Sample records for laboratory axions technical

  1. Measurement of the magnetically-induced QED birefringence of the vacuum and an improved search for laboratory axions: Technical report. Project definition study of the use of assets and facilities of the Superconducting Super Collider Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.A.; Fairbank, W.M. Jr.; Toki, W.H.

    1994-10-31

    The Colorado State Collaboration has studied the feasibility of a high sensitivity QED birefringence/axion search measurement. The objective of this work is to measure, for the first time, the birefringence induced in the vacuum on a light beam travelling in a powerful magnetic field. The same experimental setup also allows a highly sensitive search for axion or axion-like particles. The experiment would combined custom-designed optical heterodyne interferometry with a string of six SSC prototype superconducting dipole magnets at the N-15 site of the SSC Laboratory. With these powerful laser tools, sensitivity advances of 10{sup 7} to 10{sup 9} over previousmore » optical experiments will be possible. The proposed experiment will be able to measure the QED light-by-light scattering effect with a 0.5% accuracy. The increased sensitivity for the axion-two photon interaction will result in a bound on this process rivaling the results based on astrophysical arguments. In the technical report the authors address the scientific significance of these experiments and examine the limiting technical parameters which control their feasibility. The proposed optical/electronic scheme is presented in the context of a background of the known and projected systematic problems which will confront any serious attempt to make such measurements.« less

  2. Constraints on axion couplings from the CDEX-1 experiment at the China Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Liu, S. K.; Yue, Q.; Kang, K. J.; Cheng, J. P.; Wong, H. T.; Li, Y. J.; Li, H. B.; Lin, S. T.; Chang, J. P.; Chen, J. H.; Chen, N.; Chen, Q. H.; Chen, Y. H.; Deng, Z.; Du, Q.; Gong, H.; He, H. J.; He, Q. J.; Huang, H. X.; Jiang, H.; Li, J. M.; Li, J.; Li, J.; Li, X.; Li, X. Q.; Li, X. Y.; Li, Y. L.; Lin, F. K.; Lü, L. C.; Ma, H.; Ma, J. L.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Sharma, V.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Wang, J. M.; Wang, L.; Wang, Q.; Wu, S. Y.; Wu, Y. C.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, C. W.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhao, W.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration

    2017-03-01

    We report the results of searches for solar axions and galactic dark matter axions or axionlike particles with the CDEX-1 experiment at the China Jinping Underground Laboratory, using 335.6 kg days of data from a p -type point-contact germanium detector. The data are compatible with the background model, and no excess signals are observed. Limits of solar axions on the model-independent coupling gA e<2.5 ×10-11 from Compton, bremsstrahlung, atomic-recombination, and deexcitation channels and gAN eff×gA e<6.4 ×10-17 from a 57Fe M1 transition at 90% confidence level are derived. Within the framework of the Dine-Fischler-Srednicki-Zhitnitskiy and Kim-Shifman-Vainshtein-Zakharov models, our results exclude the axion mass heavier than 0.9 and 177 eV /c2 , respectively. The derived constraints for dark matter axions below 1 keV improve over the previous results.

  3. Axions and SN 1987A: Axion trapping

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Ressell, M. Ted; Turner, Michael S.

    1990-01-01

    If an axion of mass between about 10(exp -3) and 10 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become trapped and radiated from an axion sphere. The trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a diffusion approximation for axion-energy transport. The axion opacity due to inverse nucleon-nucleon, axion bremsstrahlung is computed; and then the numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande II (KII) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The estimate of the axion mass is confirmed above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration - the most sensitive barometer of axion cooling - it is concluded that for an axion mass greater than about 3 eV axion emission would not have had a significant effect on the neutrino bursts detected by KII and IMB. It is strongly suggested that an axion with mass in the interval 10(exp -3) to 3 eV is excluded by the observation of neutrinos from SN 1987A.

  4. Axions and SN 1987A: Axion trapping

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Ressell, M. Ted; Turner, Michael S.

    1990-01-01

    If an axion of mass between about 10(exp -3) eV and 1 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass less than about 10(exp -2) eV, axions produced deep inside the neutron star simply stream out; in a previous paper this case has been addressed. Remarkably, for an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become 'trapped' and radiated from an axion sphere. In this paper the trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a leakage approximation scheme for axion-energy transport. The axion opacity is computed due to inverse nucleon-nucleon, axion bremsstrahlung, and numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande 2 (K2) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The earlier estimate is confirmed and refined of the axion mass above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration--the most sensitive barometer of axion cooling--it is concluded that for an axion mass of greater than about 0.3 eV, axion emission would not have had a significant effect on the neutrino bursts detected by K2 and IMB. The present work, together with the previous work, strongly suggests that an axion with mass in the interval 10(exp -3) eV to 0.3 eV is excluded by SN 1987A.

  5. Axion cosmology

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.

    2016-07-01

    Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected

  6. Can Radio Telescopes Find Axions?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    In the search for dark matter, the most commonly accepted candidates are invisible, massive particles commonly referred to as WIMPs. But as time passes and we still havent detected WIMPs, alternative scenarios are becoming more and more appealing. Prime among these is the idea of axions.A Bizarre ParticleThe Italian PVLAS is an example of a laboratory experiment that attempted to confirm the existence of axions. [PVLAS]Axions are a type of particle first proposed in the late 1970s. These theorized particles arose from a new symmetry introduced to solve ongoing problems with the standard model for particle physics, and they were initially predicted to have more than a keV in mass. For this reason, their existence was expected to be quickly confirmed by particle-detector experiments yet no detections were made.Today, after many unsuccessful searches, experiments and theory tell us that if axions exist, their masses must lie between 10-610-3 eV. This is minuscule an electrons mass is around 500,000 eV, and even neutrinos are on the scale of a tenth of an eV!But enough of anything, even something very low-mass, can weigh a lot. If they are real, then axions were likely created in abundance during the Big Bang and unlike heavier particles, they cant decay into anything lighter, so we would expect them all to still be around today. Our universe could therefore be filled with invisible axions, potentially providing an explanation for dark matter in the form of many, many tiny particles.Artists impression of the central core of proposed Square Kilometer Array antennas. [SKA/Swinburne Astronomy Productions]How Do We Find Them?Axions barely interact with ordinary matter and they have no electric charge. One of the few ways we can detect them is with magnetic fields: magnetic fields can change axions to and from photons.While many studies have focused on attempting to detect axions in laboratory experiments, astronomy provides an alternative: we can search for cosmological

  7. Dark-matter QCD-axion searches.

    PubMed

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  8. Dense Axion Stars.

    PubMed

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  9. Tidal streams from axion miniclusters and direct axion searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinyakov, Peter; Tkachev, Igor; Zioutas, Konstantin, E-mail: petr.tiniakov@ulb.ac.be, E-mail: tkachev@inr.ru, E-mail: konstantin.zioutas@cern.ch

    In some axion dark matter models a dominant fraction of axions resides in dense small-scale substructures, axion miniclusters. A fraction of these substructures is disrupted and forms tidal streams where the axion density may still be an order of magnitude larger than the average. We discuss implications of these streams for the direct axion searches. We estimate the fraction of disrupted miniclusters and the parameters of the resulting streams, and find that stream-crossing events would occur at a rate of about 1/(20 yr) for 2–3 days, during which the signal in axion detectors would be amplified by a factor ∼ 10. Thesemore » estimates suggest that the effect of the tidal disruption of axion miniclusters may be important for direct axion searches and deserves a more thorough study.« less

  10. Dark-matter QCD-axion searches

    DOE PAGES

    Rosenberg, Leslie J.

    2015-01-12

    In the late 20th century, cosmology became a precision science. At the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the darkmore » matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10 -(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. But, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. Our paper is a selective overview of the current generation of sensitive axion searches. Finally, not all techniques and

  11. Dark-matter QCD-axion searches

    PubMed Central

    Rosenberg, Leslie J

    2015-01-01

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and

  12. A SQUID-Based RF Cavity Search for Dark Matter Axions

    NASA Astrophysics Data System (ADS)

    Hotz, Michael T.

    The axion is a hypothetical elementary particle resulting from a solution to the "Strong-CP" problem. This serious problem in the standard model of particle physics is manifested as a 1010 discrepancy between the measured upper limit and the calculated value of the neutron's electric dipole moment. Furthermore, a light (~mueV) axion is an ideal dark matter candidate: axions would have been copiously produced during the Big Bang and would be the primary component of the dark matter in the universe. The resolution of the Strong-CP problem and the discovery of the composition of dark matter are two of the most pressing problems in physics. The observation of a light, dark-matter axion would resolve both of these problems. The Axion Dark Matter eXperiment (ADMX) is the most sensitive search for dark-matter axions. Axions in our Milky Way Galaxy may scatter off a magnetic field and convert into microwave photons. ADMX consists of a tunable high-Q RF cavity within the bore of a large, 8.5 Tesla superconducting solenoidal magnet. When the cavity's resonant frequency matches the axion's total energy, the probability of axion-to-photon conversion is enhanced. The cavity's narrow bandwidth requires ADMX to slowly scan possible axion masses. A receiver amplifies, mixes, and digitizes the power developed in the cavity from possible axion-to-photon conversions. This is the most sensitive spectral receiver of microwave radiation in the world. The resulting data is scrutinized for an axion signal above the thermal background. ADMX first operated from 1995-2005 and produced exclusion limits on the energy of dark-matter axions from 1.9 mueV to 3.3 mueV. In order to improve on these limits and continue the search for plausible dark-matter axions, the system was considerably upgraded from 2005 until 2008. In the upgrade, the key technical advance was the use of a dc Superconducting QUantum Interference Device (SQUID) as a microwave amplifier. The SQUID amplifier's noise level is near

  13. Axions from 1987A

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1988-01-01

    The process of axion emission from SN 1987A by nucleon-nucleon axion bremsstrahlung is investigated based on neutrino observations. The results indicate that the axion luminosity must be less than about 10 to the 53rd erg/s if: (1) axions couple very weakly (with an axion mass of less than about 0.75 x 10 to the -3rd); or (2) axions couple strongly enough to be trapped and radiated from an axion sphere with T sub a of less than about 8 MeV (with an axion mass of greater than about 2.2 eV). Axion trapping is found to occur for axion masses of greater than about 0.016 eV.

  14. Windows on the axion. [quantum chromodynamics (QCD)

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the theta vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10(-12)eV is approx. less than m(a) which is approx. less than 10(6)eV, some 18 orders-of-magnitude. Laboratory experiments have excluded masses greater than 10(4)eV, leaving unprobed some 16 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producting detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10(-6)eV is approx. less than m(a) is approx. less than 10(-3)eV and 1eV is approx. less than m(a) is approx. less than 5eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve heavenly axions, are being planned or are underway.

  15. First results from the CERN axion solar telescope.

    PubMed

    Zioutas, K; Andriamonje, S; Arsov, V; Aune, S; Autiero, D; Avignone, F T; Barth, K; Belov, A; Beltrán, B; Bräuninger, H; Carmona, J M; Cebrián, S; Chesi, E; Collar, J I; Creswick, R; Dafni, T; Davenport, M; Di Lella, L; Eleftheriadis, C; Englhauser, J; Fanourakis, G; Farach, H; Ferrer, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, I; Gninenko, S; Goloubev, N; Hasinoff, M D; Heinsius, F H; Hoffmann, D H H; Irastorza, I G; Jacoby, J; Kang, D; Königsmann, K; Kotthaus, R; Krcmar, M; Kousouris, K; Kuster, M; Lakić, B; Lasseur, C; Liolios, A; Ljubicić, A; Lutz, G; Luzón, G; Miller, D W; Morales, A; Morales, J; Mutterer, M; Nikolaidis, A; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Ruz, J; Riege, H; Sarsa, M L; Savvidis, I; Serber, W; Serpico, P; Semertzidis, Y; Stewart, L; Vieira, J D; Villar, J; Walckiers, L; Zachariadou, K

    2005-04-01

    Hypothetical axionlike particles with a two-photon interaction would be produced in the sun by the Primakoff process. In a laboratory magnetic field ("axion helioscope"), they would be transformed into x-rays with energies of a few keV. Using a decommissioned Large Hadron Collider test magnet, the CERN Axion Solar Telescope ran for about 6 months during 2003. The first results from the analysis of these data are presented here. No signal above background was observed, implying an upper limit to the axion-photon coupling g(agamma)<1.16x10(-10) GeV-1 at 95% C.L. for m(a) less, similar 0.02 eV. This limit, assumption-free, is comparable to the limit from stellar energy-loss arguments and considerably more restrictive than any previous experiment over a broad range of axion masses.

  16. The next phase of the Axion Dark Matter eXperiment

    NASA Astrophysics Data System (ADS)

    Carosi, Gianpaolo; Asztalos, S.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hotz, M.; Lyapustin, D.; Rosenberg, L.; Rybka, G.; Wagner, A.; Hoskins, J.; Martin, C.; Sikivie, P.; Sullivan, N.; Tanner, D.; Bradley, R.; Clarke, J.; ADMX Collaboration

    2011-04-01

    Axions are a well motivated dark matter candidate which may be detected by their resonant conversion to photons in the presence of a large static magnetic field. The Axion Dark Matter eXperiment recently finished a search for DM axions using a new ultralow noise microwave receiver based on a SQUID amplifier. The success of this precursor experiment has paved the way for a definitive axion search which will see the system noise temperature lowered from 1.8 K to 100 mK, dramatically increasing sensitivity to even pessimistic axion models as well as increasing scan speed. Here we discuss the implementation of this next experimental phase. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. The search for axion-like dark matter using magnetic resonance

    NASA Astrophysics Data System (ADS)

    Sushkov, Alexander; Casper Collaboration

    2016-05-01

    The nature of dark matter is one of the most important open problems in modern physics, and it is necessary to develop techniques to search for a wide class of dark-matter candidates. Axions, originally introduced to resolve the strong CP problem in quantum chromodynamics (QCD), and axion-like particles (ALPs) are strongly motivated dark matter candidates. Nuclear spins interacting with axion-like background dark matter experience an energy shift, oscillating at the frequency equal to the axion Compton frequency. The Cosmic Axion Spin Precession Experiments (CASPEr) use precision magnetometry and nuclear magnetic resonance techniques to search for the effects of this interaction. The experimental signature is precession of the nuclear spins under the condition of magnetic resonance: when the bias magnetic field is tuned such that the nuclear spin sublevel splitting is equal to the axion Compton frequency. These experiments have the potential to detect axion-like dark matter in a wide mass range (10-12 eV to 10-6 eV, scanned by changing the bias magnetic field from approximately 1 gauss to 20 tesla) and with coupling strengths many orders of magnitude beyond the current astrophysical and laboratory limits, and all the way down to those corresponding to the QCD axion. Supported by the Heising-Simons Foundation.

  18. The next generation of axion helioscopes: The international axion observatory (IAXO)

    DOE PAGES

    Vogel, J. K.; Armengaud, E.; Avignone, F. T.; ...

    2015-03-24

    The International Axion Observatory (IAXO) is a proposed 4 th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 – 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling g aγ down to a few ×10⁻¹² GeV⁻¹ for a wide range of axion masses up to ~ 0.25 eV. This is an improvement over the currently best (3 rd generation) axion helioscope, the CERN Axion Solar Telescope (CAST), of about 5 orders of magnitude in signal strength, corresponding to amore » factor ~ 20 in the axion photon coupling. IAXO’s sensitivity relies on the construction of a large superconducting 8-coil toroidal magnet of 20 m length optimized for axion research. Each of the eight 60 cm diameter magnet bores is equipped with x-ray optics focusing the signal photons into ~ 0.2 cm² spots that are imaged by very low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12 hours each day. This contribution is a summary of our papers [1, 2, 3] and we refer to these for further details.« less

  19. Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitajima, Naoya; Takahashi, Fuminobu, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2015-01-01

    We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion ofmore » the QCD axions into hidden axions.« less

  20. Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Du, N.; Force, N.; Khatiwada, R.; Lentz, E.; Ottens, R.; Rosenberg, L. J.; Rybka, G.; Carosi, G.; Woollett, N.; Bowring, D.; Chou, A. S.; Sonnenschein, A.; Wester, W.; Boutan, C.; Oblath, N. S.; Bradley, R.; Daw, E. J.; Dixit, A. V.; Clarke, J.; O'Kelley, S. R.; Crisosto, N.; Gleason, J. R.; Jois, S.; Sikivie, P.; Stern, I.; Sullivan, N. S.; Tanner, D. B.; Hilton, G. C.; ADMX Collaboration

    2018-04-01

    This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μ eV . The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.

  1. Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment.

    PubMed

    Du, N; Force, N; Khatiwada, R; Lentz, E; Ottens, R; Rosenberg, L J; Rybka, G; Carosi, G; Woollett, N; Bowring, D; Chou, A S; Sonnenschein, A; Wester, W; Boutan, C; Oblath, N S; Bradley, R; Daw, E J; Dixit, A V; Clarke, J; O'Kelley, S R; Crisosto, N; Gleason, J R; Jois, S; Sikivie, P; Stern, I; Sullivan, N S; Tanner, D B; Hilton, G C

    2018-04-13

    This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81  μeV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.

  2. Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment

    DOE PAGES

    Du, N.; Force, N.; Khatiwada, R.; ...

    2018-04-09

    This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μ eV . The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Finally, ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.

  3. Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, N.; Force, N.; Khatiwada, R.

    This Letter reports results from a haloscope search for dark matter axions with masses between 18 2.66 and 2.81 eV. The search excludes the range of axion-photon couplings predicted by plausible 19 models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume 20 haloscope at sub-Kelvin temperatures, thereby reducing thermal noise as well as the excess noise 21 from the ultra-low-noise SQUID amplier used for the signal power readout. Ongoing searches will 22 provide nearly denitive tests of the invisible axion model over a wide range of axion masses.

  4. Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, N.; Force, N.; Khatiwada, R.

    This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μ eV . The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Finally, ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.

  5. The dark-matter axion mass

    NASA Astrophysics Data System (ADS)

    Klaer, Vincent B.; Moore, Guy D.

    2017-11-01

    We evaluate the efficiency of axion production from spatially random initial conditions in the axion field, so a network of axionic strings is present. For the first time, we perform numerical simulations which fully account for the large short-distance contributions to the axionic string tension, and the resulting dense network of high-tension axionic strings. We find nevertheless that the total axion production is somewhat less efficient than in the angle-averaged misalignment case. Combining our results with a recent determination of the hot QCD topological susceptibility [1], we find that if the axion makes up all of the dark matter, then the axion mass is ma = 26.2 ± 3.4 μeV.

  6. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    DOE PAGES

    Bai, Yang; Barger, Vernon; Berger, Joshua

    2016-12-23

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10 -11M⊙ . In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. Here, we study the properties of the HAS and nd that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and themore » hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10 13W (m a/=5 meV) 4, to make these objects luminous point sources. Furthermore, high resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.« less

  7. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yang; Barger, Vernon; Berger, Joshua

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10 -11M⊙ . In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. Here, we study the properties of the HAS and nd that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and themore » hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10 13W (m a/=5 meV) 4, to make these objects luminous point sources. Furthermore, high resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.« less

  8. Axion as a cold dark matter candidate: analysis to third order perturbation for classical axion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung, E-mail: hr@kasi.re.kr, E-mail: jchan@knu.ac.kr, E-mail: park.chan.gyung@gmail.com

    2015-12-01

    We investigate aspects of axion as a coherently oscillating massive classical scalar field by analyzing third order perturbations in Einstein's gravity in the axion-comoving gauge. The axion fluid has its characteristic pressure term leading to an axion Jeans scale which is cosmologically negligible for a canonical axion mass. Our classically derived axion pressure term in Einstein's gravity is identical to the one derived in the non-relativistic quantum mechanical context in the literature. We present the general relativistic continuity and Euler equations for an axion fluid valid up to third order perturbation. Equations for axion are exactly the same as thatmore » of a zero-pressure fluid in Einstein's gravity except for an axion pressure term in the Euler equation. Our analysis includes the cosmological constant.« less

  9. Inflationary Axion Cosmology

    DOE R&D Accomplishments Database

    Wilczek, Frank; Turner, Michael S.

    1990-09-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.

  10. In quest of axionic hairs in quasars

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Mandal, Bhaswati; SenGupta, Soumitra

    2018-03-01

    The presence of axionic field can provide plausible explanation to several long standing problems in physics such as dark matter and dark energy. The pseudo-scalar axion whose derivative corresponds to the Hodge dual of the Kalb-Ramond field strength in four dimensions plays crucial roles in explaining several astrophysical and cosmological observations. Therefore, the detection of axionic hairs/Kalb-Ramond field which appears as closed string excitations in the heterotic string spectrum may provide a profound insight to our understanding of the current universe. The current level of precision achieved in solar-system based tests employed to test general relativity, is not sufficient to detect the presence of axion. However, the near horizon regime of quasars where the curvature effects are maximum seems to be a natural laboratory to probe such additions to the matter sector. The continuum spectrum emitted from the accretion disk around quasars encapsulates the imprints of the background spacetime and hence acts as a storehouse of information regarding the nature of gravitational interaction in extreme situations. The surfeit of data available in the electromagnetic domain provides a further motivation to explore such systems. Using the optical data for eighty Palomar Green quasars we demonstrate that the theoretical estimates of optical luminosity explain the observations best when the axionic field is assumed to be absent. However, axion which violates the energy condition seems to be favored by observations which has several interesting consequences. Error estimators, including reduced χ2, Nash-Sutcliffe efficiency, index of agreement and modified versions of the last two are used to solidify our conclusion and the implications of our result are discussed.

  11. Redefining the Axion Window

    NASA Astrophysics Data System (ADS)

    Di Luzio, Luca; Mescia, Federico; Nardi, Enrico

    2017-01-01

    A major goal of axion searches is to reach inside the parameter space region of realistic axion models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it would be desirable to specify them in terms of precise phenomenological requirements. We consider hadronic axion models and classify the representations RQ of the new heavy quarks Q . By requiring that (i) the Q 's are sufficiently short lived to avoid issues with long-lived strongly interacting relics, (ii) no Landau poles are induced below the Planck scale; 15 cases are selected which define a phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-photon coupling about 2 times (4 times) larger than is commonly assumed. Allowing for more than one RQ, larger couplings, as well as complete axion-photon decoupling, become possible.

  12. Portal Connecting Dark Photons and Axions.

    PubMed

    Kaneta, Kunio; Lee, Hye-Sung; Yun, Seokhoon

    2017-03-10

    The dark photon and the axion (or axionlike particle) are popular light particles of the hidden sector. Each of them has been actively searched for through the couplings called the vector portal and the axion portal. We introduce a new portal connecting the dark photon and the axion (axion-photon-dark photon, axion-dark photon-dark photon), which emerges in the presence of the two particles. This dark axion portal is genuinely new couplings, not just from a product of the vector portal and the axion portal, because of the internal structure of these couplings. We present a simple model that realizes the dark axion portal and discuss why it warrants a rich phenomenology.

  13. Explosive axion production from saxion

    NASA Astrophysics Data System (ADS)

    Ema, Yohei; Nakayama, Kazunori

    2018-01-01

    The dynamics of saxion in a supersymmetric axion model and its effect on the axion production is studied in detail. We find that the axion production is very efficient when the saxion oscillation amplitude is much larger than the Peccei-Quinn scale, due to a spike-like behavior of the effective axion mass. We also consider the axino production and several cosmological consequences. The possibility of detection of gravitational waves from the non-linear dynamics of the saxion and axion is discussed.

  14. Collapse of axion stars

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...

    2016-12-15

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Here, heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present inmore » the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.« less

  15. Axions and SN1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Turner, Michael S.; Brinkmann, R. P.

    1988-01-01

    The effect of free-streaming axion emission on numerical models for the cooling of the newly born neutron star associated with SN1987A is considered. It is found that for an axion mass of greater than approximately 10 to the -3 eV, axion emission shortens the duration of the expected neutrino burst so significantly that it would be inconsistent with the neutrino observations made by the Kamiokande II and Irvine-Michigan-Brookhaven detectors. However, the possibility has not been investigated that axion trapping (which should occur for masses greater than or equal to 0.02 eV) sufficiently reduces axion emission so that axion masses greater than approximately 2 eV would be consistent with the neutrino observations.

  16. Axions, Inflation and String Theory

    NASA Astrophysics Data System (ADS)

    Mack, Katherine J.; Steinhardt, P. J.

    2009-01-01

    The QCD axion is the leading contender to rid the standard model of the strong-CP problem. If the Peccei-Quinn symmetry breaking occurs before inflation, which is likely in string theory models, axions manifest themselves cosmologically as a form of cold dark matter with a density determined by the axion's initial conditions and by the energy scale of inflation. Constraints on the dark matter density and on the amplitude of CMB isocurvature perturbations currently demand an exponential degree of fine-tuning of both axion and inflationary parameters beyond what is required for particle physics. String theory models generally produce large numbers of axion-like fields; the prospect that any of these fields exist at scales close to that of the QCD axion makes the problem drastically worse. I will discuss the challenge of accommodating string-theoretic axions in standard inflationary cosmology and show that the fine-tuning problems cannot be fully addressed by anthropic principle arguments.

  17. Recent constraints on axion-photon and axion-electron coupling with the CAST experiment

    DOE PAGES

    Ruz, J.; Vogel, J. K.; Pivovaroff, M. J.

    2015-03-24

    The CERN Axion Solar Telescope (CAST) is a helioscope looking for axions arising from the solar core plasma and arriving to Earth. The experiment, located in Geneva (Switzerland) is able to follow the Sun during sunrise and sunset. Four x-ray detectors mounted on both ends of the magnet wait for photons from axion-to-photon conversion due to the Primakoff effect. Up to date, with the completion of Phases I and II, CAST has been looking for axions that could be produced in the Sun by both, hadronic and non-hadronic mechanisms.

  18. The photo-philic QCD axion

    DOE PAGES

    Farina, Marco; Pappadopulo, Duccio; Rompineve, Fabrizio; ...

    2017-01-23

    Here, we propose a framework in which the QCD axion has an exponentially large coupling to photons, relying on the “clockwork” mechanism. We discuss the impact of present and future axion experiments on the parameter space of the model. In addition to the axion, the model predicts a large number of pseudoscalars which can be light and observable at the LHC. In the most favorable scenario, axion Dark Matter will give a signal in multiple axion detection experiments and the pseudo-scalars will be discovered at the LHC, allowing us to determine most of the parameters of the model.

  19. Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jae Hyeok; Essig, Rouven; McDermott, Samuel D.

    We consider the constraints from Supernova 1987A on particles with small couplings to the Standard Model. We discuss a model with a fermion coupled to a dark photon, with various mass relations in the dark sector; millicharged particles; dark-sector fermions with inelastic transitions; the hadronic QCD axion; and an axion-like particle that couples to Standard Model fermions with couplings proportional to their mass. In the fermion cases, we develop a new diagnostic for assessing when such a particle is trapped at large mixing angles. Our bounds for a fermion coupled to a dark photon constrain small couplings and masses <200more » MeV, and do not decouple for low fermion masses. They exclude parameter space that is otherwise unconstrained by existing accelerator-based and direct-detection searches. In addition, our bounds are complementary to proposed laboratory searches for sub-GeV dark matter, and do not constrain several "thermal" benchmark-model targets. For a millicharged particle, we exclude charges between 10^(-9) to a few times 10^(-6) in units of the electron charge; this excludes parameter space to higher millicharges and masses than previous bounds. For the QCD axion and an axion-like particle, we apply several updated nuclear physics calculations and include the energy dependence of the optical depth to accurately account for energy loss at large couplings. We rule out a hadronic axion of mass between 0.1 and a few hundred eV, or equivalently bound the PQ scale between a few times 10^4 and 10^8 GeV, closing the hadronic axion window. For an axion-like particle, our bounds disfavor decay constants between a few times 10^5 GeV up to a few times 10^8 GeV. In all cases, our bounds differ from previous work by more than an order of magnitude across the entire parameter space. We also provide estimated systematic errors due to the uncertainties of the progenitor.« less

  20. Axions, inflation and the anthropic principle

    NASA Astrophysics Data System (ADS)

    Mack, Katherine J.

    2011-07-01

    The QCD axion is the leading solution to the strong-CP problem, a dark matter candidate, and a possible result of string theory compactifications. However, for axions produced before inflation, symmetry-breaking scales of fagtrsim1012 GeV (which are favored in string-theoretic axion models) are ruled out by cosmological constraints unless both the axion misalignment angle θ0 and the inflationary Hubble scale HI are extremely fine-tuned. We show that attempting to accommodate a high-fa axion in inflationary cosmology leads to a fine-tuning problem that is worse than the strong-CP problem the axion was originally invented to solve. We also show that this problem remains unresolved by anthropic selection arguments commonly applied to the high-fa axion scenario.

  1. Axion string dynamics I: 2+1D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-03

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1more » dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.« less

  2. A collider observable QCD axion

    DOE PAGES

    Dimopoulos, Savas; Hook, Anson; Huang, Junwu; ...

    2016-11-09

    Here, we present a model where the QCD axion is at the TeV scale and visible at a collider via its decays. Conformal dynamics and strong CP considerations account for the axion coupling strongly enough to the standard model to be produced as well as the coincidence between the weak scale and the axion mass. The model predicts additional pseudoscalar color octets whose properties are completely determined by the axion properties rendering the theory testable.

  3. Axions, inflation and the anthropic principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mack, Katherine J., E-mail: mack@ast.cam.ac.uk

    2011-07-01

    The QCD axion is the leading solution to the strong-CP problem, a dark matter candidate, and a possible result of string theory compactifications. However, for axions produced before inflation, symmetry-breaking scales of f{sub a}∼>10{sup 12} GeV (which are favored in string-theoretic axion models) are ruled out by cosmological constraints unless both the axion misalignment angle θ{sub 0} and the inflationary Hubble scale H{sub I} are extremely fine-tuned. We show that attempting to accommodate a high-f{sub a} axion in inflationary cosmology leads to a fine-tuning problem that is worse than the strong-CP problem the axion was originally invented to solve. Wemore » also show that this problem remains unresolved by anthropic selection arguments commonly applied to the high-f{sub a} axion scenario.« less

  4. Opening up the QCD axion window

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Marques-Tavares, Gustavo; Xue, Wei

    2018-03-01

    We present a new mechanism to deplete the energy density of the QCD axion, making decay constants as high as f a ≃ 1017 GeV viable for generic initial conditions. In our setup, the axion couples to a massless dark photon with a coupling that is moderately stronger than the axion coupling to gluons. Dark photons are produced copiously through a tachyonic instability when the axion field starts oscillating, and an exponential suppression of the axion density can be achieved. For a large part of the parameter space this dark radiation component of the universe can be observable in upcoming CMB experiments. Such dynamical depletion of the axion density ameliorates the isocurvature bound on the scale of inflation. The depletion also amplifies the power spectrum at scales that enter the horizon before particle production begins, potentially leading to axion miniclusters.

  5. Prospects for axion detection in natural SUSY with mixed axion-higgsino dark matter: back to invisible?

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan

    2017-06-01

    Under the expectation that nature is natural, we extend the Standard Model to include SUSY to stabilize the electroweak sector and PQ symmetry to stabilize the QCD sector. Then natural SUSY arises from a Kim-Nilles solution to the SUSY μ problem which allows for a little hierarchy where μ~ fa2/MP~ 100-300 GeV while the SUSY particle mass scale mSUSY~ 1-10 TeV gg μ. Dark matter then consists of two particles: a higgsino-like WIMP and a SUSY DFSZ axion. The range of allowed axion mass values ma depends on the mixed axion-higgsino relic density. The range of ma is actually restricted in this case by limits on WIMPs from direct and indirect detection experiments. We plot the expected axion detection rate at microwave cavity experiments. The axion-photon-photon coupling is severely diminished by charged higgsino contributions to the anomalous coupling. In this case, the axion may retreat, at least temporarily, back into the regime of near invisibility. From our results, we urge new ideas for techniques which probe both deeper and more broadly into axion coupling versus axion mass parameter space.

  6. Detecting axion stars with radio telescopes

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Hamada, Yuta

    2018-06-01

    When axion stars fly through an astrophysical magnetic background, the axion-to-photon conversion may generate a large electromagnetic radiation power. After including the interference effects of the spacially-extended axion-star source and the macroscopic medium effects, we estimate the radiation power when an axion star meets a neutron star. For a dense axion star with 10-13M⊙, the radiated power is at the order of 1011W ×(100 μeV /ma) 4(B /1010Gauss) 2 with ma as the axion particle mass and B the strength of the neutron star magnetic field. For axion stars occupy a large fraction of dark matter energy density, this encounter event with a transient O (0.1s) radio signal may happen in our galaxy with the averaged source distance of one kiloparsec. The predicted spectral flux density is at the order of μJy for a neutron star with B ∼1013 Gauss. The existing Arecibo, GBT, JVLA and FAST and the ongoing SKA radio telescopes have excellent discovery potential of dense axion stars.

  7. Dilute and dense axion stars

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  8. Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Lessa, Andre; Serce, Hasan

    2014-10-01

    The supersymmetrized DFSZ axion model is highly motivated not only because it offers solutions to both the gauge hierarchy and strong CP problems, but also because it provides a solution to the SUSY μ-problem which naturally allows for a Little Hierarchy. We compute the expected mixed axion-neutralino dark matter abundance for the SUSY DFSZ axion model in two benchmark cases—a natural SUSY model with a standard neutralino underabundance (SUA) and an mSUGRA/CMSSM model with a standard overabundance (SOA). Our computation implements coupled Boltzmann equations which track the radiation density along with neutralino, axion, axion CO (produced via coherent oscillations), saxion, saxion CO, axino and gravitino densities. In the SUSY DFSZ model, axions, axinos and saxions go through the process of freeze-in—in contrast to freeze-out or out-of-equilibrium production as in the SUSY KSVZ model—resulting in thermal yields which are largely independent of the re-heat temperature. We find the SUA case with suppressed saxion-axion couplings (ξ=0) only admits solutions for PQ breaking scale falesssim 6× 1012 GeV where the bulk of parameter space tends to be axion-dominated. For SUA with allowed saxion-axion couplings (ξ =1), then fa values up to ~ 1014 GeV are allowed. For the SOA case, almost all of SUSY DFSZ parameter space is disallowed by a combination of overproduction of dark matter, overproduction of dark radiation or violation of BBN constraints. An exception occurs at very large fa~ 1015-1016 GeV where large entropy dilution from CO-produced saxions leads to allowed models.

  9. First axion bounds from a pulsating helium-rich white dwarf star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battich, T.; Córsico, A.H.; Althaus, L.G.

    The Peccei-Quinn mechanism proposed to solve the CP problem of Quantum Chromodynamics has as consequence the existence of axions, hypothetical weakly interacting particles whose mass is constrained to be on the sub-eV range. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, becoming an important energy sink for the star. Due to their well known physics, white dwarfs are good laboratories to study the properties of fundamental particles such as the axions. We study the general effect of axion emission on the evolution of helium-rich white dwarfs and on theirmore » pulsational properties. To this aim, we calculate evolutionary helium-rich white dwarf models with axion emission, and assess the pulsational properties of this models. Our results indicate that the rates of change of pulsation periods are significantly affected by the existence of axions. We are able for the first time to independently constrain the mass of the axion from the study of pulsating helium-rich white dwarfs. To do this, we use an estimation of the rate of change of period of the pulsating white dwarf PG 1351+489 corresponding to the dominant pulsation period. From an asteroseismological model of PG 1351+489 we obtain g {sub ae} < 3.3 × 10{sup -13} for the axion-electron coupling constant, or m {sub a} cos{sup 2}β ∼< 11.5 meV for the axion mass. This constraint is relaxed to g {sub ae} < 5.5 × 10{sup -13} ( m {sub a} cos{sup 2}β ∼< 19.5 meV), when no detailed asteroseismological model is adopted for the comparison with observations.« less

  10. The not-so-harmless axion

    NASA Astrophysics Data System (ADS)

    Dine, Michael; Fischler, Willy

    1983-01-01

    Cosmological aspects of a very weakly interacting axion are discussed. A solution to the problem of domain walls discussed by Sikivie is mentioned. Demanding that axions do not dominate the present energy density of the universe is shown to give an upper bound on the axion decay constant of at most 1012 GeV.

  11. Axions and dark matter

    NASA Astrophysics Data System (ADS)

    Yang, Qiaoli

    2017-05-01

    Dark matter constitutes about 23% of the total energy density of the universe, but its properties are still little known besides that it should be composed by cold and weakly interacting particles. Many beyond Standard Model theories can provide proper candidates to serve as dark matter and the axion introduced to solve the strong CP problem turns out to be an attractive one. In this paper, we briefly review several important features of the axion and the axion dark matter.

  12. R-axion detection at LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Hock-Seng; /UC, Berkeley /LBL, Berkeley; Ibe, Masahiro

    2009-06-19

    Supersymmetric models with spontaneously broken approximate R-symmetry contains a light spin 0 particle, the R-axion. The properties of the particle can be a powerful probe of the structure of the new physics. In this paper, we discuss the possibilities of the R-axion detection at the LHC experiments. It is challenge to observe this light particle in the LHC environment. However, for typical values in which the mass of the R-axion is a few hundred MeV, we show that those particles can be detected by searching for displaced vertices from R-axion decay.

  13. Mixed axion/neutralino dark matter in the SUSY DFSZ axion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Kyu Jung; Baer, Howard; Chun, Eung Jin, E-mail: bae@nhn.ou.edu, E-mail: baer@nhn.ou.edu, E-mail: ejchun@kias.re.kr

    2013-12-01

    We examine mixed axion/neutralino cold dark matter production in the SUSY DFSZ axion model where an axion superfield couples to Higgs superfields. We calculate a wide array of axino and saxion decay modes along with their decay temperatures, and thermal and non-thermal production rates. For a SUSY benchmark model with a standard underabundance (SUA) of Higgsino-like dark matter (DM), we find for the PQ scale f{sub a}∼<10{sup 12} GeV that the DM abundance is mainly comprised of axions as the saxion/axino decay occurs before the standard neutralino freeze-out and thus its abundance remains suppressed. For 10{sup 12}∼10{sup 14} GeV, bothmore » neutralino dark matter and dark radiation are typically overproduced. For judicious parameter choices, these can be suppressed and the combined neutralino/axion abundance brought into accord with measured values. A SUSY benchmark model with a standard overabundance (SOA) of bino DM is also examined and typically remains excluded due at least to too great a neutralino DM abundance for f{sub a}∼<10{sup 15} GeV. For f{sub a}∼>10{sup 15} GeV and lower saxion masses, large entropy production from saxion decay can dilute all relics and the SOA model can be allowed by all constraints.« less

  14. Large field inflation from axion mixing

    NASA Astrophysics Data System (ADS)

    Shiu, Gary; Staessens, Wieland; Ye, Fang

    2015-06-01

    We study the general multi-axion systems, focusing on the possibility of large field inflation driven by axions. We find that through axion mixing from a non-diagonal metric on the moduli space and/or from Stückelberg coupling to a U(1) gauge field, an effectively super-Planckian decay constant can be generated without the need of "alignment" in the axion decay constants. We also investigate the consistency conditions related to the gauge symmetries in the multi-axion systems, such as vanishing gauge anomalies and the potential presence of generalized Chern-Simons terms. Our scenario applies generally to field theory models whose axion periodicities are intrinsically sub-Planckian, but it is most naturally realized in string theory. The types of axion mixings invoked in our scenario appear quite commonly in D-brane models, and we present its implementation in type II superstring theory. Explicit stringy models exhibiting all the characteristics of our ideas are constructed within the frameworks of Type IIA intersecting D6-brane models on and Type IIB intersecting D7-brane models on Swiss-Cheese Calabi-Yau orientifolds.

  15. Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higaki, Tetsutaro; Kitajima, Naoya; Takahashi, Fuminobu, E-mail: thigaki@post.kek.jp, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2014-12-01

    Hidden axions may be coupled to the standard model particles through a kinetic or mass mixing with QCD axion. We study a scenario in which a hidden axion constitutes a part of or the whole of dark matter and decays into photons through the mixing, explaining the 3.5 keV X-ray line signal. Interestingly, the required long lifetime of the hidden axion dark matter can be realized for the QCD axion decay constant at an intermediate scale, if the mixing is sufficiently small. In such a two component dark matter scenario, the primordial density perturbations of the hidden axion can bemore » highly non-Gaussian, leading to a possible dispersion in the X-ray line strength from various galaxy clusters and near-by galaxies. We also discuss how the parallel and orthogonal alignment of two axions affects their couplings to gauge fields. In particular, the QCD axion decay constant can be much larger than the actual Peccei-Quinn symmetry breaking.« less

  16. Bose-Einstein condensation of dark matter axions.

    PubMed

    Sikivie, P; Yang, Q

    2009-09-11

    We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.

