Sample records for laboratory berkeley lab

  1. Berkeley Lab - Lawrence Berkeley National Laboratory

    Science.gov Websites

    nanoparticles that could make solar panels more efficient by converting light usually missed by solar cells into of Methane's Increasing Greenhouse Effect A Berkeley Lab research team tracked a rise in the warming effect of methane - one of the most important greenhouse gases for the Earth's atmosphere - over a 10

  2. Berkeley Lab Training

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Help Berkeley Lab Training Welcome Welcome to Berkeley Lab Training! Login to access your LBNL Training Profile. This provides quick access to all of the courses you need. Look below, to learn about different types of training available at

  3. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of

  4. PUB-3000 | BERKELEY LAB HEALTH AND SAFETY MANUAL

    Science.gov Websites

    ES&H MANUAL (PUB-3000) Berkeley Lab Table of Contents Guide to Using the ES&H Manual Responsible Authors Log of ES&H Manual Changes Requesting a Change to the ES&H Manual Search the ES &H Manual Questions & Comments Lawrence Berkeley National Laboratory University of California

  5. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  6. Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics | Berkeley Lab

    Science.gov Websites

    astrophysics, dark energy, physics Connect twitter instagram LinkedIn facebook youtube This form needs Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics News Release Paul Preuss 510-486-6249 * October professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics

  7. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials

  8. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Ager, Joel W » Alivisatos, A Paul » Altman, Ehud » Analytis, James » Anderson, Christopher  , Naomi » Gullikson, Eric M » Harris, Stephen J » Hasan, M. Zahid » Hellman, Frances » Helms, Brett A

  9. Molecular Foundry Workshop draws overflow crowd to BerkeleyLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Art

    2002-11-27

    Nanoscale science and technology is now one of the top research priorities in the United States. With this background, it is no surprise that an overflow crowd or more than 350 registrants filled two auditoriums to hear about and contribute ideas for the new Molecular Foundry during a two-day workshop at the Lawrence Berkeley National Laboratory (Berkeley Lab). Scheduled to open for business at Berkeley Labin early 2006, the Molecular Foundry is one of three Nanoscale Science Research Centers (NSRCs) put forward for funding by the DOE's Office of Basic Energy Sciences (BES).

  10. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kim, P

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritizedmore » and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.« less

  11. Berkeley Lab Scientist Named MacArthur "Genius" Fellow for Audio

    Science.gov Websites

    Preservation Research | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News to digitally recover a 128-year-old recording of Alexander Graham Bell's voice, enabling people to

  12. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less

  13. Microsoft Licenses Berkeley Lab's Home Energy Saver Code for Its Energy

    Science.gov Websites

    -based tool for calculating energy use in residential buildings. About one million people visit the Home Management Software | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News

  14. Berkeley Lab 2nd Grader Outreach

    ScienceCinema

    Scoggins, Jackie; Louie, Virginia

    2017-12-11

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  15. Better Batteries for Transportation: Behind the Scenes @ Berkeley Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, Vince

    Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's BATT, the Batteries for Advanced Transportation Technologies Program he leads, where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. This is the first in a forthcoming series of videos taking viewers into the laboratories and research facilities that members of the public rarely get to see.

  16. Better Batteries for Transportation: Behind the Scenes @ Berkeley Lab

    ScienceCinema

    Battaglia, Vince

    2018-02-06

    Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's BATT, the Batteries for Advanced Transportation Technologies Program he leads, where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. This is the first in a forthcoming series of videos taking viewers into the laboratories and research facilities that members of the public rarely get to see.

  17. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Robert K.

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less

  18. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley National Laboratory 1 Cyclotron Road MS 66R0200 Berkeley CA 94720 510-486-4957 A U.S. Department

  19. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence Berkeley National Laboratory

    2007-07-20

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developingmore » nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the

  20. Lawrence Berkeley National Laboratory 2016 Annual Financial Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kim, P.; Williams, Kim, P.

    FY2016 was a year of significant change and progress at Berkeley Lab. In March, Laboratory Director Michael Witherell assumed his new role when former Lab Director Paul Alivisatos became Vice Chancellor for Research at UC Berkeley. Dr. Witherell has solidified the Lab’s strategy, with a focus on long term science and technology priorities. Large-scale science efforts continued to expand at the Lab, including the Dark Energy Spectroscopic Instrument now heading towards construction, and the LUX-ZEPLIN dark matter detector to be built underground in South Dakota. Another proposed project, the Advanced Light Source-Upgrade, was given preliminary approval and will be themore » Lab’s largest scientific investment in years. Construction of the Integrative Genomics Building began, and will bring together researchers from the Lab’s Joint Genome Institute, now based in Walnut Creek, and the Systems Biology Knowledgebase (K-Base) under one roof. Investment in the Lab’s infrastructure also continues, informed by the Lab’s Infrastructure Strategic Plan. Another important focus is on developing the next generation of scientists with the talent and diversity needed to sustain Berkeley Lab’s scientific leadership and mission contributions to DOE and the Nation. Berkeley Lab received $897.5M in new FY2016 funding, a 12.5% increase over FY2015, for both programmatic and infrastructure activities. While the Laboratory experienced a substantial increase in funding, it was accompanied by only a modest increase in spending, as areas of growth were partially offset by the completion of several major efforts in FY2015. FY2016 costs were $826.9M, an increase of 1.9% over FY2015. Similar to the prior year, the indirect-funded Operations units worked with generally flat budgets to yield more funding for strategic needs. A key challenge for Berkeley Lab continues to be achieving the best balance to fund essential investments, deliver highly effective operational mission support

  1. Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011

    ScienceCinema

    Sanii, Babak

    2017-12-11

    Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011.

  2. Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanii, Babak

    Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011.

  3. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    ScienceCinema

    Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Dept. of Nuclear Medicine & Functional Imaging

    2018-01-23

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  4. Berkeley Lab's Cool Your School Program

    ScienceCinema

    Brady, Susan; Gilbert, Haley; McCarthy, Robert

    2018-02-02

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  5. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2018-04-16

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  6. Microbes to Biomes at Berkeley Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-10-28

    Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.

  7. Projects made with the Berkeley Lab Circuit Board

    Science.gov Websites

    dependence of cosmic rays. Greg Poe, a student at Travis High School in Richmond, Texas, received an the journal Physics Education. He used the Berkeley Lab circuit board together with spare parts from New York Schools Cosmic Particle Telescope workshop. Ken Cecire has created a web page which describes

  8. Microbes to Biomes at Berkeley Lab

    ScienceCinema

    None

    2018-06-21

    Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.

  9. Berkeley Lab Answers Your Home Energy Efficiency Questions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain

    2013-02-14

    In this follow-up "Ask Berkeley Lab" video, energy efficiency expert Iain Walker answers some of your questions about home energy efficiency. How do you monitor which appliances use the most energy? Should you replace your old windows? Are photovoltaic systems worth the cost? What to do about a leaky house? And what's the single biggest energy user in your home? Watch the video to get the answers to these and more questions.

  10. Berkeley Lab Answers Your Home Energy Efficiency Questions

    ScienceCinema

    Walker, Iain

    2018-01-16

    In this follow-up "Ask Berkeley Lab" video, energy efficiency expert Iain Walker answers some of your questions about home energy efficiency. How do you monitor which appliances use the most energy? Should you replace your old windows? Are photovoltaic systems worth the cost? What to do about a leaky house? And what's the single biggest energy user in your home? Watch the video to get the answers to these and more questions.

  11. Energy Efficient Buildings and Appliances: From Berkeley Lab to the Marketplace (LBNL Summer Lecture Series)

    ScienceCinema

    Rosenfeld, Art [California Energy Commission, Sacramento, CA (United States)

    2018-02-16

    Summer Lecture Series 2006: Art Rosenfeld, an appointee to the California Energy Commission and one of the architects of energy efficiency research at Berkeley Lab in the 1970s, discusses what it takes to shepherd innovative energy efficiency research from the lab to the real world.

  12. Berkeley Lab scientists develop criteria for $20 million energy challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain

    2009-08-26

    Berkeley Labs Iain Walker and his colleagues in environmental energy research helped the Siebel Foundation develop the criteria for its Energy Free Home Challenge, which comes with a $20 million global incentive prize. The Challenge is a competition to create a new generation of systems and technologies for practical homes that realize a net-zero, non-renewable energy footprint without increasing the cost of ownership. It is open to everyone everywhere — university teams to handymen and hobbyists.

  13. Berkeley Lab scientists develop criteria for $20 million energy challenge

    ScienceCinema

    Walker, Iain

    2017-12-12

    Berkeley Labs Iain Walker and his colleagues in environmental energy research helped the Siebel Foundation develop the criteria for its Energy Free Home Challenge, which comes with a $20 million global incentive prize. The Challenge is a competition to create a new generation of systems and technologies for practical homes that realize a net-zero, non-renewable energy footprint without increasing the cost of ownership. It is open to everyone everywhere — university teams to handymen and hobbyists.

  14. Wetlands, Microbes, and the Carbon Cycle: Behind the Scenes @ Berkeley Lab

    ScienceCinema

    Tringe, Susannah

    2018-02-14

    Susannah Tringe, who leads the Metagenome Program at the Department of Energy's Joint Genome Institute (JGI), a collaboration in which Berkeley Lab plays a leading role, takes us behind the scenes to show how DNA from unknown wild microbes is extracted and analyzed to see what role they play in the carbon cycle. Tringe collects samples of microbial communities living in the wetland muck of the Sacramento-San Joaquin River Delta, organisms that can determine how these wetlands store or release carbon.

  15. Berkeley Lab Scientist Co-Leads Breast Cancer Dream Team

    ScienceCinema

    Gray, Joe

    2017-12-27

    An $16.5 million, three-year grant to develop new and more effective therapies to fight breast cancer was awarded today to a multi-institutional Dream Team of scientists and clinicians that is co-led by Joe Gray, a renowned cancer researcher with the U.S. Department of Energys Lawrence Berkeley National Laboratory. http://newscenter.lbl.gov/

  16. Berkeley Lab Scientist Co-Leads Breast Cancer Dream Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, Joe

    2009-05-19

    An $16.5 million, three-year grant to develop new and more effective therapies to fight breast cancer was awarded today to a multi-institutional Dream Team of scientists and clinicians that is co-led by Joe Gray, a renowned cancer researcher with the U.S. Department of Energys Lawrence Berkeley National Laboratory. http://newscenter.lbl.gov/

  17. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  18. Popular Berkeley Lab X-ray Data Booklet reissued

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Art

    2001-03-02

    X-ray scientists and synchrotron-radiation users who have been patiently waiting for an updated version of the popular X-Ray Data Booklet last published in 1986 by the Center for X-Ray Optics at the Lawrence Berkeley National Laboratory can breathe a sigh of relief. The venerable ''little orange book'' has now been reissued under the auspices of CXRO and the Advanced Light Source (ALS) with an April printing of 10,000 paper copies and the posting of a Web edition at http://xdb.lbl.gov.

  19. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  20. Solar Fridges and Personal Power Grids: How Berkeley Lab is Fighting Global Poverty (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buluswar, Shashi; Gadgil, Ashok

    At this November 26, 2012 Science at the Theater, scientists discussed the recently launched LBNL Institute for Globally Transformative Technologies (LIGTT) at Berkeley Lab. LIGTT is an ambitious mandate to discover and develop breakthrough technologies for combating global poverty. It was created with the belief that solutions will require more advanced R&D and a deep understanding of market needs in the developing world. Berkeley Lab's Ashok Gadgil, Shashi Buluswar and seven other LIGTT scientists discussed what it takes to develop technologies that will impact millions of people. These include: 1) Fuel efficient stoves for clean cooking: Our scientists are improvingmore » the Berkeley Darfur Stove, a high efficiency stove used by over 20,000 households in Darfur; 2) The ultra-low energy refrigerator: A lightweight, low-energy refrigerator that can be mounted on a bike so crops can survive the trip from the farm to the market; 3) The solar OB suitcase: A low-cost package of the five most critical biomedical devices for maternal and neonatal clinics; 4) UV Waterworks: A device for quickly, safely and inexpensively disinfecting water of harmful microorganisms.« less

  1. Laboratory directed research and development program, FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less

  2. Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, R.

    1996-06-01

    This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellitemore » Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.« less

  3. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    ; Finance Templates Travel One-Stop Personnel Resources Committees In Case of Emergency Looking for MSD0010 Officer Mary Gross MCGross@lbl.gov Research Group Representatives Group Rep Ager Rachel Woods-Robinson Somorjai (see Salmeron Group) Yaghi Xiaokun Pei xiaokun_pei@berkeley.edu Zhang Sui Yang SuiYang@lbl.gov

  4. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    DOE PAGES

    Hargrove, Paul H.; Duell, Jason C.

    2006-09-01

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to fault precursors (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instancemore » reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters. © 2006 IOP Publishing Ltd.« less

  5. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. GENERATOR ROOM, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR AND POWER GENERATOR MOTORS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to sharemore » its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.« less

  9. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. FLOOR AND CEILING OF MAGNET ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-052). March 2005. LOCAL INJECTOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  11. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-066). March 2005. LOCAL INJECTOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. GENERATOR MOTORS OPPOSITE SWITCHGEAR RACKS, MECHANIC SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR AND POWER GENERATOR MOTORS, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-087). March 2005. GENERATOR PIT AREA, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-107). March 2005. NORTH FAN, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-106). March 2005. SOUTH FAN, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-054). March 2005. LOCAL INJECTOR ENTERING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-027). March 2005. MOUSE AT EAST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schleimer, G.E.

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  20. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-143). March 2005. BUILDING 51A, EXTERIOR WALL, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. END OF BEAMLINE LEAVING SHIELDING, MAGNET COILS IN EPOXY, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-050). March 2005. DIFFUSION PUMPS UNDER WEST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. CABLE RACEWAYS, CATWALK, AND WINDOWS OF OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-110). March 2005. SOUTH FAN FROM MEZZANINE, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR TO SECOND FLOOR OF MECHANICAL WINE, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-006). March 2005. JACKBOLTS BETWEEN MAGNET AND MAGNET FOUNDATION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-047). March 2005. AREA OF MAGNET REMOVAL, NORTHEAST QUADRANT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-043). March 2005. MOUSE AT EAST TANGENT, PLUNGING MECHANISM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-077). March 2005. STUB OF SUPERHILAC BEAM, ENTERING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-012). March 2005. PASSAGEWAY UNDER QUADRANT AND DIFFUSION PUMPS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  11. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. CENTRAL SUPPORT COLUMN EXTENDING THROUGH CRANES AND ROOF SUPPORT TRUSS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. The Berkeley Environmental Simulation Laboratory: Its Use In Environmental Impact Assessment.

    ERIC Educational Resources Information Center

    Appleyard, Donald; And Others

    An environmental simulation laboratory at the University of California, Berkeley, is testing the adequacy of different techniques for simulating environmental experiences. Various levels of realism, with various costs, are available in different presentation modes. The simulations can aid in communication about and the resolution of environmental…

  13. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-082). June 2005. CEILING AND CRANE OF BUILDING 51A, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. ENTRANCE TO STAIRWAY TO TUNNEL UNDER MAIN FLOOR OF MAGNET ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-015). March 2005. INTERIOR WALL OF MAGNET INSIDE CENTER OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-005). March 2005. PASSAGEWAY UNDER SOUTHEAST QUADRANT, AIR DUCT OPENINGS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-108). March 2005. FAN ROOM WITH STAIR TO FILTER BANKS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection XBD200503-00117-089). March 2005. GENERATOR PIT AREA, CONCRETE FOUNDATION FOR EQUIPMENT MOUNTS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR OF 51A TO SECOND FLOOR EXTERIOR EXIT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. WALL AND WINDOW OVERLOOKING MAGNET ROOM, SECOND STORY OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-158). March 2005. CONNECTION OF MAGNET ROOM CRANE TO OUTER TRACK, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-004). March 2005. ENTRY TO IGLOO, ILLUSTRATING THICKNESS OF IGLOO WALL, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-026). March 2005. MOUSE AT EAST TANGENT, LOOKING TOWARD EAST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. Teaching and implementing autonomous robotic lab walkthroughs in a biotech laboratory through model-based visual tracking

    NASA Astrophysics Data System (ADS)

    Wojtczyk, Martin; Panin, Giorgio; Röder, Thorsten; Lenz, Claus; Nair, Suraj; Heidemann, Rüdiger; Goudar, Chetan; Knoll, Alois

    2010-01-01

    After utilizing robots for more than 30 years for classic industrial automation applications, service robots form a constantly increasing market, although the big breakthrough is still awaited. Our approach to service robots was driven by the idea of supporting lab personnel in a biotechnology laboratory. After initial development in Germany, a mobile robot platform extended with an industrial manipulator and the necessary sensors for indoor localization and object manipulation, has been shipped to Bayer HealthCare in Berkeley, CA, USA, a global player in the sector of biopharmaceutical products, located in the San Francisco bay area. The determined goal of the mobile manipulator is to support the off-shift staff to carry out completely autonomous or guided, remote controlled lab walkthroughs, which we implement utilizing a recent development of our computer vision group: OpenTL - an integrated framework for model-based visual tracking.

  5. Photocopy of photograph (digital image maintained in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image maintained in LBNL Photo Lab Collection, XBD200503-00117-176). March 2005. CENTRAL COLUMN SUPPORT TO ROOF SHOWING CRANES CENTER SUPPORT TRACK, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-046). March 2005. ROOF SHIELDING BLOCK AND I-BEAM SUPPORT CONSTRUCTION, CENTER OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-129). March 2005. ENTRY TO ROOM 24, MAIN FLOOR, OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-009). March 2005. OPENINGS OF AIR DUCTS INTO PASSAGEWAY UNDER SOUTHEAST QUADRANT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    -486-6999 Urgent Radiation Protection Group Assistance Non-Life Threatening Event 24/7 Lab Phone: x7277 : 911 (no extentions required now) Non-Emergency Reporting (Fire and Police) Non-Life Threatening Event Spill Non-Life Threatening Event 24/7 Lab Phone: x6999 Cell Phone: 510-486-6999 Off Site Locations: 510

  10. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and

  11. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY BETWEEN MAIN FLOOR OF MAGNET ROOM AND SECOND FLOOR OF OFFICE-AND-SHOP SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR OF MAGNET ROOM TO TOP OF OUTER LAYER OF CONCRETE SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. TOP OF BEVATRON, BUILDING 51 ROOF TRUSS, AND CENTRAL RING TRACK FOR MAGNET ROOM CRANE, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-035). March 2005. WEST TANGENT VIEWED FROM INTERIOR OF BEVATRON. EQUIPMENT ACCESS STAIRWAY ON LEFT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-034). March 2005. MOUSE AT EAST TANGENT WITH COVER CLOSED, LOOKING TOWARD CENTER IGLOO, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-031). March 2005. MOUSE AT EAST TANGENT, WITH COVER OPEN, LOOKING TOWARD CENTER IGLOO, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00218-12). June 2005. DEEP TUNNEL INTO FOUNDATION UNDER BEVATRON, VIEW OF CART ON RAILS FOR TRANSPORTING EQUIPMENT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-049). March 2005. TUNNEL ENTRY FROM MAIN FLOOR OF MAGNET ROOM INTO CENTER OF BEVATRON, BENEATH SOUTHWEST QUADRANT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. Berkeley Lab Search - Search engine for Berkeley Lab

    Science.gov Websites

    twitter instagram google plus facebook youtube A U.S. Department of Energy National Laboratory Managed by the University of California Questions & Comments Privacy & Security Notice twitter instagram

  20. eComLab: remote laboratory platform

    NASA Astrophysics Data System (ADS)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  1. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-139). March 2005. TOP OF BEVATRON, INCLUDING WOOD STAIRWAY FROM OUTER EDGE OF SHIELDING TO TOP OF ROOF BLOCK SHIELDING - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00198-11). June 2005. DUCTWORK BETWEEN FAN ROOM AND PASSAGEWAY UNDER BEVATRON, NORTH SIDE OF ROOM 10, MAIN FLOOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00198-08). June 2005. DUCTWORK BETWEEN FAN ROOM AND PASSAGEWAY UNDER BEVATRON, SOUTH SIDE OF ROOM 10, MAIN FLOOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizesmore » current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.« less

  5. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Emergency Diversity and Inclusion Committee Members Lab Contacts Resources & Operations Acknowledging ; Finance Templates Travel One-Stop Personnel Resources Committees In Case of Emergency Looking for MSD0010

  6. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.« less

  7. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.« less

  8. Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)

    DOE R&D Accomplishments Database

    Budinger, T. F. (ed.)

    1987-01-01

    This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.

  9. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ? Click Here! Personnel Safety Personnel MSD EH&S Manager Martin Neitzel 66-242 ext. 6169 MLNeitzel Schwartz 66-250E ext. 4957 nischwartz@lbl.gov Lab Safety Advisory Committee Rep Robert Kaindl 2-354 ext

  10. The Lawrence Berkeley Laboratory geothermal program in northern Nevada

    NASA Technical Reports Server (NTRS)

    Mirk, K. F.; Wollenberg, H. A.

    1974-01-01

    The Lawrence Berkeley Laboratory's geothermal program began with consideration of regions where fluids in the temperature range of 150 to 230 C may be economically accessible. Three valleys, located in an area of high regional heat flow in north central Nevada, were selected for geological, geophysical, and geochemical field studies. The objective of these ongoing field activities is to select a site for a 10-MW demonstration plant. Field activities (which started in September 1973) are described. A parallel effort has been directed toward the conceptual design of a 10-MW isobutane binary plant which is planned for construction at the selected site. Design details of the plant are described. Project schedule with milestones is shown together with a cost summary of the project.

  11. Developing Guided Inquiry-Based Student Lab Worksheet for Laboratory Knowledge Course

    NASA Astrophysics Data System (ADS)

    Rahmi, Y. L.; Novriyanti, E.; Ardi, A.; Rifandi, R.

    2018-04-01

    The course of laboratory knowledge is an introductory course for biology students to follow various lectures practicing in the biology laboratory. Learning activities of laboratory knowledge course at this time in the Biology Department, Universitas Negeri Padang has not been completed by supporting learning media such as student lab worksheet. Guided inquiry learning model is one of the learning models that can be integrated into laboratory activity. The study aimed to produce student lab worksheet based on guided inquiry for laboratory knowledge course and to determine the validity of lab worksheet. The research was conducted using research and developmet (R&D) model. The instruments used in data collection in this research were questionnaire for student needed analysis and questionnaire to measure the student lab worksheet validity. The data obtained was quantitative from several validators. The validators consist of three lecturers. The percentage of a student lab worksheet validity was 94.18 which can be categorized was very good.

  12. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less

  13. Use of a krypton isotope for rapid ion changeover at the Lawrence Berkeley Laboratory 88-inch cyclotron

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1989-01-01

    An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.

  14. Good Laboratory Practice. Part 3. Implementing Good Laboratory Practice in the Analytical Lab

    ERIC Educational Resources Information Center

    Wedlich, Richard C.; Pires, Amanda; Fazzino, Lisa; Fransen, Joseph M.

