. The first is the Core Functions and Capabilities of State Public Health Laboratories, a white paper that defined the basic responsibilities of the state PHL. Another is the Centers for Disease Control and Prevention National Laboratory System (NLS) initiative, the goal of which is to promote public-private collaboration to assure quality laboratory services and public health surveillance. To enhance the realization of the NLS, the Association of Public Health Laboratories (APHL) launched in 2004 a State Public Health Laboratory System Improvement Program. In the same year, APHL developed a Comprehensive Laboratory Services Survey, a tool to measure improvement through the decade to assure that essential PHL services are provided.

  2. Developing Information Fluency in Introductory Biology Students in the Context of an Investigative Laboratory

    ERIC Educational Resources Information Center

    Lindquester, Gary J.; Burks, Romi L.; Jaslow, Carolyn R.

    2005-01-01

    Students of biology must learn the scientific method for generating information in the field. Concurrently, they should learn how information is reported and accessed. We developed a progressive set of exercises for the undergraduate introductory biology laboratory that combine these objectives. Pre- and postassessments of approximately 100…

  3. A Curriculum Skills Matrix for Development and Assessment of Undergraduate Biochemistry and Molecular Biology Laboratory Programs

    ERIC Educational Resources Information Center

    Caldwell, Benjamin; Rohlman, Christopher; Benore-Parsons, Marilee

    2004-01-01

    We have designed a skills matrix to be used for developing and assessing undergraduate biochemistry and molecular biology laboratory curricula. We prepared the skills matrix for the Project Kaleidoscope Summer Institute workshop in Snowbird, Utah (July 2001) to help current and developing undergraduate biochemistry and molecular biology program…

  4. Dental Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of dental laboratory technician, lists technical competencies and competency builders for 13 units pertinent to the health technologies cluster in general and 8 units to the occupation of dental laboratory technician. The following skill areas…

  5. A Survey of Established Veterinary Clinical Skills Laboratories from Europe and North America: Present Practices and Recent Developments.

    PubMed

    Dilly, Marc; Read, Emma K; Baillie, Sarah

    Developing competence in clinical skills is important if graduates are to provide entry-level care, but it is dependent on having had sufficient hands-on practice. Clinical skills laboratories provide opportunities for students to learn on simulators and models in a safe environment and to supplement training with animals. Interest in facilities for developing veterinary clinical skills has increased in recent years as many veterinary colleges face challenges in training their students with traditional methods alone. For the present study, we designed a survey to gather information from established veterinary clinical skills laboratories with the aim of assisting others considering opening or expanding their own facility. Data were collated from 16 veterinary colleges in North America and Europe about the uses of their laboratory, the building and associated facilities, and the staffing, budgets, equipment, and supporting learning resources. The findings indicated that having a dedicated veterinary clinical skills laboratory is a relatively new initiative and that colleges have adopted a range of approaches to implementing and running the laboratory, teaching, and assessments. Major strengths were the motivation and positive characteristics of the staff involved, providing open access and supporting self-directed learning. However, respondents widely recognized the increasing demands placed on the facility to provide more space, equipment, and staff. There is no doubt that veterinary clinical skills laboratories are on the increase and provide opportunities to enhance student learning, complement traditional training, and benefit animal welfare.

  6. Engineering Research and Development and Technology thrust area report FY92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less

  7. The Point-of-Care Laboratory in Clinical Microbiology

    PubMed Central

    Michel-Lepage, Audrey; Boyer, Sylvie; Raoult, Didier

    2016-01-01

    SUMMARY Point-of-care (POC) laboratories that deliver rapid diagnoses of infectious diseases were invented to balance the centralization of core laboratories. POC laboratories operate 24 h a day and 7 days a week to provide diagnoses within 2 h, largely based on immunochromatography and real-time PCR tests. In our experience, these tests are conveniently combined into syndrome-based kits that facilitate sampling, including self-sampling and test operations, as POC laboratories can be operated by trained operators who are not necessarily biologists. POC laboratories are a way of easily providing clinical microbiology testing for populations distant from laboratories in developing and developed countries and on ships. Modern Internet connections enable support from core laboratories. The cost-effectiveness of POC laboratories has been established for the rapid diagnosis of tuberculosis and sexually transmitted infections in both developed and developing countries. PMID:27029593