  17. Axion dark matter and the Lattice

    NASA Astrophysics Data System (ADS)

    Moore, Guy

    2018-03-01

    First I will review the QCD theta problem and the Peccei-Quinn solution, with its new particle, the axion. I will review the possibility of the axion as dark matter. If PQ symmetry was restored at some point in the hot early Universe, it should be possible to make a definite prediction for the axion mass if it constitutes the Dark Matter. I will describe progress on one issue needed to make this prediction - the dynamics of axionic string-wall networks and how they produce axions. Then I will discuss the sensitivity of the calculation to the high temperature QCD topological susceptibility. My emphasis is on what temperature range is important, and what level of precision is needed.

  18. CAST constraints on the axion-electron coupling

    DOE PAGES

    None, None

    2013-05-09

    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio- recombination, the “BCA processes.” Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g ae and axion-photon interaction strength g aγ using the CAST phase-I data (vacuum phase). For m a ≲ 10 meV/c 2 we find g aγ gae < 8.1 × 10–23 GeV–1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivitymore » into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.« less

  19. Axion dark matter searches

    DOE PAGES

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less

  20. The axion mass in modular invariant supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butter, Daniel; Gaillard, Mary K.

    2005-02-09

    When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality).

  1. Laboratory Characteristics in Technical Education.

    ERIC Educational Resources Information Center

    Ives, Quay D.

    The research reported is intended to provide a body of information on technical-scientific shop and laboratory education in the field of technological education. The study seeks to address the dearth of organized information on the utilization of laboratories in the technical education context. Various programs involving use of laboratories are…

  2. Stellar recipes for axion hunters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannotti, Maurizio; Irastorza, Igor G.; Redondo, Javier

    There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mass pseudoscalar Nambu-Goldstone boson with tiny couplings to photons, electrons, and nucleons. An attractive possibility is to identify this particle with the axion—the hypothetical pseudo Nambu-Goldstone boson predicted by the Peccei-Quinn solution to the strong CP problem. We explore this possibility in terms of a DFSZ-type axion and of a KSVZ-type axion/majoron, respectively. Both models allow a good global fitmore » to the data, prefering an axion mass around 10 meV. We show that future axion experiments—the fifth force experiment ARIADNE and the helioscope IAXO—can attack the preferred mass range from the lower and higher end, respectively. An axion in this mass range can also be the main constituent of dark matter.« less

  3. Search for solar axions

    NASA Astrophysics Data System (ADS)

    Newman, Seth Aaron

    Peccei and Quinn proposed an elegant solution for restoring CP symmetry to the QCD Lagrangian [37]. This method includes an additional global U(1) symmetry included in the QCD Lagrangian which is spontaneously broken at a high energy scale, fa. Breaking the symmetry generates a Nambu-Goldstone boson called the axion. Although there are various detection mechanisms that search for the axion, this thesis focuses on the the axio-electric effect. The axio-electric is similar to the photo-electric effect in that an axion is absorbed by an atom which subsequently emits an electron. The electron's energy is equivalent to the incoming axion energy minus the binding energy. The higher shell electrons immediately replenish the missing binding energy yielding a single energy peak at the incoming axion's energy. The 14.4 keV M1 transition of 57Fe is one possible axion source. The development of an optimum trigger algorithm has lowered the threshold for analysis in TeO2 bolometers to a few keV making an axion signature accessible to CUORE related R&D experiments such as the Chinese Crystal Validation Runs (CCVR) and Three Towers Test (TTT). These TeO2 crystal detectors have masses 750 and 790 grams, respectively. Each crystal has a stabilization heater and a germanium thermometer attached to its surface by an epoxy glue. The two previous experiments are R&D tests for the upcoming larger experiment, CUORE. CUORE will be made of 988 TeO2 crystals arranged in 19 towers with 13 floors each, each floor with 4 detectors. This thesis examined 87.01 kg·days of Three Towers data for an axion signal. A peak is observed in the region of interest with a statistical significance less than 1sigma over the expected background fluctuations, yielding a total background rate of 0.185 +/- 0.001 (Stat.) +/- 0.006 (Syst.) Counts/kg/day at 95% C.L. This places an experimental limit on the coupling constant fa of f a (S = 0.50) ≥ 1.16 x 106 GeV at 95% C.L. Projecting the TTT result to the CUORE

  4. Axion induced oscillating electric dipole moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency m a and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  5. The minimal axion minimal linear σ model

    NASA Astrophysics Data System (ADS)

    Merlo, L.; Pobbe, F.; Rigolin, S.

    2018-05-01

    The minimal SO(5) / SO(4) linear σ model is extended including an additional complex scalar field, singlet under the global SO(5) and the Standard Model gauge symmetries. The presence of this scalar field creates the conditions to generate an axion à la KSVZ, providing a solution to the strong CP problem, or an axion-like-particle. Different choices for the PQ charges are possible and lead to physically distinct Lagrangians. The internal consistency of each model necessarily requires the study of the scalar potential describing the SO(5)→ SO(4), electroweak and PQ symmetry breaking. A single minimal scenario is identified and the associated scalar potential is minimised including counterterms needed to ensure one-loop renormalizability. In the allowed parameter space, phenomenological features of the scalar degrees of freedom, of the exotic fermions and of the axion are illustrated. Two distinct possibilities for the axion arise: either it is a QCD axion with an associated scale larger than ˜ 105 TeV and therefore falling in the category of the invisible axions; or it is a more massive axion-like-particle, such as a 1 GeV axion with an associated scale of ˜ 200 TeV, that may show up in collider searches.

  6. Limits to the radiative decay of the axion

    NASA Technical Reports Server (NTRS)

    Ressell, M. Ted

    1991-01-01

    An axion with a mass greater than 1 eV should be detectable through its decay into two photons. The astrophysical and cosmological limits which define a small window of allowed axion mass above 3 eV are discussed. A firm upper bound to the axion's mass of M(sub a) less than or equal to 8 eV is derived by considering the effect of decaying axions upon the diffuse extragalactic background radiation and the brightness of the night sky due to axions in the halo of the Milky Way galaxy. The intergalactic light of clusters of galaxies is shown to be an ideal place to search for an emission line arising from the radiative decay of axions. An unsuccessful search for this emission line in three clusters of galaxies is then detailed. Limits to the presence of any intracluster line emission are derived with the result that axions with masses between 3 and 8 eV are excluded by the data, effectively closing this window of axion mass, unless a severe cancellation of axionic decay amplitudes occurs. The intracluster flux limits are then used to constrain the amplitude of any such model dependence.

  7. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  8. The extended Einstein-Maxwell-aether-axion model: Exact solutions for axionically controlled pp-wave aether modes

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.

    2018-03-01

    The extended Einstein-Maxwell-aether-axion model describes internal interactions inside the system, which contains gravitational, electromagnetic fields, the dynamic unit vector field describing the velocity of an aether, and the pseudoscalar field associated with the axionic dark matter. The specific feature of this model is that the axion field controls the dynamics of the aether through the guiding functions incorporated into Jacobson’s constitutive tensor. Depending on the state of the axion field, these guiding functions can control and switch on or switch off the influence of acceleration, shear, vorticity and expansion of the aether flow on the state of physical system as a whole. We obtain new exact solutions, which possess the pp-wave symmetry, and indicate them by the term pp-wave aether modes in contrast to the pure pp-waves, which cannot propagate in this field conglomerate. These exact solutions describe a specific dynamic state of the pseudoscalar field, which corresponds to one of the minima of the axion potential and switches off the influence of shear and expansion of the aether flow; the model does not impose restrictions on Jacobson’s coupling constants and on the axion mass. Properties of these new exact solutions are discussed.

  9. New solar axion search using the CERN Axion Solar Telescope with 4He filling

    NASA Astrophysics Data System (ADS)

    Arik, M.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Bremer, J.; Burwitz, V.; Cantatore, G.; Carmona, J. M.; Cetin, S. A.; Collar, J. I.; Da Riva, E.; Dafni, T.; Davenport, M.; Dermenev, A.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Galán, J.; García, J. A.; Gardikiotis, A.; Garza, J. G.; Gazis, E. N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez Marzoa, M.; Hasinoff, M. D.; Hoffmann, D. H. H.; Iguaz, F. J.; Irastorza, I. G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Kavuk, M.; Krčmar, M.; Kuster, M.; Lakić, B.; Laurent, J. M.; Liolios, A.; Ljubičić, A.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Solanki, S. K.; Stewart, L.; Tomás, A.; Vafeiadis, T.; Villar, J.; Vogel, J. K.; Yildiz, S. C.; Zioutas, K.; CAST Collaboration

    2015-07-01

    The CERN Axion Solar Telescope (CAST) searches for a →γ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. Two parallel magnet bores can be filled with helium of adjustable pressure to match the x-ray refractive mass mγ to the axion search mass ma. After the vacuum phase (2003-2004), which is optimal for ma≲0.02 eV , we used 4He in 2005-2007 to cover the mass range of 0.02-0.39 eV and 3He in 2009-2011 to scan from 0.39 to 1.17 eV. After improving the detectors and shielding, we returned to 4He in 2012 to investigate a narrow ma range around 0.2 eV ("candidate setting" of our earlier search) and 0.39-0.42 eV, the upper axion mass range reachable with 4He, to "cross the axion line" for the KSVZ model. We have improved the limit on the axion-photon coupling to ga γ<1.47 ×10-10 GeV-1 (95% C.L.), depending on the pressure settings. Since 2013, we have returned to the vacuum and aim for a significant increase in sensitivity.

  10. Cosmological perturbations of axion with a dynamical decay constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste; Takahashi, Fuminobu

    2016-08-25

    A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the numbermore » of degenerate vacua along the axion potential.« less

  11. Future cosmological sensitivity for hot dark matter axions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archidiacono, Maria; Basse, Tobias; Hannestad, Steen

    2015-05-01

    We study the potential of a future, large-volume photometric survey to constrain the axion mass m{sub a} in the hot dark matter limit. Future surveys such as EUCLID will have significantly more constraining power than current observations for hot dark matter. Nonetheless, the lowest accessible axion masses are limited by the fact that axions lighter than ∼ 0.15 eV decouple before the QCD epoch, assumed here to occur at a temperature T{sub QCD} ∼ 170 MeV; this leaves an axion population of such low density that its late-time cosmological impact is negligible. For larger axion masses, m{sub a} ∼> 0.15 eV, where axions remain inmore » equilibrium until after the QCD phase transition, we find that a EUCLID-like survey combined with Planck CMB data can detect m{sub a} at very high significance. Our conclusions are robust against assumptions about prior knowledge of the neutrino mass. Given that the proposed IAXO solar axion search is sensitive to m{sub a}∼<0.2 eV, the axion mass range probed by cosmology is nicely complementary.« less

  12. Interaction of axions with relativistic spinning particles

    NASA Astrophysics Data System (ADS)

    Popov, V. A.; Balakin, A. B.

    2016-05-01

    We consider a covariant phenomenological model, which describes an interaction between a pseudoscalar (axion) field and massive spinning particles. The model extends the Bagrmann-Michel-Telegdy approach in application to the axion electrodynamics. We present some exact solutions and discuss them in the context of experimental tests of the model and axion detection.

  13. New solar axion search using the CERN Axion Solar Telescope with He 4 filling

    DOE PAGES

    Arik, M.; Aune, S.; Barth, K.; ...

    2015-07-28

    The CERN Axion Solar Telescope (CAST) searches for a → γ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. Two parallel magnet bores can be filled with helium of adjustable pressure to match the x-ray refractive mass m γ to the axion search mass m a. After the vacuum phase (2003–2004), which is optimal for m a ≲ 0.02 eV , we used 4He in 2005–2007 to cover the mass range of 0.02–0.39 eV and 3He in 2009–2011 to scan from 0.39 to 1.17 eV. After improving themore » detectors and shielding, we returned to 4He in 2012 to investigate a narrow m a range around 0.2 eV (“candidate setting” of our earlier search) and 0.39–0.42 eV, the upper axion mass range reachable with 4He , to “cross the axion line” for the KSVZ model. We have improved the limit on the axion-photon coupling to g aγ < 1.47 × 10 - 10 GeV - 1 (95% C.L.), depending on the pressure settings. Since 2013, we have returned to the vacuum and aim for a significant increase in sensitivity.« less

  14. Composite accidental axions

    NASA Astrophysics Data System (ADS)

    Redi, Michele; Sato, Ryosuke

    2016-05-01

    We present several models where the QCD axion arises accidentally. Confining gauge theories can generate axion candidates whose properties are uniquely determined by the quantum numbers of the new fermions under the Standard Model. The Peccei-Quinn symmetry can emerge accidentally if the gauge theory is chiral. We generalise previous constructions in a unified framework. In some cases these models can be understood as the deconstruction of 5-dimensional gauge theories where the Peccei-Quinn symmetry is protected by locality but more general constructions are possible.

  15. Decay of ultralight axion condensates

    DOE PAGES

    Eby, Joshua; Ma, Michael; Suranyi, Peter; ...

    2018-01-15

    Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion massesmore » $$m\\sim10^{-22}$$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. As a result, we find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.« less

  16. Decay of ultralight axion condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eby, Joshua; Ma, Michael; Suranyi, Peter

    Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion massesmore » $$m\\sim10^{-22}$$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. As a result, we find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.« less

  17. Structure formation and microlensing with axion miniclusters

    NASA Astrophysics Data System (ADS)

    Fairbairn, Malcolm; Marsh, David J. E.; Quevillon, Jérémie; Rozier, Simon

    2018-04-01

    If the symmetry breaking responsible for axion dark matter production occurs during the radiation-dominated epoch in the early Universe, then this produces large amplitude perturbations that collapse into dense objects known as axion miniclusters. The characteristic minicluster mass, M0, is set by the mass inside the horizon when axion oscillations begin. For the QCD axion M0˜10-10 M⊙, however, for an axionlike particle, M0 can approach M⊙ or higher. Using the Press-Schechter formalism we compute the mass function of halos formed by hierarchical structure formation from these seeds. We compute the concentrations and collapse times of these halos and show that they can grow to be as massive as 1 06M0. Within the halos, miniclusters likely remain tightly bound, and we compute their gravitational microlensing signal taking the fraction of axion dark matter collapsed into miniclusters, fMC, as a free parameter. A large value of fMC severely weakens constraints on axion scenarios from direct detection experiments. We take into account the non-Gaussian distribution of sizes of miniclusters and determine how this affects the number of microlensing events. We develop the tools to consider microlensing by an extended mass function of nonpointlike objects, and we use microlensing data to place the first observational constraints on fMC. This opens a new window for the potential discovery of the axion.

  18. Collisions of dark matter axion stars with astrophysical sources

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Leeney, Joseph; ...

    2017-04-18

    If QCD axions form a large fraction of the total mass of dark matter, then axion stars could be very abundant in galaxies. As a result, collisions with each other, and with other astrophysical bodies, can occur. We calculate the rate and analyze the consequences of three classes of collisions, those occurring between a dilute axion star and: another dilute axion star, an ordinary star, or a neutron star. In all cases we attempt to quantify the most important astrophysical uncertainties; we also pay particular attention to scenarios in which collisions lead to collapse of otherwise stable axion stars, and possible subsequent decay through number changing interactions. Collisions between two axion stars can occur with a high total rate, but the low relative velocity required for collapse to occur leads to a very low total rate of collapses. On the other hand, collisions between an axion star and an ordinary star have a large rate,more » $$\\Gamma_\\odot \\sim 3000$$ collisions/year/galaxy, and for sufficiently heavy axion stars, it is plausible that most or all such collisions lead to collapse. We identify in this case a parameter space which has a stable region and a region in which collision triggers collapse, which depend on the axion number ($N$) in the axion star, and a ratio of mass to radius cubed characterizing the ordinary star ($$M_s/R_s^3$$). Finally, we revisit the calculation of collision rates between axion stars and neutron stars, improving on previous estimates by taking cylindrical symmetry of the neutron star distribution into account. Finally, collapse and subsequent decay through collision processes, if occurring with a significant rate, can affect dark matter phenomenology and the axion star mass distribution.« less

  19. Evidence for inflation in an axion landscape

    NASA Astrophysics Data System (ADS)

    Nath, Pran; Piskunov, Maksim

    2018-03-01

    We discuss inflation models within supersymmetry and supergravity frameworks with a landscape of chiral superfields and one U(1) shift symmetry which is broken by non-perturbative symmetry breaking terms in the superpotential. We label the pseudo scalar component of the chiral fields axions and their real parts saxions. Thus in the models only one combination of axions will be a pseudo-Nambu-Goldstone-boson which will act as the inflaton. The proposed models constitute consistent inflation for the following reasons: the inflation potential arises dynamically with stabilized saxions, the axion decay constant can lie in the sub-Planckian region, and consistency with the Planck data is achieved. The axion landscape consisting of m axion pairs is assumed with the axions in each pair having opposite charges. A fast roll-slow roll splitting mechanism for the axion potential is proposed which is realized with a special choice of the axion basis. In this basis the 2 m coupled equations split into 2 m - 1 equations which enter in the fast roll and there is one unique linear combination of the 2 m fields which controls the slow roll and thus the power spectrum of curvature and tensor perturbations. It is shown that a significant part of the parameter space exists where inflation is successful, i.e., N pivot = [50, 60], the spectral index n s of curvature perturbations, and the ratio r of the power spectrum of tensor perturbations and curvature perturbations, lie in the experimentally allowed regions given by the Planck experiment. Further, it is shown that the model allows for a significant region of the parameter space where the effective axion decay constant can lie in the sub-Planckian domain. An analysis of the tensor spectral index n t is also given and the future experimental data which constraints n t will further narrow down the parameter space of the proposed inflationary models. Topics of further interest include implications of the model for gravitational waves

  20. Dynamical clockwork axions

    NASA Astrophysics Data System (ADS)

    Coy, Rupert; Frigerio, Michele; Ibe, Masahiro

    2017-10-01

    The clockwork mechanism is a novel method for generating a large separation between the dynamical scale and interaction scale of a theory. We demonstrate how the mechanism can arise from a sequence of strongly-coupled sectors. This framework avoids elementary scalar fields as well as ad hoc continuous global symmetries, both of which are subject to serious stability issues. The clockwork factor, q, is determined by the consistency of the strong dynamics. The preserved global U(1) of the clockwork appears as an accidental symmetry, resulting from discrete or U(1) gauge symmetries, and it is spontaneously broken by the chiral condensates. We apply such a dynamical clockwork to construct models with an effectively invisible QCD axion from TeV-scale strong dynamics. The axion couplings are determined by the localisation of the Standard Model interactions along the clockwork sequence. The TeV spectrum includes either coloured hadrons or vector-like quarks. Dark matter can be accounted for by the axion or the lightest neutral baryons, which are accidentally stable.

  1. Axion-Plasmon Polaritons in Strongly Magnetized Plasmas.

    PubMed

    Terças, H; Rodrigues, J D; Mendonça, J T

    2018-05-04

    Axions are hypothetical particles related to the violation of the charge-parity symmetry within the strong sector of the standard model, being one of the most prone candidates for dark matter. Multiple attempts to prove their existence are currently performed in different physical systems. Here, we predict that axions may couple to the electrostatic (Langmuir) modes of a strongly magnetized plasma, and show that a new quasiparticle can be defined, the axion-plasmon polariton. The excitation of axions can be inferred from the pronounced modification of the dispersion relation of the Langmuir waves, a feature that we estimate to be accessible in state-of-the-art plasma-based experiments.

  2. Axion-Plasmon Polaritons in Strongly Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Terças, H.; Rodrigues, J. D.; Mendonça, J. T.

    2018-05-01

    Axions are hypothetical particles related to the violation of the charge-parity symmetry within the strong sector of the standard model, being one of the most prone candidates for dark matter. Multiple attempts to prove their existence are currently performed in different physical systems. Here, we predict that axions may couple to the electrostatic (Langmuir) modes of a strongly magnetized plasma, and show that a new quasiparticle can be defined, the axion-plasmon polariton. The excitation of axions can be inferred from the pronounced modification of the dispersion relation of the Langmuir waves, a feature that we estimate to be accessible in state-of-the-art plasma-based experiments.

  3. Searching for the QCD Axion with Black Holes and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Baryakhtar, Masha

    2017-01-01

    The LIGO detection of gravitational waves has opened a new window on the universe. I will discuss how the process of superradiance, combined with gravitational wave measurements, makes black holes into nature's laboratories to search for new light bosons. When a bosonic particle's Compton wavelength is comparable to the horizon size of a black hole, superradiance of these bosons into bound ``Bohr orbitals'' extracts energy and angular momentum from the black hole. The occupation number of the levels grows exponentially and the black hole spins down. For efficient superradiance of stellar black holes, the particle must be ultralight, with mass below 10-10 eV; one candidate for such an ultralight boson is the QCD axion with decay constant above the GUT scale. Measurements of BH spins in X-ray binaries and in mergers at Advanced LIGO can exclude or provide evidence for an ultralight axion. Axions transitioning between levels of the gravitational ``atom'' and annihilating to gravitons may produce thousands of monochromatic gravitational wave signals, turning LIGO into a particle detector.

  4. Axion domain wall baryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu, E-mail: daido@tuhep.phys.tohoku.ac.jp, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2015-07-01

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m ≅ 10{sup 8}–10{sup 13} GeV and f ≅ 10{sup 13}–10{sup 16} GeV . Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domainmore » wall annihilation and its implications for the future gravitational wave experiments.« less

  5. Dielectric haloscopes: sensitivity to the axion dark matter velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar, Alexander J.; Redondo, Javier; Steffen, Frank D., E-mail: millar@mpp.mpg.de, E-mail: jredondo@unizar.es, E-mail: steffen@mpp.mpg.de

    We study the effect of the axion dark matter velocity in the recently proposed dielectric haloscopes, a promising avenue to search for well-motivated high mass (40–400 μeV) axions. We describe non-zero velocity effects for axion-photon mixing in a magnetic field and for the phenomenon of photon emission from interfaces between different dielectric media. As velocity effects are only important when the haloscope is larger than about 20% of the axion de Broglie wavelength, for the planned MADMAX experiment with 80 dielectric disks the velocity dependence can safely be neglected. However, an augmented MADMAX or a second generation experiment would bemore » directionally sensitive to the axion velocity, and thus a sensitive measure of axion astrophysics.« less

  6. Dielectric haloscopes: sensitivity to the axion dark matter velocity

    NASA Astrophysics Data System (ADS)

    Millar, Alexander J.; Redondo, Javier; Steffen, Frank D.

    2017-10-01

    We study the effect of the axion dark matter velocity in the recently proposed dielectric haloscopes, a promising avenue to search for well-motivated high mass (40-400 μeV) axions. We describe non-zero velocity effects for axion-photon mixing in a magnetic field and for the phenomenon of photon emission from interfaces between different dielectric media. As velocity effects are only important when the haloscope is larger than about 20% of the axion de Broglie wavelength, for the planned MADMAX experiment with 80 dielectric disks the velocity dependence can safely be neglected. However, an augmented MADMAX or a second generation experiment would be directionally sensitive to the axion velocity, and thus a sensitive measure of axion astrophysics.

  7. Isocurvature fluctuations through axion trapping by cosmic string wakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layek, Biswanath

    2005-03-15

    We consider wakelike density fluctuations produced by cosmic strings at the quark-hadron transition in the early universe. We show that low momentum axions which are produced through the radiation from the axionic string at an earlier stage, may get trapped inside these wakes due to delayed hadronization in these overdense regions. As the interfaces, bordering the wakes, collapse, the axions pick-up momentum from the walls and finally leave the wake regions. These axions thus can produce large scale isocurvature fluctuations. We have calculated the detailed profile of these axionic density fluctuations and discuss its astrophysical consequences.

  8. Constraining axion dark matter with Big Bang Nucleosynthesis

    DOE PAGES

    Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; ...

    2014-08-04

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN

  9. Constraining axion dark matter with Big Bang Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN

  10. Probing axions with neutron star inspirals and other stellar processes

    NASA Astrophysics Data System (ADS)

    Hook, Anson; Huang, Junwu

    2018-06-01

    In certain models of a QCD axion, finite density corrections to the axion potential can result in the axion being sourced by large dense objects. There are a variety of ways to test this phenomenon, but perhaps the most surprising effect is that the axion can mediate forces between neutron stars that can be as strong as gravity. These forces can be attractive or repulsive and their presence can be detected by Advanced LIGO observations of neutron star inspirals. By a numerical coincidence, axion forces between neutron stars with gravitational strength naturally have an associated length scale of tens of kilometers or longer, similar to that of a neutron star. Future observations of neutron star mergers in Advanced LIGO can probe many orders of magnitude of axion parameter space. Because the axion is only sourced by large dense objects, the axion force evades fifth force constraints. We also outline several other ways to probe this phenomenon using electromagnetic signals associated with compact objects.

  11. Cosmological abundance of the QCD axion coupled to hidden photons

    NASA Astrophysics Data System (ADS)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  12. Mississippi State Axion Search

    NASA Astrophysics Data System (ADS)

    Madsen, Kris; Mississippi State Axion Search Collaboration

    2013-10-01

    Ever since the Peccei-Quinn Theory was proposed in 1977 as a possible solution to the strong CP problem, the therein postulated Axion, a weakly interacting boson, has been much sought after. The Mississippi State Axion Search is an attempt to improve the limit in the mass-coupling parameter space by using a variation of the Light Shining Through a Wall (LSW) technique. A vacuum sealed and RF shielded cavity is partitioned by a lead wall. EM waves at a frequency between 420 and 430 MHz are amplified by SR-550 and SR-510 amplifiers, broadcast from an antenna on one side of the lead wall and pass through an intense magnetic field. Theory predicts that in the presence of such a magnetic field, axions can be produced from photons via the Primakoff effect. Any axions generated will pass unimpeded to the other half of the cavity, regenerate into photons, and be detected as an excess in the signal picked up by the antenna on the far side. The Data Acquisition is handled by LABView based software running Measurement Computing drivers for two PCI DAQ cards: the DAS-08 handles the analog signals from the receiving antenna and monitors vital statistics in the cavity, while the DIO-24 provides the 1 kHz timing TTL pulse and allows remote control of the experiment's systems.

  13. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-07

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  14. QCD axion star collapse with the chiral potential

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...

    2017-06-05

    In a previous study, we analyzed collapsing axion stars using the low-energy instanton potential, showing that the total energy is always bounded and that collapsing axion stars do not form black holes. In this paper, we provide a proof that the conclusions are unchanged when using instead the more general chiral potential for QCD axions.

  15. Limits on Axion Couplings from the First 80 Days of Data of the PandaX-II Experiment.

    PubMed

    Fu, Changbo; Zhou, Xiaopeng; Chen, Xun; Chen, Yunhua; Cui, Xiangyi; Fang, Deqing; Giboni, Karl; Giuliani, Franco; Han, Ke; Huang, Xingtao; Ji, Xiangdong; Ju, Yonglin; Lei, Siao; Li, Shaoli; Liu, Huaxuan; Liu, Jianglai; Ma, Yugang; Mao, Yajun; Ren, Xiangxiang; Tan, Andi; Wang, Hongwei; Wang, Jimin; Wang, Meng; Wang, Qiuhong; Wang, Siguang; Wang, Xuming; Wang, Zhou; Wu, Shiyong; Xiao, Mengjiao; Xie, Pengwei; Yan, Binbin; Yang, Yong; Yue, Jianfeng; Zhang, Hongguang; Zhang, Tao; Zhao, Li; Zhou, Ning

    2017-11-03

    We report new searches for solar axions and galactic axionlike dark matter particles, using the first low-background data from the PandaX-II experiment at China Jinping Underground Laboratory, corresponding to a total exposure of about 2.7×10^{4}  kg day. No solar axion or galactic axionlike dark matter particle candidate has been identified. The upper limit on the axion-electron coupling (g_{Ae}) from the solar flux is found to be about 4.35×10^{-12} in the mass range from 10^{-5} to 1  keV/c^{2} with 90% confidence level, similar to the recent LUX result. We also report a new best limit from the ^{57}Fe deexcitation. On the other hand, the upper limit from the galactic axions is on the order of 10^{-13} in the mass range from 1 to 10  keV/c^{2} with 90% confidence level, slightly improved compared with the LUX.

  16. An experiment to search for galactic axions

    NASA Astrophysics Data System (ADS)

    Wuensch, Walter Ulrich

    Results are presented from a search for axions in the mass range of .51 to 1 x 10-5 eV, which may make up the dark matter of the galaxy. The detector used in the search consists of a microwave cavity placed in the strong magnetic field of a superconducting solenoid magnet. The energy in the TM010 mode of the cavity is monitored by a sensitive microwave receiver as the frequency of the mode is swept. The predicted experimental signature of galactic halo axions is a narrow signal, with a Qa = f/delta f approx. = 3 x 106, which is expected when the resonant frequency of the cavity corresponds to the mass of the axion. An experimental limit on the coupling times the density of (ga gamma gamma/ma) sq. rhoa less than or equal to 2 x 10-40 for an axion linewidth less than or = 400 Hz with a 97 pct confidence level was obtained. The theoretical prediction is (ga gamma gamma/ma) sq rhoa approx. 3.9 x 10-44 with rhoa = 300 MeV/cu cm. The corresponding limit in ga gamma gamma is ga gamma gamma less than or = 7 x 10-14 GeV-1 at an axion frequency f = 2 GeV and depends linearly on axion mass.

  17. QCD Axion Dark Matter with a Small Decay Constant

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; Hall, Lawrence J.; Harigaya, Keisuke

    2018-05-01

    The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant fa˜O (1011) GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires fa˜(108- 1011) GeV . The axions may be warm enough to give deviations from cold dark matter in large scale structure.

  18. New Target for Cosmic Axion Searches.

    PubMed

    Baumann, Daniel; Green, Daniel; Wallisch, Benjamin

    2016-10-21

    Future cosmic microwave background experiments have the potential to probe the density of relativistic species at the subpercent level. This sensitivity allows light thermal relics to be detected up to arbitrarily high decoupling temperatures. Conversely, the absence of a detection would require extra light species never to have been in equilibrium with the Standard Model. In this Letter, we exploit this feature to demonstrate the sensitivity of future cosmological observations to the couplings of axions to photons, gluons, and charged fermions. In many cases, the constraints achievable from cosmology will surpass existing bounds from laboratory experiments and astrophysical observations by orders of magnitude.

  19. Broadband and Resonant Approaches to Axion Dark Matter Detection.

    PubMed

    Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse

    2016-09-30

    When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6}  eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

  20. A Piezoelectrically Tuned RF-Cavity Search for Dark Matter Axions

    NASA Astrophysics Data System (ADS)

    Boutan, Christian

    The Axion is a well motivated hypothetical elementary particle that must exist in nature if the strong CP problem of QCD is explained by the spontaneous breaking of a Peccei-Quinn symmetry. Not only would the discovery of the axion solve deep issues in QCD, an axion with a mass of mueV - meV could account for most or all of the missing mass in our galaxy and finally reveal the composition of dark matter. The Axion Dark Matter experiment (ADMX) seeks to resolve these two critical problems in physics by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. Utilizing state of the art electronics and dilution refrigerator cryogenics, ADMX is the world's leading haloscope search for axions - able to discover or rule out even the most pessimistically coupled QCD axions. With multi- TM0n0 functionality and with the commissioning of the new high-frequency Sidecar experiment, ADMX is also sensitive to a wide range of plausible axion masses. Here I motivate axions as ideal dark matter candidates, review techniques for detecting them and give a detailed description of the ADMX experiment. I discuss my contributions to the construction of the ADMX dual-channel receiver, which is the most sensitive microwave receiver on earth. I discuss the data acquisition, data taking and real-time analysis software. The primary focus of this work, however, is the ADMX Sidecar experiment which is a miniature axion haloscope that fits inside of the ADMX insert and has the capability of searching for axion masses between 16mueV - 24mueV on the TM0n0 and 26.4 - 30mueV on the TM 020. I discuss analysis of the Sidecar data and exclude axion-to-two-photon coupling gagammagamma < 6 x10 -12 GeV-1 over a mass range of 3mueV (Deltaƒ ˜708 MHz) from 21.05 - 23.98 mueV for axions that compose 100% of dark matter. Over a narrow subsection of this range, 22.89 - 22.95mueV (˜15 MHz) I set a stricter limit gagammagamma < 10-12 GeV-1.

  1. QCD Axion Dark Matter with a Small Decay Constant.

    PubMed

    Co, Raymond T; Hall, Lawrence J; Harigaya, Keisuke

    2018-05-25

    The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant f_{a}∼O(10^{11})  GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires f_{a}∼(10^{8}-10^{11})  GeV. The axions may be warm enough to give deviations from cold dark matter in large scale structure.

  2. SQUID-based microwave cavity search for dark-matter axions.

    PubMed

    Asztalos, S J; Carosi, G; Hagmann, C; Kinion, D; van Bibber, K; Hotz, M; Rosenberg, L J; Rybka, G; Hoskins, J; Hwang, J; Sikivie, P; Tanner, D B; Bradley, R; Clarke, J

    2010-01-29

    Axions in the microeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 microeV and 3.53 microeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

  3. Combining universal and odd RR axions for aligned natural inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xin; Li, Tianjun; Shukla, Pramod, E-mail: xingao@vt.edu, E-mail: tli@itp.ac.cn, E-mail: pkshukla@to.infn.it

    2014-10-01

    We successfully embed the Kim-Nilles-Peloso (KNP) alignment mechanism for enhancing the axion decay constant in the context of large volume type IIB orientifolds. The flat direction is generated in the plane of (C{sub 0}-C{sub 2}) axions corresponding to the involutively even universal axion C{sub 0} and odd axion C{sub 2}, respectively. The moduli stabilization with large volume scheme has been established as well.

  4. Small field axion inflation with sub-Planckian decay constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane

    2016-10-10

    We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.

  5. Axion excursions of the landscape during inflation

    NASA Astrophysics Data System (ADS)

    Palma, Gonzalo A.; Riquelme, Walter

    2017-07-01

    Because of their quantum fluctuations, axion fields had a chance to experience field excursions traversing many minima of their potentials during inflation. We study this situation by analyzing the dynamics of an axion field ψ , present during inflation, with a periodic potential given by v (ψ )=Λ4[1 -cos (ψ /f )]. By assuming that the vacuum expectation value of the field is stabilized at one of its minima, say, ψ =0 , we compute every n -point correlation function of ψ up to first order in Λ4 using the in-in formalism. This computation allows us to identify the distribution function describing the probability of measuring ψ at a particular amplitude during inflation. Because ψ is able to tunnel between the barriers of the potential, we find that the probability distribution function consists of a non-Gaussian multimodal distribution such that the probability of measuring ψ at a minimum of v (ψ ) different from ψ =0 increases with time. As a result, at the end of inflation, different patches of the Universe are characterized by different values of the axion field amplitude, leading to important cosmological phenomenology: (a) Isocurvature fluctuations induced by the axion at the end of inflation could be highly non-Gaussian. (b) If the axion defines the strength of standard model couplings, then one is led to a concrete realization of the multiverse. (c) If the axion corresponds to dark matter, one is led to the possibility that, within our observable Universe, dark matter started with a nontrivial initial condition, implying novel signatures for future surveys.

  6. The evolution of structure in the universe from axions

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Shafi, Q.

    1982-01-01

    A scenario where axions provide the dark matter in the universe is considered. Fluctuations in the axion field density produced by domain walls and strings cause the appearance of axion clumps of masses of order 10 to the 6th power solar mass which most likely collapse to black holes by or at the time that the universe becomes axion dominated at T is approximately 10 eV. These objects form the building blocks for a clustering hierarchy theory of galaxy and supercluster formation on scales up to approximately 10 Mpc and approximately 10 to the 15th power solar mass.

  7. Detecting ultralight axion dark matter wind with laser interferometers

    NASA Astrophysics Data System (ADS)

    Aoki, Arata; Soda, Jiro

    The ultralight axion with mass around 10-22eV is known as a candidate of dark matter. A peculiar feature of the ultralight axion is oscillating pressure in time, which produces oscillation of gravitational potentials. Since the solar system moves through the dark matter halo at the velocity of about v ˜ 300km/s = 10-3, there exists axion wind, which looks like scalar gravitational waves for us. Hence, there is a chance to detect ultralight axion dark matter with a wide mass range by using laser interferometer detectors. We calculate the detector signal induced by the oscillating pressure of the ultralight axion field, which would be detected by future laser interferometer experiments. We also argue that the detector signal can be enhanced due to the resonance in modified gravity theory explaining the dark energy.

  8. Testing the Rotation Stage in the ARIADNE Axion Experiment

    NASA Astrophysics Data System (ADS)

    Dargert, Jordan; Lohmeyer, Chloe; Harkness, Mindy; Cunningham, Mark; Fosbinder-Elkins, Harry; Geraci, Andrew; Ariadne Collaboration

    2017-04-01

    The Axion Resonant InterAction Detection Experiment (ARIADNE) will search for the Peccei-Quinn (PQ) axion, a hypothetical particle that is a dark matter candidate. Using a new technique based on Nuclear Magnetic Resonance, this new method can probe well into the allowed PQ axion mass range. Additionally, it does not rely on cosmological assumptions, meaning that the PQ Axion would be sourced locally. Our project relies on the stability of a rotating segmented source mass and superconducting magnetic shielding. Superconducting shielding is essential for limiting magnetic noise, thus allowing a feasible level of sensitivity required for PQ Axion detection. Progress on testing the stability of the rotary mechanism will be reported, and the design for the superconducting shielding in the experiment will be discussed, along with plans for moving the experiment forward. NSF Grant PHY-1509176.

  9. Searching for the QCD Axion with Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Fairbairn, Malcolm; Marsh, David J. E.; Quevillon, Jérémie

    2017-07-01

    The phase transition responsible for axion dark matter (DM) production can create large amplitude isocurvature perturbations, which collapse into dense objects known as axion miniclusters. We use microlensing data from the EROS survey and from recent observations with the Subaru Hyper Suprime Cam to place constraints on the minicluster scenario. We compute the microlensing event rate for miniclusters, treating them as spatially extended objects. Using the published bounds on the number of microlensing events, we bound the fraction of DM collapsed into miniclusters fMC. For an axion with temperature-dependent mass consistent with the QCD axion, we find fMC<0.083 (ma/100 μ eV )0.12 , which represents the first observational constraint on the minicluster fraction. We forecast that a high-efficiency observation of around ten nights with Subaru would be sufficient to constrain fMC≲0.004 over the entire QCD axion mass range. We make various approximations to derive these constraints, and dedicated analyses by the observing teams of EROS and Subaru are necessary to confirm our results. If accurate theoretical predictions for fMC can be made in the future, then microlensing can be used to exclude or discover the QCD axion. Further details of our computations are presented in a companion paper [M. Fairbairn, D. J. E. Marsh, J. Quevillon, and S. Rozier (to be published)].

  10. Estimating the flux of the 14.4 keV solar axions

    NASA Astrophysics Data System (ADS)

    Avignone, F. T., III; Creswick, R. J.; Vergados, J. D.; Pirinen, P.; Srivastava, P. C.; Suhonen, J.

    2018-01-01

    In this paper we present a calculation of the expected flux of the mono-energetic 14.4 keV solar axions emitted by the M1 type nuclear transition of 57Fe in the Sun. These axions can be detected, e.g., by inverse coherent Bragg-Primakoff conversion in single-crystal TeO2 bolometers. The ingredients of this calculation are i) the axion nucleon coupling, estimated in several popular axion models and ii)the nuclear spin matrix elements involving realistic shell model calculations with both proton and neutron excitations. For the benefit of the experiments we have also calculated the branching ratio involving axion and photon emission. We find the solar axion flux on Earth to be Φa = 0.703×109cm-2s-1 (107 GeV/fa)2 and the branching ratio of axion to photon for the same model to be: wa/wγ = 0.229×10-15 ≈ 2×10-16.

  11. On axionic field ranges, loopholes and the weak gravity conjecture

    DOE PAGES

    Brown, Jon; Cottrell, William; Shiu, Gary; ...