    2013-01-01

    Laboratories submitting experimental results to the Food and Drug Administration (FDA) or the Environmental Protection Agency (EPA) in support of Good Laboratory Practice (GLP) nonclinical laboratory studies must conduct such work in compliance with the GLP regulations. To consistently meet these requirements, lab managers employ a "divide…

  15. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiationmore » biophysics.« less

  16. Hydrogeology and tritium transport in Chicken Creek Canyon,Lawrence Berkeley National Laboratory, Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Preston D.; Javandel, Iraj

    This study of the hydrogeology of Chicken Creek Canyon wasconducted by the Environmental Restoration Program (ERP) at LawrenceBerkeley National Laboratory (LBNL). This canyon extends downhill fromBuilding 31 at LBNL to Centennial Road below. The leading edge of agroundwater tritium plume at LBNL is located at the top of the canyon.Tritium activities measured in this portion of the plume during thisstudy were approximately 3,000 picocuries/liter (pCi/L), which issignificantly less than the maximum contaminant level (MCL) for drinkingwaterof 20,000 pCi/L established by the Environmental ProtectionAgency.There are three main pathways for tritium migration beyond theLaboratory s boundary: air, surface water and groundwater flow.more » Thepurpose of this report is to evaluate the groundwater pathway.Hydrogeologic investigation commenced with review of historicalgeotechnical reports including 35 bore logs and 27 test pit/trench logsas well as existing ERP information from 9 bore logs. This was followedby field mapping of bedrock outcrops along Chicken Creek as well asbedrock exposures in road cuts on the north and east walls of the canyon.Water levels and tritium activities from 6 wells were also considered.Electrical-resistivity profiles and cone penetration test (CPT) data werecollected to investigate the extent of an interpreted alluvial sandencountered in one of the wells drilled in this area. Subsequent loggingof 7 additional borings indicated that this sand was actually anunusually well-sorted and typically deeply weathered sandstone of theOrinda Formation. Wells were installed in 6 of the new borings to allowwater level measurement and analysis of groundwater tritium activity. Aslug test and pumping tests were also performed in the wellfield.« less

  17. First Light for BOSS - A New Kind of Search for Dark Energy | Berkeley

    Science.gov Websites

    in the clumping of invisible dark matter. Comparing these scales at different eras makes it possible Web People Close About the Lab Leadership/Organization Calendar News Center Today At Berkeley Lab News Preuss, (510) 486-6249 On the night of September 14 the largest program in the Sloan Digital Sky Survey

  18. FY2014 LBNL LDRD Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Darren

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less

  19. Theme: Land Laboratories--Urban Settings, Liability, Natural Resources Labs.

    ERIC Educational Resources Information Center

    Whaley, David, Ed.; And Others

    1994-01-01

    Includes "With a Little Imagination"; "From Fallow to Fertile"; "Operating a School Enterprise in Agriculture"; "Using a Nontraditional Greenhouse to Enhance Lab Instruction"; "Risk Management for Liability in Operating Land Laboratories"; "Working Land and Water Laboratory for Natural…

  20. BEARS: Radioactive Ion Beams at Berkeley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.; Joosten, R.; Donahue, C.A.

    2000-03-14

    A light-isotope radioactive ion beam capability has been added to the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory by coupling to the production cyclotron of the Berkeley Isotope Facility. The connection required the development and construction of a 350 m gas transport system between the two accelerators as well as automated cryogenic separation of the produced activity. The first beam developed, {sup 11}C, has been successfully accelerated with an on-target intensity of 1 x 10{sup 8} ions/sec at energies of around 10 MeV/u.

  1. Virtual lab demonstrations improve students' mastery of basic biology laboratory techniques.

    PubMed

    Maldarelli, Grace A; Hartmann, Erica M; Cummings, Patrick J; Horner, Robert D; Obom, Kristina M; Shingles, Richard; Pearlman, Rebecca S

    2009-01-01

    Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergraduate and graduate lab courses and to assess the impact of these videos on student learning. Demonstrations of individual laboratory procedures were videotaped and then edited with iMovie. Narration for the videos was edited with Audacity. Undergraduate students were surveyed anonymously prior to and following screening to assess the impact of the videos on student lab performance by completion of two Participant Perception Indicator surveys. A total of 203 and 171 students completed the pre- and posttesting surveys, respectively. Statistical analyses were performed to compare student perceptions of knowledge of, confidence in, and experience with the lab techniques before and after viewing the videos. Eleven demonstrations were recorded. Chi-square analysis revealed a significant increase in the number of students reporting increased knowledge of, confidence in, and experience with the lab techniques after viewing the videos. Incorporation of instructional videos as prelaboratory exercises has the potential to standardize techniques and to promote successful experimental outcomes.

  2. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 basemore » pairs per year, while still retaining its efficiency.« less

  3. LBNL Laboratory Directed Research and Development Program FY2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  4. The LabTube - a novel microfluidic platform for assay automation in laboratory centrifuges.

    PubMed

    Kloke, A; Fiebach, A R; Zhang, S; Drechsel, L; Niekrawietz, S; Hoehl, M M; Kneusel, R; Panthel, K; Steigert, J; von Stetten, F; Zengerle, R; Paust, N

    2014-05-07

    Assay automation is the key for successful transformation of modern biotechnology into routine workflows. Yet, it requires considerable investment in processing devices and auxiliary infrastructure, which is not cost-efficient for laboratories with low or medium sample throughput or point-of-care testing. To close this gap, we present the LabTube platform, which is based on assay specific disposable cartridges for processing in laboratory centrifuges. LabTube cartridges comprise interfaces for sample loading and downstream applications and fluidic unit operations for release of prestored reagents, mixing, and solid phase extraction. Process control is achieved by a centrifugally-actuated ballpen mechanism. To demonstrate the workflow and functionality of the LabTube platform, we show two LabTube automated sample preparation assays from laboratory routines: DNA extractions from whole blood and purification of His-tagged proteins. Equal DNA and protein yields were observed compared to manual reference runs, while LabTube automation could significantly reduce the hands-on-time to one minute per extraction.

  5. Web Support

    Science.gov Websites

    Berkeley Lab Lawrence Berkeley National Laboratory A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center our response, please check the specific website or page in question for the name of the appropriate

  6. The status of the Callio Lab Underground Laboratory in the Pyhäsalmi mine

    NASA Astrophysics Data System (ADS)

    Joutsenvaara, Jari; Enqvist, Timo; Isoherranen, Ville; Jalas, Panu; Kutuniva, Johanna; Kuusiniemi, Pasi

    2017-04-01

    We present the structure and the latest technical characteristics of the Callio Lab, the new underground laboratory managing the scientific and other non-mining related operations in the Pyhäsalmi mine in Pyhäjärvi, Finland. The very deep laboratory hall space, called Lab 2 of Callio Lab, was finished in spring 2016 at the depth of 1 430 metres (4 100 m.w.e.). Callio Lab has also other easily accessible (by car or truck) halls for laboratory use, for example at the depths of 440 m, 600 m and 990 m. We also review the current and planned activities related to particle physics, applied sciences, industrial R&D and production.

  7. A-Z Link

    Science.gov Websites

    Index (this page) 2. Use search.lbl.gov powered by Google. 3. Use DS The Directory of both People and Berkeley Lab Lawrence Berkeley National Laboratory A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center

  8. Environmental Response Laboratory Network (ERLN) Public Labs Fact Sheet

    EPA Pesticide Factsheets

    Outlines goals for participation in the Environmental Response Laboratory Network, and FAQs. They play an integral role in a coordinated and operational system of labs capable of efficiently and effectively responding to incidents.

  9. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance frommore » the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.« less

  10. Comprehensive facilities plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitatemore » existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.« less

  11. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Issue 3, March Issue 2, February Issue 1, January A U.S. Department of Energy National Laboratory

  12. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress inmore » increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.« less

  13. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  14. 77 FR 37604 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ...: The Coast Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in position 37[deg]51... Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Berkeley...

  15. The Astrophysics Major at the University of California, Berkeley

    NASA Astrophysics Data System (ADS)

    Arons, J.; Heiles, C.

    2001-12-01

    The Astrophysics major offered by the Berkeley Astronomy Department has been redesigned to reflect broad educational goals. Students preparing for graduate school study mostly Physics and Mathematics, leavened with four semesters of astrophysics at the sophomore and senior level. These courses make heavy use of their concurrent Physics and Math. Astrophysics and Physics majors differ in the astrophysics courses replacing other electives which a Physics major might choose. The major's redesign also opened the door to students who wish to pursue a major which gives them broad technical training without having graduate school as a goal. Many such students follow the same track as those pursuing the graduate school option; others take courses specifically designed for people with alternate careers in mind. The major change has been a laboratory requirement for all Astrophysics majors, in either track. We now have advanced undergraduate laboratories: optical, radio, and near infrared; details are on our web page. These share the common thread of development of deep capabilities in data gathering, analysis, and presentation. Students achieve expertise in these areas because the labs include the complete range of activities normally encountered in observational or experimental research. Students use laboratory equipment to measure the fundamental parameters of devices and systems, make astronomical observations with those systems, write software in UNIX and IDL to control equipment and analyze the results, and write formal lab reports in LATEX. We avoid ``black box'' or ``cookbook'' procedures . The students leave the course having gained experience and knowledge, and a ``feel'' for how to proceed when faced with sometimes recalcitrant equipment and imperfect data. A by product of the training has been an increase in student involvement in undergraduate research projects. These innovations have led to a major that has doubled in size and, in a quite unanticipated

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Sabin; Schlegel, David

    Lawrence Berkeley National Laboratory physicist and dark energy hunter David Schlegel chats with Sabin Russell, former San Francisco Chronicle reporter turned Berkeley Lab science writer, June 22, 2011. Their conversation is the first installment of "Sit Down With Sabin," a weekly conversation hosted by Russell. Over the course of five conversations with Berkeley Lab staff this summer, Russell will explore the ups and downs of innovative science — all without the aid of PowerPoint slides. Brought to you by Berkeley Lab Public Affairs.

  17. Electron Microscope Center Opens at Berkeley.

    ERIC Educational Resources Information Center

    Robinson, Arthur L.

    1981-01-01

    A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)

  18. Experiences with lab-centric instruction

    NASA Astrophysics Data System (ADS)

    Titterton, Nathaniel; Lewis, Colleen M.; Clancy, Michael J.

    2010-06-01

    Lab-centric instruction emphasizes supervised, hands-on activities by substituting lab for lecture time. It combines a multitude of pedagogical techniques into the format of an extended, structured closed lab. We discuss the range of benefits for students, including increased staff interaction, frequent and varied self-assessments, integrated collaborative activities, and a systematic sequence of activities that gradually increases in difficulty. Instructors also benefit from a deeper window into student progress and understanding. We follow with discussion of our experiences in courses at U.C. Berkeley, and using data from some of these investigate the effects of lab-centric instruction on student learning, procrastination, and course pacing. We observe that the lab-centric format helped students on exams but hurt them on extended programming assignments, counter to our hypothesis. Additionally, we see no difference in self-ratings of procrastination and limited differences in ratings of course pace. We do find evidence that the students who choose to attend lab-centric courses are different in several important ways from students who choose to attend the same course in a non-lab-centric format.

  19. Using Evernote as an electronic lab notebook in a translational science laboratory.

    PubMed

    Walsh, Emily; Cho, Ilseung

    2013-06-01

    Electronic laboratory notebooks (ELNs) offer significant advantages over traditional paper laboratory notebooks (PLNs), yet most research labs today continue to use paper documentation. While biopharmaceutical companies represent the largest portion of ELN users, government and academic labs trail far behind in their usage. Our lab, a translational science laboratory at New York University School of Medicine (NYUSoM), wanted to determine if an ELN could effectively replace PLNs in an academic research setting. Over 6 months, we used the program Evernote to record all routine experimental information. We also surveyed students working in research laboratories at NYUSoM on the relative advantages and limitations of ELNs and PLNs and discovered that electronic and paper notebook users alike reported the inability to freehand into a notebook as a limitation when using electronic methods. Using Evernote, we found that the numerous advantages of ELNs greatly outweighed the inability to freehand directly into a notebook. We also used imported snapshots and drawing program add-ons to obviate the need for freehanding. Thus, we found that using Evernote as an ELN not only effectively replaces PLNs in an academic research setting but also provides users with a wealth of other advantages over traditional paper notebooks.

  20. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, D.W.

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the formmore » of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s).« less

  1. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, D.W.

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the formmore » of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s).« less

  2. Ames Lab 101: Danny Shechtman Returns to the Ames Laboratory

    ScienceCinema

    Shechtman, Danny

    2018-05-07

    Danny Shechtman, Ames Laboratory Scientist and winner of the Nobel Prize in Chemistry 2011, returned to the Ames Lab on February 14, 2012. During this time, the Nobel Laureate met with the press as well as ISU students.

  3. AstroBioLab: A Mobile Biotic and Soil Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Zent, A. P.; Grunthaner, F. J.; Quinn, R. C.; Navarro-Gonzalex, R.; Gonez-Silva, B.; McKay, C. P.

    2003-01-01

    The Jet Propulsion Laboratory, Scripps Institution of Oceanography, and NASA Ames Research Center are currently developing a mobile Astrobiology Laboratory (AstroBioLab) for a series of field campaigns using the Chilean Atacama Desert as a Martian surface analog site. The Astrobiology Science and Technology for Exploring Planets (ASTEP) program funded AstroBioLab is designed around the Mars Organic Detector (MOD) instrument and the Mars Oxidant Instrument (MOI) which provide complementary data sets. Using this suite of Mars Instrument Development Program (MIDP) and Planetary Instrument Definition and Development Program (PIDDP) derived in situ instruments, which provide state-of-the-art organic compound detection (attomolar sensitivity) and depth profiling of oxidation chemistry, we measure and correlate the interplay of organic compounds, inorganic oxidants, UV irradiation and water abundance. This mobile laboratory studies the proposition that intense UV irradiation coupled with low levels of liquid water generates metastable oxidizing species that can consume moderate amounts of seeded organic compounds. Results from the initial spring 2003 field campaign will be presented.

  4. 76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ...-AA00 Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA AGENCY: Coast... the 4th of July Festival Berkeley Marina Fireworks Display. Unauthorized persons or vessels are... display. Background and Purpose The City of Berkeley Marina will sponsor the 4th of July Festival Berkeley...

  5. Sit Down with Sabin: Margaret Torn: The Carbon Cycle Like You've Never Seen It (LBNL Summer Lecture Series)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Sabin; Torn, Margaret

    2011-07-06

    Lawrence Berkeley National Laboratory soil scientist Margaret Torn appears July 6, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Torn discusses how she travels the world to learn more about soil's huge role in the global carbon cycle. Brought to you by Berkeley Lab Public Affairs.

  6. Laboratory Directed Research and Development Program FY98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less

  7. Safety in the Chemical Laboratory: Chemical Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Walton, Wendy A.

    1987-01-01

    Encourages instruction about disposal of hazardous wastes in college chemistry laboratories as an integral part of experiments done by students. Discusses methods such as down-the-drain disposal, lab-pack disposal, precipitation and disposal, and precipitation and recovery. Suggests that faculty and students take more responsibility for waste…

  8. Site Environmental Report for 2004. Volume 1, Environment, Health, and Safety Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2005-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2004 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2004. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. Volume II contains individual data results from these activities. This year, the Site Environmental Report was distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request.« less

  9. 18. VIEW OF THE GENERAL CHEMISTRY LAB. THE LABORATORY PROVIDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF THE GENERAL CHEMISTRY LAB. THE LABORATORY PROVIDED GENERAL ANALYTICAL AND STANDARDS CALIBRATION, AS WELL AS DEVELOPMENT OPERATIONS INCLUDING WASTE TECHNOLOGY DEVELOPMENT AND DEVELOPMENT AND TESTING OF MECHANICAL SYSTEMS FOR WEAPONS SYSTEMS. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  10. The Moral Lives of Laboratory Monkeys: Television and the Ethics of Care.

    PubMed

    Sharp, Lesley A

    2017-06-01

    Why do lab monkeys watch TV? This essay examines the preponderance of televisions in primate housing units based in academic research laboratories. Within such labs, television and related visual media are glossed as part-and-parcel of welfare or species-specific enrichment practices intended for research monkeys, a logic that is simultaneously historically- and ontologically-based. In many research centers, television figures prominently in the two inseparable domains of a lab monkey's life: as a research tool employed during experiments, and in housing units where captive monkeys are said to enjoy watching TV during "down time." My purpose is not to determine whether monkeys do indeed enjoy, or need, television; rather, I employ visual media as a means to uncover, and decipher, the moral logic of an ethics of care directed specifically at highly sentient creatures who serve as human proxies in a range of experimental contexts. I suggest that this specialized ethics of animal care materializes Mattingly's notion of "moral laboratories" (Mattingly in Moral laboratories: family peril and the struggle for a good life, University of California Press, Berkeley, 2014), where television mediates the troublesome boundary of species difference among the simian and human subjects who cohabit laboratory worlds.

  11. 78 FR 60245 - Privacy Act Systems of Records; LabWare Laboratory Information Management System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... Services Laboratories (NVSL). Diagnostic testing provides official test results for animal imports, exports.... Diagnostic testing is also done in connection with suspected foreign animal disease investigations and... of Records; LabWare Laboratory Information Management System AGENCY: Animal and Plant Health...

  12. Technology Being Developed at Lawrence Berkeley National Laboratory: Ultra-Low- Emission Combustion Technologies for Heat and Power Generation

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.

    2001-01-01

    The Combustion Technologies Group at Lawrence Berkeley National Laboratory has developed simple, low-cost, yet robust combustion technologies that may change the fundamental design concept of burners for boilers and furnaces, and injectors for gas turbine combustors. The new technologies utilize lean premixed combustion and could bring about significant pollution reductions from commercial and industrial combustion processes and may also improve efficiency. The technologies are spinoffs of two fundamental research projects: An inner-ring burner insert for lean flame stabilization developed for NASA- sponsored reduced-gravity combustion experiments. A low-swirl burner developed for Department of Energy Basic Energy Sciences research on turbulent combustion.

  13. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    ERIC Educational Resources Information Center

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  14. Implementation and use of cloud-based electronic lab notebook in a bioprocess engineering teaching laboratory.

    PubMed

    Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur

    2017-01-01

    Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.

  15. The TriLab, a Novel ICT Based Triple Access Mode Laboratory Education Model

    ERIC Educational Resources Information Center

    Abdulwahed, Mahmoud; Nagy, Zoltan K.

    2011-01-01

    This paper introduces a novel model of laboratory education, namely the TriLab. The model is based on recent advances in ICT and implements a three access modes to the laboratory experience (virtual, hands-on and remote) in one software package. A review of the three modes is provided with highlights of advantages and disadvantages of each mode.…

  16. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach

  17. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to

  18. Lab meets real life: A laboratory assessment of spontaneous thought and its ecological validity

    PubMed Central

    Welz, Annett; Reinhard, Iris; Alpers, Georg W.

    2017-01-01

    People’s minds frequently wander towards self-generated thoughts, which are unrelated to external stimuli or demands. These phenomena, referred to as “spontaneous thought” (ST) and “mind wandering” (MW), have previously been linked with both costs and benefits. Current assessments of ST and MW have predominantly been conducted in the laboratory, whereas studies on the ecological validity of such lab-related constructs and their interrelations are rare. The current study examined the stability of ST dimensions assessed in the lab and their predictive value with respect to MW, repetitive negative thought (uncontrollable rumination, RUM), and affect in daily life. Forty-three university students were assessed with the Amsterdam Resting State Questionnaire (2nd version) to assess ten ST dimensions during the resting state in two laboratory sessions, which were separated by five days of electronic ambulatory assessment (AA). During AA, individuals indicated the intensity of MW and RUM, as well as of positive and negative affect in daily life ten times a day. ST dimensions measured in the lab were moderately stable across one week. Five out of ten ST lab dimensions were predicted by mental health-related symptoms or by dispositional cognitive traits. Hierarchical linear models revealed that a number of ST lab dimensions predicted cognitive and affective states in daily life. Mediation analyses showed that RUM, but not MW per se, accounted for the relationship between specific ST lab dimensions and mood in daily life. By using a simple resting state task, we could demonstrate that a number of lab dimensions of spontaneous thought are moderately stable, are predicted by mental health symptoms and cognitive traits, and show plausible associations with categories of self-generated thought and mood in daily life. PMID:28910351

  19. Love the Lab, Hate the Lab Report?

    ERIC Educational Resources Information Center

    Bjorn, Genevive

    2018-01-01

    In the author's large, urban high school, enrollment in a laboratory science is mandatory. While the student participation rate for lab activities is over 98%, the turn-in rate for traditional lab reports averages just 35% to 85%. Those students who don't produce a lab report miss a critical opportunity to improve their skills in scientific…

  20. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lofgren, E.J.

    1994-07-01

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954.

  1. A Radiation Homeland Security Workshop Presented to the City of Berkeley Fire Department

    NASA Astrophysics Data System (ADS)

    Matis, Howard

    2005-04-01

    A radiation incident in a community, ranging from a transportation accident to a dirty bomb, is expected to be rare, but still can occur. First responders to such an incident must be prepared. City of Berkeley officials met with members of the Lawrence Berkeley National Laboratory staff and agreed that the laboratory participants would create material and teach it to all of their fire fighting staff. To design such a course, nuclear physicists, biologists and health physicists merged some of their existing teaching material together with previous homeland security efforts to produce a course that lasted one full day. The material was designed to help alleviate the myths and fear of radiation experienced by many first responders. It included basic nuclear physics information, biological effects, and methods that health physicists use to detect and handle radiation. The curriculum included several hands on activities which involved working directly with the meters the Berkeley Fire Department possessed. In addition, I will discuss some observations from teaching this course material plus some unusual problems that we encountered, such as suddenly the whole class responding to a fire.

  2. Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW.

    PubMed

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-02-21

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented.

  3. Virtual and Remote Robotic Laboratory Using EJS, MATLAB and Lab VIEW

    PubMed Central

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-01-01

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented. PMID:23429578

  4. Space Radiation and Cataracts (LBNL Summer Lecture Series)

    ScienceCinema

    Blakely, Eleanor [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division

    2018-01-23

    Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab

  5. Economic impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Technology Transfer Department

    2001-06-01

    In federal fiscal year 2000 (FY00), Berkeley Lab had 4,347 full- and part-time employees. In addition, at any given time of the year, there were more than 1,000 Laboratory guests. These guests, who also reside locally, have an important economic impact on the nine-county Bay Area. However, Berkeley Lab's total economic impact transcends the direct effects of payroll and purchasing. The direct dollars paid to the Lab's employees in the form of wages, salaries, and benefits, and payments made to contractors for goods and services, are respent by employees and contractors again and again in the local and greater economy.more » Further, while Berkeley Lab has a strong reputation for basic scientific research, many of the Lab's scientific discoveries and inventions have had direct application in industry, spawning new businesses and creating new opportunities for existing firms. This analysis updates the Economic Impact Analysis done in 1996, and its purpose is to describe the economic and geographic impact of Laboratory expenditures and to provide a qualitative understanding of how Berkeley Lab impacts and supports the local community. It is intended as a guide for state, local, and national policy makers as well as local community members. Unless otherwise noted, this analysis uses data from FY00, the most recent year for which full data are available.« less

  6. Reducing Our Carbon Footprint: A Low-Energy House in Berkeley, Kabul, and Washington DC (LBNL Science at the Theater)

    ScienceCinema

    Diamond, Rick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-05-14

    How well can we assess and improve building energy performance in California homes? How much energy-and carbon-do homes use in other parts of the world? Rick Diamond, deputy group leader of the Berkeley Lab Energy Performance of Buildings Group, discusses change, global solutions, and the stories of three houses in Berkeley, Kabul (Afghanistan), and Washington, D.C. Diamond, who is also a senior advisor at the California Institute for Energy and Environment, investigates user interactions with the built environment for improved building energy performance. The group has studied a wide range of issues related to energy use in housing, including duct system efficiency, user behavior, and infiltration and ventilation measurements.