  8. Stroboscopic Imaging Interferometer for MEMS Performance Measurement

    DTIC Science & Technology

    2007-07-15

    Optical Iocusing L.aser Fiber Optics I) c 0 Mim er Collimator - C d Microcope lcam. indo Cold Objcclive Splitte FingerCCD "Mount irnro MEMS PicL zStack...Electronics and Photonics Laboratory: Microelectronics, VLSI reliability, failure analysis, solid-state device physics, compound semiconductors

  9. Single Event Effects Test Facility Options at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X; Dominik, Laura J

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of integrated circuits (ICs) and systems for use in radiationmore » environments requires the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.« less

  10. Laboratory Manual, Electrical Engineering 25.

    ERIC Educational Resources Information Center

    Syracuse Univ., NY. Dept. of Electrical Engineering.

    Developed as part of a series of materials in the electrical engineering sequence developed under contract with the United States Office of Education, this laboratory manual provides nine laboratory projects suitable for a second course in electrical engineering. Dealing with resonant circuits, electrostatic fields, magnetic devices, and…

  11. Project-Based Learning in Undergraduate Environmental Chemistry Laboratory: Using EPA Methods to Guide Student Method Development for Pesticide Quantitation

    ERIC Educational Resources Information Center

    Davis, Eric J.; Pauls, Steve; Dick, Jonathan

    2017-01-01

    Presented is a project-based learning (PBL) laboratory approach for an upper-division environmental chemistry or quantitative analysis course. In this work, a combined laboratory class of 11 environmental chemistry students developed a method based on published EPA methods for the extraction of dichlorodiphenyltrichloroethane (DDT) and its…

  12. Spoked-ring microcavities: enabling seamless integration of nanophotonics in unmodified advanced CMOS microelectronics chips

    NASA Astrophysics Data System (ADS)

    Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.

    2014-03-01

    We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.

  13. The total laboratory solution: a new laboratory E-business model based on a vertical laboratory meta-network.

    PubMed

    Friedman, B A

    2001-08-01

    Major forces are now reshaping all businesses on a global basis, including the healthcare and clinical laboratory industries. One of the major forces at work is information technology (IT), which now provides the opportunity to create a new economic and business model for the clinical laboratory industry based on the creation of an integrated vertical meta-network, referred to here as the "total laboratory solution" (TLS). Participants at the most basic level of such a network would include a hospital-based laboratory, a reference laboratory, a laboratory information system/application service provider/laboratory portal vendor, an in vitro diagnostic manufacturer, and a pharmaceutical/biotechnology manufacturer. It is suggested that each of these participants would add value to the network primarily in its area of core competency. Subvariants of such a network have evolved over recent years, but a TLS comprising all or most of these participants does not exist at this time. Although the TLS, enabled by IT and closely akin to the various e-businesses that are now taking shape, offers many advantages from a theoretical perspective over the current laboratory business model, its success will depend largely on (a) market forces, (b) how the collaborative networks are organized and managed, and (c) whether the network can offer healthcare organizations higher quality testing services at lower cost. If the concept is successful, new demands will be placed on hospital-based laboratory professionals to shift the range of professional services that they offer toward clinical consulting, integration of laboratory information from multiple sources, and laboratory information management. These information management and integration tasks can only increase in complexity in the future as new genomic and proteomics testing modalities are developed and come on-line in clinical laboratories.

  14. Developing Guided Inquiry-Based Student Lab Worksheet for Laboratory Knowledge Course

    NASA Astrophysics Data System (ADS)

    Rahmi, Y. L.; Novriyanti, E.; Ardi, A.; Rifandi, R.

    2018-04-01

    The course of laboratory knowledge is an introductory course for biology students to follow various lectures practicing in the biology laboratory. Learning activities of laboratory knowledge course at this time in the Biology Department, Universitas Negeri Padang has not been completed by supporting learning media such as student lab worksheet. Guided inquiry learning model is one of the learning models that can be integrated into laboratory activity. The study aimed to produce student lab worksheet based on guided inquiry for laboratory knowledge course and to determine the validity of lab worksheet. The research was conducted using research and developmet (R&D) model. The instruments used in data collection in this research were questionnaire for student needed analysis and questionnaire to measure the student lab worksheet validity. The data obtained was quantitative from several validators. The validators consist of three lecturers. The percentage of a student lab worksheet validity was 94.18 which can be categorized was very good.