    2016-04-05

    Here, we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. In particular we address certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work. We also point out the difficulties faced by attempts to evade these constraints. Furthermore, these new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.

  12. Effects of axions on Population III stars

    NASA Astrophysics Data System (ADS)

    Choplin, Arthur; Coc, Alain; Meynet, Georges; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2017-09-01

    Aims: Following the renewed interest in axions as a dark matter component, we revisit the effects of energy loss by axion emission on the evolution of the first generation of stars. These stars with zero metallicity are assumed to be massive, more compact, and hotter than subsequent generations. It is hence important to extend previous studies, which were restricted to solar metallicity stars. Methods: Our analysis first compares the evolution of solar metallicity 8, 10, and 12 M⊙ stars to previous work. We then calculate the evolution of 8 zero-metallicity stars with and without axion losses and with masses ranging from 20 to 150 M⊙. Results: For the solar metallicity models, we confirm the disappearance of the blue-loop phase for a value of the axion-photon coupling of gaγ = 10-10 GeV-1. We show that for gaγ = 10-10 GeV-1, the evolution of Population III stars is not much affected by axion losses, except within the range of masses 80-130 M⊙. Such stars show significant differences in both their tracks within the Tc-ρc diagram and their central composition (in particular 20Ne and 24Mg). We discuss the origin of these modifications from the stellar physics point of view, and also their potential observational signatures.

  13. Domain wall and isocurvature perturbation problems in axion models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Masahiro; Yoshino, Kazuyoshi; Yanagida, Tsutomu T., E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: tsutomu.tyanagida@ipmu.jp, E-mail: yoshino@icrr.u-tokyo.ac.jp

    2013-11-01

    Axion models have two serious cosmological problems, domain wall and isocurvature perturbation problems. In order to solve these problems we investigate the Linde's model in which the field value of the Peccei-Quinn (PQ) scalar is large during inflation. In this model the fluctuations of the PQ field grow after inflation through the parametric resonance and stable axionic strings may be produced, which results in the domain wall problem. We study formation of axionic strings using lattice simulations. It is found that in chaotic inflation the axion model is free from both the domain wall and the isocurvature perturbation problems ifmore » the initial misalignment angle θ{sub a} is smaller than O(10{sup −2}). Furthermore, axions can also account for the dark matter for the breaking scale v ≅ 10{sup 12−16} GeV and the Hubble parameter during inflation H{sub inf}∼<10{sup 11−12} GeV in general inflation models.« less

  14. Axion searches with microwave filters: the RADES project

    NASA Astrophysics Data System (ADS)

    Álvarez Melcón, Alejandro; Arguedas Cuendis, Sergio; Cogollos, Cristian; Díaz-Morcillo, Alejandro; Döbrich, Babette; Gallego, Juan Daniel; Gimeno, Benito; Irastorza, Igor G.; José Lozano-Guerrero, Antonio; Malbrunot, Chloé; Navarro, Pablo; Peña Garay, Carlos; Redondo, Javier; Vafeiadis, Theodoros; Wuensch, Walter

    2018-05-01

    We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the detection concept, and present design prescriptions to optimize detection capabilities. We describe the design and realization of a first small-scale prototype of this concept, called Relic Axion Detector Exploratory Setup (RADES). It consists of a copper-coated stainless steel five-cavities microwave filter with the detecting mode operating at around 8.4 GHz. This structure has been electromagnetically characterized at 2 K and 298 K, and it is now placed in ultra-high vacuum in one of the twin-bores of the 9 T CAST dipole magnet at CERN. We describe the data acquisition system developed for relic axion detection, and present preliminary results of the electromagnetic properties of the microwave filter, which show the potential of filters to reach QCD axion window sensitivity at X-band frequencies.

  15. Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eby, Joshua Armstrong

    Light, spin-0 particles are ubiquitous in theories of physics beyond the Standard Model, and many of these make good candidates for the identity of dark matter. One very well-motivated candidate of this type is the axion. Due to their small mass and adherence to Bose statistics, axions can coalesce into heavy, gravitationally-bound condensates known as boson stars, also known as axion stars (in particular). In this work, we outline our recent progress in attempts to determine the properties of axion stars. We begin with a brief overview of the Standard Model, axions, and bosonic condensates in general. Then, in themore » context of axion stars, we will present our recent work, which includes: numerical estimates of the macroscopic properties (mass, radius, and particle number) of gravitationally stable axion stars; a calculation of their decay lifetime through number-changing interactions; an analysis of the gravitational collapse process for very heavy states; and an investigation of the implications of axion stars as dark matter. The basic conclusions of our work are that weakly-bound axion stars are only stable up to some calculable maximum mass, whereas states with larger masses collapse to a small radius, but do not form black holes. During collapse, a rapidly increasing binding energy implies a fast rate of decay to relativistic particles, giving rise to a Bosenova. Axion stars that are otherwise stable could be caused to collapse either by accretion of free particles to masses above the maximum, or through astrophysical collisions; in the latter case, we estimate the rate of collisions and the parameter space relevant to induced collapse.« less

  16. Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles

    NASA Astrophysics Data System (ADS)

    Eby, Joshua Armstrong

    Light, spin-0 particles are ubiquitous in theories of physics beyond the Standard Model, and many of these make good candidates for the identity of dark matter. One very well-motivated candidate of this type is the axion. Due to their small mass and adherence to Bose statistics, axions can coalesce into heavy, gravitationally-bound condensates known as boson stars, also known as axion stars (in particular). In this work, we outline our recent progress in attempts to determine the properties of axion stars. We begin with a brief overview of the Standard Model, axions, and bosonic condensates in general. Then, in the context of axion stars, we will present our recent work, which includes: numerical estimates of the macroscopic properties (mass, radius, and particle number) of gravitationally stable axion stars; a calculation of their decay lifetime through number-changing interactions; an analysis of the gravitational collapse process for very heavy states; and an investigation of the implications of axion stars as dark matter. The basic conclusions of our work are that weakly-bound axion stars are only stable up to some calculable maximum mass, whereas states with larger masses collapse to a small radius, but do not form black holes. During collapse, a rapidly increasing binding energy implies a fast rate of decay to relativistic particles, giving rise to a Bosenova. Axion stars that are otherwise stable could be caused to collapse either by accretion of free particles to masses above the maximum, or through astrophysical collisions; in the latter case, we estimate the rate of collisions and the parameter space relevant to induced collapse.

  17. Sensitivity of Proposed Search for Axion-induced Magnetic Field using Optically Pumped Magnetometers

    DOE PAGES

    Chu, Pinghan; Duffy, Leanne Delma; Kim, Young Jin; ...

    2018-04-17

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014)]. The modification of Maxwell’s equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an opticallymore » pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. Here, we discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10 -7 GeV -1 for an axion mass near 3 × 10 -10 eV, which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10 -1 and 10 -7 eV.« less

  18. Sensitivity of Proposed Search for Axion-induced Magnetic Field using Optically Pumped Magnetometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Pinghan; Duffy, Leanne Delma; Kim, Young Jin

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014)]. The modification of Maxwell’s equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an opticallymore » pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. Here, we discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10 -7 GeV -1 for an axion mass near 3 × 10 -10 eV, which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10 -1 and 10 -7 eV.« less

  19. Sensitivity of proposed search for axion-induced magnetic field using optically pumped magnetometers

    NASA Astrophysics Data System (ADS)

    Chu, P.-H.; Duffy, L. D.; Kim, Y. J.; Savukov, I. M.

    2018-04-01

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014), 10.1103/PhysRevLett.112.131301]. The modification of Maxwell's equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an optically pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10-7 GeV-1 for an axion mass near 3 ×10-10 eV , which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10-11 and 10-7 eV .

  20. Hierarchies in Quantum Gravity: Large Numbers, Small Numbers, and Axions

    NASA Astrophysics Data System (ADS)

    Stout, John Eldon

    Our knowledge of the physical world is mediated by relatively simple, effective descriptions of complex processes. By their very nature, these effective theories obscure any phenomena outside their finite range of validity, discarding information crucial to understanding the full, quantum gravitational theory. However, we may gain enormous insight into the full theory by understanding how effective theories with extreme characteristics--for example, those which realize large-field inflation or have disparate hierarchies of scales--can be naturally realized in consistent theories of quantum gravity. The work in this dissertation focuses on understanding the quantum gravitational constraints on these "extreme" theories in well-controlled corners of string theory. Axion monodromy provides one mechanism for realizing large-field inflation in quantum gravity. These models spontaneously break an axion's discrete shift symmetry and, assuming that the corrections induced by this breaking remain small throughout the excursion, create a long, quasi-flat direction in field space. This weakly-broken shift symmetry has been used to construct a dynamical solution to the Higgs hierarchy problem, dubbed the "relaxion." We study this relaxion mechanism and show that--without major modifications--it can not be naturally embedded within string theory. In particular, we find corrections to the relaxion potential--due to the ten-dimensional backreaction of monodromy charge--that conflict with naive notions of technical naturalness and render the mechanism ineffective. The super-Planckian field displacements necessary for large-field inflation may also be realized via the collective motion of many aligned axions. However, it is not clear that string theory provides the structures necessary for this to occur. We search for these structures by explicitly constructing the leading order potential for C4 axions and computing the maximum possible field displacement in all compactifications of

  1. Tunneling in axion monodromy

    DOE PAGES

    Brown, Jon; Cottrell, William; Shiu, Gary; ...

    2016-10-06

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman’s original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. As a result, we alsomore » briefly comment on the applications of our results to the relaxion scenario.« less

  2. Chiral primordial blue tensor spectra from the axion-gauge couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obata, Ippei, E-mail: obata@tap.scphys.kyoto-u.ac.jp

    We suggest the new feature of primordial gravitational waves sourced by the axion-gauge couplings, whose forms are motivated by the dimensional reduction of the form field in the string theory. In our inflationary model, as an inflaton we adopt two types of axion, dubbed the model-independent axion and the model-dependent axion, which couple with two gauge groups with different sign combination each other. Due to these forms both polarization modes of gauge fields are amplified and enhance both helicies of tensor modes during inflation. We point out the possibility that a primordial blue-tilted tensor power spectra with small chirality aremore » provided by the combination of these axion-gauge couplings, intriguingly both amplitudes and chirality are potentially testable by future space-based gravitational wave interferometers such as DECIGO and BBO project.« less

  3. Exploring 0.1-10 eV axions with a new helioscope concept

    NASA Astrophysics Data System (ADS)

    Galán, J.; Dafni, T.; Ferrer-Ribas, E.; Giomataris, I.; Iguaz, F. J.; Irastorza, I. G.; García, J. A.; Garza, J. G.; Luzon, G.; Papaevangelou, T.; Redondo, J.; Tomás, A.

    2015-12-01

    We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbar to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10-11 GeV-1 for a 5 T, m3 scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0gtrsim 10 meV.

  4. Axion as a Cold Dark Matter Candidate: Proof to Fully Nonlinear Order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung

    2017-09-01

    We present proof of the axion as a cold dark matter (CDM) candidate to the fully nonlinear order perturbations based on Einstein’s gravity. We consider the axion as a coherently oscillating massive classical scalar field without interaction. We present the fully nonlinear and exact, except for ignoring the transverse-tracefree tensor-type perturbation, hydrodynamic equations for an axion fluid in Einstein’s gravity. We show that the axion has the characteristic pressure and anisotropic stress; the latter starts to appear from the second-order perturbation. But these terms do not directly affect the hydrodynamic equations in our axion treatment. Instead, what behaves as themore » effective pressure term in relativistic hydrodynamic equations is the perturbed lapse function and the relativistic result coincides exactly with the one known in the previous non-relativistic studies. The effective pressure term leads to a Jeans scale that is of the solar-system scale for conventional axion mass. As the fully nonlinear and relativistic hydrodynamic equations for an axion fluid coincide exactly with the ones of a zero-pressure fluid in the super-Jeans scale, we have proved the CDM nature of such an axion in that scale.« less

  5. Cosmological axion and a quark nugget dark matter model

    NASA Astrophysics Data System (ADS)

    Ge, Shuailiang; Liang, Xunyu; Zhitnitsky, Ariel

    2018-02-01

    We study a dark matter (DM) model offering a very natural explanation of two (naively unrelated) problems in cosmology: the observed relation ΩDM˜Ωvisible and the observed asymmetry between matter and antimatter in the Universe, known as the "baryogenesis" problem. In this framework, both types of matter (dark and visible) have the same QCD origin, form at the same QCD epoch, and are proportional to one and the same dimensional parameter of the system, ΛQCD, which explains how these two naively distinct problems could be intimately related, and could be solved simultaneously within the same framework. More specifically, the DM in this model is composed by two different ingredients: the (well-studied) DM axions and the (less-studied) quark nuggets made of matter or antimatter. We focus on the quantitative analysis of the relation between these two distinct components contributing to the dark sector of the theory determined by ΩDM≡[ΩDM(nuggets)+ΩDM(axion)] . We argue that the nuggets' DM component always traces the visible matter density, i.e., ΩDM(nuggets)˜Ωvisible , and this feature is not sensitive to the parameters of the system such as the axion mass ma or the misalignment angle θ0. It should be contrasted with conventional axion production mechanisms due to the misalignment when ΩDM(axion) is highly sensitive to the axion mass ma and the initial misalignment angle θ0. We also discuss the constraints on this model related to the inflationary scale HI, nonobservation of the isocurvature perturbations and the tensor modes. We also comment on some constraints related to various axion search experiments.

  6. Possible resonance effect of axionic dark matter in Josephson junctions.

    PubMed

    Beck, Christian

    2013-12-06

    We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11  meV and a local galactic axionic dark-matter density of 0.05  GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.

  7. Unified models of the QCD axion and supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Leedom, Jacob M.

    2017-08-01

    Similarities between the gauge meditation of supersymmetry breaking and the QCD axion model suggest that they originate from the same dynamics. We present a class of models where supersymmetry and the Peccei-Quinn symmetry are simultaneously broken. The messengers that mediate the effects of these symmetry breakings to the Standard Model are identical. Since the axion resides in the supersymmetry breaking sector, the saxion and the axino are heavy. We show constraints on the axion decay constant and the gravitino mass.

  8. High-scale axions without isocurvature from inflationary dynamics

    DOE PAGES

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2016-05-31

    Observable primordial tensor modes in the cosmic microwave background (CMB) would point to a high scale of inflation H I. If the scale of Peccei-Quinn (PQ) breaking f a is greater than H I/2π, CMB constraints on isocurvature naively rule out QCD axion dark matter. This assumes the potential of the axion is unmodified during inflation. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed. We find that models that rely solely on a larger PQ-breaking scale during inflation f I require either late-time dilution of the axion abundance or highlymore » super-Planckian f I that somehow does not dominate the inflationary energy density. Models that have enhanced explicit breaking of the PQ symmetry during inflation may allow f a close to the Planck scale. Lastly, avoiding disruption of inflationary dynamics provides important limits on the parameter space.« less

  9. Ultralight axion in supersymmetry and strings and cosmology at small scales

    NASA Astrophysics Data System (ADS)

    Halverson, James; Long, Cody; Nath, Pran

    2017-09-01

    Dynamical mechanisms to generate an ultralight axion of mass ˜10-21- 10-22 eV in supergravity and strings are discussed. An ultralight particle of this mass provides a candidate for dark matter that may play a role for cosmology at scales of 10 kpc or less. An effective operator approach for the axion mass provides a general framework for models of ultralight axions, and in one case recovers the scale 10-21- 10-22 eV as the electroweak scale times the square of the hierarchy with an O (1 ) Wilson coefficient. We discuss several classes of models realizing this framework where an ultralight axion of the necessary size can be generated. In one class of supersymmetric models an ultralight axion is generated by instanton-like effects. In the second class higher-dimensional operators involving couplings of Higgs, standard model singlets, and axion fields naturally lead to an ultralight axion. Further, for the class of models considered the hierarchy between the ultralight scale and the weak scale is maintained. We also discuss the generation of an ultralight scale within string-based models. In the single-modulus Kachru-Kallosh-Linde-Trivedi moduli stabilization scheme an ultralight axion would require an ultralow weak scale. However, within the large volume scenario, the desired hierarchy between the axion scale and the weak scale is achieved. A general analysis of couplings of Higgs fields to instantons within the string framework is discussed and it is shown that the condition necessary for achieving such couplings is the existence of vector-like zero modes of the instanton. Some of the phenomenological aspects of these models are also discussed.

  10. Axion production from Landau quantization in the strong magnetic field of magnetars

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Balantekin, A. Baha; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2018-04-01

    We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.

  11. Axions as quintessence in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Sudhakar; Sumitomo, Yoske; Trivedi, Sandip P.

    2011-04-15

    We construct a model of quintessence in string theory based on the idea of axion monodromy as discussed by McAllister, Silverstein and Westphal [L. McAllister, E. Silverstein, and A. Westphal, Phys. Rev. D 82, 046003 (2010)]. In the model, the quintessence field is an axion whose shift symmetry is broken by the presence of 5-branes which are placed in highly warped throats. This gives rise to a potential for the axion field which is slowly varying, even after incorporating the effects of moduli stabilization and supersymmetry breaking. We find that the resulting time dependence in the equation of state ofmore » dark energy is potentially detectable, depending on the initial conditions. The model has many very light extra particles which live in the highly warped throats, but these are hard to detect. A signal in the rotation of the CMB polarization can also possibly arise.« less

  12. Dielectric Haloscopes: A New Way to Detect Axion Dark Matter.

    PubMed

    Caldwell, Allen; Dvali, Gia; Majorovits, Béla; Millar, Alexander; Raffelt, Georg; Redondo, Javier; Reimann, Olaf; Simon, Frank; Steffen, Frank

    2017-03-03

    We propose a new strategy to search for dark matter axions in the mass range of 40-400 μeV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10-100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1  m^{2} area contained in a 10 T field.

  13. Stimulated Axion Decay in Superradiant Clouds around Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Rosa, João G.; Kephart, Thomas W.

    2018-06-01

    The superradiant instability can lead to the generation of extremely dense axion clouds around rotating black holes. We show that, despite the long lifetime of the QCD axion with respect to spontaneous decay into photon pairs, stimulated decay becomes significant above a minimum axion density and leads to extremely bright lasers. The lasing threshold can be attained for axion masses μ ≳10-8 eV , which implies superradiant instabilities around spinning primordial black holes with mass ≲0.01 M⊙. Although the latter are expected to be nonrotating at formation, a population of spinning black holes may result from subsequent mergers. We further show that lasing can be quenched by Schwinger pair production, which produces a critical electron-positron plasma within the axion cloud. Lasing can nevertheless restart once annihilation lowers the plasma density sufficiently, resulting in multiple laser bursts that repeat until the black hole spins down sufficiently to quench the superradiant instability. In particular, axions with a mass ˜10-5 eV and primordial black holes with mass ˜1024 kg , which may account for all the dark matter in the Universe, lead to millisecond bursts in the GHz radio-frequency range, with peak luminosities ˜1042 erg /s , suggesting a possible link to the observed fast radio bursts.

  14. Vacuum selection on axionic landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gaoyuan; Battefeld, Thorsten, E-mail: gaoyuan.wang@stud.uni-goettingen.de, E-mail: tbattefe@astro.physik.uni-goettingen.de

    2016-04-01

    We compute the distribution of minima that are reached dynamically on multi-field axionic landscapes, both numerically and analytically. Such landscapes are well suited for inflationary model building due to the presence of shift symmetries and possible alignment effects (the KNP mechanism). The resulting distribution of dynamically reached minima differs considerably from the naive expectation based on counting all vacua. These differences are more pronounced in the presence of many fields due to dynamical selection effects: while low lying minima are preferred as fields roll down the potential, trajectories are also more likely to get trapped by one of the manymore » nearby minima. We show that common analytic arguments based on random matrix theory in the large D-limit to estimate the distribution of minima are insufficient for quantitative arguments pertaining to the dynamically reached ones. This discrepancy is not restricted to axionic potentials. We provide an empirical expression for the expectation value of such dynamically reached minimas' height and argue that the cosmological constant problem is not alleviated in the absence of anthropic arguments. We further comment on the likelihood of inflation on axionic landscapes in the large D-limit.« less

  15. Constraints on axion inflation from the weak gravity conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudelius, Tom, E-mail: rudelius@physics.harvard.edu

    2015-09-01

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and 'anti-alignment' of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the 'generalized' weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIBmore » compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.« less

  16. Constraints on axion inflation from the weak gravity conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudelius, Tom

    2015-09-08

    We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and ‘anti-alignment’ of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the ‘generalized’ weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIBmore » compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.« less

  17. The Axion Dark Matter Experiment: Big Science with a (relatively) Small Team

    NASA Astrophysics Data System (ADS)

    Carosi, Gianpaolo

    2016-03-01

    The idea of the solitary physicist tinkering alone in a lab was my image of how science was done growing up (mostly influenced by popular culture). Of course this is not generally how experimental physics is done now days with examples of experiments at the LHC now involving thousands of scientists. In this talk I will describe my experience in a relatively modest project, the Axion Dark Matter eXperiment (ADMX), which involves only a few dozen scientists at various universities and national labs. I will outline ADMX's humble beginnings at Lawrence Livermore National Laboratory (LLNL), where it began in the mid-1990s, and describe how the collaboration has evolved and grown throughout the years, as we pursue our elusive quarry: the dark-matter axion. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.

  18. Exploring 0.1–10 eV axions with a new helioscope concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galán, J.; Dafni, T.; Iguaz, F.J., E-mail: javier.galan.lacarra@cern.ch, E-mail: Theopisti.Dafni@cern.ch, E-mail: iguaz@unizar.es

    2015-12-01

    We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbarmore » to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10{sup −11} GeV{sup −1} for a 5 T, m{sup 3} scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0∼> 10 meV.« less

  19. N-flation with hierarchically light axions in string compactifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicoli, Michele; Dutta, Koushik; Maharana, Anshuman, E-mail: mcicoli@ictp.it, E-mail: koushik.dutta@saha.ac.in, E-mail: anshumanmaharana@hri.res.in

    2014-08-01

    We propose a possible embedding of axionic N-flation in type IIB string compactifications where most of the Kähler moduli are stabilised by perturbative effects, and so are hierarchically heavier than the corresponding N>> 1 axions whose collective dynamics drives inflation. This is achieved in the framework of the LARGE Volume Scenario for moduli stabilisation. Our set-up can be used to realise a model of either large field inflation or quintessence, just by varying the volume of the internal space which controls the scale of the axionic potential. Both cases predict a very high scale of supersymmetry breaking. A fully explicit stringymore » embedding of N-flation would require control over dangerous back-reaction effects due to a large number of species. A viable reheating of the Standard Model degrees of freedom can be achieved after the end of inflation due to the perturbative decay of the N light axions which drive inflation.« less

  20. Multiverse dark matter: SUSY or axions

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio

    2014-11-01

    The observed values of the cosmological constant and the abundance of Dark Matter (DM) can be successfully understood, using certain measures, by imposing the anthropic requirement that density perturbations go non-linear and virialize to form halos. This requires a probability distribution favoring low amounts of DM, i.e. low values of the PQ scale f for the QCD axion and low values of the superpartner mass scale for LSP thermal relics. In theories with independent scanning of multiple DM components, there is a high probability for DM to be dominated by a single component. For example, with independent scanning of f and , TeV-scale LSP DM and an axion solution to the strong CP problem are unlikely to coexist. With thermal LSP DM, the scheme allows an understanding of a Little SUSY Hierarchy with multi-TeV superpartners. Alternatively, with axion DM, PQ breaking before (after) inflation leads to f typically below (below) the projected range of the current ADMX experiment of f = (3 - 30) × 1011 GeV, providing strong motivation to develop experimental techniques for probing lower f.

  1. Gravity Waves and Linear Inflation From Axion Monodromy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, Liam; /Cornell U., LEPP /Cornell U., Phys. Dept.; Silverstein, Eva

    2010-08-26

    Wrapped branes in string compactifications introduce a monodromy that extends the field range of individual closed-string axions to beyond the Planck scale. Furthermore, approximate shift symmetries of the system naturally control corrections to the axion potential. This suggests a general mechanism for chaotic inflation driven by monodromy-extended closed-string axions. We systematically analyze this possibility and show that the mechanism is compatible with moduli stabilization and can be realized in many types of compactifications, including warped Calabi-Yau manifolds and more general Ricci-curved spaces. In this broad class of models, the potential is linear in the canonical inflaton field, predicting a tensormore » to scalar ratio r {approx} 0.07 accessible to upcoming cosmic microwave background (CMB) observations.« less

  2. Isocurvature forecast in the anthropic axion window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, J.; Hannestad, S.; Raffelt, G.G.

    2009-06-01

    We explore the cosmological sensitivity to the amplitude of isocurvature fluctuations that would be caused by axions in the ''anthropic window'' where the axion decay constant f{sub a} >> 10{sup 12} GeV and the initial misalignment angle Θ{sub i} << 1. In a minimal ΛCDM cosmology extended with subdominant scale-invariant isocurvature fluctuations, existing data constrain the isocurvature fraction to α < 0.09 at 95% C.L. If no signal shows up, Planck can improve this constraint to 0.042 while an ultimate CMB probe limited only by cosmic variance in both temperature and E-polarisation can reach 0.017, about a factor of fivemore » better than the current limit. In the parameter space of f{sub a} and H{sub I} (Hubble parameter during inflation) we identify a small region where axion detection remains within the reach of realistic cosmological probes.« less

  3. Enhanced axion-photon coupling in GUT with hidden photon

    NASA Astrophysics Data System (ADS)

    Daido, Ryuji; Takahashi, Fuminobu; Yokozaki, Norimi

    2018-05-01

    We show that the axion coupling to photons can be enhanced in simple models with a single Peccei-Quinn field, if the gauge coupling unification is realized by a large kinetic mixing χ = O (0.1) between hypercharge and unbroken hidden U(1)H. The key observation is that the U(1)H gauge coupling should be rather strong to induce such large kinetic mixing, leading to enhanced contributions of hidden matter fields to the electromagnetic anomaly. We find that the axion-photon coupling is enhanced by about a factor of 10-100 with respect to the GUT-axion models with E / N = 8 / 3.

  4. Recent progress on the Axion Dark Matter eXperiment (ADMX)

    NASA Astrophysics Data System (ADS)

    Khatiwada, Rakshya; ADMX Collaboration

    2017-01-01

    The Axion Dark Matter eXperiment (ADMX) is one of the three ``Generation-2'' direct dark matter searches and the only one dedicated to finding the axion. It looks for axions that convert into photons through the Primakoff process in the presence of a strong magnetic field. The mass of the axion is unknown but expected to be few to tens of μeV, which corresponds to photons in the GHz range. The expected signal power is of the order 10-24 W, which puts stringent requirements on the system's noise level. ADMX has recently started its Generation-2 data run with the recent upgrades of a dilution refrigerator, which cools the system to sub-K temperature suppressing the thermal background noise and tunable, near quantum noise-limited SQUID amplifiers. This talk will summarize the current status and operation of ADMX experiment as it searches for dark matter axions. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.

  5. Bose-Einstein condensation of the classical axion field in cosmology?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Sacha; Elmer, Martin, E-mail: s.davidson@ipnl.in2p3.fr, E-mail: m.elmer@ipnl.in2p3.fr

    The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in G{sub N}, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. Tomore » quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.« less

  6. Dark matter as ultralight axion-like particle in E6 × U(1)X GUT with QCD axion

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Frampton, Paul H.

    2018-07-01

    Axion-like fields are naturally generated by a mechanism of anomaly cancellation of one or more anomalous gauge abelian symmetries at the Planck scale, emerging as duals of a two-form from the massless bosonic sector of string theory. This suggests an analogy of the Green-Schwarz mechanism of anomaly cancellation, at field theory level, which results in one or more Stueckelberg pseudoscalars. In the case of a single Stueckelberg pseudoscalar b, vacuum misalignments at phase transitions in the early Universe at the GUT scale provide a small mass - due to instanton suppression of the periodic potential - for a component of b, denoted as χ and termed the "axi-Higgs", which is a physical axion-like particle. The coupling of the axi-Higgs to the gauge sector via Wess-Zumino terms is suppressed by the Planck mass, which guarantees its decoupling, while its angle of misalignment is related to MGUT. We build a gauged E6 × U (1) model with anomalous U (1). It contains both an automatic invisible QCD axion and an ultra-light axi-Higgs. The invisible axion present in the model solves the strong CP problem and has mass in the conventional range while the axi-Higgs, which can act as dark matter, is sufficiently light (10-22 eV

  7. [Mathematical model of technical equipment of a clinical-diagnostic laboratory].

    PubMed

    Bukin, S I; Busygin, D V; Tilevich, M E

    1990-01-01

    The paper is concerned with the problems of technical equipment of standard clinico-diagnostic laboratories (CDL) in this country. The authors suggest a mathematic model that may minimize expenditures for laboratory studies. The model enables the following problems to be solved: to issue scientifically-based recommendations for technical equipment of CDL; to validate the medico-technical requirements for newly devised items; to select the optimum types of uniform items; to define optimal technical decisions at the stage of the design; to determine the lab assistant's labour productivity and the cost of some investigations; to compute the medical laboratory engineering requirement for treatment and prophylactic institutions of this country.

  8. The GammeV suite of experimental searches for axion-like particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen, Jason H.; /Fermilab; Upadhye, Amol

    2009-08-01

    We report on the design and results of the GammeV search for axion-like particles and for chameleon particles. We also discuss plans for an improved experiment to search for chameleon particles, one which is sensitive to both cosmological and power-law chameleon models. Plans for an improved axion-like particle search using coupled resonant cavities are also presented. This experiment will be more sensitive to axion-like particles than stellar astrophysical models or current helioscope experiments.

  9. Axion Induced Oscillating Electric Dipole Moment of the Electron

    DOE PAGES

    Hill, Christopher T.

    2016-01-12

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10 -32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ ta(t) ∝ m α → 0. The analysis is subtle, and we find the general form of the action involves a local contact interactionmore » and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (m e >> m a). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less

  10. Axion Induced Oscillating Electric Dipole Moment of the Electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10 -32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ ta(t) ∝ m α → 0. The analysis is subtle, and we find the general form of the action involves a local contact interactionmore » and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (m e >> m a). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less

  11. Improving axion detection sensitivity in high purity germanium detector based experiments

    NASA Astrophysics Data System (ADS)

    Xu, Wenqin; Elliott, Steven

    2015-04-01

    Thanks to their excellent energy resolution and low energy threshold, high purity germanium (HPGe) crystals are widely used in low background experiments searching for neutrinoless double beta decay, e.g. the MAJORANA DEMONSTRATOR and the GERDA experiments, and low mass dark matter, e.g. the CDMS and the EDELWEISS experiments. A particularly interesting candidate for low mass dark matter is the axion, which arises from the Peccei-Quinn solution to the strong CP problem and has been searched for in many experiments. Due to axion-photon coupling, the postulated solar axions could coherently convert to photons via the Primakeoff effect in periodic crystal lattices, such as those found in HPGe crystals. The conversion rate depends on the angle between axions and crystal lattices, so the knowledge of HPGe crystal axis is important. In this talk, we will present our efforts to improve the HPGe experimental sensitivity to axions by considering the axis orientations in multiple HPGe crystals simultaneously. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  12. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars

    DOE PAGES

    Berenji, B.; Gaskins, J.; Meyer, M.

    2016-02-16

    We present constraints on the nature of axions and axion–like particles (ALPs) by analyzing gamma–ray data from neutron stars using the Fermi Large Area Telescope. In addition to axions solving the strong CP problem of particle physics, axions and ALPs are also possible dark matter candidates. We investigate axions and ALPs produced by nucleon–nucleon bremsstrahlung within neutron stars. We derive a phenomenological model for the gamma–ray spectrum arising from subsequent axion decays. By analyzing 5 years of gamma-ray data (between 60 MeV and 200 MeV) for a sample of 4 nearby neutron stars, we do not find evidence for anmore » axion or ALP signal, thus we obtain a combined 95% confidence level upper limit on the axion mass of 7.9×10 -2 eV, which corresponds to a lower limit for the Peccei-Quinn scale fa of 7.6×10 7 GeV. Our constraints are more stringent than previous results probing the same physical process, and are competitive with results probing axions and ALPs by different mechanisms.« less

  13. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenji, B.; Gaskins, J.; Meyer, M.

    We present constraints on the nature of axions and axion–like particles (ALPs) by analyzing gamma–ray data from neutron stars using the Fermi Large Area Telescope. In addition to axions solving the strong CP problem of particle physics, axions and ALPs are also possible dark matter candidates. We investigate axions and ALPs produced by nucleon–nucleon bremsstrahlung within neutron stars. We derive a phenomenological model for the gamma–ray spectrum arising from subsequent axion decays. By analyzing 5 years of gamma-ray data (between 60 MeV and 200 MeV) for a sample of 4 nearby neutron stars, we do not find evidence for anmore » axion or ALP signal, thus we obtain a combined 95% confidence level upper limit on the axion mass of 7.9×10 -2 eV, which corresponds to a lower limit for the Peccei-Quinn scale fa of 7.6×10 7 GeV. Our constraints are more stringent than previous results probing the same physical process, and are competitive with results probing axions and ALPs by different mechanisms.« less

  14. Leptogenesis from Left-Handed Neutrino Production during Axion Inflation.

    PubMed

    Adshead, Peter; Sfakianakis, Evangelos I

    2016-03-04

    We propose that the observed matter-antimatter asymmetry can be naturally produced as a by-product of axion-driven slow-roll inflation by coupling the axion to standard model neutrinos. We assume that grand unified theory scale right-handed neutrinos are responsible for the masses of the standard model neutrinos and that the Higgs field is light during inflation and develops a Hubble-scale root-mean-square value. In this setup, the rolling axion generates a helicity asymmetry in standard model neutrinos. Following inflation, this helicity asymmetry becomes equal to a net lepton number as the Higgs condensate decays and is partially reprocessed by the SU(2)_{L} sphaleron into a net baryon number.

  15. A New Signal Model for Axion Cavity Searches from N -body Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, Erik W.; Rosenberg, Leslie J.; Quinn, Thomas R.

    2017-08-20

    Signal estimates for direct axion dark matter (DM) searches have used the isothermal sphere halo model for the last several decades. While insightful, the isothermal model does not capture effects from a halo’s infall history nor the influence of baryonic matter, which has been shown to significantly influence a halo’s inner structure. The high resolution of cavity axion detectors can make use of modern cosmological structure-formation simulations, which begin from realistic initial conditions, incorporate a wide range of baryonic physics, and are capable of resolving detailed structure. This work uses a state-of-the-art cosmological N -body+Smoothed-Particle Hydrodynamics simulation to develop anmore » improved signal model for axion cavity searches. Signal shapes from a class of galaxies encompassing the Milky Way are found to depart significantly from the isothermal sphere. A new signal model for axion detectors is proposed and projected sensitivity bounds on the Axion DM eXperiment (ADMX) data are presented.« less

  16. A New Signal Model for Axion Cavity Searches from N-body Simulations

    NASA Astrophysics Data System (ADS)

    Lentz, Erik W.; Quinn, Thomas R.; Rosenberg, Leslie J.; Tremmel, Michael J.

    2017-08-01

    Signal estimates for direct axion dark matter (DM) searches have used the isothermal sphere halo model for the last several decades. While insightful, the isothermal model does not capture effects from a halo’s infall history nor the influence of baryonic matter, which has been shown to significantly influence a halo’s inner structure. The high resolution of cavity axion detectors can make use of modern cosmological structure-formation simulations, which begin from realistic initial conditions, incorporate a wide range of baryonic physics, and are capable of resolving detailed structure. This work uses a state-of-the-art cosmological N-body+Smoothed-Particle Hydrodynamics simulation to develop an improved signal model for axion cavity searches. Signal shapes from a class of galaxies encompassing the Milky Way are found to depart significantly from the isothermal sphere. A new signal model for axion detectors is proposed and projected sensitivity bounds on the Axion DM eXperiment (ADMX) data are presented.

  17. A minimal scale invariant axion solution to the strong CP-problem

    NASA Astrophysics Data System (ADS)

    Tokareva, Anna

    2018-05-01

    We present a scale-invariant extension of the Standard model allowing for the Kim-Shifman-Vainstein-Zakharov (KSVZ) axion solution of the strong CP problem in QCD. We add the minimal number of new particles and show that the Peccei-Quinn scalar might be identified with the complex dilaton field. Scale invariance, together with the Peccei-Quinn symmetry, is broken spontaneously near the Planck scale before inflation, which is driven by the Standard Model Higgs field. We present a set of general conditions which makes this scenario viable and an explicit example of an effective theory possessing spontaneous breaking of scale invariance. We show that this description works both for inflation and low-energy physics in the electroweak vacuum. This scenario can provide a self-consistent inflationary stage and, at the same time, successfully avoid the cosmological bounds on the axion. Our general predictions are the existence of colored TeV mass fermion and the QCD axion. The latter has all the properties of the KSVZ axion but does not contribute to dark matter. This axion can be searched via its mixing to a photon in an external magnetic field.

  18. Axion-assisted production of sterile neutrino dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Asher; Hooper, Dan

    2017-04-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this letter, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axion-like field. As the energy density of the axion-like particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressingmore » the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.« less

  19. First Searches for Axions and Axionlike Particles with the LUX Experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Aquino, C.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-06-01

    The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons gAe is tested using data collected in 2013 with an exposure totaling 95 live days ×118 kg . A double-sided, profile likelihood ratio statistic test excludes gAe larger than 3.5 ×10-12 (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV /c2 , while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6 eV /c2 are excluded. For galactic axionlike particles, values of gAe larger than 4.2 ×10-13 are excluded for particle masses in the range 1 - 16 keV /c2 . These are the most stringent constraints to date for these interactions.

  20. Axion monodromy and the weak gravity conjecture

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Rompineve, Fabrizio; Westphal, Alexander

    2016-04-01

    Axions with broken discrete shift symmetry (axion monodromy) have recently played a central role both in the discussion of inflation and the `relaxion' approach to the hierarchy problem. We suggest a very minimalist way to constrain such models by the weak gravity conjecture for domain walls: while the electric side of the conjecture is always satisfied if the cosine-oscillations of the axion potential are sufficiently small, the magnetic side imposes a cutoff, Λ3 ˜ mf M pl, independent of the height of these `wiggles'. We compare our approach with the recent related proposal by Ibanez, Montero, Uranga and Valenzuela. We also discuss the non-trivial question which version, if any, of the weak gravity conjecture for domain walls should hold. In particular, we show that string compactifications with branes of different dimensions wrapped on different cycles lead to a `geometric weak gravity conjecture' relating volumes of cycles, norms of corresponding forms and the volume of the compact space. Imposing this `geometric conjecture', e.g. on the basis of the more widely accepted weak gravity conjecture for particles, provides at least some support for the (electric and magnetic) conjecture for domain walls.

  1. Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Kimball, Derek F. Jackson; Sushkov, Alexander O.; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Kelley, Sean R. O.'; Wickenbrock, Arne; Fang, Jiancheng; Budker, Dmitry

    2018-03-01

    The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity ≈ 1 fT /√{ Hz } and an effective sensing volume of 0.1 cm3 that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.

  2. Laboratory for Atmospheres: 2006 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    2007-01-01

    The 2006 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, are highlighted in this report.

  3. Laboratory for Atmospheres 2009 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Cote, Charles E.

    2010-01-01

    The 2009 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  4. Laboratory for Atmospheres 2005 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The 2005 Technical highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  5. Laboratory for Atmospheres 2010 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The 2010 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  6. Laboratory for Atmospheres 2007 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    2008-01-01

    The 2007 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  7. On the strong-CP problem and its axion solution in torsionful theories

    NASA Astrophysics Data System (ADS)

    Karananas, Georgios K.

    2018-06-01

    Gravitational effects may interfere with the axion solution to the strong-CP problem. We point out that gravity can potentially provide a protection mechanism against itself, in the form of an additional axion-like field associated with torsion.

  8. Axion predictions in SO(10) × U(1)PQ models

    NASA Astrophysics Data System (ADS)

    Ernst, Anne; Ringwald, Andreas; Tamarit, Carlos

    2018-02-01

    Non-supersymmetric Grand Unified SO(10) × U(1)PQ models have all the ingredients to solve several fundamental problems of particle physics and cosmology — neutrino masses and mixing, baryogenesis, the non-observation of strong CP violation, dark matter, inflation — in one stroke. The axion — the pseudo Nambu-Goldstone boson arising from the spontaneous breaking of the U(1)PQ Peccei-Quinn symmetry — is the prime dark matter candidate in this setup. We determine the axion mass and the low energy couplings of the axion to the Standard Model particles, in terms of the relevant gauge symmetry breaking scales. We work out the constraints imposed on the latter by gauge coupling unification. We discuss the cosmological and phenomenological implications.