  7. The Infant Version of the Laboratory Temperament Assessment Battery (Lab-TAB): Measurement Properties and Implications for Concepts of Temperament

    PubMed Central

    Planalp, Elizabeth M.; Van Hulle, Carol; Gagne, Jeffrey R.; Goldsmith, H. Hill

    2017-01-01

    We describe large-sample research using the Infant Laboratory Temperament Assessment Battery (Lab-TAB; Goldsmith and Rothbart, 1996) in 1,076 infants at 6 and 12 months of age. The Lab-TAB was designed to assess temperament dimensions through a series of episodes that mimic everyday situations. Our goal is to provide guidelines for scoring Lab-TAB episodes to derive temperament composites. We also present a set of analyses examining mean differences and stability of temperament in early infancy, gender differences in infant temperament, as well as a validation of Lab-TAB episodes and composites with parent reported Infant Behavior Questionnaire (IBQ; Rothbart, 1981) scales. In general, laboratory observed temperament was only modestly related to parent reported temperament. However, temperament measures were significantly stable across time and several gender differences that align with previous research emerged. In sum, the Lab-TAB usefully assesses individual differences in infant emotionality. PMID:28596748

  8. The Berkeley Instrumental Neutron Generator (BINGE) for 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Renne, P. R.; Becker, T. A.; Bernstein, L.; Firestone, R. B.; Kirsch, L.; Leung, K. N.; Rogers, A.; Van Bibber, K.; Waltz, C.

    2014-12-01

    The Berkeley Instrumental Neutron Generator (BINGE) facility is the product of a consortium involving the Berkeley Geochronology Center (BGC), the U.C. Berkeley Nuclear Engineering Dept. (UCB/NE), and Lawrence Berkeley (LBNL) and Lawrence Livermore (LLNL) National Labs. BINGE was initially designed (and funded by NSF) for 40Ar/39Ar geochronology. BINGE uses a plasma-based deuteron ion source and a self-loading Ti-surfaced target to induce deuteron-deuterium (DD) fusion via the reaction 2H(d,n)3He, producing 2.45 MeV neutrons. The limited neutron energy spectrum is aimed at reducing recoil effects, interfering nuclear reactions, and unwanted radioactive byproducts, all of which are undesirable consequences of conventional irradiation with 235U fission spectrum neutrons. Minimization of interfering reactions such as 40Ca(n,na)36Ar greatly reduces penalties for over-irradiation, enabling improved signal/background measurement of e.g. 39Ar. BINGE will also be used for a variety of nuclear physics and engineering experiments that require a high flux of monoenergetic neutrons. Neutron energies lower than 2.45 MeV can be obtained via irradiation ports within and external to polyethylene shielding. Initial commissioning produced a neutron flux of 108 n/sec/cm2 at 1 mA source current and 100 kV anode voltage, as expected. When scaled up to the 1 A source current as planned, this indicates that BINGE will achieve the design objective neutron flux of 1011 n/sec/cm2. Further progress towards this goal will be reported. Supported by NSF (grant #EAR-0960138), BGC, UCB/NE, University of California Office of the President, and DOE through LLNL under contract #DE-AC52-07NA27344 and LBNL under contract #DE-AC02-05CH11231.

  9. LabTrove: a lightweight, web based, laboratory "blog" as a route towards a marked up record of work in a bioscience research laboratory.

    PubMed

    Milsted, Andrew J; Hale, Jennifer R; Frey, Jeremy G; Neylon, Cameron

    2013-01-01

    The electronic laboratory notebook (ELN) has the potential to replace the paper notebook with a marked-up digital record that can be searched and shared. However, it is a challenge to achieve these benefits without losing the usability and flexibility of traditional paper notebooks. We investigate a blog-based platform that addresses the issues associated with the development of a flexible system for recording scientific research. We chose a blog-based approach with the journal characteristics of traditional notebooks in mind, recognizing the potential for linking together procedures, materials, samples, observations, data, and analysis reports. We implemented the LabTrove blog system as a server process written in PHP, using a MySQL database to persist posts and other research objects. We incorporated a metadata framework that is both extensible and flexible while promoting consistency and structure where appropriate. Our experience thus far is that LabTrove is capable of providing a successful electronic laboratory recording system. LabTrove implements a one-item one-post system, which enables us to uniquely identify each element of the research record, such as data, samples, and protocols. This unique association between a post and a research element affords advantages for monitoring the use of materials and samples and for inspecting research processes. The combination of the one-item one-post system, consistent metadata, and full-text search provides us with a much more effective record than a paper notebook. The LabTrove approach provides a route towards reconciling the tensions and challenges that lie ahead in working towards the long-term goals for ELNs. LabTrove, an electronic laboratory notebook (ELN) system from the Smart Research Framework, based on a blog-type framework with full access control, facilitates the scientific experimental recording requirements for reproducibility, reuse, repurposing, and redeployment.

  10. Mendelevium: The Way It Was

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A reel of black & white film shot nearly 60 years ago has surfaced at Berkeley Lab, depicting the discovery of Mendelevium - or Element 101 - as reenacted by some of the legendary scientists who did the actual work at that time. Since the 1940s, Berkeley Lab scientists were locked in a race to synthesize new elements, and more often than not, they came out winners. Sixteen elements, most of them in the actinide series at the bottom of the periodic table, were discovered and synthesized by its researchers. Retired Berkeley Lab physicist Claude Lyneis found the reel inmore » a box of dusty and deteriorating films slated for disposal. Using digital editing skills he acquired to make videos of his son's lacrosse team, Lyneis has produced and narrated an excerpt of this nearly-lost footage. It is an entertaining and informative look at the pioneering physics performed at UC Berkeley and Lawrence Berkeley National Laboratory's hillside campus.« less

  11. Mendelevium: The Way It Was

    ScienceCinema

    None

    2018-05-30

    A reel of black & white film shot nearly 60 years ago has surfaced at Berkeley Lab, depicting the discovery of Mendelevium - or Element 101 - as reenacted by some of the legendary scientists who did the actual work at that time. Since the 1940s, Berkeley Lab scientists were locked in a race to synthesize new elements, and more often than not, they came out winners. Sixteen elements, most of them in the actinide series at the bottom of the periodic table, were discovered and synthesized by its researchers. Retired Berkeley Lab physicist Claude Lyneis found the reel in a box of dusty and deteriorating films slated for disposal. Using digital editing skills he acquired to make videos of his son's lacrosse team, Lyneis has produced and narrated an excerpt of this nearly-lost footage. It is an entertaining and informative look at the pioneering physics performed at UC Berkeley and Lawrence Berkeley National Laboratory's hillside campus.

  12. My Green Car: Taking it to the Streets (Ep. 3) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    The researcher team finds enthusiastic consumers at familiar Berkeley hangouts. Then Industry Mentor Russell Carrington pushes the group to consider who will pay for the information the fuel economy app provides. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-fundedmore » program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  13. LabTrove: A Lightweight, Web Based, Laboratory “Blog” as a Route towards a Marked Up Record of Work in a Bioscience Research Laboratory

    PubMed Central

    Milsted, Andrew J.; Hale, Jennifer R.; Frey, Jeremy G.; Neylon, Cameron

    2013-01-01

    Background The electronic laboratory notebook (ELN) has the potential to replace the paper notebook with a marked-up digital record that can be searched and shared. However, it is a challenge to achieve these benefits without losing the usability and flexibility of traditional paper notebooks. We investigate a blog-based platform that addresses the issues associated with the development of a flexible system for recording scientific research. Methodology/Principal Findings We chose a blog-based approach with the journal characteristics of traditional notebooks in mind, recognizing the potential for linking together procedures, materials, samples, observations, data, and analysis reports. We implemented the LabTrove blog system as a server process written in PHP, using a MySQL database to persist posts and other research objects. We incorporated a metadata framework that is both extensible and flexible while promoting consistency and structure where appropriate. Our experience thus far is that LabTrove is capable of providing a successful electronic laboratory recording system. Conclusions/Significance LabTrove implements a one-item one-post system, which enables us to uniquely identify each element of the research record, such as data, samples, and protocols. This unique association between a post and a research element affords advantages for monitoring the use of materials and samples and for inspecting research processes. The combination of the one-item one-post system, consistent metadata, and full-text search provides us with a much more effective record than a paper notebook. The LabTrove approach provides a route towards reconciling the tensions and challenges that lie ahead in working towards the long-term goals for ELNs. LabTrove, an electronic laboratory notebook (ELN) system from the Smart Research Framework, based on a blog-type framework with full access control, facilitates the scientific experimental recording requirements for reproducibility, reuse

  14. My Green Car: Painting Motor City Green (Ep. 2) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    The Lab’s MyGreenCar team kicks off its customer discovery process in Detroit with a business boot camp designed for scientists developing energy-related technologies. Customer interviews lead to late night discussions and insights on less-than-receptive consumers. Back in Berkeley, the team decides to fine tune targeted customer segments. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimatesmore » for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  15. My Green Car: Painting Motor City Green (Ep. 2) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    The Lab’s MyGreenCar team kicks off its customer discovery process in Detroit with a business boot camp designed for scientists developing energy-related technologies. Customer interviews lead to late night discussions and insights on less-than-receptive consumers. Back in Berkeley, the team decides to fine tune targeted customer segments. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  16. Joint SSRTNet/ALS-MES Workshop report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuh, David; Van Hove, Michel

    2001-11-30

    This joint workshop brought together experimentalists and theorists interested in synchrotron radiation and highlighted subjects relevant to molecular environmental science (MES). The strong mutual interest between the participants resulted in joint sessions on the first day, followed by more specialized parallel sessions on the second day. Held in conjunction with the Advanced Light Source (ALS) Users' Association Annual Meeting at the Lawrence Berkeley National Laboratory (Berkeley Lab), the Synchrotron Radiation Research Theory Network (SRRTNet) workshop was co-organized by Michel Van Hove (Berkeley Lab and University of California, Davis) and Andrew Canning (Berkeley Lab), while David Shuh (Berkeley Lab) organized themore » ALS-MES workshop. SRRTNet is a global network that promotes the interaction of theory and experiment (http://www.cse.clrc.ac.uk/Activity/SRRTnet). The ALS-MES project is constructing Beamline 11.0.2.1-2, a new soft x-ray beamline for MES investigations at photon energies from 75 eV to 2 keV, to provide photons for wet spectroscopy end stations and an upgraded scanning transmission x-ray microscope (STXM). The ALS-MES beamline and end stations will be available for users in the late fall of 2002.« less

  17. Site Environmental Report for 2005 Volume I and Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggieri, Michael

    2006-07-07

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: the first defines the

  18. Genome Science and Personalized Cancer Treatment

    ScienceCinema

    Gray, Joe

    2017-12-09

    August 4, 2009 Berkeley Lab lecture: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  19. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  20. Site Environmental Report for 2006. Volume I, Environment, Health, and Safety Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2007-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2006 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2006. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters thatmore » contain an overview of the Laboratory, a discussion of the Laboratory’s environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from surveillance and monitoring activities.« less

  1. The Berkeley extreme ultraviolet calibration facility

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Jelinsky, Patrick; Malina, Roger F.

    1988-01-01

    The vacuum calibration facilities of the Space Sciences Laboratory, University of California at Berkeley are designed for the calibration and testing of EUV and FUV spaceborne instrumentation (spectral range 44-2500 A). The facility includes one large cylindrical vacuum chamber (3 x 5 m) containing two EUV collimators, and it is equipped with a 4-axis manipulator of angular-control resolution 1 arcsec for payloads weighing up to 500 kg. In addition, two smaller cylindrical chambers, each 0.9 x 1.2 m, are available for vacuum and thermal testing of UV detectors, filters, and space electronics hardware. All three chambers open into class-10,000 clean rooms, and all calibrations are referred to NBS secondary standards.

  2. My Green Car: Taking it to the Streets (Ep. 3) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    The researcher team finds enthusiastic consumers at familiar Berkeley hangouts. Then Industry Mentor Russell Carrington pushes the group to consider who will pay for the information the fuel economy app provides. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  3. LANGUAGE LABS--AN UPDATED REPORT.

    ERIC Educational Resources Information Center

    1963

    REPORTS FROM SEVERAL SCHOOL DISTRICTS ON THE USE OF AND PLANNING OF LANGUAGE LABORATORIES ARE PRESENTED. LABORATORIES SHOULD BE ARRANGED FOR FLEXIBLE USE. THE AVERAGE HIGH SCHOOL STUDENT CAN USE A LAB PROFITABLY FOR 20 TO 25 MINUTES. THERE ARE THREE DIFFERENT TYPES OF LANGUAGE LABORATORIES THAT ARE DESCRIBED. THE SATELLITE LAB IS DIVIDED BY A…

  4. Audiovisual Speech Web-Lab: an Internet teaching and research laboratory.

    PubMed

    Gordon, M S; Rosenblum, L D

    2001-05-01

    Internet resources now enable laboratories to make full-length experiments available on line. A handful of existing web sites offer users the ability to participate in experiments and generate usable data. We have integrated this technology into a web site that also provides full discussion of the theoretical and methodological aspects of the experiments using text and simple interactive demonstrations. The content of the web site (http://www.psych.ucr.edu/avspeech/lab) concerns audiovisual speech perception and its relation to face perception. The site is designed to be useful for users of multiple interests and levels of expertise.

  5. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  6. Berkeley Lab's Saul Perlmutter Wins the Einstein Medal | Berkeley Lab

    Science.gov Websites

    TAGS: awards, cosmology and astrophysics, physics Connect twitter instagram LinkedIn facebook youtube Physics + Cosmology Chemistry + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S Privacy & Security Notice twitter instagram LinkedIn facebook youtube

  7. A Window into Longer Lasting Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-29

    There’s a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Berkeley Lab has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. The real-time images provide a new way to learn how batteries work, and how to improve them. The method was developed at Berkeley Lab’s Advanced Light Source, a DOE Office of Science User Facility, by a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Berkeley Lab, Stanford University, and other institutions.

  8. Berkeley Pact with a Swiss Company Takes Technology Transfer to a New Level.

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    1998-01-01

    In search of increased support for graduate students in plant science and upgraded laboratories, the College of Plant and Microbial Biology, University of California Berkeley, offered the college's expertise in exchange for major financial backing from the single company making the best offer. The resulting five-year, $25-million alliance with one…

  9. Star Formation near Berkeley 59: Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Rosvick, J. M.; Majaess, D.

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (~2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, 12CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v LSR = -15 to -17 km s-1, which agrees with the velocity adopted for Berkeley 59 (-15.7 km s-1), while spectral energy distribution models yield an average interstellar extinction AV and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  10. Adsorption of Dissolved Metals in the Berkeley Pit using Thiol-Functionalized Self-Assembled Monolayers on Mesoporous Supports (Thiol-SAMMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betancourt, Amaury P.; Mattigod, Shas V.; Wellman, Dawn M.

    2010-03-07

    The Berkeley Pit in Butte, Montana, is heavily contaminated with dissolved metals. Adsorption and extraction of these metals can be accomplished through the use of a selective adsorbent. For this research, the adsorbent used was thiol-functionalized Self-Assembled Monolayers on Mesoporous Supports (thiol-SAMMS), which was developed at Pacific Northwest National Laboratory (PNNL). Thiol-SAMMS selectively binds to numerous types of dissolved metals. The objective of this research was to evaluate the loading and kinetics of aluminum, beryllium, copper, and zinc on thiol-SAMMS. For the loading tests, a series of Berkeley Pit water to thiol-SAMMS ratios (mL:g) were tested. These ratios were 1000:1,more » 500:1, 100:1, and 50:1. Berkeley Pit water is acidic (pH {approx} 2.5). This can affect the performance of SAMMS materials. Therefore, the effect of pH was evaluated by conducting parallel series of loading tests wherein the Berkeley Pit water was neutralized before or after addition of thiol-SAMMS, and a series of kinetics tests wherein the Berkeley Pit water was neutralized before addition of thiol-SAMMS for the first test and was not neutralized for the second test. For the kinetics tests, one Berkeley Pit water to thiol-SAMMS ratio was tested, which was 2000:1. The results of the loading and kinetics tests suggest that a significant decrease in dissolved metal concentration at Berkeley Pit could be realized through neutralization of Berkeley Pit water. Thiol-SAMMS technology has a limited application under the highly acidic conditions posed by the Berkeley Pit. However, thiol-SAMMS could provide a secondary remedial technique which would complete the remedial system and remove dissolved metals from the Berkeley Pit to below drinking water standards.« less

  11. Site Environmental Report for 2002, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauer, Ron

    2003-07-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less

  12. Site Environmental Report for 2002, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauer, Ron

    2003-07-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less

  13. What Made Berkeley Great? The Sources of Berkeley's Sustained Academic Excellence. Research & Occasional Paper Series CSHE.3.11

    ERIC Educational Resources Information Center

    Breslauer, George W.

    2011-01-01

    University of California (UC) Berkeley's chief academic officer explores the historical sources of Berkeley' academic excellence. He identifies five key factors: (1) wealth from many sources; (2) supportive and skilled governors; (3) leadership from key UC presidents; (4) the pioneering ethos within the State of California; and (5) a process of…

  14. Lab at Home: Hardware Kits for a Digital Design Lab

    ERIC Educational Resources Information Center

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  15. Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills.

    PubMed

    Makransky, Guido; Thisgaard, Malene Warming; Gadegaard, Helen

    2016-01-01

    To investigate if a virtual laboratory simulation (vLAB) could be used to replace a face to face tutorial (demonstration) to prepare students for a laboratory exercise in microbiology. A total of 189 students who were participating in an undergraduate biology course were randomly selected into a vLAB or demonstration condition. In the vLAB condition students could use a vLAB at home to 'practice' streaking out bacteria on agar plates in a virtual environment. In the demonstration condition students were given a live demonstration from a lab tutor showing them how to streak out bacteria on agar plates. All students were blindly assessed on their ability to perform the streaking technique in the physical lab, and were administered a pre and post-test to determine their knowledge of microbiology, intrinsic motivation to study microbiology, and self-efficacy in the field of microbiology prior to, and after the experiment. The results showed that there were no significant differences between the two groups on their lab scores, and both groups had similar increases in knowledge of microbiology, intrinsic motivation to study microbiology, as well as self-efficacy in the field of microbiology. Our data show that vLABs function just as well as face to face tutorials in preparing students for a physical lab activity in microbiology. The results imply that vLABs could be used instead of face to face tutorials, and a combination of virtual and physical lab exercises could be the future of science education.

  16. MetaLIMS, a simple open-source laboratory information management system for small metagenomic labs.

    PubMed

    Heinle, Cassie Elizabeth; Gaultier, Nicolas Paul Eugène; Miller, Dana; Purbojati, Rikky Wenang; Lauro, Federico M

    2017-06-01

    As the cost of sequencing continues to fall, smaller groups increasingly initiate and manage larger sequencing projects and take on the complexity of data storage for high volumes of samples. This has created a need for low-cost laboratory information management systems (LIMS) that contain flexible fields to accommodate the unique nature of individual labs. Many labs do not have a dedicated information technology position, so LIMS must also be easy to setup and maintain with minimal technical proficiency. MetaLIMS is a free and open-source web-based application available via GitHub. The focus of MetaLIMS is to store sample metadata prior to sequencing and analysis pipelines. Initially designed for environmental metagenomics labs, in addition to storing generic sample collection information and DNA/RNA processing information, the user can also add fields specific to the user's lab. MetaLIMS can also produce a basic sequencing submission form compatible with the proprietary Clarity LIMS system used by some sequencing facilities. To help ease the technical burden associated with web deployment, MetaLIMS options the use of commercial web hosting combined with MetaLIMS bash scripts for ease of setup. MetaLIMS overcomes key challenges common in LIMS by giving labs access to a low-cost and open-source tool that also has the flexibility to meet individual lab needs and an option for easy deployment. By making the web application open source and hosting it on GitHub, we hope to encourage the community to build upon MetaLIMS, making it more robust and tailored to the needs of more researchers. © The Authors 2017. Published by Oxford University Press.

  17. MetaLIMS, a simple open-source laboratory information management system for small metagenomic labs

    PubMed Central

    Gaultier, Nicolas Paul Eugène; Miller, Dana; Purbojati, Rikky Wenang; Lauro, Federico M.