  15. Developing Laboratory Skills by Incorporating Peer-Review and Digital Badges

    ERIC Educational Resources Information Center

    Seery, Michael K.; Agustian, Hendra Y.; Doidge, Euan D.; Kucharski, Maciej M.; O'Connor, Helen M.; Price, Amy

    2017-01-01

    Laboratory work is at the core of any chemistry curriculum but literature on the assessment of laboratory skills is scant. In this study we report the use of a peer-observation protocol underpinned by exemplar videos. Students are required to watch exemplar videos for three techniques (titrations, distillations, preparation of standard solutions)…

  16. Development of Accessible Laboratory Experiments for Students with Visual Impairments

    ERIC Educational Resources Information Center

    Kroes, KC; Lefler, Daniel; Schmitt, Aaron; Supalo, Cary A.

    2016-01-01

    The hands-on laboratory experiments are frequently what spark students' interest in science. Students who are blind or have low vision (BLV) typically do not get the same experience while participating in hands-on activities due to accessibility. Over the course of approximately nine months, common chemistry laboratory experiments were adapted and…

  17. Pellet injector development at ORNL (Oak Ridge National Laboratory)

    NASA Astrophysics Data System (ADS)

    Gouge, M. J.; Argo, B. E.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; Fisher, P. W.; Foster, C. A.; Foust, C. R.; Milora, S. L.; Qualls, A. L.

    1990-09-01

    Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988 to 1989. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low (sup 3)He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2 to 10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2 to 3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor.

  18. Microelectronic bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.; Hynecek, J.

    1975-01-01

    The possibility of using RF fields to power biologically implanted transmitters used in biomedical experiments was investigated. This approach would be especially useful when animal subjects are strapped in chairs or confined in cages. A telemetry system using an external source of energy has the additional advantage of not being limited in operation by battery lifetime and can therefore operate for virtually infinite lengths of time. A description of a system based on this principle is given. Progress in the development of battery-driven transmitters is also reported, including an ingestible temperature telemetry system and a resistance-to-pulse frequency convertor for implantable temperature telemetry systems.

  19. Sandia National Laboratories: Research: Laboratory Directed Research &

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  1. DEVELOPMENT OF THE U.S. EPA HEALTH EFFECTS RESEARCH LABORATORY FROZEN BLOOD CELL REPOSITORY PROGRAM

    EPA Science Inventory

    In previous efforts, we suggested that proper blood cell freezing and storage is necessary in longitudinal studies with reduced between tests error, for specimen sharing between laboratories and for convenient scheduling of assays. e continue to develop and upgrade programs for o...

  2. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  3. State of laboratory manual instruction in California community college introductory (non-majors) biology laboratory instruction

    NASA Astrophysics Data System (ADS)

    Priest, Michelle

    College students must complete a life science course prior to graduation for a bachelor's degree. Generally, the course has lecture and laboratory components. It is in the laboratory where there are exceptional opportunities for exploration, challenge and application of the material learned. Optimally, this would utilize the best of inquiry based approaches. Most community colleges are using a home-grown or self written laboratory manual for the direction of work in the laboratory period. Little was known about the motivation, development and adaptation of use. It was also not known about the future of the laboratory manuals in light of the recent learning reform in California Community Colleges, Student Learning Outcomes. Extensive interviews were conducted with laboratory manual authors to determine the motivation, process of development, who was involved and learning framework used in the creation of the manuals. It was further asked of manual authors their ideas about the future of the manual, the development of staff and faculty and finally, the role Student Learning Outcomes would play in the manual. Science faculty currently teaching the non-majors biology laboratories for at least two semesters were surveyed on-line about actual practice of the manual, assessment, manual flexibility, faculty training and incorporation of Student Learning Outcomes. Finally, an evaluation of the laboratory manual was done using an established Laboratory Task Analysis Instrument. Laboratory manuals were evaluated on a variety of categories to determine the level of inquiry instruction done by students in the laboratory section. The results were that the development of homegrown laboratory manuals was done by community colleges in the Los Angeles and Orange Counties in an effort to minimize the cost of the manual to the students, to utilize all the exercises in a particular lab and to effectively utilize the materials already owned by the department. Further, schools wanted to