  9. The Weak Gravity Conjecture and the axionic black hole paradox

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Soler, Pablo

    2017-09-01

    In theories with a perturbatively massless 2-form (dual to an axion), a paradox may arise in the process of black hole evaporation. Schwarzschild black holes can support a non-trivial Wilson-line-type field, the integral of the 2-form around their horizon. After such an `axionic black hole' evaporates, the Wilson line must be supported by the corresponding 3-form field strength in the region formerly occupied by the black hole. In the limit of small axion decay-constant f, the energy required for this field configuration is too large. Thus, energy cannot be conserved in the process of black hole evaporation. The natural resolution of this paradox is through the presence of light strings, which allow the black hole to "shed" its axionic hair sufficiently early. This gives rise to a new Weak-Gravity-type argument in the 2-form context: small coupling, in this case f , enforces the presence of light strings or a low cutoff. We also discuss how this argument may be modified in situations where the weak coupling regime is achieved in the low-energy effective theory through an appropriate gauging of a model with a vector field and two 2-forms.

  10. Detecting Axion Dark Matter with Superconducting Qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Akash; Chou, Aaron; Schuster, David

    Axion dark matter haloscopes aim to detect dark matter axions converting to single photons in resonant cavities bathed in a uniform magnetic field. A qubit (two level system) operating as a single microwave photon detector is a viable readout system for such detectors and may offer advantages over the quantum limited amplifiers currently used. When weakly coupled to the detection cavity, the qubit transition frequency is shifted by an amount proportional to the cavity photon number. Through spectroscopy of the qubit, the frequency shift is measured and the cavity occupation number is extracted. At low enough temperatures, this would allowmore » sensitivities exceeding that of the standard quantum limit.« less

  11. First Searches for Axions and Axionlike Particles with the LUX Experiment

    DOE PAGES

    Akerib, D. S.; Alsum, S.; Aquino, C.; ...

    2017-06-29

    The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons g Ae is tested using data collected in 2013 with an exposure totaling 95 live days ×118 kg. A double-sided, profile likelihood ratio statistic test excludes g Ae larger than 3.5 × 10 –12 (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV/c 2, while for the Kim-Shifman-Vainshtein-Zhakharov description masses abovemore » 36.6 eV/c 2 are excluded. For galactic axionlike particles, values of g Ae larger than 4.2 × 10 –13 are excluded for particle masses in the range 1–16 keV/c 2. As a result, these are the most stringent constraints to date for these interactions.« less

  12. First Searches for Axions and Axionlike Particles with the LUX Experiment.

    PubMed

    Akerib, D S; Alsum, S; Aquino, C; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Brás, P; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chiller, A A; Chiller, C; Currie, A; Cutter, J E; Davison, T J R; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fallon, S R; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Jacobsen, R G; Ji, W; Kamdin, K; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D-M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Palladino, K J; Pease, E K; Reichhart, L; Rhyne, C; Shaw, S; Shutt, T A; Silva, C; Solmaz, M; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W C; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Velan, V; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Xu, J; Yazdani, K; Young, S K; Zhang, C

    2017-06-30

    The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons g_{Ae} is tested using data collected in 2013 with an exposure totaling 95 live days ×118  kg. A double-sided, profile likelihood ratio statistic test excludes g_{Ae} larger than 3.5×10^{-12} (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12  eV/c^{2}, while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6  eV/c^{2} are excluded. For galactic axionlike particles, values of g_{Ae} larger than 4.2×10^{-13} are excluded for particle masses in the range 1-16  keV/c^{2}. These are the most stringent constraints to date for these interactions.

  13. Constraints on Bose-Einstein-condensed axion dark matter from the Hi nearby galaxy survey data

    NASA Astrophysics Data System (ADS)

    Li, Ming-Hua; Li, Zhi-Bing

    2014-05-01

    One of the leading candidates for dark matter is the axion or axionlike particle in the form of a Bose-Einstein condensate (BEC). In this paper, we present an analysis of 17 high-resolution galactic rotation curves from the Hi nearby galaxy survey (THINGS) data [F. Walter et al., Astron. J. 136, 2563 (2008)] in the context of the axionic Bose-Einstein condensed dark matter model. Assuming a repulsive two-body interaction, we solve the nonrelativistic Gross-Pitaevskii equation for N gravitationally trapped bosons in the Thomas-Fermi approximation. We obtain the maximum possible radius R and the mass profile M(r) of a dilute axionic Bose-Einstein condensed gas cloud. A standard least- χ2 method is employed to find the best-fit values of the total mass M of the axion BEC and its radius R. The local mass density of BEC axion dark matter is ρa ≃0.02 GeV /cm3, which agrees with that presented by Beck [C. Beck, Phys. Rev. Lett. 111, 231801 (2013)]. The axion mass ma we obtain depends not only on the best-fit value of R, but also on the s-wave scattering length a (ma∝a1/3). The transition temperature Ta of an axion BEC on galactic scales is also estimated. Comparing the calculated Ta with the ambient temperature of galaxies and galaxy clusters implies that a ˜10-3 fm. The corresponding axion mass is ma≃0.58 meV. We compare our results with others.

  14. Cosmologically allowed regions for the axion decay constant Fa

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Sonomoto, Eisuke; Yanagida, Tsutomu T.

    2018-07-01

    If the Peccei-Quinn symmetry is already broken during inflation, the decay constant Fa of the axion can be in a wide region from 1011GeV to 1018GeV for the axion being the dominant dark matter. In this case, however, the axion causes the serious cosmological problem, isocurvature perturbation problem, which severely constrains the Hubble parameter during inflation. The constraint is relaxed when Peccei-Quinn scalar field takes a large value ∼Mp (Planck scale) during inflation. In this letter, we point out that the allowed region of the decay constant Fa is reduced to a rather narrow region for a given tensor-to-scalar ratio r when Peccei-Quinn scalar field takes ∼Mp during inflation. For example, if the ratio r is determined as r ≳10-3 in future measurements, we can predict Fa ≃ (0.1- 1.4) ×1012GeV for domain wall number NDW = 6.

  15. An Improved Signal Model for Axion Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Lentz, Erik; ADMX Collaboration

    2017-01-01

    To date, most direct detection searches for axion dark matter, such as those by the Axion Dark Matter eXperiment (ADMX) microwave cavity search, have assumed a signal shape based on an isothermal spherical model of the Milky Way halo. Such a model is not capable of capturing contributions from realistic infall, nor from a baryonic disk. Modern N-Body simulations of structure formation can produce realistic Milky Way-like halos which include the influences of baryons, infall, and environmental influences. This talk presents an analysis of the Romulus25 N-Body simulation in the context of direct dark matter axion searches. An improved signal shape and an account of the relevant halo dynamics are given. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.

  16. Red-giant evolution, metallicity, and new bounds on hadronic axions

    NASA Technical Reports Server (NTRS)

    Haxton, W. C.; Lee, K. Y.

    1991-01-01

    Stellar cooling by nuclear axion emission is explored, identifying those special isotopes that dominate this process for temperatures from 10 to the 7th to 10 to the 9th K. It is argued that such nuclear energy-loss mechanisms are distinctive because the effects track metallicity. Three observables associated with evolution of stars along the red-giant and horizontal branches are shown to impose new and restrictive constraints on axions in the hadronic window.

  17. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  18. Constraining the axion-photon coupling with massive stars.

    PubMed

    Friedland, Alexander; Giannotti, Maurizio; Wise, Michael

    2013-02-08

    We point out that stars in the mass window ~8-12M([circumpunct]) can serve as sensitive probes of the axion-photon interaction, g(Aγγ). Specifically, for these stars axion energy losses from the helium-burning core would shorten and eventually eliminate the blue loop phase of the evolution. This would contradict observational data, since the blue loops are required, e.g., to account for the existence of Cepheid stars. Using the MESA stellar evolution code, modified to include the extra cooling, we conservatively find g(Aγγ)

  19. Impact of ultralight axion self-interactions on the large scale structure of the Universe

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2018-01-01

    Ultralight axions have sparked attention because their tiny mass m ˜10-22 eV , which leads to a kiloparsec-scale de Broglie wavelength comparable to the size of a dwarf galaxy, could alleviate the so-called small-scale crisis of massive cold dark matter (CDM) candidates. However, recent analyses of the Lyman-α forest power spectrum set a tight lower bound on their mass of m ≳10-21 eV which makes them much less relevant from an astrophysical point of view. An important caveat to these numerical studies is that they do not take into account self-interactions among ultralight axions. Furthermore, for axions which acquired a mass through nonperturbative effects, this self-interaction is attractive and, therefore, could counteract the quantum "pressure" induced by the strong delocalization of the particles. In this work, we show that even a tiny attractive interaction among ultralight axions can have a significant impact on the stability of cosmic structures at low redshift. After a brief review of known results about solitons in the absence of gravity, we discuss the stability of filamentary and pancakelike solutions when quantum pressure, attractive interactions and gravity are present. The analysis based on 1 degree of freedom, namely the breathing mode, reveals that pancakes are stable, while filaments are unstable if the mass per unit length is larger than a critical value. However, we show that pancakes are unstable against transverse perturbations. We expect this to be true for halos and filaments as well. Instabilities driven by the breathing mode will not be seen in the low column density Lyman-α forest unless the axion decay constant is extremely small, f ≲1013 GeV . Notwithstanding, axion solitonic cores could leave a detectable signature in the Lyman-α forest if the normalization of the unknown axion core—filament mass relation is ˜100 larger than it is for spherical halos. We hope our work motivates future numerical studies of the impact of axion

  20. Domain wall and isocurvature perturbation problems in a supersymmetric axion model

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Sonomoto, Eisuke

    2018-04-01

    The axion causes two serious cosmological problems, domain wall and isocurvature perturbation problems. Linde pointed out that the isocurvature perturbations are suppressed when the Peccei-Quinn (PQ) scalar field takes a large value ˜Mpl (Planck scale) during inflation. In this case, however, the PQ field with large amplitude starts to oscillate after inflation, and large fluctuations of the PQ field are produced through parametric resonance, which leads to the formation of domain walls. We consider a supersymmetric axion model and examine whether domain walls are formed by using lattice simulation. It is found that the domain wall problem does not appear in the SUSY axion model when the initial value of the PQ field is less than 1 03×v , where v is the PQ symmetry breaking scale.

  1. (In)dependence of 𝜃 in the Higgs regime without axions

    NASA Astrophysics Data System (ADS)

    Shifman, Mikhail; Vainshtein, Arkady

    2017-05-01

    We revisit the issue of the vacuum angle 𝜃 dependence in weakly coupled (Higgsed) Yang-Mills theories. Two most popular mechanisms for eliminating physical 𝜃 dependence are massless quarks and axions. Anselm and Johansen noted that the vacuum angle 𝜃EW, associated with the electroweak SU(2) in the Glashow-Weinberg-Salam model (Standard Model, SM), is unobservable although all fermion fields obtain masses through Higgsing and there is no axion. We generalize this idea to a broad class of Higgsed Yang-Mills theories. In the second part, we consider the consequences of Grand Unification. We start from a unifying group, e.g. SU(5), at a high ultraviolet scale and evolve the theory down within the Wilson procedure. If on the way to infrared the unifying group is broken down into a few factors, all factor groups inherit one and the same 𝜃 angle — that of the unifying group. We show that embedding the SM in SU(5) drastically changes the Anselm-Johansen conclusion: the electroweak vacuum angle 𝜃EW, equal to 𝜃QCD becomes in principle observable in ΔB = ΔL = ±1 processes. We also note in passing that if the axion mechanism is set up above the unification scale, we have one and the same axion in the electroweak theory and QCD, and their impacts are interdependent.

  2. SQUID amplifiers for axion search experiments

    NASA Astrophysics Data System (ADS)

    Matlashov, Andrei; Schmelz, Matthias; Zakosarenko, Vyacheslav; Stolz, Ronny; Semertzidis, Yannis K.

    2018-04-01

    In the experiments for dark-matter QCD-axion searches, very weak microwave signals from a low-temperature High-Q resonant cavity should be detected using the highest sensitivity. The best commercial low-noise cryogenic semiconductor amplifiers based on high electron mobility transistors have a lowest noise temperature above 1.0 K, even if they are cooled well below 1 K. Superconducting quantum interference devices can work as microwave amplifiers with temperature noise close to the standard quantum limit. Previous SQUID-based RF amplifiers designed for axion search experiments have a microstrip resonant input coil and are thus called micro-strip SQUID amplifiers or MSAs. Due to the resonant input coupling they usually have narrow bandwidth. In this paper we report on a SQUID-based wideband microwave amplifier fabricated using sub-micron size Josephson junctions with very low capacitance. A single amplifier can be used in a frequency range of approximately 1-5 GHz.

  3. Recent Results of Search for Solar Axions Using Resonant Absorption by 83Kr nuclei

    NASA Astrophysics Data System (ADS)

    Derbin, A. V.; Drachnev, I. S.; Gangapshev, A. M.; Gavrilyuk, Yu M.; Kazalov, V. V.; Kobychev, V. V.; Kuzminov, V. V.; Muratova, V. N.; Panashenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Unzhakov, E. V.; Yakimenko, S. P.

    2017-12-01

    A search for resonant absorption of the solar axion by 83Kr nuclei was performed using the proportional counter installed inside the low-background setup at the Baksan Neutrino Observatory. The obtained model independent upper limit on the combination of isoscalar and isovector axion-nucleon couplings |g 3 - g 0| ≤ 8.4 × 10-7 allowed us to set the new upper limit on the hadronic axion mass of mA ≤ 65 eV (95% C.L.) with the generally accepted values S=0.5 and z=0.56.

  4. The Aeronautical Laboratory of the Stockholm Technical Institute

    NASA Technical Reports Server (NTRS)

    Malmer, Ivar

    1935-01-01

    This report presents a detailed analysis and history of the construction and operation of the aeronautical laboratory of the Stockholm Technical Institute. Engines and balances are discussed and experimental results are also given.

  5. Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Zhang, Yi-Fan

    2016-01-01

    Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ~ 100-300 GeV . Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μll m3/2 may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the TR vs. m3/2 plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices fa. These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale fa~ 1010-1012 GeV which is also favored by naturalness: fa ~ √μMP/λμ ~ 1010-1012 GeV . These fa values correspond to axion masses somewhat above the projected ADMX search regions.

  6. Predicting Constraints on Ultra-Light Axion Parameters due to LSST Observations

    NASA Astrophysics Data System (ADS)

    Given, Gabriel; Grin, Daniel

    2018-01-01

    Ultra-light axions (ULAs) are a type of dark matter or dark energy candidate (depending on the mass) that are predicted to have a mass between $10^{‑33}$ and $10^{‑18}$ eV. The Large Synoptic Survey Telescope (LSST) is expected to provide a large number of weak lensing observations, which will lower the statistical uncertainty on the convergence power spectrum. I began work with Daniel Grin to predict how accurately the data from the LSST will be able to constrain ULA properties. I wrote Python code that takes a matter power spectrum calculated by axionCAMB and converts it to a convergence power spectrum. My code then takes derivatives of the convergence power spectrum with respect to several cosmological parameters; these derivatives will be used in Fisher Matrix analysis to determine the sensitivity of LSST observations to axion parameters.

  7. Topology (and axion's properties) from lattice QCD with a dynamical charm

    NASA Astrophysics Data System (ADS)

    Burger, Florian; Ilgenfritz, Ernst-Michael; Lombardo, Maria Paola; Müller-Preussker, Michael; Trunin, Anton

    2017-11-01

    We present results on QCD with four dynamical flavors in the temperature range 0.9 ≲ T /Tc ≲ 2. We have performed lattice simulations with Wilson fermions at maximal twist and measured the topological charge with gluonic and fermionic methods. The topological charge distribution is studied by means of its cumulants, which encode relevant properties of the QCD axion, a plausible Dark Matter candidate. The topological susceptibility measured with the fermionic method exhibits a power-law decay for T /Tc ≳ 2, with an exponent close to the one predicted by the Dilute Instanton Gas Approximation (DIGA). Close to Tc the temperature dependent effective exponent approaches the DIGA result from above, in agreement with recent analytic calculations. These results constrain the axion window, once an assumption on the fraction of axions contributing to Dark Matter is made.

  8. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  9. Axions and the luminosity function of white dwarfs. The thin and thick disks, and the halo

    NASA Astrophysics Data System (ADS)

    Isern, J.; García-Berro, E.; Torres, S.; Cojocaru, R.; Catalán, S.

    2018-05-01

    The evolution of white dwarfs is a simple gravothermal process of cooling. Since the shape of their luminosity function is sensitive to the characteristic cooling time, it is possible to use its slope to test the existence of additional sources or sinks of energy, such as those predicted by alternative physical theories. The aim of this paper is to study if the changes in the slope of the white dwarf luminosity function around bolometric magnitudes ranging from 8 to 10 and previously attributed to axion emission are, effectively, a consequence of the existence of axions and not an artifact introduced by the star formation rate. We compute theoretical luminosity functions of the thin and thick disk, and of the stellar halo including axion emission and we compare them with the existing observed luminosity functions. Since these stellar populations have different star formation histories, the slope change should be present in all of them at the same place if it is due to axions or any other intrinsic cooling mechanism. The signature of an unexpected cooling seems to be present in the luminosity functions of the thin and thick disks, as well as in the halo luminosity function. This additional cooling is compatible with axion emission, thus supporting to the idea that DFSZ axions, with a mass in the range of 4 to 10 meV, could exist. If this were the case, these axions could be detected by the future solar axioscope IAXO.

  10. First results from a microwave cavity axion search at 25 μeV : Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Ling; ADMX-HF Collaboration

    2017-01-01

    ADMX-HF searches for dark matter axions via Primakoff conversion into microwave photons in the gigahertz domain. Since 2012, tremendous effort has been made to build an axion detector working in this frequency range. By operating the system in a cryogen-free dilution refrigerator (T = 127 mK) and integrating a Josephson Parametric Amplifier (JPA), we obtain a sufficiently low system noise temperature to exclude axion models with gaγγ > 2 ×10-14GeV-1 over the mass range 23 . 55 μeV axion signals. Supported by NSF Grants PHY-1362305 and PHY-1306729, Heising-Simons Foundation Grant 2014-182, and DOE Grant DE-AC52-07NA27344.

  11. A proposed search for dark-matter axions in the 0.6-16 micro-eV range

    NASA Technical Reports Server (NTRS)

    Vanbibber, Karl; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Turner, Michael S.; Moltz, D. M.

    1991-01-01

    A proposed experiment is described to search for dark matter axions in the mass range 0.6 to 16 micro-eV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet, as described by Sikivie. This proposal capitalizes on the availability of two Axicell magnets from the decommissioned Mirror Fusion Test Facility (MFTF-B) fusion machine at LLNL. Assuming a local dark matter density in axions of rho = 0.3 GeV/cu cm, the axion would be found or ruled out at the 97 pct. c.l. in the above mass range in 48 months.

  12. Isocurvature constraints and anharmonic effects on QCD axion dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Kurematsu, Ryosuke; Takahashi, Fuminobu, E-mail: takeshi@cita.utoronto.ca, E-mail: rkurematsu@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2013-09-01

    We revisit the isocurvature density perturbations induced by quantum fluctuations of the axion field by extending a recently developed analytic method and approximations to a time-dependent scalar potential, which enables us to follow the evolution of the axion until it starts to oscillate. We find that, as the initial misalignment angle approaches the hilltop of the potential, the isocurvature perturbations become significantly enhanced, while the non-Gaussianity parameter increases slowly but surely. As a result, the isocurvature constraint on the inflation scale is tightened as H{sub inf}∼

  13. Observable Windows for the QCD Axion Through the Number of Relativistic Species

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo Z.; Notari, Alessio

    2018-05-01

    We show that when the QCD axion is directly coupled to quarks with ci/f ∂μa q¯iγμγ5qi, such as in Dine-Fischler-Srednicki-Zhitnitsky models, the dominant production mechanism in the early Universe at temperatures 1 GeV ≲T ≲100 GeV is obtained via qiq¯i↔g a and qig ↔qia , where g are gluons. The production of axions through such processes is maximal around T ≈mi, where mi are the different heavy quark masses. This leads to a relic axion background that decouples at such temperatures, leaving a contribution to the effective number of relativistic degrees of freedom, which can be larger than the case of decoupling happens the electroweak phase transition, Δ Neff≲0.027 . Our prediction for the t quark is 0.027 ≤Δ Neff≤0.036 for 1 06 GeV ≲f /ct≲4 ×108 GeV and for the b quark is 0.027 ≤Δ Neff≤0.047 for 1 07 GeV ≲f /cb≲3 ×108 GeV . For the c quark the window can only be roughly estimated as 0.027 <Δ Neff≲O (0.1 ), for f /cc≲(2 -3 )×108 GeV , since axions can still be partially produced in a regime of strong coupling, when αs≳1 . These contributions are comparable to the sensitivity of future CMB S4 experiments, thus opening an alternative window to detect the axion and to test the early Universe at such temperatures.

  14. Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus, Stephen; Conlon, Joseph P.; Marsh, M.C. David

    2014-09-01

    We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measuresmore » from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for g{sub aγγ} ∼ 2 × 10{sup -13} Ge {sup -1}. The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on O(3 kpc) scales over those with most power on O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eV∼< ( E{sub a} ) ∼< 250 eV, the axion mass to m{sub a} ∼< 10{sup -12} eV, and derive a lower bound on the axion-photon coupling g{sub aγγ} ∼> √(0.5/Δ N{sub eff}) 1.4 × 10{sup -13} Ge {sup -1}.« less

  15. Studies on Axions as the Energy Source in Magnetar

    NASA Astrophysics Data System (ADS)

    Das, Pranita; Duorah, H. L.; Duorah, Kalpana

    2017-12-01

    Highly magnetized neutron stars known as magnetars are some of the most interesting objects in the Universe. Non-baryonic dark matter candidate axions are produced in the highly magnetized neutron star via Bremsstrahlung process in the highly dense medium. These axions thus produced are then converted into photons in the strong magnetic field via Primakoff effect giving rise to the observed X-ray luminosity level of these objects. Our results are found within observational limit of SGRs(1806-20, 1900+14,0526-66 and 1627-41) and AXPs(4U0142+61,1E1048-5937,RXS1708-4009 and 1E1841-045).

  16. Proposal for Axion Dark Matter Detection Using an L C Circuit

    DOE PAGES

    Sikivie, P.; Sullivan, N.; Tanner, D. B.

    2014-03-01

    Here, we show that dark matter axions cause an oscillating electric current to flow along magnetic field lines. The oscillating current induced in a strong magnetic field B → 0 produces a small magnetic field B → a. We propose to amplify and detect B → a using a cooled LC circuit and a very sensitive magnetometer. This appears to be a suitable approach to searching for axion dark matter in the 10 –7 to 10 –9 eV mass range.

  17. Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    González-Morales, Alma X.; Marsh, David J. E.; Peñarrubia, Jorge; Ureña-López, Luis A.

    2017-12-01

    It has been suggested that the internal dynamics of dwarf spheroidal galaxies (dSphs) can be used to test whether or not ultralight axions with ma ∼ 10-22 eV are a preferred dark matter candidate. However, comparisons to theoretical predictions tend to be inconclusive for the simple reason that while most cosmological models consider only dark matter, one observes only baryons. Here, we use realistic kinematic mock data catalogues of Milky Way (MW) dSph's to show that the 'mass-anisotropy degeneracy' in the Jeans equations leads to biased bounds on the axion mass in galaxies with unknown dark matter halo profiles. In galaxies with multiple chemodynamical components, this bias can be partly removed by modelling the mass enclosed within each subpopulation. However, analysis of the mock data reveals that the least-biased constraints on the axion mass result from fitting the luminosity-averaged velocity dispersion of the individual chemodynamical components directly. Applying our analysis to two dSph's with reported stellar subcomponents, Fornax and Sculptor, and assuming that the halo profile has not been acted on by baryons, yields core radii rc > 1.5 and 1.2 kpc, respectively, and ma < 0.4 × 10-22 eV at 97.5 per cent confidence. These bounds are in tension with the number of observed satellites derived from simple (but conservative) estimates of the subhalo mass function in MW-like galaxies. We discuss how baryonic feedback might affect our results, and the impact of such a small axion mass on the growth of structures in the Universe.

  18. Blue spectra of Kalb-Ramond axions and fully anisotropic string cosmologies

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    1999-03-01

    The inhomogeneities associated with massless Kalb-Ramond axions can be amplified not only in isotropic (four-dimensional) string cosmological models but also in the fully anisotropic case. If the background geometry is isotropic, the axions (which are not part of the homogeneous background) develop outside the horizon, the growing modes leading, ultimately, to logarithmic energy spectra which are ``red'' in frequency and increase at large distance scales. We show that this conclusion can be avoided not only in the case of higher dimensional backgrounds with contracting internal dimensions but also in the case of string cosmological scenarios which are completely anisotropic in four dimensions. In this case the logarithmic energy spectra turn out to be ``blue'' in frequency and, consequently, decreasing at large distance scales. We elaborate on anisotropic dilaton-driven models and we argue that, incidentally, the background models leading to blue (or flat) logarithmic energy spectra for axionic fluctuations are likely to be isotropized by the effect of string tension corrections.

  19. New axion and hidden photon constraints from a solar data global fit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinyoles, N.; Serenelli, A.; Isern, J.

    2015-10-01

    We present a new statistical analysis that combines helioseismology (sound speed, surface helium and convective radius) and solar neutrino observations (the {sup 8}B and {sup 7}Be fluxes) to place upper limits to the properties of non standard weakly interacting particles. Our analysis includes theoretical and observational errors, accounts for tensions between input parameters of solar models and can be easily extended to include other observational constraints. We present two applications to test the method: the well studied case of axions and axion-like particles and the more novel case of low mass hidden photons. For axions we obtain an upper limitmore » at 3σ for the axion-photon coupling constant of g{sub aγ} < 4.1 · 10{sup −10} GeV{sup −1}. For hidden photons we obtain the most restrictive upper limit available accross a wide range of masses for the product of the kinetic mixing and mass of χ m < 1.8 ⋅ 10{sup −12} eV at 3σ. Both cases improve the previous solar constraints based on the Standard Solar Models showing the power of using a global statistical approach.« less

  20. Searching for axion stars and Q -balls with a terrestrial magnetometer network

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, D. F.; Budker, D.; Eby, J.; Pospelov, M.; Pustelny, S.; Scholtes, T.; Stadnik, Y. V.; Weis, A.; Wickenbrock, A.

    2018-02-01

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q -balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q -balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q -ball could be detected over a broad range of unexplored parameter space.

  1. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    DOE PAGES

    Jackson Kimball, D. F.; Budker, D.; Eby, J.; ...

    2018-02-08

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less

  2. Searching for axion stars and Q-balls with a terrestrial magnetometer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson Kimball, D. F.; Budker, D.; Eby, J.

    Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less

  3. Solar axion search technique with correlated signals from multiple detectors

    DOE PAGES

    Xu, Wenqin; Elliott, Steven R.

    2017-01-25

    The coherent Bragg scattering of photons converted from solar axions inside crystals would boost the signal for axion-photon coupling enhancing experimental sensitivity for these hypothetical particles. Knowledge of the scattering angle of solar axions with respect to the crystal lattice is required to make theoretical predications of signal strength. Hence, both the lattice axis angle within a crystal and the absolute angle between the crystal and the Sun must be known. In this paper, we examine how the experimental sensitivity changes with respect to various experimental parameters. We also demonstrate that, in a multiple-crystal setup, knowledge of the relative axismore » orientation between multiple crystals can improve the experimental sensitivity, or equivalently, relax the precision on the absolute solar angle measurement. However, if absolute angles of all crystal axes are measured, we find that a precision of 2°–4° will suffice for an energy resolution of σ E = 0.04E and a flat background. Lastly, we also show that, given a minimum number of detectors, a signal model averaged over angles can substitute for precise crystal angular measurements, with some loss of sensitivity.« less

  4. Bulk axions, brane back-reaction and fluxes

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.

    2011-02-01

    Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs) whose shift symmetry is explicitly broken only by physics localized on branes. Reliable calculation of their low-energy potential is often difficult because it requires an understanding of the dynamics that stabilizes the geometry of the extra dimensions. Rugby ball solutions provide simple examples of extra-dimensional configurations for which two compact extra dimensions are stabilized in the presence of only positive-tension brane sources. The effects of brane back-reaction can be computed explicitly for these systems, allowing the calculation of the shape of the low-energy pGB potential, V 4 D ( φ), as a function of the perturbing brane properties, as well as the response of both the extra dimensional and on-brane geometries to this stabilization. If the φ-dependence is a small part of the total brane tension a very general analysis is possible, permitting an exploration of how the system responds to frustration when the two branes disagree on what the proper scalar vacuum should be. We show how the low-energy potential is given by the sum of brane tensions (in agreement with common lore) when only the brane tensions couple to φ. We also show how a direct brane coupling to the flux stabilizing the extra dimensions corrects this result in a way that does not simply amount to the contribution of the flux to the brane tensions. The mass of the low-energy pseudo-Goldstone mode is of order m a ˜ ( μ/ F)2 m KK (where μ is the energy scale associated with the brane symmetry breaking and F < M p is the extra-dimensional axion decay constant). In principle this can be larger or smaller than the Kaluza-Klein scale, m KK, but when it is larger axion properties cannot be computed purely within a 4D approximation (as they usually are). We briefly describe several potential applications, including a brane realization of `natural inflation,' and a dynamical mechanism for suppressing the couplings

  5. Cosmological magnetic fields as string dynamo seeds and axion fields in torsioned spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Andrade, L.C. Garcia, E-mail: garcia@dft.if.uerj.br

    2014-08-01

    In this paper two examples of the generation cosmological magnetic fields (CMF) are given. The first is the string dynamo seed cosmological magnetic field estimated as B{sub seed}∼10{sup -24} Gauss from a static spin polarised cylinder in Einstein-Cartan-Maxwell spacetime. The string dynamo seeds from a static spin polarised cylinder is given by B∼σ{sup 2}R{sup 2} where σ is the spin-torsion density while R is the string radius. The B-field value above is able to seed galactic dynamo. In the BBN the magnetic fields around 10{sup 12} Gauss give rise to a string radius as small as 10{sup 17}l{sub P} where l{sub P}more » is the Planck length. The second is the CMF from axionic torsion field which is given by B{sub seed}∼10{sup -27} Gauss which is stronger than the primordial magnetic field B{sub BICEP2}∼10{sup -30} Gauss from the BICEP2 recent experiment on primordial gravitational waves and cosmological inflation to axionic torsion. The interaction Lagrangean between axionic torsion scalar φ and magnetic fields used in this last example is given by f{sup 2}(φ)F{sub μν}F{sup μν}. A similar lagrangean has been used by K. Bamba et al. [JCAP 10 (2012) 058] so generate magnetic fields without dynamo action. Since axionic torsion can be associated with axionic domain walls both examples discussed here could be consider as topological defects examples of the generation of primordial magnetic fields in universes endowed with spacetime torsion.« less

  6. Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Di Vecchia, Paolo; Rossi, Giancarlo; Veneziano, Gabriele; Yankielowicz, Shimon

    2017-12-01

    Using the well-known low-energy effective Lagrangian of QCD — valid for small (non-vanishing) quark masses and a large number of colors — we study in detail the regions of parameter space where CP is spontaneously broken/unbroken for a vacuum angle θ = π. In the CP broken region there are first order phase transitions as one crosses θ = π, while on the (hyper)surface separating the two regions, there are second order phase transitions signalled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the CP spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised if the QCD parameters fall in the above mentioned CP broken region, in spite of the fact that the axion solves the strong- CP problem. These last results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.

  7. Analysis of dark matter axion clumps with spherical symmetry

    NASA Astrophysics Data System (ADS)

    Schiappacasse, Enrico D.; Hertzberg, Mark P.

    2018-01-01

    Recently there has been much interest in the spatial distribution of light scalar dark matter, especially axions, throughout the universe. When the local gravitational interactions between the scalar modes are sufficiently rapid, it can cause the field to re-organize into a BEC of gravitationally bound clumps. While these clumps are stable when only gravitation is included, the picture is complicated by the presence of the axion's attractive self-interactions, which can potentially cause the clumps to collapse. Here we perform a detailed stability analysis to determine under what conditions the clumps are stable. In this paper we focus on spherical configurations, leaving aspherical configurations for future work. We identify branches of clump solutions of the axion-gravity-self-interacting system and study their stability properties. We find that clumps that are (spatially) large are stable, while clumps that are (spatially) small are unstable and may collapse. Furthermore, there is a maximum number of particles that can be in a clump. We map out the full space of solutions, which includes quasi-stable axitons, and clarify how a recent claim in the literature of a new ultra-dense branch of stable solutions rests on an invalid use of the non-relativistic approximation. We also consider repulsive self-interactions that may arise from a generic scalar dark matter candidate, finding a single stable branch that extends to arbitrary particle number.

  8. Power law of shear viscosity in Einstein-Maxwell-Dilaton-Axion model

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Xian, Zhuoyu; Zhou, Zhenhua

    2017-02-01

    We construct charged black hole solutions with hyperscaling violation in the infrared (IR) region in Einstein-Maxwell-Dilaton-Axion theory and investigate the temperature behavior of the ratio of holographic shear viscosity to the entropy density. When translational symmetry breaking is relevant in the IR, the power law of the ratio is verified numerically at low temperature T, namely, η/s ˜ T κ , where the values of exponent κ coincide with the analytical results. We also find that the exponent κ is not affected by irrelevant current, but is reduced by the relevant current. Supported by National Natural Science Foundation of China (11275208, 11575195), Opening Project of Shanghai Key Laboratory of High Temperature Superconductors (14DZ2260700) and Jiangxi Young Scientists (JingGang Star) Program and 555 Talent Project of Jiangxi Province

  9. Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.

    PubMed

    Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G

    2015-12-18

    Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9}  GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies.

  10. Baryogenesis from strong CP violation and the QCD axion.

    PubMed

    Servant, Géraldine

    2014-10-24

    We show that strong CP violation from the QCD axion can be responsible for the matter antimatter asymmetry of the Universe in the context of cold electroweak baryogenesis if the electroweak phase transition is delayed below the GeV scale. This can occur naturally if the Higgs couples to a O(100)  GeV dilaton, as expected in some models where the Higgs is a pseudo-Nambu-Goldstone boson of a new strongly interacting sector at the TeV scale. The existence of such a second scalar resonance with a mass and properties similar to the Higgs boson will soon be tested at the LHC. In this context, the QCD axion would not only solve the strong CP problem, but also the matter antimatter asymmetry and dark matter.

  11. Annotated Bibliography of the Air Force Human Resources Laboratory Technical Reports - 1979.

    DTIC Science & Technology

    1981-05-01

    Force Human Resources Laboratory, March 1980. (Covers all AFHRL projects.) NTIS. This document provides the academic and industrial R&D community with...D-AI02 04𔃾 AIR FORCE HUMAN RESOURCES LAB BROOKS AF TX F/G 5/2 ANNOTATED BIBLIOGRAPHY OF THE AIR FORCE HUMAN RESOURCES LABORAT--ETC(U) MAY 81 E M...OF THE AIR FORCE HUMAN RESOURCES LABORATORY TECHNICAL REPORTS - 1979U M By M Esther M. Barlow A N TECHNICAL SERVICES DIVISION Brooks Air Force Base

  12. Gamma ray astrophysics and signatures of axion-like particles

    NASA Astrophysics Data System (ADS)

    Serpico, Pasquale D.

    2009-02-01

    We propose that axion-like particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to effects in the spectra of high-energy gamma-ray sources detectable by satellite or ground-based telescopes. We discuss two kinds of signatures: (i) a peculiar spectral depletion due to gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the “Hillas criterion”, such as jets of active galactic nuclei or hot spots of radio galaxies; (ii) an appearance of otherwise invisible sources in the GeV or TeV sky due to back-conversion of an ALP flux (associated with gamma-ray emitters suffering some attenuation) in the magnetic field of the Milky Way. These two mechanisms might also provide an exotic way to avoid the exponential cutoff of very high energy gamma-rays expected due to the pair production onto the extragalactic background light.

  13. QCD axion dark matter from long-lived domain walls during matter domination

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Kawasaki, Masahiro

    2018-07-01

    The domain wall problem of the Peccei-Quinn mechanism can be solved if the Peccei-Quinn symmetry is explicitly broken by a small amount. Domain walls decay into axions, which may account for dark matter of the universe. This scheme is however strongly constrained by overproduction of axions unless the phase of the explicit breaking term is tuned. We investigate the case where the universe is matter-dominated around the temperature of the MeV scale and domain walls decay during this matter dominated epoch. We show how the viable parameter space is expanded.

  14. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  15. 42 CFR 493.1447 - Condition: Laboratories performing high complexity testing; technical supervisor.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing high complexity testing; technical supervisor. 493.1447 Section 493.1447 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY...

  16. 42 CFR 493.1447 - Condition: Laboratories performing high complexity testing; technical supervisor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity testing; technical supervisor. 493.1447 Section 493.1447 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY...

  17. Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.

  18. Two-field axion-monodromy hybrid inflation model: Dante's Waterfall

    NASA Astrophysics Data System (ADS)

    Carone, Christopher D.; Erlich, Joshua; Sensharma, Anuraag; Wang, Zhen

    2015-02-01

    We describe a hybrid axion-monodromy inflation model motivated by the Dante's Inferno scenario. In Dante's Inferno, a two-field potential features a stable trench along which a linear combination of the two fields slowly rolls, rendering the dynamics essentially identical to that of single-field chaotic inflation. A shift symmetry allows for the Lyth bound to be effectively evaded as in other axion-monodromy models. In our proposal, the potential is concave downward near the origin and the inflaton trajectory is a gradual downward spiral, ending at a point where the trench becomes unstable. There, the fields begin falling rapidly towards the minimum of the potential and inflation terminates as in a hybrid model. We find parameter choices that reproduce observed features of the cosmic microwave background, and discuss our model in light of recent results from the BICEP2 and Planck experiments.

  19. The topological susceptibility in finite temperature QCD and axion cosmology

    DOE PAGES

    Petreczky, Peter; Schadler, Hans-Peter; Sharma, Sayantan

    2016-10-06

    We study the topological susceptibility in 2+1 flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings corresponding to temporal extent of the lattice, N τ=6,8,10 and 12. We observe very distinct temperature dependences of the topological susceptibility in the ranges above and below 250MeV. While for temperatures above 250MeV, the dependence is found to be consistent with dilute instanton gas approximation, at lower temperatures the fall-off of topological susceptibility is milder. We discuss the consequence of our results for cosmology wherein we estimate the bounds on the axion decay constant andmore » the oscillation temperature if indeed the QCD axion is a possible dark matter candidate.« less

  20. The topological susceptibility in finite temperature QCD and axion cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petreczky, Peter; Schadler, Hans-Peter; Sharma, Sayantan

    We study the topological susceptibility in 2+1 flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings corresponding to temporal extent of the lattice, N τ=6,8,10 and 12. We observe very distinct temperature dependences of the topological susceptibility in the ranges above and below 250MeV. While for temperatures above 250MeV, the dependence is found to be consistent with dilute instanton gas approximation, at lower temperatures the fall-off of topological susceptibility is milder. We discuss the consequence of our results for cosmology wherein we estimate the bounds on the axion decay constant andmore » the oscillation temperature if indeed the QCD axion is a possible dark matter candidate.« less

  1. A&M. Technical service laboratory in administration building (TAN602). Floor plan, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Technical service laboratory in administration building (TAN-602). Floor plan, reception desk, door and finish schedules. Ralph M. Parsons 1480-12-ANP/GE-3-602-A-1. INEEL index code no. 033-0602-00-693-107488 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. Telescope search for a 3-eV to 8-eV axion

    NASA Technical Reports Server (NTRS)

    Bershady, Matthew A.; Ressell, M. Ted; Turner, Michael S.