    2017-01-01

    Abstract Background: As the cost of sequencing continues to fall, smaller groups increasingly initiate and manage larger sequencing projects and take on the complexity of data storage for high volumes of samples. This has created a need for low-cost laboratory information management systems (LIMS) that contain flexible fields to accommodate the unique nature of individual labs. Many labs do not have a dedicated information technology position, so LIMS must also be easy to setup and maintain with minimal technical proficiency. Findings: MetaLIMS is a free and open-source web-based application available via GitHub. The focus of MetaLIMS is to store sample metadata prior to sequencing and analysis pipelines. Initially designed for environmental metagenomics labs, in addition to storing generic sample collection information and DNA/RNA processing information, the user can also add fields specific to the user's lab. MetaLIMS can also produce a basic sequencing submission form compatible with the proprietary Clarity LIMS system used by some sequencing facilities. To help ease the technical burden associated with web deployment, MetaLIMS options the use of commercial web hosting combined with MetaLIMS bash scripts for ease of setup. Conclusions: MetaLIMS overcomes key challenges common in LIMS by giving labs access to a low-cost and open-source tool that also has the flexibility to meet individual lab needs and an option for easy deployment. By making the web application open source and hosting it on GitHub, we hope to encourage the community to build upon MetaLIMS, making it more robust and tailored to the needs of more researchers. PMID:28430964

  18. LIB LAB the Library Laboratory: hands-on multimedia science communication

    NASA Astrophysics Data System (ADS)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  19. BERKELEY LAB WINDOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offersmore » the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.« less

  20. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    ERIC Educational Resources Information Center

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  1. Virtual Reality Lab Assistant

    NASA Technical Reports Server (NTRS)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  2. Seeing the Light (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunger, Axel; Segalman, Rachel; Westphal, Andrew

    2011-09-12

    Berkeley Lab's Science at the Theater event "Seeing the Light" took place on Sept 12, 2011, at Berkeley Repertory's Roda Theatre. Learn how the Advanced Light Source is improving medicine, paving the way for clean energy, changing the future of computers, and much more. Featured speakers are Berkeley Lab's Roger Falcone, Rachel Segalman, Andrew Westphal, and Stanford University's Axel Brunger. Rachel Segalman: The future of clean energy technology relies on a better understanding of materials at the nanoscale. Berkeley Lab's Rachel Segalman uses the ALS to conduct this research, which could lead to improved photovoltaics and fuel cells. Axel Brunger:more » Improved treatment for human diseases hinges on understanding molecular-scale processes. Stanford University's Axel Brunger will discuss a new melanoma drug that was developed by a local company, Plexxikon, using the ALS for X-ray data collection. Andrew Westphal: What's comet dust made of? Andrew Westphal of UC Berkeley's Space Sciences Laboratory uses the ALS to study comet dust and interplanetary space dust collected by a NASA spacecraft. Moderated by Roger Falcone, Division Director of the Advanced Light Source« less

  3. Conference Committees: Conference Committees

    NASA Astrophysics Data System (ADS)

    2009-09-01

    International Programm Committee (IPC) Harald Ade NCSU Sadao Aoki University Tsukuba David Attwood Lawrence Berkeley National Laboratory/CXRO Christian David Paul Scherrer Institut Peter Fischer Lawrence Berkeley National Laboratory Adam Hitchcock McMaster University Chris Jacobsen SUNY, Stony Brook Denis Joyeux Lab Charles Fabry de l'Institut d'Optique Yasushi Kagoshima University of Hyogo Hiroshi Kihara Kansai Medical University Janos Kirz SUNY Stony Brook Maya Kiskinova ELETTRA Ian McNulty Argonne National Lab/APS Alan Michette Kings College London Graeme Morrison Kings College London Keith Nugent University of Melbourne Zhu Peiping BSRF Institute of High Energy Physics Francois Polack Soleil Christoph Quitmann Paul Scherrer Institut Günther Schmahl University Göttingen Gerd Schneider Bessy Hyun-Joon Shin Pohang Accelerator Lab Jean Susini ESRF Mau-Tsu Tang NSRRC Tony Warwick Lawrence Berkeley Lab/ALS Local Organizing Committee Christoph Quitmann Chair, Scientific Program Charlotte Heer Secretary Christian David Scientific Program Frithjof Nolting Scientific Program Franz Pfeiffer Scientific Program Marco Stampanoni Scientific Program Robert Rudolph Sponsoring, Financials Alfred Waser Industry Exhibition Robert Keller Public Relation Markus Knecht Computing and WWW Annick Cavedon Proceedings and Excursions and Accompanying Persons Program Margrit Eichler Excursions and Accompanying Persons Program Kathy Eikenberry Excursions and Accompanying Persons Program Marlies Locher Excursions and Accompanying Persons Program

  4. Final Environmental Assessment and Finding of No Significant Impact: Construction and Operation of the Molecular Foundry at Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2003-03-07

    Lawrence Berkeley National Laboratory (LBNL) proposes to build a six-story, approximately 86,500 gross square foot (gsf) Molecular Foundry building; and an adjacent 8,000 gsf, partly below-grade Central Utility Plant building (for a combined 94,500 gsf), to be funded and operated by the U.S. Department of Energy's Office of Basic Energy Sciences. The buildings would be located on an approximately 2 1/2-acre site in the southeastern portion of the LBNL facility in the Oakland-Berkeley hills. The site is on mostly undeveloped slopes between Building 72, which is the National Center for Electron Microscopy (NCEM), and Building 66, which is the Surfacemore » Science and Catalysis Laboratory (SSCL). The Molecular Foundry building would include laboratories, offices, and conference and seminar rooms; the Central Utility Plant would also serve as the foundation for 16 surface parking spaces. A new plaza and pedestrian bridges would connect or provide ready access between the proposed Molecular Foundry building and adjacent scientific buildings. The Proposed Action would extend Lee Road approximately 350 feet, and widen a portion of the road to accommodate two-way traffic. The Molecular Foundry would be staffed and/or used by an estimated 137 persons, of whom an estimated 59 would be staff persons, 36 would be students, and 42 would be visitors (i.e., visiting scientists) to the Center. The Proposed Action would require removal of an existing paved 18-space parking lot and retaining walls, as well as excavation into an undeveloped hillside. Approximately two-dozen mature trees would be removed along with approximately one-dozen saplings. The Proposed Action would replant or replace trees, generally in-kind and in or around the site. LBNL anticipates it would reuse all soil excavated for the Molecular Foundry to construct the new Lee Road extension and widen the existing roadway. This Proposed Action would be a resource for the Department of Energy's participation in the

  5. East Bay Consortium of Educational Institutions Visits Berkeley Lab

    Science.gov Websites

    ) Website Submit Comment Connect twitter instagram LinkedIn facebook youtube Calendar Instructions »  facebook youtube A U.S. Department of Energy National Laboratory Managed by the University of California Questions & Comments Privacy & Security Notice twitter instagram LinkedIn facebook youtube

  6. Berkeley Lab Wins Seven 2015 R&D 100 Awards | Berkeley Lab

    Science.gov Websites

    products from industry, academia, and government-sponsored research, ranging from chemistry to materials to problems in metrology techniques: the quantitative characterization of the imaging instrumentation Computational Research Division led the development of the technology. Sensor Integrated with Recombinant and

  7. Experiential Learning of Digital Communication Using LabVIEW

    ERIC Educational Resources Information Center

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  8. The RCP Information Laboratory (iLab): breaking the cycle of poor data quality.

    PubMed

    Croft, Giles P; Williams, John G

    2005-01-01

    A review of data quality in the NHS by the Audit Commission cited a lack of clinician involvement in the validation and use of centrally held activity data as one of the key issues to resolve. The perception that hospital episode statistics cannot support the needs of the individual clinician results in mistrust and disinterest. This in turn leads to under-development of such data from a clinical perspective, and the cycle continues. The RCP Information Laboratory (iLab) aims to address this problem by accessing, analysing and presenting information from these central repositories concerning the activity of visiting individual consultant physicians. With support from iLab staff--an information analyst and a clinician--local data quality issues are highlighted and local solutions sought. The information obtained can be used as an objective measure of activity to support the processes of appraisal and revalidation.

  9. Telescience at the University of California, Berkeley

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Marchant, W. T.; Kaplan, G. C.; Dobson, C. A.; Jernigan, J. G.; Lampton, M. L.; Malina, R. F.

    1989-01-01

    The University of California at Berkeley (UCB) is a member of a university consortium involved in telescience testbed activities under the sponsorship of NASA. Our Telescience Testbed Project consists of three experiments using flight hardware being developed for the Extreme Ultraviolet Explorer project at UCB's Space Sciences Laboratory. The first one is a teleoperation experiment investigating remote instrument control using a computer network such as the Internet. The second experiment is an effort to develop a system for operation of a network of remote workstations allowing coordinated software development, evaluation, and use by widely dispersed groups. The final experiment concerns simulation as a method to facilitate the concurrent development of instrument hardware and support software. We describe our progress in these areas.

  10. The Undergraduate Origins of PhD Economists: The Berkeley Experience

    ERIC Educational Resources Information Center

    Olney, Martha L.

    2015-01-01

    The University of California, Berkeley sends more undergraduate students to economics PhD programs than any other public university. While this fact is surely a function of its size, there may be lessons from the Berkeley experience that others could adopt. To investigate why Berkeley generates so many economics PhD students, the author convened…

  11. ERLN Lab Compendium Fact Sheet

    EPA Pesticide Factsheets

    The Compendium is an online database of environmental testing laboratories nationwide. It enables labs to create profiles of their capabilities, so emergency responders can quickly identify a lab that will meet their support needs.

  12. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    ERIC Educational Resources Information Center

    Haagen-Schuetzenhoefer, Claudia

    2012-01-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab…

  13. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    NASA Astrophysics Data System (ADS)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  14. City of Berkeley, California Municipal Tree Resource Analysis

    Treesearch

    S.E. Maco; E.G. McPherson; J.R. Simpson; P.J. Peper; Q. Xiao

    2005-01-01

    Vibrant, renowned for its livability and cultural wealth, the city of Berkeley maintains trees as an integral component of the urban infrastructure. Research indicates that healthy trees can mitigate impacts associated with the built environment by reducing stormwater runoff, energy consumption, and air pollutants. Put simply, trees improve urban life, making Berkeley...

  15. 78 FR 29022 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... Marina Fourth of July Fireworks display in the Captain of the Port, San Francisco area of responsibility... Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in approximate position 37[deg]51... radius 1,000 [[Page 29023

  16. The Advanced Labs Website: resources for upper-level laboratories

    NASA Astrophysics Data System (ADS)

    Torres-Isea, Ramon

    2012-03-01

    The Advanced Labs web resource collection is an effort to create a central, comprehensive information base for college/university faculty who teach upper-level undergraduate laboratories. The website is produced by the American Association of Physics Teachers (AAPT). It is a part of ComPADRE, the online collection of resources in physics and astronomy education, which itself is a part of the National Science Foundation-funded National Science Digital Library (NSDL). After a brief review of its history, we will discuss the current status of the website while describing the various types of resources available at the site and presenting examples of each. We will detail a step-by-step procedure for submitting resources to the website. The resource collection is designed to be a community effort and thus welcomes input and contributions from its users. We will also present plans, and will seek audience feedback, for additional website services and features. The constraints, roadblocks, and rewards of this project will also be addressed.

  17. Lab architecture

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  18. Designing virtual science labs for the Islamic Academy of Delaware

    NASA Astrophysics Data System (ADS)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  19. C. Judson King of UC Berkeley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prausnitz, John

    2005-06-01

    In the middle of the UC Berkeley campus, next to the Main Library, South Hall is the last surviving building from the original campus, founded about 135 years ago. A tiny tree-shaded appendix to this venerated classical building houses Berkeley's Center for Studies in Higher Education, directed by C. Judson King, former Provost and Senior Vice President--Academic Affairs of the ten-campus University of California and long-time Professor of Chemical Engineering at Berkeley. Jud came to Berkeley in 1963 as assistant professor of chemical engineering, following receipt of a doctor's degree from MIT and a subsequent short appointment as director ofmore » the MIT chemical engineering practice school station at what was then Esso (now Exxon) in New Jersey. His undergraduate degree is from Yale. Starting with his MIT doctoral dissertation on gas absorption, Jud has devoted much of his professional career to separation processes. His teaching and research activities have been primarily concerned with separation of mixtures with emphasis on liquid-liquid extraction and drying. As a consultant to Procter and Gamble, he contributed to the technology of making instant coffee. His life-long activities in hiking and camping stimulated Jud's interest in the manufacture of freeze-dried foods (e.g. turkey meat) to minimize the weight of his hiking back-pack. Jud is internationally known not only for his many research publications but even more, for his acclaimed textbook ''Separation Processses'' (McGraw-Hill, second edition 1980) that is used in standard chemical engineering courses in the US and abroad.« less

  20. Setting up a Low-Cost Lab Management System for a Multi-Purpose Computing Laboratory Using Virtualisation Technology

    ERIC Educational Resources Information Center

    Mok, Heng Ngee; Lee, Yeow Leong; Tan, Wee Kiat

    2012-01-01

    This paper describes how a generic computer laboratory equipped with 52 workstations is set up for teaching IT-related courses and other general purpose usage. The authors have successfully constructed a lab management system based on decentralised, client-side software virtualisation technology using Linux and free software tools from VMware that…

  1. Evaluating the Impact of Open Access at Berkeley: Results from the 2015 Survey of Berkeley Research Impact Initiative (BRII) Funding Recipients

    ERIC Educational Resources Information Center

    Teplitzky, Samantha; Phillips, Margaret

    2016-01-01

    The Berkeley Research Impact Initiative (BRII) was one of the first campus-based open access (OA) funds to be established in North America and one of the most active, distributing more than $244,000 to support University of California (UC) Berkeley authors. In April 2015, we conducted a qualitative study of 138 individuals who had received BRII…

  2. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema

    Rokhsar, Daniel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2018-05-24

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  3. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  4. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  5. A Generic Communication Protocol for Remote Laboratories: an Implementation on e-lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henriques, Rafael B.; Fernandes, H.; Duarte, Andre S.

    2015-07-01

    The remote laboratories at IST (Instituto Superior Tecnico), e-lab, serve as a valuable tool for education and training based on remote control technologies. Due to the high number and increase of remotely operated experiments a generic protocol was developed to perform the communication between the software driver and the respective experimental setup in an easier and more unified way. The training in these fields of students and personnel can take advantage of such infrastructure with the purpose of deploying new experiments in a faster way. More than 10 experiments using the generic protocol are available on-line in a 24 xmore » 7 way. (authors)« less

  6. The Development of MSFC Usability Lab

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    This conference poster reviews the development of the usability lab at Marshall Space Flight Center. The purpose of the lab was to integrate a fully functioning usability laboratory to provide a resource for future human factor assessments. and to implement preliminary usability testing on a MSFC website to validate the functionality of the lab.

  7. Laboratory Accreditation Bureau (L-A-B)

    DTIC Science & Technology

    2011-03-28

    to all Technical Advisors. Must agree with code of conduct, confidentiality and our mission DoD ELAP Program  ISO / IEC 17025 :2005 and DoD QSM...Additional DoD QSM requirements fit well in current 17025 process … just much, much more. Sector Specific. Outcome (L-A-B case)  83

  8. Features and dimensions of the Hayward Fault Zone in the Strawberry and Blackberry Creek Area, Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1995-03-01

    This report presents an examination of the geometry of the Hayward fault adjacent to the Lawrence Berkeley Laboratory and University of California campuses in central Berkeley. The fault crosses inside the eastern border of the UC campus. Most subtle geomorphic (landform) expressions of the fault have been removed by development and by the natural processes of landsliding and erosion. Some clear expressions of the fault remain however, and these are key to mapping the main trace through the campus area. In addition, original geomorphic evidence of the fault`s location was recovered from large scale mapping of the site dating frommore » 1873 to 1897. Before construction obscured and removed natural landforms, the fault was expressed by a linear, northwest-tending zone of fault-related geomorphic features. There existed well-defined and subtle stream offsets and beheaded channels, fault scarps, and a prominent ``shutter ridge``. To improve our confidence in fault locations interpreted from landforms, we referred to clear fault exposures revealed in trenching, revealed during the construction of the Foothill Housing Complex, and revealed along the length of the Lawson Adit mining tunnel. Also utilized were the locations of offset cultural features. At several locations across the study area, distress features in buildings and streets have been used to precisely locate the fault. Recent published mapping of the fault (Lienkaemper, 1992) was principally used for reference to evidence of the fault`s location to the northwest and southeast of Lawrence Berkeley Laboratory.« less

  9. RoboLab and virtual environments

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  10. Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)

    ScienceCinema

    Gadgil, Ashok; Booker, Kayje; Rausch, Adam

    2018-06-08

    Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmental engineering. He helps to design and test stove designs in Ethiopia and elsewhere.

  11. Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadgil, Ashok; Booker, Kayje; Rausch, Adam

    2010-09-20

    Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmentalmore » engineering. He helps to design and test stove designs in Ethiopia and elsewhere.« less

  12. 44. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. May 4, 1949. PERSPECTIVE DRAWING, BIRD'S-EYE VIEW - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  14. Elemental Chem Lab

    ERIC Educational Resources Information Center

    Franco Mariscal, Antonio Joaquin

    2008-01-01

    This educative material uses the symbols of 45 elements to spell the names of 32 types of laboratory equipment usually found in chemical labs. This teaching material has been divided into three puzzles according to the type of the laboratory equipment: (i) glassware as reaction vessels or containers; (ii) glassware for measuring, addition or…

  15. 6. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 31, 1950. BEV-331. MAGNET ROOM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. 27. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August 18, 1958. Bubble Chamber 605. BUBBLE CHAMBER ASSEMBLY - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. 14. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3467. ACCELERATION DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. 56. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 4, 1953. BEV-627. OVERALL VIEW OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. The national labs and their future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, R.P.

    National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less

  20. TQM in a Computer Lab.

    ERIC Educational Resources Information Center

    Swanson, Dewey A.; Phillips, Julie A.

    At the Purdue University School of Technology (PST) at Columbus, Indiana, the Total Quality Management (TQM) philosophy was used in the computer laboratories to better meet student needs. A customer satisfaction survey was conducted to gather data on lab facilities, lab assistants, and hardware/software; other sections of the survey included…

  1. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Jose H.; McAndrew, Ryan P.; Tomaleri, Giovani P.

    Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography programmore » at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens. The Berkeley Screen provides an efficient set of solutions for general macromolecular crystallization trials.« less

  2. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization

    DOE PAGES

    Pereira, Jose H.; McAndrew, Ryan P.; Tomaleri, Giovani P.; ...

    2017-09-05

    Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography programmore » at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens. The Berkeley Screen provides an efficient set of solutions for general macromolecular crystallization trials.« less

  3. 18. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. January 12, 1950. BEV-195. ION GUN INJECTOR. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. 43. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. March 28, 1950. BEV-226. BEVATRON BUILDING CONSTRUCTION. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. 13. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 4, 1957. BEV-128. PROGRESS--MAGNET REPAIR. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. 40. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. March, 1949. BEV 4903-00020. GRADING-SITE WORK FOR BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. 30. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-943. ANTI-PROTON EXPERIMENT. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. 5. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August 25, 1950. BEV-307. BEVATRON MAGNET FOUNDATION. B-51 - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. State of the Lab 2012

    ScienceCinema

    King, Alex

    2018-05-07

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  10. State of the Lab 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Alex

    2012-01-01

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  11. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  12. Planning a Computer Lab: Considerations To Ensure Success.

    ERIC Educational Resources Information Center

    IALL Journal of Language Learning Technologies, 1994

    1994-01-01

    Presents points to consider when organizing a computer laboratory. These include the lab's overall objectives and how best to meet them; what type of students will use the lab; where the lab will be located; and what software and hardware can best meet the lab's overall objectives, population, and location requirements. Other factors include time,…

  13. 61. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 1994. CBB 944-3190. AERIAL VIEW OF B-51 BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. 8. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. July 2, 1953. BEV-574. QUADRANT POLE TIP INSTALLATION. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. 51. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 22, 1950. BEV-248. INTERIOR OF BEVATRON BUILDING. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. 3. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3470 INTERNAL BEAM EXPERIMENT DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. 55. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 29, 1950. BEV-359. GENERATOR ROOM, LOOKING SOUTH, B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. 15. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa, Photographer. November 22, 1963. BEV-3468. INJECTION SYSTEM DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. 2. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3469 EXTERNAL BEAM EXPERIMENT DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. 41. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August 29, 1949. BEV-101. BEVATRON AREA LOOKING SOUTHEAST. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Berkeley Lab Site Map

    Science.gov Websites

    , Emeryville, CA Joint Center for Artificial Photosynthesis (JCAP) - Bldg. 976, 2929 7th St., Suite 105 Financial Officer (OCFO) - Bldg. 971, 6401 Hollis St., Emeryville CA Life Sciences Division @ Potter St

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Carl

    Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"

  3. Imaging the Voices of the Past: Using Physics to Restore Early Sound Recordings (LBNL Summer Lecture Series)

    ScienceCinema

    Haber, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-01-23

    Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"

  4. UBioLab: a web-laboratory for ubiquitous in-silico experiments.

    PubMed

    Bartocci, Ezio; Cacciagrano, Diletta; Di Berardini, Maria Rita; Merelli, Emanuela; Vito, Leonardo

    2012-07-09

    The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists –for what concerns their management and visualization– and for bioinformaticians –for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle –and possibly to handle in a transparent and uniform way– aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features –as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques– give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

  5. UBioLab: a web-LABoratory for Ubiquitous in-silico experiments.

    PubMed

    Bartocci, E; Di Berardini, M R; Merelli, E; Vito, L

    2012-03-01

    The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists -for what concerns their management and visualization- and for bioinformaticians -for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle -and possibly to handle in a transparent and uniform way- aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features -as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques- give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

  6. Wet Lab Accelerator: A Web-Based Application Democratizing Laboratory Automation for Synthetic Biology.

    PubMed

    Bates, Maxwell; Berliner, Aaron J; Lachoff, Joe; Jaschke, Paul R; Groban, Eli S

    2017-01-20

    Wet Lab Accelerator (WLA) is a cloud-based tool that allows a scientist to conduct biology via robotic control without the need for any programming knowledge. A drag and drop interface provides a convenient and user-friendly method of generating biological protocols. Graphically developed protocols are turned into programmatic instruction lists required to conduct experiments at the cloud laboratory Transcriptic. Prior to the development of WLA, biologists were required to write in a programming language called "Autoprotocol" in order to work with Transcriptic. WLA relies on a new abstraction layer we call "Omniprotocol" to convert the graphical experimental description into lower level Autoprotocol language, which then directs robots at Transcriptic. While WLA has only been tested at Transcriptic, the conversion of graphically laid out experimental steps into Autoprotocol is generic, allowing extension of WLA into other cloud laboratories in the future. WLA hopes to democratize biology by bringing automation to general biologists.

  7. Bituminous Mixtures Lab

    DOT National Transportation Integrated Search

    2002-07-25

    The Bituminous Mixtures Laboratory (BML) specializes in the research of asphalt pavement mixtures. This lab supports FHWA's efforts to develop, evaluate and improve materials, mixture design technology and performance-based tests for asphalt paving m...

  8. 23. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. March 26, 1953. BEV-551. OVERALL VIEW OF ION GUN. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. 57. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 29, 1953. BEV-657. WEST TANK OPEN, CLOSE-UP. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. 58. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 11, 1956. BEV-1206. PUMP ROOM WITH W. CHUPP IN BACKGROUND - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  11. 12. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. February 5, 1954. BEV-681. GENERATOR ROOM FOR BEVATRON MAGNET. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. 17. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 20, 1958. BEV-1654. OVERALL VIEW WITH PROTON INJECTOR. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. 16. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 29, 1953. BEV-654. INJECTOR, INJECTOR TANK-WIDE ANGLE; MARIO CAROTTA. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. 45. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 28, 1954. BEV-733. MAIN CONTROL ROOM; BOB RICHTER. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. 54. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. September 29, 1950. BEV-328. NORTH SIDE OF BEVATRON BUILDING. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. 19. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa/Don Bradley, Photographers. December 4, 1961. BEV-2548. LINAC II DRIFT TUBES. B-64. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. 7. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 29, 1950. BEV-360. GENERAL VIEW, MAGNET ROOM, LOOKING SOUTHWEST. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. 42. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. September 29, 1949. BEV-132. LOOKING NORTHWEST AT INITIAL STAGES OF CONSTRUCTION. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. 35. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 27, 1960. BEV-2050. CLYDE WIEGAND; ANTI-PROTON SET-UP. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. 48. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. February 10, 1960. BEV-2003. COAXIAL, MAIN CONTROL ROOM CONSOLE MODIFICATIONS. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. 52. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. June 28, 1950. BEV-267. INTERIOR OF BEVATRON BUILDING LOOKING WEST. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. 24. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa, Photographer. B-51. November 6, 1961. BEV-2497 ION GUN II, EMERY ZAJEC - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. 32. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-937. ANTI-PROTON SET-UP, EXTERIOR VIEW. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. 31. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-933. ANTI-PROTON SET-UP, INTERIOR VIEW. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. 11. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 17, 1952. BEV-517. MOVING CURVE TANK INTO MAGNET FOR STORAGE. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. 21. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Don Bradley, Photographer. January 31, 1963. BEV-3286 ALTERATIONS PROGRESS; OLLIE OLSON, PAT CALLAHAN. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. 53. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. June 28, 1950. BEV-268. EXTERIOR OF SOUTHWEST CORNER OF BEVATRON BUILDING. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. 10. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 11, 1950. BEV-336. MAGNET CORE SHOWING FOUNDATION AND SUPPORTS. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. Practical Physics Labs: A Resource Manual.

    ERIC Educational Resources Information Center

    Goodwin, Peter

    This resource manual focuses on physics labs that relate to the world around us and utilize simple equipment and situations. Forty-five laboratories are included that relate to thermodynamics, electricity, magnetism, dynamics, optics, wave transmission, centripetal force, and atomic physics. Each lab has three sections. The first section…

  10. Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement

    NASA Astrophysics Data System (ADS)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-02-01

    This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and cognitive achievement were examined using a pre-post-follow-up design. Participants of our day-long module Genetic Fingerprinting were 409 twelfth-graders. During the module instructional phases (pre-lab, theoretical, experimental, and interpretation phases), we measured the students' mental effort (ME) as an index of CL. By clustering the students' module-phase-specific ME pattern, we found three student CL clusters which were independent of the module instructional phases, labeled as low-level, average-level, and high-level loaded clusters. Additionally, we found two student CL clusters that were each particular to a specific module phase. Their members reported especially high ME invested in one phase each: within the pre-lab phase and within the interpretation phase. Differentiating the clusters, we identified uncertainty tolerance, prior experience in experimentation, epistemic interest, and prior knowledge as relevant learner characteristics. We found relationships to cognitive achievement, but no relationships to the examined laboratory variables. Our results underscore the importance of pre-lab and interpretation phases in hands-on teaching in science education and the need for teachers to pay attention to these phases, both inside and outside of outreach laboratory learning settings.

