Sample records for laboratory designed fabricated

  1. Design, Fabrication and Testing of Two Different Laboratory Prototypes of CSI-based Induction Heating Units

    NASA Astrophysics Data System (ADS)

    Roy, M.; Sengupta, M.

    2012-09-01

    Induction heating is a non-contact heating process which became popular due to its energy efficiency. Current source inverter (CSI) based induction heating units are commonly used in the industry. Most of these CSIs are thyristor based, since thyristors of higher ratings are easily available. These being load commutated apparatus a start-up circuit is needed to initiate commutation. In this paper the design and fabrication of two laboratory prototypes have been presented. The first one, a SCR-based CSI fed controlled induction heating unit (IHU), has been tested with two different types of start-up procedures. Thereafter the fabrication and performance of another IGBT-based CSI is compared with the thyristor-based CSI for a 2 kW, 10 kHz application. These two types of CSIs are fully fabricated in laboratory along with the IHU. Performance analysis and simulation of two different CSIs has been done by using SequelGUI2. The triggering pulses for the inverter devices (for both CSI devices as well as auxilliary thyristor of start-up circuit) have been generated and closed-loop control has been done in FPGA platform built around an Altera make cyclone EPIC12Q240C processor which can be programmed using Quartus II software. Close agreement between simulated and experimental results highlight the accuracy of the experimental work.

  2. Dental laboratory communication regarding removable dental prosthesis design in the UAE.

    PubMed

    Haj-Ali, Reem; Al Quran, Firas; Adel, Omar

    2012-07-01

    The purpose of this study was to determine the methods dental practitioners in the United Arab Emirates (UAE) use to communicate cast removable dental prosthesis (RDP) design to dental laboratories; identify common practices taken by dentists/dental technicians prior to fabrication of RDP framework; and seek out dental technicians' attitudes toward their role in RDP design decisions. All dental laboratories (n = 28) listed in a local telephone directory were invited to complete a questionnaire through a face-to-face interview. They were also requested to examine RDP cases fabricated in the past 2 months and identify steps taken by dentists/dental technicians prior to fabrication of the framework. Descriptive statistics were used to report frequencies and percentages. Twenty-one (75%) dental laboratories agreed to participate, out of which 19 had the facilities to fabricate chrome-cobalt RDPs. Cast RDPs comprised approximately 4.04% (±2.67) of services provided. A reported 84.2% of dentists frequently communicate through generic lab script, with 89.5% rarely/never giving details regarding RDP design. While 52.6% of labs agree/strongly agree that it is the dentist's responsibility to decide the final RDP design, 94.7% agree/strongly agree that dentists should depend on dental technicians for design-making decisions. A total of 19 RDP cases were reviewed. All 19 were surveyed and designed by dental technicians but received dentist approval of design prior to fabrication. Thirteen (68.4%) had rest-seat preparations done by dentists after approval, and new impressions sent to the lab. No other tooth modifications were noted. The responsibility of RDP design appeared to be largely delegated to dental technicians. Importance of tooth modifications seemed to be undervalued and not completed prior to framework fabrication. © 2012 by the American College of Prosthodontists.

  3. Design and fabrication of a flexible tunnel for Sortie Laboratory

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A program was conducted to update a prototype design and to fabricate a flexible tunnel for a space shuttle/spacelab interface structure. The significant changes in the prototype are as follows: (1) elimination of foam from bladder laminate to increase bladder flexibility, (2) heat treat pulley brackets, bolts, and hinge pin to 160,000 psi minimum tensile strength, and (3) reduction of the meteoroid barrier from 0.5 inch to 0.375 inch. The thermal blanket installation study resulted in developing a method of installation by properly folding the various layers so that a uniform thickness could be maintained under the clamps. A single-lobe mockup was fabricated and cycled open and closed several times with no apparent damage to the blanket.

  4. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  5. Energy Systems Fabrication Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    Fabrication The fuel cell fabrication hub includes laboratory spaces with local exhaust and chemical fume hoods that support electrolysis and other chemical process research. Key Infrastructure Perchloric acid washdown hood, local exhaust, specialty gas manifolding, deionized water, chemical fume hoods, glassware

  6. The Vanderbilt University nanoscale science and engineering fabrication laboratory

    NASA Astrophysics Data System (ADS)

    Hmelo, Anthony B.; Belbusti, Edward F.; Smith, Mark L.; Brice, Sean J.; Wheaton, Robert F.

    2005-08-01

    Vanderbilt University has realized the design and construction of a 1635 sq. ft. Class 10,000 cleanroom facility to support the wide-ranging research mission associated with the Vanderbilt Institute for Nanoscale Science and Engineering (VINSE). By design we have brought together disparate technologies and researchers formerly dispersed across the campus to work together in a small contiguous space intended to foster interaction and synergy of nano-technologies not often found in close proximity. The space hosts a variety of tools for lithographic patterning of substrates, the deposition of thin films, the synthesis of diamond nanostructures and carbon nanotubes, and a variety of reactive ion etchers for the fabrication of nanostructures on silicon substrates. In addition, a separate 911 sq. ft. chemistry laboratory supports nanocrystal synthesis and the investigation of biomolecular films. The design criteria required an integrated space that would support the scientific agenda of the laboratory while satisfying all applicable code and safety concerns. This project required the renovation of pre-existing laboratory space with minimal disruption to ongoing activities in a mixed-use building, while meeting the requirements of the 2000 edition of the International Building Code for the variety of potentially hazardous processes that have been programmed for the space. In this paper we describe how architectural and engineering challenges were met in the areas of mitigating floor vibration issues, shielding our facility against EMI emanations, design of the contamination control facility itself, chemical storage and handling, toxic gas use and management, as well as mechanical, electrical, plumbing, lab security, fire and laboratory safety issues.

  7. The Design Fabrication Installation & Evaluation of the Balance Probe Monitor for Large Centrifuges at a National Laboratory Facility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, Jonathan Michael

    Balance Probe Monitors were designed, fabricated, installed, and evaluated at Sandia National Laboratories (SNL) for the 22,600 g kg (50,000 g lb) direct drive electromotor driven large centrifuges. These centrifuges provide a high onset/decay rate g environment. The Balance Probe Monitor is physically located near a centrifuge’s Capacitance Probe, a crucial sensor for the centrifuge’s sustainability. The Balance Probe Monitor will validate operability of the centrifuge. Most importantly, it is used for triggering a kill switch under the condition that the centrifuge displacement value exceeds allowed tolerances. During operational conditions, the Capacitance Probe continuously detects the structural displacement of themore » centrifuge and an adjoining AccuMeasure 9000 translates this displacement into an output voltage.« less

  8. Laboratory experiments in integrated circuit fabrication

    NASA Technical Reports Server (NTRS)

    Jenkins, Thomas J.; Kolesar, Edward S.

    1993-01-01

    The objectives of the experiment are fourfold: to provide practical experience implementing the fundamental processes and technology associated with the science and art of integrated circuit (IC) fabrication; to afford the opportunity for the student to apply the theory associated with IC fabrication and semiconductor device operation; to motivate the student to exercise engineering decisions associated with fabricating integrated circuits; and to complement the theory of n-channel MOS and diffused devices that are presented in the classroom by actually fabricating and testing them. Therefore, a balance between theory and practice can be realized in the education of young engineers, whose education is often criticized as lacking sufficient design and practical content.

  9. 49 CFR 193.2703 - Design and fabrication.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design and fabrication. 193.2703 Section 193.2703...: FEDERAL SAFETY STANDARDS Personnel Qualifications and Training § 193.2703 Design and fabrication. For the design and fabrication of components, each operator shall use— (a) With respect to design, persons who...

  10. Design, fabrication and testing of an optical temperature sensor

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Glenn, W. H.; Decker, R. O.; Mcclurg, W. C.

    1980-01-01

    The laboratory breadboard optical temperature sensor based on the temperature dependent absorptive characteristics of a rare earth (europium) doped optical fiber. The principles of operation, materials characterization, fiber and optical component design, design and fabrication of an electrooptic interface unit, signal processing, and initial test results are discussed. Initial tests indicated that, after a brief warmup period, the output of the sensor was stable to approximately 1 C at room temperature or approximately + or - 0.3 percent of point (K). This exceeds the goal of 1 percent of point. Recommendations are presented for further performance improvement.

  11. Improved Design of Optical MEMS Using the SUMMiT Fabrication Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M.A.; Comtois, J.H.; Barron, C.C.

    This paper describes the design and fabrication of optical Microelectromechanical Systems (MEMS) devices using the Sandia Ultra planar Multilevel MEMS Technology (SUMMiT) fabrication process. This state of the art process, offered by Sandia National Laboratories, provides unique and very advantageous features which make it ideal for optical devices. This enabling process permits the development of micromirror devices with near ideal characteristics which have previously been unrealizable in standard polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces, unique post-process metallization, and the best active surface area to date.

  12. Fabrication Method for Laboratory-Scale High-Performance Membrane Electrode Assemblies for Fuel Cells.

    PubMed

    Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E

    2017-01-03

    Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm 2 ) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.

  13. Exoplanet Coronagraph Shaped Pupil Masks and Laboratory Scale Star Shade Masks: Design, Fabrication and Characterization

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatha; White, Victor; Yee, Karl; Echternach, Pierre; Muller, Richard; Dickie, Matthew; Cady, Eric; Mejia Prada, Camilo; Ryan, Daniel; Poberezhskiy, Ilya; hide

    2015-01-01

    Star light suppression technologies to find and characterize faint exoplanets include internal coronagraph instruments as well as external star shade occulters. Currently, the NASA WFIRST-AFTA mission study includes an internal coronagraph instrument to find and characterize exoplanets. Various types of masks could be employed to suppress the host star light to about 10 -9 level contrast over a broad spectrum to enable the coronagraph mission objectives. Such masks for high contrast internal coronagraphic imaging require various fabrication technologies to meet a wide range of specifications, including precise shapes, micron scale island features, ultra-low reflectivity regions, uniformity, wave front quality, achromaticity, etc. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks by combining electron beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each, highlighting milestone accomplishments from the High Contrast Imaging Testbed (HCIT) at JPL and from the High Contrast Imaging Lab (HCIL) at Princeton University. We also present briefly the technologies applied to fabricate laboratory scale star shade masks.

  14. Exoplanet coronagraph shaped pupil masks and laboratory scale star shade masks: design, fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Kunjithapatham; White, Victor; Yee, Karl; Echternach, Pierre; Muller, Richard; Dickie, Matthew; Cady, Eric; Mejia Prada, Camilo; Ryan, Daniel; Poberezhskiy, Ilya; Zhou, Hanying; Kern, Brian; Riggs, A. J.; Zimmerman, Neil T.; Sirbu, Dan; Shaklan, Stuart; Kasdin, Jeremy

    2015-09-01

    Star light suppression technologies to find and characterize faint exoplanets include internal coronagraph instruments as well as external star shade occulters. Currently, the NASA WFIRST-AFTA mission study includes an internal coronagraph instrument to find and characterize exoplanets. Various types of masks could be employed to suppress the host star light to about 10-9 level contrast over a broad spectrum to enable the coronagraph mission objectives. Such masks for high contrast internal coronagraphic imaging require various fabrication technologies to meet a wide range of specifications, including precise shapes, micron scale island features, ultra-low reflectivity regions, uniformity, wave front quality, achromaticity, etc. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks by combining electron beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each, highlighting milestone accomplishments from the High Contrast Imaging Testbed (HCIT) at JPL and from the High Contrast Imaging Lab (HCIL) at Princeton University. We also present briefly the technologies applied to fabricate laboratory scale star shade masks.

  15. Design and fabrication of microstrip antenna arrays

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.

  16. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.; ...

    2017-12-22

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  17. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  18. Recommended design and fabrication sequence of AMTEC test assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, A.; Kumar, V.; Noravian, H.

    1998-01-01

    A series of previous OSC papers described: 1) a novel methodology for the coupled thermal, fluid flow, and electrical analysis of multitube AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells; 2) the application of that methodology to determine the effect of numerous design variations on the cell{close_quote}s performance, leading to selection and performance characterization of an OSC-recommended cell design; and 3) the design, analysis, and characterization of an OSC-generated power system design combining sixteen of the above AMTEC cells with two or three GPHS (General Purpose Heat Source) radioisotope heat source modules, and the applicability of those power systems to future spacemore » missions ({ital e.g.} Pluto Express and Europa Orbiter) under consideration by NASA. The OSC system design studies demonstrated the critical importance of the thermal insulation subsystem, and culminated in a design in which the eight AMTEC cells on each end of the heat source stack are embedded in Min-K fibrous insulation, and the Min-K and the GPHS modules are surrounded by graded-length Mo multifoil insulation. The present paper depicts the OSC-recommended AMTEC cell and generator designs, and identifies the need for an electrically heated (scaled-down but otherwise prototypic) test assembly for the experimental validation of the generator{close_quote}s system performance predictions. It then describes the design of an OSC-recommended test assembly consisting of an electrical heater enclosed in a graphite box to simulate the radioisotope heat source, four series-connected prototypic AMTEC cells of the OSC-recommended configuration, and a prototypic hybrid insulation package consisting of Min-K and graded-length Mo multifoils. Finally, the paper describes and illustrates an OSC-recommended detailed fabrication sequence and procedure for the above cell and test assembly. That fabrication procedure is being implemented by AMPS, Inc. with the support of DOE

  19. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  20. Making ideas at scientific fabrication laboratories

    NASA Astrophysics Data System (ADS)

    Fonda, Carlo; Canessa, Enrique

    2016-11-01

    Creativity, together with the making of ideas into fruition, is essential for progress. Today the evolution from an idea to its application can be facilitated by the implementation of Fabrication Laboratories, or FabLabs, having affordable digital tools for prototyping. FabLabs aiming at scientific research and invention are now starting to be established inside Universities, Research Centers and Schools. We review the setting up of the ICTP Scientific FabLab in Trieste, Italy, give concrete examples on the use in physics, and propose to replicate world-wide this class of multi-purpose workplaces within academia as a support for physics and math education and for community development.

  1. Development of the Design Laboratory.

    ERIC Educational Resources Information Center

    Silla, Harry

    1986-01-01

    Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)

  2. F-4 Beryllium Rudders; A Precis of the Design, Fabrication, Ground and Flight Test Demonstrations

    DTIC Science & Technology

    1975-05-01

    Wright-Patterson Air Force Base , Ohio 45433. AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE , OHIO 45433...rudder. These sequential ground tests include: - A 50,000 cycle fatigue test of upper balance weight support structure. A static test to...Design Details 6. Design Analysis 7. Rudder Mass Balance 8, Rudder Moment of Inertia 9, Rudder Weight RUDDER FABRICATION AND ASSEMBLY 1. 2

  3. 16. VIEW OF PLANT FABRICATED EQUIPMENT IN THE COATINGS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF PLANT FABRICATED EQUIPMENT IN THE COATINGS LABORATORY. A MASS SPECTROMETER IS TO THE LEFT OF THE PHOTO. (6/23/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  4. Dental Laboratory Technology.

    ERIC Educational Resources Information Center

    Department of the Air Force, Washington, DC.

    The Air Force dental laboratory technology manual is designed as a basic training text as well as a reference source for dental laboratory technicians, a specialty occupation concerned with the design, fabrication, and repair of dental prostheses. Numerous instructive diagrams and photographs are included throughout the manual. The comprehensive…

  5. Design, fabrication and control of origami robots

    NASA Astrophysics Data System (ADS)

    Rus, Daniela; Tolley, Michael T.

    2018-06-01

    Origami robots are created using folding processes, which provide a simple approach to fabricating a wide range of robot morphologies. Inspired by biological systems, engineers have started to explore origami folding in combination with smart material actuators to enable intrinsic actuation as a means to decouple design from fabrication complexity. The built-in crease structure of origami bodies has the potential to yield compliance and exhibit many soft body properties. Conventional fabrication of robots is generally a bottom-up assembly process with multiple low-level steps for creating subsystems that include manual operations and often multiple iterations. By contrast, natural systems achieve elegant designs and complex functionalities using top-down parallel transformation approaches such as folding. Folding in nature creates a wide spectrum of complex morpho-functional structures such as proteins and intestines and enables the development of structures such as flowers, leaves and insect wings. Inspired by nature, engineers have started to explore folding powered by embedded smart material actuators to create origami robots. The design and fabrication of origami robots exploits top-down, parallel transformation approaches to achieve elegant designs and complex functionalities. In this Review, we first introduce the concept of origami robotics and then highlight advances in design principles, fabrication methods, actuation, smart materials and control algorithms. Applications of origami robots for a variety of devices are investigated, and future directions of the field are discussed, examining both challenges and opportunities.

  6. Evolving MEMS Resonator Designs for Fabrication

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Kraus, William F.; Lohn, Jason D.

    2008-01-01

    Because of their small size and high reliability, microelectromechanical (MEMS) devices have the potential to revolution many areas of engineering. As with conventionally-sized engineering design, there is likely to be a demand for the automated design of MEMS devices. This paper describes our current status as we progress toward our ultimate goal of using an evolutionary algorithm and a generative representation to produce designs of a MEMS device and successfully demonstrate its transfer to an actual chip. To produce designs that are likely to transfer to reality, we present two ways to modify evaluation of designs. The first is to add location noise, differences between the actual dimensions of the design and the design blueprint, which is a technique we have used for our work in evolving antennas and robots. The second method is to add prestress to model the warping that occurs during the extreme heat of fabrication. In future we expect to fabricate and test some MEMS resonators that are evolved in this way.

  7. Design and fabrication of solar cell modules

    NASA Technical Reports Server (NTRS)

    Shaughnessy, T. P.

    1978-01-01

    A program conducted for design, fabrication and evaluation of twelve silicon solar cell modules is described. The purpose of the program was to develop a module design consistent with the requirements and objectives of JPL specification and to also incorporate elements of new technologies under development to meet LSSA Project goals. Module development emphasized preparation of a technically and economically competitive design based upon utilization of ion implanted solar cells and a glass encapsulation system. The modules fabricated, tested and delivered were of nominal 2 X 2 foot dimensions and 20 watt minimum rating. Basic design, design rationale, performance and results of environmental testing are described.

  8. Engineering fabrics in transportation construction

    NASA Astrophysics Data System (ADS)

    Herman, S. C.

    1983-11-01

    The following areas are discussed: treatments for reduction of reflective cracking of asphalt overlays on jointed-concrete pavements in Georgia; laboratory testing of fabric interlayers for asphalt concrete paving: interim report; reflection cracking models: review and laboratory evaluation of engineering fabrics; optimum-depth method for design of fabric-reinforced unsurfaced roads; dynamic test to predict field behavior of filter fabrics used in pavement subdrains; mechanism of geotextile performance in soil-fabric systems for drainage and erosion control; permeability tests of selected filter fabrics for use with a loess-derived alluvium; geotextile filter criteria; use of fabrics for improving the placement of till on peat foundation; geotextile earth-reinforced retaining wall tests: Glenwood Canyon, Colorado; New York State Department of Transportation's experience and guidelines for use of geotextiles; evaluation of two geotextile installations in excess of a decade old; and, long-term in situ properties of geotextiles.

  9. Vertical-cavity surface-emitting lasers - Design, growth, fabrication, characterization

    NASA Astrophysics Data System (ADS)

    Jewell, Jack L.; Lee, Y. H.; Harbison, J. P.; Scherer, A.; Florez, L. T.

    1991-06-01

    The authors have designed, fabricated, and tested vertical-cavity surface-emitting lasers (VCSEL) with diameters ranging from 0.5 microns to above 50 microns. Design issues, molecular beam epitaxial growth, fabrication, and lasing characteristics are discussed. The topics considered in fabrication of VCSELs are microlaser geometries; ion implementation and masks; ion beam etching; packaging and arrays; and ultrasmall devices.

  10. Design and fabrication of silver-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Klein, M. G.

    1975-01-01

    The design and fabrication of silver-hydrogen secondary cells capable of delivering higher energy densities than comparable nickel-cadmium and nickel-hydrogen cells and relatively high cycle life is presented. An experimental task utilizing single electrode pairs for the optimization of the individual electrode components, the preparation of a design for lightweight 20Ahr cells, and the fabrication of four 20Ahr cells in heavy wall test housing containing electrode stacks of the lightweight design are described. The design approach is based on the use of a single cylindrical self-contained cell with a stacked disc sequence of electrodes. The electrode stack design is based on the use of NASA- Astropower Separator Material, PPF fuel cell anodes, an intercell electrolyte reservoir concept and sintered silver electrodes. Results of performance tests are given.

  11. Design and fabrication of bismith-silicate photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tomoharu

    2012-09-01

    The process of design and fabrication of bismuth-silicate photonic crystal fiber (Bi-PCF) is reported. The Bi-PCF was fabricated by stack and draw method. This is the first trial of the fabrication of photonic crystal fiber made of bismuth-based glass with stack and draw method. The Bi-PCF structure was designed to reduce group-velocity-dispersion (GVD) in a plausible process. Thermal properties of the glass are investigated to establish the fabrication process. The applying pressure and pumping in fiber preform preparation were effectively utilized to control the air-hole diameter and arrangement. The fabricated Bi-PCF shows the well reduced GVD as the numerical calculation predicted. Fusion splicing between Bi-PCF and SMF-28 was also demonstrated.

  12. Determination of proper mixing and compacting temperatures of laboratory fabricated asphalt concrete specimens.

    DOT National Transportation Integrated Search

    1995-04-01

    The Oregon Department of Transportation (ODOT) Materials Unit has historically used one temperature for the mixing and compacting of laboratory fabricated asphalt concrete specimens. Since switching to the performance based asphalt (PBA) specificatio...