    1991-01-01

    Axions of mass 3-8 eV should have a cosmological abundance of about 50/cu cm and reside in rich clusters of galaxies. Their decays to two photons will produce a line at a wavelength of about 3100-8300 A. This effort has searched unsuccessfully for such a feature in the tergalactic light of three rich clusters, closing this 'window', and leaving open only the window from 10 to the -6th to 0.001 eV. This implies that if the axion exists, it likely comprises the dark matter. The present flux limits are of relevance to other relics whose decays produce monoenergetic photons.

  3. Radio telescope search for the resonant conversion of cold dark matter axions from the magnetized astrophysical sources

    NASA Astrophysics Data System (ADS)

    Huang, Fa Peng; Kadota, Kenji; Sekiguchi, Toyokazu; Tashiro, Hiroyuki

    2018-06-01

    We study the conditions for the adiabatic resonant conversion of the cold dark matter (CDM) axions into photons in the astrophysically sourced strong magnetic fields such as those in the neutron star magnetosphere. We demonstrate the possibility that the forthcoming radio telescopes such as the SKA (Square Kilometre Array) can probe those photon signals from the CDM axions.

  4. Axion inflation, proton decay, and leptogenesis in S U (5 )×U (1 )P Q

    NASA Astrophysics Data System (ADS)

    Boucenna, Sofiane M.; Shafi, Qaisar

    2018-04-01

    We implement inflation in a nonsupersymmetric S U (5 ) model based on a nonminimal coupling of the axion field to gravity. The isocurvature fluctuations are adequately suppressed, axions comprise the dark matter, proton lifetime estimates are of order 8 ×1034- 3 ×1035 yr , and the observed baryon asymmetry arises via nonthermal leptogenesis. The presence of low-scale colored scalars ensures unification of the Standard Model gauge couplings and also helps in stabilizing the electroweak vacuum.

  5. Polarized anisotropic spectral distortions of the CMB: galactic and extragalactic constraints on photon-axion conversion

    NASA Astrophysics Data System (ADS)

    Mukherjee, Suvodip; Khatri, Rishi; Wandelt, Benjamin D.

    2018-04-01

    We revisit the cosmological constraints on resonant and non-resonant conversion of photons to axions in the cosmological magnetic fields. We find that the constraints on photon-axion coupling and primordial magnetic fields are much weaker than previously claimed for low mass axion like particles with masses ma lesssim 5× 10‑13 eV. {In particular we find that the axion mass range 10‑14 eV <= ma <= 5× 10‑13 eV is not excluded by {the} CMB data contrary to the previous claims.} We also examine the photon-axion conversion in the Galactic magnetic fields. Resonant conversion in the large scale coherent Galactic magnetic field results in 100% polarized anisotropic spectral distortions of the {CMB} for the mass range 10‑13 eV lesssim ma lesssim 10‑11 eV. The polarization pattern traces the transverse to line of sight component of the Galactic magnetic field while both the anisotropy in the Galactic magnetic field and electron distribution imprint a characteristic anisotropy pattern in the spectral distortion. Our results apply to scalar as well as pseudoscalar particles. {For conversion to scalar particles, the polarization is rotated by 90o allowing us to distinguish them from the pseudoscalars.} For ma lesssim 10‑14 eV we have non-resonant conversion in the small scale turbulent magnetic field of the Galaxy resulting in anisotropic but unpolarized spectral distortion in the CMB. These unique signatures are potential discriminants against the isotropic and non-polarized signals such as primary CMB, and μ and y distortions with the anisotropic nature making it accessible to experiments with only relative calibration like Planck, LiteBIRD, and CoRE. We forecast for PIXIE as well as for these experiments using Fisher matrix formalism.

  6. Oscillations in the CMB from Axion Monodromy Inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flauger, Raphael; /Texas U.; McAllister, Liam

    2011-12-01

    We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axionmore » monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.« less

  7. Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    de Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Shive, Hsi-Yu; Lazkoz, Ruth

    2018-01-01

    The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃ 150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃ 400 ns/(m_B/10^{-22} eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.

  8. Tunable Supermode Dielectric Resonators for Axion Dark-Matter Haloscopes

    NASA Astrophysics Data System (ADS)

    McAllister, Ben T.; Flower, Graeme; Tobar, Lucas E.; Tobar, Michael E.

    2018-01-01

    We present frequency-tuning mechanisms for dielectric resonators, which undergo "supermode" interactions as they tune. The tunable schemes are based on dielectric materials strategically placed inside traditional cylindrical resonant cavities, necessarily operating in transverse-magnetic modes for use in axion haloscopes. The first technique is based on multiple dielectric disks with radii smaller than that of the cavity. The second scheme relies on hollow dielectric cylinders similar to a Bragg resonator, but with a different location and dimension. Specifically, we engineer a significant increase in form factor for the TM030 mode utilizing a variation of a distributed Bragg reflector resonator. Additionally, we demonstrate an application of traditional distributed Bragg reflectors in TM modes which may be applied to a haloscope. Theoretical and experimental results are presented showing an increase in Q factor and tunability due to the supermode effect. The TM030 ring-resonator mode offers a between 1 and 2-order-of-magnitude improvement in axion sensitivity over current conventional cavity systems and will be employed in the forthcoming ORGAN experiment.

  9. Technical Communications in Engineering and Science: The Practices within a Government Defense Laboratory.

    ERIC Educational Resources Information Center

    Von Seggern, Marilyn; Jourdain, Janet M.

    1996-01-01

    A survey of the different technical communications and information-related activities of 305 engineers and scientists from 3 sites of the Philips Laboratory, an Air Force research and development laboratory, found that scientists have a closer affinity for libraries and traditional information sources than do engineers. Eight tables depict survey…

  10. Laser profile changes due to photon-axion induced beam splitting

    NASA Astrophysics Data System (ADS)

    Scarlett, Carol

    2013-09-01

    This paper looks at a potentially unique measurable due to photon-axion coupling in an external magnetic field. Traditionally, detection of such a coupling has focused on observation of an optical rotation of the beam's polarization due to either a birefringence or a path length difference (p.l.d.) between two polarization states. Such experiments, utilizing mirror cavities, have been significantly limited in sensitivity; approaching coupling strengths of ~ga=10-7 GeV-1. Here the bifurcation of a beam in a cavity is explored along with the possibility of measuring its influence on the photon density. Simulations indicate that coupling to levels ga~10-12 are, with an appropriate choice of cavity, within measurable limits. This is due to a rapid growth of a signal defined by the energy loss from the center accompanying an increase in the region beyond the beam waist. Finally, the influence of a non-zero axion mass is explored.

  11. Introduction of a fresh cadaver laboratory during the surgery clerkship improves emergency technical skills.

    PubMed

    Nematollahi, Saman; Kaplan, Stephen J; Knapp, Christopher M; Ho, Hang; Alvarado, Jared; Viscusi, Rebecca; Adamas-Rappaport, William

    2015-08-01

    Student acquisition of technical skills during the clinical years of medical school has been steadily declining. To address this issue, the authors instituted a fresh cadaver-based Emergency Surgical Skills Laboratory (ESSL). Sixty-three medical students rotating through the third-year surgery clerkship participated in a 2-hour, fresh cadaver-based ESSL conducted during the first 2 days of the clerkship. The authors evaluated students utilizing both surgical skills and written examination before the ESSL and at 4 weeks post ESSL. Students demonstrated a mean improvement of 64% (±11) (P < .001) and 38% (±17) (P < .001) in technical skills and clinical knowledge, respectively. When technical skills were compared between cohorts, there were no differences observed in both pre- and post-testing (P = .08). A fresh cadaver laboratory is an effective method to provide proficiency in emergency technical skills not acquired during the clinical years of medical school. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Laboratory for Atmospheres 2008 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Cote, Charles E.

    2009-01-01

    The 2008 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report. The Laboratory for Atmospheres (Code 613) is part of the Earth Sciences Division (Code 610), formerly the Earth Sun Exploration Division, under the Sciences and Exploration Directorate (Code 600) based at NASA s Goddard Space Flight Center in Greenbelt, Maryland. In line with NASA s Exploration Initiative, the Laboratory executes a comprehensive research and technology development program dedicated to advancing knowledge and understanding of the atmospheres of Earth and other planets. The research program is aimed at understanding the influence of solar variability on the Earth s climate; predicting the weather and climate of Earth; understanding the structure, dynamics, and radiative properties of precipitation, clouds, and aerosols; understanding atmospheric chemistry, especially the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and advancing our understanding of physical properties of Earth s atmosphere. The research program identifies problems and requirements for atmospheric observations via satellite missions. Laboratory scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology for remote sensing of the atmosphere. Laboratory members conduct field measurements for satellite data calibration and validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud-resolving models, and development of next-generation Earth system models. Interdisciplinary research is carried

  13. R-Axion: A New LHC Physics Signature Involving Muon Pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Hock-Seng; /UC, Berkeley /LBL, Berkeley; Ibe, Masahiro

    2012-04-12

    In a class of models with gauge mediated supersymmetry breaking, the existence of a light pseudo scalar particle, R-axion, with a mass in hundreds MeV range is predicted. The striking feature of such a light R-axion is that it mainly decays into a pair of muons and leaves a displaced vertex inside detectors once it is produced. In this talk, we show how we can search for the R-axion at the coming LHC experiments. The one main goal of the LHC experiments is discovering supersymmetry which has been anticipated for a long time to solve the hierarchy problem. Once themore » supersymmetric standard model (SSM) is confirmed experimentally, the next question is how the supersymmetry is broken and how the effects of symmetry breaking are mediated to the SSM sector. In most cases, such investigations on 'beyond the SSM physics' rely on arguments based on extrapolations of the observed supersymmetry mass parameters to higher energies. However, there is one class of models of supersymmetry breaking where we can get a direct glimpse of the structure of the hidden sector with the help of the R-symmetry. The R-symmetry plays an important role in rather generic models of spontaneous supersymmetry breaking. At the same time, however, it must be broken in some way in order for the gauginos in the SSM sector to have non-vanishing masses. One possibility of the gaugino mass generation is to consider models where the gaugino masses are generated as a result of the explicit breaking of the R-symmetries. Unfortunately, in those models, the R-symmetry leaves little trace for the collider experiments, since the mass of the R-axion is typically heavy and beyond the reach of the LHC experiments. In this talk, instead, we consider a class of models with gauge mediation where the R-symmetry in the hidden/messenger sectors is exact in the limit of the infinite reduced Planck scale, i.e. M{sub PL} {yields} {infinity}. In this case, the gaugino masses are generated only after the R-symmetry is

  14. Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    NASA Astrophysics Data System (ADS)

    Azcoiti, Vicente

    2018-03-01

    The axion is one of the more interesting candidates to make the dark matter of the universe, and the axion potential plays a fundamental role in the determination of the dynamics of the axion field. Moreover, the way in which the U(1)A anomaly manifests itself in the chiral symmetry restored phase of QCD at high temperature could be tested when probing the QCD phase transition in relativistic heavy ion collisions. With these motivations, we investigate the physical consequences of the survival of the effects of the U(1)A anomaly in the chiral symmetric phase of QCD, and show that the free energy density is a singular function of the quark mass m, in the chiral limit, and that the σ and π susceptibilities diverge in this limit at any T ≥ Tc. We also show that the difference between the π and t;δ susceptibilities diverges in the chiral limit at any T ≥ Tc, a result that can be contrasted with the existing lattice calculations; and discuss on the generalization of these results to the Nf ≥ 3 model.

  15. 76 FR 38550 - Technical Standard DOE-STD-1095-2011, Department of Energy Laboratory Accreditation for External...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Laboratory Accreditation for External Dosimetry AGENCY: Office of Health, Safety and Security, Department of... Department) is issuing Technical Standard DOE-STD-1095-2011, Department of Energy Laboratory Accreditation... part, to determine whether to accredit dosimetry programs in accordance with the DOE Laboratory...

  16. Vacuum statistics and stability in axionic landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masoumi, Ali; Vilenkin, Alexander, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu

    2016-03-01

    We investigate vacuum statistics and stability in random axionic landscapes. For this purpose we developed an algorithm for a quick evaluation of the tunneling action, which in most cases is accurate within 10%. We find that stability of a vacuum is strongly correlated with its energy density, with lifetime rapidly growing as the energy density is decreased. On the other hand, the probability P(B) for a vacuum to have a tunneling action B greater than a given value declines as a slow power law in B. This is in sharp contrast with the studies of random quartic potentials, which foundmore » a fast exponential decline of P(B). Our results suggest that the total number of relatively stable vacua (say, with B>100) grows exponentially with the number of fields N and can get extremely large for N∼> 100. The problem with this kind of model is that the stable vacua are concentrated near the absolute minimum of the potential, so the observed value of the cosmological constant cannot be explained without fine-tuning. To address this difficulty, we consider a modification of the model, where the axions acquire a quadratic mass term, due to their mixing with 4-form fields. This results in a larger landscape with a much broader distribution of vacuum energies. The number of relatively stable vacua in such models can still be extremely large.« less

  17. Protecting the axion with local baryon number

    NASA Astrophysics Data System (ADS)

    Duerr, Michael; Schmidt-Hoberg, Kai; Unwin, James

    2018-05-01

    The Peccei-Quinn (PQ) solution to the Strong CP Problem is expected to fail unless the global symmetry U(1)PQ is protected from Planck-scale operators up to high mass dimension. Suitable protection can be achieved if the PQ symmetry is an automatic consequence of some gauge symmetry. We highlight that if baryon number is promoted to a gauge symmetry, the exotic fermions needed for anomaly cancellation can elegantly provide an implementation of the Kim-Shifman-Vainshtein-Zakharov 'hidden axion' mechanism with a PQ symmetry protected from Planck-scale physics.

  18. Limits to the radiative decays of neutrinos and axions from gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1989-01-01

    Gamma-ray observations obtained by the SMM gamma-ray spectrometer in the energy range 4.1-6.4 MeV are used to provide limits on the possible radiative decay of neutrinos and axions emitted by SN 1987A. For branching ratio values for the radiative decay modes of less than about 0.0001, the present limits are more stringent than those based upon the photon flux from decaying relic neutrinos. The data are also used to set an axion mass limit.

  19. 42 CFR 493.1409 - Condition: Laboratories performing moderate complexity testing; technical consultant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing moderate complexity testing; technical consultant. 493.1409 Section 493.1409 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  20. 42 CFR 493.1409 - Condition: Laboratories performing moderate complexity testing; technical consultant.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing moderate complexity testing; technical consultant. 493.1409 Section 493.1409 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  1. Results from phase 1 of the HAYSTAC microwave cavity axion experiment

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Al Kenany, S.; Backes, K. M.; Brubaker, B. M.; Cahn, S. B.; Carosi, G.; Gurevich, Y. V.; Kindel, W. F.; Lamoreaux, S. K.; Lehnert, K. W.; Lewis, S. M.; Malnou, M.; Maruyama, R. H.; Palken, D. A.; Rapidis, N. M.; Root, J. R.; Simanovskaia, M.; Shokair, T. M.; Speller, D. H.; Urdinaran, I.; van Bibber, K. A.

    2018-05-01

    We report on the results from a search for dark matter axions with the HAYSTAC experiment using a microwave cavity detector at frequencies between 5.6 and 5.8 GHz. We exclude axion models with two photon coupling ga γ γ≳2 ×10-14 GeV-1 , a factor of 2.7 above the benchmark KSVZ model over the mass range 23.15

  2. Entangled de Sitter from stringy axionic Bell pair I: an analysis using Bunch-Davies vacuum

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Panda, Sudhakar

    2018-01-01

    In this work, we study the quantum entanglement and compute entanglement entropy in de Sitter space for a bipartite quantum field theory driven by an axion originating from Type IIB string compactification on a Calabi-Yau three fold (CY^3) and in the presence of an NS5 brane. For this computation, we consider a spherical surface S^2, which divides the spatial slice of de Sitter (dS_4) into exterior and interior sub-regions. We also consider the initial choice of vacuum to be Bunch-Davies state. First we derive the solution of the wave function of the axion in a hyperbolic open chart by constructing a suitable basis for Bunch-Davies vacuum state using Bogoliubov transformation. We then derive the expression for density matrix by tracing over the exterior region. This allows us to compute the entanglement entropy and Rényi entropy in 3+1 dimension. Furthermore, we quantify the UV-finite contribution of the entanglement entropy which contain the physics of long range quantum correlations of our expanding universe. Finally, our analysis complements the necessary condition for generating non-vanishing entanglement entropy in primordial cosmology due to the axion.

  3. A tunable microstrip SQUID amplifier for the Axion Dark Matter eXperiment (ADMX)

    NASA Astrophysics Data System (ADS)

    O'Kelley, Sean; Hansen, Jorn; Weingarten, Elan; Mueck, Michael; Hilton, Gene; Clarke, John

    2014-03-01

    We describe a microstrip SQUID (Superconducting QUantum Interference Device) amplifier (MSA) used as the photon detector in the Axion Dark Matter eXperiment (ADMX). Cooled to 100 mK or lower, an optimized MSA approaches the quantum limit of detection. The axion dark matter is detected via Primakoff conversion to a microwave photon in a high-Q (~ 105) tunable microwave cavity, currently cooled to about 1.6 K, in the presence of a 7-tesla magnetic field. The MSA consists of a square loop of thin Nb film, incorporating two Josephson tunnel junctions with resistive shunts to prevent hysteresis in the current-voltage characteristic. The microstrip is a square Nb coil deposited over an intervening insulating layer. Since the photon frequency is determined by the unknown axion mass, the cavity and amplifier must be tunable over a broad frequency range. Tunability is achieved by terminating the microstrip with a GaAs varactor diode with a voltage-controlled capacitance that enables us to vary the resonance from nearly 1/2 to 1/4 of a wavelength. With the SQUID current-biased in the voltage state, we demonstrate a gain of typically 20 dB over nearly one octave, 415 MHz to 800 MHz. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, NSF grants PHY-1067242 and PHY-1306729, and the Livermore LDRD program.

  4. Torsion Bounds from CP Violation α2-DYNAMO in Axion-Photon Cosmic Plasma

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    Years ago Mohanty and Sarkar [Phys. Lett. B 433, 424 (1998)] have placed bounds on torsion mass from K meson physics. In this paper, associating torsion to axions a la Campanelli et al. [Phys. Rev. D 72, 123001 (2005)], it is shown that it is possible to place limits on spacetime torsion by considering an efficient α2-dynamo CP violation term. Therefore instead of Kostelecky et al. [Phys. Rev. Lett. 100, 111102 (2008)] torsion bounds from Lorentz violation, here torsion bounds are obtained from CP violation through dynamo magnetic field amplification. It is also shown that oscillating photon-axion frequency peak is reduced to 10-7 Hz due to torsion mass (or Planck mass when torsion does not propagate) contribution to the photon-axion-torsion action. Though torsion does not couple to electromagnetic fields at classical level, it does at the quantum level. Recently, Garcia de Andrade [Phys. Lett. B 468, 28 (2011)] has shown that the photon sector of Lorentz violation (LV) Lagrangian leads to linear nonstandard Maxwell equations where the magnetic field decays slower giving rise to a seed for galactic dynamos. Torsion constraints of the order of K0≈10-42 GeV can be obtained which are more stringent than the value obtained by Kostelecky et al. A lower bound for the existence of galactic dynamos is obtained for torsion as K0≈10-37 GeV.

  5. Fate of global symmetries in the Universe: QCD axion, quintessential axion and trans-Planckian inflaton decay constant

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.; Nam, Soonkeon; Semetzidis, Yannis K.

    2018-01-01

    Pseudoscalars appearing in particle physics are reviewed systematically. From the fundamental point of view at an ultraviolet completed theory, they can be light if they are realized as pseudo-Goldstone bosons of some spontaneously broken global symmetries. The spontaneous breaking scale is parametrized by the decay constant f. The global symmetry is defined by the lowest order terms allowed in the effective theory consistent with the gauge symmetry in question. Since any global symmetry is known to be broken at least by quantum gravitational effects, all pseudoscalars should be massive. The mass scale is determined by f and the explicit breaking terms ΔV in the effective potential and also anomaly terms ΔΛG4 for some non-Abelian gauge groups G. The well-known example by non-Abelian gauge group breaking is the potential for the “invisible” QCD axion, via the Peccei-Quinn symmetry, which constitutes a major part of this review. Even if there is no breaking terms from gauge anomalies, there can be explicit breaking terms ΔV in the potential in which case the leading term suppressed by f determines the pseudoscalar mass scale. If the breaking term is extremely small and the decay constant is trans-Planckian, the corresponding pseudoscalar can be a candidate for a “quintessential axion.” In general, (ΔV )1/4 is considered to be smaller than f, and hence the pseudo-Goldstone boson mass scales are considered to be smaller than the decay constants. In such a case, the potential of the pseudo-Goldstone boson at the grand unification scale is sufficiently flat near the top of the potential that it can be a good candidate for an inflationary model, which is known as “natural inflation.” We review all these ideas in the bosonic collective motion framework.

  6. Recombination era magnetic fields from axion dark matter

    DOE PAGES

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-04

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10 –23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  7. Preheating and entropy perturbations in axion monodromy inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonough, Evan; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert H.

    2016-05-04

    We study the preheating of gauge fields in a simple axion monodromy model and compute the induced entropy perturbations and their effect on the curvature fluctuations. We find that the correction to the spectrum of curvature perturbations has a blue spectrum with index n{sub s}=5/2. Hence, these induced modes are harmless for the observed structure of the universe. Since the spectrum is blue, there is the danger of overproduction of primordial black holes. However, we show that the observational constraints are easily satisfied.

  8. Reply to “Comment on ‘Axion induced oscillating electric dipole moments’”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, inmore » an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.« less

  9. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  10. Extrema of mass, first law of black hole mechanics, and a staticity theorem in Einstein-Maxwell-axion-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek

    1998-08-01

    Using the ADM formulation of the Einstein-Maxwell axion-dilaton gravity we derive the formulas for the variation of mass and other asymptotic conserved quantities in the theory under consideration. Generalizing this kind of reasoning to the initial data for the manifold with an interior boundary we get the generalized first law of black hole mechanics. We consider an asymptotically flat solution to the Einstein-Maxwell axion-dilaton gravity describing a black hole with a Killing vector field timelike at infinity, the horizon of which comprises a bifurcate Killing horizon with a bifurcate surface. Supposing that the Killing vector field is asymptotically orthogonal to the static hypersurface with boundary S and a compact interior, we find that the solution is static in the exterior world, when the timelike vector field is normal to the horizon and has vanishing electric and axion-electric fields on static slices.

  11. [Implementation of the technical requirements of the UNE-EN-ISO 15189 quality standard in a mycobacterial laboratory].

    PubMed

    Guna Serrano, M del Remedio; Ocete Mochón, M Dolores; Lahiguera, M José; Bresó, M Carmen; Gimeno Cardona, Concepción

    2013-02-01

    The UNE-EN-ISO 15189:2007 standard defines the requirements for quality and competence that must be met by medical laboratories. These laboratories should use this international standard to develop their own quality management systems and to evaluate their own competencies; in turn, this standard will be used by accreditation bodies to confirm or recognize the laboratories' competence. In clinical microbiology laboratories, application of the standard implies the implementation of the technical and specific management requirements that must be met to achieve optimal quality when carrying out microbiological tests. In Spain, accreditation is granted by the Spanish Accreditation Body (Entidad Nacional de Acreditación). This review aims to discuss the practical application of the standard's technical requirements in mycobacterial laboratory. Firstly, we define the scope of accreditation. Secondly, we specify how the items of the standard on personnel management, control of equipment, environmental facilities, method validation, internal controls and customer satisfaction surveys were developed and implemented in our laboratory. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  12. An axion-like scalar field environment effect on binary black hole merger

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Ji, Li-Wei; Hu, Bin; Cao, Zhou-Jian; Cai, Rong-Gen

    2018-06-01

    The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediate-mass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly, in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently, the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.

  13. Axionic D3-D7 inflation

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Cline, J. M.; Postma, M.

    2009-03-01

    We study the motion of a D3 brane moving within a Type IIB string vacuum compactified to 4D on K3 × T2/Z2 in the presence of D7 and O7 planes. We work within the effective 4D supergravity describing how the mobile D3 interacts with the lightest bulk moduli of the compactification, including the effects of modulus-stabilizing fluxes. We seek inflationary solutions to the resulting equations, performing our search numerically in order to avoid resorting to approximate parameterizations of the low-energy potential. We consider uplifting from D-terms and from the supersymmetry-breaking effects of anti-D3 branes. We find examples of slow-roll inflation (with anti-brane uplifting) with the mobile D3 moving along the toroidal directions, falling towards a D7-O7 stack starting from the antipodal point. The inflaton turns out to be a linear combination of the brane position and the axionic partner of the K3 volume modulus, and the similarity of the potential along the inflaton direction with that of racetrack inflation leads to the prediction ns <= 0.95 for the spectral index. The slow roll is insensitive to most of the features of the effective superpotential, and requires a one-in-104 tuning to ensure that the torus is close to square in shape. We also consider D-term inflation with the D3 close to the attractive D7, but find that for a broad (but not exhaustive) class of parameters the conditions for slow roll tend to destabilize the bulk moduli. In contrast to the axionic case, the best inflationary example of this kind requires the delicate adjustment of potential parameters (much more than the part-per-mille level), and gives inflation only at an inflection point of the potential (and so suffers from additional fine-tuning of initial conditions to avoid an overshoot problem).

  14. Design and operational experience of a microwave cavity axion detector for the 20 – 100 μ eV range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Kenany, S.; Anil, M. A.; Backes, K. M.

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  15. Design and operational experience of a microwave cavity axion detector for the 20 – 100 μ eV range

    DOE PAGES

    Al Kenany, S.; Anil, M. A.; Backes, K. M.; ...

    2017-02-09

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  16. Constraining the mass of dark photons and axion-like particles through black-hole superradiance

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Dias, Óscar J. C.; Hartnett, Gavin S.; Middleton, Matthew; Pani, Paolo; Santos, Jorge E.

    2018-03-01

    Ultralight bosons and axion-like particles appear naturally in different scenarios and could solve some long-standing puzzles. Their detection is challenging, and all direct methods hinge on unknown couplings to the Standard Model of particle physics. However, the universal coupling to gravity provides model-independent signatures for these fields. We explore here the superradiant instability of spinning black holes triggered in the presence of such fields. The instability taps angular momentum from and limits the maximum spin of astrophysical black holes. We compute, for the first time, the spectrum of the most unstable modes of a massive vector (Proca) field for generic black-hole spin and Proca mass. The observed stability of the inner disk of stellar-mass black holes can be used to derive direct constraints on the mass of dark photons in the mass range 10‑13 eVlesssim mV lesssim 3× 10‑12 eV. By including also higher azimuthal modes, similar constraints apply to axion-like particles in the mass range 6×10‑13 eVlesssim mALP lesssim 10‑11 eV. Likewise, mass and spin distributions of supermassive BHs—as measured through continuum fitting, Kα iron line, or with the future space-based gravitational-wave detector LISA – imply indirect bounds in the mass range approximately 10‑19 eVlesssim mV, mALP lesssim 10‑13 eV, for both axion-like particles and dark photons. Overall, superradiance allows to explore a region of approximately 8 orders of magnitude in the mass of ultralight bosons.

  17. Large tensor non-Gaussianity from axion-gauge field dynamics

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-05-01

    We show that an inflation model in which a spectator axion field is coupled to an S U (2 ) gauge field produces a large three-point function (bispectrum) of primordial gravitational waves, Bh, on the scales relevant to the cosmic microwave background experiments. The amplitude of the bispectrum at the equilateral configuration is characterized by Bh/Ph2=O (10 )×ΩA-1 , where ΩA is a fraction of the energy density in the gauge field and Ph is the power spectrum of gravitational waves produced by the gauge field.

  18. Concept of multiple-cell cavity for axion dark matter search

    NASA Astrophysics Data System (ADS)

    Jeong, Junu; Youn, SungWoo; Ahn, Saebyeok; Kim, Jihn E.; Semertzidis, Yannis K.

    2018-02-01

    In cavity-based axion dark matter search experiments exploring high mass regions, multiple-cavity design is under consideration as a method to increase the detection volume within a given magnet bore. We introduce a new idea, referred to as a multiple-cell cavity, which provides various benefits including a larger detection volume, simpler experimental setup, and easier phase-matching mechanism. We present the characteristics of this concept and demonstrate the experimental feasibility with an example of a double-cell cavity.

  19. Plasma-based wakefield accelerators as sources of axion-like particles

    NASA Astrophysics Data System (ADS)

    Burton, David A.; Noble, Adam

    2018-03-01

    We estimate the average flux density of minimally-coupled axion-like particles (ALPs) generated by a laser-driven plasma wakefield propagating along a constant strong magnetic field. Our calculations suggest that a terrestrial source based on this approach could generate a pulse of ALPs whose flux density is comparable to that of solar ALPs at Earth. This mechanism is optimal for ALPs with mass in the range of interest of contemporary experiments designed to detect dark matter using microwave cavities.

  20. Polarization-operator approach to optical signatures of axion-like particles in strong laser pulses

    NASA Astrophysics Data System (ADS)

    Villalba-Chávez, S.; Podszus, T.; Müller, C.

    2017-06-01

    Hypothetical oscillations of probe photons into axion-like particles might be revealed by exploiting the strong fields of high-intensity laser pulses. Considering an arbitrary plane-wave background, we determine the polarization tensor induced by the quantum fluctuations of the axion field and use it to calculate how the polarimetric properties of an initially linear-polarized probe beam are modified. We find that various experimental setups based on contemporary facilities and instrumentation might lead to new exclusion bounds on the parameter space of these particle candidates. The impact of the pulse shape on the discovery potential is studied via a comparison between the cases in which the wave is modulated by a Gaussian envelope and a sin2 profile. This analysis shows that the upper limits resulting from the ellipticity are relatively insensitive to this change, whereas those arising from the rotation of the polarization plane turn out to be more dependent on the field shape.

  1. Gravitational waves at interferometer scales and primordial black holes in axion inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Bellido, Juan; Peloso, Marco; Unal, Caner, E-mail: juan.garciabellido@uam.es, E-mail: peloso@physics.umn.edu, E-mail: unal@physics.umn.edu

    We study the prospects of detection at terrestrial and space interferometers, as well as at pulsar timing array experiments, of a stochastic gravitational wave background which can be produced in models of axion inflation. This potential signal, and the development of these experiments, open a new window on inflation on scales much smaller than those currently probed with Cosmic Microwave Background and Large Scale Structure measurements. The sourced signal generated in axion inflation is an ideal candidate for such searches, since it naturally grows at small scales, and it has specific properties (chirality and non-gaussianity) that can distinguish it frommore » an astrophysical background. We study under which conditions such a signal can be produced at an observable level, without the simultaneous overproduction of scalar perturbations in excess of what is allowed by the primordial black hole limits. We also explore the possibility that scalar perturbations generated in a modified version of this model may provide a distribution of primordial black holes compatible with the current bounds, that can act as a seeds of the present black holes in the universe.« less

  2. Astrophysical hints of axion-like particles

    NASA Astrophysics Data System (ADS)

    Roncadelli, M.; Galanti, G.; Tavecchio, F.; Bonnoli, G.

    2015-01-01

    After reviewing three astrophysical hints of the existence of axion-like particles (ALPs), we describe in more detail a new similar hint involving flat spectrum radio quasars (FSRQs). Detection of FSRQs above about 20GeV pose a challenge to very-high-energy (VHE) astrophysics, because at those energies the ultraviolet emission from their broad line region should prevent photons produced by the central engine to leave the source. Although a few astrophysical explanations have been put forward, they are totally ad hoc. We show that a natural explanation instead arises within the conventional models of FSRQs provided that photon-ALP oscillations occur inside the source. Our analysis takes the FSRQ PKR 1222+206 as an example, and it looks tantalizing that basically the same choice of the free model parameters adopted in this case is consistent with those that provide the other three hints of the existence of ALPs.

  3. LANGUAGE LABORATORY FACILITIES, TECHNICAL GUIDE FOR THE SELECTION, PURCHASE, USE, AND MAINTENANCE, STUDY 4--NEW MEDIA FOR INSTRUCTION.

    ERIC Educational Resources Information Center

    HAYES, ALFRED S.

    THE MANY POSSIBLE VARIATIONS OF LANGUAGE LABORATORY SYSTEMS WERE DESCRIBED, AND RELATIVE ADVANTAGES AND LIMITATIONS OF EACH WERE DISCUSSED. DETAILED GUIDANCE ON PURCHASING LANGUAGE LABORATORY EQUIPMENT WAS PROVIDED THROUGH (1) DEFINITION OF HIGH-QUALITY SPEECH REPRODUCTION, (2) DISCUSSION OF TECHNICAL FACTORS WHICH AFFECT ITS ACHIEVEMENT, AND (3)…

  4. Medical Laboratory Technician--Microbiology, 10-3. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the second of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  5. Axion-familon model with a harmless 17 keV neutrino

    NASA Astrophysics Data System (ADS)

    Nelson, Ann E.

    1985-09-01

    A model is discussed in which e + τ-μ emerges as an approximate, but very good, accidental symmetry of the lepton mass matrices. Consequently a heavy neutrino can be accommodated without conflicts with νμ oscillation or neutrinoless double β decay data. The model has a Goldstone boson which may be interpreted as the axion, the majoron, or a familon. The decay of the heavy neutrino can proceed at a rate just compatible with cosmology if the K+ --> π+ + Goldstone boson branching ratio is at the present experimental limit. Junior Fellow, Harvard Society of Fellows.

  6. Ultralight Axion Dark Matter and Its Impact on Dark Halo Structure in N-body Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajun; Sming Tsai, Yue-Lin; Kuo, Jui-Lin; Cheung, Kingman; Chu, Ming-Chung

    2018-01-01

    Ultralight axion is a dark matter candidate with mass { O }({10}-22){eV} and de Broglie wavelength of order kiloparsec. Such an axion, also called fuzzy dark matter (FDM), thermalizes via gravitational force and forms a Bose–Einstein condensate. Recent studies suggested that the quantum pressure from FDM can significantly affect structure formation in small scales, thus alleviating the so-called “small-scale crisis.” In this paper, we develop a new technique to discretize the quantum pressure and illustrate the interactions among FDM particles in an N-body simulation that accurately simulates the formation of the dark matter halo and its inner structure in the region outside the softening length. In a self-gravitationally bound virialized halo, we find a constant density solitonic core, which is consistent with theoretical prediction. The existence of the solitonic core reveals the nonlinear effect of quantum pressure and impacts structure formation in the FDM model.

  7. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, G.D.; Mei, G.T.

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident.

  8. An asteroseismic constraint on the mass of the axion from the period drift of the pulsating DA white dwarf star L19-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Córsico, Alejandro H.; Althaus, Leandro G.; Bertolami, Marcelo M. Miller

    We employ an asteroseismic model of L19-2, a relatively massive ( M {sub *} ∼ 0.75 M {sub ⊙}) and hot ( T {sub eff} ∼ 12 100 K) pulsating DA (H-rich atmosphere) white dwarf star (DAV or ZZ Ceti variable), and use the observed values of the temporal rates of period change of its dominant pulsation modes (Π ∼ 113 s and Π ∼ 192 s), to derive a new constraint on the mass of the axion, the hypothetical non-barionic particle considered as a possible component of the dark matter of the Universe. If the asteroseismic model employed ismore » an accurate representation of L19-2, then our results indicate hints of extra cooling in this star, compatible with emission of axions of mass m {sub a} cos{sup 2}β ∼< 25 meV or an axion-electron coupling constant of g {sub ae} ∼< 7 × 10{sup −13}.« less

  9. Axion dark matter in a 3 -3 -1 model

    NASA Astrophysics Data System (ADS)

    Montero, J. C.; Romero Castellanos, Ana R.; Sánchez-Vega, B. L.

    2018-03-01

    Slightly extending a right-handed neutrino version of the 3 -3 -1 model, we show that it is not only possible to solve the strong C P problem but also to give the total dark matter abundance reported by the Planck collaboration. Specifically, we consider the possibility of introducing a 3 -3 -1 scalar singlet to implement a gravity stable Peccei-Quinn mechanism in this model. Remarkably, for allowed regions of the parameter space, the arising axions with masses ma≈meV can both make up the total dark matter relic density through nonthermal production mechanisms and be very close to the region to be explored by the IAXO helioscope.

  10. Axionic landscape for Higgs coupling near-criticality

    NASA Astrophysics Data System (ADS)

    Cline, James M.; Espinosa, José R.

    2018-02-01

    The measured value of the Higgs quartic coupling λ is peculiarly close to the critical value above which the Higgs potential becomes unstable, when extrapolated to high scales by renormalization group running. It is tempting to speculate that there is an anthropic reason behind this near-criticality. We show how an axionic field can provide a landscape of vacuum states in which λ scans. These states are populated during inflation to create a multiverse with different quartic couplings, with a probability distribution P that can be computed. If P is peaked in the anthropically forbidden region of Higgs instability, then the most probable universe compatible with observers would be close to the boundary, as observed. We discuss three scenarios depending on the Higgs vacuum selection mechanism: decay by quantum tunneling, by thermal fluctuations, or by inflationary fluctuations.

  11. Search for a massive short-lived axion in nuclear transitions

    NASA Astrophysics Data System (ADS)

    Hatzikoutelis, Athanasios

    Recent reports of the possible existence of an Axion with mass = 9.5 MeV and lifetime less than 10-14 sec do not contradict any negative results of the 20-year long search. The present work aims at confirming or disproving these reports. An Axion may compete with M1 nuclear transitions and decay into a e+-e- pair, producing events with high angle separation, thus being detectable in the presence of internal pair conversion which favors small separation angles. In the present experiment the M1 transitions from two discrete states in 12C were produced using a (d,n) reaction. A hermetic array of plastic scintillator detectors for e+-e- pairs from nuclear transitions was upgraded to 65 elements covering 50% of 4pi. A target chamber made of carbon fiber/epoxy resin, with wall thickness 0.8 mm, was introduced which absorbs only 172. 2 keV of the kinetic energy of minimum ionizing e+/e-. A neutron detector with total efficiency of 3% was constructed to measure the time of flight of neutrons. The detectors and chamber were installed on the beam line of the Stony Brook heavy ion LINAC. A test run was conducted using the reaction 11B(p,e+e-)12C (Ep = 7.2 MeV) to populate the Giant Dipole Resonance of 12C. The observation of the IPC from the 22.6-MeV E1 transition to the ground state of 12C established the pair-energy line-shape and produced an absolute pairenergy calibration. The angular correlation distribution of the pairs was found to be in agreement with the Born and point nucleus approximation of E1 angular correlations. A data run with the stripping reaction 11B(d,n)12C* (Ed = 7.2 MeV) populated the (Ipi,T) = (1+,1) 15.11-MeV and the (1 +,0) 12.7-MeV states of 12C. Detected pair events without neutron coincidence required showed a clear and strong peak of the 15.11 MeV to ground state transition. Analysis of these data agreed with angular correlations of M1 internal pair conversion. These did not support the earlier work and showed no evidence of an Axion emitted in

  12. [Experience of the development special medical technical laboratory for studies of effects caused by potent electromagnetic radiation in biologic objects].

    PubMed

    Gorodetsky, B N; Kalyada, T V; Petrov, S V

    2015-01-01

    This article covers topics of creating special medical technical laboratory for medial and biologic studies concerning influence of potent high-frequency elecromagnetic radiation on various biologic objects. The authors gave example of such laboratory, described its construction features, purpose and main characteristics of the included devices.

  13. Axion-photon propagation in magnetized universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chen; Lai, Dong, E-mail: wangchen@nao.cas.cn, E-mail: dong@astro.cornell.edu

    Oscillations between photons and axion-like particles (ALP) travelling in intergalactic magnetic fields have been invoked to explain a number of astrophysical phenomena, or used to constrain ALP properties using observations. One example is the anomalous transparency of the universe to TeV gamma rays. The intergalactic magnetic field is usually modeled as patches of coherent domains, each with a uniform magnetic field, but the field orientation changes randomly from one domain to the next (''discrete-φ model''). We show in this paper that in more realistic situations, when the magnetic field direction varies continuously along the propagation path, the photon-to-ALP conversion probabilitymore » P can be significantly different from the discrete-φ model. In particular, P has a distinct dependence on the photon energy and ALP mass, and can be as large as 100%. This result can affect previous constraints on ALP properties based on ALP-photon propagation in intergalactic magnetic fields, such as TeV photons from distant Active Galactic Nucleus.« less

  14. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles andmore » book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).« less

  15. Medical Laboratory Technician--Chemical Chemistry & Urinalysis, 10-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication, the last of three course materials in the medical laboratory technician field adapted from the Military Curriculum Materials for Use in Technical and Vocational Education series, was designed as a refresher course for student self-study and evaluation. It can be used by advanced students or beginning students participating in a…

  16. Drifting oscillations in axion monodromy

    DOE PAGES

    Flauger, Raphael; McAllister, Liam; Silverstein, Eva; ...