  11. State of the Lab Address

    ScienceCinema

    King, Alex

    2018-05-07

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  12. State of the Lab Address

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Alex

    2010-01-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  13. A Lab for All Reasons.

    ERIC Educational Resources Information Center

    Cronin-Jones, Linda L.

    1990-01-01

    Described is a demonstration science laboratory at the University of Florida. Discussed is laboratory design, including instructional space, lab stations, sink areas, safety areas, and a storage and distribution area. The impact of this type of design is cited. Diagrams and photographs are included. (CW)

  14. Flexible HVAC System for Lab or Classroom.

    ERIC Educational Resources Information Center

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  15. THE YOUNG OPEN CLUSTER BERKELEY 55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negueruela, Ignacio; Marco, Amparo, E-mail: ignacio.negueruela@ua.es, E-mail: amparo.marco@ua.es

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster withmore » a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.« less

  16. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates formore » consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  17. 28. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 1, 1959. Bubble Chamber 722. BUBBLE CHAMBER, WIDE-ANGLE INTERIOR VIEW OF BUILDING 59 - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. 33. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 10, 1958. BEV-1515. ANTI-PROTON SET-UP; BRUCE CORK, GLENN LAMBERTSON. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. 59. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 25, 1957. BEV-1311. VACUUM SNOUT IN NORTH TARGET AREA; BOB RICHTER. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. Cool Cities, Cool Planet (LBNL Science at the Theater)

    ScienceCinema

    Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

    2018-06-14

    Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

  1. Free Speech Advocates at Berkeley.

    ERIC Educational Resources Information Center

    Watts, William A.; Whittaker, David

    1966-01-01

    This study compares highly committed members of the Free Speech Movement (FSM) at Berkeley with the student population at large on 3 sociopsychological foci: general biographical data, religious orientation, and rigidity-flexibility. Questionnaires were administered to 172 FSM members selected by chance from the 10 to 1200 who entered and…

  2. Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry

    1996-01-01

    The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.

  3. Status of chemistry lab safety in Nepal.

    PubMed

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta; Giri, Basant

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001).

  4. Status of chemistry lab safety in Nepal

    PubMed Central

    Kandel, Krishna Prasad; Neupane, Bhanu Bhakta

    2017-01-01

    Chemistry labs can become a dangerous environment for students as the lab exercises involve hazardous chemicals, glassware, and equipment. Approximately one hundred thousand students take chemistry laboratory classes annually in Nepal. We conducted a survey on chemical lab safety issues across Nepal. In this paper, we assess the safety policy and equipment, protocols and procedures followed, and waste disposal in chemistry teaching labs. Significant population of the respondents believed that there is no monitoring of the lab safety in their lab (p<0.001). Even though many labs do not allow food and beverages inside lab and have first aid kits, they lack some basic safety equipment. There is no institutional mechanism to dispose lab waste and chemical waste is disposed haphazardly. Majority of the respondents believed that the safety training should be a part of educational training (p = 0.001) and they would benefit from short course and/or workshop on lab safety (p<0.001). PMID:28644869

  5. What happens in the lab does not stay in the lab [corrected]: Applying midstream modulation to enhance critical reflection in the laboratory.

    PubMed

    Schuurbiers, Daan

    2011-12-01

    In response to widespread policy prescriptions for responsible innovation, social scientists and engineering ethicists, among others, have sought to engage natural scientists and engineers at the 'midstream': building interdisciplinary collaborations to integrate social and ethical considerations with research and development processes. Two 'laboratory engagement studies' have explored how applying the framework of midstream modulation could enhance the reflections of natural scientists on the socio-ethical context of their work. The results of these interdisciplinary collaborations confirm the utility of midstream modulation in encouraging both first- and second-order reflective learning. The potential for second-order reflective learning, in which underlying value systems become the object of reflection, is particularly significant with respect to addressing social responsibility in research practices. Midstream modulation served to render the socio-ethical context of research visible in the laboratory and helped enable research participants to more critically reflect on this broader context. While lab-based collaborations would benefit from being carried out in concert with activities at institutional and policy levels, midstream modulation could prove a valuable asset in the toolbox of interdisciplinary methods aimed at responsible innovation.

  6. Impact of the Berkeley Excise Tax on Sugar-Sweetened Beverage Consumption

    PubMed Central

    Falbe, Jennifer; Thompson, Hannah R.; Becker, Christina M.; Rojas, Nadia; McCulloch, Charles E.

    2016-01-01

    Objectives. To evaluate the impact of the excise tax on sugar-sweetened beverage (SSB) consumption in Berkeley, California, which became the first US jurisdiction to implement such a tax ($0.01/oz) in March 2015. Methods. We used a repeated cross-sectional design to examine changes in pre- to posttax beverage consumption in low-income neighborhoods in Berkeley versus in the comparison cities of Oakland and San Francisco, California. A beverage frequency questionnaire was interviewer administered to 990 participants before the tax and 1689 after the tax (approximately 8 months after the vote and 4 months after implementation) to examine relative changes in consumption. Results. Consumption of SSBs decreased 21% in Berkeley and increased 4% in comparison cities (P = .046). Water consumption increased more in Berkeley (+63%) than in comparison cities (+19%; P < .01). Conclusions. Berkeley’s excise tax reduced SSB consumption in low-income neighborhoods. Evaluating SSB taxes in other cities will improve understanding of their public health benefit and their generalizability. PMID:27552267

  7. Integrating Robotic Observatories into Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Ruch, Gerald T.

    2015-01-01

    The University of St. Thomas (UST) and a consortium of five local schools is using the UST Robotic Observatory, housing a 17' telescope, to develop labs and image processing tools that allow easy integration of observational labs into existing introductory astronomy curriculum. Our lab design removes the burden of equipment ownership by sharing access to a common resource and removes the burden of data processing by automating processing tasks that are not relevant to the learning objectives.Each laboratory exercise takes place over two lab periods. During period one, students design and submit observation requests via the lab website. Between periods, the telescope automatically acquires the data and our image processing pipeline produces data ready for student analysis. During period two, the students retrieve their data from the website and perform the analysis. The first lab, 'Weighing Jupiter,' was successfully implemented at UST and several of our partner schools. We are currently developing a second lab to measure the age of and distance to a globular cluster.

  8. ERLN Technical Support for Labs

    EPA Pesticide Factsheets

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  9. Lab experiments are a major source of knowledge in the social sciences.

    PubMed

    Falk, Armin; Heckman, James J

    2009-10-23

    Laboratory experiments are a widely used methodology for advancing causal knowledge in the physical and life sciences. With the exception of psychology, the adoption of laboratory experiments has been much slower in the social sciences, although during the past two decades the use of lab experiments has accelerated. Nonetheless, there remains considerable resistance among social scientists who argue that lab experiments lack "realism" and generalizability. In this article, we discuss the advantages and limitations of laboratory social science experiments by comparing them to research based on nonexperimental data and to field experiments. We argue that many recent objections against lab experiments are misguided and that even more lab experiments should be conducted.

  10. The Portable Usability Testing Lab: A Flexible Research Tool.

    ERIC Educational Resources Information Center

    Hale, Michael E.; And Others

    A group of faculty at the University of Georgia obtained funding for a research and development facility called the Learning and Performance Support Laboratory (LPSL). One of the LPSL's primary needs was obtaining a portable usability lab for software testing, so the facility obtained the "Luggage Lab 2000." The lab is transportable to…

  11. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  12. 20. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa, Photographer. November 15, 1962. BEV-3121. OVERALL VIEW OF LINAC II; GLEN WHITE, FOSS CROSBY, BOB RICHTER. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. 29. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. July, 1959. Morgue 1959-46 (P-1). ALVAREZ BUBBLE CHAMBER GROUP (L. TO R.) HERNANDEZ, McMILLAN, ALVAREZ, GOW - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. Berkeley Lab Scientists Recipients of 2015 Breakthrough Prizes | Berkeley

    Science.gov Websites

    . Doudna and Charpentier have been at the forefront of research into a genetic element known as CRISPR , which stands for Clustered Regularly Interspaced Short Palindromic Repeats. The combination of CRISPR

  15. Group dynamic and its effect on classroom climate, achievement, and time in lab in the organic chemistry laboratory classroom

    NASA Astrophysics Data System (ADS)

    Hall, Rachael S.

    Despite the many studies on the benefits of cooperative learning, there is surprising little research into how the classroom as a whole changes when these cooperative groups are reassigned. In one section of CHEM 3011 in Fall 2013, students were allowed to pick their partner and kept the same partner all semester. In another section during the same semester, students were assigned a different partner for every wet lab and were allowed to pick their partners during the computer simulation labs. The students in both sections were given the "preferred" version of the Science Laboratory Environment Inventory (SLEI) at the beginning of the semester to elicit student preferences for the class environment, and the "actual" version of the SLEI and the Class Life Instrument at the end of the semester to determine what actually occurred during the semester. The students' interactions were recorded using an observational instrument developed specifically for this project. The students' responses to surveys, interactions, grades, and time in lab were analyzed for differences between the two sections. The results of this study will be discussed.

  16. Towards a Flexible Language Lab for Community Colleges.

    ERIC Educational Resources Information Center

    Conway, Diana

    1992-01-01

    Suggestions are offered for ways to modify a typical community college language laboratory to serve diverse student needs. The discussion is based on experiences of Anchorage Community College, which modeled its lab on a learning resources center rather than a traditional lab. (LB)

  17. The Mysterious Death: An HPLC Lab Experiment. An Undergraduate Forensic Lab

    ERIC Educational Resources Information Center

    Beussman, Douglas J.

    2007-01-01

    A high-performance liquid chromatography (HPLC) laboratory experiment based on the separation of four prescription drugs (disopyramide, lidocaine, procainamide, and quinidine) is presented. The experiment is set within the forensic science context of the discovery of a patient's mysterious death where a drug overdose is suspected. Each lab group…

  18. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    NASA Astrophysics Data System (ADS)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  19. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  20. A Well-Maintained Lab Is a Safer Lab. Safety Spotlight

    ERIC Educational Resources Information Center

    Walls, William H.; Strimel, Greg J.

    2018-01-01

    Administration and funding can cause Engineering/Technology Education (ETE) programs to thrive or die. To administrators, the production/prototyping equipment and laboratory setting are often viewed as the features that set ETE apart from other school subjects. A lab is a unique gift as well as a responsibility. If an administrator can see that…

  1. InnovateEDU, Inc.: Brooklyn Laboratory Charter Schools (LAB)

    ERIC Educational Resources Information Center

    EDUCAUSE, 2015

    2015-01-01

    Entrepreneurial learning is the backbone of this Brooklyn charter school network which opened in Fall 2014 to serve grades 6-12, including English language learners and students with disabilities. LAB's academic model combines empirically effective learning practices with innovative implementation strategies, including a blended learning model…

  2. Bethune-Cookman University STEM Research Lab. DOE Renovation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Herbert W.

    DOE funding was used to renovate 4,500 square feet of aging laboratories and classrooms that support science, engineering, and mathematics disciplines (specifically environmental science, and computer engineering). The expansion of the labs was needed to support robotics and environmental science research, and to better accommodate a wide variety of teaching situations. The renovated space includes a robotics laboratory, two multi-use labs, safe spaces for the storage of instrumentation, modern ventilation equipment, and other “smart” learning venues. The renovated areas feature technologies that are environmentally friendly with reduced energy costs. A campus showcase, the laboratories are a reflection of the University’smore » commitment to the environment and research as a tool for teaching. As anticipated, the labs facilitate the exploration of emerging technologies that are compatible with local and regional economic plans.« less

  3. 4. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August, 1955. XBB 689-5508. BEVATRON MODEL (L. TO R.) WITH L. SMITH, McMILLAN, E.O. LAWRENCE, LOFGREN, BROBECK, AND SEWELL - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. Electron Microscopy Lab

    Science.gov Websites

    Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Science Seaborg Institute Fellows Conferences Research Opportunities Center for Integrated

  5. Berkeley's moral philosophy.

    PubMed Central

    Warnock, G

    1990-01-01

    Berkeley held that the moral duty of mankind was to obey God's laws; that--since God was a benevolent Creator--the object of His laws must be to promote the welfare and flourishing of mankind; and that, accordingly, humans could identify their moral duties by asking what system of laws for conduct would in fact tend to promote that object. This position--which is akin to that of 'rule' Utilitarianism--is neither unfamiliar nor manifestly untenable. He was surely mistaken, however, in his further supposition that, if this theory were accepted, the resolution of all (or most) particular moral dilemmas would be simple and straightforward. PMID:2181141

  6. Emissions and climate-relevant optical properties of pollutants emitted from a three-stone fire and the Berkeley-Darfur stove tested under laboratory conditions.

    PubMed

    Preble, Chelsea V; Hadley, Odelle L; Gadgil, Ashok J; Kirchstetter, Thomas W

    2014-06-03

    Cooking in the developing world generates pollutants that endanger the health of billions of people and contribute to climate change. This study quantified pollutants emitted when cooking with a three-stone fire (TSF) and the Berkeley-Darfur Stove (BDS), the latter of which encloses the fire to increase fuel efficiency. The stoves were operated at the Lawrence Berkeley National Laboratory testing facility with a narrow range of fuel feed rates to minimize performance variability. Fast (1 Hz) measurements of pollutants enabled discrimination between the stoves' emission profiles and development of woodsmoke-specific calibrations for the aethalometer (black carbon, BC) and DustTrak (fine particles, PM2.5). The BDS used 65±5% (average±95% confidence interval) of the wood consumed by the TSF and emitted 50±5% of the carbon monoxide emitted by the TSF for an equivalent cooking task, indicating its higher thermal efficiency and a modest improvement in combustion efficiency. The BDS reduced total PM2.5 by 50% but achieved only a 30% reduction in BC emissions. The BDS-emitted particles were, therefore, more sunlight-absorbing: the average single scattering albedo at 532 nm was 0.36 for the BDS and 0.47 for the TSF. Mass emissions of PM2.5 and BC varied more than emissions of CO and wood consumption over all tests, and emissions and wood consumption varied more among TSF than BDS tests. The international community and the Global Alliance for Clean Cookstoves have proposed performance targets for the highest tier of cookstoves that correspond to greater reductions in fuel consumption and PM2.5 emissions of approximately 65% and 95%, respectively, compared to baseline cooking with the TSF. Given the accompanying decrease in BC emissions for stoves that achieve this stretch goal and BC's extremely high global warming potential, the short-term climate change mitigation from avoided BC emissions could exceed that from avoided CO2 emissions.

  7. UC Berkeley's Celebration of the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Cobb, B. E.; Croft, S.; Silverman, J. M.; Klein, C.; Modjaz, M.

    2010-08-01

    We present the astronomy outreach efforts undertaken for the International Year of Astronomy 2009 at the University of California, Berkeley. Our department-wide endeavors included a monthly public lecture series by UC Berkeley astronomers and a major astronomy outreach event during a campus-wide university "open house," which included solar observing and a Starlab Planetarium. In addition to sharing our outreach techniques and outcomes, we discuss some of our unique strategies for advertising our events to the local community.

  8. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  9. Reducing unnecessary lab testing in the ICU with artificial intelligence.

    PubMed

    Cismondi, F; Celi, L A; Fialho, A S; Vieira, S M; Reti, S R; Sousa, J M C; Finkelstein, S N

    2013-05-01

    To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1-3]. Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future

  10. Reducing unnecessary lab testing in the ICU with artificial intelligence

    PubMed Central

    Cismondi, F.; Celi, L.A.; Fialho, A.S.; Vieira, S.M.; Reti, S.R.; Sousa, J.M.C.; Finkelstein, S.N.

    2017-01-01

    Objectives To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Design Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Patients Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Main results Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1–3]. Conclusions Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the

  11. 34. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-938. ANTI-PROTON SET-UP WITH WORK GROUP; E. SEGRE, C. WIEGAND, E. LOFGREN, O. CHAMBERLAIN, T. YPSILANTIS. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. Rare Isotope Beams for the 21st Century

    ScienceCinema

    James Symons

    2017-12-09

    In a scientific keynote address on Friday, June 12 at Michigan State University (MSU) in East Lansing, James Symons, Director of Berkeley Labs Nuclear Science Division (NSD), discussed the exciting research prospects of the new Facility for Rare Isotope Beams (FRIB) to be built at MSUs National Superconducting Cyclotron Laboratory.

  13. LBNL Computational ResearchTheory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012

    ScienceCinema

    Yelick, Kathy

    2018-01-24

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  14. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelick, Kathy

    2012-02-02

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  15. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    ScienceCinema

    Yelick, Kathy

    2017-12-09

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  16. The Advanced Lab Course at the University of Houston

    NASA Astrophysics Data System (ADS)

    Forrest, Rebecca

    2009-04-01

    The University of Houston Advanced Lab course is designed to help students understand the physics in classic experiments, become familiar with experimental equipment and techniques, gain experience with independent experimentation, and learn to communicate results orally and in writing. It is a two semester course, with a Lab Seminar also required during the first semester. In the Seminar class we discuss keeping a notebook and writing a laboratory report, error analysis, data fitting, and scientific ethics. The students give presentations, in pairs, on the workings and use of basic laboratory equipment. In the Lab courses students do a one week introductory experiment, followed by six two-week experiments each semester. These range from traditional experiments in modern physics to contemporary experiments with superconductivity and chaos. The students are required to keep a laboratory notebook and to write a four-page paper for each experiment in the publication style of the American Institute of Physics. This course introduces students to the experimental tools and techniques used in physics, engineering, and industry laboratories, and allows them to mature as experimentalists.

  17. Time Trials--An AP Physics Challenge Lab

    ERIC Educational Resources Information Center

    Jones, David

    2009-01-01

    I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…

  18. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    demonstrated a way to make it work. New Discovery Could Improve Organic Solar Cell Performance MSD's Center for lead to gains in efficiency for organic solar cells Rob Ritchie featured in Nature Communications Discover Material Ideal for Smart Photovoltaic Windows ▲ New Discovery Could Improve Organic Solar Cell

  19. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Chemical and Mechanical Properties of Surfaces, Interfaces and Nanostructures Inorganic-Organic (2016). top Inorganic-Organic Nanocomposites Program Leader: Ting Xu Co-PI's: A. Paul Alivisatos, Yi Liu , Miquel Salmeron, Lin-Wang Wang The organic/inorganic nanocomposite program aims to design and synthesize

  20. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    (powerpoint) Research Highlights 2018 Predictive Theory Of Multiexciton Decay In Organic Crystals Reveals New -CsPbX3 Perovskite Nanocrystal Composite The Inorganic-Organic Nanocomposites program at MSD has achieved Assemblies in Supramolecule Nanocomposites Via Cylindrical Confinement The Inorganic/Organic Nanocomposites

  1. Berkeley Lab - Science Video Glossary

    Science.gov Websites

    source neutrino astronomy protein crystallography quantum dot supercomputing supernova synchrotron universe neutrino astronomy supernova Earth Science atmospheric aerosols bioremediation carbon cycle nanotechnology neutrino neutrino astronomy O, P petabytes petaflop computing photon plasma plasmon protein

  2. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    . Orlita, L. Z. Tan, M. Potemski, M. Sprinkle, C. Berger, W. A. de Heer, S. G. Louie and G. Martinez . DePaolo and J. J. De Yoreo. Self-consistent ion-by-ion growth model for kinetic isotopic fractionation Biosynthesis Restricts Mycobacterium tuberculosis Growth in Human Macrophages. ACS Chemical Biology 7, 863

  3. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    ? Click Here! Resources for MSD Safety MSD Safety MSD's Integrated Safety Management Plan [PDF] Safety culture and policies at MSD MSD0010: Integrated Safety Management: Principles and Case Studies Calendar for MSD classes on Integrated Safety Management MSD0015 Handout - Waste Briefing Document [PDF] Waste

  4. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Latest News Postdoc Forum Research Highlights Awards Publications

  5. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    2018 [PDF] October 2017 [PDF] July 2017 [PDF] April 2017 [PDF] January 2017 [PDF] October 2016 [PDF ] July 2016 [PDF] April 2016 [PDF] January 2016 [PDF] October 2015 [PDF] March 2015 [PDF] December 2014 [PDF] April 2014 [PDF] February 2014 [PDF] September 2013 [PDF] March 2013 [PDF] October, 2012 [PDF

  6. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & , Travel, Property Rosemary Williams, Purchasing & Time Keeper 510-495-2645 66-238 rmwilliams@lbl.gov Jasmine Harris, Travel & Property 510-486-6303 66-237 jaharris@lbl.gov Gil Torres, Building Manager

  7. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Planning Procurement and Property Proposals & Finance Templates Travel Procurement and Property This

  8. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    sponsors. Distinguish by scope/specific aspects of research; or by institution; or by individual. Example Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People

  9. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ? Click Here! Commitment to Safety at MSD In the Materials Sciences Division, our mission is to do world -class science in a safe environment. We proudly support a strong safety culture in which all staff and

  10. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of Materials Safety Bulletins Archive September 2016 - Hazardous Waste [PDF] July 2016 - When Should You Report - Include Safety Training in On-The-Job Training [PDF] July 2009 - Eye Injury from Corrosive Organic Solvent

  11. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of complete EHS0470, General Employee Radiation Safety (on-line course). Escort is required for visitors who Safety (on-line course) ii. EHS0348 Chemical Hygiene and Safety (on-line course) iii. EHS0470 General

  12. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People Database Events Calendar Newsletter Archive Send us your research highlights. Reserch Highlight Template (powerpoint) Publications Database The MSD publications database has been updated to include all FY2014

  13. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Facilities and Centers Staff Center for X-ray Optics Patrick Naulleau Director 510-486-4529 2-432 PNaulleau

  14. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People Database Events Calendar Newsletter Archive Send us your research highlights. Reserch Highlight Template

  15. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People ; Finance Templates Travel One-Stop Investigators Division Staff Facilities and Centers Staff Jobs People Division, please use the links here. An outline of the Division structure is available at the Organization

  16. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Operations For information regarding Human Resources, procedures for acknowledging MSD support, division

  17. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Human Resources General

  18. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Travel This page has been moved

  19. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Facilities & Space Planning

  20. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Ramamoorthy Ramesh The Metals Society Bardeen Prize in Electronic Materials Rob Ritchie Elected as a Foreign into the earth Rob Ritchie Elected Foreign Member of the Royal Swedish Academy of Engineering Sciences PECASE (Presidential Early Career Award for Scientists and Engineers) Eli Yablonovitch Elected as Foreign

  1. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion and Materials Physics Scattering and Instrumentation Science Centers Center for Computational Study of Sciences Centers Center for Computational Study of Excited-State Phenomena in Energy Materials Center for X

  2. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Beam Analysis Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane. Journal of the

  3. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Core Programs Materials Discovery, Design and Synthesis Condensed Matter

  4. Implementation of a Parameterization Framework for Cybersecurity Laboratories

    DTIC Science & Technology

    2017-03-01

    designer of laboratory exercises with tools to parameterize labs for each student , and automate some aspects of the grading of laboratory exercises. A...is to provide the designer of laboratory exercises with tools to parameterize labs for each student , and automate some aspects of the grading of...support might assist the designer of laboratory exercises to achieve the following? 1. Verify that students performed lab exercises, with some

  5. GeoLab: A Geological Workstation for Future Missions

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  6. Exploratory study of the acceptance of two individual practical classes with remote labs

    NASA Astrophysics Data System (ADS)

    Tirado-Morueta, Ramón; Sánchez-Herrera, Reyes; Márquez-Sánchez, Marco A.; Mejías-Borrero, Andrés; Andujar-Márquez, José Manuel

    2018-03-01

    Remote lab experiences are proliferating in higher education, although there are still few studies that manage to build a theoretical framework for educational assessment and design of this technology. In order to explore to what extent the use of facilitators of proximity to the laboratory and the autonomy of the experiment makes remote laboratories a technology accepted by students, two remote labs different yet similar educational conditions in laboratories are used. A sample of 98 undergraduate students from a degree course in Energy Engineering was used for this study; 57 of these students ran experiments in a laboratory of electrical machines and 41 in a photovoltaic systems laboratory. The data suggest using conditions that facilitate the proximity of the laboratory and the autonomy in the realisation of the experiment; in both laboratories the experience was positively valued by the students. Also, data suggest that the types of laboratory and experiment have influences on usability - autonomy and lab proximity - perceived by students.