  13. Double-shell target fabrication workshop-2016 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. Morris; Oertel, John; Farrell, Michael

    On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activitiesmore » at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.« less

  14. Microfluidics in the Undergraduate Laboratory: Device Fabrication and an Experiment to Mimic Intravascular Gas Embolism

    ERIC Educational Resources Information Center

    Jablonski, Erin L.; Vogel, Brandon M.; Cavanagh, Daniel P.; Beers, Kathryn L.

    2010-01-01

    A method to fabricate microfluidic devices and an experimental protocol to model intravascular gas embolism for undergraduate laboratories are presented. The fabrication process details how to produce masters on glass slides; these masters serve as molds to pattern channels in an elastomeric polymer that can be adhered to a substrate, resulting in…

  15. The Design, Fabrication, and Testing of Composite Heat Exchange Coupons

    NASA Technical Reports Server (NTRS)

    Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.

    2011-01-01

    Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.

  16. BERLinPro Booster Cavity Design, Fabrication and Test Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrill, Andrew; Anders, W; Frahm, A.

    2014-12-01

    The bERLinPro project, a 100 mA, 50 MeV superconducting RF (SRF) Energy Recovery Linac (ERL) is under construction at Helmholtz-Zentrum Berlin for the purpose of studying the technical challenges and physics of operating a high current, c.w., 1.3 GHz ERL. This machine will utilize three unique SRF cryomodules for the injector, booster and linac module respectively. The booster cryomodule will contain three 2-cell SRF cavities, based on the original design by Cornell University, and will be equipped with twin 115 kW RF power couplers in order to provide the appropriate acceleration to the high current electron beam. This paper willmore » review the status of the fabrication of the 4 booster cavities that have been built for this project by Jefferson Laboratory and look at the challenges presented by the incorporation of fundamental power couplers capable of delivering 115 kW. The test plan for the cavities and couplers will be given along with a brief overview of the cryomodule design.« less

  17. Off-Line Quality Control In Integrated Circuit Fabrication Using Experimental Design

    NASA Astrophysics Data System (ADS)

    Phadke, M. S.; Kackar, R. N.; Speeney, D. V.; Grieco, M. J.

    1987-04-01

    Off-line quality control is a systematic method of optimizing production processes and product designs. It is widely used in Japan to produce high quality products at low cost. The method was introduced to us by Professor Genichi Taguchi who is a Deming-award winner and a former Director of the Japanese Academy of Quality. In this paper we will i) describe the off-line quality control method, and ii) document our efforts to optimize the process for forming contact windows in 3.5 Aim CMOS circuits fabricated in the Murray Hill Integrated Circuit Design Capability Laboratory. In the fabrication of integrated circuits it is critically important to produce contact windows of size very near the target dimension. Windows which are too small or too large lead to loss of yield. The off-line quality control method has improved both the process quality and productivity. The variance of the window size has been reduced by a factor of four. Also, processing time for window photolithography has been substantially reduced. The key steps of off-line quality control are: i) Identify important manipulatable process factors and their potential working levels. ii) Perform fractional factorial experiments on the process using orthogonal array designs. iii) Analyze the resulting data to determine the optimum operating levels of the factors. Both the process mean and the process variance are considered in this analysis. iv) Conduct an additional experiment to verify that the new factor levels indeed give an improvement.

  18. Crashworthy airframe design concepts: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  19. Design and fabrication of brayton cycle solar heat receiver

    NASA Technical Reports Server (NTRS)

    Mendelson, I.

    1971-01-01

    A detail design and fabrication of a solar heat receiver using lithium fluoride as the heat storage material was completed. A gas flow analysis was performed to achieve uniform flow distribution within overall pressure drop limitations. Structural analyses and allowable design criteria were developed for anticipated environments such as launch, pressure containment, and thermal cycling. A complete heat receiver assembly was fabricated almost entirely from the refractory alloy, niobium-1% zirconium.

  20. LABORATORY DESIGN CONSIDERATIONS FOR SAFETY.

    ERIC Educational Resources Information Center

    National Safety Council, Chicago, IL. Campus Safety Association.

    THIS SET OF CONSIDERATIONS HAS BEEN PREPARED TO PROVIDE PERSONS WORKING ON THE DESIGN OF NEW OR REMODELED LABORATORY FACILITIES WITH A SUITABLE REFERENCE GUIDE TO DESIGN SAFETY. THERE IS NO DISTINCTION BETWEEN TYPES OF LABORATORY AND THE EMPHASIS IS ON GIVING GUIDES AND ALTERNATIVES RATHER THAN DETAILED SPECIFICATIONS. AREAS COVERED INCLUDE--(1)…

  1. Los Alamos National Laboratory Prototype Fabrication Division CNM Briefing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidalgo, Stephen P.; Keyser, Richard J.

    2012-06-18

    Prototype Fabrication Division designs, programs, manufactures, and inspects on-site high quality, diverse material parts and components that can be delivered at the pace the customer needs to meet their mission. Our goal is to bring vision to reality in the name of science.

  2. Cryogenic Wind Tunnel Models. Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  3. Design and technical support for development of a molded fabric space suit joint

    NASA Technical Reports Server (NTRS)

    Olson, L. Howard

    1994-01-01

    NASA Ames Research Center has under design a new joint or element for use in a space suit. The design concept involves molding a fabric to a geometry developed at Ames. Unusual characteristics of this design include the need to produce a fabric molding draw ratio on the order of thirty percent circumferentially on the surface. Previous work done at NASA on molded fabric joints has shown that standard, NASA qualified polyester fabrics as are currently available in the textile industry for use in suits have a maximum of about fifteen percent draw ratio. NASA has done the fundamental design for a prototype joint and of a mold which would impart the correct shape to the fabric support layer of the joint. NASA also has the capability to test a finished product for suitability and reliability. Responsibilities resting with Georgia Tech in the design effort for this project are textile related, namely fiber selection, fabric design to achieve the properties of the objective design, and determining production means and sources for the fabrics. The project goals are to produce a prototype joint using the NASA design for evaluation of effectiveness by NASA, and to establish the sources and specifications which would allow reliable and repeatable production of the joint.

  4. CCD research. [design, fabrication, and applications

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.

    1976-01-01

    The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.

  5. Architecture for distributed design and fabrication

    NASA Astrophysics Data System (ADS)

    McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.

    1997-01-01

    We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.

  6. Design and fabrication of conventional and unconventional superconductors

    NASA Technical Reports Server (NTRS)

    Collings, E. W.

    1983-01-01

    The design and fabrication of conventional and unconventionally processed Ti-Nb base and Al5-compound-base, respectively, composite superconductors is discussed in a nine section review. The first two sections introduce the general properties of alloy and compound superconductors, and the design and processing requirements for the production of long lengths of stable low loss conductor. All aspects of flux jump stability, and the general requirements of cryogenic stabilization are addressed. Conductor design from an a.c.-loss standpoint; some basic formulae describing hysteretic and eddy current losses and the influences on a.c. loss of filament diameter, strand (conductor) diameter, twist pitch, and matrix resistivity are discussed. The basic techniques used in the fabrication of conventional multifilamentary conductors are described.

  7. Design and fabrication of graphite-epoxy bolted wing skin splice specimens

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Mccarty, J. E.

    1977-01-01

    Graphite-epoxy bolted joint specimens were designed and fabricated. These specimens were to be representative of a side-of-body wing skin splice with a 20-year life expectancy in a commercial transport environment. Preliminary tests were performed to determine design values of bearing and net tension stresses. Based upon the information developed, a three-fastener-wide representative wing skin splice was designed for a load of 2627 KN/m (15,000 lbf/in.). One joint specimen was fabricated and tested at NASA. The wing skin splice failed at 106 percent of design ultimate load. This joint design achieved all static load objectives. Fabrication of six specimens, together with their loading fixtures, was completed, and the specimens were delivered to NASA-LRC.

  8. Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Jr, Joseph Franklin; Jubin, Robert Thomas; Jordan, Jacob A.

    A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed intomore » the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ≤100 L/h (1.67 L/min), (2) an external temperature of ≤50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.« less

  9. A strategy for design and fabrication of low cost microchannel for future reproductivity of bio/chemical lab-on-chip application

    NASA Astrophysics Data System (ADS)

    Humayun, Q.; Hashim, U.; Ruzaidi, C. M.; Noriman, N. Z.

    2017-03-01

    The fabrication and characterization of sensitive and selective fluids delivery system for the application of nano laboratory on a single chip is a challenging task till to date. This paper is one of the initial attempt to resolve this challenging task by using a simple, cost effective and reproductive technique for pattering a microchannel structures on SU-8 resist. The objective of the research is to design, fabricate and characterize polydimethylsiloxane (PDMS) microchannel. The proposed device mask was designed initially by using AutoCAD software and then the designed was transferred to transparency sheet and to commercial chrome mask for better photo masking process. The standard photolithography process coupled with wet chemical etching process was used for the fabrication of proposed microchannel. This is a low cost fabrication technique for the formation of microchannel structure at resist. The fabrication process start from microchannel formation and then the structure was transformed to PDMS substrate, the microchannel structure was cured from mold and then the cured mold was bonded with the glass substrate by plasma oxidation bonding process. The surface morphology was characterized by high power microscope (HPM) and the structure was characterized by Hawk 3 D surface nanoprofiler. The next part of the research will be focus onto device testing and validation by using real biological samples by the implementation of a simple manual injection technique.

  10. Design and fabrication of planar structures with graded electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Good, Brandon Lowell

    Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.

  11. Design of Tailored Non-Crimp Fabrics Based on Stitching Geometry

    NASA Astrophysics Data System (ADS)

    Krieger, Helga; Gries, Thomas; Stapleton, Scott E.

    2018-02-01

    Automation of the preforming process brings up two opposing requirements for the used engineering fabric. On the one hand, the fabric requires a sufficient drapeability, or low shear stiffness, for forming into double-curved geometries; but on the other hand, the fabric requires a high form stability, or high shear stiffness, for automated handling. To meet both requirements tailored non-crimp fabrics (TNCFs) are proposed. While the stitching has little structural influence on the final part, it virtually dictates the TNCFs local capability to shear and drape over a mold during preforming. The shear stiffness of TNCFs is designed by defining the local stitching geometry. NCFs with chain stitch have a comparatively high shear stiffness and NCFs with a stitch angle close to the symmetry stitch angle have a very low shear stiffness. A method to design the component specific local stitching parameters of TNCFs is discussed. For validation of the method, NCFs with designed tailored stitching parameters were manufactured and compared to benchmark NCFs with uniform stitching parameters. The designed TNCFs showed both, generally a high form stability and in locally required zones a good drapeability, in drape experiments over an elongated hemisphere.

  12. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    NASA Astrophysics Data System (ADS)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  13. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source.

    PubMed

    Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  14. Design and fabrication of complete dentures using CAD/CAM technology

    PubMed Central

    Han, Weili; Li, Yanfeng; Zhang, Yue; lv, Yuan; Zhang, Ying; Hu, Ping; Liu, Huanyue; Ma, Zheng; Shen, Yi

    2017-01-01

    Abstract The aim of the study was to test the feasibility of using commercially available computer-aided design and computer-aided manufacturing (CAD/CAM) technology including 3Shape Dental System 2013 trial version, WIELAND V2.0.049 and WIELAND ZENOTEC T1 milling machine to design and fabricate complete dentures. The modeling process of full denture available in the trial version of 3Shape Dental System 2013 was used to design virtual complete dentures on the basis of 3-dimensional (3D) digital edentulous models generated from the physical models. The virtual complete dentures designed were exported to CAM software of WIELAND V2.0.049. A WIELAND ZENOTEC T1 milling machine controlled by the CAM software was used to fabricate physical dentitions and baseplates by milling acrylic resin composite plates. The physical dentitions were bonded to the corresponding baseplates to form the maxillary and mandibular complete dentures. Virtual complete dentures were successfully designed using the software through several steps including generation of 3D digital edentulous models, model analysis, arrangement of artificial teeth, trimming relief area, and occlusal adjustment. Physical dentitions and baseplates were successfully fabricated according to the designed virtual complete dentures using milling machine controlled by a CAM software. Bonding physical dentitions to the corresponding baseplates generated the final physical complete dentures. Our study demonstrated that complete dentures could be successfully designed and fabricated by using CAD/CAM. PMID:28072686

  15. Laboratory Design for Microbiological Safety

    PubMed Central

    Phillips, G. Briggs; Runkle, Robert S.

    1967-01-01

    Of the large amount of funds spent each year in this country on construction and remodeling of biomedical research facilities, a significant portion is directed to laboratories handling infectious microorganisms. This paper is intended for the scientific administrators, architects, and engineers concerned with the design of new microbiological facilities. It develops and explains the concept of primary and secondary barriers for the containment of microorganisms. The basic objectives of a microbiological research laboratory, (i) protection of the experimenter and staff, (ii) protection of the surrounding community, and (iii) maintenance of experimental validity, are defined. In the design of a new infectious-disease research laboratory, early identification should be made of the five functional zones of the facility and their relation to each other. The following five zones and design criteria applicable to each are discussed: clean and transition, research area, animal holding and research area, laboratory support, engineering support. The magnitude of equipment and design criteria which are necessary to integrate these five zones into an efficient and safe facility are delineated. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:4961771

  16. Design and fabrication of the New Horizons Long-Range Reconnaissance Imager

    NASA Astrophysics Data System (ADS)

    Conard, S. J.; Azad, F.; Boldt, J. D.; Cheng, A.; Cooper, K. A.; Darlington, E. H.; Grey, M. P.; Hayes, J. R.; Hogue, P.; Kosakowski, K. E.; Magee, T.; Morgan, M. F.; Rossano, E.; Sampath, D.; Schlemm, C.; Weaver, H. A.

    2005-09-01

    The LOng-Range Reconnaissance Imager (LORRI) is an instrument that was designed, fabricated, and qualified for the New Horizons mission to the outermost planet Pluto, its giant satellite Charon, and the Kuiper Belt, which is the vast belt of icy bodies extending roughly from Neptune's orbit out to 50 astronomical units (AU). New Horizons is being prepared for launch in January 2006 as the inaugural mission in NASA's New Frontiers program. This paper provides an overview of the efforts to produce LORRI. LORRI is a narrow angle (field of view=0.29°), high resolution (instantaneous field of view = 4.94 μrad), Ritchey-Chretien telescope with a 20.8 cm diameter primary mirror, a focal length of 263 cm, and a three lens field-flattening assembly. A 1024 x 1024 pixel (optically active region), back-thinned, backside-illuminated charge-coupled device (CCD) detector (model CCD 47-20 from E2V Technologies) is located at the telescope focal plane and is operated in standard frame-transfer mode. LORRI does not have any color filters; it provides panchromatic imaging over a wide bandpass that extends approximately from 350 nm to 850 nm. A unique aspect of LORRI is the extreme thermal environment, as the instrument is situated inside a near room temperature spacecraft, while pointing primarily at cold space. This environment forced the use of a silicon carbide optical system, which is designed to maintain focus over the operating temperature range without a focus adjustment mechanism. Another challenging aspect of the design is that the spacecraft will be thruster stabilized (no reaction wheels), which places stringent limits on the available exposure time and the optical throughput needed to accomplish the high-resolution observations required. LORRI was designed and fabricated by a combined effort of The Johns Hopkins University Applied Physics Laboratory (APL) and SSG Precision Optronics Incorporated (SSG).

  17. Computer Aided Design of Computer Generated Holograms for electron beam fabrication

    NASA Technical Reports Server (NTRS)

    Urquhart, Kristopher S.; Lee, Sing H.; Guest, Clark C.; Feldman, Michael R.; Farhoosh, Hamid

    1989-01-01

    Computer Aided Design (CAD) systems that have been developed for electrical and mechanical design tasks are also effective tools for the process of designing Computer Generated Holograms (CGHs), particularly when these holograms are to be fabricated using electron beam lithography. CAD workstations provide efficient and convenient means of computing, storing, displaying, and preparing for fabrication many of the features that are common to CGH designs. Experience gained in the process of designing CGHs with various types of encoding methods is presented. Suggestions are made so that future workstations may further accommodate the CGH design process.

  18. Design, fabrication and characterization of a poly-silicon PN junction

    NASA Astrophysics Data System (ADS)

    Tower, Jason D.

    This thesis details the design, fabrication, and characterization of a PN junction formed from p-type mono-crystalline silicon and n-type poly-crystalline silicon. The primary product of this project was a library of standard operating procedures (SOPs) for the fabrication of such devices, laying the foundations for future work and the development of a class in fabrication processes. The fabricated PN junction was characterized; in particular its current-voltage relationship was measured and fit to models. This characterization was to determine whether or not the fabrication process could produce working PN junctions with acceptable operational parameters.

  19. Design and Fabrication Highlights Enabling a 2 mm, 128 Element Bolometer Array for GISMO

    NASA Technical Reports Server (NTRS)

    Allen, Christine; Benford, Dominic; Miller, Timothy; Staguhn, Johannes; Wollack, Edward; Moseley, Harvey

    2007-01-01

    The Backshort-Under-Grid (BUG) superconducting bolometer array architecture is intended to be highly versatile, operating in a large range of wavelengths and background conditions. We have undertaken a three-year program to develop key technologies and processes required to build kilopixel arrays. To validate the basic array design and to demonstrate its applicability for future kilopixel arrays, we have chosen to demonstrate a 128 element bolometer array optimized for 2 mm wavelength using a newly built Goddard instrument, GISMO (Goddard /RAM Superconducting 2-millimeter Observer). The arrays are fabricated using batch wafer processing developed and optimized for high pixel yield, low noise, and high uniformity. The molybdenum-gold superconducting transition edge sensors are fabricated using batch sputter deposition and are patterned using dry etch techniques developed at Goddard. With a detector pitch of 2 mm 8x16 array for GISMO occupies nearly one half of the processing area of a 100 mm silicon-on-insulator starting wafer. Two such arrays are produced from a single wafer along with witness samples for process characterization. To provide thermal isolation for the detector elements, at the end of the process over 90% of the silicon must be removed using deep reactive ion etching techniques. The electrical connections for each bolometer element are patterned on the top edge of the square grid supporting the array. The design considerations unique to GISMO, key fabrication challenges, and laboratory experimental results will be presented.

  20. Design, fabrication and characterization of LTCC-based electromagnetic microgenerators

    NASA Astrophysics Data System (ADS)

    Gierczak, M.; Markowski, P.; Dziedzic, A.

    2016-02-01

    Design, manufacturing process and properties of electromagnetic microgenerators fabricated in LTCC (Low Temperature Co-fired Ceramics) technology are presented in this paper. Electromagnetic microgenerators consist of planar coils spatially arranged on several layers of LTCC and of a multipole permanent magnet. Two different patterns of coils with 2-, 8-,10- and 12-layers and outer diameter of 50 mm were designed and fabricated. Silver-based pastes ESL 903-A or DuPont 6145 were used. In order to estimate the inductance of a single spatial coil the Greenhouse (self-inductance) and Hoer (mutual inductance) calculation methods were used. To verify the calculation results a single-layer coil was fabricated for each pattern and its inductance was measured using the precision RLC Meter. Fabricated LTCC microgenerators with embedded coils allow to generate voltage higher than ten volts and the electrical output power of approximately 600 mW at the rotor rotation speed of 12 thousands rpm. The self-made system was used for characterization of LTCC-based electromagnetic microgenerators.

  1. Design and fabrication of wraparound contact silicon solar cells

    NASA Technical Reports Server (NTRS)

    Goodelle, G.

    1972-01-01

    Work is reported on the development and production of 1,000 N+/P wraparound solar cells of two different design configurations: Design 1, a bar configuration wraparound and Design 2, a corner pad configuration wraparound. The project goal consisted of determining which of the two designs was better with regard to production cost where the typical cost of a conventional solar cell was considered as the norm. Emphasis was also placed on obtaining the highest possible output efficiency, although a minumum efficiency of 10.5% was required. Five hundred cells of Design 1 and 500 cells of Design 2 were fabricated. Design 1 which used similar procedures to those used in the fabrication of conventional cells, was the less expensive with a cost very close to that of a conventional cell. Design 2 was more expensive mainly because the more exotic process procedures used were less developed than those used for Design 1. However, Design 2 processing technology demonstrated a feasibility that should warrant future investigation toward improvement and refinement.

  2. Design and Fabrication of Orthotropic Deck Details

    DOT National Transportation Integrated Search

    2016-02-01

    The objectives of the research were to verify the design and fabrication of the orthotropic deck details proposed for the lift bridge, for infinite fatigue life. Multi-level 3D finite element analyses (FEA) of the proposed deck were performed to dete...

  3. IR GRIN optics: design and fabrication

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel; Bayya, Shyam; Nguyen, Vinh; Sanghera, Jas; Kotov, Mikhail; McClain, Collin; Deegan, John; Lindberg, George; Unger, Blair; Vizgaitis, Jay

    2017-06-01

    Infrared (IR) transmitting gradient index (GRIN) materials have been developed for broad-band IR imaging. This material is derived from the diffusion of homogeneous chalcogenide glasses has good transmission for all IR wavebands. The optical properties of the IR-GRIN materials are presented and the fabrication and design methodologies are discussed. Modeling and optimization of the diffusion process is exploited to minimize the deviation of the index profile from the design profile. Fully diffused IR-GRIN blanks with Δn of 0.2 are demonstrated with deviation errors of +/-0.01 refractive index units.