    2017-10-31

    In this paper, we study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effectsmore » of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. Finally, we use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.« less

  17. Thermalized axion inflation

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo Z.; Notari, Alessio

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton phi to gauge fields of the form phi F tilde F/f, as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= dot phi/(2fH), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H, due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξgtrsim2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξgtrsim3.4 however, observations require ξgtrsim6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of Teq simeq ξ H/bar g where bar g is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if phi is thermal and find that the tensor to scalar ratio is suppressed by H/(2T), if tensors do not thermalize.

  18. Thermalized axion inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Ricardo Z.; Notari, Alessio, E-mail: rferreira@icc.ub.edu, E-mail: notari@ub.edu

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton φ to gauge fields of the form φ F F-tilde / f , as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= φ-dot /(2 fH ), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H , due to the very large occupation numbers, and create a thermal bath of particlesmore » of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξ∼>2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξ∼>3.4; however, observations require ξ∼>6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of T {sub eq} ≅ ξ H / g-bar where g-bar is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if φ is thermal and find that the tensor to scalar ratio is suppressed by H /(2 T ), if tensors do not thermalize.« less

  19. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birdsell, Kay Hanson; Stauffer, Philip H.; Atchley, Adam Lee

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2016 annual review for Area G.

  20. A Cryogenic Detector Characterization Facility in the Shallow Underground Laboratory at the Technical University of Munich

    NASA Astrophysics Data System (ADS)

    Langenkämper, A.; Defay, X.; Ferreiro Iachellini, N.; Kinast, A.; Lanfranchi, J.-C.; Lindner, E.; Mancuso, M.; Mondragón, E.; Münster, A.; Ortmann, T.; Potzel, W.; Schönert, S.; Strauss, R.; Ulrich, A.; Wawoczny, S.; Willers, M.

    2018-04-01

    The Physics Department of the Technical University of Munich operates a shallow underground detector laboratory in Garching, Germany. It provides ˜ 160 {m^2} of laboratory space which is shielded from cosmic radiation by ˜ 6 m of gravel and soil, corresponding to a shielding of ˜ 15 {m.w.e.} . The laboratory also houses a cleanroom equipped with work- and wetbenches, a chemical fumehood as well as a spin-coater and a mask-aligner for photolithographic processing of semiconductor detectors. Furthermore, the shallow underground laboratory runs two high-purity germanium detector screening stations, a liquid argon cryostat and a ^3 He-^4 He dilution refrigerator with a base temperature of ≤ 12-14 mK . The infrastructure provided by the shallow laboratory is particularly relevant for the characterization of CaWO_4 target crystals for the CRESST-III experiment, detector fabrication and assembly for rare event searches. Future applications of the laboratory include detector development in the framework of coherent neutrino nucleus scattering experiments (ν -cleus) and studying its potential as a site to search for MeV-scale dark matter with gram-scale cryogenic detectors.

  1. Axions, neutrinos and strings: The formation of structure in an SO(10) universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1984-01-01

    In a class of grand unified theories containing SO(10), cosmologically significant axion and neutrino energy densities are obtainable naturally. To obtain large scale structure, both components of dark matter are considered to exist with comparable energy densities. To obtain large scale structure, inflationary and non-inflationary scenarios are considered, as well as scenarios with and without vacuum strings. It is shown that inflation may be compatible with recent observations of the mass density within galaxy clusters and superclusters, especially if strings are present.

  2. Axions, neutrinos and strings - The formation of structure in an SO(10) universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1986-01-01

    In a class of grand unified theories containing SO(10), cosmologically significant axion and neutrino energy densities are obtainable naturally. To obtain large scale structure, both components of dark matter are considered to exist with comparable energy densities. To obtain large scale structure, inflationary and non-inflationary scenarios are considered, as well as scenarios with and without vacuum strings. It is shown that inflation may be compatible with recent observations of the mass density within galaxy clusters and superclusters, especially if strings are present.

  3. Axion gauge field inflation and gravitational leptogenesis: A lower bound on B modes from the matter-antimatter asymmetry of the Universe

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Devulder, C.

    2018-01-01

    We present a toy model of an axion gauge field inflation scenario that yields viable density and gravitational wave spectra. The scenario consists of an axionic inflaton in a steep potential that is effectively flattened by a coupling to a collection of non-Abelian gauge fields. The model predicts a blue-tilted gravitational wave spectrum that is dominated by one circular polarization, resulting in unique observational targets for cosmic microwave background and gravitational wave experiments. The handedness of the gravitational wave spectrum is incorporated in a model of leptogenesis through the axial-gravitational anomaly; assuming electroweak sphaeleron processes convert the lepton asymmetry into baryons, we predict an approximate lower bound on the tensor-to-scalar ratio r ˜3 - 4 ×10-2 for models that also explain the matter-antimatter asymmetry of the Universe.

  4. Natural Higgs-Flavor-Democracy Solution of the μ Problem of Supersymmetry and the QCD Axion

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.

    2013-07-01

    We show that the hierarchically small μ term in supersymmetric theories is a consequence of two identical pairs of Higgs doublets taking a democratic form for their mass matrix. We briefly discuss the discrete symmetry S2×S2 toward the democratic mass matrix. Then, we show that there results an approximate Peccei-Quinn symmetry and hence the value μ is related to the axion decay constant.

  5. Technical Tension Between Achieving Particulate and Molecular Organic Environmental Cleanliness: Data from Astromaterial Curation Laboratories

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Burkett, P. J.

    2011-01-01

    NASA Johnson Space Center operates clean curation facilities for Apollo lunar, Antarctic meteorite, stratospheric cosmic dust, Stardust comet and Genesis solar wind samples. Each of these collections is curated separately due unique requirements. The purpose of this abstract is to highlight the technical tensions between providing particulate cleanliness and molecular cleanliness, illustrated using data from curation laboratories. Strict control of three components are required for curating samples cleanly: a clean environment; clean containers and tools that touch samples; and use of non-shedding materials of cleanable chemistry and smooth surface finish. This abstract focuses on environmental cleanliness and the technical tension between achieving particulate and molecular cleanliness. An environment in which a sample is manipulated or stored can be a room, an enclosed glovebox (or robotic isolation chamber) or an individual sample container.

  6. Axionic black branes in the k -essence sector of the Horndeski model

    NASA Astrophysics Data System (ADS)

    Cisterna, Adolfo; Hassaine, Mokhtar; Oliva, Julio; Rinaldi, Massimiliano

    2017-12-01

    We construct new black brane solutions in the context of Horndeski gravity, in particular, in its K-essence sector. These models are supported by axion scalar fields that depend only on the horizon coordinates. The dynamics of these fields is determined by a K-essence term that includes the standard kinetic term X and a correction of the form Xk. We find both neutral and charged exact and analytic solutions in D -dimensions, which are asymptotically anti-de Sitter. Then, we describe in detail the thermodynamical properties of the four-dimensional solutions and we compute the dual holographic DC conductivity.

  7. Recognising Axionic Dark Matter by Compton and de-Broglie Scale Modulation of Pulsar Timing

    NASA Astrophysics Data System (ADS)

    De Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth

    2017-11-01

    Light Axionic Dark Matter, motivated by string theory, is increasingly favored for the "no-WIMP era". Galaxy formation is suppressed below a Jeans scale, of ≃ 10^8 M_⊙ by setting the axion mass to, m_B ˜ 10^{-22}eV, and the large dark cores of dwarf galaxies are explained as solitons on the de-Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency, ω_B= (2.5 months)^{-1}(m_B/10^{-22}eV), would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de-Broglie interference, with a dense soliton core of size ≃ 150pc, at the Galactic center. The oscillating field pressure induces General Relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals, of ≃ 400nsec/(m_B/10^{-22}eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.

  8. Finding the chiral gravitational wave background of an axion-S U (2 ) inflationary model using CMB observations and laser interferometers

    NASA Astrophysics Data System (ADS)

    Thorne, Ben; Fujita, Tomohiro; Hazumi, Masashi; Katayama, Nobuhiko; Komatsu, Eiichiro; Shiraishi, Maresuke

    2018-02-01

    A detection of B-mode polarization of the cosmic microwave background (CMB) anisotropies would confirm the presence of a primordial gravitational wave background (GWB). In the inflation paradigm, this would be an unprecedented probe of the energy scale of inflation as it is directly proportional to the power spectrum of the GWB. However, similar tensor perturbations can be produced by the matter fields present during inflation, breaking the simple relationship between energy scale and the tensor-to-scalar ratio r . It is therefore important to find ways of distinguishing between the generation mechanisms of the GWB. Without doing a full model selection, we analyze the detectability of a new axion-S U (2 ) gauge field model by calculating the signal-to-noise ratio of future CMB and interferometer observations sensitive to the chirality of the tensor spectrum. We forecast the detectability of the resulting CMB temperature and B-mode (TB) or E-mode and B-mode (EB) cross-correlation by the LiteBIRD satellite, considering the effects of residual foregrounds, gravitational lensing, and assess the ability of such an experiment to jointly detect primordial TB and EB spectra and self-calibrate its polarimeter. We find that LiteBIRD will be able to detect the chiral signal for r*>0.03 , with r* denoting the tensor-to-scalar ratio at the peak scale, and that the maximum signal-to-noise ratio for r*<0.07 is ˜2 . We go on to consider an advanced stage of a LISA-like mission, which is designed to be sensitive to the intensity and polarization of the GWB. We find that such experiments would complement CMB observations as they would be able to detect the chirality of the GWB with high significance on scales inaccessible to the CMB. We conclude that CMB two-point statistics are limited in their ability to distinguish this model from a conventional vacuum fluctuation model of GWB generation, due to the fundamental limits on their sensitivity to parity violation. In order to test

  9. New Limits on Bosonic Dark Matter, Solar Axions, Pauli Exclusion Principle Violation, and Electron Decay from the Majorana Demonstrator

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; ...

    2017-04-21

    Here, we present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. We set our most stringent DM constraints for 11.8 keV mass particles, limiting g A e < 4.5 × 10 -13 for pseudoscalars and ( α ' / α ) < 9.7 × 10 -28 for vectors. We also report a 14.4 keV solar axion coupling limit of gmore » $$eff\\atop{AN}$$ × g A e < 3.8 × 10 -17 , a 1/2 β 2 < 8.5 × 10 - 48 limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τ e > 1.2 × 1 0 24 yr for e - → invisible.« less

  10. The topological susceptibility from grand canonical simulations in the interacting instanton liquid model: Chiral phase transition and axion mass

    NASA Astrophysics Data System (ADS)

    Wantz, Olivier; Shellard, E. P. S.

    2010-04-01

    This is the last in a series of papers on the topological susceptibility in the interacting instanton liquid model (IILM). We will derive improved finite temperature interactions to study the thermodynamic limit of grand canonical Monte Carlo simulations in the quenched and unquenched case with light, physical quark masses. In particular, we will be interested in chiral symmetry breaking. The paper culminates by giving, for the first time, a well-motivated temperature-dependent axion mass. Especially, this work finally provides a computation of the axion mass in the low temperature regime, ma2fa2=1.46×10-3Λ41+0.50 T/Λ1+(3.53 . It connects smoothly to the high temperature dilute gas approximation; the latter is improved by including quark threshold effects. To compare with earlier studies, we also provide the usual power-law ma2=αΛ4fa2(T, where Λ=400 MeV, n=6.68 and α=1.68×10-7.

  11. New Limits on Bosonic Dark Matter, Solar Axions, Pauli Exclusion Principle Violation, and Electron Decay from the Majorana Demonstrator

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.; MAJORANA Collaboration

    2017-04-01

    We present new limits on exotic keV-scale physics based on 478 kg d of Majorana Demonstrator commissioning data. Constraints at the 90% confidence level are derived on bosonic dark matter (DM) and solar axion couplings, Pauli exclusion principle violating (PEPV) decay, and electron decay using monoenergetic peak signal limits above our background. Our most stringent DM constraints are set for 11.8 keV mass particles, limiting gA e<4.5 ×10-13 for pseudoscalars and (α'/α )<9.7 ×10-28 for vectors. We also report a 14.4 keV solar axion coupling limit of gAN eff×gA e<3.8 ×10-17, a 1/2 β2<8.5 ×10-48 limit on the strength of PEPV electron transitions, and a lower limit on the electron lifetime of τe>1.2 ×1 024 yr for e-→ invisible.

  12. Axion-assisted production of sterile neutrino dark matter

    DOE PAGES

    Berlin, Asher; Hooper, Dan

    2017-04-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our Universe’s dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. Here in this paper, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axionlike field. As the energy density of the axionlike particles is diluted by Hubble expansion, the degree of mixing is reduced at late times,more » suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. Lastly, we present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.« less

  13. Axion-assisted production of sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Hooper, Dan

    2017-04-01

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our Universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this paper, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axionlike field. As the energy density of the axionlike particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.

  14. Axion like particles and the inverse seesaw mechanism

    DOE PAGES

    Carvajal, C. D. R.; Dias, Alex G.; Nishi, C. C.; ...

    2015-05-13

    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft -ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomalymore » cancellation imposes strong constraints on the order of the group. In conclusion, the anomalous U(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.« less

  15. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimpton, Kathryn D; Garcia, Kari L. M; Brunette, Jeremy Christopher

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building tomore » create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.« less

  16. Cognitive task analysis for teaching technical skills in an inanimate surgical skills laboratory.

    PubMed

    Velmahos, George C; Toutouzas, Konstantinos G; Sillin, Lelan F; Chan, Linda; Clark, Richard E; Theodorou, Demetrios; Maupin, Fredric

    2004-01-01

    The teaching of surgical skills is based mostly on the traditional "see one, do one, teach one" resident-to-resident method. Surgical skills laboratories provide a new environment for teaching skills but their effectiveness has not been adequately tested. Cognitive task analysis is an innovative method to teach skills, used successfully in nonmedical fields. The objective of this study is to evaluate the effectiveness of a 3-hour surgical skills laboratory course on central venous catheterization (CVC), taught by the principles of cognitive task analysis to surgical interns. Upon arrival to the Department of Surgery, 26 new interns were randomized to either receive a surgical skills laboratory course on CVC ("course" group, n = 12) or not ("traditional" group, n = 14). The course consisted mostly of hands-on training on inanimate CVC models. All interns took a 15-item multiple-choice question test on CVC at the beginning of the study. Within two and a half months all interns performed CVC on critically ill patients. The outcome measures were cognitive knowledge and technical-skill competence on CVC. These outcomes were assessed by a 14-item checklist evaluating the interns while performing CVC on a patient and by the 15-item multiple-choice-question test, which was repeated at that time. There were no differences between the two groups in the background characteristics of the interns or the patients having CVC. The scores at the initial multiple-choice test were similar (course: 7.33 +/- 1.07, traditional: 8 +/- 2.15, P = 0.944). However, the course interns scored significantly higher in the repeat test compared with the traditional interns (11 +/- 1.86 versus 8.64 +/- 1.82, P = 0.03). Also, the course interns achieved a higher score on the 14-item checklist (12.6 +/- 1.1 versus 7.5 +/- 2.2, P <0.001). They required fewer attempts to find the vein (3.3 +/- 2.2 versus 6.4 +/- 4.2, P = 0.046) and showed a trend toward less time to complete the procedure (15.4 +/- 9

  17. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B.; Stauffer, Philip H.; Birdsell, Kay H.

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  18. Medical Laboratory Technician--Hematology, Serology, Blood Banking & Immunohematology, 10-4. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the third of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  19. Core Technical Capability Laboratory Management System

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda; Dugger, Curtis; Griffin, Laurie

    2008-01-01

    The Core Technical Capability Lab - oratory Management System (CTCLMS) consists of dynamically generated Web pages used to access a database containing detailed CTC lab data with the software hosted on a server that allows users to have remote access.

  20. Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing.

    PubMed

    De Martino, Ivan; Broadhurst, Tom; Tye, S-H Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth

    2017-12-01

    Light axionic dark matter, motivated by string theory, is increasingly favored for the "no weakly interacting massive particle era". Galaxy formation is suppressed below a Jeans scale of ≃10^{8}  M_{⊙} by setting the axion mass to m_{B}∼10^{-22}  eV, and the large dark cores of dwarf galaxies are explained as solitons on the de Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency ω_{B}=(2.5  months)^{-1}(m_{B}/10^{-22}  eV) would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de Broglie interference, with a dense soliton core of size ≃150  pc, at the Galactic center. The oscillating field pressure induces general relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals of ≃400  nsec/(m_{B}/10^{-22}  eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.

  1. Laboratory for Atmospheres: 2004 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The report describes our role in NASA's mission, gives a broad description of our research, and summarizes our scientists' major accomplishments in 2004. The report also contains useful information on human resources, scientific interactions, outreach activities, and the transformation our laboratory has undergone. This report is published in two versions: 1) an abbreviated print version, and 2) an unabridged electronic version at our Laboratory for Atmospheres Web site: http://atmospheres.gsfc.nasa.gov/.

  2. Impact of Nuclear Laboratory Personnel Credentials & Continuing Education on Nuclear Cardiology Laboratory Quality Operations.

    PubMed

    Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W

    2017-12-22

    Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. Mass, angular momentum, and charge inequalities for black holes in Einstein-Maxwell-axion-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek

    2014-02-01

    Mass, angular momentum, and charge inequalities for axisymmetric maximal time-symmetric initial data invariant under an action of U(1) group, in Einstein-Maxwell-axion-dilaton gravity being the low-energy limit of the heterotic string theory, is established. We assume that a data set with two asymptotically flat regions is given on a smooth simply connected manifold. We also pay attention to the area momentum charge inequalities for a closed orientable two-dimensional spacelike surface embedded in the spacetime of the considered theory.

  4. Management of technical date in Nihon Doro kodan

    NASA Astrophysics Data System (ADS)

    Hanada, Jun'ichi

    Nihon Doro Kodan Laboratory has collected and contributed technical data (microfiches, aerial photographs, books and literature) on plans, designs, constructions and maintenance of the national expressways and the ordinary toll roads since 1968. This work is systematized on computer to retrieve and contribute data faster. Now Laboratory operates Technical Data Management System which manages all of technical data and Technical Document Management System which manages technical documents. These systems stand on users' on-line retrieval and data accumuration by microfiches and optical disks.

  5. Tunable microstrip SQUID amplifiers for the Gen 2 Axion Dark Matter eXperiment (ADMX)

    NASA Astrophysics Data System (ADS)

    O'Kelley, Sean; Hilton, Gene; Clarke, John; ADMX Collaboration

    2016-03-01

    We present a series of tunable microstrip SQUID (Superconducting Quantum Interference Device) amplifiers (MSAs) for installation in ADMX. The axion dark matter candidate is detected via Primakoff conversion to a microwave photon in a high-Q (~100,000) tunable microwave cavity cooled with a dilution refrigerator in a 7-tesla magnetic field. The microwave photon frequency ν is a function of the unknown axion mass, so both the cavity and amplifier must be scanned over a wide frequency range. An MSA is a linear, phase-preserving amplifier consisting of a square washer loop, fabricated from a thin Nb film, incorporating two Josephson tunnel junctions with resistive shunts to prevent hysteresis. The input is coupled via a microstrip made from a square Nb coil deposited over the washer with an intervening insulating layer. Tunability is achieved by terminating the microstrip with GaAs varactors that operate below 100 mK. By varying the varactor capacitance with a bias voltage, the resonant frequency is varied by up to a factor of 2. We demonstrate several devices operating below 100 mK, matched to the discrete operating bands of ADMX at frequencies ranging from 560 MHz to 1 GHz. The MSAs exhibit gains exceeding 20 dB and the associated noise temperatures, measured with a hot/cold load, approach the standard quantum limit (hν/kB) . Supported by DOE Grants DE - FG02 - 97ER41029, DE - FG02 - 96ER40956, DE - AC52 - 07NA27344, DE - AC03 - 76SF00098, and the Livermore LDRD program.

  6. Gateway to the Future. Skill Standards for the Bioscience Industry for Technical Workers in Pharmaceutical Companies, Biotechnology Companies, and Clinical Laboratories.

    ERIC Educational Resources Information Center

    Education Development Center, Inc., Newton, MA.

    The Bioscience Industry Skills Standards Project (BISSP) is developing national, voluntary skill standards for technical jobs in biotechnology and pharmaceutical companies and clinical laboratories in hospitals, universities, government, and independent settings. Research with employees and educators has pinpointed three issues underscoring the…

  7. An Inquiry into Testing of Information Retrieval Systems. Comparative Systems Laboratory Final Technical Report, Part III: CSL Related Studies.

    ERIC Educational Resources Information Center

    Zull, Carolyn Gifford, Ed.; And Others

    This third volume of the Comparative Systems Laboratory (CSL) Final Technical Report is a collection of relatively independent studies performed on CSL materials. Covered in this document are studies on: (1) properties of files, including a study of the growth rate of a dictionary of index terms as influenced by number of documents in the file and…

  8. A new bound on axion-like particles

    NASA Astrophysics Data System (ADS)

    Marsh, M. C. David; Russell, Helen R.; Fabian, Andrew C.; McNamara, Brian R.; Nulsen, Paul; Reynolds, Christopher S.

    2017-12-01

    Axion-like particles (ALPs) and photons can quantum mechanically interconvert when propagating through magnetic fields, and ALP-photon conversion may induce oscillatory features in the spectra of astrophysical sources. We use deep (370 ks), short frame time Chandra observations of the bright nucleus at the centre of the radio galaxy M87 in the Virgo cluster to search for signatures of light ALPs. The absence of substantial irregularities in the X-ray power-law spectrum leads to a new upper limit on the photon-ALP coupling, gaγ: using a very conservative model of the cluster magnetic field consistent with Faraday rotation measurements from M87 and M84, we find gaγ < 2.6 × 10-12 GeV-1 at 95% confidence level for ALP masses ma <= 10‑13 eV. Other consistent magnetic field models lead to stronger limits of gaγ lesssim 1.1–1.5 × 10‑12 GeV‑1. These bounds are all stronger than the limit inferred from the absence of a gamma-ray burst from SN1987A, and rule out a substantial fraction of the parameter space accessible to future experiments such as ALPS-II and IAXO.

  9. FIELD CHECK MANUAL FOR LANGUAGE LABORATORIES, A SERIES OF TESTS WHICH A NON-TECHNICAL PERSON CAN CONDUCT TO VERIFY SPECIFICATIONS.

    ERIC Educational Resources Information Center

    GRITTNER, FRANK; PAVLAT, RUSSELL

    IN ORDER TO ASSIST NON-TECHNICAL PEOPLE IN SCHOOLS TO CONDUCT A FIELD CHECK OF LANGUAGE LABORATORY EQUIPMENT BEFORE THEY MAKE FINAL PAYMENTS, THIS MANUAL OFFERS CRITERIA, TESTS, AND METHODS OF SCORING THE QUALITY OF THE EQUIPMENT. CHECKLISTS ARE PROVIDED FOR EVALUATING CONSOLE FUNCTIONS, TAPE RECORDERS, AMPLIFIERS, SOUND QUALITY (INCLUDING…

  10. UK dental laboratory technicians' views on the efficacy and teaching of clinical-laboratory communication.

    PubMed

    Juszczyk, A S; Clark, R K F; Radford, D R

    2009-05-23

    The General Dental Council states that 'good dental care is delivered by a team' and restorative treatment is enhanced by communication between team members. Commercial dental laboratories are ideally placed to comment on effective communication. To investigate contemporary attitudes and communication between dentist and dental technician from the technician's perspective. Eight hundred and three dental laboratories were invited to take part in a postal survey covering dentist/laboratory communication and the dentist's understanding of technical procedures. Forty percent of laboratories responded. Only 9% scored communication as very good, 48% scored communication with newly qualified dentists better than with established dentists but only 26% considered that dental students were taught to communicate with dental laboratories effectively. The free comments that the respondents were invited to make identified three distinct themes, 'recognition within the dental team', 'effective communication between dentist and dental technician' and 'dentists lack of technical knowledge'. Effective communication between dentist and dental technician is often poor. It was the view of the dental technicians who responded that newly qualified dentists do not have an appropriate understanding of technical techniques. Dental schools are still not preparing new graduates to communicate effectively with dental laboratories.

  11. Spin precession experiments for light axionic dark matter

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.; Trahms, Lutz; Wilkason, Thomas

    2018-03-01

    Axionlike particles are promising candidates to make up the dark matter of the Universe, but it is challenging to design experiments that can detect them over their entire allowed mass range. Dark matter in general, and, in particular, axionlike particles and hidden photons, can be as light as roughly 10-22 eV (˜10-8 Hz ), with astrophysical anomalies providing motivation for the lightest masses ("fuzzy dark matter"). We propose experimental techniques for direct detection of axionlike dark matter in the mass range from roughly 10-13 eV (˜102 Hz ) down to the lowest possible masses. In this range, these axionlike particles act as a time-oscillating magnetic field coupling only to spin, inducing effects such as a time-oscillating torque and periodic variations in the spin-precession frequency with the frequency and direction of these effects set by the axion field. We describe how these signals can be measured using existing experimental technology, including torsion pendulums, atomic magnetometers, and atom interferometry. These experiments demonstrate a strong discovery capability, with future iterations of these experiments capable of pushing several orders of magnitude past current astrophysical bounds.

  12. Frederick National Laboratory Collaboration Success Stories | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory, that helps fine-tune nano

  13. Role of medical, technical, and administrative leadership in the human resource management life cycle: a team approach to laboratory management.

    PubMed

    Wilkinson, D S; Dilts, T J

    1999-01-01

    We believe the team approach to laboratory management achieves the best outcomes. Laboratory management requires the integration of medical, technical, and administrative expertise to achieve optimal service, quality, and cost performance. Usually, a management team of two or more individuals must be assembled to achieve all of these critical leadership functions. The individual members of the management team must possess the requisite expertise in clinical medicine, laboratory science, technology management, and administration. They also must work together in a unified and collaborative manner, regardless of where individual team members appear on the organizational chart. The management team members share in executing the entire human resource management life cycle, creating the proper environment to maximize human performance. Above all, the management team provides visionary and credible leadership.

  14. Constraints on Massive Axion-Like Particles from X-ray Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Chen, Linhan; Conlon, Joseph P.

    2018-06-01

    If axion-like particles (ALPs) exist, photons can convert to ALPs on passage through regions containing magnetic fields. The magnetised intracluster medium of large galaxy clusters provides a region that is highly efficient at ALP-photon conversion. X-ray observations of Active Galactic Nuclei (AGNs) located within galaxy clusters can be used to search for and constrain ALPs, as photon-ALP conversion would lead to energy-dependent quasi-sinusoidal modulations in the X-ray spectrum of an AGN. We use Chandra observations of the central AGN of the Perseus Cluster, NGC1275, to place bounds on massive ALPs up to ma ˜ 10-11eV, extending previous work that used this dataset to constrain massless ALPs.

  15. Using the full power of the cosmic microwave background to probe axion dark matter

    NASA Astrophysics Data System (ADS)

    Hložek, Renée; Marsh, David J. E.; Grin, Daniel

    2018-05-01

    The cosmic microwave background (CMB) places stringent constraints on models of dark matter (DM), and on the initial conditions of the Universe. The full Planck data set is used to test the possibility that some fraction of the DM is composed of ultralight axions (ULAs). This represents the first use of CMB lensing to test the ULA model. We find no evidence for a ULA component in the mass range 10-33 ≤ ma ≤ 10-24 eV. We put percent-level constraints on the ULA contribution to the DM, improving by up to a factor of two compared using temperature anisotropies alone. Axion DM also provides a low-energy window on to the physics of inflation through isocurvature perturbations. We perform the first systematic investigation into the parameter space of ULA isocurvature, using an accurate isocurvature transfer function at all ma values. We precisely identify a `window of co-existence' for 10-25 eV ≤ ma ≤ 10-24 eV where the data allow, simultaneously, a {˜ }10 {per cent} contribution of ULAs to the DM, and {˜ } 1 {per cent} contributions of isocurvature and tensor modes to the CMB power. ULAs in this window (and all lighter ULAs) are shown to be consistent with a large inflationary Hubble parameter, HI ˜ 1014 GeV. The window of co-existence will be fully probed by proposed CMB Stage-IV observations with increased accuracy in the high-ℓ lensing power and low-ℓ E- and B-mode polarizations. If ULAs in the window exist, this could allow for two independent measurements of HI in the CMB using isocurvature, and the tensor contribution to B modes.

  16. 32 CFR 555.7 - Submission of technical proposals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... research and development laboratories are authorized to submit technical proposals directly to other... 32 National Defense 3 2010-07-01 2010-07-01 true Submission of technical proposals. 555.7 Section... AND NATIONAL CEMETERIES CORPS OF ENGINEERS, RESEARCH AND DEVELOPMENT, LABORATORY RESEARCH AND...

  17. Center for Space Microelectronics Technology. 1993 Technical Report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents. The 1993 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 170 publications, 193 presentations, and 84 New Technology Reports and patents.

  18. Technical Report Interchange Through Synchronized OAI Caches

    NASA Technical Reports Server (NTRS)

    Liu, Xiaming; Maly, Kurt; Zubair, Mohammad; Tang, Rong; Padshah, Mohammad Imran; Roncaglia, George; Rocker, JoAnne; Nelson, Michael; vonOfenheim, William; Luce, Richard

    2002-01-01

    The Technical Report Interchange project is a cooperative experimental effort between NASA Langley Research Center, Los Alamos National Laboratory, Air Force Research Laboratory, Sandia National Laboratory and Old Dominion University to allow for the integration of technical reports. This is accomplished using the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) and having each site cache the metadata from the other participating sites. Each site also implements additional software to ingest the OAI-PMH harvested metadata into their native digital library (DL). This allows the users at each site to see an increased technical report collection through the familiar DL interfaces and tale advantage of whatever valued added are provided by the native DL.

  19. Competency assessment in laboratory medicine: Standardization and utility for technical staff assessment and recertification in Saudi Arabia.

    PubMed

    Nemenqani, Dalal M; Tekian, Ara; Park, Yoon Soo

    2017-04-01

    The assessment of technical staff members' competency has been a challenge for laboratory workers, to ensure patient safety and high quality services. The aim of this study was to (1) investigate awareness on best ways to assess lab competencies; (2) identify existing institutional methods of competency assessment and how staff perceptions; and (3) gather opinions of respondents about a proposed program for competency assessment in laboratory medicine. A cross-sectional survey was conducted, followed by an interview and discussion with laboratory stakeholders about a proposed competency assessment program that included all the six procedural elements of laboratory personnel competency assessment. An online questionnaire was sent via email to different hospitals in Saudi Arabia through survey monkey. A proposed competency assessment program was circulated via email to laboratory stakeholders who agreed to be enrolled in structured interviews. A total of 47 out of the 168 (25.3%) laboratory workers responded to the emailed survey administered via survey monkey. Among the survey respondents, 16 out of the 47 (34%) participated in the structured interview and the discussion and formed the community of practice group that provided insight and opinion about the proposed competency program. Among stakeholders, 87.2% practiced in accredited laboratories. Over half (52%) of respondents positively rated the proposed program. Results of interviews and discussions revealed suggestions about continuous ongoing assessment, such as the inclusion of laboratory quality management and safety as separate items to be unified for all sections. The proposed competency assessment program overcomes challenges noted in competency assessment and has been positively received by stakeholders. This program will be validated by a group of experts then implemented as part of a core curriculum for laboratory staff, in their assessment, certification, recertification, registration, evaluation and

  20. Collider probes of axion-like particles

    NASA Astrophysics Data System (ADS)

    Bauer, Martin; Neubert, Matthias; Thamm, Andrea

    2017-12-01

    Axion-like particles (ALPs), which are gauge-singlets under the Standard Model (SM), appear in many well-motivated extensions of the SM. Describing the interactions of ALPs with SM fields by means of an effective Lagrangian, we discuss ALP decays into SM particles at one-loop order, including for the first time a calculation of the a → πππ decay rates for ALP masses below a few GeV. We argue that, if the ALP couples to at least some SM particles with couplings of order (0.01 - 1) TeV-1, its mass must be above 1 MeV. Taking into account the possibility of a macroscopic ALP decay length, we show that large regions of so far unconstrained parameter space can be explored by searches for the exotic, on-shell Higgs and Z decays h → Za, h → aa and Z → γa in Run-2 of the LHC with an integrated luminosity of 300 fb-1. This includes the parameter space in which ALPs can explain the anomalous magnetic moment of the muon. Considering subsequent ALP decays into photons and charged leptons, we show that the LHC provides unprecedented sensitivity to the ALP-photon and ALP-lepton couplings in the mass region above a few MeV, even if the relevant ALP couplings are loop suppressed and the a → γγ and a → ℓ+ℓ- branching ratios are significantly less than 1. We also discuss constraints on the ALP parameter space from electroweak precision tests.

  1. Sandia Laboratories technical capabilities: engineering analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundergan, C. D.

    1975-12-01

    This report characterizes the engineering analysis capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. (auth)

  2. Anomalous leptonic U(1) symmetry: Syndetic origin of the QCD axion, weak-scale dark matter, and radiative neutrino mass

    NASA Astrophysics Data System (ADS)

    Ma, Ernest; Restrepo, Diego; Zapata, Óscar

    2018-01-01

    The well-known leptonic U(1) symmetry of the Standard Model (SM) of quarks and leptons is extended to include a number of new fermions and scalars. The resulting theory has an invisible QCD axion (thereby solving the strong CP problem), a candidate for weak-scale dark matter (DM), as well as radiative neutrino masses. A possible key connection is a color-triplet scalar, which may be produced and detected at the Large Hadron Collider.

  3. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  4. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  5. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  6. Das Sprachlabor in der Schule (The Language Laboratory in Schools).

    ERIC Educational Resources Information Center

    Cabus, Hans-Joachim; Freudenstein, Reinhold

    This technical manual for the use of language laboratories includes information on the following topics: (1) types of laboratories, (2) the tape, (3) the tape recorder, (4) other basic technical equipment, (5) the audio-active laboratory, the audio-active-compare laboratory, and an evaluation of the two, (6) possibilities for expanded use, (7)…

  7. Procedures For Microbial-Ecology Laboratory

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1993-01-01

    Microbial Ecology Laboratory Procedures Manual provides concise and well-defined instructions on routine technical procedures to be followed in microbiological laboratory to ensure safety, analytical control, and validity of results.

  8. Medical Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of medical laboratory technician, lists technical competencies and competency builders for 18 units pertinent to the health technologies cluster in general and 8 units specific to the occupation of medical laboratory technician. The following…

  9. Neutrino and axion bounds from the globular cluster M5 (NGC 5904).

    PubMed

    Viaux, N; Catelan, M; Stetson, P B; Raffelt, G G; Redondo, J; Valcarce, A A R; Weiss, A

    2013-12-06

    The red-giant branch (RGB) in globular clusters is extended to larger brightness if the degenerate helium core loses too much energy in "dark channels." Based on a large set of archival observations, we provide high-precision photometry for the Galactic globular cluster M5 (NGC 5904), allowing for a detailed comparison between the observed tip of the RGB with predictions based on contemporary stellar evolution theory. In particular, we derive 95% confidence limits of g(ae)<4.3×10(-13) on the axion-electron coupling and μ(ν)<4.5×10(-12)μ(B) (Bohr magneton μ(B)=e/2m(e)) on a neutrino dipole moment, based on a detailed analysis of statistical and systematic uncertainties. The cluster distance is the single largest source of uncertainty and can be improved in the future.

  10. Harmonization of clinical laboratories in Africa: a multidisciplinary approach to identify innovative and sustainable technical solutions.

    PubMed

    Putoto, Giovanni; Cortese, Antonella; Pecorari, Ilaria; Musi, Roberto; Nunziata, Enrico

    2015-06-01

    In an effective and efficient health system, laboratory medicine should play a critical role. This is not the case in Africa, where there is a lack of demand for diagnostic exams due to mistrust of health laboratory performance. Doctors with Africa CUAMM (Collegio Universitario Aspiranti Medici Missionari) is a non-profit organization, working mainly in sub-Saharan Africa (Angola, Ethiopia, Mozambique, Sierra Leone, South Sudan, Tanzania and Uganda) to help and sustain local health systems. Doctors with Africa CUAMM has advocated the need for a harmonized model for health laboratories to assess and evaluate the performance of the facilities in which they operate. In order to develop a harmonized model for African health laboratories, previous attempts at strengthening them through standardization were taken into consideration and reviewed. A survey with four Italian clinicians experienced in the field was then performed to try and understand the actual needs of health facilities. Finally a market survey was conducted to find new technologies able to update the resulting model. Comparison of actual laboratories with the developed standard - which represents the best setting any African health laboratory could aim for - allowed shortcomings in expected services to be identified and interventions subsequently prioritized. The most appropriate equipment was proposed to perform the envisaged techniques. The suitability of appliances was evaluated in consideration of recognized international recommendations, reported experiences in the field, and the availability of innovative solutions that can be performed on site in rural areas, but require minimal sample preparation and little technical expertise. The present work has developed a new, up-to-date, harmonized model for African health laboratories. The authors suggest lists of procedures to challenge the major African health problems - HIV/AIDS, malaria, tubercolosis (TB) - at each level of pyramidal health system. This

  11. Dental Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of dental laboratory technician, lists technical competencies and competency builders for 13 units pertinent to the health technologies cluster in general and 8 units to the occupation of dental laboratory technician. The following skill areas…

  12. Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting (TEM) 2015

    DTIC Science & Technology

    2017-05-01

    ARL-CR-0814 ● MAY 2017 US Army Research Laboratory Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting...0814 ● MAY 2017 US Army Research Laboratory Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting (TEM) 2015 by...SUBTITLE Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting (TEM) 2015 5a. CONTRACT NUMBER W911NF-10-2-0016 5b. GRANT

  13. Radiative natural supersymmetry with mixed axion/higgsino cold dark matter

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2013-05-01

    Models of natural supersymmetry seek to solve the little hierarchy problem by positing a spectrum of light higgsinos <~ 200 GeV and light top squarks <~ 500 GeV along with very heavy squarks and TeV-scale gluinos. Such models have low electroweak finetuning and are safe from LHC searches. However, in the context of the MSSM, they predict too low a value of mh and the relic density of thermally produced higgsino-like WIMPs falls well below dark matter (DM) measurements. Allowing for high scale soft SUSY breaking Higgs mass mHu > m0 leads to natural cancellations during RG running, and to radiatively induced low finetuning at the electroweak scale. This model of radiative natural SUSY (RNS), with large mixing in the top squark sector, allows for finetuning at the 5-10% level with TeV-scale top squarks and a 125 GeV light Higgs scalar h. If the strong CP problem is solved via the PQ mechanism, then we expect an axion-higgsino admixture of dark matter, where either or both the DM particles might be directly detected.

  14. Reionization during the dark ages from a cosmic axion background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evoli, Carmelo; Leo, Matteo; Mirizzi, Alessandro

    2016-05-01

    Recently it has been pointed out that a cosmic background of relativistic axion-like particles (ALPs) would be produced by the primordial decays of heavy fields in the post-inflation epoch, contributing to the extra-radiation content in the Universe today. Primordial magnetic fields would trigger conversions of these ALPs into sub-MeV photons during the dark ages. This photon flux would produce an early reionization of the Universe, leaving a significant imprint on the total optical depth to recombination τ. Using the current measurement of τ and the limit on the extra-radiation content Δ N {sub eff} by the Planck experiment we putmore » a strong bound on the ALP-photon conversions. Namely we obtain upper limits on the product of the photon-ALP coupling constant g {sub a} {sub γ} times the magnetic field strength B down to g {sub a} {sub γ} B ∼> 6 × 10{sup −18} GeV{sup −1} nG for ultralight ALPs.« less

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 56: Technical Communications in Engineering and Science: The Practices Within a Government Defense Laboratory

    NASA Technical Reports Server (NTRS)

    VonSeggern, Marilyn; Jourdain, Janet M.; Pinelli, Thomas E.