  7. Baseball Physics: A New Mechanics Lab

    NASA Astrophysics Data System (ADS)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  8. Developing and Implementing Lab Skills Seminars, a Student-Led Learning Approach in the Organic Chemistry Laboratory: Mentoring Current Students While Benefiting Facilitators

    ERIC Educational Resources Information Center

    Sabanayagam, Kalyani; Dani, Vivek D.; John, Matthew; Restivo, Wanda; Mikhaylichenko, Svetlana; Dalili, Shadi

    2017-01-01

    This paper describes the successful adaptation of certain components of peer-led team learning (PLTL) as well as service learning principles into our initiative: lab skills seminars (LSS). These seminars were organized for large, second year organic chemistry laboratory courses. Prior to LSS, the only help available for students was traditional…

  9. In Conversation with Jeff Neaton

    ScienceCinema

    Jeff Neaton

    2017-12-09

    Jan. 22, 2010: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's MIke Crommie.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Neaton

    Jan. 22, 2010: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's MIke Crommie.

  11. Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT).

    PubMed

    McDonald, S A; Holzner, C; Lauridsen, E M; Reischig, P; Merkle, A P; Withers, P J

    2017-07-12

    Pressureless sintering of loose or compacted granular bodies at elevated temperature occurs by a combination of particle rearrangement, rotation, local deformation and diffusion, and grain growth. Understanding of how each of these processes contributes to the densification of a powder body is still immature. Here we report a fundamental study coupling the crystallographic imaging capability of laboratory diffraction contrast tomography (LabDCT) with conventional computed tomography (CT) in a time-lapse study. We are able to follow and differentiate these processes non-destructively and in three-dimensions during the sintering of a simple copper powder sample at 1050 °C. LabDCT quantifies particle rotation (to <0.05° accuracy) and grain growth while absorption CT simultaneously records the diffusion and deformation-related morphological changes of the sintering particles. We find that the rate of particle rotation is lowest for the more highly coordinated particles and decreases during sintering. Consequently, rotations are greater for surface breaking particles than for more highly coordinated interior ones. Both rolling (cooperative) and sliding particle rotations are observed. By tracking individual grains the grain growth/shrinkage kinetics during sintering are quantified grain by grain for the first time. Rapid, abnormal grain growth is observed for one grain while others either grow or are consumed more gradually.

  12. WORK FUNCTION CHARACTERIZATION OF DIRECTIONALLY SOLIDIFIED LAB6VB2 EUTECTIC (POSTPRINT)

    DTIC Science & Technology

    2017-05-10

    Berkeley National Laboratory Marc Cahay University of Cincinnati Ali Sayir NASA Glenn Research Center 28 April 2017 Interim Report...Derkink, and Chen Gong - LBNL 4) Marc Cahay - University of Cincinnati 5) Ali Sayir - NASA Glenn Research Center 7. PERFORMING...Cincinnati, 2600 Clifton Ave. Cincinnati, Ohio, 45221-003 5) NASA Glenn Research Ctr, 21000 Brookpark Rd. Cleveland

  13. Laboratories for Teaching of Mathematical Subjects

    ERIC Educational Resources Information Center

    Berežný, Štefan

    2017-01-01

    We have adapted our two laboratories at our department based on our research results, which were presented at the conference CADGME 2014 in Halle and published in the journal. In this article we describe the hardware and software structure of the Laboratory 1: LabIT4KT-1: Laboratory of Computer Modelling and the Laboratory 2: LabIT4KT-2:…

  14. Phillips Lab Project Manager’s Handbook

    DTIC Science & Technology

    1994-04-15

    Phillips Lab continues to be the Air Force Phillips Laboratory (PL) center of excellence for space research and Kirtland AFB, New...POINTS OF CONTACT pages of world history. In 1949, the Cambridge Field Station was renamed the Kirtland AFB: Air Force Cambridge Research Laboratories ...by the Air Force’s facilities are geographically located. Phillips Laboratory at Kirtland Air Force

  15. In Conversation with Mike Crommie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Crommie

    2010-02-16

    Dec. 9 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest is Berkeley Lab's Mike Crommie.

  16. In Conversation with Mike Crommie

    ScienceCinema

    Mike Crommie

    2017-12-09

    Dec. 9 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest is Berkeley Lab's Mike Crommie.

  17. 36. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. September 21, 1956. BEV-1154. DISCOVERERS OF ANTI-NEUTRON--(L. to R.) W. WENZEL, B. CORK, G. LAMBERTSON, AND O. PICCIONI, WITH FOCUS MAGNET. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Computer-based Astronomy Labs for Non-science Majors

    NASA Astrophysics Data System (ADS)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  19. Assessing the Impact of a Virtual Lab in an Allied Health Program.

    PubMed

    Kay, Robin; Goulding, Helene; Li, Jia

    2018-01-01

    Competency-based education in health care requires rigorous standards to ensure professional proficiency. Demonstrating competency in hands-on laboratories calls for effective preparation, knowledge, and experience, all of which can be difficult to achieve using traditional teaching methods. Virtual laboratories are an alternative, cost-effective approach to providing students with sufficient preparatory information. Research on the use of virtual labs in allied health education is limited. The current study investigated the benefits, challenges, and perceived impact of a virtual lab in an allied health program. The sample consisted of 64 students (55 females, 9 males) enrolled in a university medical laboratory science program. A convergent mixed-methods approach (Likert survey, open-ended questions, think-aloud protocol data) revealed that students had positive attitudes towards visual learning, authenticity, learner control, organization, and scaffolding afforded by the virtual lab. Challenges reported included navigational difficulties, an absence of control over content selection, and lack of understanding for certain concepts. Over 90% of students agreed that the virtual lab helped them prepare for hands-on laboratory sessions and that they would use this format of instruction again. Overall, 84% of the students agreed that the virtual lab helped them to achieve greater success in learning.

  20. A "Canned" Computer Lab

    ERIC Educational Resources Information Center

    Dowling, John, Jr.

    1972-01-01

    Discusses the use of a set of computer programs (FORTRAN IV) in an introductory mechanics course for science majors. One laboratory activity is described for determining the coefficient of restitution of a glider on an air track. A student evaluation for the lab is included in the appendix. (Author/TS)

  1. Solar University-National Lab Ultra-Effective Program | Photovoltaic

    Science.gov Websites

    Lab Ultra-Effective Program Solar University-National lab Ultra-effective Program (SUN UP) was created scientists arise out of long-standing collaborations. SUN UP was created to facilitate these interactions of a young man working in a laboratory setting with equipment. The goal of SUN UP is to increase the

  2. WetLab-2: Wet Lab RNA SmartCycler Providing PCR Capability on ISS

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Schonfeld, Julie

    2015-01-01

    The WetLab-2 system will provide sample preparation and qRT-PCR analysis on-board the ISS, a capability to enable using the ISS as a real laboratory. The system will be validated on SpX-7, and is planned for its first PI use on SpX-9.

  3. Podcast: Scientific Integrity and Lab Fraud

    EPA Pesticide Factsheets

    Nov 25, 2015. Dr. Bruce Woods, a chemist in the Electronic Crimes Division within the OIG’s Office of Investigations discusses his recent webinar for the Association of Public Health Laboratories on lab fraud.

  4. Laboratory Directed Research and Development Program FY2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports themore » Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.« less

  5. Teaching laboratory neuroscience at bowdoin: the laboratory instructor perspective.

    PubMed

    Hauptman, Stephen; Curtis, Nancy

    2009-01-01

    Bowdoin College is a small liberal arts college that offers a comprehensive Neuroscience major. The laboratory experience is an integral part of the major, and many students progress through three stages. A core course offers a survey of concepts and techniques. Four upper-level courses function to give students more intensive laboratory research experience in neurophysiology, molecular neurobiology, social behavior, and learning and memory. Finally, many majors choose to work in the individual research labs of the Neuroscience faculty. We, as laboratory instructors, are vital to the process, and are actively involved in all aspects of the lab-based courses. We provide student instruction in state of the art techniques in neuroscience research. By sharing laboratory teaching responsibilities with course professors, we help to prepare students for careers in laboratory neuroscience and also support and facilitate faculty research programs.

  6. Multiple Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California

    USGS Publications Warehouse

    Pike, Richard J.; Graymer, Russell W.

    2008-01-01

    With the exception of Los Angeles, perhaps no urban area in the United States is more at risk from landsliding, triggered by either precipitation or earthquake, than the San Francisco Bay region of northern California. By January each year, seasonal winter storms usually bring moisture levels of San Francisco Bay region hillsides to the point of saturation, after which additional heavy rainfall may induce landslides of various types and levels of severity. In addition, movement at any time along one of several active faults in the area may generate an earthquake large enough to trigger landslides. The danger to life and property rises each year as local populations continue to expand and more hillsides are graded for development of residential housing and its supporting infrastructure. The chapters in the text consist of: *Introduction by Russell W. Graymer *Chapter 1 Rainfall Thresholds for Landslide Activity, San Francisco Bay Region, Northern California by Raymond C. Wilson *Chapter 2 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike and Steven Sobieszczyk *Chapter 3 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Chapter 4 Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California, from a M=7.1 Scenario Earthquake on the Hayward Fault Zone by Scott B. Miles and David K. Keefer *Chapter 5 Synthesis of Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike The plates consist of: *Plate 1 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike, Russell W. Graymer, Sebastian Roberts, Naomi B. Kalman, and Steven Sobieszczyk *Plate 2 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven

  7. Laboratory Safety in the Biology Lab.

    ERIC Educational Resources Information Center

    Ritch, Donna; Rank, Jane

    2001-01-01

    Reports on a research project to determine if students possess and comprehend basic safety knowledge. Shows a significant increase in the amount of safety knowledge gained when students are exposed to various topics in laboratory safety and are held accountable for learning the information as required in a laboratory safety course. (Author/MM)

  8. Safety in the Chemical Laboratory: Hazards in a Photography Lab.

    ERIC Educational Resources Information Center

    Houk, Cliff; Hart, Charles

    1987-01-01

    Described are case studies illustrating chemical hazards in a photography lab due to compounds containing cyanide. Suggestions for preventing problems including proper procedures, housekeeping, facilities, and ventilation are considered. (RH)

  9. Logistics in the Computer Lab.

    ERIC Educational Resources Information Center

    Cowles, Jim

    1989-01-01

    Discusses ways to provide good computer laboratory facilities for elementary and secondary schools. Topics discussed include establishing the computer lab and selecting hardware; types of software; physical layout of the room; printers; networking possibilities; considerations relating to the physical environment; and scheduling methods. (LRW)

  10. Disintegration of the Aged Open Cluster Berkeley 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Souradeep; Vaidya, Kaushar; Mishra, Ishan

    We present the analysis of the morphological shape of Berkeley 17, the oldest known open cluster (∼10 Gyr), using the probabilistic star counting of Pan-STARRS point sources, and confirm its core-tail shape, plus an antitail, previously detected with the 2MASS data. The stellar population, as diagnosed by the color–magnitude diagram and theoretical isochrones, shows many massive members in the clusters core, whereas there is a paucity of such members in both of the tails. This manifests mass segregation in this aged star cluster with the low-mass members being stripped away from the system. It has been claimed that Berkeley 17more » is associated with an excessive number of blue straggler candidates. A comparison of nearby reference fields indicates that about half of these may be field contamination.« less

  11. Open-Ended Laboratory Investigations in a High School Physics Course: The Difficulties and Rewards of Implementing Inquiry-Based Learning in a Physics Lab

    ERIC Educational Resources Information Center

    Szott, Aaron

    2014-01-01

    Traditional physics labs at the high school level are often closed-ended. The outcomes are known in advance and students replicate procedures recommended by the teacher. Over the years, I have come to appreciate the great opportunities created by allowing students investigative freedom in physics laboratories. I have realized that a laboratory…

  12. Antibody Characterization Lab | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Antibody Characterization Lab (ACL), an intramural reference laboratory located at the Frederick National Laboratory for Cancer Research in Frederick, Maryland, thoroughly characterizes monoclonal antibodies or other renewable affinity binding reagents for use in cancer related research.

  13. Summer Series 2012 - Conversation with Kathy Yelick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelick, Kathy, Miller, Jeff

    2012-07-23

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of powerpoint-free talks on July 18th 2012, at Berkeley Lab.

  14. Summer Series 2012 - Conversation with Kathy Yelick

    ScienceCinema

    Yelick, Kathy, Miller, Jeff

    2018-05-11

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of powerpoint-free talks on July 18th 2012, at Berkeley Lab.

  15. Reflections on Three Corporate Research Labs: Bell Labs, HP Labs, Agilent Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2008-03-01

    This will be a personal reflection on corporate life and physics-based research in three industrial research labs over three decades, Bell Labs during the 1980's, HP Labs during the 1990's, and Agilent Labs during the 2000's. These were times of great change in all three companies. I'll point out some of the similarities and differences in corporate cultures and how this impacted the research and development activities. Along the way I'll mention some of the great products that resulted from physics-based R&D.

  16. Evaluating Astronomy Laboratories

    NASA Astrophysics Data System (ADS)

    Zirbel, E. L.

    2002-12-01

    A set of non-traditional astronomy laboratories for non-science majors will be presented along with evaluations of lab technicians (these labs were originally developed at the College of Staten Island of the City University of New York). The goal of these labs is twofold: (a) to provide the students with hands-on experiences of scientific methodology and (b) to provoke critical thinking. Because non-science majors are often rather resistant to learning the relevant methodology - and especially to thinking critically - this manual is structured differently. It does not only provide traditional cook-book recipes but also contains several leading questions to make the students realize why they are doing what. The students are encouraged to write full sentences and explain how they reach which conclusions. This poster summarizes the experiences of the laboratory assistants that worked with the instructor and presents how they judge the effectiveness of the laboratories.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd DeSantis

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico.

  18. PhyloChip Tackles Coral Disease

    ScienceCinema

    Todd DeSantis

    2017-12-09

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico.

  19. New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55

    NASA Astrophysics Data System (ADS)

    Lohr, M. E.; Negueruela, I.; Tabernero, H. M.; Clark, J. S.; Lewis, F.; Roche, P.

    2018-05-01

    As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3^{+1.0}_{-0.8} kpc and an age of 44^{+9}_{-8} Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63^{+12}_{-11} Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales.

  20. In Conversation With Materials Scientist Ron Zuckermann

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ron Zuckerman

    2009-11-18

    Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.

  1. In Conversation With Materials Scientist Ron Zuckermann

    ScienceCinema

    Ron Zuckerman

    2017-12-09

    Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.

  2. Berkeley extreme-ultraviolet airglow rocket spectrometer: BEARS.

    PubMed

    Cotton, D M; Chakrabarti, S

    1992-09-20

    We describe the Berkeley extreme-UV airglow rocket spectrometer, which is a payload designed to test several thermospheric remote-sensing concepts by measuring the terrestrial O I far-UV and extreme-UV dayglow and the solar extreme-UV spectrum simultaneously. The instrument consisted of two near-normal Rowland mount spectrometers and a Lyman-alpha photometer. The dayglow spectrometer covered two spectral regions from 980 to 1040 A and from 1300 to 1360 A with 1.5-A resolution. The solar spectrometer had a bandpass of 250-1150 A with an ~ 10-A resolution. All three spectra were accumulated by using a icrochannel-plate-intensified, two-dimensional imaging detector with three separate wedge-and strip anode readouts. The hydrogen Lyman-alpha photometer was included to monitor the solar Lyman-alpha irradiance and geocoronal Lyman-alpha emissions. The instrument was designed, fabricated, and calibrated at the University of California, Berkeley and was successfully launched on 30 September 1988 aboard the first test flight of a four-stage sounding rocket, Black Brant XII.

  3. Genomics Education in Practice: Evaluation of a Mobile Lab Design

    ERIC Educational Resources Information Center

    Van Mil, Marc H. W.; Boerwinkel, Dirk Jan; Buizer-Voskamp, Jacobine E.; Speksnijder, Annelies; Waarlo, Arend Jan

    2010-01-01

    Dutch genomics research centers have developed the "DNA labs on the road" to bridge the gap between modern genomics research practice and secondary-school curriculum in the Netherlands. These mobile DNA labs offer upper-secondary students the opportunity to experience genomics research through experiments with laboratory equipment that…

  4. Natural Alternatives for Chemicals Used in Histopathology Lab- A Literature Review.

    PubMed

    Ramamoorthy, Ananthalakshmi; Ravi, Shivani; Jeddy, Nadeem; Thangavelu, Radhika; Janardhanan, Sunitha

    2016-11-01

    Histopathology lab is the place where the specimen gets processed and stained to view under microscope for interpretation. Exposure to the chemicals used in these processes cause various health hazards to the laboratory technicians, pathologists, and scientists working in the laboratory. Hence, there is a dire need to introduce healthy and bio-friendly alternatives in the field. This literature review explores the natural products and their efficiency to be used as alternatives for chemicals in the histopathology lab.

  5. Open web system of Virtual labs for nuclear and applied physics

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.

  6. Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement

    ERIC Educational Resources Information Center

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-01-01

    This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and…

  7. What is Supercomputing? A Conversation with Kathy Yelick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelick, Kathy

    2012-07-23

    In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  8. What is Supercomputing? A Conversation with Kathy Yelick

    ScienceCinema

    Yelick, Kathy

    2017-12-11

    In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  9. Dark Secrets: What Science Tells Us About the Hidden Universe (LBNL Science at the Theater)

    ScienceCinema

    Permutter, Saul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)] (ORCID:0000000244364661); Schlegel, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leauthaud, Alexie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-06-12

    No mystery is bigger than dark energy - the elusive force that makes up three-quarters of the Universe and is causing it to expand at an accelerating rate. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who use phenomena such as exploding stars and gravitational lenses to explore the dark cosmos. Saul Perlmutter heads the Supernova Cosmology Project, which pioneered the use of precise observations of exploding stars to study the expansion of the Universe. His international team was one of two groups who independently discovered the amazing phenomenon known as dark energy, and he led a collaboration that designed a satellite to study the nature of this dark force. He is an astrophysicist at Berkeley Lab and a professor of physics at UC Berkeley. David Schlegel is a Berkeley Lab astrophysicist and the principal investigator of Baryon Oscillation Spectroscopic Survey (BOSS), the largest of four night-sky surveys being conducted in the third phase of the Sloan Digital Sky Survey, known as SDSS-III. BOSS will generate a 3-D map of two million galaxies and quasars, using a specially built instrument outfitted with 1,000 optical fibers and mounted on the SDSS telescope in New Mexico. Alexie Leauthaud is Chamberlain Fellow at Berkeley Lab. Her work probes dark matter in the Universe using a technique called gravitational lensing. When gravity from a massive object such as a cluster of galaxies warps space around it, this can distort our view of the light from an even more distant object. The scale and direction of this distortion allows astronomers to directly measure the properties of both dark matter and dark energy.

  10. Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-02-06

    Together with OSIsoft LLC as its private sector partner and matching sponsor, the Lawrence Berkeley National Laboratory (Berkeley Lab) won an FY09 Technology Commercialization Fund (TCF) grant from the U.S. Department of Energy. The goal of the project is to commercialize Berkeley Lab's optimizing program, the Distributed Energy Resources Customer Adoption Model (DER-CAM) using a software as a service (SaaS) model with OSIsoft as its first non-scientific user. OSIsoft could in turn provide optimization capability to its software clients. In this way, energy efficiency and/or carbon minimizing strategies could be made readily available to commercial and industrial facilities. Specialized versionsmore » of DER-CAM dedicated to solving OSIsoft's customer problems have been set up on a server at Berkeley Lab. The objective of DER-CAM is to minimize the cost of technology adoption and operation or carbon emissions, or combinations thereof. DER-CAM determines which technologies should be installed and operated based on specific site load, price information, and performance data for available equipment options. An established user of OSIsoft's PI software suite, the University of California, Davis (UCD), was selected as a demonstration site for this project. UCD's participation in the project is driven by its motivation to reduce its carbon emissions. The campus currently buys electricity economically through the Western Area Power Administration (WAPA). The campus does not therefore face compelling cost incentives to improve the efficiency of its operations, but is nonetheless motivated to lower the carbon footprint of its buildings. Berkeley Lab attempted to demonstrate a scenario wherein UCD is forced to purchase electricity on a standard time-of-use tariff from Pacific Gas and Electric (PG&E), which is a concern to Facilities staff. Additionally, DER-CAM has been set up to consider the variability of carbon emissions throughout the day and seasons. Two distinct

  11. Putting Carbon in its Place: What You Can Do (LBNL Science at the Theater)

    ScienceCinema

    Walker, Iain; Regnier, Cindy [LBNL, Environmental Energy Technologies Division; Miller, Jeff; Masanet, Eric

    2018-06-28

    Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineering design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain; Regnier, Cindy

    Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineeringmore » design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.« less

  13. ASM LabCap's contributions to disease surveillance and the International Health Regulations (2005).

    PubMed

    Specter, Steven; Schuermann, Lily; Hakiruwizera, Celestin; Sow, Mah-Séré Keita

    2010-12-03

    The revised International Health Regulations [IHR(2005)], which requires the Member States of the World Health Organization (WHO) to develop core capacities to detect, assess, report, and respond to public health threats, is bringing new challenges for national and international surveillance systems. As more countries move toward implementation and/or strengthening of their infectious disease surveillance programs, the strengthening of clinical microbiology laboratories becomes increasingly important because they serve as the first line responders to detect new and emerging microbial threats, re-emerging infectious diseases, the spread of antibiotic resistance, and the possibility of bioterrorism. In fact, IHR(2005) Core Capacity #8, "Laboratory", requires that laboratory services be a part of every phase of alert and response.Public health laboratories in many resource-constrained countries require financial and technical assistance to build their capacity. In recognition of this, in 2006, the American Society for Microbiology (ASM) established an International Laboratory Capacity Building Program, LabCap, housed under the ASM International Board. ASM LabCap utilizes ASM's vast resources and its membership's expertise-40,000 microbiologists worldwide-to strengthen clinical and public health laboratory systems in low and low-middle income countries. ASM LabCap's program activities align with HR(2005) by building the capability of resource-constrained countries to develop quality-assured, laboratory-based information which is critical to disease surveillance and the rapid detection of disease outbreaks, whether they stem from natural, deliberate or accidental causes.ASM LabCap helps build laboratory capacity under a cooperative agreement with the U.S. Centers for Disease Control and Prevention (CDC) and under a sub-contract with the Program for Appropriate Technology in Health (PATH) funded by the United States Agency for International Development (USAID

  14. Physical Therapist Assistant Fitness Lab.

    ERIC Educational Resources Information Center

    Backstrom, Kurt; And Others

    Colby Community College's (CCC) Fitness Lab was established to provide the Physical Therapist Assistant (PTA) Program with a learning laboratory in which students can practice classroom-acquired skills, while at the same time promoting the physical, emotional, social, and intellectual well-being of CCC students and staff, and community members. A…

  15. Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)

    ScienceCinema

    Milliron, Delia; Selkowitz, Stephen

    2017-12-09

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  16. Ames Lab 101: Single Crystal Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  17. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2018-01-16

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  18. A General Chemistry Laboratory Course Designed for Student Discussion

    ERIC Educational Resources Information Center

    Obenland, Carrie A.; Kincaid, Kristi; Hutchinson, John S.