  4. MIT Lincoln Laboratory Annual Report 2013

    DTIC Science & Technology

    2013-01-01

    A small-scale demonstration FPGA is currently being fabricated in the Microelectronics Laboratory, and a larger array is being designed for fabri ...year, the first Friday of February is a day to call attention to heart disease . Efforts of the six-member team, MIT Lincoln Laboratory for the Heart

  5. Design and fabrication of self-assembled thin films

    NASA Astrophysics Data System (ADS)

    Topasna, Daniela M.; Topasna, Gregory A.

    2015-10-01

    Students experience the entire process of designing, fabricating and testing thin films during their capstone course. The films are fabricated by the ionic-self assembled monolayer (ISAM) technique, which is suited to a short class and is relatively rapid, inexpensive and environmentally friendly. The materials used are polymers, nanoparticles, and small organic molecules that, in various combinations, can create films with nanometer thickness and with specific properties. These films have various potential applications such as pH optical sensors or antibacterial coatings. This type of project offers students an opportunity to go beyond the standard lecture and labs and to experience firsthand the design and fabrication processes. They learn new techniques and procedures, as well as familiarize themselves with new instruments and optical equipment. For example, students learn how to characterize the films by using UV-Vis-NIR spectrophotometry and in the process learn how the instruments operate. This work compliments a previous exercise that we introduced where students use MATHCAD to numerically model the transmission and reflection of light from thin films.

  6. Design and fabrication of the progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Qin, Linling; Qian, Lin; Yu, Jingchi

    2011-11-01

    The use of progressive addition lenses (PALs) for the correction of presbyopia has increased dramatically in recent years. These lenses are now being used as the preferred alternative to bifocal and trifocal lenses in many parts of the world. Progressive addition lenses are a kind of opthalmic lenses with freeform surface. The surface curvature of the Progressive addition lenses varies gradually from a minimum value in the upper area, to a maximum value in the lower area. Thus a PAL has a surface with three zones which have very small astigmatism: far-view zone, near-view zone, and intermediate zone. The far view zone and near view zone have relatively constant powers and connected by the intermediate zone with power varies progressively. The design and fabrication technologies of progressive addition lenses have fast progresses because of the massive development of the optical simulation software, multi-axis ultraprecision machining technologies and CNC machining technologies. The design principles of progressive addition lenses are discussed in a historic review. Several kinds of design methods are illustrated, and their advantages and disadvantages are also represented. In the current study, it is shown that the optical characteristics of the different progressive addition lenses designs are significantly different from one another. The different fabrication technologies of Progressive addition lenses are also discussed in the paper. Plastic injection molding and precision-machine turning are the common fabrication technologies for exterior PALs and Interior PALs respectively.

  7. Design, fabrication and test of block 4 design solar cell modules. Part 2: Residential module

    NASA Technical Reports Server (NTRS)

    Jester, T. L.

    1982-01-01

    Design, fabrication and test of the Block IV residential load module are reported. Design changes from the proposed module design through three iterations to the discontinuance of testing are outlined.

  8. 49 CFR 193.2703 - Design and fabrication.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design and fabrication. 193.2703 Section 193.2703 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...

  9. Design, fabrication, testing and delivery of a solar collector

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Ballheim, R. W.; Bartley, S. M.; Smith, G. W.

    1976-01-01

    A two phase program encompassing the redesign and fabrication of a solar collector which is low in cost and aesthetically appealing is described. Phase one work reviewed the current collector design and developed a low-cost design based on specific design/performance/cost requirements. Throughout this phase selected collector component materials were evaluated by testing and by considering cost, installation, maintainability and durability. The resultant collector design was composed of an absorber plate, insulation, frame, cover, desiccant and sealant. In Phase two, three collector prototypes were fabricated and evaluated for both nonthermal and thermal characteristics. Tests included static load tests of covers, burst pressure tests of absorber plates, and tests for optical characteristics of selective absorber plate coatings. The three prototype collectors were shipped to Marshall Space Flight Center for use in their solar heating and cooling test facility.

  10. Design for producing fiberglass fabric in a lunar environment

    NASA Technical Reports Server (NTRS)

    Benson, Rafer M.; Causby, Dana R.; Johnson, Michael C.; Storey, Mark A.; Tran, Dal T.; Zahr, Thomas A.

    1992-01-01

    The purpose of this project was to design a method of producing a fabric material on the lunar surface from readily available glass fibers. Various methods for forming fabrics were analyzed to determine which methods were appropriate for the lunar conditions. A nonwoven process was determined to be the most suitable process for making a fabric material out of fiberglass under these conditions. Various resins were considered for adhering the fibers. A single thermoplastic resin (AURUM) was found to be the only applicable resin. The end product of the process was determined to be suitable for use as a roadway surfacing material, canopy material, reflective material, or packaging material. A cost analysis of the lunar process versus shipping the end-product from the Earth suggests that the lunar formation is highly feasible. A design for a lunar, nonwoven process was determined and is included.

  11. Design for producing fiberglass fabric in a lunar environment

    NASA Technical Reports Server (NTRS)

    Dorrity, J. Lewis; Patel, Suneer; Benson, Rafer M.; Johnson, Michael C.; Storey, Mark A.; Tran, Dai T.; Zahr, Thomas A.; Causby, Dana R.

    1992-01-01

    The purpose of this project was to design a method of producing a fabric material on the lunar surface from readily available glass fibers. Various methods for forming fabrics were analyzed to determine which methods were appropriate for the lunar conditions. A nonwoven process was determined to be the most suitable process for making a fabric material out of fiberglass under these conditions. Various resins were considered for adhering the fibers. A single thermoplastic resin (AURUM) was found to be the only applicable resin. The end product of the process was determined to be suitable for use as a roadway surfacing material, canopy materials, reflective material, or packaging material. A cost analysis of the lunar process versus shipping the end-product from the earth suggests that the lunar formation is highly feasible. A design for a lunar, nonwoven process was determined and included in the following document.

  12. Preliminary Solar Sail Design and Fabrication Assessment: Spinning Sail Blade, Square Sail Sheet

    NASA Technical Reports Server (NTRS)

    Daniels, J. B.; Dowdle, D. M.; Hahn, D. W.; Hildreth, E. N.; Lagerquist, D. R.; Mahagnoul, E. J.; Munson, J. B.; Origer, T. F.

    1977-01-01

    The designs and fabrication methods, equipment, facilities, economics, and schedules, for the square sail sheet alternate are evaluated. The baseline for the spinning sail blade design and related fabrication issues are assessed.

  13. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, C.; Ammigan, K.; Anderson, K.

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield.more » Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.« less

  14. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, Cory F.; Ammigan, K.; Anderson, K.

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield.more » Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.« less

  15. BASIC STEPS IN DESIGNING SCIENCE LABORATORIES.

    ERIC Educational Resources Information Center

    WHITNEY, FRANK L.

    PLANNERS OF CURRENT UNIVERSITY LABORATORIES OFTEN MAKE THE SAME MISTAKES MADE BY INDUSTRIAL LABORATORIES 20 YEARS AGO. THIS CAN BE REMEDIED BY INCREASED COMMUNICATION BETWEEN SCIENTISTS AND DESIGNERS IN SEMINARS DEFINING THE BASIC NEEDS OF A PARTICULAR LABORATORY SITUATION. ELECTRONIC AND MECHANICAL EQUIPMENT ACCOUNT FOR OVER 50 PER CENT OF TOTAL…

  16. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric

    NASA Astrophysics Data System (ADS)

    Babu Roshni, Satheesh; Jayakrishnan, M. P.; Mohanan, P.; Peethambharan Surendran, Kuzhichalil

    2017-10-01

    In this paper, we investigated the simulation and fabrication of an E-shaped microstrip patch antenna realized on multilayered polyester fabric suitable for WiMAX (Worldwide Interoperability for Microwave Access) applications. The main challenges while designing a textile antenna were to provide adequate thickness, surface uniformity and water wettability to the textile substrate. Here, three layers of polyester fabric were stacked together in order to obtain sufficient thickness, and were subsequently dip coated with polyvinyl butyral (PVB) solution. The PVB-coated polyester fabric showed a hydrophobic nature with a contact angle of 91°. The RMS roughness of the uncoated and PVB-coated polyester fabric was about 341 nm and 15 nm respectively. The promising properties, such as their flexibility, light weight and cost effectiveness, enable effortless integration of the proposed antenna into clothes like polyester jackets. Simulated and measured results in terms of return loss as well as gain were showcased to confirm the usefulness of the fabricated prototype. The fabricated antenna successfully operates at 3.37 GHz with a return loss of 21 dB and a maximum measured gain of 3.6 dB.

  17. Design, fracture control, fabrication, and testing of pressurized space-vehicle structures

    NASA Technical Reports Server (NTRS)

    Babel, H. W.; Christensen, R. H.; Dixon, H. H.

    1974-01-01

    The relationship between analysis, design, fabrication, and testing of thin shells is illustrated by Saturn S-IVB, Thor, Delta, and other single-use and reusable large-size cryogenic aluminum tankage. The analyses and design to meet the design requirements are reviewed and include consideration of fracture control, general instability, and other failure modes. The effect of research and development testing on the structure is indicated. It is shown how fabrication and nondestructive and acceptance testing constrain the design. Finally, qualification testing is reviewed to illustrate the extent of testing used to develop the Saturn S-IVB.

  18. DRAPING SIMULATION OF WOVEN FABRICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, William; Jin, Xiaoshi; Zhu, Jiang

    2016-09-07

    Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process, where the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the yarns may change significantly compared to the initial orientations. Accurate prediction of the yarn orientations after molding is important for evaluating the structural performance of the final part. This paper presents a systematic investigation of the angle changes during the preform operation for carbon fiber twill andmore » satin weave fabrics. Preforming experiments were conducted using a truncated pyramid mold geometry designed and fabricated at the General Motors Research Laboratories. Predicted results for the yarn orientations were compared with experimental results and good agreement was observed« less

  19. Mesoscale fabrication and design

    NASA Astrophysics Data System (ADS)

    Hayes, Gregory R.

    A strong link between mechanical engineering design and materials science and engineering fabrication can facilitate an effective and adaptable prototyping process. In this dissertation, new developments in the lost mold-rapid infiltration forming (LM-RIF) process is presented which demonstrates the relationship between these two fields of engineering in the context of two device applications. Within the LM-RIF process, changes in materials processing and mechanical design are updated iteratively, often aided by statistical design of experiments (DOE). The LM-RIF process was originally developed by Antolino and Hayes et al to fabricate mesoscale components. In this dissertation the focus is on advancements in the process and underlying science. The presented advancements to the LM-RIF process include an augmented lithography procedure, the incorporation of engineered aqueous and non-aqueous colloidal suspensions, an assessment of constrained drying forces during LM-RIF processing, mechanical property evaluation, and finally prototype testing and validation. Specifically, the molding procedure within the LM-RIF process is capable of producing molds with thickness upwards of 1mm, as well as multi-layering to create three dimensional structures. Increasing the mold thickness leads to an increase in the smallest feature resolvable; however, the increase in mold thickness and three dimensional capability has expanded the mechanical design space. Tetragonally stabilized zirconia (3Y-TZP) is an ideal material for mesoscale instruments, as it is biocompatible, exhibits high strength, and is chemically stable. In this work, aqueous colloidal suspensions were formulated with two new gel-binder systems, increasing final natural orifice translumenal endoscopic surgery (NOTES) instrument yield from 0% to upwards of 40% in the best case scenario. The effects of the gel-binder system on the rheological behavior of the suspension along with the thermal characteristics of the gel

  20. Design, fabrication, and test of a composite material wind turbine rotor blade

    NASA Technical Reports Server (NTRS)

    Griffee, D. G., Jr.; Gustafson, R. E.; More, E. R.

    1977-01-01

    The aerodynamic design, structural design, fabrication, and structural testing is described for a 60 foot long filament wound, fiberglass/epoxy resin matrix wind turbine rotor blade for a 125 foot diameter, 100 kW wind energy conversion system. One blade was fabricated which met all aerodynamic shape requirements and was structurally capable of operating under all specified design conditions. The feasibility of filament winding large rotor blades was demonstrated.

  1. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; SR Morrell; AE Wright

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizesmore » that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.« less

  2. Strategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair

    PubMed Central

    Izadifar, Zohreh; Chen, Xiongbiao; Kulyk, William

    2012-01-01

    Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted. PMID:24955748

  3. Design and fabrication of chemically robust three-dimensional microfluidic valves.

    PubMed

    Maltezos, George; Garcia, Erika; Hanrahan, Grady; Gomez, Frank A; Vyawahare, Saurabh; Vyawhare, Saurabh; van Dam, R Michael; Chen, Yan; Scherer, Axel

    2007-09-01

    A current problem in microfluidics is that poly(dimethylsiloxane) (PDMS), used to fabricate many microfluidic devices, is not compatible with most organic solvents. Fluorinated compounds are more chemically robust than PDMS but, historically, it has been nearly impossible to construct valves out of them by multilayer soft lithography (MSL) due to the difficulty of bonding layers made of "non-stick" fluoropolymers necessary to create traditional microfluidic valves. With our new three-dimensional (3D) valve design we can fabricate microfluidic devices from fluorinated compounds in a single monolithic layer that is resistant to most organic solvents with minimal swelling. This paper describes the design and development of 3D microfluidic valves by molding of a perfluoropolyether, termed Sifel, onto printed wax molds. The fabrication of Sifel-based microfluidic devices using this technique has great potential in chemical synthesis and analysis.

  4. Design and fabrication of vertically-integrated CMOS image sensors.

    PubMed

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.

  5. Demonstration of the feasibility of automated silicon solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Taylor, W. E.; Schwartz, F. M.

    1975-01-01

    A study effort was undertaken to determine the process, steps and design requirements of an automated silicon solar cell production facility. Identification of the key process steps was made and a laboratory model was conceptually designed to demonstrate the feasibility of automating the silicon solar cell fabrication process. A detailed laboratory model was designed to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility. The study and conceptual design have established the technical feasibility of automating the solar cell manufacturing process to produce low cost solar cells with improved performance. Estimates predict an automated process throughput of 21,973 kilograms of silicon a year on a three shift 49-week basis, producing 4,747,000 hexagonal cells (38mm/side), a total of 3,373 kilowatts at an estimated manufacturing cost of $0.866 per cell or $1.22 per watt.

  6. Design, fabrication, and test of lightweight shell structure, phase 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A cylindrical shell skirt structure 4.57 m (180 in.) in diameter and 3.66 m (144 in.) high was subjected to a design and analysis study using a wide variety of structural materials and concepts. The design loading of 1225.8 N/cm (700 lb/in.) axial compression and 245.2 N/cm (140 lb/in.) torsion is representative of that expected on a typical space tug skirt section. Structural concepts evaluated included honeycomb sandwich, truss, isogrid, and skin/stringer/frame. The materials considered included a wide variety of structural metals as well as glass, graphite, and boron-reinforced composites. The most unique characteristic of the candidate designs is that they involve the use of very thin-gage material. Fabrication and structural test of small panels and components representative of many of the candidate designs served to demonstrate proposed fabrication techniques and to verify design and analysis methods.

  7. Design and fabrication of prototype 6×6 cm 2 microchannel plate photodetector with bialkali photocathode for fast timing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Junqi; Byrum, Karen; Demarteau, Marcel

    Planar microchannel plate-based photodetector with bialkali photocathode is capable of fast and accurate time and position resolutions. A new 6 cm x 6 cm photodetector production facility was designed and built at Argonne National Laboratory. Small form-factor MCP-based photodetectors completely constructed of glass were designed and prototypes were successfully fabricated. Knudsen effusion cells were incorporated in the photocathode growth chamber to achieve uniform and high quantum efficiency hotocathodes. The thin film uniformity distribution was simulated and measured for an antimony film deposition, showing uniformity of better than 10%. Several prototype devices with bialkali photocathodes have been fabricated with the describedmore » system and their characteristics were evaluated in the large signal (multi-PE) limit. A typical prototype device exhibits time-of-flight resolution of ~ 27 psec and differential time resolution of ~ 9 psec, corresponding to spatial resolution of ~ 0.65 mm.« less

  8. Semiconductor laser joint study program with Rome Laboratory

    NASA Astrophysics Data System (ADS)

    Schaff, William J.; Okeefe, Sean S.; Eastman, Lester F.

    1994-09-01

    A program to jointly study vertical-cavity surface emitting lasers (VCSEL) for high speed vertical optical interconnects (VOI) has been conducted under an ES&E between Rome Laboratory and Cornell University. Lasers were designed, grown, and fabricated at Cornell University. A VCSEL measurement laboratory has been designed, built, and utilized at Rome Laboratory. High quality VCSEL material was grown and characterized by fabricating conventional lateral cavity lasers that emitted at the design wavelength of 1.04 microns. The VCSEL's emit at 1.06 microns. Threshold currents of 16 mA at 4.8 volts were obtained for 30 microns diameter devices. Output powers of 5 mW were measured. This is 500 times higher power than from the light emitting diodes employed previously for vertical optical interconnects. A new form of compositional grading using a cosinusoidal function has been developed and is very successful for reducing diode series resistance for high speed interconnection applications. A flip-chip diamond package compatible with high speed operation of 16 VCSEL elements has been designed and characterized. A flip-chip device binding effort at Rome Laboratory was also designed and initiated. This report presents details of the one-year effort, including process recipes and results.

  9. Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Payne, L.

    1977-01-01

    Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.

  10. Design and fabrication of a low-cost Darrieus vertical-axis wind-turbine system, phase 2. Volume 3: Design, fabrication, and site drawing

    NASA Astrophysics Data System (ADS)

    1983-03-01

    The design, fabrication, and site drawings associated with fabrication, installation, and check out of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs) were reported. The turbines are Darrieus type VAWTs with rotors 17 meters in diameter and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines are produced, three are installed and operable.

  11. Multi Length Scale Finite Element Design Framework for Advanced Woven Fabrics

    NASA Astrophysics Data System (ADS)

    Erol, Galip Ozan

    Woven fabrics are integral parts of many engineering applications spanning from personal protective garments to surgical scaffolds. They provide a wide range of opportunities in designing advanced structures because of their high tenacity, flexibility, high strength-to-weight ratios and versatility. These advantages result from their inherent multi scale nature where the filaments are bundled together to create yarns while the yarns are arranged into different weave architectures. Their highly versatile nature opens up potential for a wide range of mechanical properties which can be adjusted based on the application. While woven fabrics are viable options for design of various engineering systems, being able to understand the underlying mechanisms of the deformation and associated highly nonlinear mechanical response is important and necessary. However, the multiscale nature and relationships between these scales make the design process involving woven fabrics a challenging task. The objective of this work is to develop a multiscale numerical design framework using experimentally validated mesoscopic and macroscopic length scale approaches by identifying important deformation mechanisms and recognizing the nonlinear mechanical response of woven fabrics. This framework is exercised by developing mesoscopic length scale constitutive models to investigate plain weave fabric response under a wide range of loading conditions. A hyperelastic transversely isotropic yarn material model with transverse material nonlinearity is developed for woven yarns (commonly used in personal protection garments). The material properties/parameters are determined through an inverse method where unit cell finite element simulations are coupled with experiments. The developed yarn material model is validated by simulating full scale uniaxial tensile, bias extension and indentation experiments, and comparing to experimentally observed mechanical response and deformation mechanisms. Moreover

  12. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  13. Design and Characterization of Next-Generation Micromirrors Fabricated in a Four-Level, Planarized Surface-Micromachined Polycrystalline Silicon Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M.A.; Comtois, J.H.; Barron, C.C.

    This paper describes the design and characterization of several types of micromirror devices to include process capabilities, device modeling, and test data resulting in deflection versus applied potential curves. These micromirror devices are the first to be fabricated in the state-of-the-art four-level planarized polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces usingmore » Chemical Mechanical Polishing (CMP), unique post-process metallization, and the best active surface area to date. This paper presents the design, fabrication, modeling, and characterization of several variations of Flexure-Beam (FBMD) and Axial-Rotation Micromirror Devices (ARMD). The released devices are first metallized using a standard sputtering technique relying on metallization guards and masks that are fabricated next to the devices. Such guards are shown to enable the sharing of bond pads between numerous arrays of micromirrors in order to maximize the number of on-chip test arrays. The devices are modeled and then empirically characterized using a laser interferometer setup located at the Air Force Institute of Technology (AFIT) at Wright-Patterson AFB in Dayton, Ohio. Unique design considerations for these devices and the process are also discussed.« less

  14. Design and fabrication of giant micromirrors using electroplating-based technology

    NASA Astrophysics Data System (ADS)

    Ilias, Samir; Topart, Patrice A.; Larouche, Carl; Leclair, Sebastien; Jerominek, Hubert

    2005-01-01

    Giant micromirrors with large scanning deflection and good flatness are required for many space and terrestrial applications. A novel approach to manufacturing this category of micromirrors is proposed. The approach combines selective electroplating and flip-chip based technologies. It allows for large air gaps, flat and smooth active micromirror surfaces and permits independent fabrication of the micromirrors and control electronics, avoiding temperature and sacrificial layer incompatibilities between them. In this work, electrostatically actuated piston and torsion micromirrors were designed and simulated. The simulated structures were designed to allow large deflection, i.e. piston displacement larger than 10 um and torsional deflection up to 35°. To achieve large micromirror deflections, up to seventy micron-thick resists were used as a micromold for nickel and solder electroplating. Smooth micromirror surfaces (roughness lower than 5 nm rms) and large radius of curvature (R as large as 23 cm for a typical 1000x1000 um2 micromirror fabricated without address circuits) were achieved. A detailed fabrication process is presented. First piston mirror prototypes were fabricated and a preliminary evaluation of static deflection of a piston mirror is presented.