  4. Developing Medicare Competitive Bidding: A Study of Clinical Laboratories

    PubMed Central

    Hoerger, Thomas J.; Meadow, Ann

    1997-01-01

    Competitive bidding to derive Medicare fees promises several advantages over administered fee systems. The authors show how incentives for cost savings, quality, and access can be incorporated into bidding schemes, and they report on a study of the clinical laboratory industry conducted in preparation for a bidding demonstration. The laboratory industry is marked by variable concentration across geographic markets and, among firms themselves, by social and economic heterogeneity. The authors conclude that these conditions can be accommodated by available bidding design options and by careful selection of bidding markets. PMID:10180003

  5. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  6. Emotional intelligence in medical laboratory science

    NASA Astrophysics Data System (ADS)

    Price, Travis

    The purpose of this study was to explore the role of emotional intelligence (EI) in medical laboratory science, as perceived by laboratory administrators. To collect and evaluate these perceptions, a survey was developed and distributed to over 1,400 medical laboratory administrators throughout the U.S. during January and February of 2013. In addition to demographic-based questions, the survey contained a list of 16 items, three skills traditionally considered important for successful work in the medical laboratory as well as 13 EI-related items. Laboratory administrators were asked to rate each item for its importance for job performance, their satisfaction with the item's demonstration among currently working medical laboratory scientists (MLS) and the amount of responsibility college-based medical laboratory science programs should assume for the development of each skill or attribute. Participants were also asked about EI training in their laboratories and were given the opportunity to express any thoughts or opinions about EI as it related to medical laboratory science. This study revealed that each EI item, as well as each of the three other items, was considered to be very or extremely important for successful job performance. Administrators conveyed that they were satisfied overall, but indicated room for improvement in all areas, especially those related to EI. Those surveyed emphasized that medical laboratory science programs should continue to carry the bulk of the responsibility for the development of technical skills and theoretical knowledge and expressed support for increased attention to EI concepts at the individual, laboratory, and program levels.

  7. Microelectronics in Japan

    NASA Astrophysics Data System (ADS)

    Boulton, William R.

    1995-02-01

    The purpose of this JTEC study is to evaluate Japan's electronic manufacturing and packaging capabilities within the context of global economic competition. To carry out this study, the JTEC panel evaluated the framework of the Japanese consumer electronics industry and various technological and organizational factors that are likely to determine who will win and lose in the marketplace. This study begins with a brief overview of the electronics industry, especially as it operates in Japan today. Succeeding chapters examine the electronics infrastructure in Japan and take an in-depth look at the central issues of product development in order to identify those parameters that will determine future directions for electronic packaging technologies.

  8. Microelectronics in Japan

    NASA Technical Reports Server (NTRS)

    Boulton, William R.

    1995-01-01

    The purpose of this JTEC study is to evaluate Japan's electronic manufacturing and packaging capabilities within the context of global economic competition. To carry out this study, the JTEC panel evaluated the framework of the Japanese consumer electronics industry and various technological and organizational factors that are likely to determine who will win and lose in the marketplace. This study begins with a brief overview of the electronics industry, especially as it operates in Japan today. Succeeding chapters examine the electronics infrastructure in Japan and take an in-depth look at the central issues of product development in order to identify those parameters that will determine future directions for electronic packaging technologies.

  9. Development and application of a mobile laboratory for measuring emissions from diesel engines. 1. Regulated gaseous emissions.