    2014-01-01

    We report a study of the general chemistry laboratory course at one university over four years. We found that when taught as a traditional laboratory course, lab experiences do not encourage students to deepen their understanding of chemical concepts. Although the lab instructor emphasized that the lab experiences were designed to enhance…

  19. Laboratory Information Management Systems for Forensic Laboratories: A White Paper for Directors and Decision Makers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony Hendrickson; Brian Mennecke; Kevin Scheibe

    2005-10-01

    Modern, forensics laboratories need Laboratory Information Management Systems (LIMS) implementations that allow the lab to track evidentiary items through their examination lifecycle and also serve all pertinent laboratory personnel. The research presented here presents LIMS core requirements as viewed by respondents serving in different forensic laboratory capacities as well as different forensic laboratory environments. A product-development methodology was employed to evaluate the relative value of the key features that constitute a LIMS, in order to develop a set of relative values for these features and the specifics of their implementation. In addition to the results of the product development analysis,more » this paper also provides an extensive review of LIMS and provides an overview of the preparation and planning process for the successful upgrade or implementation of a LIMS. Analysis of the data indicate that the relative value of LIMS components are viewed differently depending upon respondents' job roles (i.e., evidence technicians, scientists, and lab management), as well as by laboratory size. Specifically, the data show that: (1) Evidence technicians place the most value on chain of evidence capabilities and on chain of custody tracking; (2) Scientists generally place greatest value on report writing and generation, and on tracking daughter evidence that develops during their analyses; (3) Lab. Managers place the greatest value on chain of custody, daughter evidence, and not surprisingly, management reporting capabilities; and (4) Lab size affects LIMS preference in that, while all labs place daughter evidence tracking, chain of custody, and management and analyst report generation as their top three priorities, the order of this prioritization is size dependent.« less

  20. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    NASA Technical Reports Server (NTRS)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  1. Characterizing Scintillation and Cherenkov Light in Water-Based Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Land, Benjamin; Caravaca, Javier; Descamps, Freija; Orebi Gann, Gabriel

    2016-09-01

    The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light which lends itself well to a broad program of neutrino physics. Here we explore the light yields and time profiles of WbLS materials in development for Theia (formerly ASDC) as measured in CheSS: our bench-top Cherenkov and scintillation separation R&D project at Berkeley Lab. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.

  2. Implementation of Siemens USS protocol into LabVIEW.

    PubMed

    Hosek, P; Diblik, M

    2011-10-01

    This article gives basic overview of the USS protocol as a communication interface to drive Siemens frequency inverters. It presents our implementation of this protocol into LabVIEW, as there was permanent demand from the community of the users to have native LabVIEW implementation of the USS protocol. It also states encountered problems and their solutions. Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.

  3. Commerce Lab: Mission analysis and payload integration study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.

  4. Labs21 Approach to Climate Neutral Campuses | Climate Neutral Research

    Science.gov Websites

    Campuses | NREL Labs21 Approach to Climate Neutral Campuses Labs21 Approach to Climate Neutral included a whole-building approach to energy efficiency in laboratory buildings. This website takes that approach a step further in carrying out campus-wide energy- and carbon-reduction strategies. The

  5. Future{at}Labs.Prosperity Game{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, D.F.; Boyack, K.W.; Berman, M.

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games, Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Future{at}Labs.Prosperity Game{trademark} conducted under the sponsorship of the Industry Advisory Boards of the national labs, themore » national labs, Lockheed Martin Corporation, and the University of California. Players were drawn from all stakeholders involved including government, industry, labs, and academia. The primary objectives of this game were to: (1) explore ways to optimize the role of the multidisciplinary labs in serving national missions and needs; (2) explore ways to increase collaboration and partnerships among government, laboratories, universities, and industry; and (3) create a network of partnership champions to promote findings and policy options. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning the future of the labs.« less

  6. Blasting Rocks and Blasting Cars Applied Engineering

    ScienceCinema

    LBNL

    2017-12-09

    June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated ... June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.

  7. Effects of Implementing a Hybrid Wet Lab and Online Module Lab Curriculum into a General Chemistry Course: Impacts on Student Performance and Engagement with the Chemistry Triplet

    ERIC Educational Resources Information Center

    Irby, Stefan M.; Borda, Emily J.; Haupt, Justin

    2018-01-01

    Here, we describe the implementation a hybrid general chemistry teaching laboratory curriculum that replaces a portion of a course's traditional "wet lab" experiences with online virtual lab modules. These modules intentionally utilize representations on all three levels of the chemistry triplet-macroscopic, submicroscopic, and symbolic.…

  8. Transforming the advanced lab: Part I - Learning goals

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin; Finkelstein, Noah; Lewandowski, H. J.

    2012-02-01

    Within the physics education research community relatively little attention has been given to laboratory courses, especially at the upper-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University of Colorado Boulder we are developing learning goals, revising curricula, and creating assessments. In this paper, we report on the establishment of our learning goals and a surrounding framework that have emerged from discussions with a wide variety of faculty, from a review of the literature on labs, and from identifying the goals of existing lab courses. Our goals go beyond those of specific physics content and apparatus, allowing instructors to personalize them to their contexts. We report on four broad themes and associated learning goals: Modeling (math-physics-data connection, statistical error analysis, systematic error, modeling of engineered "black boxes"), Design (of experiments, apparatus, programs, troubleshooting), Communication, and Technical Lab Skills (computer-aided data analysis, LabVIEW, test and measurement equipment).

  9. Site Environmental Report for 2009, Volume I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lackner, Regina

    2010-08-17

    Each year, the University of California (UC), as the managing and operating contractor of the Ernest Orlando Lawrence Berkeley National Laboratory, prepares an integrated report regarding its environmental programs to satisfy the requirements of United States Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2009 summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year (CY) 2009. Throughout this report, 'Berkeley Lab' or 'LBNL' refers both to (1) the multiprogram scientific facility the UC manages and operates on the 202-acre university-owned site located in themore » hills above the UC Berkeley campus, and the site itself, and (2) the UC as managing and operating contractor for Ernest Orlando Lawrence Berkeley National Laboratory. The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that contain an overview of LBNL, a discussion of its environmental management system (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities. The Site Environmental Report is distributed by releasing it on the World Wide Web (Web) from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. Links to documents available on the Web are given with the citations in the References section. CD and printed copies of this Site Environmental Report are available upon request. The report follows Berkeley Lab's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported

  10. 50 years of service: The Missoula Fire Sciences Lab

    Treesearch

    Jane Kapler Smith; Diane Smith; Colin Hardy

    2011-01-01

    In September 12, 1960, the brand new Northern Forest Fire Laboratory was dedicated in Missoula, MT. The fire lab’s mission was - and is - to improve scientific understanding of wildland fire so it can be managed more safely and effectively in the field. The first scientists to work at the fire lab initiated research that continues to be used, refined, and extended....

  11. Theme: Laboratory Instruction.

    ERIC Educational Resources Information Center

    Bruening, Thomas H.; And Others

    1992-01-01

    A series of theme articles discuss setting up laboratory hydroponics units, the school farm at the Zuni Pueblo in New Mexico, laboratory experiences in natural resources management and urban horticulture, the development of teaching labs at Derry (PA) High School, management of instructional laboratories, and industry involvement in agricultural…

  12. Part I: Virtual laboratory versus traditional laboratory: Which is more effective for teaching electrochemistry? Part II: The green synthesis of aurones using a deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Hawkins, Ian C.

    The role of the teaching laboratory in science education has been debated over the last century. The goals and purposes of the laboratory are still debated and while most science educators consider laboratory a vital part of the education process, they differ widely on the purposes for laboratory and what methods should be used to teach laboratory. One method of instruction, virtual labs, has become popular among some as a possible way of capitalizing on the benefits of lab in a less costly and more time flexible format. The research regarding the use of virtual labs is limited and the few studies that have been done on General Chemistry labs do not use the virtual labs as a substitute for hands-on experiences, but rather as a supplement to a traditional laboratory program. This research seeks to determine the possible viability of a virtual simulation to replace a traditional hands-on electrochemistry lab in the General Chemistry II course sequence. The data indicate that for both content knowledge and the development of hands-on skills the virtual lab showed no significant difference in overall scores on the assessments, but that an individual item related to the physical set-up of a battery showed better scores for the hands-on labs over the virtual labs. Further research should be done to determine if these results are similar in other settings with the use of different virtual labs and how the virtual labs compare to other laboratories using different learning styles and learning goals. One often cited purpose of laboratory experiences in the context of preparing chemists is to simulate the experiences common in chemical research so graduate experience in a research laboratory was a necessary part of my education in the field of laboratory instruction. This research experience provided me the opportunity, to complete an organic synthesis of aurones using a deep eutectic solvent. These solvents show unique properties that make them a viable alternative to ionic

  13. Baseball Physics: A New Mechanics Lab

    ERIC Educational Resources Information Center

    Wagoner, Kasey; Flanagan, Daniel

    2018-01-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in "The Physics Teacher," available on Professor Alan Nathan's website, and discussed in "Physics of Baseball & Softball"). We have developed a lab, for an introductory-level physics course, that…

  14. A survey of Lab Tests Online-UK users: a key resource for patients to empower and help them understand their laboratory test results.

    PubMed

    Leyland, Rebecca; Freedman, Danielle B

    2016-11-01

    Background Lab Tests Online-UK celebrated its 10th anniversary in 2014 and to mark the occasion the first comprehensive survey of website users was undertaken. Methods A pop-up box with a link to Survey Monkey was used to offer website users the chance to participate in the survey, which was live from 4 March 2014 to 11 April 2014. Results Six hundred and sixty-one participants started the questionnaire and 338 completed all of the demographic questions. Although the website is designed and aimed at patients and the public, a significant number of respondents were health-care professionals (47%). The majority of survey participants found the Lab Tests Online-UK website via a search engine and were visiting the site for themselves. The majority of participants found what they were looking for on the website and found the information very easy or fairly easy to understand. The patient respondents were keen to see their laboratory test results (87%), but the majority did not have access (60%) at the time of the survey. Conclusions This survey provides good evidence that the Lab Tests Online-UK website is a useful resource for patients and health-care professionals alike. It comes at a poignant time as the release of results direct to patients starts with access to their medical records. The Lab Tests Online-UK website has a key role in enabling patients to understand their lab test results, and therefore empowering them to take an interest and engage in their own healthcare.

  15. National Lab Science Day | News

    Science.gov Websites

    Laboratory news From lab leadership Submit content - login required Provide feedback Subscribe to our officer at Fermilab, guided Secretary Moniz and members of the U.S. Senate and House on virtual tours of virtual tour Particle detector tours Collisions in 3-D DOE facilities Dark matter and dark energy Particle

  16. Environmental Response Laboratory Network (ERLN) Laboratory Requirements

    EPA Pesticide Factsheets

    The Environmental Response Laboratory Network requires its member labs follow specified quality systems, sample management, data reporting, and general, in order to ensure consistent analytical data of known and documented quality.

  17. Diversity, Equity, & Inclusion at Berkeley Lab

    Science.gov Websites

    ; Latest News May 23 UC Webinar on Improving Mental Health Awareness African American ERG Hosts Emotional Intelligence Workshop Joe Palca to Interview Geri Richmond for June 11 'Women in Science' Talk Building

  18. New Tech Measures Artery Health: Engevity Cuff

    ScienceCinema

    Maltz, Jonathan

    2018-05-22

    Jonathan Maltz, a Berkeley Lab scientist in the Molecular Biophysics and Integrated Bioimaging division, explains a new technology developed at Berkeley Lab that could soon make detecting the process of plaque buildup in vessels a routine part of a visit to the doctor and, perhaps, home healthcare settings.

  19. New Tech Measures Artery Health: Engevity Cuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Jonathan

    2016-05-19

    Jonathan Maltz, a Berkeley Lab scientist in the Molecular Biophysics and Integrated Bioimaging division, explains a new technology developed at Berkeley Lab that could soon make detecting the process of plaque buildup in vessels a routine part of a visit to the doctor and, perhaps, home healthcare settings.

  20. Breaking Out of the Lab

    PubMed Central

    Maier, Jürgen; Hampe, J. Felix; Jahn, Nico

    2016-01-01

    Real-time response (RTR) measurement is an important technique for analyzing human processing of electronic media stimuli. Although it has been demonstrated that RTR data are reliable and internally valid, some argue that they lack external validity. The reason for this is that RTR measurement is restricted to a laboratory environment due to its technical requirements. This paper introduces a smartphone app that 1) captures real-time responses using the dial technique and 2) provides a solution for one of the most important problems in RTR measurement, the (automatic) synchronization of RTR data. In addition, it explores the reliability and validity of mobile RTR measurement by comparing the real-time reactions of two samples of young and well-educated voters to the 2013 German televised debate. Whereas the first sample participated in a classical laboratory study, the second sample was equipped with our mobile RTR system and watched the debate at home. Results indicate that the mobile RTR system yields similar results to the lab-based RTR measurement, providing evidence that laboratory studies using RTR are externally valid. In particular, the argument that the artificial reception situation creates artificial results has to be questioned. In addition, we conclude that RTR measurement outside the lab is possible. Hence, mobile RTR opens the door for large-scale studies to better understand the processing and impact of electronic media content. PMID:27274577

  1. Optimized R functions for analysis of ecological community data using the R virtual laboratory (RvLab)

    PubMed Central

    Varsos, Constantinos; Patkos, Theodore; Pavloudi, Christina; Gougousis, Alexandros; Ijaz, Umer Zeeshan; Filiopoulou, Irene; Pattakos, Nikolaos; Vanden Berghe, Edward; Fernández-Guerra, Antonio; Faulwetter, Sarah; Chatzinikolaou, Eva; Pafilis, Evangelos; Bekiari, Chryssoula; Doerr, Martin; Arvanitidis, Christos

    2016-01-01

    Abstract Background Parallel data manipulation using R has previously been addressed by members of the R community, however most of these studies produce ad hoc solutions that are not readily available to the average R user. Our targeted users, ranging from the expert ecologist/microbiologists to computational biologists, often experience difficulties in finding optimal ways to exploit the full capacity of their computational resources. In addition, improving performance of commonly used R scripts becomes increasingly difficult especially with large datasets. Furthermore, the implementations described here can be of significant interest to expert bioinformaticians or R developers. Therefore, our goals can be summarized as: (i) description of a complete methodology for the analysis of large datasets by combining capabilities of diverse R packages, (ii) presentation of their application through a virtual R laboratory (RvLab) that makes execution of complex functions and visualization of results easy and readily available to the end-user. New information In this paper, the novelty stems from implementations of parallel methodologies which rely on the processing of data on different levels of abstraction and the availability of these processes through an integrated portal. Parallel implementation R packages, such as the pbdMPI (Programming with Big Data – Interface to MPI) package, are used to implement Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations, allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R packages are further integrated offering connections to dataframe like objects (databases) as secondary storage solutions whenever memory demands exceed available RAM resources. The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-linux-gnu (64-bit) platform, and offers an intuitive virtual environmet interface enabling users to perform analysis of ecological

  2. Optimized R functions for analysis of ecological community data using the R virtual laboratory (RvLab).

    PubMed

    Varsos, Constantinos; Patkos, Theodore; Oulas, Anastasis; Pavloudi, Christina; Gougousis, Alexandros; Ijaz, Umer Zeeshan; Filiopoulou, Irene; Pattakos, Nikolaos; Vanden Berghe, Edward; Fernández-Guerra, Antonio; Faulwetter, Sarah; Chatzinikolaou, Eva; Pafilis, Evangelos; Bekiari, Chryssoula; Doerr, Martin; Arvanitidis, Christos

    2016-01-01

    Parallel data manipulation using R has previously been addressed by members of the R community, however most of these studies produce ad hoc solutions that are not readily available to the average R user. Our targeted users, ranging from the expert ecologist/microbiologists to computational biologists, often experience difficulties in finding optimal ways to exploit the full capacity of their computational resources. In addition, improving performance of commonly used R scripts becomes increasingly difficult especially with large datasets. Furthermore, the implementations described here can be of significant interest to expert bioinformaticians or R developers. Therefore, our goals can be summarized as: (i) description of a complete methodology for the analysis of large datasets by combining capabilities of diverse R packages, (ii) presentation of their application through a virtual R laboratory (RvLab) that makes execution of complex functions and visualization of results easy and readily available to the end-user. In this paper, the novelty stems from implementations of parallel methodologies which rely on the processing of data on different levels of abstraction and the availability of these processes through an integrated portal. Parallel implementation R packages, such as the pbdMPI (Programming with Big Data - Interface to MPI) package, are used to implement Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations, allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R packages are further integrated offering connections to dataframe like objects (databases) as secondary storage solutions whenever memory demands exceed available RAM resources. The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-linux-gnu (64-bit) platform, and offers an intuitive virtual environmet interface enabling users to perform analysis of ecological and microbial communities based on

  3. The Influence of Tablet PCs on Students' Use of Multiple Representations in Lab Reports

    NASA Astrophysics Data System (ADS)

    Guelman, Clarisa Bercovich; De Leone, Charles; Price, Edward

    2009-11-01

    This study examined how different tools influenced students' use of representations in the Physics laboratory. In one section of a lab course, every student had a Tablet PC that served as a digital-ink based lab notebook. Students could seamlessly create hand-drawn graphics and equations, and write lab reports on the same computer used for data acquisition, simulation, and analysis. In another lab section, students used traditional printed lab guides, kept paper notebooks, and then wrote lab reports on regular laptops. Analysis of the lab reports showed differences between the sections' use of multiple representations, including an increased use of diagrams and equations by the Tablet users.

  4. What's Right with Kansas? (LBNL Science at the Theater)

    ScienceCinema

    Fuller, Merrian; Jackson, Nancy

    2018-06-20

    On Monday, Oct. 3 at 7 p.m. in Berkeley's Repertory Theater, the Lab presented "What's Right with Kansas," an evening of conversation with the Kansas-based Climate and Energy Project's founder and board chair, Nancy Jackson, and Berkeley Lab scientist Merrian Fuller, an electricity-market, policy and consumer behavior expert. Berkeley Lab will also debut its video "Common Ground," which showcases how CEP has become a Kansas mainstay and an inspiration to environmental organizations across the country. In a state rife with climate-change skepticism, CEP has changed behavior, and some minds, by employing rural values of thrift, independence, conservation, and friendly competition to promote energy efficiency.

  5. Blasting Rocks and Blasting Cars Applied Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LBNL

    2008-07-02

    June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated ... June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed formore » auto assembly lines.« less

  6. SF Cleantech Pitchfest: Nano Sponges for Carbon Capture

    ScienceCinema

    Urban, Jeff

    2018-01-16

    Berkeley Lab materials scientist, Jeff Urban presents his research on using metal-organic frameworks to capture carbon at Berkeley Lab's Cleantech Pitchfest on June 1, 2016. Removing excess carbon from an overheating atmosphere is an urgent and complicated problem. The answer, according to Berkeley Lab’s Jeff Urban, could lie at the nanoscale, where specially designed cage-like structures called metal organic frameworks, or MOFs, can trap large amounts of carbon in microscopically tiny structures. A Harvard PhD with expertise in thermoelectrics, gas separation and hydrogen storage, Urban directs teams at the Molecular Foundry’s Inorganic Materials Facility.

  7. Safety in the Chemical Laboratory. Safety in the Laboratory: Are We Making Any Progress?

    ERIC Educational Resources Information Center

    McKusick, Blaine C.

    1987-01-01

    Reviews trends in laboratory safety found in both industrial and academic situations. Reports that large industrial labs generally have excellent safety programs but that, although there have been improvements, academia still lags behind industry in safety. Includes recommendations for improving lab safety. (ML)

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSantis, Todd

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico. More info: http://newscenter.lbl.gov/feature-stories/2009/02/02/coral-reefs/

  9. PhyloChip Tackles Coral Disease

    ScienceCinema

    DeSantis, Todd

    2017-12-13

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico. More info: http://newscenter.lbl.gov/feature-stories/2009/02/02/coral-reefs/

  10. Alessandra Lanzara

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ; Finance Templates Travel One-Stop Investigators Division Staff Facilities and Centers Staff Jobs

  11. The structure of a cholesterol-trapping protein

    Science.gov Websites

    Date February 28, 2003 Date Berkeley Lab Science Beat Berkeley Lab Science Beat The structure of a Institute researchers determined the three-dimensional structure of a protein that controls cholesterol level in the bloodstream. Knowing the structure of the protein, a cellular receptor that ensnares

  12. Map Your Way to a Better Lab.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    1990-01-01

    The use of concept maps, Vee diagrams, flow charts, and productive questions to increase student understanding of laboratory exercises and to improve student attitudes toward lab classes is discussed. Examples of each are provided. Student responses to these teaching methods are described. (CW)

  13. Weak Interactions Group

    Science.gov Websites

    Weak Interactions Group UC Berkeley UC Berkeley Physics Lawrence Berkeley Lab Nuclear Science Division at LBL Physics Division at LBL Phonebook A-Z Index Navigation Home Members Research Projects CUORE Design Concept Berkeley Projects People Publications Contact Links KamLAND Physics Impact Neutrino

  14. Berkeley bicycle plan : draft for inclusion in the general plan

    DOT National Transportation Integrated Search

    1998-12-31

    The City of Berkeley has long supported bicycling as an environmentally friendly, healthy, lowcost method of transportation and recreation. Frequently, roadway facility and funding decisions are made with little consideration for bicycling as a serio...

  15. A Paperless Lab Manual - Lessons Learned

    NASA Astrophysics Data System (ADS)

    Hatten, Daniel L.; Hatten, Maggie W.

    1999-10-01

    Every freshman entering Rose-Hulman Institute of Technology is equipped with a laptop computer and a software package that allow classroom and laboratory instructors the freedom to make computer-based assignments, publish course materials in electronic form, etc. All introductory physics laboratories and many of our classrooms are networked, and students routinely take their laptop computers to class/lab. The introductory physics laboratory manual was converted to HTML in the summer of 1997 and was made available to students over the Internet vice printing a paper manual during the 1998-99 school year. The aim was to reduce paper costs and allow timely updates of the laboratory experiments. A poll conducted at the end of the school year showed a generally positive student response to the online laboratory manual, with some reservations.