  15. Design, Static Analysis And Fabrication Of Composite Joints

    NASA Astrophysics Data System (ADS)

    Mathiselvan, G.; Gobinath, R.; Yuvaraja, S.; Raja, T.

    2017-05-01

    The Bonded joints will be having one of the important issues in the composite technology is the repairing of aging in aircraft applications. In these applications and also for joining various composite material parts together, the composite materials fastened together either using adhesives or mechanical fasteners. In this paper, we have carried out design, static analysis of 3-D models and fabrication of the composite joints (bonded, riveted and hybrid). The 3-D model of the composite structure will be fabricated by using the materials such as epoxy resin, glass fibre material and aluminium rivet for preparing the joints. The static analysis was carried out with different joint by using ANSYS software. After fabrication, parametric study was also conducted to compare the performance of the hybrid joint with varying adherent width, adhesive thickness and overlap length. Different joint and its materials tensile test result have compared.

  16. Design, fabrication, and testing of the BNL radio frequency quadrupole accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, H.; Clifford, T.; Giordano, S.

    1984-01-01

    The Brookhaven National Laboratory polarized H/sup -/ injection program for the AGS utilizes a Radio Frequency Quadrupole Accelerator for acceleration between the polarized source and the Alvarez Linac. Although operation has commenced with a few ..mu.. amperes of H/sup -/ beam, it is anticipated that future polarized H/sup -/ sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, andmore » removal of heat from the vanes. The design philosophy, details of cavity fabrication, and vane machining will be discussed. Results of low and high power rf testing will be presented together with the initial results of operations in the polarized H/sup -/ beam line.« less

  17. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  18. Design and fabrication of a 900-1700 nm hyper-spectral imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyoung; Kong, Hong Jin; Kim, Tae Hoon; Shin, Jae Sung

    2010-02-01

    This paper presents a 900-1700 nm hyper-spectral imaging spectrometer which offers low distortions, a low F-number, a compact size, an easily-fabricated design and a low cost (is presented in this paper). The starting point for its optical design is discussed according to the geometrical aberration theory and Rowland circle condition. It is shown that these methods are useful in designing a push-broom hyper-spectral imaging spectrometer that has an aperture of f/2.4, modulation transfer functions of less than 0.8 at 25 cycles/mm, and spot sizes less than 10 μm. A prototype of the optimized hyper-spectral imaging spectrometer has been fabricated using a high precision machine and the experimental demonstration with the fabricated hyper-spectral imaging spectrometer is presented.

  19. Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop ...ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory...Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section 5a. CONTRACT NUMBER

  20. A novel design for a wearable thermoelectric generator based on 3D fabric structure

    NASA Astrophysics Data System (ADS)

    Wu, Qian; Hu, Jinlian

    2017-04-01

    A flexible and wearable thermoelectric generator (TEG) could enable the conversion of human body heat into electrical power, which would help to realize a self-powered wearable electronic system. To overcome the difficulty of wearing existing flexible film TEGs, a novel 3D fabric TEG structure is designed in this study. By using a 3D fabric as the substrate and yarns coated with thermoelectric materials as legs, a wearable and flexible TEG can be realized. The designed generator has a sandwich structure, similar to the classical inorganic generator, which allows the generation of a temperature difference in the fabric thickness direction, thus making it wearable and showing promising application in body heat conversion. To verify the effectiveness of the designed generator structure, a prototype was fabricated, using a locknit spacer fabric as the substrate and yarns coated with waterborne polyurethane/carbon nanotube thermoelectric composites as legs. The results suggest that the fabricated spacer fabric TEG prototype could work successfully, although the performance of this prototype is of a low level. To further improve the efficiency of the 3D fabric generator and apply it in wearable electronics in the future, highly efficient inorganic thermoelectric materials can be applied, and modifications on the conductive connections can be made.

  1. The design and fabrication of two portal vein flow phantoms by different methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound ormore » within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.« less

  2. The Design, Fabrication and Characterization of a Transparent Atom Chip

    PubMed Central

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-01-01

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments. PMID:24922456

  3. Kirigami design and fabrication for biomimetic robotics

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Sareh, Sina

    2014-03-01

    Biomimetics faces a continual challenge of how to bridge the gap between what Nature has so effectively evolved and the current tools and materials that engineers and scientists can exploit. Kirigami, from the Japanese `cut' and `paper', is a method of design where laminar materials are cut and then forced out-of-plane to yield 3D structures. Kirimimetic design provides a convenient and relatively closed design space within which to replicate some of the most interesting niche biological mechanisms. These include complex flexing organelles such as cilia in algae, energy storage and buckled structures in plants, and organic appendages that actuate out-of-plane such as the myoneme of the Vorticella protozoa. Where traditional kirigami employs passive materials which must be forced to transition to higher dimensions, we can exploit planar smart actuators and artificial muscles to create self-actuating kirigami structures. Here we review biomimetics with respect to the kirigami design and fabrication methods and examine how smart materials, including electroactive polymers and shape memory polymers, can be used to realise effective biomimetic components for robotic, deployable structures and engineering systems. One-way actuation, for example using shape memory polymers, can yield complete self-deploying structures. Bi-directional actuation, in contrast, can be exploited to mimic fundamental biological mechanisms such as thrust generation and fluid control. We present recent examples of kirigami robotic mechanisms and actuators and discuss planar fabrication methods, including rapid prototyping and 3D printing, and how current technologies, and their limitations, affect Kirigami robotics.

  4. Design, fabrication and analysis of integrated optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Sikorski, Yuri

    Throughout the present dissertation, the main effort has been to develop the set of design rules for optical integrated circuits (OIC). At the present time, when planar optical integrated circuits seem to be the leading technology, and industry is heading towards much higher levels of integration, such design rules become necessary. It is known that analysis of light propagation in rectangular waveguides can not be carried out exactly. Various approximations become necessary, and their validity is discussed in this text. Various methods are used in the text for calculating the same problems, and results are compared. A few new concepts have been suggested to avoid approximations used elsewhere. The second part of this dissertation is directed to the development of a new technique for the fabrication of optical integrated circuits inside optical glass. This technique is based on the use of ultrafast laser pulses to alter the properties of glasses. Using this method we demonstrated the possibility of changing the refractive index of various passive and active optical glasses as well as ablating the material on the surface in a controlled fashion. A number of optical waveguide devices (e.g. waveguides, directional couplers, diffraction gratings, fiber Bragg gratings, V-grooves in dual-clad optical fibers, optical waveguide amplifiers) were fabricated and tested. Testing included measurements of loss/throughput, near-field mode profiles, efficiency and thermal stability. All of the experimental setup and test results are reported in the dissertation. We also demonstrated the possibility of using this technique to fabricate future bio-optical devices that will incorporate an OIC and a microfluidic circuit on a single substrate. Our results are expected to serve as a guide for the design and fabrication of a new generation of integrated optical and bio-optical devices.

  5. Design and fabrication of composite wing panels containing a production splice

    NASA Technical Reports Server (NTRS)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  6. Propulsion Design With Freeform Fabrication (PDFF)

    NASA Technical Reports Server (NTRS)

    Barnes, Daudi; McKinnon, James; Priem, Richard

    2010-01-01

    The nation is challenged to decrease the cost and schedule to develop new space transportation propulsion systems for commercial, scientific, and military purposes. Better design criteria and manufacturing techniques for small thrusters are needed to meet current applications in missile defense, space, and satellite propulsion. The requirements of these systems present size, performance, and environmental demands on these thrusters that have posed significant challenges to the current designers and manufacturers. Designers are limited by manufacturing processes, which are complex, costly, and time consuming, and ultimately limited in their capabilities. The PDFF innovation vastly extends the design opportunities of rocket engine components and systems by making use of the unique manufacturing freedom of solid freeform rapid prototype manufacturing technology combined with the benefits of ceramic materials. The unique features of PDFF are developing and implementing a design methodology that uses solid freeform fabrication (SFF) techniques to make propulsion components with significantly improved performance, thermal management, power density, and stability, while reducing development and production costs. PDFF extends the design process envelope beyond conventional constraints by leveraging the key feature of the SFF technique with the capability to form objects with nearly any geometric complexity without the need for elaborate machine setup. The marriage of SFF technology to propulsion components allows an evolution of design practice to harmonize material properties with functional design efficiency. Reduced density of materials when coupled with the capability to honeycomb structure used in the injector will have significant impact on overall mass reduction. Typical thrusters in use for attitude control have 60 90 percent of its mass in the valve and injector, which is typically made from titanium. The combination of material and structure envisioned for use in

  7. A wearable fabric-based speech-generating device: system design and case demonstration.

    PubMed

    Fleury, Amanda; Wu, Gloria; Chau, Tom

    2018-05-26

    Existing speech generating devices (SGD) often require caregiver intervention for setup and positioning, and thus limit opportunities for spontaneous social interaction. The advent of conductive fabrics presents an opportunity to render SGDs wearable, thus persistently available. Our goal was to design and test a wearable SGD incorporating resistive textile-based switches for a nonverbal pediatric participant with vision impairment. Quad-key fabric keypads were designed using two conductive fabrics in combination with felt and mesh insulators. The keypad with the most repeatable low force activations and the least cross-talk among keys was chosen for implementation in a wrist-worn, four-message textile SGD. The fabric-based SGD was used by a nonverbal pediatric participant for two one-week analysis periods, alternating with the user's current device for usage reference. Data were derived from usage logs, parent questionnaires and an end-of-study participant interview. The best performing keypad consisted of two layers of woven conductive fabrics and one layer of insulating felt with 10 mm apertures. Communicative interactions were higher with the fabric-based SGD, particularly at school. Unprompted initiation of communication was observed only with the fabric-based SGD. The persistent availability of the textile solution, along with esthetic appeal likely contributed to its utilization. While the participant preferred the fabric-based SGD, the parent opted for the iPod alternative, citing enhanced message intelligibility. Fabric-based SGDs are a new alternative to conventional SGD designs using rigid electronics. As such, tactile differentiability of keys, device wearability and esthetic personalization may be promising advantages for pediatric users. Implications for rehabilitation Fabric-based switches may be a promising alternative to conventional electro-mechanical switches for the control of speech-generating devices, offering functional (e.g., comfort and

  8. High-Flow Jet Exit Rig Designed and Fabricated

    NASA Technical Reports Server (NTRS)

    Buehrle, Robert J.; Trimarchi, Paul A.

    2003-01-01

    The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating

  9. Design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels

    NASA Technical Reports Server (NTRS)

    Blair, W.; Meaney, J. E., Jr.; Rosenthal, H. A.

    1980-01-01

    A titanium multiwall thermal protection system panel was designed. The panel is a nine sheet sandwich structure consisting of an upper and lower face sheet; four dimpled sheets, three septum sheets, and clips for attachment to a vehicle structure. An acceptable fabrication process was developed, and the panel design was verified through mechanical and thermal testing of component specimens. A design was completed which takes into consideration fabrication techniques, thermal properties, mechanical properties, and materials availability.

  10. Design, fabrication, test, qualification, and price analysis of third generation design solar cell modules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The fabrication of solar cell modules is detailed with emphasis upon laminating and interconnecting the panels that hold the simicrystalline silicon cells. Design problems and enviromental tests are described as well as performance characteristics.

  11. Design and Implementation Issues for Modern Remote Laboratories

    ERIC Educational Resources Information Center

    Guimaraes, E. G.; Cardozo, E.; Moraes, D. H.; Coelho, P. R.

    2011-01-01

    The design and implementation of remote laboratories present different levels of complexity according to the nature of the equipments operated by the remote laboratory, the requirements imposed on the accessing computers, the network linking the user to the laboratory, and the type of experiments the laboratory supports. This paper addresses the…

  12. SAFETY IN THE DESIGN OF SCIENCE LABORATORIES AND BUILDING CODES.

    ERIC Educational Resources Information Center

    HOROWITZ, HAROLD

    THE DESIGN OF COLLEGE AND UNIVERSITY BUILDINGS USED FOR SCIENTIFIC RESEARCH AND EDUCATION IS DISCUSSED IN TERMS OF LABORATORY SAFETY AND BUILDING CODES AND REGULATIONS. MAJOR TOPIC AREAS ARE--(1) SAFETY RELATED DESIGN FEATURES OF SCIENCE LABORATORIES, (2) LABORATORY SAFETY AND BUILDING CODES, AND (3) EVIDENCE OF UNSAFE DESIGN. EXAMPLES EMPHASIZE…

  13. The stem cell laboratory: design, equipment, and oversight.

    PubMed

    Wesselschmidt, Robin L; Schwartz, Philip H

    2011-01-01

    This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources.

  14. Design and Fabrication of the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid

    2006-10-01

    The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.

  15. Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade

    NASA Technical Reports Server (NTRS)

    Gewehr, H. W.

    1979-01-01

    The design, fabrication, testing, and evaluation of a prototype 150 foot long composite wind turbine blade is described. The design approach and material selection, compatible with low cost fabrication methods and objectives, are highlighted. The operating characteristics of the blade during rotating and nonrotating conditions are presented. The tensile, compression, and shear properties of the blade are reported. The blade fabrication, tooling, and quality assurance are discussed.

  16. Curtain Fabric Detail and Designed Furniture including Dining Table, Dining ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Curtain Fabric Detail and Designed Furniture including Dining Table, Dining Chair, Coffee Table, End Table, and Ottoman - Cedric & Patricia Boulter House, 1 Rawson Woods Circle, Cincinnati, Hamilton County, OH

  17. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design.

    PubMed

    Boyd, Darryl A; Shields, Adam R; Howell, Peter B; Ligler, Frances S

    2013-08-07

    Microfluidic systems have advantages that are just starting to be realized for materials fabrication. In addition to the more common use for fabrication of particles, hydrodynamic focusing has been used to fabricate continuous polymer fibers. We have previously described such a microfluidics system which has the ability to generate fibers with controlled cross-sectional shapes locked in place by in situ photopolymerization. The previous fiber fabrication studies produced relatively simple round or ribbon shapes, demonstrated the use of a variety of polymers, and described the interaction between sheath-core flow-rate ratios used to control the fiber diameter and the impact on possible shapes. These papers documented the fact that no matter what the intended shape, higher flow-rate ratios produced rounder fibers, even in the absence of interfacial tension between the core and sheath fluids. This work describes how to fabricate the next generation of fibers predesigned to have a much more complex geometry, as exemplified by the "double anchor" shape. Critical to production of the pre-specified fibers with complex features was independent control over both the shape and the size of the fabricated microfibers using a two-stage hydrodynamic focusing system. Design and optimization of the channels was performed using finite element simulations and confocal imaging to characterize each of the two stages theoretically and experimentally. The resulting device design was then used to generate thiol-ene fibers with a unique double anchor shape. Finally, proof-of-principle functional experiments demonstrated the ability of the fibers to transport fluids and to interlock laterally.

  18. Geometric Design Laboratory Fact Sheet

    DOT National Transportation Integrated Search

    2006-08-02

    This fact sheet provides concise information about the Geometric Design Laboratory (GDL) at the Turner-Fairbank Highway Research Center. The mission of the GDL is to provide technical support to the Federal Highway Administration's Office of Safety R...

  19. NASA's In-Space Manufacturing Project: A Roadmap for a Multimaterial Fabrication Laboratory in Space

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for NASA to partner with private industry for development and demonstration of the technologies needed to support exploration initiatives. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing (ISM) project, its past and current activities (2014-2017), and how technologies under development will ultimately culminate in a multimaterial fabrication laboratory ("ISM FabLab") to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit, through a resupply launch or a return to earth, may instead result in a loss of mission while in transit to Mars. To have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The presentation provides a broad overview of ISM projects activities culminating with the Fabrication Laboratory for ISS. In 2017, the in-space manufacturing project issued a broad agency announcement for this capability. Requirements of the Fabrication Laboratory as stated in the solicitation will be discussed. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the current ISM FabLab will be tested on ISS, future systems are eventually intended for use in a deep space habitat or transit vehicle. The work of commercial companies funded under NASA's Small Business

  20. BNL 56 MHz HOM damper prototype fabrication at JLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huque, N.; McIntyre, G.; Daly, E. F.

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider’s (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  1. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huque, Naeem A.; Daly, Edward F.; Clemens, William A.

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  2. Fabricating micro-instruments in surface-micromachined polycrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comtois, J.H.; Michalicek, M.A.; Barron, C.C.

    1997-04-01

    Smaller, lighter instruments can be fabricated as Micro-Electro-Mechanical Systems (MEMS), having micron scale moving parts packaged together with associated control and measurement electronics. Batch fabrication of these devices will make economical applications such as condition-based machine maintenance and remote sensing. The choice of instrumentation is limited only by the designer`s imagination. This paper presents one genre of MEMS fabrication, surface-micromachined polycrystalline silicon (polysilicon). Two currently available but slightly different polysilicon processes are presented. One is the ARPA-sponsored ``Multi-User MEMS ProcesS`` (MUMPS), available commercially through MCNC; the other is the Sandia National Laboratories ``Sandia Ultra-planar Multilevel MEMS Technology`` (SUMMiT). Example componentsmore » created in both processes will be presented, with an emphasis on actuators, actuator force testing instruments, and incorporating actuators into larger instruments.« less

  3. The Stem Cell Laboratory: Design, Equipment, and Oversight

    PubMed Central

    Wesselschmidt, Robin L.; Schwartz, Philip H.

    2013-01-01

    This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources. PMID:21822863

  4. Design and Fabrication of the NASA Decoupler Pylon for the F-16 Aircraft

    NASA Technical Reports Server (NTRS)

    Clayton, J. D.; Haller, R. L.; Hassler, J. M., Jr.

    1985-01-01

    The NASA Decoupler Pylon is a passive means of suppressing wing-store flutter. The feasibility of demonstrating this concept on the F-16 aircraft was established through model wind tunnel tests and analyses. As a result of these tests and studies a ship set of Decoupler Pylons was designed and fabricated for a flight test demonstration on the F-16 aircraft. Basic design criteria were developed during the analysis study pertaining to pylon pitch stiffness, alignment system requirements, and damping requirements. A design was developed which utilized an electrical motor for the pylon alignment system. The design uses a four pin, two link pivot design which results in a remote pivot located at the center of gravity of the store when the store is in the aligned position. The pitch spring was fabricated from a tapered constant stress cantilevered beam. The pylon has the same external lines as the existing production pylon and is designed to use a MAU-12 ejection rack which is the same as the one used with the production pylon. The detailed design and fabrication was supported with a complete ground test of the pylon prior to shipment to NASA.

  5. Aids in designing laboratory flumes

    USGS Publications Warehouse

    Williams, Garnett P.

    1971-01-01

    The upsurge of interest in our environment has caused research and instruction in the flow of water along open channels to become increasingly popular in universities and institutes. This, in turn, has brought a greater demand for properly-designed laboratory flumes. Whatever the reason for your interest, designing and building the flume will take a little preparation. You may choose a pattern exactly like a previous design, or you may follow the more time-consuming method of studying several existing flumes and combine the most desirable features of each.

  6. The design, fabrication and installation of cable routing mockups in support of Spacelab 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    From flight and mockup drawings of Spacelab 2 (SL 2) experiments and hardware, shop ready mockup drawings were produced. Floor panels were the first items considered for fabrication. Cold plate and orthogrid mockups were designed and fabricated. Experiment and other hardware mockups were fabricated of aluminum or plywood, depending on size and configuration. Eighty-three cable routing bracket mockups were fabricated of aluminum and delivered for painting.

  7. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes these overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  8. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes thses overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  9. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

    PubMed

    Yoo, Dongjin

    2012-07-01

    Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Design and fabrication of a MEMS chevron-type thermal actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baracu, Angela, E-mail: angela.baracu@imt.ro; Voicu, Rodica; Müller, Raluca

    This paper presents the design and fabrication of a MEMS chevron-type thermal actuator. The device was designed for fabrication in the standard MEMS technology, where the topography of the upper layers depends on the patterns of structural and sacrificial layers underneath. The proposed actuator presents some advantages over usual thermal vertical chevron actuators by means of low operating voltages, high output force and linear movement without deformation of the shaft. The device simulations were done using COVENTOR software. The movement obtained by simulation was 12 μm, for a voltage of 0.2 V and the current intensity of 257 mA. Themore » design optimizes the in-plane displacement by fixed anchors and beam inclination angle. Heating is provided by Joule dissipation. The material used for manufacture of chevron-based actuator was aluminum due to its thermal and mechanical properties. The release of the movable part was performed using isotropic dry etching by Reactive Ion Etching (RIE). A first inspection was achieved using Scanning Electron Microscope (SEM). In order to obtain the in-plane displacement we carried out electrical measurements. The thermal actuator can be used for a variety of optical and microassembling applications. This kind of thermal actuator could be integrated easily with other micro devices since its fabrication is compatible with the general semiconductor processes.« less

  11. Design, fabrication and test of a trace contaminant control system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A trace contaminant control system was designed, fabricated, and evaluated to determine suitability of the system concept to future manned spacecraft. Two different models were considered. The load model initially required by the contract was based on the Space Station Prototype (SSP) general specifications SVSK HS4655, reflecting a change from a 9 man crew to a 6 man crew of the model developed in previous phases of this effort. Trade studies and a system preliminary design were accomplished based on this contaminant load, including computer analyses to define the optimum system configuration in terms of component arrangements, flow rates and component sizing. At the completion of the preliminary design effort a revised contaminant load model was developed for the SSP. Additional analyses were then conducted to define the impact of this new contaminant load model on the system configuration. A full scale foam-core mock-up with the appropriate SSP system interfaces was also fabricated.