    PubMed

    Cocker, David R; Shah, Sandip D; Johnson, Kent; Miller, J Wayne; Norbeck, Joseph M

    2004-04-01

    Information about in-use emissions from diesel engines remains a critical issue for inventory development and policy design. Toward that end, we have developed and verified the first mobile laboratory that measures on-road or real-world emissions from engines at the quality level specified in the U.S. Congress Code of Federal Regulations. This unique mobile laboratory provides information on integrated and modal regulated gaseous emission rates and integrated emission rates for speciated volatile and semivolatile organic compounds and particulate matter during real-world operation. Total emissions are captured and collected from the HDD vehicle that is pulling the mobile laboratory. While primarily intended to accumulate data from HDD vehicles, it may also be used to measure emission rates from stationary diesel sources such as back-up generators. This paper describes the development of the mobile laboratory, its measurement capabilities, and the verification process and provides the first data on total capture gaseous on-road emission measurements following the California Air Resources Board (ARB) 4-mode driving cycle, the hot urban dynamometer driving schedule (UDDS), the modified 5-mode cycle, and a 53.2-mi highway chase experiment. NOx mass emission rates (g mi(-1)) for the ARB 4-mode driving cycle, the hot UDDS driving cycle, and the chase experimentwerefoundto exceed current emission factor estimates for the engine type tested by approximately 50%. It was determined that congested traffic flow as well as "off-Federal Test Procedure cycle" emissions can lead to significant increases in per mile NOx emission rates for HDD vehicles.

  10. Laboratory Activity on Sample Handling and Maintaining a Laboratory Notebook through Simple pH Measurements

    ERIC Educational Resources Information Center

    Erdmann, Mitzy A.; March, Joe L.

    2016-01-01

    Sample handling and laboratory notebook maintenance are necessary skills but can seem abstract if not presented to students in context. An introductory exercise focusing on proper sample handling, data collection and laboratory notebook keeping for the general chemistry laboratory was developed to emphasize the importance of keeping an accurate…

  11. Agricultural Mechanics Laboratory Management Professional Development Needs of Wyoming Secondary Agriculture Teachers

    ERIC Educational Resources Information Center

    McKim, Billy R.; Saucier, P. Ryan

    2011-01-01

    Accidents happen; however, the likelihood of accidents occurring in the agricultural mechanics laboratory is greatly reduced when agricultural mechanics laboratory facilities are managed by secondary agriculture teachers who are competent and knowledgeable. This study investigated the agricultural mechanics laboratory management in-service needs…

  12. Report on the Progress of Weld Development of Irradiated Materials at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Miller, Roger G.; Chen, Jian

    This report summarizes recent welding activities on irradiated alloys in the advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory and the development of post-weld characterization capabilities and procedures that will be critical for assessing the ability of the advanced welding processes housed within the facility to make successful repairs on irradiated alloys. This facility and its capabilities were developed jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program (and the Welding and Repair Technology Center), with additionalmore » support from Oak Ridge National Laboratory. The significant, on-going effort to weld irradiated alloys with high Helium concentrations and comprehensively analyze the results will eventually yield validated repair techniques and guidelines for use by the nuclear industry in extending the operational lifetimes of nuclear power plants.« less

  13. Laboratory Food Acceptance in Children With Autism Spectrum Disorder Compared With Children With Typical Development.

    PubMed

    Suarez, Michelle A

    Studies using parent-report measures have described the high prevalence of food selectivity in children with autism spectrum disorder (ASD). However, few studies have documented food acceptance in a controlled laboratory environment. The objective of this study was to compare laboratory food acceptance in children with ASD with that of children with typical development (TD). In addition, the relationships between food acceptance and the child's age, sensory processing pattern, and autism severity were explored. Results indicate that children with autism (n = 31) accepted fewer foods in the laboratory environment than the children with TD (n = 21) and that food acceptance was related to age but not to ASD severity. In addition, sensory processing scores were associated with food acceptance for the combined ASD and TD groups. Results are discussed in the context of the literature. This information has the potential to support evaluation and treatment of food selectivity. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  14. Developing a laboratory protocol for asphalt binder recovery.

    DOT National Transportation Integrated Search

    2014-10-01

    Asphalt binder extraction and recovery are common laboratory procedures used to provide material for research and quality : assurance testing. The most common methods of recovery performed today include the Abson method and the rotary evaporator : (o...

  15. Laboratory Directed Research and Development Annual Report for 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Pamela J.