  16. Model-Based Reasoning in Upper-division Lab Courses

    NASA Astrophysics Data System (ADS)

    Lewandowski, Heather

    2015-05-01

    Modeling, which includes developing, testing, and refining models, is a central activity in physics. Well-known examples from AMO physics include everything from the Bohr model of the hydrogen atom to the Bose-Hubbard model of interacting bosons in a lattice. Modeling, while typically considered a theoretical activity, is most fully represented in the laboratory where measurements of real phenomena intersect with theoretical models, leading to refinement of models and experimental apparatus. However, experimental physicists use models in complex ways and the process is often not made explicit in physics laboratory courses. We have developed a framework to describe the modeling process in physics laboratory activities. The framework attempts to abstract and simplify the complex modeling process undertaken by expert experimentalists. The framework can be applied to understand typical processes such the modeling of the measurement tools, modeling ``black boxes,'' and signal processing. We demonstrate that the framework captures several important features of model-based reasoning in a way that can reveal common student difficulties in the lab and guide the development of curricula that emphasize modeling in the laboratory. We also use the framework to examine troubleshooting in the lab and guide students to effective methods and strategies.

  17. Developing Nontraditional Biology Labs to Challenge Students & Enhance Learning

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Siuda, JoElla E.; Movahedzadeh, Farahnaz

    2013-01-01

    Laboratory experience and skills are not only essential for success in science studies, but are the most exciting and rewarding aspects of science for students. As a result, many biology teachers have become critical of the efficacy of cookbook-type laboratory activities as well as the purposes, practices, and learning outcomes of lab experiments…

  18. The experiment editor: supporting inquiry-based learning with virtual labs

    NASA Astrophysics Data System (ADS)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  19. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  20. The Berkeley Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor

    DTIC Science & Technology

    2015-06-13

    The Berkeley Out-of-Order Machine (BOOM): An Industry- Competitive, Synthesizable, Parameterized RISC-V Processor Christopher Celio David A...Synthesizable, Parameterized RISC-V Processor Christopher Celio, David Patterson, and Krste Asanović University of California, Berkeley, California 94720...Order Machine BOOM is a synthesizable, parameterized, superscalar out- of-order RISC-V core designed to serve as the prototypical baseline processor

  1. Pension fund activities at Department laboratories managed by the University of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-18

    The Department of Energy`s (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department`s interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department`s contract administration of its interest in those pension plans.

  2. Teaching at Berkeley: A Guide for Foreign Teaching Assistants.

    ERIC Educational Resources Information Center

    Cohen, Robby, Ed.; Robin, Ron, Ed.

    A handbook for foreign teaching assistants (TAs) is presented by foreign graduate students with teaching experience and other educators who have worked closely with them. Language skills, teaching strategies, cultural issues, resources, and the environment at the University of California, Berkeley, are addressed in 16 articles. Article titles and…

  3. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    USGS Publications Warehouse

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  4. Excellence in Research: Creative Organizational Responses at Berkeley, Harvard, MIT, and Stanford. ASHE 1985 Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Gardiner, John J.

    Research environments of four leading universities were studied: University of California at Berkeley (UC-Berkeley), Harvard University, Massachusetts Institute of Technology (MIT), and Stanford University. Attention was directed to organizational responses for encouraging collaboration in research at these leading universities, as well as to…

  5. How Reliable Is Laboratory Testing?

    MedlinePlus

    ... laboratory testing. (See Who's Who in the Lab .) Post-Analytic Activities After the test is completed, the result must be delivered in ... View Sources NOTE: This article is based on research that ... of the Lab Tests Online Editorial Review Board . This article is periodically ...

  6. Flexibility or Inexactitude? The "Lab 60" at Karolinska Institutet: From Medical Disciplines towards the Modern Biomedical Complex.

    PubMed

    Normark, Daniel

    2015-05-01

    In 1960, a new laboratory ("Lab 60") was built on the premises of Karolinska Institutet, Stockholm. This paper describes how the laboratory was envisioned. While planners and builders strove to optimise a generic laboratory, researchers argued for specialisation. The compromise was to enhance the reorganisation capability of the interior (flexibility) while simultaneously creating a "movable" institution consisting of researchers temporarily working in the laboratory for periods of three to five years, regardless of their disciplinary affiliation. Even though flexibility was not a novelty, the building succeeded as an organisational experiment and encouraged the abandonment of the model of one discipline, one professor, and one building in favour of a "movable" institution conducting temporary research. While the credibility of laboratories was established by their "placelessness" (anywhere), Lab 60 imitated multiple, heterogeneous sites (anything) in order to maintain credibility. As such, the lab embodied many sites between the disciplines of chemistry and medicine.

  7. A remote laboratory for USRP-based software defined radio

    NASA Astrophysics Data System (ADS)

    Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David

    2014-02-01

    Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.

  8. The Ph.D. Production Function: The Case at Berkeley.

    ERIC Educational Resources Information Center

    Breneman, David W.

    This report analyzes departmental variations in time to degree and attrition in Ph.D. programs at Berkeley. An alternative hypothesis, the Ph.D. production function, is examined by cross-section econometric analysis of 28 departments. The inputs included in the production function were student variables--quality and percent males; faculty…

  9. Laboratory-acquired brucellosis: a Spanish national survey.

    PubMed

    Bouza, E; Sánchez-Carrillo, C; Hernangómez, S; González, M José

    2005-09-01

    A retrospective postal survey was carried out among 1240 clinical microbiology laboratory workers in Spain. Overall, 75 (43 microbiologists and 32 technicians) had suffered from laboratory-acquired brucellosis (LAB). Considering the total number of replies (N=628), the rate of LAB was 11.9%. The risk of suffering from LAB was clearly related to the number of isolates of Brucella spp. per year. A major break in biosafety measures was recognized in 60 cases (80%). In nine cases, processing was considered to be secure, and in six cases, the source of infection was unknown. Diagnosis was based on serology in all cases. In 51 cases (68%), blood cultures confirmed diagnosis. A variety of regimens were used to treat the 75 LAB cases. The combination of tetracycline and streptomycin was the most commonly used regimen (in 35 patients), followed by the combination of tetracycline and rifampicin (in 19 cases). Only 10 patients (13.3%) suffered from complications. No differences in resolution were observed according to the antimicrobial regimen. Microbiological laboratory workers are still at risk of developing LAB. Improvements in safety seem to be the best means of

  10. The Berkeley Digital Seismic Network

    NASA Astrophysics Data System (ADS)

    Romanowicz, B.; Dreger, D.; Neuhauser, D.; Karavas, W.; Hellweg, M.; Uhrhammer, R.; Lombard, P.; Friday, J.; Lellinger, R.; Gardner, J.; McKenzie, M. R.; Bresloff, C.

    2007-05-01

    Since it began monitoring earthquakes in northern California 120 years ago, the Berkeley Seismological Laboratory (BSL) has been striving to produce the highest quality and most complete seismic data possible in the most modern way. This goal has influenced choices in instrumentation, installation and telemetry, as well as the investment in expertise and manpower. Since the transition to broadband (BB) instrumentation in the mid- 1980s and to a fully digitally telemetered network in the early 1990s, we have continued these efforts. Each of our 25 BB installations includes three component BB seismometers (STS-1s or STS-2) and digital accelerometers to capture the full range of ground motion from distant teleseisms to large, nearby earthquakes (almost 250 dB). The ground motion is recorded on-site by 24 bit dataloggers. Additional environmental parameters, such as temperature and pressure, are also monitored continuously. Many stations record also C-GPS data that is transmitted continuously to the BSL via shared real-time telemetry. The BDSN's first stations were installed in abandoned mines. In the last 15 years, we developed installations using buried shipping containers to reduce environmental noise and provide security and easy access to the equipment. Data are transmitted in real-time at several sampling rates to one or more processing centers, using frame relay, radio, microwave, and/or satellite. Each site has 7-30 days of onsite data storage to guard against data loss during telemetry outages. Each station is supplied with backup batteries to provide power for 3 days. The BDSN real-time data acquisition, earthquake analysis and archiving computers are housed in a building built to "emergency grade" seismic standards, with air conditioning and power backed up by a UPS and a large generator. Data latency and power are monitored by automated processes that alert staff via pager and email. Data completeness and timing quality are automatically assessed on a daily

  11. Assessing Student Learning in a Virtual Laboratory Environment

    ERIC Educational Resources Information Center

    Wolf, T.

    2010-01-01

    Laboratory experience is a key factor in technical and scientific education. Virtual laboratories have been proposed to reduce cost and simplify maintenance of lab facilities while still providing students with access to real systems. It is important to determine if such virtual labs are still effective for student learning. In the assessment of a…

  12. Encouraging Creativity in the Science Lab

    ERIC Educational Resources Information Center

    Eyster, Linda

    2010-01-01

    Although science is a creative endeavor (NRC 1996, p. 46), many students think they are not encouraged--or even allowed--to be creative in the laboratory. When students think there is only one correct way to do a lab, their creativity is inhibited. Park and Seung (2008) argue for the importance of creativity in science classrooms and for the…

  13. Energy Upgrades at City-Owned Facilities: Understanding Accounting for Energy Efficiency Financing Options. City of Dubuque Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventis, Greg; Schiller, Steve; Kramer, Chris

    The city of Dubuque, Iowa, aimed for a twofer — lower energy costs for public facilities and reduced air emissions. To achieve that goal, the city partnered with the Iowa Economic Development Authority to establish a revolving loan fund to finance energy efficiency and other energy projects at city facilities. But the city needed to understand approaches for financing energy projects to achieve both of their goals in a manner that would not be considered debt — in this case, obligations booked as a liability on the city’s balance sheet. With funding from the U.S. Department of Energy’s Climate Actionmore » Champions Initiative, Lawrence Berkeley National Laboratory (Berkeley Lab) provided technical assistance to the city to identify strategies to achieve these goals. Revolving loans use a source of money to fund initial cost-saving projects, such as energy efficiency investments, then use the repayments and interest from these loans to support subsequent projects. Berkeley Lab and the city examined two approaches to explore whether revolving loans could potentially be treated as non-debt: 1) financing arrangements containing a non-appropriation clause and 2) shared savings agreements. This fact sheet discusses both, including considerations that may factor into their treatment as debt from an accounting perspective.« less

  14. Los Alamos National Lab: National Security Science

    Science.gov Websites

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Permit for Storm Water Public Reading Room Environment Home News Los Alamos National Lab: National deposition operations for the Center for Integrated Nanotechnologies at Los Alamos. Innovation drives his

  15. Revealing the Role of Microbes in Controlling Contaminants

    ScienceCinema

    Williams, Kenneth Hurst

    2018-05-11

    In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.

  16. Revealing the Role of Microbes in Controlling Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kenneth Hurst

    2015-04-02

    In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.

  17. A CAT scan for cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-01-01

    Recently, a team of scientists from Berkeley Lab, Stanford University, and the University of California, San Francisco used Berkeley Lab's National Center for X-ray Tomography to capture the changes that occur when Candida albicans is exposed to a new and promising antifungal therapy. http://newscenter.lbl.gov/feature-stories/2009/12/10/cat-scan-cells/

  18. Carbon Smackdown: Cookstoves for the developing world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashok Gadgil, Kayje Booker, and Adam Rausch

    2010-07-07

    In this June 30, 2010 Berkeley Lab summer lecture, learn how efficient cookstoves for the developing world — from Darfur to Ethiopia and beyond — are reducing carbon dioxide emissions, saving forests, and improving health. Berkeley Lab's Ashok Gadgil, Kayje Booker, and Adam Rausch discuss why they got started in this great challenge and what's next.

  19. A Call to Action: Carbon Cycle 2.0 (Carbon Cycle 2.0)

    ScienceCinema

    Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-05-21

    Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  20. Carbon Cycle 2.0: Paul Alivisatos: Introduction

    ScienceCinema

    Paul Alivisatos

    2017-12-09

    Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  1. Carbon Cycle 2.0: Paul Alivisatos: Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Alivisatos

    2010-02-09

    Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  2. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlmutter, Saul

    2012-01-13

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: Howmore » DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter]« less

  3. The Golden Age of Radio: Solid State's Debt to the Rad Lab

    NASA Astrophysics Data System (ADS)

    Martin, Joseph D.

    2011-03-01

    While MIT's Radiation Laboratory is rightly celebrated for its contributions to World War II radar research, its legacy extended beyond the war. The Rad Lab provided a model for interdisciplinary collaboration that continued to influence research at MIT in the post-war decades. The Rad Lab's institutional legacy--MIT's interdepartmental laboratories--drove the Institute's postwar research agenda. This talk examines how solid state physics research at MIT was shaped by a laboratory structure that encouraged cross-disciplinary collaboration. As the sub-discipline of solid state physics emerged through the late-1940s and 1950s, MIT was unique among universities in its laboratory structure, made possible by a large degree of government and military funding. Nonetheless, the manner in which MIT research groups from physics, chemistry, engineering, and metallurgy interfaced through the medium of solid state physics exemplified how the discipline of solid state physics came to be structured in the rest of the country. Through examining the Rad Lab's institutional legacy, I argue that World War II radar research, by establishing precedent for a particular mode of interdisciplinary collaboration, shaped the future structure of solid state research in the United States. Research supported by a grant-in-aid from the Friends of the Center for the History of Physics, American Institute of Physics.

  4. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schleimer, G.E.

    1983-04-01

    In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations duringmore » 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population.« less

  5. Local area networks, laboratory information management systems, languages, and operating systems in the lab and pilot plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessy, R.E.

    1983-08-01

    Microprocessors and microcomputers are being incorporated into the instruments and controllers in our laboratory and pilot plant. They enhance both the quality and amount of information that is produced. Yet they simultaneously produce vast amounts of information that must be controlled, or scientists and engineers will become high priced secretaries. The devices need programs that control them in a time frame relevant to the experiment. Simple, expeditious pathways to the generation of software that will run rapidly is essential or first class scientists and engineers become second class system programmersexclamation This paper attempts to develop the vocabulary by which themore » people involved in this technological revolution can understand and control it. We will examine the elements that synergistically make up the electronic laboratory and pilot plant. More detailed analyses of each area may be found in a series of articles entitled A/C INTERFACE (1-4). Many factors interact in the final system that we bring into our laboratory. Yet many purchasers only perform a cursory evaluation on the superficial aspects of the hardware. The integrated lab and pilot plant require that microprocessors, which control and collect, be connected in a LAN to larger processors that can provide LIMS support. Statistics and scientific word processing capabilities then complete the armamentorium. The end result is a system that does things for the user, rather than doing things to him.« less

  6. Integration Defended: Berkeley Unified's Strategy to Maintain School Diversity

    ERIC Educational Resources Information Center

    Chavez, Lisa; Frankenberg, Erica

    2009-01-01

    In June 2007, the Supreme Court limited the tools that school districts could use to voluntarily integrate schools. In the aftermath of the decision, educators around the country have sought models of successful plans that would also be legal. One such model may be Berkeley Unified School District's (BUSD) plan. Earlier this year, the California…

  7. Practical Clinical Training in Skills Labs: Theory and Practice

    PubMed Central

    Bugaj, T. J.; Nikendei, C.

    2016-01-01

    Today, skills laboratories or “skills labs”, i.e. specific practical skill training facilities, are a firmly established part of medical education offering the possibility of training clinical procedures in a safe and fault-forging environment prior to real life application at bedside or in the operating room. Skills lab training follows a structured teaching concept, takes place under supervision and in consideration of methodological-didactic concepts, ideally creating an atmosphere that allows the repeated, anxiety- and risk-free practice of targeted skills. In this selective literature review, the first section is devoted to (I) the development and dissemination of the skills lab concept. There follows (II) an outline of the underlying idea and (III) an analysis of key efficacy factors. Thereafter, (IV) the training method’s effectiveness and transference are illuminated, before (V) the use of student tutors, in the sense of peer-assisted-learning, in skills labs is discussed separately. Finally, (VI) the efficiency of the skills lab concept is analyzed, followed by an outlook on future developments and trends in the field of skills lab training. PMID:27579363

  8. Special Report: Hazardous Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  9. The Hidden Costs of Wireless Computer Labs

    ERIC Educational Resources Information Center

    Daly, Una

    2005-01-01

    Various elementary schools and middle schools across the U.S. have purchased one or more mobile laboratories. Although the wireless labs have provided more classroom computing, teachers and technology aides still have mixed views about their cost-benefit ratio. This is because the proliferation of viruses and spyware has dramatically increased…

  10. Promoting Chemistry Learning through Undergraduate Work Experience in the Chemistry Lab: A Practical Approach

    ERIC Educational Resources Information Center

    Yu, Hong-Bin

    2015-01-01

    Hiring undergraduate lab assistants in chemistry departments is common in college. However, few studies have focused on promoting undergraduate chemistry learning and thinking skills through this work experience in chemistry teaching laboratories. This article discusses the strategy we implemented in the lab assistant program. The…

  11. Hot Technology, Cool Science (LBNL Science at the Theater)

    ScienceCinema

    Fowler, John

    2018-06-08

    Great innovations start with bold ideas. Learn how Berkeley Lab scientists are devising practical solutions to everything from global warming to how you get to work. On May 11, 2009, five Berkeley Lab scientists participated in a roundtable dicussion moderated by KTVU's John Fowler on their leading-edge research. This "Science at the Theater" event, held at the Berkeley Repertory Theatre, featured technologies such as cool roofs, battery-driven transportation, a pocket-sized DNA probe, green supercomputing, and a noncontact method for restoring damaged and fragile mechanical recordings.

  12. An analysis of high school students' perceptions and academic performance in laboratory experiences

    NASA Astrophysics Data System (ADS)

    Mirchin, Robert Douglas

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published laboratory questions. A 20-item questionnaire consisting of 18 Likert-scale items and 2 open-ended items that addressed what students liked most and least about lab was administered to students before labs were observed. A pre-test and post-test assessing laboratory achievement were administered before and after the laboratory experiences. The three labs observed were: soda distillation, stoichiometry, and separation of a mixture. Five significant results or correlations were found. For soda distillation, there were two positive correlations. Student preference for analyzing data was positively correlated with achievement on the data analysis dimension of the lab rubric. A student preference for using numbers and graphs to analyze data was positively correlated with achievement on the analysis dimension of the lab rubric. For the separating a mixture lab data the following pairs of correlations were significant. Student preference for doing chemistry labs where numbers and graphs were used to analyze data had a positive correlation with writing a correctly worded hypothesis. Student responses that lab experiences help them learn science positively correlated with achievement on the data dimension of the lab rubric. The only negative correlation found related to the first result where students' preference for computers was inversely correlated to their performance on analyzing data on their lab report. Other findings included the following: students like actual experimental work most and the write-up and analysis of a lab the least. It is recommended that lab science instruction be inquiry-based, hands-on, and that students be

  13. Variances and uncertainties of the sample laboratory-to-laboratory variance (S(L)2) and standard deviation (S(L)) associated with an interlaboratory study.

    PubMed

    McClure, Foster D; Lee, Jung K

    2012-01-01

    The validation process for an analytical method usually employs an interlaboratory study conducted as a balanced completely randomized model involving a specified number of randomly chosen laboratories, each analyzing a specified number of randomly allocated replicates. For such studies, formulas to obtain approximate unbiased estimates of the variance and uncertainty of the sample laboratory-to-laboratory (lab-to-lab) STD (S(L)) have been developed primarily to account for the uncertainty of S(L) when there is a need to develop an uncertainty budget that includes the uncertainty of S(L). For the sake of completeness on this topic, formulas to estimate the variance and uncertainty of the sample lab-to-lab variance (S(L)2) were also developed. In some cases, it was necessary to derive the formulas based on an approximate distribution for S(L)2.

  14. Dancing Around My Technology Classroom Box (My Second RET Lab)

    ERIC Educational Resources Information Center

    Carter, Terry

    2010-01-01

    The laboratory the author had been assigned for his RET (Research Experience for Teachers) at Vanderbilt University is new and different from the one he had previously experienced. This summer he was assigned to the Microfluidics and Lab-on-a-chip laboratory to help research dielectrophoresis. As this is an emerging technology, there was not a lot…

  15. In Situ Teaching: Fusing Labs & Lectures in Undergraduate Science Courses to Enhance Immersion in Scientific Research

    PubMed Central

    Round, Jennifer; Lom, Barbara

    2015-01-01

    Undergraduate courses in the life sciences at most colleges and universities are traditionally composed of two or three weekly sessions in a classroom supplemented with a weekly three-hour session in a laboratory. We have found that many undergraduates can have difficulty making connections and/or transferring knowledge between lab activities and lecture material. Consequently, we are actively developing ways to decrease the physical and intellectual divides between lecture and lab to help students make more direct links between what they learn in the classroom and what they learn in the lab. In this article we discuss our experiences teaching fused laboratory biology courses that intentionally blurred the distinctions between lab and lecture to provide undergraduates with immersive experiences in science that promote discovery and understanding. PMID:26240531

  16. For Berkeley's Sports Endowment, a Goal of $1-Billion

    ERIC Educational Resources Information Center

    Keller, Josh

    2009-01-01

    Most athletics programs, if forced to raise $300-million to renovate a football stadium, would not set an ambitious endowment goal at the same time. The University of California at Berkeley is trying to do both. The university's California Memorial Stadium sits directly over an earthquake fault: it needs a major seismic retrofit that will take…

  17. Comparison between simulations and lab results on the ASSIST test-bench

    NASA Astrophysics Data System (ADS)

    Le Louarn, Miska; Madec, Pierre-Yves; Kolb, Johann; Paufique, Jerome; Oberti, Sylvain; La Penna, Paolo; Arsenault, Robin

    2016-07-01

    We present the latest comparison results between laboratory tests carried out on the ASSIST test bench and Octopus end-to end simulations. We simulated, as closely to the lab conditions as possible, the different AOF modes (Maintenance and commissioning mode (SCAO), GRAAL (GLAO in the near IR), Galacsi Wide Field mode (GLAO in the visible) and Galacsi narrow field mode (LTAO in the visible)). We then compared the simulation results to the ones obtained on the lab bench. Several aspects were investigated, like number of corrected modes, turbulence wind speeds, LGS photon flux etc. The agreement between simulations and lab is remarkably good for all investigated parameters, giving great confidence in both simulation tool and performance of the AO system in the lab.

  18. Laboratory for Oceans

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A review is made of the activities of the Laboratory for Oceans. The staff and the research activities are nearly evenly divided between engineering and scientific endeavors. The Laboratory contributes engineering design skills to aircraft and ground based experiments in terrestrial and atmospheric sciences in cooperation with scientists from labs in Earth sciences.

  19. Indicators for the use of robotic labs in basic biomedical research: a literature analysis

    PubMed Central

    2017-01-01

    Robotic labs, in which experiments are carried out entirely by robots, have the potential to provide a reproducible and transparent foundation for performing basic biomedical laboratory experiments. In this article, we investigate whether these labs could be applicable in current experimental practice. We do this by text mining 1,628 papers for occurrences of methods that are supported by commercial robotic labs. Using two different concept recognition tools, we find that 86%–89% of the papers have at least one of these methods. This and our other results provide indications that robotic labs can serve as the foundation for performing many lab-based experiments. PMID:29134146

  20. Early Geologic Education in California--Berkeley and Stanford Show the Way.

    ERIC Educational Resources Information Center

    Norris, Robert M.

    1981-01-01

    Traces the early history of geological education in California universities, with emphasis upon programs at Berkeley and Stanford. Among the pioneers in the field were Joseph LeConte, Andrew C. Lawson, and John C. Branner. (WB)