  12. Percutaneous multiple electrode connector, design parameters and fabrication (biomedical)

    NASA Technical Reports Server (NTRS)

    Myers, L. A.

    1977-01-01

    A percutaneous multielectrode connector was designed which utilizes an ultrapure carbon collar to provide an infection free biocompatible passage through the skin. The device provides reliable electrical continuity, mates and demates readily with the implant, and is fabricated with processes and materials oriented to commercial production.

  13. Design and Fabrication of Soft Morphing Ray Propulsor: Undulator and Oscillator.

    PubMed

    Kim, Hyung-Soo; Lee, Jang-Yeob; Chu, Won-Shik; Ahn, Sung-Hoon

    2017-03-01

    A soft morphing ray propulsor capable of generating an undulating motion in its pectoral fins was designed and fabricated. The propulsor used shape memory alloy for actuation, and the body was made with soft polymers. To determine the effects of undulation in the fins, two models that differed in terms of the presence of undulation were fabricated using different polymer materials. The experimental models were tested with a dynamometer to measure and compare thrust tendencies. Thrust measurements were conducted with various fin beat frequencies. Using the experimental data, the concept of an optimized standalone version of the ray robot was suggested and its prototype was fabricated. The fabricated robot was able to swim as fast as 0.26 body length per second and 38% more efficient than other smart material-based ray-like underwater robots.

  14. Design, Modeling, Fabrication & Characterization of Industrial Si Solar Cells

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ahrar Ahmed

    Photovoltaic is a viable solution towards meeting the energy demand in an ecofriendly environment. To ensure the mass access in photovoltaic electricity, cost effective approach needs to be adapted. This thesis aims towards substrate independent fabrication process in order to achieve high efficiency cost effective industrial Silicon (Si) solar cells. Most cost-effective structures, such as, Al-BSF (Aluminum Back Surface Field), FSF (Front Surface Field) and bifacial cells are investigated in detail to exploit the efficiency potentials. First off, we introduced two-dimensional simulation model to design and modeling of most commonly used Si solar cells in today's PV arena. Best modelled results of high efficiency Al-BSF, FSF and bifacial cells are 20.50%, 22% and 21.68% respectively. Special attentions are given on the metallization design on all the structures in order to reduce the Ag cost. Furthermore, detail design and modeling were performed on FSF and bifacial cells. The FSF cells has potentials to gain 0.42%abs efficiency by combining the emitter design and front surface passivation. The prospects of bifacial cells can be revealed with the optimization of gridline widths and gridline numbers. Since, bifacial cells have metallization on both sides, a double fold cost saving is possible via innovative metallization design. Following modeling an effort is undertaken to reach the modelled result in fabrication the process. We proposed substrate independent fabrication process aiming towards establishing simultaneous processing sequences for both monofacial and bifacial cells. Subsequently, for the contact formation cost effective screen-printed technology is utilized throughout this thesis. The best Al-BSF cell attained efficiency ˜19.40%. Detail characterization was carried out to find a roadmap of achieving >20.50% efficiency Al-BSF cell. Since, n-type cell is free from Light Induced degradation (LID), recently there is a growing interest on FSF cell. Our

  15. Solid Propellant Microthruster Design, Fabrication, and Testing for Nanosatellites

    NASA Astrophysics Data System (ADS)

    Sathiyanathan, Kartheephan

    This thesis describes the design, fabrication, and testing of a solid propellant microthruster (SPM), which is a two-dimensional matrix of millimeter-sized rockets each capable of delivering millinewtons of thrust and millinewton-seconds of impulse to perform fine orbit and attitude corrections. The SPM is a potential payload for nanosatellites to increase spacecraft maneuverability and is constrained by strict mass, volume, and power requirements. The dimensions of the SPM in the millimeter-scale result in a number of scaling issues that need consideration such as a low Reynolds number, high heat loss, thermal and radical quenching, and incomplete combustion. The design of the SPM, engineered to address these issues, is outlined. The SPM fabrication using low-cost commercial off-the-shelf materials and standard micromachining is presented. The selection of a suitable propellant and its customization are described. Experimental results of SPM firing to demonstrate successful ignition and sustained combustion are presented for three configurations: nozzleless, sonic nozzle, and supersonic nozzle. The SPM is tested using a ballistic pendulum thrust stand. Impulse and thrust values are calculated and presented. The performance values of the SPM are found to be consistent with existing designs.

  16. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Geels, Randall Scott

    The theory, design, fabrication, and testing of vertical-cavity surface-emitting lasers (VCSELs) is explored in depth. The design of the distributed Bragg reflector (DBR) mirrors is thoroughly treated and both analytic and numerical approaches for computing the reflectivity are covered. The electrical properties of the DBR mirrors are also considered and graded interfaces are found to be critical in reducing the series voltage drop in the mirrors. Thickness variations due to growth rate uncertainties are considered and the permissible thickness inaccuracies are discussed. Layer thickness variations of several percent can be tolerated without large changes in the threshold current. The growth of VCSELs by molecular beam epitaxy (MBE) is described in detail as is the device processing technology for broad area as well as small area devices. Results from numerous devices are reported. Broad area in-plane lasers were used to characterize the material and determine the internal parameters. Broad area VCSELs were fabricated to determine the characteristics of the VCSEL cavity. Small area VCSELs were fabricated and extensively tested. Measured and derived parameters from small area devices include: threshold current (~0.7 mA), peak output power (>3 mW), maximum operation temperature (>110^ circC), output power at 100^ circC (~0.4 mW), and linewidth (85 MHz). The near field, far field, and polarization characteristics were also measured.

  17. Orbital transfer vehicle engine technology: Baffled injector design, fabrication, and verification

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1991-01-01

    New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. Supporting tasks for the design of a dual expander cycle engine thrust chamber design are documented. The purpose of the studies was to research the materials used in the thrust chamber design, the supporting fabrication methods necessary to complete the design, and the modification of the injector element for optimum injector/chamber compatibility.

  18. Design, analyses, fabrication and characterization of Nb3Sn coil in 1 W pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Kumar, Nitish; Pradhan, Subrata

    2017-02-01

    A laboratory scale Nb3Sn coil is designed, analysed, fabricated and characterized in 1 W pulse tube cryocooler in solid nitrogen cooling mode and in conduction cooling mode. The magnetic field profile in axial and radial direction, Lorentz force component across the winding volume in operational condition are estimated in COMSOL. The coil is designed for 1.5 T at 100 A. It is fabricated in wind and react method. Before winding, the insulated Nb3Sn strand is wound on a copper mandrel which is thermally anchored with the 2nd stage of the cold head unit via a 10 mm thick copper ‘Z’ shaped plate The temperature distribution in 2nd cold stage, copper z plate and coil is monitored in both solid nitrogen cooling and conduction cooling mode. In solid nitrogen cooling mode, the quench of the coil occurs at 150 A for 0.01 A/s current ramp rate. The magnetic field at the centre of the coil bore is measured using transverse Hall sensor. The measured magnetic field value is compared with the analytical field value and they are found to be deviating ∼5% in magnitude. Again the coil is tested in conduction cooling mode maintaining the same current ramp rate and it is observed that the coil gets quenched at 70 A at temperature ∼ 10K.

  19. Design and Fabrication of Graphene Reinforced Polymer Conductive Patch-Based Inset Fed Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Deepak, A.; Kannan, P. Muthu; Shankar, P.

    This work explores the design and fabrication of graphene reinforced polyvinylidene fluoride (PVDF) patch-based microstrip antenna. Primarily, antenna was designed at 6GHz frequency and simulation results were obtained using Ansoft HFSS tool. Later fabrication of antenna was carried out with graphene-PVDF films as conducting patch deposited on bakelite substrate and copper as ground plane. Graphene-PVDF films were prepared using solvent casting process. The radiation efficiency of fabricated microstrip patch antenna was 48% entailing it to be adapted as a practically functional antenna. Both simulated and the practical results were compared and analyzed.

  20. Axiomatic Design and Fabrication of Composite Structures - Applications in Robots, Machine Tools, and Automobiles

    NASA Astrophysics Data System (ADS)

    Lee, Dai Gil; Suh, Nam Pyo

    2005-11-01

    The idea that materials can be designed to satisfy specific performance requirements is relatively new. With high-performance composites, however, the entire process of designing and fabricating a part can be worked out before manufacturing. The purpose of this book is to present an integrated approach to the design and manufacturing of products from advanced composites. It shows how the basic behavior of composites and their constitutive relationships can be used during the design stage, which minimizes the complexity of manufacturing composite parts and reduces the repetitive "design-build-test" cycle. Designing it right the first time is going to determine the competitiveness of a company, the reliability of the part, the robustness of fabrication processes, and ultimately, the cost and development time of composite parts. Most of all, it should expand the use of advanced composite parts in fields that use composites only to a limited extent at this time. To achieve these goals, this book presents the design and fabrication of novel composite parts made for machine tools and other applications like robots and automobiles. This book is suitable as a textbook for graduate courses in the design and fabrication of composites. It will also be of interest to practicing engineers learning about composites and axiomatic design. A CD-ROM is included in every copy of the book, containing Axiomatic CLPT software. This program, developed by the authors, will assist readers in calculating material properties from the microstructure of the composite. This book is part of the Oxford Series on Advanced Manufacturing.

  1. Cryogenic distribution box for Fermi National Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Svehla, M. R.; Bonnema, E. C.; Cunningham, E. K.

    2017-12-01

    Meyer Tool & Mfg., Inc (Meyer Tool) of Oak Lawn, Illinois is manufacturing a cryogenic distribution box for Fermi National Accelerator Laboratory (FNAL). The distribution box will be used for the Muon-to-electron conversion (Mu2e) experiment. The box includes twenty-seven cryogenic valves, two heat exchangers, a thermal shield, and an internal nitrogen separator vessel, all contained within a six-foot diameter ASME coded vacuum vessel. This paper discusses the design and manufacturing processes that were implemented to meet the unique fabrication requirements of this distribution box. Design and manufacturing features discussed include: 1) Thermal strap design and fabrication, 2) Evolution of piping connections to heat exchangers, 3) Nitrogen phase separator design, 4) ASME code design of vacuum vessel, and 5) Cryogenic valve installation.

  2. Design, fabrication, and characterization of Fresnel lens array with spatial filtering for passive infrared motion sensors

    NASA Astrophysics Data System (ADS)

    Cirino, Giuseppe A.; Barcellos, Robson; Morato, Spero P.; Bereczki, Allan; Neto, Luiz G.

    2006-09-01

    A cubic-phase distribution is applied in the design, fabrication and characterization of inexpensive Fresnel lens arrays for passive infrared motion sensors. The resulting lens array produces a point spread function (PSF) capable of distinguish the presence of humans from pets by the employment of the so-called wavefront coding method. The cubic phase distribution used in the design can also reduce the optical aberrations present in the system. This aberration control allows a high tolerance in the fabrication of the lenses and in the alignment errors of the sensor. In order to proof the principle, a lens was manufactured on amorphous hydrogenated carbon thin film, by well-known micro fabrication process steps. The optical results demonstrates that the optical power falling onto the detector surface is attenuated for targets that present a mass that is horizontally distributed in space (e.g. pets) while the optical power is enhanced for targets that present a mass vertically distributed in space (e.g. humans). Then a mould on steel was fabricated by laser engraving, allowing large-scale production of the lens array in polymeric material. A polymeric lens was injected and its optical transmittance was characterized by Fourier Transform Infrared Spectrometry technique, which has shown an adequate optical transmittance in the 8-14 μm wavelength range. Finally the performance of the sensor was measured in a climate-controlled test laboratory constructed for this purpose. The results show that the sensor operates normally with a human target, with a 12 meter detection zone and within an angle of 100 degrees. On the other hand, when a small pet runs through a total of 22 different trajectories no sensor trips are observed. The novelty of this work is the fact that the so-called pet immunity function was implemented in a purely optical filtering. As a result, this approach allows the reduction of some hardware parts as well as decreasing the software complexity, once the

  3. Design and grayscale fabrication of beamfanners in a silicon substrate

    NASA Astrophysics Data System (ADS)

    Ellis, Arthur Cecil

    2001-11-01

    This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design

  4. Design and fabrication considerations for stainless steel liquid helium jackets surrounding SCRF cavities

    NASA Astrophysics Data System (ADS)

    Bonnema, E. C.; Cunningham, E. K.; Rumel, J. D.

    2014-01-01

    The Department of Energy requires its subcontractors to meet 10 CFR 851 Appendix A Part 4 for all new pressure vessels and pressure piping. The stainless steel pressure vessel boundaries surrounding SCRF cavities fall under this requirement. Methods for meeting this requirement include design and fabrication of the pressure vessels to meet the requirements of the ASME Boiler & Pressure Vessel Code Section VIII Division 1 or Division 2. Design considerations include determining whether the configuration of the SCRF cavity can be accommodated under the rules of Division 1 or must be analyzed under Division 2 Part 4 Design by Rule Requirements or Part 5 Design by Analysis Requirements. Regardless of the Division or Part choice, designers will find the rules of the ASME Code require thicker pressure boundary members, larger welds, and additional non-destructive testing and quality assurance requirements. These challenges must be met and overcome by the fabricator through the development of robust, detailed, and repeatable manufacturing processes. In this paper we discuss the considerations for stainless steel pressure vessels that must meet the ASME Code and illustrate the discussion with examples from direct experience fabricating such vessels.

  5. Catalyzing Graduate Teaching Assistants' Laboratory Teaching through Design Research

    ERIC Educational Resources Information Center

    Bond-Robinson, Janet; Rodriques, Romola A. Bernard

    2006-01-01

    We report on a study of a laboratory teaching apprenticeship program designed to improve graduate teaching assistant (GTA) performance. To catalyze GTAs as laboratory teachers we constructed learning goals, synthesized previous literature into a design model and a developmental path, and built two instruments to measure 12 strategic pedagogical…

  6. On the design and fabrication of nanostructures and devices

    NASA Astrophysics Data System (ADS)

    Wei, Wei

    Nanotechnology is emerging into a new frontier in science and technology with potential impact on every aspect of human life. One of the major breakthroughs in today's nanotechnology is the discovery and preparation of new classes of nanomaterials and nanostructures. A large number of nanomaterials and nanostructures are synthesized and characterized with either new or profoundly enhanced properties or phenomena. However, there are several major challenges ahead need to be overcome before any substantial benefits can be brought to the market. One of the challenges that we need to address today is how to effectively integrate useful nanomaterials and nanostrucrures into functional devices and systems. Our mother nature gives us a classic example of how living organisms are built. Starting from a single cell, through its division and growth, it can self-assemble and become functional tissues and organs. Similar self-assemble approach has been adopted as a nano-fabrication technique to assemble nanomaterials and nanostructures into functional nanodevices. This technique has advantages of high precision and nanometer scale resolution. However, it requires a lot of effort to construct a single device and since the properties of individual nanostructures can be different, the fabricated devices may have different properties. In this dissertation, we design and fabricate nanostructures and devices using novel microfabrication techniques. In the first part of the dissertation, the design and fabrication of a variety of nanostructures, such as metal nanowires array, polymer nanowells, and nanostructured surfaces are discussed. In the second part, carbon nanotubes as a novel material has been explored as an example to demonstrate the integration of nanomaterials with novel microfabrication techniques to form a functional device. First, a resistive heating technique is developed to grow carbon nanotubes in localized regions, such as a nichrome heating coil. Then, MEMS micro

  7. Design and fabrication of realistic adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Shyprykevich, P.

    1983-01-01

    Eighteen bonded joint test specimens representing three different designs of a composite wing chordwise bonded splice were designed and fabricated using current aircraft industry practices. Three types of joints (full wing laminate penetration, two side stepped; midthickness penetration, one side stepped; and partial penetration, scarfed) were analyzed using state of the art elastic joint analysis modified for plastic behavior of the adhesive. The static tensile fail load at room temperature was predicted to be: (1) 1026 kN/m (5860 1b/in) for the two side stepped joint; (2) 925 kN/m (5287 1b/in) for the one side stepped joint; and (3) 1330 kN/m (7600 1b/in) for the scarfed joint. All joints were designed to fail in the adhesive.

  8. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Koumal, D. E.

    1979-01-01

    The design and evaluation of built-up attachments and bonded joint concepts for use at elevated temperatures is documented. Joint concept screening, verification of GR/PI material, fabrication of design allowables panels, definition of test matrices, and analysis of bonded and bolted joints are among the tasks completed. The results provide data for the design and fabrication of lightly loaded components for advanced space transportation systems and high speed aircraft.

  9. Design, Fabrication and Integration of a NaK-Cooled Circuit

    NASA Technical Reports Server (NTRS)

    Garber, Anne; Godfroy, Thomas

    2006-01-01

    The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed for use with a eutectic mixture of sodium potassium (NaK), was redesigned to for use with lithium. Due to a shi$ in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature circuit include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a fill design) was selected for fabrication and test. This paper summarizes the integration and preparations for the fill of the pumped liquid metal NaK flow circuit.

  10. Novel Materials Design and Fabrication for Army Needs

    DTIC Science & Technology

    2012-11-01

    Footwear (Dog Booties ). Each sub-project represented an Army need for improved materials and fabrication design. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...barrier seams, IOTV, patterns, stitchless seams, dog booties Dr. Christine W. Cole, Dr. Deborah K. Lickfield Clemson University Office of Sponsored...Improved OTV patterns, Textile-based options for Reduced Helmet Weight, and Canine Footwear (Dog Booties ). Each sub-project represented an Army need for

  11. Plasma Chamber Design and Fabrication Activities

    NASA Astrophysics Data System (ADS)

    Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.

    2006-10-01

    A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.

  12. Design, fabrication and test of the RL10 derivative II chamber/primary nozzle

    NASA Technical Reports Server (NTRS)

    Marable, R. W.

    1989-01-01

    The design, fabrication and test of the RL10-II chamber/primary nozzle was accomplished as part of the RL10 Product Improvement Program (PIP). The overall goal of the RL10 PIP was to gain the knowledge and experience necessary to develop new cryogenic upper stage engines to fulfill future NASA requirements. The goal would be reached by producing an RL10 engine designed to be reusable, operate at several thrust levels, and have increased performance. The goals for the chamber/primary nozzle task were: (1) to design a reusable assembly capable of operation at increased mixture ratio and low thrust; (2) to fabricate three assemblies using new or updated techniques where possible; and (3) to test one assembly to verify the design and construction. The design and fabrication phases produced an assembly having improved features such as single piece reinforcing band segments (i.e., Mae West segments) and relocated tube exit braze joints (i.e., hooked tube exit). In addition, a computer program was developed to design the chamber tubes to meet both performance and heat transfer requirements. The test phase showed the specific impulse of the test bed engine system to be as predicted. These results, along with the heat transfer data obtained, sufficiently proved the overall design of the RL10-II recontoured and shortened chamber/primary nozzle assembly.

  13. Rapid prototype fabrication processes for high-performance thrust cells

    NASA Technical Reports Server (NTRS)

    Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.

    1994-01-01

    The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.

  14. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  15. Design, fabrication and testing of hierarchical micro-optical structures and systems

    NASA Astrophysics Data System (ADS)

    Cannistra, Aaron Thomas

    Micro-optical systems are becoming essential components in imaging, sensing, communications, computing, and other applications. Optically based designs are replacing electronic, chemical and mechanical systems for a variety of reasons, including low power consumption, reduced maintenance, and faster operation. However, as the number and variety of applications increases, micro-optical system designs are becoming smaller, more integrated, and more complicated. Micro and nano-optical systems found in nature, such as the imaging systems found in many insects and crustaceans, can have highly integrated optical structures that vary in size by orders of magnitude. These systems incorporate components such as compound lenses, anti-reflective lens surface structuring, spectral filters, and polarization selective elements. For animals, these hybrid optical systems capable of many optical functions in a compact package have been repeatedly selected during the evolutionary process. Understanding the advantages of these designs gives motivation for synthetic optical systems with comparable functionality. However, alternative fabrication methods that deviate from conventional processes are needed to create such systems. Further complicating the issue, the resulting device geometry may not be readily compatible with existing measurement techniques. This dissertation explores several nontraditional fabrication techniques for optical components with hierarchical geometries and measurement techniques to evaluate performance of such components. A micro-transfer molding process is found to produce high-fidelity micro-optical structures and is used to fabricate a spectral filter on a curved surface. By using a custom measurement setup we demonstrate that the spectral filter retains functionality despite the nontraditional geometry. A compound lens is fabricated using similar fabrication techniques and the imaging performance is analyzed. A spray coating technique for photoresist

  16. Design and Fabrication of a Ring-Stiffened Graphite-Epoxy Corrugated Cylindrical Shell

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.

    1978-01-01

    Design and fabrication of supplement test panels that represent key portions of the cylinder are described, as are supporting tests of coupons, sample joints, and stiffening ring elements. The cylindrical shell is a ring-stiffened, open corrugation design that uses T300/5208 graphite-epoxy tape as the basic material for the shell wall and stiffening rings. The test cylinder is designed to withstand bending loads producing the relatively low maximum load intensity in the shell wall of 1,576 N/cm. The resulting shell wall weight, including stiffening rings and fasteners, is 0.0156 kg/m. The shell weight achieved in the graphite-epoxy cylinder represents a weight saving of approximately 23 percent, compared to a comparable aluminum shell. A unique fabrication approach was used in which the cylinder wall was built in three flat segments, which were then wrapped to the cylindrical shape. Such an approach, made possible by the flexibility of the thin corrugated wall in a radial direction, proved to be a simple approach to building the test cylinder. Based on tooling and fabrication methods in this program, the projected costs of a production run of 100 units are reported.