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalablemore » synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.« less

  16. US Army Medical Bioengineering Research and Development Laboratory Annual Progress Report for FY 84. Volume 1

    DTIC Science & Technology

    1984-10-01

    develop pollution abatement procedures for Army munition plants and military installations.n, t ftr Laboratory is also actively engaged in the...FACILITIES The physical plant provides over 100,000 square feet for research, development, testing, and administrative activities . Space is...protection of industrial workers and thq surrounding community at Army-controlled, industry-operated munition plants . G Environmental Quality program

  17. Development of a Metal Detector for Smartphones and Its Use in the Teaching Laboratory

    ERIC Educational Resources Information Center

    Sobral, Geraldo A.

    2018-01-01

    In this article, we describe how to develop an inductive metal detector that can be integrated to any Android or iOS smartphone with a standard audio port at low cost. The results indicate the metal detector can be used in the physics teaching laboratory as a practical application of principles of electromagnetism. It allows one to differentiate…

  18. A Reliability Simulator for Radiation-Hard Microelectronics Development

    DTIC Science & Technology

    1991-07-01

    1 3.0 PHASE II WORK PLANS ................................................................ 2... plan . The correlation experimental details including the devices utilized, the hot-carrier stressing and the wafer-level radiation correlation procedure...channel devices, and a new lifetime extrapolation method is demonstrated for p-channel devices. 3.0 PHASE II WORK PLANS The Phase 1I program consisted of

  19. Practical way to develop 10-color flow cytometry protocols for the clinical laboratory

    NASA Astrophysics Data System (ADS)

    Tárnok, Attila; Bocsi, Jozsef

    2010-02-01

    The latest development of commercial routine flow cytometers (FCM) is that they are equipped with three (blue, red, violet) or more lasers and many PMT detectors. Nowadays routine clinical instruments are capable of detecting 10 or more fluorescence colors simultaneously. Thereby, presenting opportunities for getting detailed information on the single cell level for cytomics and systems biology for improve diagnostics and monitoring of patients. The University Leipzig, Germany) recently started a cluster of excellence to study the molecular background of life style and environment associated diseases, enrolling 25000 individuals (LIFE). To this end the most comprehensive FCM protocol has to be developed for this study. We aimed to optimize fluorochrome and antibody combinations to the characteristics of the instrument for successful 10-color FCM. Systematic review of issues related to sampling, preparation, instrument settings, spillover and compensation matrix, reagent performance, and general principles of panel construction was performed. 10-color FCM enables for increased accuracy in cell subpopulation identification, the ability to obtain detailed information from blood specimens, improved laboratory efficiency, and the means to consistently detect major and rare cell populations. Careful attention to details of instrument and reagent performance allows for the development of panels suitable for screening of samples from healthy and diseased donors. The characteristics of this technique are particularly well suited for the analysis of broad human population cohorts and have the potential to reach the everyday practice in a standardized way for the clinical laboratory.

  20. Development of Matlab GUI educational software to assist a laboratory of physical optics

    NASA Astrophysics Data System (ADS)

    Fernández, Elena; Fuentes, Rosa; García, Celia; Pascual, Inmaculada

    2014-07-01

    Physical optics is one of the subjects in the Grade of Optics and Optometry in Spanish universities. The students who come to this degree often have difficulties to understand subjects that are related to physics. For this reason, the aim of this work is to develop optics simulation software that provides a virtual laboratory for studying the effects of different aspects of physical optics phenomena. This software can let optical undergraduates simulate many optical systems for a better understanding of the practical competences associated with the theoretical concepts studied in class. This interactive environment unifies the information that brings the manual of the practices, provides the visualization of the physical phenomena and allows users to vary the values of the parameters that come into play to check its effect. So, this virtual tool is the perfect complement to learning more about the practices developed in the laboratory. This software will be developed through the choices which have the Matlab to generate Graphical User Interfaces or GUIs. A set of knobs, buttons and handles will be included in the GUI's in order to control the parameters of the different physics phenomena. Graphics can also be inserted in the GUIs to show the behavior of such phenomena. Specifically, by using this software, the student is able to analyze the behaviour of the transmittance and reflectance of the TE and TM modes, the polarized light through of the Malus'Law or degree of polarization.