    1996-01-01

    Research in recent decades has identified the varied information needs of engineers versus scientists. While most of that research looked at the differences among organizations, we surveyed engineers and scientists within a single Air Force research and development laboratory about their information gathering, usage, and production practices. The results of the Phillips Laboratory survey confirm prior assumptions about distinctions between engineering and science. Because military employees responded at a much higher rate than civilian staff, the survey also became an opportunity to profile a little-known segment of the engineer/scientist population. In addition to the effect Phillips Laboratory's stated mission may have on member engineers and scientists, other factors causing variations in technical communication and information-related activities are identified.

  16. Technical proficiency in cytopathology: assessment through external quality assurance.

    PubMed

    Cummings, M C; Greaves, J; Shukor, R A; Perkins, G; Ross, J

    2017-04-01

    To assess both the feasibility and value of conducting an external quality assurance programme concerning technical aspects of cytopathology laboratory practice, and the interest by laboratories in enrolling in such a programme. Six technical surveys, comprising staining exercises and questionnaires relating to laboratory practice, were distributed over a 4-year period to the approximately 220 laboratories enrolled in the RCPAQAP Cytopathology slide survey modules. Staining exercises using the Papanicolaou and Romanowsky techniques, the preparation of urine and body fluid specimens and immunocytochemistry on the cell block material were assessed. Accompanying relevant questionnaires were included, and one survey comprised a questionnaire alone concerning the collection of urinary tract and body fluid samples. Provision of an external cytopathology technical module was feasible for the RCPAQAP and participation rates (maximum of 87% per survey; average 68% for stained slides and 66% for questionnaires) were commendable, particularly considering these were optional undertakings with some exercises not applicable to all laboratories. The great majority of submitted slides were scored as satisfactory, and there was an especially high standard for the immunocytochemical staining exercise with 95% considered satisfactory, including 50.6% with a perfect score. Reasons for suboptimal scores were provided for potential quality improvement for interested laboratories. A wealth of information relating to laboratory practice was provided to the RCPAQAP which was collated and summarised for laboratory use. The provision of a technical module in cytopathology is both a feasible and valuable undertaking of interest to laboratories which should become standard practice for cytopathology external quality assurance providers. © 2016 John Wiley & Sons Ltd.

  17. Runaway relaxion monodromy

    NASA Astrophysics Data System (ADS)

    McAllister, Liam; Schwaller, Pedro; Servant, Geraldine; Stout, John; Westphal, Alexander

    2018-02-01

    We examine the relaxion mechanism in string theory. An essential feature is that an axion winds over N ≫ 1 fundamental periods. In string theory realizations via axion monodromy, this winding number corresponds to a physical charge carried by branes or fluxes. We show that — in the context of NS5-brane axion monodromy — this charge backreacts on the compact space, ruining the structure of the relaxion action. In particular, the barriers generated by strong gauge dynamics have height ∝ e - N , so the relaxion does not stop when the Higgs acquires a vev. Backreaction of monodromy charge can therefore spoil the relaxion mechanism. We comment on the limitations of technical naturalness arguments in this context.

  18. [ISO 15189 medical laboratory accreditation].

    PubMed

    Aoyagi, Tsutomu

    2004-10-01

    This International Standard, based upon ISO/IEC 17025 and ISO 9001, provides requirements for competence and quality that are particular to medical laboratories. While this International Standard is intended for use throughout the currently recognized disciplines of medical laboratory services, those working in other services and disciplines will also find it useful and appropriate. In addition, bodies engaged in the recognition of the competence of medical laboratories will be able to use this International Standard as the basis for their activities. The Japan Accreditation Board for Conformity Assessment (AB) and the Japanese Committee for Clinical Laboratory Standards (CCLS) are jointly developing the program of accreditation of medical laboratories. ISO 15189 requirements consist of two parts, one is management requirements and the other is technical requirements. The former includes the requirements of all parts of ISO 9001, moreover it includes the requirement of conformity assessment body, for example, impartiality and independence from any other party. The latter includes the requirements of laboratory competence (e.g. personnel, facility, instrument, and examination methods), moreover it requires that laboratories shall participate proficiency testing(s) and laboratories' examination results shall have traceability of measurements and implement uncertainty of measurement. Implementation of ISO 15189 will result in a significant improvement in medical laboratories management system and their technical competence. The accreditation of medical laboratory will improve medical laboratory service and be useful for patients.

  19. Spinning particles, axion radiation, and the classical double copy

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Li, Jingping; Prabhu, Siddharth G.

    2018-05-01

    We extend the perturbative double copy between radiating classical sources in gauge theory and gravity to the case of spinning particles. We construct, to linear order in spins, perturbative radiating solutions to the classical Yang-Mills equations sourced by a set of interacting color charges with chromomagnetic dipole spin couplings. Using a color-to-kinematics replacement rule proposed earlier by one of the authors, these solutions map onto radiation in a theory of interacting particles coupled to massless fields that include the graviton, a scalar (dilaton) ϕ and the Kalb-Ramond axion field Bμ ν. Consistency of the double copy imposes constraints on the parameters of the theory on both the gauge and gravity sides of the correspondence. In particular, the color charges carry a chromomagnetic interaction which, in d =4 , corresponds to a gyromagnetic ratio equal to Dirac's value g =2 . The color-to-kinematics map implies that on the gravity side, the bulk theory of the fields (ϕ ,gμ ν,Bμ ν) has interactions which match those of d -dimensional "string gravity," as is the case both in the BCJ double copy of pure gauge theory scattering amplitudes and the KLT relations between the tree-level S -matrix elements of open and closed string theory.

  20. 42 CFR 493.1411 - Standard; Technical consultant qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... training or experience to provide technical consultation for each of the specialties and subspecialties of... responsible. Note: The technical consultant requirements for “laboratory training or experience, or both” in... 42 Public Health 5 2010-10-01 2010-10-01 false Standard; Technical consultant qualifications. 493...

  1. Waste Isolation Pilot Plant Technical Assessment Team Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  2. Technical requirements for bioassay support services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickman, D.P.; Anderson, A.L.

    1991-05-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) bioassay program. It includes information and details that can be used as a model in providing technical contents and requirements for bioassay laboratory support, either internally or in solicitations by Geotech to obtain subcontractor laboratory support. It provides a detailed summary and description of the types of bioassay samples to be expected in support of Geotech remedial projects for the US Department of Energy and the bioassay services and analytical requirements necessary to process such samples, including required limits of sensitivity. General responsibilities of the bioassay laboratory are alsomore » addressed, including quality assurance. Peripheral information of importance to the program is included in the appendices of this document. 7 tabs.« less

  3. Basis invariant description of chemical equilibrium with implications for a recent axionic leptogenesis model

    NASA Astrophysics Data System (ADS)

    Shi, Bowen; Raby, Stuart

    2015-10-01

    We provide a systematic treatment of chemical equilibrium in the presence of a specific type of time dependent background. The type of time dependent background we consider appears, for example, in recently proposed axion/Majoron leptogenesis models [A. Kusenko, K. Schmitz, and T. T. Yanagida, Phys. Rev. Lett. 115, 011302 (2015) and M. Ibe and K. Kaneta, Phys. Rev. D 92, 035019 (2015)]. In describing the chemical equilibrium we use quantities which are invariant under redefinition of fermion phases (we refer to this redefinition as a change of basis for short In this paper, change of basis does not mean change of Lorentz frame. All calculations in this paper are performed in the center-of-momentum frame of the thermal plasma, i.e. the Lorentz frame in which the average momentum of particles is zero.), and therefore it is a basis invariant treatment. The change of the anomaly terms due to the change of the path integral measure [K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979) and K. Fujikawa, Phys. Rev. D 29, 285 (1984)] under a basis change is taken into account. We find it is useful to go back and forth between different bases, and there are insights which can be more easily obtained in one basis rather than another. A toy model is provided to illustrate the ideas. For the axion leptogenesis model [A. Kusenko, K. Schmitz, and T. T. Yanagida, Phys. Rev. Lett. 115, 011302 (2015)], our result suggests that at T >1013 GeV , when sphaleron processes decouple and ΓB +L≪H <ΓL (where H is the Hubble parameter at temperature T and ΓL is the Δ L =2 lepton number violating interaction rate), the amount of B -L created is controlled by the smallness of the sphaleron interaction rate, ΓB +L. Therefore it is not as efficient as described. In addition, we notice an interesting modification of gauge boson dispersion relations at subleading order.

  4. 1995 Laboratory-Directed Research and Development Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  5. Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-06-01

    We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model at tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for 3lesssim mQlesssim 4, where mQ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio Bh/P2h, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large mQ regions of the parameter space, whereas the power spectrum constrains small mQ regions.

  6. Radiative Natural Supersymmetry with Mixed Axion/Higgsino Cold Dark Matter

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    Models of natural supersymmetry seek to solve the little hierarchy problem by positing a spectrum of light higgsinos ≲ 200 GeV and light top squarks ≲ 500 GeV along with very heavy squarks and TeV-scale gluinos. Such models have low electroweak finetuning and are safe from LHC searches. However, in the context of the MSSM, they predict too low a value of m h and the relic density of thermally produced higgsino-like WIMPs falls well below dark matter (DM) measurements. Allowing for high scale soft SUSY breaking Higgs mass m H u > m 0 leads to natural cancellations during RG running, and to radiatively induced low finetuning at the electroweak scale. This model of radiative natural SUSY (RNS), with large mixing in the top squark sector, allows for finetuning at the 5-10 % level with TeV-scale top squarks and a 125 GeV light Higgs scalar h. If the strong CP problem is solved via the PQ mechanism, then we expect an axion-higgsino admixture of dark matter, where either or both the DM particles might be directly detected.

  7. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.

    2016-12-01

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  8. 42 CFR 493.1449 - Standard; Technical supervisor qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... service in which the laboratory performs high complexity tests or procedures. The director of a laboratory... may perform anatomic and clinical laboratory procedures and tests in all specialties and... tests in the subspecialty of bacteriology, the individual functioning as the technical supervisor must...

  9. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    NASA Technical Reports Server (NTRS)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  10. Dental Laboratory Technology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program guide contains the standard dental laboratory technology curriculum for both diploma programs and associate degree programs in technical institutes in Georgia. The curriculum encompasses the minimum competencies required for entry-level workers in the dental laboratory technology field. The general information section contains the…

  11. Sandia National Laboratories: Employee & Retiree Resources: Technical

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  12. ERLN Technical Support for Labs

    EPA Pesticide Factsheets

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  13. Laboratory Biosafety and Biosecurity Risk Assessment Technical Guidance Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astuto-Gribble, Lisa M; Caskey, Susan Adele

    2014-07-01

    The purpose of this document is threefold: 1) to describe the laboratory bio safety and biosecurity risk assessment process and its conceptual framework; 2) provide detailed guidance and suggested methodologies on how to conduct a risk assessment; and 3) present some practical risk assessment process strategies using realistic laboratory scenarios.

  14. Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Shao-Wen; Liu, Yu-Xiao, E-mail: weishw@lzu.edu.cn, E-mail: liuyx@lzu.edu.cn

    In this paper, the shadows cast by Einstein-Maxwell-Dilaton-Axion black hole and naked singularity are studied. The shadow of a rotating black hole is found to be a dark zone covered by a deformed circle. For a fixed value of the spin a, the size of the shadow decreases with the dilaton parameter b. The distortion of the shadow monotonically increases with b and takes its maximal when the black hole approaches to the extremal case. Due to the optical properties, the area of the black hole shadow is supposed to equal to the high-energy absorption cross section. Based on thismore » assumption, the energy emission rate is investigated. For a naked singularity, the shadow has a dark arc and a dark spot or straight, and the corresponding observables are obtained. These results show that there is a significant effect of the spin a and dilaton parameter b on these shadows. Moreover, we examine the observables of the shadow cast by the supermassive black hole at the center of the Milky Way, which is very useful for us to probe the nature of the black hole through the astronomical observations in the near future.« less

  15. Ground Water Technical Support Center (GWTSC) Annual ...

    EPA Pesticide Factsheets

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Support Centersthat were established under the Technical Support Project (TSP). The GWTSC provides technical support on issues related to groundwater. Specifically, the GWTSC provides technical support to U.S. EPA and State regulators for issues and problems related to:1. subsurface contamination (contaminants in ground water, soils and sediments),2. cross-media transfer (movement of contaminants from the subsurface to other media such as surface water or air), and3. restoration of impacted ecosystems.The GWTSC works with Remedial Project Managers (RPMs) and other decision makers to solve specific problems at Superfund, RCRA (Resource Conservation and Recovery Act), Brownfields sites, and ecosystem restoration sites. The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Suppo

  16. Searching for axionlike particles in flavor-changing neutral current processes [A new flavor of searches for axion-like particles

    DOE PAGES

    Izaguirre, Eder; Lin, Tongyan; Shuve, Brian

    2017-03-15

    Here, we propose new searches for axion-like particles (ALPs) produced in flavor-changing neutral current (FCNC) processes. This proposal exploits the often-overlooked coupling of ALPs to W ± bosons, leading to FCNC production of ALPs even in the absence of a direct coupling to fermions. Our proposed searches for resonant ALP production in decays such as B→K(*)a, a→γγ, and K→πa, a→γγ could greatly improve upon the current sensitivity to ALP couplings to standard model particles. Finally, we also determine analogous constraints and discovery prospects for invisibly decaying ALPs.

  17. Lipid and lipoprotein testing in resource-limited laboratories.

    PubMed

    Myers, Gary L

    2003-01-01

    The role of total cholesterol (TC) and lipoproteins in the assessment of coronary heart disease (CHD) is firmly established from population and intervention studies. Total and low-density lipoprotein cholesterol (LDLC) levels are positively associated with CHD, and high-density lipoprotein cholesterol (HDLC) levels are negatively associated with CHD. Efforts to identify and treat people at increased risk based on cholesterol and lipoprotein levels have led to more lipid testing and the need for very reliable test results. Thus, quality laboratory services are an essential component of healthcare delivery and play a vital role in any strategy to reduce morbidity and mortality from CHD. In laboratories with limited resources, establishing laboratory capability to measure CHD risk markers may be a considerable challenge. Laboratories face problems in selecting proper techniques, difficulties in equipment availability and maintenance, and shortage of supplies, staffing, and supervision. The Centers for Disease Control and Prevention (CDC) has been providing technical assistance for more than 30 years to laboratories that measure lipids and lipoproteins and is willing to provide technical assistance as needed for other laboratories to develop this capability. CDC can provide technical assistance to establish lipid and lipoprotein testing capability to support a CHD public health program in areas with limited laboratory resources. This assistance includes: selecting a suitable testing instrument; providing training for laboratory technicians; establishing a simple quality control plan; and instructing staff on how to prepare frozen serum control materials suitable for assessing accuracy of lipid and lipoprotein testing.

  18. The Accreditation Experience of Clinical Laboratories and Blood Banks in Mexico

    PubMed Central

    2015-01-01

    The accreditation of clinical laboratories and blood banks based on ISO 15189 is now being consolidated in Mexico, and is coordinated by the Mexican accreditation entity innovative strategies, A.C. (ema) and supported by the activities of the committee of clinical laboratories and blood banks. The active participation in working groups formed by the technical committee of clinical laboratories and blood banks in specific areas, has contributed to the formulation of technical documents and criteria of evaluation that strengthen the current accreditation scheme. The national registry of evaluation (PNE) consists of technical experts and evaluators from different disciplines of clinical laboratory; the evaluators actively participate in accreditation assessment, with an ultimate goal to receive training and feedback for continuous improvement of its own performance. PMID:27683498

  19. The Accreditation Experience of Clinical Laboratories and Blood Banks in Mexico.

    PubMed

    Quintana, Sandra

    2015-11-01

    The accreditation of clinical laboratories and blood banks based on ISO 15189 is now being consolidated in Mexico, and is coordinated by the Mexican accreditation entity innovative strategies, A.C. (ema) and supported by the activities of the committee of clinical laboratories and blood banks. The active participation in working groups formed by the technical committee of clinical laboratories and blood banks in specific areas, has contributed to the formulation of technical documents and criteria of evaluation that strengthen the current accreditation scheme. The national registry of evaluation (PNE) consists of technical experts and evaluators from different disciplines of clinical laboratory; the evaluators actively participate in accreditation assessment, with an ultimate goal to receive training and feedback for continuous improvement of its own performance.

  20. The Independent Technical Analysis Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duberstein, Corey A.; Ham, Kenneth D.; Dauble, Dennis D.

    2007-04-13

    The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. In the past, regional parties have interacted with a single entity, the Fish Passage Center to access the data, analyses, and coordination related to fish passage. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities.

  1. 42 CFR 493.1413 - Standard; Technical consultant responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Standard; Technical consultant responsibilities. 493.1413 Section 493.1413 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH... Nonwaived Testing Laboratories Performing Moderate Complexity Testing § 493.1413 Standard; Technical...

  2. Laboratory Directed Research and Development FY-10 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  3. Any Light Particle Search (ALPS)

    NASA Astrophysics Data System (ADS)

    Spector, Aaron; Any Light Particle Search (ALPS) Collaboration

    2016-03-01

    High power laser fields enabled by technologies developed for ground-based gravitational-wave observatories open up new opportunities for fundamental physics studies. One of these options is the search for axions and axion-like particles in a pure laboratory experiment. The axion is a solution to the strong CP-problem and a potential dark matter candidate. The axion has also been proposed as an additional channel to cool stars as well as a potential explanation for the TeV transparency problem. The German-US ALPS collaboration is setting up a light-shining-through-walls (LSW) experiment at DESY. LSW experiments are based on the simple idea that a high power laser field traversing a static magnetic field will transform partly into a relativistic axion field. This axion field will travel through an opaque wall into a second static magnetic field region where it turns partly back into an electromagnetic wave field with the same frequency as the laser. The ALPS collaboration is working towards a large scale LSW experiment at DESY in Hamburg, Germany. I will report on the status of the ALPS experiment. This work is supported by the Deutsche Forschungsgemeinschaft, PRISMA, the Helmholtz Association, the National Science Foundation and the Heising-Simons Foundation.

  4. KSC Technical Capabilities Website

    NASA Technical Reports Server (NTRS)

    Nufer, Brian; Bursian, Henry; Brown, Laurette L.

    2010-01-01

    This document is the website pages that review the technical capabilities that the Kennedy Space Center (KSC) has for partnership opportunities. The purpose of this information is to make prospective customers aware of the capabilities and provide an opportunity to form relationships with the experts at KSC. The technical capabilities fall into these areas: (1) Ground Operations and Processing Services, (2) Design and Analysis Solutions, (3) Command and Control Systems / Services, (4) Materials and Processes, (5) Research and Technology Development and (6) Laboratories, Shops and Test Facilities.

  5. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developedmore » for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98.« less

  6. Innovative methods of popularizing technical education

    NASA Astrophysics Data System (ADS)

    Shkitsa, L. Y.; Panchuk, V. G.; Kornuta, V. A.

    2017-05-01

    There have been analyzed reasons of the loss of technical education’s popularity. Also, the analysis of known educational and production methods, oriented at the innovative model of development of society, was performed. It is stated that the acquisition of 21st century’s skills as a result of competition of technical education are natural for the DIY ideology, which was realized in the institutions like Fab Lab. The new educational strategy, based on project-based learning, is proposed to be implemented as a special laboratory with equipment, which would be a center of innovative development for students at the Technical University. Moreover, the list of projects planned for implementation, that includes not only projects, specific to a particular university, but also projects, demanded by society as a whole, is specified. It is worth to implement trendy projects in the laboratory, such as toy-like, ecological projects; projects of the energy dependence decrease or the energy efficiency increase, modern digital or innovative projects etc. The student should gain knowledge, skills and, possibly, equipment that are available for immediate usage on the labor market or for the realization of his own projects or the community’s projects in everyday life after the realization of the particular project at the laboratory

  7. Laboratory equipment maintenance contracts.

    PubMed

    Boudreau, D A; Scheer, W D; Catrou, P G

    1985-12-01

    The increasing level of technical sophistication and complexity found in clinical laboratory instrumentation today more than ever demands careful attention to maintenance service needs. The time-worn caution for careful definition of requirements for acquisition of a system should also carry over to acquisition of maintenance service. Guidelines are presented for specifications of terms and conditions for maintenance service from the perspective of the laboratorian in the automated clinical laboratory.

  8. Technical Report Bibliography.

    ERIC Educational Resources Information Center

    Hoffnagle, Gale F.

    A Bibliography of all unclassified technical reports prepared by USAF Environmental Health Laboratory, McClellan is presented. It contains a listing by subject matter and a listing of all reports by year with report number and abstract. The reports cover most areas of environmental topics such as air, water, noise, and radiation pollution. (NTIS)

  9. Transplanckian censorship and global cosmic strings

    NASA Astrophysics Data System (ADS)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-04-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f < M p and large winding numbers n > M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  10. OB's high voltage laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1966-01-01

    The January issue of Hi-Tension News provides a detailed description of the advanced surge test facilities and procedures in daily operation at the OB High Voltage Laboratory in Barberton, Ohio. Technical competences achieved in this laboratory contribute to the essential factors of design confirmation to basic studies of ehv insulation systems, conductor and hardware performance, and optimum tower construction. Known throughout the industry for authenticity of its full scale, all weather outdoor testing, OB's High Voltage Laboratory is a full-fledged participant in the NEMA-sponsored program to make testing facilities available on a cooperative basis.

  11. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  12. Index to Benet Laboratories Technical Reports - 1988

    DTIC Science & Technology

    1989-05-01

    EDITING SECTION MAY 1989 US ARMY ARMAMENT RESEARCH , ~ DEVELOPMENT AND ENGINEERING CENTER CLOSE COMBAT ARMAMENTS CENTER BENET LABORATORIES WATERVLIET, N.Y...Watervliet, NY 12189-4050 I =ONTROLLING OFFICE NAME AND ADoRESS 12. REPORT DATE US Army Armament Research , Develop, & Engr Center April 1988 Close Combat...Watervliet, NY 12189-4050 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE US Army ARDEC May 1989 Close Combat Armaments Center 13. NUMBER OF PAGES

  13. Constraining axion-like-particles with hard X-ray emission from magnetars

    NASA Astrophysics Data System (ADS)

    Fortin, Jean-François; Sinha, Kuver

    2018-06-01

    Axion-like particles (ALPs) produced in the core of a magnetar will convert to photons in the magnetosphere, leading to possible signatures in the hard X-ray band. We perform a detailed calculation of the ALP-to-photon conversion probability in the magnetosphere, recasting the coupled differential equations that describe ALP-photon propagation into a form that is efficient for large scale numerical scans. We show the dependence of the conversion probability on the ALP energy, mass, ALP-photon coupling, magnetar radius, surface magnetic field, and the angle between the magnetic field and direction of propagation. Along the way, we develop an analytic formalism to perform similar calculations in more general n-state oscillation systems. Assuming ALP emission rates from the core that are just subdominant to neutrino emission, we calculate the resulting constraints on the ALP mass versus ALP-photon coupling space, taking SGR 1806-20 as an example. In particular, we take benchmark values for the magnetar radius and core temperature, and constrain the ALP parameter space by the requirement that the luminosity from ALP-to-photon conversion should not exceed the total observed luminosity from the magnetar. The resulting constraints are competitive with constraints from helioscope experiments in the relevant part of ALP parameter space.

  14. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  15. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  16. Physics Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Physics Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is an extension of the Chemistry-Materials Laboratory Project Book (see note) and is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or…

  17. Teaching Technical Report Writing

    ERIC Educational Resources Information Center

    De Pasquale, Joseph A.

    1977-01-01

    A high school electronics teacher describes the integration of technical report writing in the electronics program for trade and industrial students. He notes that the report writing rather than just recording data seemed to improve student laboratory experience but further improvements in the program are needed. A sample lab report is included.…

  18. Microbial ecology laboratory procedures manual NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1990-01-01

    An essential part of the efficient operation of any microbiology laboratory involved in sample analysis is a standard procedures manual. The purpose of this manual is to provide concise and well defined instructions on routine technical procedures involving sample analysis and methods for monitoring and maintaining quality control within the laboratory. Of equal importance is the safe operation of the laboratory. This manual outlines detailed procedures to be followed in the microbial ecology laboratory to assure safety, analytical control, and validity of results.

  19. Towards an evaluation framework for Laboratory Information Systems.

    PubMed

    Yusof, Maryati M; Arifin, Azila

    Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS. Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS. A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes. The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  20. Energy - Sandia National Laboratories

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  1. Laboratory Directed Research and Development Program FY98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less

  2. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program provesmore » its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.« less

  3. Quality assurance of laboratory work and clinical use of laboratory tests in general practice in norway: a survey.

    PubMed

    Thue, Geir; Jevnaker, Marianne; Gulstad, Guri Andersen; Sandberg, Sverre

    2011-09-01

    Virtually all the general practices in Norway participate in the Norwegian Quality Improvement of Laboratory Services in Primary Care, NOKLUS. In order to assess and develop NOKLUS's services, it was decided to carry out an investigation in the largest participating group, general practices. In autumn 2008 a questionnaire was sent to all Norwegian general practices asking for feedback on different aspects of NOKLUS's main services: contact with medical laboratory technologists, sending of control materials, use and maintenance of practice-specific laboratory binders, courses, and testing of laboratory equipment. In addition, attitudes were elicited towards possible new services directed at assessing other technical equipment and clinical use of tests. Responses were received from 1290 of 1552 practices (83%). The great majority thought that the frequency of sending out control material should continue as at present, and they were pleased with the feedback reports and follow-up by the laboratory technologists in the counties. Even after many years of practical experience, there is still a need to update laboratory knowledge through visits to practices, courses, and written information. Practices also wanted quality assurance of blood pressure meters and spirometers, and many doctors wanted feedback on their use of laboratory tests. Services regarding quality assurance of point-of-care tests, guidance, and courses should be continued. Quality assurance of other technical equipment and of the doctor's clinical use of laboratory tests should be established as part of comprehensive quality assurance.

  4. Sandia National Laboratories analysis code data base

    NASA Astrophysics Data System (ADS)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  5. Importance of axion-like particles for very-high-energy astrophysics

    NASA Astrophysics Data System (ADS)

    Roncadelli, Marco; De Angelis, Alessandro; Galanti, Giorgio

    2012-07-01

    Several extensions ol the Standard Model predict the existence ol Axion-Like Particles (ALPs), very light spin-zero bosons with a two-photon coupling. ALPs can give rise to observable effects in very-high-energy astrophysics. Above roughly 100 GeV the horizon of the observable Universe progressively shrinks as the energy increases, due to scattering of beam photons off background photons in the optical and infrared bands, which produces e+ e- pairs. In the presence of large-scale magnetic fields photons emitted by a blazar can oscillate into ALPs on the way to us and back into photons before reaching the Earth. Since ALPs do not interact with background photons, the effective mean free path of beam photons increases, enhancing the photon survival probability. While the absorption probability increases with energy, photon-ALP oscillations are energy-independent, and so the survival probability increases with energy compared to standard expectations. We have performed a systematic analysis of this effect, interpreting the present data on very-high-energy photons from blazars. Our predictions can be tested with presently operating Cherenkov Telescopes like H.E.S.S., MAGIC, VERITAS and CANGAROO III as well as with detectors like ARGO-YBJ and MILAGRO and with the planned Cherenkov Telescope Array and the HAWC γ-ray observatory. ALPs with the right properties to produce the above effects can possibly be discovered by the GammeV experiment at FERMILAB and surely by the planned photon regeneration experiment ALPS at DESY.

  6. Geometric Design Laboratory Fact Sheet

    DOT National Transportation Integrated Search

    2006-08-02

    This fact sheet provides concise information about the Geometric Design Laboratory (GDL) at the Turner-Fairbank Highway Research Center. The mission of the GDL is to provide technical support to the Federal Highway Administration's Office of Safety R...

  7. The technical editing internship: What makes it work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caruthers, C.M.; Caruthers, L.E.; Schmidt, B.J.

    1988-01-01

    The following paper presents the experiences and perceptions of the three main participants of a technical editing internship at Argonne National Laboratory during the summer of 1986. Linda Caruthers, Clifford Caruthers, and Bryan Schmidt/emdash/teacher, supervisor, and intern, respectively/emdash/share what they received as their roles and responsibilities in guiding, managing, and becoming an entry-level technical editor. The following discussions demonstrate how the efforts of three people pursuing different objectives achieve the primary goal of all technical writers and editors: high-quality publications.

  8. Technical Review of the Laboratory Biosphere Closed Ecological System Facility

    NASA Astrophysics Data System (ADS)

    Dempster, W.; van Thillo, M.; Alling, A.; Allen, J.; Silverstone, S.; Nelson, M.

    The "Laboratory Biosphere", a new closed ecological system facility in Santa Fe, New Mexico (USA) has been constructed and became operational in May 2002. Built and operated by the Global Ecotechnics consortium (Biosphere Technologies and Biosphere Foundation with Biospheric Design Inc., and the Institute of Ecotechnics), the research apparatus for intensive crop growth, biogeochemical cycle dynamics and recycling of inedible crop biomass comprises a sealed cylindrical steel chamber and attached variable volume chamber (lung) to prevent pressures caused by the expansion and contraction of the contained air. The cylindrical growing chamber is 3.7m (12 feet) long and 3.7m (12 foot) diameter, giving an internal volume of 34 m3 (1200 ft 3 ). The two crop growth beds cover 5.5 m2, with a soil depth of 0.3m (12 inches), with 12 x 1000 watt high-pressure sodium lights capable of variable lighting of 40-70 mol per m2 per day. A small soil bed reactor in the chamber can be activated to help with metabolism of chamber trace gases. The volume of the attached variable volume chamber (lung) can range between 0-11 m3 (0-400 ft 3 ). Evapotranspired and soil leachate water are collected, combined and recycled to water the planting beds. Sampling ports enable testing of water quality of leachate, condensate and irrigation water. Visual inspection windows provide views of the entire interior and growing beds. The chamber is also outfitted with an airlock to minimize air exchange when people enter and work in the chamber. Continuous sensors include atmospheric CO2 and oxygen, temperature, humidity, soil moisture, light level and water levels in reservoirs. Both "sniffer" (air ports) and "sipper" (water ports) will enable collection of water or air samples for detailed analysis. This paper reports on the development of this new soil-based bioregenerative life support closed system apparatus and its technical challenges and capabilities.

  9. Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  10. NATIONAL LABORATORIES: Better Performance Reporting Could Aid Oversight of Laboratory-Directed R&D Program

    DTIC Science & Technology

    2001-09-01

    Development ( LDRD ) program, which formalized a long-standing policy of allowing its multi-program national laboratories discretion to conduct self...initiated, independent research and development (R&D). DOE requires that LDRD work must focus on the advanced study of scientific or technical problems...

  11. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.

    2016-11-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  12. USGS Scientific Visualization Laboratory

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey's (USGS) Scientific Visualization Laboratory at the National Center in Reston, Va., provides a central facility where USGS employees can use state-of-the-art equipment for projects ranging from presentation graphics preparation to complex visual representations of scientific data. Equipment including color printers, black-and-white and color scanners, film recorders, video equipment, and DOS, Apple Macintosh, and UNIX platforms with software are available for both technical and nontechnical users. The laboratory staff provides assistance and demonstrations in the use of the hardware and software products.

  13. 42 CFR 440.30 - Other laboratory and X-ray services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Other laboratory and X-ray services. 440.30 Section 440.30 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... and X-ray services. Other laboratory and X-ray services means professional and technical laboratory...

  14. 42 CFR 440.30 - Other laboratory and X-ray services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Other laboratory and X-ray services. 440.30 Section 440.30 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... and X-ray services. Other laboratory and X-ray services means professional and technical laboratory...

  15. 42 CFR 440.30 - Other laboratory and X-ray services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Other laboratory and X-ray services. 440.30 Section 440.30 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... and X-ray services. Other laboratory and X-ray services means professional and technical laboratory...

  16. 42 CFR 440.30 - Other laboratory and X-ray services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Other laboratory and X-ray services. 440.30 Section 440.30 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... and X-ray services. Other laboratory and X-ray services means professional and technical laboratory...

  17. 42 CFR 440.30 - Other laboratory and X-ray services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Other laboratory and X-ray services. 440.30 Section 440.30 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... and X-ray services. Other laboratory and X-ray services means professional and technical laboratory...

  18. Inference and Discovery in an Exploratory Laboratory. Technical Report No. 10.

    ERIC Educational Resources Information Center

    Shute, Valerie; And Others

    This paper describes the results of a study done as part of a research program investigating the use of computer-based laboratories to support self-paced discovery learning in related to microeconomics, electricity, and light refraction. Program objectives include maximizing the laboratories' effectiveness in helping students learn content…

  19. Remote RF Laboratory Requirements: Engineers' and Technicians' Perspective

    ERIC Educational Resources Information Center

    Cagiltay, Nergiz Ercil; Aydin, Elif Uray; Kara, Ali

    2007-01-01

    This study aims to find out requirements and needs to be fulfilled in developing remote Radio Frequency (RF) laboratory. Remote laboratories are newly emerging solutions for better supporting of e-learning platforms and for increasing their efficiency and effectiveness in technical education. By this way, modern universities aim to provide…

  20. Laboratory directed research and development fy1999 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensuremore » that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD

  1. Physics Laboratory in UEC

    NASA Astrophysics Data System (ADS)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.

  2. Implementing a laboratory automation system: experience of a large clinical laboratory.

    PubMed

    Lam, Choong Weng; Jacob, Edward

    2012-02-01

    Laboratories today face increasing pressure to automate their operations as they are challenged by a continuing increase in workload, need to reduce expenditure, and difficulties in recruitment of experienced technical staff. Was the implementation of a laboratory automation system (LAS) in the Clinical Biochemistry Laboratory at Singapore General Hospital successful? There is no simple answer, so the following topics comparing and contrasting pre- and post-LAS have been explored: turnaround time (TAT), laboratory errors, and staff satisfaction. The benefits and limitations of LAS from the laboratory experience were also reviewed. The mean TAT for both stat and routine samples decreased post-LAS (30% and 13.4%, respectively). In the 90th percentile TAT chart, a 29% reduction was seen in the processing of stat samples on the LAS. However, no significant difference in the 90th percentile TAT was observed with routine samples. It was surprising to note that laboratory errors increased post-LAS. Considerable effort was needed to overcome the initial difficulties associated with adjusting to a new system, new software, and new working procedures. Although some of the known advantages and limitations of LAS have been validated, the claimed benefits such as improvements in TAT, laboratory errors, and staff morale were not evident in the initial months.

  3. Learn About Laboratory Certification for Drinking Water

    EPA Pesticide Factsheets

    EPA’s Office of Water Technical Support Center implements the Drinking Water Laboratory Certification Program in partnership with EPA Regions, EPA’s Office of Research and Development, and States.

  4. 42 CFR 493.1838 - Training and technical assistance for unsuccessful participation in proficiency testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Training and technical assistance for unsuccessful... REQUIREMENTS Enforcement Procedures § 493.1838 Training and technical assistance for unsuccessful participation... may require the laboratory to undertake training of its personnel, or to obtain necessary technical...

  5. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  6. Environmental Response Laboratory Network Membership and Benefits

    EPA Pesticide Factsheets

    Member laboratories must meet core requirements including quality systems, policies and procedures, sample and data management, and analytical capabilities. Benefits include training and exercise opportunities, information sharing and technical support.

  7. Quality assurance in the HIV/AIDS laboratory network of China.

    PubMed

    Jiang, Yan; Qiu, Maofeng; Zhang, Guiyun; Xing, Wenge; Xiao, Yao; Pan, Pinliang; Yao, Jun; Ou, Chin-Yih; Su, Xueli

    2010-12-01

    In 2009, there were 8273 local screening laboratories, 254 confirmatory laboratories, 35 provincial confirmatory central laboratories and 1 National AIDS Reference Laboratory (NARL) in China. These laboratories were located in Center for Disease Control and Prevention (CDC) facilities, hospitals, blood donation clinics, maternal and child health (MCH) hospitals and border health quarantine health-care facilities. The NARL and provincial laboratories provide quality assurance through technical, bio-safety and managerial training; periodic proficiency testing; on-site supervisory inspections; and commercial serologic kit evaluations. From 2002 to 2009, more than 220 million HIV antibody tests were performed at screening laboratories, and all reactive and indeterminate samples were confirmed at confirmatory laboratories. The use of highly technically complex tests, including CD4 cell enumeration, viral load, dried blood spot (DBS)-based early infant diagnosis (EID), drug resistance (DR) genotyping, HIV-1 subtyping and incidence assays, have increased in recent years and their performance quality is closely monitored. China has made significant progress in establishing a well-coordinated HIV laboratory network and QA systems. However, the coverage and intensity of HIV testing and quality assurance programmes need to be strengthened so as to ensure that more infected persons are diagnosed and that they receive timely prevention and treatment services.

  8. Assessing Student Learning in a Virtual Laboratory Environment

    ERIC Educational Resources Information Center

    Wolf, T.

    2010-01-01

    Laboratory experience is a key factor in technical and scientific education. Virtual laboratories have been proposed to reduce cost and simplify maintenance of lab facilities while still providing students with access to real systems. It is important to determine if such virtual labs are still effective for student learning. In the assessment of a…

  9. Senior Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  10. Overview of EPA Pesticide Laboratories and Methods

    EPA Pesticide Factsheets

    EPA operates two pesticide laboratories that provide a variety of technical services to the Agency, other federal and state agencies, tribal groups and other organizations.The labs develop methods and procedures.

  11. [The technique and technicism in surgery].

    PubMed

    Abaev, Iu K

    2010-01-01

    Characterization is given to the present-day stage of the development of surgery using complex medical technique and considerable growth of the number of laboratory-instrumental investigations is characterized. The estimation is given of the negative tendency to dehumanize medicine because of the technicism of doctors' thinking.

  12. Air Force Research Laboratory Wright Site Guide to Technical Publishing

    DTIC Science & Technology

    2005-04-01

    Scientific and Technical Reports—Elements, Organization, and Design manual (and a version modified for documents generated for AFRL) • Merriam-Webster’s...notice page --SF 298 --original graphics /halftones Indicate the following on the letter of transmittal sheet: --quantity of copies required for...Elements, Organization and Design ? The WRS CDRL for a final report requires that the standard be followed. The only exception is SBIR Phase 1

  13. Technical Note: Millimeter precision in ultrasound based patient positioning: Experimental quantification of inherent technical limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballhausen, Hendrik, E-mail: hendrik.ballhausen@med.uni-muenchen.de; Hieber, Sheila; Li, Minglun

    2014-08-15

    Purpose: To identify the relevant technical sources of error of a system based on three-dimensional ultrasound (3D US) for patient positioning in external beam radiotherapy. To quantify these sources of error in a controlled laboratory setting. To estimate the resulting end-to-end geometric precision of the intramodality protocol. Methods: Two identical free-hand 3D US systems at both the planning-CT and the treatment room were calibrated to the laboratory frame of reference. Every step of the calibration chain was repeated multiple times to estimate its contribution to overall systematic and random error. Optimal margins were computed given the identified and quantified systematicmore » and random errors. Results: In descending order of magnitude, the identified and quantified sources of error were: alignment of calibration phantom to laser marks 0.78 mm, alignment of lasers in treatment vs planning room 0.51 mm, calibration and tracking of 3D US probe 0.49 mm, alignment of stereoscopic infrared camera to calibration phantom 0.03 mm. Under ideal laboratory conditions, these errors are expected to limit ultrasound-based positioning to an accuracy of 1.05 mm radially. Conclusions: The investigated 3D ultrasound system achieves an intramodal accuracy of about 1 mm radially in a controlled laboratory setting. The identified systematic and random errors require an optimal clinical tumor volume to planning target volume margin of about 3 mm. These inherent technical limitations do not prevent clinical use, including hypofractionation or stereotactic body radiation therapy.« less

  14. Laboratory evaluation of detectors of explosives' effluents

    DOT National Transportation Integrated Search

    1972-11-30

    This document contains the classification, technical description and laboratory evaluation of five commercial detectors for explosives' effluents. It includes an outline of operating principles, test and evaluation procedures. The evaluation is based...

  15. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Laboratory-scale flame test apparatus. 14.21 Section 14.21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... Technical Requirements § 14.21 Laboratory-scale flame test apparatus. The principal parts of the apparatus...

  16. 30 CFR 14.21 - Laboratory-scale flame test apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Laboratory-scale flame test apparatus. 14.21 Section 14.21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... Technical Requirements § 14.21 Laboratory-scale flame test apparatus. The principal parts of the apparatus...