  17. Hand-held spectrophotometer design for textile fabrics

    NASA Astrophysics Data System (ADS)

    Böcekçi, Veysel Gökhan; Yıldız, Kazım

    2017-09-01

    In this study, a hand-held spectrophotometer was designed by taking advantage of the developments in modern optoelectronic technology. Spectrophotometer devices are used to determine the color information from the optic properties of the materials. As an alternative to a desktop spectrophotometer device we have implemented, it is the first prototype, low cost and portable. The prototype model designed for the textile industry can detect the color tone of any fabric. The prototype model consists of optic sensor, processor, display floors. According to the color applied on the optic sensor, it produces special frequency information on its output at that color value. In Arduino type processor, the frequency information is evaluated by the program we have written and the color tone information between 0-255 ton is decided and displayed on the screen.

  18. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  19. An integrated optical CO2 sensor. Phase 0: Design and fabrication of critical elements

    NASA Technical Reports Server (NTRS)

    Murphy, Michael C.; Kelly, Kevin W.; Li, B. Q.; Ma, EN; Wang, Wanjun; Vladimirsky, Yuli; Vladimirsky, Olga

    1994-01-01

    Significant progress has been made toward all of the goals for the first phase of the project short of actual fabrication of a light path. Two alternative approaches to fabricating gold mirrors using the basic LIGA process were developed, one using electroplated solid gold mirrors and the second using gold plated over a nickel base. A new method of fabrication, the transfer mask process, was developed and demonstrated. Analysis of the projected surface roughness and beam divergence effects was completed. With gold surface with low surface roughness scattering losses are expected to be insignificant. Beam divergence due to diffraction will require a modification of the original design, but should be eliminated by fabricating mirrors 1000 mu m in height by 1000 mu m in width and using a source with an initial beam radius greater than 300 mu m. This may eliminate any need for focusing optics. Since the modified design does not affect the mask layout, ordering of the mask and fabrication of the test structures can begin immediately at the start of Phase 1.

  20. Design and fabrication of the Brayton rotating unit

    NASA Technical Reports Server (NTRS)

    Davis, J. E.

    1972-01-01

    The Brayton rotating unit (BRU), operating on a gas bearing system, has been designed, fabricated, and demonstrated for use in a closed Brayton cycle space power conversion system. The BRU uses a binary mixture of xenon and helium (molecular weight, 83.8) as the cycle working fluid and bearing lubricating medium and was designed to produce from 2.25 to 10.5 kw sub e of 1200 Hz three-phase electrical power. The single-shaft rotating assembly operates at a design speed of 36,000 rpm and comprises a radial single-stage compressor, a four-pole Rice alternator rotor, and a radial inflow turbine. Four units, a dynamic simulator and three component research packages, were supplied to the NASA Lewis Research Center for performance testing and further development.

  1. Fabrication and Design of Optical Nanomaterials

    NASA Astrophysics Data System (ADS)

    Huntington, Mark D.

    Over the past several decades, advances in nanometer scale fabrication has sparked interes in applications that take advantage of materials that are structured at these small length scales. Specifically, metallic optical nanomaterials have emerged as a new way to control light at length scales that are smaller than the wavelength of light and have optical properties that are distinctly different from their macroscale counterparts. Although there have been may advances in nanofabrication, the performance and widespread use of optical nanomaterials is still limited by fabrication and design challenges. This dissertation describes advances in the fabrication, characterization, and design of optical nanomaterials. First we demonstrate how a portable and compact photolithography system can be made using a light source composed of UV LEDs. Our solid-state photolithography (SSP) system brings the capabilities of one of the most important yet workhorse tools of micro- and nanotechnology--the mask aligner--to the benchtop. The two main highlights of chapter 2 include: (i) portable, low-cost photolithography and (ii) high quality patterning. We replace the mask aligner with a system composed of UV LEDs and a diffuser that can be built for as little as $30. The design of the SSP system alleviates the need for dedicated power supplies, vacuum lines and cooling systems, which makes it a true benchtop photolithography system. We further show that sub-wavelength features can be fabricated across 4-in wafers and that these patterns are of high quality such that they can be easily transferred into functional materials. Chapter 3 describes a parallel method to create nanometer scale textures over large areas with unprecedented control over wrinkle wavelength. The main points of this chapter include: (i) a new material system for nanowrinkles, (ii) wrinkles with tunable wavelengths, and (iii) a method for measuring the skin thickness. First, we show that RIE treatment of PS with

  2. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlquist, D.R.

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take placemore » inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.« less

  3. Design and fabrication of the Mini-Brayton Recuperator (MBR)

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Graves, R.; Mosinskis, G.

    1978-01-01

    Development of a recuperator for a 2.0 kW closed Brayton space power system is described. The plate-fin heat exchanger is fabricated entirely from Hastelloy X and is designed for 10 years continuous operation at 1000 K (1300 F) with a Xenon-helium working fluid. Special design provisions assure uniform flow distribution, crucial for meeting 0.975 temperature effectiveness. Low-cycle fatigue, resulting from repeated startup and shutdown cycles, was identified as the most critical structural design problem. It is predicted that the unit has a minimum fatigue life of 220 cycles. This is in excess of the BIPS requirement of 100 cycles. Heat transfer performance and thermal cycle testing with air, using a prototype unit, verified that all design objectives can be met.

  4. The design and fabrication of microstrip omnidirectional array antennas for aerospace applications

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; Appleton, M. W.; Lusby, T. K.

    1976-01-01

    A microstrip antenna design concept was developed that will provide quasi-omnidirectional radiation pattern characteristics about cylindrical and conical aerospace structures. L-band and S-band antenna arrays were designed, fabricated, and, in some cases, flight tested for rocket, satellite, and aircraft drone applications. Each type of array design is discussed along with a thermal cover design that was required for the sounding rocket applications.

  5. Film Fabrication Technologies at NREL

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert D.

    1993-01-01

    The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.

  6. Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.

    1975-01-01

    Progress is reported during the apparatus design, fabrication, and assembly phases of a program to grow wide, thin silicon dendritic web. The growth facility was essentially completed with any significant problems arising. A complete set of detailed fabrication drawings is included as an appendix.

  7. Fabric-based active electrode design and fabrication for health monitoring clothing.

    PubMed

    Merritt, Carey R; Nagle, H Troy; Grant, Edward

    2009-03-01

    In this paper, two versions of fabric-based active electrodes are presented to provide a wearable solution for ECG monitoring clothing. The first version of active electrode involved direct attachment of surface-mountable components to a textile screen-printed circuit using polymer thick film techniques. The second version involved attaching a much smaller, thinner, and less obtrusive interposer containing the active electrode circuitry to a simplified textile circuit. These designs explored techniques for electronic textile interconnection, chip attachment to textiles, and packaging of circuits on textiles for durability. The results from ECG tests indicate that the performance of each active electrode is comparable to commercial Ag/AgCl electrodes. The interposer-based active electrodes survived a five-cycle washing test while maintaining good signal integrity.

  8. Fabrication and evaluation of brazed titanium-clad borsic/aluminum skin-stringer panels

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Mcwithey, R. R.

    1980-01-01

    A successful brazing process was developed and evaluated for fabricating full-scale titanium-clad Borsic/aluminum skin-stringer panels. A panel design was developed consisting of a hybrid composite skin reinforced with capped honeycomb-core stringers. Six panels were fabricated for inclusion in the program which included laboratory testing of panels at ambient temperatures and 533 K (500 F) and flight service evaluation on the NASA Mach 3 YF-12 airplane. All panels tested met or exceeded stringent design requirements and no deleterious effects on panel properties were detected followng flight service evaluation on the YF-12 airplane.

  9. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  10. Design, fabrication and control of soft robots.

    PubMed

    Rus, Daniela; Tolley, Michael T

    2015-05-28

    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

  11. Fabrics for aeronautic construction

    NASA Technical Reports Server (NTRS)

    Walen, E D

    1918-01-01

    The Bureau of Standards undertook the investigation of airplane fabrics with the view of finding suitable substitutes for the linen fabrics, and it was decided that the fibers to be considered were cotton, ramie, silk, and hemp. Of these, the cotton fiber was the logical one to be given primary consideration. Report presents the suitability, tensibility and stretching properties of cotton fabric obtained by laboratory tests.

  12. Whole Wafer Design and Fabrication for the Alignment of Nanostructures for Chemical Sensor Applications

    NASA Technical Reports Server (NTRS)

    Biaggi-Labiosa, Azlin M.; Hunter, Gary W.

    2013-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption The fabrication of chemical sensors involving nanostructured materials can provide these properties as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited in the ability to control their location on the sensor. Currently, our group at NASA Glenn Research Center has demonstrated the controlled placement of nanostructures in sensors using a sawtooth patterned electrode design. With this design the nanostructures are aligned between opposing sawtooth electrodes by applying an alternating current.

  13. Two-dimensional designed fabrication of subwavelength grating HCG mirror on silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Hong, Kuo-Bin; Lu, Tien-Chang; He, Sailing

    2016-03-01

    We designed and fabricated a two dimensional high contrast subwavelength grating (HCG) mirrors. The computer-aided software was employed to verify the structural parameters including grating periods and filling factors. From the optimized simulation results, the designed HCG structure has a wide reflection stopband (reflectivity (R) >90%) of over 200 nm, which centered at telecommunication wavelength. The optimized HCG mirrors were fabricated by electron beam lithography and inductively coupled plasma process technique. The experimental result was almost consistent with calculated data. This achievement should have an impact on numerous photonic devices helpful attribution to the integrated HCG VCSELs in the future.

  14. EDITORIAL: Designer fabrication: nanotemplates get in shape Designer fabrication: nanotemplates get in shape

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-02-01

    People working in device design rarely see something that works without thinking how it could be made to work better. The work on anodic aluminum oxide materials in this issue provides a case in point [1]. Over the past century researchers have observed, manipulated and exploited the porous structures that result when anodizing aluminum in for example oxalic, sulfuric, and phosphoric acid solutions [1, 2]. The self-organized pore arrays have demonstrated the potential to facilitate high through-put, low-cost fabrication of nanocomposites as well as other nanostructures. The straight self-aligned nanochannels in porous anodic aluminum oxide (AAO) have long been accepted as an inherent property of these films and for many applications they are an attractive attribute. However, researchers in Taiwan have considered a novel manifestation of AAO materials which may enhance their natural attributes by generating arrays that bend [3]. Their work is an example of how even well studied systems continue to harbour surprises and scope for creative innovation. As the authors point out, 'This novel fan-out platform facilitates probing and handling many signals from different areas on a sample's surface and is therefore promising for applications in detection and manipulation at the nanoscale level'. It has long been recognized that the inter-pore distance, pore diameter and pore depth in AAO can be controlled by changing the anodization conditions. These accommodating features have motivated researchers to seek a better understanding of how to optimize fabrication conditions. A collaboration of researchers in Sweden, Chile and Uruguay studied the structural and optical properties of silver nanowires electrodeposited in commercially available nanoporous alumina templates, with a nominal pore diameter of 20 nm [4]. Their results revealed a decrease in the uniformity of pore filling with increasing deposition overpotential and suggested that overpotentials were preferred for the

  15. Design and fabricate multi channel microfluidic mold on top of glass slide using SU-8

    NASA Astrophysics Data System (ADS)

    Azman, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.

    2017-09-01

    Microfluidic is the study of fluid in microscale. Microfluidics provides miniaturized fluidic networks for processing and analyzing liquids in the nanoliter to milliliter range. Microfluidic device comprises of some essential segments or structure that are micromixer, microchannel and microchamber. The SU-8 mold is known as the most used technique in microfluidic fabrication due to the characteristic of very gooey polymer that can be spread over a thickness. In this study, in order to reduce the fabrication cost, the development and fabrication of SU-8 mold is replace by using a glass plate instead of silicon wafer which is used in the previous research. We designed a microfluidic chip for use with an IDE sensors to conduct multiplex detection of multiple channels. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The multi-channel microfluidic chip was designed, including the fluid outlet and inlet. A multi-channel microfluidic chip was used for pathogen detection. This paper sum up the fabrication of lab SU-8 mold using glass slide.

  16. Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom; Reid, Robert S.

    1998-01-01

    The development of a refractory-composite/heat-pipe-cooled leading edge has evolved from the design stage to the fabrication and testing of a full size, leading-edge-shaped heat pipe. The heat pipe had a 'D-shaped' cross section and was fabricated from arc cast Mo-4lRe. An artery was included in the wick. Several issues were resolved with the fabrication of the sharp leading edge radius heat pipe. The heat pipe was tested in a vacuum chamber at Los Alamos National Laboratory using induction heating and was started up from the frozen state several times. However, design temperatures and heat fluxes were not obtained due to premature failure of the heat pipe resulting from electrical discharge between the induction heating apparatus and the heat pipe. Though a testing anomaly caused premature failure of the heat pipe, successful startup and operation of the heat pipe was demonstrated.

  17. Laser surface modification of electrically conductive fabrics: Material performance improvement and design effects

    NASA Astrophysics Data System (ADS)

    Tunakova, Veronika; Hrubosova, Zuzana; Tunak, Maros; Kasparova, Marie; Mullerova, Jana

    2018-01-01

    Development of lightweight flexible materials for electromagnetic interference shielding has obtained increased attention in recent years particularly for clothing, textiles in-house use and technical applications especially in areas of aircraft, aerospace, automobiles and flexible electronics such as portable electronics and wearable devices. There are many references in the literature concerning development and investigation of electromagnetic shielding lightweight flexible materials especially textile based with different electrically conductive additives. However, only little attention is paid to designing and enhancing the properties of these special fabrics by textile finishing processes. Laser technology applied as a physical treatment method is becoming very popular and can be used in different applications to make improvement and even overcome drawbacks of some of the traditional processes. The main purpose of this study is firstly to analyze the possibilities of transferring design onto the surface of electrically conductive fabrics by laser beam and secondly to study of effect of surface modification degree on performance of conductive fabric including electromagnetic shielding ability and mechanical properties. Woven fabric made of yarns containing 10% of extremely thin stainless steel fiber was used as a conductive substrate.

  18. Pre-Employment Laboratory Education. Clothing/Fashion Design Guidebook.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Instructional Materials Center.

    This guidebook is designed for use in teaching students enrolled in preemployment laboratory education (PELE) clothing/fashion design programs. The first of two major sections includes an overview for teachers on planning, conducting, and evaluating a PELE clothing/fashion design program. Specific topics discussed in section 1 include (1)…

  19. Reinforce Design and Construction Issues with a Comprehensive Laboratory Project.

    ERIC Educational Resources Information Center

    Schemmel, John J.

    In 1996, a comprehensive project was introduced in the first course of Reinforced Concrete Design, CVEG 4303 at the University of Arkansas. The primary purpose of this project was to highlight issues related to the construction of reinforced concrete elements. This semester-long project involves the design, fabrication, and testing of 8-foot long…

  20. Design and fabrication of forward-swept counterrotation blade configuration for wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Nichols, G. H.

    1994-01-01

    Work performed by GE Aircraft on advanced counterrotation blade configuration concepts for high speed turboprop system is described. Primary emphasis was placed on theoretically and experimentally evaluating the aerodynamic, aeromechanical, and acoustic performance of GE-defined counterrotating blade concepts. Several blade design concepts were considered. Feasibility studies were conducted to evaluate a forward-swept versus an aft-swept blade application and how the given blade design would affect interaction between rotors. Two blade designs were initially selected. Both designs involved in-depth aerodynamic, aeromechanical, mechanical, and acoustic analyses followed by the fabrication of forward-swept, forward rotor blade sets to be wind tunnel tested with an aft-swept, aft rotor blade set. A third blade set was later produced from a NASA design that was based on wind tunnel test results from the first two blade sets. This blade set had a stiffer outer ply material added to the original blade design, in order to reach the design point operating line. Detailed analyses, feasibility studies, and fabrication procedures for all blade sets are presented.

  1. Design, fabrication, test qualification and price analysis of a third generation solar cell module

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The design, fabrication, test, and qualification of a third generation intermediate load solar cell module are presented. A technical discussion of the detailed module design, preliminary design review, design modifications, and environmental testing are included. A standardized pricing system is utilized to establish the cost competitiveness of this module design.

  2. Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems.

    PubMed

    Manaf, Ahmad Rosli Abdul; Sugiyama, Tsunetoshi; Yan, Jiwang

    2017-01-23

    In this work, novel hybrid Fresnel lenses for infrared (IR) optical applications were designed and fabricated. The Fresnel structures were replicated from an ultraprecision diamond-turned aluminum mold to an extremely thin layer (tens of microns) of high-density polyethylene polymer, which was directly bonded onto a flat single-crystal silicon wafer by press molding without using adhesives. Night mode imaging results showed that the fabricated lenses were able to visualize objects in dark fields with acceptable image quality. The capability of the lenses for thermography imaging was also demonstrated. This research provides a cost-effective method for fabricating ultrathin IR optical components.

  3. Fabrication and Optimal Design of Biodegradable Polymeric Stents for Aneurysms Treatments

    PubMed Central

    Han, Xue; Wu, Xia; Kelly, Michael; Chen, Xiongbiao

    2017-01-01

    An aneurysm is a balloon-like bulge in the wall of blood vessels, occurring in major arteries of the heart and brain. Biodegradable polymeric stent-assisted coiling is expected to be the ideal treatment of wide-neck complex aneurysms. This paper presents the development of methods to fabricate and optimally design biodegradable polymeric stents for aneurysms treatment. Firstly, a dispensing-based rapid prototyping (DBRP) system was developed to fabricate coil and zigzag structures of biodegradable polymeric stents. Then, compression testing was carried out to characterize the radial deformation of the stents fabricated with the coil or zigzag structure. The results illustrated the stent with a zigzag structure has a stronger radial stiffness than the one with a coil structure. On this basis, the stent with a zigzag structure was chosen for the development of a finite element model for simulating the real compression tests. The result showed the finite element model of biodegradable polymeric stents is acceptable within a range of radial deformation around 20%. Furthermore, the optimization of the zigzag structure was performed with ANSYS DesignXplorer, and the results indicated that the total deformation could be decreased by 35.7% by optimizing the structure parameters, which would represent a significant advance of the radial stiffness of biodegradable polymeric stents. PMID:28264515

  4. Design, fabrication and testing of a thermal diode

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Kosson, R.

    1972-01-01

    Heat pipe diode types are discussed. The design, fabrication and test of a flight qualified diode for the Advanced Thermal Control Flight Experiment (ATFE) are described. The review covers the use of non-condensable gas, freezing, liquid trap, and liquid blockage techniques. Test data and parametric performance are presented for the liquid trap and liquid blockage techniques. The liquid blockage technique was selected for the ATFE diode on the basis of small reservoir size, low reverse mode heat transfer, and apparent rapid shut-off.

  5. Design and fabrication of metal briquette machine for shop floor

    NASA Astrophysics Data System (ADS)

    Pramod, R.; Kumar, G. B. Veeresh; Prashanth B., N.

    2017-07-01

    Efforts have to be taken to ensure efficient waste management system in shop floors, with minimum utilization of space and energy when it comes to disposing metal chips formed during machining processes. The salvaging of junk metallic chips and the us e of scrap are important for the economic production of a steelworks. For this purpose, we have fabricated a metal chip compaction machine, which can compact the metal chips into small briquettes. The project started with the survey of chips formed in shop floors and the practices involved in waste management. Study was done on the requirements for a better compaction. The heating chamber was designed taking into consideration the temperature required for an easy compaction of the metal chips. The power source for compaction and the pneumatic design for mechanism was done following the appropriate calculations regarding the air pressure provided and thrust required. The processes were tested under different conditions and found effective. The fabrication of the machine has been explained in detail and the results have been discussed.

  6. Gas Atomization Equipment Statement of Work and Specification for Engineering design, Fabrication, Testing, and Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutaleb, T.; Pluschkell, T. P.

    The Gas Atomization Equipment will be used to fabricate metallic powder suitable for Powder Bed Fusion additive Manufacturing material to support Lawrence Livermore National Laboratory (LLNL) research and development. The project will modernize our capabilities to develop spherical reactive, refractory, and radioactive powders in the 10-75 μm diameter size range at LLNL.

  7. Fabrication of amorphous silica nanowires via oxygen plasma treatment of polymers on silicon

    NASA Astrophysics Data System (ADS)

    Chen, Zhuojie; She, Didi; Chen, Qinghua; Li, Yanmei; Wu, Wengang

    2018-02-01

    We demonstrate a facile non-catalytic method of fabricating silica nanowires at room temperature. Different polymers including photoresists, parylene C and polystyrene are patterned into pedestals on the silicon substrates. The silica nanowires are obtained via the oxygen plasma treatment on those pedestals. Compared to traditional strategies of silica nanowire fabrication, this method is much simpler and low-cost. Through designing the proper initial patterns and plasma process parameters, the method can be used to fabricate various regiment nano-scale silica structure arrays in any laboratory with a regular oxygen-plasma-based cleaner or reactive-ion-etching equipment.

  8. Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haipeng; Cheng, Guangfeng; Clemens, William

    2015-09-01

    After the electromagnetic design and the mechanical design of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.

  9. Design and fabrication of engineering model fiber-optics detector

    NASA Technical Reports Server (NTRS)

    Mcsweeney, A.

    1972-01-01

    The design and fabrication of an annular ring detector consisting of optical fibers terminated with photodetectors is described. The maximum width of each concentric ring has to be small enough to permit the resolution of a Ronchi ruling transform with a dot spacing of 150 microns. A minimum of 100 concentric rings covering a circular area of 2.54 cm diameter also is necessary. A fiber-optic array consisting of approximately 89,000 fibers of 76 microns diameter was fabricated to meet the above requirements. The fibers within a circular area of 2.5 cm diameter were sorted into 168 adjacent rings concentric with the center fiber. The response characteristics of several photodetectors were measured, and the data used to compare their linearity of response and dynamic range. Also, coupling loss measurements were made for three different methods of terminating the optical fibers with a photodetector.

  10. Micro solar concentrators: Design and fabrication for microcells arrays

    NASA Astrophysics Data System (ADS)

    Jutteau, Sébastien; Paire, Myriam; Proise, Florian; Lombez, Laurent; Guillemoles, Jean-François

    2015-09-01

    In this work we look at a micro-concentrating system adapted to a new type of concentrator photovoltaic material, well known for flate-plate applications, Cu(In,Ga)Se2. Cu(In,Ga)Se2 solar cells are polycrystalline thin film devices that can be deposited by a variety of techniques. We proposed to use a microcell architecture [1], [2], with lateral dimensions varying from a few μm to hundreds of μm, to adapt the film cell to concentration conditions. A 5% absolute efficiency increase on Cu(In,Ga)Se2 microcells at 475 suns has been observed for a final efficiency of 21.3%[3]. We study micro-concentrating systems adapted to the low and middle concentration range, where thin film concentrator cells will lean to substrate fabrication simplification and cost savings. Our study includes optical design, fabrication and experimental tests of prototypes.

  11. Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Bruckner, Robert; DellaCorte, Christopher; Edmonds, Brian; Prahl, Joseph

    2008-01-01

    A methodology for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs is presented. Features drawn from a review of the open literature are discussed as they relate to bearing performance. The design of fixtures and tooling required to fabricate foil thrust bearings is presented, using conventional machining processes where possible. A prototype bearing with dimensions drawn from the literature is constructed, with all fabrication steps described. A load-deflection curve for the bearing is presented to illustrate structural stiffness characteristics. Start-top cycles are performed on the bearing at a temperature of 425 C to demonstrate early-life wear patterns. A test of bearing load capacity demonstrates useful performance when compared with data obtained from the open literature.

  12. Design and Fabrication of Automatic Glass Cutting Machine

    NASA Astrophysics Data System (ADS)

    Veena, T. R.; Kadadevaramath, R. S.; Nagaraj, P. M.; Madhusudhan, S. V.

    2016-09-01

    This paper deals with the design and fabrication of the automatic glass or mirror cutting machine. In order to increase the accuracy of cut and production rate; and decrease the production time and accidents caused due to manual cutting of mirror or glass, this project aims at development of an automatic machine which uses a programmable logic controller (PLC) for controlling the movement of the conveyer and also to control the pneumatic circuit. In this machine, the work of the operator is to load and unload the mirror. The cutter used in this machine is carbide wheel with its cutting edge ground to a V-shaped profile. The PLC controls the pneumatic cylinder and intern actuates the cutter along the glass, a fracture layer is formed causing a mark to be formed below the fracture layer and a crack to be formed below the rib mark. The machine elements are designed using CATIA V5R20 and pneumatic circuit are designed using FESTO FLUID SIM software.

  13. Design and fabrication of Rene 41 advanced structural panels. [their performance under axial compression, shear, and bending loads

    NASA Technical Reports Server (NTRS)

    Greene, B. E.; Northrup, R. F.

    1975-01-01

    The efficiency was investigated of curved elements in the design of lightweight structural panels under combined loads of axial compression, inplane shear, and bending. The application is described of technology generated in the initial aluminum program to the design and fabrication of Rene 41 panels for subsequent performance tests at elevated temperature. Optimum designs for two panel configurations are presented. The designs are applicable to hypersonic airplane wing structure, and are designed specifically for testing at elevated temperature in the hypersonic wing test structure located at the NASA Flight Research Center. Fabrication methods developed to produce the Rene panels are described, and test results of smaller structural element specimens are presented to verify the design and fabrication methods used. Predicted strengths of the panels under several proposed elevated temperature test load conditions are presented.

  14. Fiber Bragg grating fabrication for the implementation of sensors in the electronics and optoelectronics laboratory at BUAP

    NASA Astrophysics Data System (ADS)

    Bracamontes Rodríguez, Y. E.; Beltrán Pérez, G.; Castillo Mixcóatl, J.; Muñoz Aguirre, S.

    2011-09-01

    Fiber Bragg gratings (FBG) are important optical devices since they have been quite successful not only in the field of communications but also in sensor systems and optical fiber lasers. In the sensors area they are generally used as detection elements for different physical parameters such as temperature, strain, flow, etc. In the electronics and optoelectronics laboratory at Benemérita Universidad Autónoma de Puebla (LEyO-BUAP), there are already experimental setups of sensors as well as laser systems, where FBGs are fundamental elements for their adequate performance. However, these FBGs are commercial devices and they present limited characteristics in their transmission profiles, bandwidth and reflectivity. On the other hand, in some occasions, the delivery time from the fabricant to the customer is quite long. Therefore, it is important for LEyO to implement a system to fabricate this kind of devices, which would mean LEyO independence in the technological development. In this work, results of FBGs fabrication based on the phase mask technique are presented. Such mask is optimized for UV and it has a period of 1060 nm. A Nd:YAG pulsed laser with a 5 ns pulse length and an energy of 40 mJ was used as the UV source employing the 4th harmonic generation to obtain a 266 nm wavelength. Ge-doped fiber was used to fabricate the devices.

  15. Design, fabrication, and test of a steel spar wind turbine blade

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Sirocky, P. J., Jr.; Viterna, L. A.

    1979-01-01

    The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-O aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested.

  16. Design, fabrication, delivery, operation and maintenance of a geothermal power conversion system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design, fabrication, delivery, operation and maintenance of an Hydrothermal Power Company 1250 KVA geothermal power conversion system using a helical screw expander as the prime mover is described. Hydrostatic and acceptance testing are discussed.

  17. The design and fabrication of a prototype trash compacting unit. [for long duration space missions

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A prototype trash compactor, that is compatible with the anticipated requirements of future long-term space missions, is described. Preliminary problem definition studies were conducted to identify typical types and quantities of waste materials to be expected from a typical mission. Bench-scale compaction tests were then conducted on typical waste materials to determine force/compaction curves. These data were used to design a boilerplate compactor that was fabricated to prove the feasibility of the basic design concept. A final design was then prepared from which the deliverable unit was fabricated. Design concepts are presented for suggested further development of the compactor, including a version that is capable of handling wet biodegradable wastes.

  18. Design and fabrication of a composite wind turbine blade

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Haley, R. G.

    1980-01-01

    The design considerations are described which led to the combination of materials used for the MOD-I wind turbine generator rotor and to the fabrication processes which were required to accomplish it. It is noted that the design problem was to create a rotor for a 2500 kW wind turbine generator. The rotor was to consist of two blades, each with a length of 97.5 feet and a weight of less than 21,000 pounds. The spanwise frequency is 1.17-1.45 Hz, and the chordwise frequency 2.80-2.98 Hz. The design life of the blade is 30 years, or 4.35 x 10 to the 8th cycles. The structures of the spars and trailing edges are described, and the adhesive bonding system is discussed.

  19. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  20. Design, fabrication and testing of a 5-Hz acoustic exciter system

    NASA Technical Reports Server (NTRS)

    Lundy, D. H.; Robinson, G. D.

    1973-01-01

    A 5-Hz acoustic excitation system was designed, fabricated and checked out for use in the modulation of a stagnant gas volume contained in an absorption cell. A detailed system description of the test equipment, both mechanical and electronic, and an operating procedure are included. Conclusions are also presented.

  1. Design of a micro-Wankel rotary engine for MEMS fabrication

    NASA Astrophysics Data System (ADS)

    Jiang, Kyle C.; Prewett, Philip D.; Ward, M. C. L.; Tian, Y.; Yang, H.

    2001-04-01

    This paper presents the design of a micro Wankel engine for deep etching micro fabrication. The micro engine design is part of a research program in progress to develop a micro actuator to supply torque for driving micro machines. To begin with, the research work concentrates on the micro Wankel engine powered by liquid CO2. Then, a Wankel internal combustion engines will be investigated. The Wankel engine is a planetary rotation engine. It is selected because of its largely 2D structure which is suitable for lithographic processes. The engine has been simplified and redesigned to suit the fabrication processes. In particular, the fuel inlet has been moved to the top cover of the housing from the side, and the outlet is made as a groove on the housing, so that the both parts can be etched. A synchronization valve is mounted on the engine to control the supply of CO2. One of advantages of the micro engines is their high energy density compared with batteries. A research study has been conducted in comparing energy densities of commonly used fuels. It shows that the energy densities of fuels for combustion engines are 10 - 30 times higher than that of batteries. The deigns of the micro Wankel engines have been tested for verification by finite element analysis, CAD assembly, and construction of a prototype, which proves the design is valid.

  2. A Model for Designing Adaptive Laboratory Evolution Experiments.

    PubMed

    LaCroix, Ryan A; Palsson, Bernhard O; Feist, Adam M

    2017-04-15

    The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is increasingly being leveraged in laboratory settings for industrial and basic science applications. Despite increasing deployment, there are no standardized procedures available for designing and performing adaptive laboratory evolution (ALE) experiments. Thus, there is a need to optimize the experimental design, specifically for determining when to consider an experiment complete and for balancing outcomes with available resources (i.e., laboratory supplies, personnel, and time). To design and to better understand ALE experiments, a simulator, ALEsim, was developed, validated, and applied to the optimization of ALE experiments. The effects of various passage sizes were experimentally determined and subsequently evaluated with ALEsim, to explain differences in experimental outcomes. Furthermore, a beneficial mutation rate of 10 -6.9 to 10 -8.4 mutations per cell division was derived. A retrospective analysis of ALE experiments revealed that passage sizes typically employed in serial passage batch culture ALE experiments led to inefficient production and fixation of beneficial mutations. ALEsim and the results described here will aid in the design of ALE experiments to fit the exact needs of a project while taking into account the resources required and will lower the barriers to entry for this experimental technique. IMPORTANCE ALE is a widely used scientific technique to increase scientific understanding, as well as to create industrially relevant organisms. The manner in which ALE experiments are conducted is highly manual and uniform, with little optimization for efficiency. Such inefficiencies result in suboptimal experiments that can take multiple months to complete. With the availability of automation and computer simulations, we can now perform these experiments in an optimized

  3. 2000-hour cyclic endurance test of a laboratory model multipropellant resistojet

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Sovey, James S.

    1987-01-01

    The technological readiness of a long-life multipropellant resistojet for space station auxiliary propulsion is demonstrated. A laboratory model resistojet made from grain-stabilized platinum served as a test bed to evaluate the design characteristics, fabrication methods, and operating strategies for an engineering model multipropellant resistojet developed under contract by the Rocketdyne Division of Rockwell International and Technion Incorporated. The laboratory model thruster was subjected to a 2000-hr, 2400-thermal-cycle endurance test using carbon dioxide propellant. Maximum thruster temperatures were approximately 1400 C. The post-test analyses of the laboratory model thruster included an investigation of component microstructures. Significant observations from the laboratory model thruster are discussed as they relate to the design of the engineering model thruster.

  4. Design of Complete Dentures by Adopting CAD Developed for Fixed Prostheses.

    PubMed

    Li, Yanfeng; Han, Weili; Cao, Jing; Iv, Yuan; Zhang, Yue; Han, Yishi; Shen, Yi; Ma, Zheng; Liu, Huanyue

    2018-02-01

    The demand for complete dentures is expected to increase worldwide, but complete dentures are mainly designed and fabricated manually involving a broad series of clinical and laboratory procedures. Therefore, the quality of complete dentures largely depends on the skills of the dentist and technician, leading to difficulty in quality control. Computer-aided design and manufacturing (CAD/CAM) has been used to design and fabricate various dental restorations including dental inlays, veneers, crowns, partial crowns, and fixed partial dentures (FPDs). It has been envisioned that the application of CAD/CAM technology could reduce intensive clinical/laboratory work for the fabrication of complete dentures; however, CAD/CAM is seldom used to fabricate complete dentures due to the lack of suitable CAD software to design virtual complete dentures although the CAM techniques are in a much advanced stage. Here we report the successful design of virtual complete dentures using CAD software of 3Shape Dental System 2012, which was developed for designing fixed prostheses instead of complete dentures. Our results demonstrated that complete dentures could be successfully designed by the combination of two modeling processes, single coping and full anatomical FPD, available in the 3Shape Dental System 2012. © 2016 by the American College of Prosthodontists.

  5. Design and implementation of a hospital-based usability laboratory: insights from a Department of Veterans Affairs laboratory for health information technology.

    PubMed

    Russ, Alissa L; Weiner, Michael; Russell, Scott A; Baker, Darrell A; Fahner, W Jeffrey; Saleem, Jason J

    2012-12-01

    Although the potential benefits of more usable health information technologies (HIT) are substantial-reduced HIT support costs, increased work efficiency, and improved patient safety--human factors methods to improve usability are rarely employed. The US Department of Veterans Affairs (VA) has emerged as an early leader in establishing usability laboratories to inform the design of HIT, including its electronic health record. Experience with a usability laboratory at a VA Medical Center provides insights on how to design, implement, and leverage usability laboratories in the health care setting. The VA Health Services Research and Development Service Human-Computer Interaction & Simulation Laboratory emerged as one of the first VA usability laboratories and was intended to provide research-based findings about HIT designs. This laboratory supports rapid prototyping, formal usability testing, and analysis tools to assess existing technologies, alternative designs, and potential future technologies. RESULTS OF IMPLEMENTATION: Although the laboratory has maintained a research focus, it has become increasingly integrated with VA operations, both within the medical center and on a national VA level. With this resource, data-driven recommendations have been provided for the design of HIT applications before and after implementation. The demand for usability testing of HIT is increasing, and information on how to develop usability laboratories for the health care setting is often needed. This article may assist other health care organizations that want to invest in usability resources to improve HIT. The establishment and utilization of usability laboratories in the health care setting may improve HIT designs and promote safe, high-quality care for patients.

  6. Electron Beam Freeform Fabrication: A Fabrication Process that Revolutionizes Aircraft Structural Designs and Spacecraft Supportability

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.

    2008-01-01

    The technological inception and challenges, as well as current applications of the electron beam freeform fabrication (EBF3) process are outlined. The process was motivated by the need for a new metals technology that would be cost-effective, enable the production of new alloys and that would could be used for efficient, lightweight structures. EBF3 is a rapid metal fabrication, layer-additive process that uses no molds or tools and which yields properties equivalent to wrought. The benefits of EBF3 include it near-net shape which minimizes scrap and reduces part count; efficiency in design which allows for lighter weight and enhanced performance; and, its "green" manufacturing process which yields minimal waste products. EBF3 also has a high tensile strength, while a structural test comparison found that EBF3 panels performed 5% lower than machined panels. Technical challenges in the EBF3 process include a need for process control monitoring and an improvement in localized heat response. Currently, the EBF3 process can be used to add details onto forgings and to construct and form complex shapes. However, it has potential uses in a variety of industries including aerospace, automotive, sporting goods and medical implant devices. The novel structural design capabilities of EBF3 have the ability to yield curved stiffeners which may be optimized for performance, low weight, low noise and damage tolerance applications. EBF3 has also demonstrated its usefulness in 0-gravity environments for supportability in space applications.

  7. Airbags to Martian Landers: Analyses at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwinn, K.W.

    1994-03-01

    A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, andmore » analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.« less

  8. Design and fabrication of a boron reinforced intertank skirt

    NASA Technical Reports Server (NTRS)

    Henshaw, J.; Roy, P. A.; Pylypetz, P.

    1974-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiency of a boron reinforced shell, where the medium of reinforcement consists of hollow aluminum extrusions infiltrated with boron epoxy. Studies were completed for the design of a one-half scale minimum weight shell using boron reinforced stringers and boron reinforced rings. Parametric and iterative studies were completed for the design of minimum weight stringers, rings, shells without rings and shells with rings. Computer studies were completed for the final evaluation of a minimum weight shell using highly buckled minimum gage skin. The detail design is described of a practical minimum weight test shell which demonstrates a weight savings of 30% as compared to an all aluminum longitudinal stiffened shell. Sub-element tests were conducted on representative segments of the compression surface at maximum stress and also on segments of the load transfer joint. A 10 foot long, 77 inch diameter shell was fabricated from the design and delivered for further testing.

  9. Packaging Technology Designed, Fabricated, and Assembled for High-Temperature SiC Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2003-01-01

    A series of ceramic substrates and thick-film metalization-based prototype microsystem packages designed for silicon carbide (SiC) high-temperature microsystems have been developed for operation in 500 C harsh environments. These prototype packages were designed, fabricated, and assembled at the NASA Glenn Research Center. Both the electrical interconnection system and the die-attach scheme for this packaging system have been tested extensively at high temperatures. Printed circuit boards used to interconnect these chip-level packages and passive components also are being fabricated and tested. NASA space and aeronautical missions need harsh-environment, especially high-temperature, operable microsystems for probing the inner solar planets and for in situ monitoring and control of next-generation aeronautical engines. Various SiC high-temperature-operable microelectromechanical system (MEMS) sensors, actuators, and electronics have been demonstrated at temperatures as high as 600 C, but most of these devices were demonstrated only in the laboratory environment partially because systematic packaging technology for supporting these devices at temperatures of 500 C and beyond was not available. Thus, the development of a systematic high-temperature packaging technology is essential for both in situ testing and the commercialization of high-temperature SiC MEMS. Researchers at Glenn developed new prototype packages for high-temperature microsystems using ceramic substrates (aluminum nitride and 96- and 90-wt% aluminum oxides) and gold (Au) thick-film metalization. Packaging components, which include a thick-film metalization-based wirebond interconnection system and a low-electrical-resistance SiC die-attachment scheme, have been tested at temperatures up to 500 C. The interconnection system composed of Au thick-film printed wire and 1-mil Au wire bond was tested in 500 C oxidizing air with and without 50-mA direct current for over 5000 hr. The Au thick

  10. Design and fabrication of plasmonic cavities for magneto-optical sensing

    NASA Astrophysics Data System (ADS)

    Loughran, T. H. J.; Roth, J.; Keatley, P. S.; Hendry, E.; Barnes, W. L.; Hicken, R. J.; Einsle, J. F.; Amy, A.; Hendren, W.; Bowman, R. M.; Dawson, P.

    2018-05-01

    The design and fabrication of a novel plasmonic cavity, intended to allow far-field recovery of signals arising from near field magneto-optical interactions, is presented. Finite element modeling is used to describe the interaction between a gold film, containing cross-shaped cavities, with a nearby magnetic under-layer. The modeling revealed strong electric field confinement near the center of the cross structure for certain optical wavelengths, which may be tuned by varying the length of the cross through a range that is compatible with available fabrication techniques. Furthermore, the magneto optical Kerr effect (MOKE) response of the composite structure can be enhanced with respect to that of the bare magnetic film. To confirm these findings, cavities were milled within gold films deposited upon a soluble film, allowing relocation to a ferromagnetic film using a float transfer technique. Cross cavity arrays were fabricated and characterized by optical transmission spectroscopy prior to floating, revealing resonances at optical wavelengths in good agreement with the finite element modeling. Following transfer to the magnetic film, circular test apertures within the gold film yielded clear magneto-optical signals even for diameters within the sub-wavelength regime. However, no magneto-optical signal was observed for the cross cavity arrays, since the FIB milling process was found to produce nanotube structures within the soluble under-layer that adhered to the gold. Further optimization of the fabrication process should allow recovery of magneto-optical signal from cross cavity structures.

  11. Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program

    NASA Technical Reports Server (NTRS)

    Hoffman, E. L.; Payne, L.; Carter, A. L.

    1975-01-01

    Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.

  12. Design and fabrication of GaAs OMIST photodetector

    NASA Astrophysics Data System (ADS)

    Kang, Xuejun; Lin, ShiMing; Liao, Qiwei; Gao, Junhua; Liu, Shi'an; Cheng, Peng; Wang, Hongjie; Zhang, Chunhui; Wang, Qiming

    1998-08-01

    We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of AlAs layer that is grown by MBE forms the Ultra- Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage Vs, sufficient incident light can switch OMIST from high impedance low current 'off' state to low impedance high current 'on' state. The absorbing material of OMIST is GaAS, so if the wavelength of incident light within 600 to approximately 850 nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.

  13. Design and fabrication of a differential scanning nanocalorimeter

    NASA Astrophysics Data System (ADS)

    Zuo, Lei; Chen, Xiaoming; Yu, Shifeng; Lu, Ming

    2017-02-01

    This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 µK. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterized through the measurement of current-voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. The noise test together with the simulation show the device is promising for micro 10 µK temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding.

  14. Design and fabrication of a differential scanning nanocalorimeter

    DOE PAGES

    Zuo, Lei; Chen, Xiaoming; Yu, Shifeng; ...