  17. Technical developments at the NASA Space Radiation Laboratory.

    PubMed

    Lowenstein, D I; Rusek, A

    2007-06-01

    The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described.

  18. Cost analysis in the toxicology laboratory.

    PubMed

    Travers, E M

    1990-09-01

    The process of determining laboratory sectional and departmental costs and test costs for instrument-generated and manually generated reportable results for toxicology laboratories has been outlined in this article. It is hoped that the basic principles outlined in the preceding text will clarify and elucidate one of the most important areas needed for laboratory fiscal integrity and its survival in these difficult times for health care providers. The following general principles derived from this article are helpful aids for managers of toxicology laboratories. 1. To manage a cost-effective, efficient toxicology laboratory, several factors must be considered: the laboratory's instrument configuration, test turnaround time needs, the test menu offered, the analytic methods used, the cost of labor based on time expended and the experience and educational level of the staff, and logistics that determine specimen delivery time and costs. 2. There is a wide variation in costs for toxicologic methods, which requires that an analysis of capital (equipment) purchase and operational (test performance) costs be performed to avoid waste, purchase wisely, and determine which tests consume the majority of the laboratory's resources. 3. Toxicologic analysis is composed of many complex steps. Each step must be individually cost-accounted. Screening test results must be confirmed, and the cost for both steps must be included in the cost per reportable result. 4. Total costs will vary in the same laboratory and between laboratories based on differences in salaries paid to technical staff, differences in reagent/supply costs, the number of technical staff needed to operate the analyzer or perform the method, and the inefficient use of highly paid staff to operate the analyzer or perform the method. 5. Since direct test costs vary directly with the type and number of analyzers or methods and are dependent on the operational mode designed by the manufacturer, laboratory managers

  19. Virtual Mechatronic/Robotic Laboratory--A Step Further in Distance Learning

    ERIC Educational Resources Information Center

    Potkonjak, Veljko; Vukobratovi, Miomir; Jovanovi, Kosta; Medenica, Miroslav

    2010-01-01

    The implementation of the distance learning and e-learning in technical disciplines (like Mechanical and Electrical Engineering) is still far behind the grown practice in narrative disciplines (like Economy, management, etc.). This comes out from the fact that education in technical disciplines inevitably involves laboratory exercises and this…

  20. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon D.

    1991-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  1. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Buhler, Melanie; Valett, Jon

    1989-01-01

    An annotated bibliography is presented of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. The bibliography was updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials were grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  2. Modernisation of the intermediate physics laboratory

    NASA Astrophysics Data System (ADS)

    Kontro, Inkeri; Heino, Olga; Hendolin, Ilkka; Galambosi, Szabolcs

    2018-03-01

    The intermediate laboratory courses at the Department of Physics, University of Helsinki, were reformed using desired learning outcomes as the basis for design. The reformed laboratory courses consist of weekly workshops and small-group laboratory sessions. Many of the laboratory exercises are open-ended and have several possible ways of execution. They were designed around affordable devices, to allow for the purchase of multiple sets of laboratory equipment. This allowed students to work on the same problems simultaneously. Thus, it was possible to set learning goals which build on each other. Workshop sessions supported the course by letting the students solve problems related to conceptual and technical aspects of each laboratory exercise. The laboratory exercises progressed biweekly to allow for iterative problem solving. Students reached the learning goals well and the reform improved student experiences. Neither positive or negative changes in expert-like attitudes towards experimental physics (measured by E-CLASS questionnaire) were observed.

  3. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    PubMed

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed.

  4. Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures.

    PubMed

    Munro, Sarah A; Lund, Steven P; Pine, P Scott; Binder, Hans; Clevert, Djork-Arné; Conesa, Ana; Dopazo, Joaquin; Fasold, Mario; Hochreiter, Sepp; Hong, Huixiao; Jafari, Nadereh; Kreil, David P; Łabaj, Paweł P; Li, Sheng; Liao, Yang; Lin, Simon M; Meehan, Joseph; Mason, Christopher E; Santoyo-Lopez, Javier; Setterquist, Robert A; Shi, Leming; Shi, Wei; Smyth, Gordon K; Stralis-Pavese, Nancy; Su, Zhenqiang; Tong, Weida; Wang, Charles; Wang, Jian; Xu, Joshua; Ye, Zhan; Yang, Yong; Yu, Ying; Salit, Marc

    2014-09-25

    There is a critical need for standard approaches to assess, report and compare the technical performance of genome-scale differential gene expression experiments. Here we assess technical performance with a proposed standard 'dashboard' of metrics derived from analysis of external spike-in RNA control ratio mixtures. These control ratio mixtures with defined abundance ratios enable assessment of diagnostic performance of differentially expressed transcript lists, limit of detection of ratio (LODR) estimates and expression ratio variability and measurement bias. The performance metrics suite is applicable to analysis of a typical experiment, and here we also apply these metrics to evaluate technical performance among laboratories. An interlaboratory study using identical samples shared among 12 laboratories with three different measurement processes demonstrates generally consistent diagnostic power across 11 laboratories. Ratio measurement variability and bias are also comparable among laboratories for the same measurement process. We observe different biases for measurement processes using different mRNA-enrichment protocols.

  5. Unified Technical Concepts. Module 10: Transducers.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on transducers is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system.…

  6. Unified Technical Concepts. Module 13: Radiation.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on radiation is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system.…

  7. Unified Technical Concepts. Module 5: Resistance.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on resistance is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system.…

  8. Unified Technical Concepts. Module 1: Force.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on force is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. This…

  9. Unified Technical Concepts. Module 6: Power.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on power is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. In this…

  10. Unified Technical Concepts. Module 2: Work.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on work is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. In this…

  11. Unified Technical Concepts. Module 3: Rate.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on rate is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. This…

  12. A Manpower Study of Technical Personnel in Hospital Clinical Laboratories. Final Report.

    ERIC Educational Resources Information Center

    Harkness, James P., And Others

    As one of the efforts related to closing the gap between the growing demands for clinical laboratory workers and the supply of well-trained workers, the volume and quality of laboratory procedures and the general characteristics of workers in North Carolina hospitals were studied. Approaches to the study included tests on "unknowns" by…

  13. Stationary Engineering Laboratory Manual--2.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; Frost, Harold J.

    The Stationary Engineering Laboratory Manual 2 was designed for vocational/technical high school students who have received instruction in the basics of stationary engineering. It was developed for students who will be operating a live plant and who will be responsible for supplying steam for heating, cooking, and baking. Each lesson in the manual…

  14. The Potential of Experiential Learning Models and Practices in Career and Technical Education and Career and Technical Teacher Education

    ERIC Educational Resources Information Center

    Clark, Robert W.; Threeton, Mark D.; Ewing, John C.

    2010-01-01

    Since inception, career and technical education programs have embraced experiential learning as a true learning methodology for students to obtain occupational skills valued by employers. Programs have integrated classroom instruction with laboratory experiences to provide students a significant opportunity to learn. However, it is questionable as…

  15. Laboratory Safety Needs of Kentucky School-Based Agricultural Mechanics Teachers

    ERIC Educational Resources Information Center

    Saucier, P. Ryan; Vincent, Stacy K.; Anderson, Ryan G.

    2014-01-01

    The frequency and severity of accidents that occur in the agricultural mechanics laboratory can be reduced when these facilities are managed by educators who are competent in the area of laboratory safety and facility management (McKim & Saucier, 2011). To ensure teachers are technically competent and prepared to manage an agricultural…

  16. Sortie laboratory, phase B technical summary. [design and operational requirements

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operational requirements which evolved from Sortie Lab (SL) analysis are summarized. A source of requirements for systems is given along with experimental support for the SL, baseline. Basic design data covered include: configuration definition, mission analysis, experimental integration, safety, and logistics. A technical summary outlines characteristics which reflect the influence of the growth in SL capability and the results of the mission and operational analysis. Each of the selected areas is described in terms of objectives, equipment, operational concept, and support requirements.

  17. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.« less

  18. Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory for Cancer Research, that helps fine-tune nanomedicine formulations and overcomes a key hurdle on the pat

  19. Publications of the Jet Propulsion Laboratory 1976

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The formalized technical reporting, released January through December 1975, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory is described and indexed. The following classes of publications are included: (1) technical reports; (2) technical memorandums; (3) articles from bi-monthly Deep Space Network (DSN) progress report; (4) special publications; and (5) articles published in the open literature. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author. Unless designated otherwise, all publications listed are unclassified.

  20. LDRD Highlights at the National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then,more » this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.« less

  1. Environmental Resource Management Issues in Agronomy: A Lecture/Laboratory Course

    ERIC Educational Resources Information Center

    Munn, D. A.

    2004-01-01

    Environmental Sciences Technology T272 is a course with a laboratory addressing problems in soil and water quality and organic wastes utilization to serve students from associate degree programs in laboratory science and environmental resources management at a 2-year technical college. Goals are to build basic lab skills and understand the role…

  2. Locations Accessible | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland.Operations and Technical Support contractor Leidos Biomedical Resea

  3. Gravitational waves in axion inflation: implications for CMB and small-scales interferometer measurements

    NASA Astrophysics Data System (ADS)

    Unal, Caner; Peloso, Marco; Sorbo, Lorenzo; Garcia-Bellido, Juan

    2017-01-01

    A strong experimental effort is ongoing to detect the primordial gravitational waves (GW) generated during inflation from their impact on the Cosmic Microwave Background (CMB). This effort is motivated by the direct relation between the amplitude of GW signal and the energy scale of inflation, in the standard case of GW production from vacuum. I will discuss the robustness of this relation and the conditions under which particle production mechanisms during inflation can generate a stronger GW signal than the vacuum one. I will present a concrete model employing a coupling between a rolling axion and a gauge field, that can produce a detectable GW signal for an arbitrarily small inflation scale, respecting bounds from back-reaction, perturbativity, and the gaussianity of the measured density perturbations. I will show how the GW produced by this mechanism can be distinguished from the vacuum ones by their spectral dependence and statistical properties. I will finally discuss the possibility of detecting an inflationary GW signal at terrestrial (AdvLIGO) and space (LISA) interferometers. Such experiments are sensitive to the modes much smaller than the ones corresponding to CMB and Large Scale Structure, presenting a unique observational window on the final stages of inflation. The work of C.U. is s supported by a Doctoral Dissertation Fellowship from the Graduate School of the University of Minnesota.

  4. Unified Technical Concepts. Application Modules Volume II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    Unified Technical Concepts (UTC) is a modular system for teaching applied physics in two-year postsecondary technician programs. This UTC laboratory textbook, the second of two volumes, consists of 45 learning modules dealing with basic concepts of physics. Addressed in the individual chapters of the guide are the following topics: force…

  5. Opto-mechanical design of vacuum laser resonator for the OSQAR experiment

    NASA Astrophysics Data System (ADS)

    Hošek, Jan; Macúchová, Karolina; Nemcová, Šárka; Kunc, Štěpán.; Šulc, Miroslav

    2015-01-01

    This paper gives short overview of laser-based experiment OSQAR at CERN which is focused on search of axions and axion-like particles. The OSQAR experiment uses two experimental methods for axion search - measurement of the ultra-fine vacuum magnetic birefringence and a method based on the "Light shining through the wall" experiment. Because both experimental methods have reached its attainable limits of sensitivity we have focused on designing a vacuum laser resonator. The resonator will increase the number of convertible photons and their endurance time within the magnetic field. This paper presents an opto-mechanical design of a two component transportable vacuum laser resonator. Developed optical resonator mechanical design allows to be used as a 0.8 meter long prototype laser resonator for laboratory testing and after transportation and replacement of the mirrors it can be mounted on the LHC magnet in CERN to form a 20 meter long vacuum laser resonator.

  6. Successful remediation of four uranium calibration pits at Technical Area II, Sandia National Laboratories, Albuquerque, New Mexico, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, R.; Wade, M.; Tharp, T.

    1994-12-31

    The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-Lmore » drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.« less

  7. Gaseous time projection chambers for rare event detection: results from the T-REX project. II. Dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irastorza, I.G.; Aznar, F.; Castel, J., E-mail: igor.irastorza@cern.ch, E-mail: faznar@unizar.es, E-mail: jfcastel@unizar.es

    As part of the T-REX project, a number of R and D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. While in the companion paper we focus on double beta decay, in this paper we focus on the results regarding the search for dark matter candidates, both axions and WIMPs. Small (few cm wide) ultra-low background Micromegas detectors are used to image the axion-induced x-ray signal expected inmore » axion helioscopes like the CERN Axion Solar Telescope (CAST) experiment. Background levels as low as 0.8 × 10{sup −6} counts keV{sup −1} cm{sup −2} s{sup −1} have already been achieved in CAST while values down to ∼10{sup −7} counts keV{sup −1} cm{sup −2} s{sup −1} have been obtained in a test bench placed underground in the Laboratorio Subterráneo de Canfranc (LSC). Prospects to consolidate and further reduce these values down to ∼10{sup −8} counts keV{sup −1} cm{sup −2} s{sup −1} will be described. Such detectors, placed at the focal point of x-ray telescopes in the future International Axion Observatory (IAXO), would allow for 10{sup 5} better signal-to-noise ratio than CAST, and search for solar axions with g{sub a}γ down to few 10{sup 12} GeV{sup −1}, well into unexplored axion parameter space. In addition, a scaled-up version of these TPCs, properly shielded and placed underground, can be competitive in the search for low-mass WIMPs. The TREX-DM prototype, with ∼ 0.300 kg of Ar at 10 bar, or alternatively ∼ 0.160 kg of Ne at 10 bar, and energy threshold well below 1 keV, has been built to test this concept. We will describe the main technical solutions developed, as well as the results from the commissioning phase on surface. The anticipated sensitivity of this technique might reach ∼10{sup −44} cm

  8. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Groves, Paula; Valett, Jon

    1990-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author.

  9. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1993-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory: software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. This document contains an index of these publications classified by individual author.

  10. Unified Technical Concepts. Application Modules Volume I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    Unified Technical Concepts (UTC) is a modular system for teaching applied physics in two-year postsecondary technician programs. This UTC laboratory textbook, the first of two volumes, consists of 56 learning modules dealing with basic concepts of physics. Addressed in the individual chapters of the guide are the following topics: force, work,…

  11. Unified Technical Concepts. Module 12: Time Constants.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on time constants is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  12. Unified Technical Concepts. Module 9: Energy Convertors.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on energy convertors is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  13. Unified Technical Concepts. Module 8: Force Transformers.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on force transformers is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  14. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria

    PubMed Central

    Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman

    2016-01-01

    ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825

  15. New Brunswick Laboratory progress report, October 1994--September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL`s assigned missions.

  16. Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, Paul M.; Janecek, Laura; Rosier, Brenda

    2001-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) in South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE) SRS near Aiken, South Carolina. The Laboratory's research mission during the 2001 fiscal year was fulfilled with the publication of one book and 83more » journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 77 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members and graduate students received awards. These are described in the section Special Accomplishments of Faculty, Staff, Students, and Administration on page 54. Notable scientific accomplishments include work conducted on contaminant transport, global reptile decline, phytoremediation, and radioecology. Dr. Domy Adriano authored the second edition of his book ''Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals'', which was recently published by Springer-Verlag. The book provides a comprehensive treatment of many important aspects of trace elements in the environment. The first edition of the book, published in 1986, has become a widely acclaimed and cited reference. International attention was focused on the problem of reptile species decline with the publication of an article on this topic in the journal ''Bioscience'' in August, 2000. The article's authors included Dr. Whit Gibbons and a number of other SREL herpetologists who researched the growing worldwide problem of decline of reptile species. Factors related to these declines include habitat loss and

  17. A Guide to Laboratory Practicum on Mechanics

    NASA Astrophysics Data System (ADS)

    Rusu, A. S.; Rusu, S. S.; Pirtac, C.

    2012-12-01

    The Guide represent a Laboratory practicum in mechanics for students from the Technical University of Moldova. The works are modernized as compared with older ones put in 1964 by Computer assistance. Each work contains theoretical framework, a work instruction and control questions. The Guide contains 27 figures.

  18. Stationary Engineering Laboratory--2. Teacher's Guide.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; Frost, Harold J.

    The Stationary Engineering Laboratory Manual 2 Teacher's Guide was designed as an aid to the instructors of vocational-technical high school students who have received instruction in the basics of stationary engineering. The course of study was developed for students who will be operating a live plant and who will be responsible for supplying…

  19. Laboratory Manual (For Concrete Instruction Course); Instructor's Guide, Pilot Program Edition.

    ERIC Educational Resources Information Center

    Portland Cement Association, Cleveland, OH.

    This laboratory manual, prepared for a 2-year program in junior colleges and technical institutes, is designed to accompany the instructional materials to train persons for employment as technicians in the cement and concrete industries. Included are 16 laboratory assignments for each of the following: (1) Principles of Concrete, (2) Concrete in…

  20. Publications of the Jet Propulsion Laboratory, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Jet Propulsion Laboratory (JPL) bibliography 39-26 describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1984, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (82-, 83-, 84-series, etc.), in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Program Report (42-series); and (3) articles published in the open literature.

  1. Directory of AFRL/HEA Technical Publications Submitted to DTIC from 1969 to 2007

    DTIC Science & Technology

    2007-09-01

    Research Division ( AFRL /HEA) 2004 to 30 September 1007 – Air Force Research Laboratory , Warfighter Readiness Research Division ( AFRL /HEA...NUMBER 2003 AIR FORCE RESEARCH LABORATORY WARFIGHTER TRAINING RESEARCH DIVISION ( AFRL /HEA) TECHNICAL DOCUMENTS AUTHOR(S) AFRL -HE-AZ-TP-2003...NUMBER WORK UNIT NUMBER 2002 AIR FORCE RESEARCH

  2. Behavior Management in Vocational Education Laboratories. Technical Assistance Services: Illinois Special Needs Populations.

    ERIC Educational Resources Information Center

    Erekson, Thomas L.; Schultz, Robert

    This guide is intended to help vocational teachers to manage student behavior, including that of students with handicaps and behavioral problems, in vocational educational laboratories. The guide is organized into three sections. The first section explains the different types of vocational laboratories (active and passive) and what types of…

  3. Meeting the challenges of globalisation and miniaturisation in laboratory services.

    PubMed

    Melo, Murilo R; Rosenfeld, Luiz Gastão

    2007-12-01

    In the recent years, two trends emerged in the clinical laboratory: the miniaturisation of equipments to provide point-of-care testing (POCT) and a concentration of laboratories through mergers and acquisitions. New technology has expanded both opportunities. POCT provides the benefit of a convenient test where it is needed, i.e. near the patient. For companies, it is easier and cheaper to develop such tests, since technical requirements are somewhat less stringent, being an interesting area for start-ups. Nanotechnology is one of the most fascinating technical advances, with some advocating a US$1 trillion market-size for it by 2015. Laboratory tests and biomaterials will probably be greatly influenced by it, with new approaches for molecular diagnosis, with tests that can target both DNA and proteins in a process that eliminates PCR and allows multiplex analysis. On the other hand, there is a strong trend towards the globalisation of clinical laboratories and that occurs in four areas: a) Consumption of health services abroad; b) Movement of Health Personnel; c) Cross-Border delivery of trade; and d) Commercial presence. Each of these areas presents new challenges and opportunities for clinical laboratories, what will certainly shape the way we work today and in the future.

  4. Technical writing versus technical writing

    NASA Technical Reports Server (NTRS)

    Dillingham, J. W.

    1981-01-01

    Two terms, two job categories, 'technical writer' and 'technical author' are discussed in terms of industrial and business requirements and standards. A distinction between 'technical writing' and technical 'writing' is made. The term 'technical editor' is also considered. Problems inherent in the design of programs to prepare and train students for these jobs are discussed. A closer alliance between industry and academia is suggested as a means of preparing students with competent technical communication skills (especially writing and editing skills) and good technical skills.

  5. Study of job burnout in technical writers and technical illustrators/designers at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, J A

    According to the American Institute of Stress, job stress is estimated to cost American industry more than $200 billion a year. These costs are, in part, related to the estimated 1 million employees that will be absent on an average workday because of stress; 75 percent of visits to primary care physicians are for stress-related problems. California workers' compensation claims for stress cost $1 billion for medical and legal fees alone (Murphy, 1997). But, there is another dimension to stress that needs to be addressed. Job stress can be a precursor to job burnout. Burnout is a loss of motivation,more » and antidotes for job stress will not necessarily alleviate or stop job burnout. Job burnout is experienced as exhaustion on physical, emotional, and cognitive levels. Burnout can include withdrawal and decreasing involvement on the job, seriously affecting job satisfaction, turnover, absenteeism, and productivity (Dwyer & Ganster, 1991; Erickson & Gunderson, 1972; Spector & Jex, 1991). The research project described in this paper examined whether job burnout exists in the technical writer and technical illustrator/designer occupations in the Technical Information Department at Lawrence Livermore National Laboratory. This study also determined at what age and after how many years of service these employees were most likely to experience job burnout, whether it affects men or women most, and if writers in a technical organization experience job burnout more than illustrators/designers in that organization.« less

  6. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Kistler, David; Bristow, John; Smith, Don

    1994-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  7. Graphing techniques for materials laboratory using Excel

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1994-01-01

    Engineering technology curricula stress hands on training and laboratory practices in most of the technical courses. Laboratory reports should include analytical as well as graphical evaluation of experimental data. Experience shows that many students neither have the mathematical background nor the expertise for graphing. This paper briefly describes the procedure and data obtained from a number of experiments such as spring rate, stress concentration, endurance limit, and column buckling for a variety of materials. Then with a brief introduction to Microsoft Excel the author explains the techniques used for linear regression and logarithmic graphing.

  8. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.« less

  9. Video Reports as a Novel Alternate Assessment in the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Erdmann, Mitzy A.; March, Joe L.

    2014-01-01

    The increased use of video capable cellular phones to document everyday life presents educators with an exciting opportunity to extend this capability into the introductory laboratory. The study assessed whether students enrolled in a southeastern U.S. university's first-year laboratory course retained technical information at a higher rate after…

  10. Engineering Technical Support Center Annual Report Fiscal ...

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency (EPA or Agency) Office of Research and Development (ORD) created the Engineering Technical Support Center (ETSC) in 1987, one of several technical support centers created as part of the Technical Support Project (TSP). ETSC provides engineering expertise to Agency program and regional offices and remediation teams working at contaminated sites across the country. The ETSC is operated within ORD’s Land Remediation and Pollution Control Division (LRPCD) of the National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio. The ETSC’s mission is to provide site-specific scientific and engineering technical support to Remedial Project Managers, On-Scene Coordinators, and other remediation personnel at contaminated sites. This allows local, regional, or national authorities to work more quickly, efficiently, and cost effectively, while also increasing the technical experience of the remediation team. Since its inception, the ETSC has supported countless projects across all EPA Regions in almost all states and territories. This report highlights significant projects the ETSC supported in fiscal year 2015 (FY15). These projects addressed an array of environmental scenarios, such as remote mining contamination, expansive landfill waste, cumulative impacts from multiple contamination sources, and persistent threats from abandoned industrial sites. Constructing and testing new and innovative treatment technol

  11. Technical Capabilities of the National Vehicle and Fuel Emissions Laboratory (NVFEL)

    EPA Pesticide Factsheets

    National Vehicle and Fuel Emissions Laboratory (NVFEL) is a state-of-the-art test facility that conducts a wide range of emissions testing and analysis for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs.

  12. Results of the first provisional technical secretariat interlaboratory comparison test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuff, J.R.; Hoffland, L.

    1995-06-01

    The principal task of this laboratory in the first Provisional Technical Secretariat (PTS) Interlaboratory Comparison Test was to verify and test the extraction and preparation procedures outlined in the Recommended Operating Procedures for Sampling and Analysis in the Verification of Chemical Disarmament in addition to our laboratory extraction methods and our laboratory analysis methods. Sample preparation began on 16 May 1994 and analysis was completed on 12 June 1994. The analytical methods used included NMR ({sup 1}H and {sup 31}P) GC/AED, GC/MS (EI and methane CI), GC/IRD, HPLC/IC, HPLC/TSP/MS, MS/MS(Electrospray), and CZE.

  13. Technical Evaluation of Metal Detectors for Concealed Weapons (Supplement 1)

    DOT National Transportation Integrated Search

    1972-04-01

    This document augments the classification and technical evaluation of Commercial Metal Detectors presented in Report No. DOT-TSC-OST-71-15, June 1971. Data based on extensive laboratory tests are presented on two hand-held models and two walk-through...

  14. An image, looking east into Room 112A, filled with technical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    An image, looking east into Room 112A, filled with technical equipment pertinent to the building's recent use - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH

  15. PVWatts Version 1 Technical Reference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobos, A. P.

    2013-10-01

    The NREL PVWatts(TM) calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes several hidden assumptions about performance parameters. This technical reference details the individual sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimation.

  16. Unified Technical Concepts. Module 11: Vibrations and Waves.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on vibrations and waves is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  17. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  18. Report on Operations of the Air Force Geophysics Laboratory Infrared Array Spectrometer

    DTIC Science & Technology

    1993-01-25

    AIR FORCE GEOPHYSICS LABORATORY INFRARED ARRAY... LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-3010 93-27655IEEE|EIIE1ENI This technical report has...ACKNOWLEDGMENT We are grateful to the Air Force Office of Scientific Research , especially Henry Radowski. for their financial corn- mitment to this project.

  19. Research Institute for Technical Careers

    NASA Technical Reports Server (NTRS)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  20. NCEL (Naval Civil Engineering Laboratory) Quarterly Abstracts of Technical Documents, 1 April to 30 June 1987.

    DTIC Science & Technology

    1987-06-30

    release; distribution unlimited. 87 8 3075 TABLE OF CONTENTS page TECHNICAL NOTES N-1764 Validation of Nitronic 33 in Reinforced and Prestressed...TECHNICAL WES K- 1764 Validation of Nitrovic 33 In Reeinforced and Prestressed Concrete, Apr 1987, James F. Jenkins (public release) Nitronic 33...prestressing strand are not acceptable. Before Nitronic 33 stainless steel prestressed concrete waterfront structures were constructed, it was necessary to

  1. Publications of the Jet Propulsion Laboratory, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Over 500 externally distributed technical reports released during 1981 that resulted from scientific and engineering work performed, or managed by Jet Propulsion Laboratory are listed by primary author. Of the total number of entries, 311 are from the bimonthly Deep Space Network Progress Report, and its successor, the Telecommunications and Data Acquisition Progress Report.

  2. 78 FR 4324 - Occupational Exposure to Hazardous Chemicals in Laboratories (Non-Mandatory Appendix); Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... institutions that sponsor chemical laboratories accountable for providing safe working environments. Beyond... current laboratory practices, security, and emergency response, as well as promoting safe handling of.... Safety and training programs have been implemented to promote the safe handling of chemicals from...

  3. Photovoltaic module certification and laboratory accreditation criteria development

    NASA Astrophysics Data System (ADS)

    Osterwald, Carl R.; Zerlaut, Gene; Hammond, Robert; D'Aiello, Robert

    1996-01-01

    This paper overviews a model product certification and test laboratory accreditation program for photovoltaic (PV) modules that was recently developed by the National Renewable Energy Laboratory and Arizona State University. The specific objective of this project was to produce a document that details the equipment, facilities, quality assurance procedures, and technical expertise an accredited laboratory needs for performance and qualification testing of PV modules, along with the specific tests needed for a module design to be certified. The document was developed in conjunction with a criteria development committee consisting of representatives from 30 U.S. PV manufacturers, end users, standards and codes organizations, and testing laboratories. The intent is to lay the groundwork for a future U.S. PV certification and accreditation program that will be beneficial to the PV industry as a whole.

  4. Laboratory medicine in France. A jeopardized situation.

    PubMed

    Valdiguié, P M; de Graeve, J S; Guerre, J P

    1997-11-06

    The expenses for health care in France have risen considerably during the present decade, ranking third after USA and Canada in the Western world. In spite of the very low cost of laboratory medicine (2.4% of the total expenditure in 1995), clinical laboratories have undergone a severe squeeze, due to two limiting factors; a decrease in the ordering of laboratory tests from private physicians and a reduction in the total expenses for laboratory services from the Social Security. Consequently, there has been unemployment of technical and secretarial staff and severe restriction in investment for buying new equipment. However, hospital laboratories will manage to assume their challenge in developing robotics, automation, molecular pathology techniques and expert systems. Private laboratories, in spite of their efforts to follow the technological advances in automation, will survive thanks to consolidation of regional networks that operate in a cooperative rather than competitive mode. Therefore, the challenge will be not in the adaptation of clinical laboratories, but in the limitation of overspending at the national level and in modification of the behaviour of irresponsible citizens accustomed to spending freely on health care services.

  5. Impacts: NIST Building and Fire Research Laboratory (technical and societal)

    NASA Astrophysics Data System (ADS)

    Raufaste, N. J.

    1993-08-01

    The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) is dedicated to the life cycle quality of constructed facilities. The report describes major effects of BFRL's program on building and fire research. Contents of the document include: structural reliability; nondestructive testing of concrete; structural failure investigations; seismic design and construction standards; rehabilitation codes and standards; alternative refrigerants research; HVAC simulation models; thermal insulation; residential equipment energy efficiency; residential plumbing standards; computer image evaluation of building materials; corrosion-protection for reinforcing steel; prediction of the service lives of building materials; quality of construction materials laboratory testing; roofing standards; simulating fires with computers; fire safety evaluation system; fire investigations; soot formation and evolution; cone calorimeter development; smoke detector standards; standard for the flammability of children's sleepwear; smoldering insulation fires; wood heating safety research; in-place testing of concrete; communication protocols for building automation and control systems; computer simulation of the properties of concrete and other porous materials; cigarette-induced furniture fires; carbon monoxide formation in enclosure fires; halon alternative fire extinguishing agents; turbulent mixing research; materials fire research; furniture flammability testing; standard for the cigarette ignition resistance of mattresses; support of navy firefighter trainer program; and using fire to clean up oil spills.

  6. On the Integration of Remote Experimentation into Undergraduate Laboratories-Technical Implementation

    ERIC Educational Resources Information Center

    Esche, Sven K.

    2006-01-01

    This article presents how Stevens Institute of Technology (SIT) has adopted an Internet-based approach to implement its undergraduate student laboratories. The approach allowed student interaction with the experimental devices from remote locations at any time. Furthermore, it enabled instructors to include demonstrations of sophisticated…

  7. Damaging earthquakes: A scientific laboratory

    USGS Publications Warehouse

    Hays, Walter W.; ,

    1996-01-01

    This paper reviews the principal lessons learned from multidisciplinary postearthquake investigations of damaging earthquakes throughout the world during the past 15 years. The unique laboratory provided by a damaging earthquake in culturally different but tectonically similar regions of the world has increased fundamental understanding of earthquake processes, added perishable scientific, technical, and socioeconomic data to the knowledge base, and led to changes in public policies and professional practices for earthquake loss reduction.

  8. Environmental Response Laboratory Network (ERLN) WebEDR Quick Reference Guide

    EPA Pesticide Factsheets

    The Web Electronic Data Review is a web-based system that performs automated data processing on laboratory-submitted Electronic Data Deliverables (EDDs). Enables users to perform technical audits on data, and against Measurement Quality Objectives (MQOs).

  9. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 100 publications are summarized. These publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials are grouped into five general subject areas for easy reference: (1) the software engineering laboratory; (2) software tools; (3) models and measures; (4) technology evaluations; and (5) data collection. An index further classifies these documents by specific topic.

  10. New Brunswick Laboratory progress report for the period October 1988--September 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The mission of the New Brunswick Laboratory (NBL) of the US Department of Energy (DOE) is to provide and maintain a nuclear material measurements and standards laboratory as a technical response to DOE's statutory responsibility to assure the safeguarding of nuclear materials. This report summarizes the mission-fulfilling activities of NBL for the period October 1988 through September 1989.

  11. The Plant Genetic Engineering Laboratory For Desert Adaptation

    NASA Astrophysics Data System (ADS)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  12. Emotional intelligence in medical laboratory science

    NASA Astrophysics Data System (ADS)

    Price, Travis

    The purpose of this study was to explore the role of emotional intelligence (EI) in medical laboratory science, as perceived by laboratory administrators. To collect and evaluate these perceptions, a survey was developed and distributed to over 1,400 medical laboratory administrators throughout the U.S. during January and February of 2013. In addition to demographic-based questions, the survey contained a list of 16 items, three skills traditionally considered important for successful work in the medical laboratory as well as 13 EI-related items. Laboratory administrators were asked to rate each item for its importance for job performance, their satisfaction with the item's demonstration among currently working medical laboratory scientists (MLS) and the amount of responsibility college-based medical laboratory science programs should assume for the development of each skill or attribute. Participants were also asked about EI training in their laboratories and were given the opportunity to express any thoughts or opinions about EI as it related to medical laboratory science. This study revealed that each EI item, as well as each of the three other items, was considered to be very or extremely important for successful job performance. Administrators conveyed that they were satisfied overall, but indicated room for improvement in all areas, especially those related to EI. Those surveyed emphasized that medical laboratory science programs should continue to carry the bulk of the responsibility for the development of technical skills and theoretical knowledge and expressed support for increased attention to EI concepts at the individual, laboratory, and program levels.

  13. Chemistry-Materials Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Chemistry-Materials Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or substituting material related to class interests; as a guide book for…

  14. Quality assurance program for molecular medicine laboratories.

    PubMed

    Hajia, M; Safadel, N; Samiee, S Mirab; Dahim, P; Anjarani, S; Nafisi, N; Sohrabi, A; Rafiee, M; Sabzavi, F; Entekhabi, B

    2013-01-01

    Molecular diagnostic methods have played and continuing to have a critical role in clinical laboratories in recent years. Therefore, standardization is an evolutionary process that needs to be upgrade with increasing scientific knowledge, improvement of the instruments and techniques. The aim of this study was to design a quality assurance program in order to have similar conditions for all medical laboratories engaging with molecular tests. We had to design a plan for all four elements; required space conditions, equipments, training, and basic guidelines. Necessary guidelines was prepared and confirmed by the launched specific committee at the Health Reference Laboratory. Several workshops were also held for medical laboratories directors and staffs, quality control manager of molecular companies, directors and nominees from universities. Accreditation of equipments and molecular material was followed parallel with rest of program. Now we are going to accredit medical laboratories and to evaluate the success of the program. Accreditation of medical laboratory will be succeeding if its basic elements are provided in advance. Professional practice guidelines, holding training and performing accreditation the molecular materials and equipments ensured us that laboratories are aware of best practices, proper interpretation, limitations of techniques, and technical issues. Now, active external auditing can improve the applied laboratory conditions toward the defined standard level.

  15. Laboratory for Hydrospheric Processes 1997 Publications

    NASA Technical Reports Server (NTRS)

    Busalacchi, Antonio J.

    1997-01-01

    This document is a compilation of publications of the Goddard Space Flight Center Laboratory for Hydrospheric Processes for calendar year 1997. Each two-page entry is a cut-and-pasted extraction from a 1997 published journal article, book chapter, symposium or conference proceedings, or technical memorandum. This provides a quick, inexpensive way to communicate our research. If you wish further information, or a reprint, please contact the author of the article or the publisher. There are two sections, the first consisting of 76 journal articles and book chapters which are arranged according to the science priorities of NASA's Earth Science Enterprise: Land-Cover Change and Global Productivity Seasonal-to-Interannual Climate Prediction Natural Hazards Long-Term Climate Variability Atmospheric Ozone, and an additional category Sensor/Algorithm Development. * Each of these sections is preceded by a foreword. A second section, consisting of 52 other contributions (e.g. conference/symposium proceedings and technical memoranda), provides additional scientific information to the outside community. This document was initiated within the Earth Sciences Directorate at the NASA/Goddard Space Flight Center to provide internal communication. We anticipate it will prove useful to visitors and other people interested in our research. This is our fifth annual document. The Laboratory for Hydrospheric Processes is one of the major elements of the Earth Sciences Directorate at NASA's Goddard Space Flight Center. Scientific investigations within the Division range from theoretical to experimental research dealing with oceanic/physical oceanography, hydrologic, and cryospheric sciences. The Laboratory currently has a staff of 60 civil servants and approximately 138 visiting scientists, postdoctoral fellows, and contractors. At various times throughout the year, the Laboratory hosts additional personnel through NASA and Goddard sponsored enrichment programs for high school

  16. Commercialization of a DOE Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, Barry A.

    2008-01-15

    On April 1, 1998, Materials and Chemistry Laboratory, Inc. (MCLinc) began business as an employee-owned, commercial, applied research laboratory offering services to both government and commercial clients. The laboratory had previously been a support laboratory to DoE's gaseous diffusion plant in Oak Ridge (K-25). When uranium enrichment was halted at the site, the laboratory was expanded to as an environmental demonstration center and served from 1992 until 1997 as a DOE Environmental User Facility. In 1997, after the laboratory was declared surplus, it was made available to the employee group who operated the laboratory for DOE as a government-owned, contractor-operatedmore » facility. This paper describes briefly the process of establishing the business. Attributes that contributed to the success of MCLinc are described. Some attention is given to lessons learned and to changes that could facilitate future attempts to make similar transitions. Lessons learnt: as with any business venture, operation over time has revealed that some actions taken by the laboratory founders have contributed to its successful operation while others were not so successful. Observations are offered in hopes that lessons learned may suggest actions that will facilitate future attempts to make similar transitions. First, the decision to vest significant ownership of the business in the core group of professionals operating the business is key to its success. Employee-owners of the laboratory have consistently provided a high level of service to its customers while conducting business in a cost-efficient manner. Secondly, an early decision to provide business support services in-house rather than purchasing them from support contractors on site have proven cost-effective. Laboratory employees do multiple tasks and perform overhead tasks in addition to their chargeable technical responsibilities. Thirdly, assessment of technical capabilities in view of market needs and a decision to

  17. Halo abundance and assembly history with extreme-axion wave dark matter at z ≥ 4

    NASA Astrophysics Data System (ADS)

    Schive, Hsi-Yu; Chiueh, Tzihong

    2018-01-01

    Wave dark matter (ψDM) composed of extremely light bosons (mψ ˜ 10 - 22 eV), with quantum pressure suppressing structures below a kpc-scale de Broglie wavelength, has become a viable dark matter candidate. Compared to the conventional free-particle ψDM (FPψDM), the extreme-axion ψDM model (EAψDM) proposed by Zhang & Chiueh features a larger cut-off wavenumber and a broad spectral bump in the matter transfer function. Here, we conduct cosmological simulations to compare the halo abundances and assembly histories at z = 4-11 between three different scenarios: FPψDM, EAψDM and cold dark matter (CDM). We show that EAψDM produces significantly more abundant low-mass haloes than FPψDM with the same mψ, and therefore could alleviate the tension in mψ required by the Lyα forest data and by the kpc-scale dwarf galaxy cores. We also find that, compared to the CDM counterparts, massive EAψDM haloes are, on average, 3-4 times more massive at z = 10-11 due to their earlier formation, undergo a slower mass accretion at 7 ≲ z ≲ 11, and then show a rapidly rising major merger rate exceeding CDM by ˜ 50 per cent at 4 ≲ z ≲ 7. This fact suggests that EAψDM haloes may exhibit more prominent starbursts at z ≲ 7.

  18. Space Weather Studies at Istanbul Technical University

    NASA Astrophysics Data System (ADS)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  19. Tiger Team Assessment of the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  20. On the viability of supporting institutional sharing of remote laboratory facilities

    NASA Astrophysics Data System (ADS)

    Lowe, David; Dang, Bridgette; Daniel, Keith; Murray, Stephen; Lindsay, Euan

    2015-11-01

    Laboratories are generally regarded as critical to engineering education, and yet educational institutions face significant challenges in developing and maintaining high-quality laboratory facilities. Remote laboratories are increasingly being explored as a partial solution to this challenge, with research showing that - for the right learning outcomes - they can be viable adjuncts or alternatives to conventional hands-on laboratories. One consequential opportunity arising from the inherent support for distributed access is the possibility of cross-institutional shared facilities. While both technical feasibility and pedagogic implications of remote laboratories have been well studied within the literature, the organisational and logistical issues associated with shared facilities have received limited consideration. This paper uses an existing national-scale laboratory sharing initiative, along with a related survey and laboratory sharing data, to analyse a range of factors that can affect engagement in laboratory sharing. The paper also discusses the implications for supporting ongoing laboratory sharing.