    2016-12-19

    This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 µK. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterizedmore » through the measurement of current–voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. As a result, the noise test together with the simulation show the device is promising for micro 10 µK temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding.« less

  15. A Selected Bibliography on Microbiological Laboratory Design.

    ERIC Educational Resources Information Center

    Laboratory Design Notes, 1967

    1967-01-01

    Reference sources on microbiological laboratory design are cited. Subjects covered include--(1) policies and general requirements, (2) ventilated cabinets, (3) animal isolation equipment, (4) air handling, ventilation, and filtration, (5) germicidal ultraviolet irradiation, (6) aerosol test facilities, (7) process production of microorganisms, and…

  16. Design and fabrication of high-performance diamond triple-gate field-effect transistors

    PubMed Central

    Liu, Jiangwei; Ohsato, Hirotaka; Wang, Xi; Liao, Meiyong; Koide, Yasuo

    2016-01-01

    The lack of large-area single-crystal diamond wafers has led us to downscale diamond electronic devices. Here, we design and fabricate a hydrogenated diamond (H-diamond) triple-gate metal-oxide-semiconductor field-effect transistor (MOSFET) to extend device downscaling and increase device output current. The device’s electrical properties are compared with those of planar-type MOSFETs, which are fabricated simultaneously on the same substrate. The triple-gate MOSFET’s output current (174.2 mA mm−1) is much higher than that of the planar-type device (45.2 mA mm−1), and the on/off ratio and subthreshold swing are more than 108 and as low as 110 mV dec−1, respectively. The fabrication of these H-diamond triple-gate MOSFETs will drive diamond electronic device development forward towards practical applications. PMID:27708372

  17. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  18. Design, fabrication and performance of two grazing incidence telescopes for celestial extreme ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Cash, W.; Malina, R. F.; Bowyer, S.

    1977-01-01

    The design and performance of grazing incidence telescopes for celestial extreme ultraviolet (EUV) astronomy are described. The telescopes basically consist of a star tracker, collimator, grazing incidence mirror, vacuum box lid, vacuum housing, filters, a ranicon detector, an electronics box, and an aspect camera. For the survey mirror a Wolter-Schwarzschild type II configuration was selected. Diamond-turning was used for mirror fabrication, a technique which machines surfaces to the order of 10 microns over the required dimensions. The design of the EUV spectrometer is discussed with particular reference to the optics for a primarily spectroscopic application and the fabrication of the f/10 optics.

  19. E-Laboratory Design and Implementation for Enhanced Science, Technology and Engineering Education

    ERIC Educational Resources Information Center

    Morton, William; Uhomoibhi, James

    2011-01-01

    Purpose: This paper aims to report on the design and implementation of an e-laboratory for enhanced science, technology and engineering education studies. Design/methodology/approach: The paper assesses a computer-based e-laboratory, designed for new entrants to science, technology and engineering programmes of study in further and higher…

  20. Pre-Employment Laboratory Education. Home Furnishings/Interior Design Guidebook.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Instructional Materials Center.

    This guidebook is designed for use in teaching students enrolled in pre-employment laboratory education (PELE) home furnishing/interior design programs. The first of two major sections includes an overview for teachers on planning, conducting, and evaluating a home furnishings/interior design program. Specific topics discussed in section 1 include…

  1. A General Chemistry Laboratory Course Designed for Student Discussion

    ERIC Educational Resources Information Center

    Obenland, Carrie A.; Kincaid, Kristi; Hutchinson, John S.

    2014-01-01

    We report a study of the general chemistry laboratory course at one university over four years. We found that when taught as a traditional laboratory course, lab experiences do not encourage students to deepen their understanding of chemical concepts. Although the lab instructor emphasized that the lab experiences were designed to enhance…

  2. Silicon photonics: Design, fabrication, and characterization of on-chip optical interconnects

    NASA Astrophysics Data System (ADS)

    Hsieh, I.-Wei

    In recent years, the research field of silicon photonics has been developing rapidly from a concept to a demonstrated technology, and has gathered much attention from both academia and industry communities. Its many potential applications in long-haul telecommunication, mid-range data-communication, on-chip optical interconnection networks, and nano-scale sensing as well as its compatibility with electronic integrated circuits have driven much effort in realizing silicon photonics both as a disruptive technology for existing markets and as an enabling technology for new ones. Despite the promising future of silicon photonics, many fundamental issues still remain to be understood---both in the linear- and nonlinear-optical regimes. There are also many engineering challenges to make silicon photonics the gold standard in photonic integrated circuits. In this thesis, we focus on the design, fabrication, and characterization of active and passive silicon-on-insulator (SOI) photonic devices. The SOI material system differs from most conventional optical material platforms because of its high-refractive-index-contrast, which enables engineers to design very compact integrated photonic networks with sub-micron transverse waveguide dimensions and sharp bends. On the other hand, because most analytical formulas for designing waveguide devices are valid only in low-index-contrast cases, SOI photonic devices need to be analyzed numerically for accurate results. The second chapter of this thesis describes some common numerical methods such as Beam Propagation Method (BPM) and Finite Element Method (FEM) for waveguide-design simulations, and presents two design studies based on these methods. The compatibility of silicon photonic integrated circuits with conventional CMOS fabrication technology is another important aspect that distinguishes silicon photonics from others such as III-V materials and lithium niobate. However, the requirements for fabricating silicon photonic

  3. Bioreactor design concepts

    NASA Technical Reports Server (NTRS)

    Bowie, William

    1987-01-01

    Two parallel lines of work are underway in the bioreactor laboratory. One of the efforts is devoted to the continued development and utilization of a laboratory research system. That system's design is intended to be fluid and dynamic. The sole purpose of such a device is to allow testing and development of equipment concepts and procedures. Some of the results of those processes are discussed. A second effort is designed to produce a flight-like bioreactor contained in a double middeck locker. The result of that effort has been to freeze a particular bioreactor design in order to allow fabrication of the custom parts. The system is expected to be ready for flight in early 1988. However, continued use of the laboratory system will lead to improvements in the space bioreactor. Those improvements can only be integrated after the initial flight series.

  4. Design and fabrication of Ni nanowires having periodically hollow nanostructures

    NASA Astrophysics Data System (ADS)

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-09-01

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the

  5. Fabrication technology

    NASA Astrophysics Data System (ADS)

    1988-05-01

    Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.

  6. RNA design rules from a massive open laboratory

    PubMed Central

    Lee, Jeehyung; Kladwang, Wipapat; Lee, Minjae; Cantu, Daniel; Azizyan, Martin; Kim, Hanjoo; Limpaecher, Alex; Gaikwad, Snehal; Yoon, Sungroh; Treuille, Adrien; Das, Rhiju

    2014-01-01

    Self-assembling RNA molecules present compelling substrates for the rational interrogation and control of living systems. However, imperfect in silico models—even at the secondary structure level—hinder the design of new RNAs that function properly when synthesized. Here, we present a unique and potentially general approach to such empirical problems: the Massive Open Laboratory. The EteRNA project connects 37,000 enthusiasts to RNA design puzzles through an online interface. Uniquely, EteRNA participants not only manipulate simulated molecules but also control a remote experimental pipeline for high-throughput RNA synthesis and structure mapping. We show herein that the EteRNA community leveraged dozens of cycles of continuous wet laboratory feedback to learn strategies for solving in vitro RNA design problems on which automated methods fail. The top strategies—including several previously unrecognized negative design rules—were distilled by machine learning into an algorithm, EteRNABot. Over a rigorous 1-y testing phase, both the EteRNA community and EteRNABot significantly outperformed prior algorithms in a dozen RNA secondary structure design tests, including the creation of dendrimer-like structures and scaffolds for small molecule sensors. These results show that an online community can carry out large-scale experiments, hypothesis generation, and algorithm design to create practical advances in empirical science. PMID:24469816

  7. Impeller Creation at the Fabrication Shop

    NASA Image and Video Library

    1950-10-21

    A mechanic and apprentice work on a wooden impeller in the Fabrication Shop at the NACA Lewis Flight Propulsion Laboratory. The 260-person Fabrication Division created almost all of the equipment and models used at the laboratory. The Technical Services Building, referred to as the “Fab Shop”, contained a number of specialized shops in the 1940s and 1950s. These included a Machine Shop, Sheet Metal Shop, Wood and Pattern Shop, Instrument Shop, Thermocouple Shop, Heat Treating Shop, Metallurgical Laboratory, and Fabrication Office. The Machine Shop fabricated research equipment not commercially available. During World War II these technicians produced high-speed cameras for combustion research, impellers and other supercharger components, and key equipment for the lab’s first supersonic wind tunnel. The Wood and Pattern Shop created everything from control panels and cabinets to aircraft model molds for sheet metal work. The Sheet Metal Shop had the ability to work with 0.01 to 4-inches thick steel plates. The Instrument Shop specialized in miniature parts and instrumentation, while the Thermocouple Shop standardized the installation of pitot tubes and thermocouples. The Metallurgical Laboratory contained a control lab for the Heat Treating Shop and a service lab for the NACA Lewis research divisions. The Heat Treating Shop heated metal parts to optimize their physical properties and contained a Precision Castings Foundry to manufacture equipment made of heat resisting alloys.

  8. Design and fabrication of a high temperature leading edge heating array, phase 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress during a Phase 1 program to design a high temperature heating array is reported for environmentally testing full-scale shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates and pressures. Heat transfer analyses of the heating array, individual modules, and the shuttle leading edge were performed, which influenced the array design, and the design, fabrication, and testing of a prototype heater module.

  9. Designing the Psychology Laboratories at Nebraska Wesleyan University.

    ERIC Educational Resources Information Center

    Fawl, Clifford L.

    This paper describes the psychology laboratory at Nebraska Wesleyan University and the efforts of the small department which participated in the design and development process. The lab consists of 26 rooms, mostly small cubicles, and covers approximately 3,800 square feet. Each area of the lab is described in terms of its design and function.…

  10. Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer

    PubMed Central

    Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng

    2011-01-01

    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated. PMID:22247662

  11. Metal-wool heat shields for space shuttle. [design, fabrication, and attachment to structure

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Clure, J. L.

    1974-01-01

    The packaging of metal wool for reusable thermal heat shields applied to aerodynamic and other surfaces for the space shuttle was analyzed and designed, and samples were fabricated and experimentally studied. Parametric trends were prepared for selected configurations. An all-metal thermally efficient, reliable, reusable and producible heat shield system was designed and structurally tested for use on spacecraft aerodynamic surfaces where temperatures do not exceed 810 K. Stainless steel sheet, primarily for structure and secondarily in the transverse plane for thermal expansion, was shown to accommodate thermal expansion in all directions when restrained at the edges and heated to 1360 K. Aerodynamic loads of 0.35 x 1000,000 newtons/sq meter, and higher, may be easily accepted by structures of this design. Seven all-metal thermal protection specimens, 12.7 cm square and 2.5 cm thick were fabricated and are being experimentally evaluated at simulated shuttle entry conditions in an arc jet facility.

  12. Design, fabrication and characterization of Computer Generated Holograms for anti-counterfeiting applications using OAM beams as light decoders.

    PubMed

    Ruffato, Gianluca; Rossi, Roberto; Massari, Michele; Mafakheri, Erfan; Capaldo, Pietro; Romanato, Filippo

    2017-12-21

    In this paper, we present the design, fabrication and optical characterization of computer-generated holograms (CGH) encoding information for light beams carrying orbital angular momentum (OAM). Through the use of a numerical code, based on an iterative Fourier transform algorithm, a phase-only diffractive optical element (PO-DOE) specifically designed for OAM illumination has been computed, fabricated and tested. In order to shape the incident beam into a helicoidal phase profile and generate light carrying phase singularities, a method based on transmission through high-order spiral phase plates (SPPs) has been used. The phase pattern of the designed holographic DOEs has been fabricated using high-resolution Electron-Beam Lithography (EBL) over glass substrates coated with a positive photoresist layer (polymethylmethacrylate). To the best of our knowledge, the present study is the first attempt, in a comprehensive work, to design, fabricate and characterize computer-generated holograms encoding information for structured light carrying OAM and phase singularities. These optical devices appear promising as high-security optical elements for anti-counterfeiting applications.

  13. Design and Fabrication of a PDMS Microchip Based Immunoassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close amore » 200µm wide micro channel with flow rate up to 20µl/min.« less

  14. Design, fabrication and spin testing of ceramic blade metal disk attachment

    NASA Technical Reports Server (NTRS)

    Calvert, G.

    1979-01-01

    A ceramic turbine blade-metal disk attachment was designed for small, non man-rated turbine engine applications. The selected design consisted of a hot pressed silicon nitride blade having a skewed dovetail attachment with a compliant interlayer between the disk and the blade. Two-dimensional and three-dimensional analyses predicted that life goals could be achieved, considering both NDE limitations and crack growth rates for the ceramic material. Twenty ceramic blades were fabricated to closely-held manufacturing tolerances. New fracture mechanics data at elevated temperature are presented.

  15. Design and fabrication of reflective spatial light modulator for high-dynamic-range wavefront control

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Bierden, Paul; Cornelissen, Steven; Bifano, Thomas; Kim, Jin-Hong

    2004-10-01

    This paper describes design and fabrication of a microelectromechanical metal spatial light modulator (SLM) integrated with complementary metal-oxide semiconductor (CMOS) electronics, for high-dynamic-range wavefront control. The metal SLM consists of a large array of piston-motion MEMS mirror segments (pixels) which can deflect up to 0.78 µm each. Both 32x32 and 150x150 arrays of the actuators (1024 and 22500 elements respectively) were fabricated onto the CMOS driver electronics and individual pixels were addressed. A new process has been developed to reduce the topography during the metal MEMS processing to fabricate mirror pixels with improved optical quality.

  16. Fabrication of hierarchical polymer surfaces with superhydrophobicity by injection molding from nature and function-oriented design

    NASA Astrophysics Data System (ADS)

    Weng, Can; Wang, Fei; Zhou, Mingyong; Yang, Dongjiao; Jiang, Bingyan

    2018-04-01

    A comparison of processes and wettability characteristics was presented for injection molded superhydrophobic polypropylene surfaces from two fabricating strategies. One is the biomimetic replication of patterns from indocalamus leaf in nature. The contact angle of water sitting on this PP surface was measured as 152 ± 2°, with comparable wetting behavior to natural indocalamus leaf surface. The other strategy is the fabrication of superhydrophobic structure by combining methods that produce structures at different length scales. Regarding both the machinability of mold inserts and function-oriented design, three micro-quadrangular arrays and one hierarchical micro-nano cylinder array were designed with the goal of superhydrophobicity. Particularly, a simple approach to the fabrication of hierarchical structures was proposed by combining the anodized plate and the punching plate. The function-oriented design targets as superhydrophobicity were all reached for the designed four structures. The measured contact angles of droplet for these structures were almost consistent with the calculated equilibrium contact angles from thermodynamic analysis. Among them, the contact angle of droplet on the surface of designed hierarchical structure reached about 163° with the sliding angle of 5°, resulting in self-cleaning characteristic. The superhydrophobicity of function-oriented designed polymer surfaces could be modified and controlled, which is exactly the limitation of replicating from natural organisms.

  17. A Laboratory Project on the Theory, Fabrication, and Characterization of a Silicon-on-Insulator Micro-Comb Drive Actuator with Fixed-Fixed Beams

    ERIC Educational Resources Information Center

    Abbas, K.; Leseman, Z. C.

    2012-01-01

    A laboratory course on the theory, fabrication, and characterization of microelectromechanical systems (MEMS) devices for a multidisciplinary audience of graduate students at the University of New Mexico, Albuquerque, has been developed. Hands-on experience in the cleanroom has attracted graduate students from across the university's engineering…

  18. Economic analysis of the design and fabrication of a space qualified power system

    NASA Technical Reports Server (NTRS)

    Ruselowski, G.

    1980-01-01

    An economic analysis was performed to determine the cost of the design and fabrication of a low Earth orbit, 2 kW photovoltaic/battery, space qualified power system. A commercially available computer program called PRICE (programmed review of information for costing and evaluation) was used to conduct the analysis. The sensitivity of the various cost factors to the assumptions used is discussed. Total cost of the power system was found to be $2.46 million with the solar array accounting for 70.5%. Using the assumption that the prototype becomes the flight system, 77.3% of the total cost is associated with manufacturing. Results will be used to establish whether the cost of space qualified hardware can be reduced by the incorporation of commercial design, fabrication, and quality assurance methods.

  19. A 2000-hour cyclic endurance test of a laboratory model multipropellant resistojet

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Sovey, James S.

    1987-01-01

    The technological readiness of a long-life multipropellant resistojet for space station auxiliary propulsion is demonstrated. A laboratory model resistojet made from grain-stabilized platinum served as a test bed to evaluate the design characteristics, fabrication methods, and operating strategies for an engineering model multipropellant resistojet developed under contract by the Rocketdyne Division of Rockwell International and Technion Incorporated. The laboratory model thruster was subjected to a 2000-hr, 2400-thermal-cycle endurance test using carbon dioxide propellant. Maximum thruster temperatures were approximately 1400 C. The post-test analyses of the laboratory model thruster included an investigation of component microstructures. Significant observations from the laboratory model thruster are discussed as they relate to the design of the engineering model thruster.

  20. Computer Aided Process Planning (CAPP): The User Interface for the Fabrication Module of the Rapid Design System

    DTIC Science & Technology

    1991-01-01

    plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based Design Environment (FBDE) of the RDS. It...llll By using the user Interface, the final process plan can be modified in many different ways. The translation of a design feature to a more...for the review and modification of a process plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based

  1. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horais, Brian J; Love, Lonnie J; Dehoff, Ryan R

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron beam melting additive manufacturing processes. However, the use of today's additive manufacturing capabilities is often cost-prohibitive for small companies due to the large capital investments required. To alleviate this impediment the U.S. Department of Energymore » has established a Manufacturing Demonstration Facility (MDF) at their Oak Ridge National Laboratory (ORNL) in Tennessee that provides industry access to a broad range of energy-efficient additive manufacturing equipment for collaborative use by both small and large organizations. This paper presents a notional CubeSat multifunction design that integrates the propulsion system into a three-unit (3U) CubeSat structure. The full-scale structure has been designed and fabricated at the ORNL MDF. The use of additive manufacturing for spacecraft fabrication is opening up many new possibilities in design and fabrication capabilities for what had previously been impossible structures to fabricate.« less

  2. Design and fabrication of metal-insulator-metal diode for high frequency applications

    NASA Astrophysics Data System (ADS)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  3. Stirling Microregenerators Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  4. Fabrication of tissue engineered tympanic membrane patches using computer-aided design and injection molding.

    PubMed

    Hott, Morgan E; Megerian, Cliff A; Beane, Rich; Bonassar, Lawrence J

    2004-07-01

    The goal of the current study was to use computer-aided design and injection molding technologies to tissue engineer precisely shaped cartilage in the shape of butterfly tympanic membrane patches out of chondrocyte-seeded calcium alginate gels. Molds were designed on SolidWorks 2000 and built out of acrylonitrile butadiene styrene (ABS) using fused deposition modeling (FDM). Tympanic membrane patches were fabricated using bovine articular chondrocytes seeded at 50 x 10 cells/mL in 2% calcium alginate gels. Molded patches were cultured in vitro for up to 10 weeks and assessed biochemically, morphologically, and histologically. Unmolded patches demonstrated outstanding dimensional fidelity, with a volumetric precision of at least 3 microL, and maintained their shape well for up to 10 weeks of in vitro culture. Glycosaminoglycan and collagen content increased steadily over 10 weeks in culture, demonstrating continual deposition of new extracellular matrix consistent with new tissue development. The use of computer-aided design and injection molding technologies allows for the fabrication of very small, precisely shaped chondrocyte-seeded calcium alginate structures that faithfully maintain their shape during in vitro culture. In vitro fabrication of tympanic membrane patches with a precisely controlled geometry may have the potential to provide a minimally invasive alternative to traditional methods for the repair of chronic tympanic membrane perforations.

  5. Glutathione-facilitated design and fabrication of gold nanoparticle-based logic gates and keypad lock.

    PubMed

    Huang, Zhenzhen; Wang, Haonan; Yang, Wensheng

    2014-07-21

    In this paper, we describe how we developed a simple design and fabrication method for logic gates and a device by using a commercially available tripeptide, namely glutathione (GSH), together with metal ions and disodium ethylenediaminetetraacetate (EDTA) to control the dispersion and aggregation of gold nanoparticles (NPs). With the fast adsorption of GSH on gold NPs and the strong coordination of GSH with metal ions, the addition of GSH and Pb(2+) ions immediately resulted in the aggregation of gold NPs, giving rise to an AND function. Either Pb(2+) or Ba(2+) ions induced the aggregation of gold NPs in the presence of GSH, supporting an OR gate. Based on the fact that EDTA has a strong capacity to bind metal ions, thus preventing the aggregation of gold NPs, an INHIBIT gate was also fabricated. More interestingly, we found that the addition sequence of GSH and Hg(2+) ions influenced the aggregation of gold NPs in a controlled manner, which was used to design a sequential logic gate and a three-input keypad lock for potential use in information security. The GSH strategy addresses concerns of low cost, simple fabrication, versatile design and easy operation, and offers a promising platform for the development of functional logic systems.

  6. Design and fabrication of a reflection far ultraviolet polarizer and retarder

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Torr, Douglas G.

    1993-01-01

    New methods have been developed for the design of a far ultraviolet multilayer reflection polarizer and retarder. A MgF2/Al/MgF2 three-layer structure deposited on a thick opaque Al film (substrate) is used for the design of polarizers and retarders. The induced transmission and absorption method is used for the design of a polarizer and layer-by-layer electric field calculation method is used for the design of a quarterwave retarder. In order to fabricate these designs in a conventional high vacuum chamber, we have to minimize the oxidation of the Al layers and somehow characterize the oxidized layer. X-ray photoelectron spectroscopy is used to investigate the amount and profile of oxidation. Depth profiling results and a seven layer oxidation model are presented.

  7. Designing Online Resources in Preparation for Authentic Laboratory Experiences

    PubMed Central

    Boulay, Rachel; Parisky, Alex; Leong, Peter

    2013-01-01

    Professional development for science teachers can be benefited through active learning in science laboratories. However, how online training materials can be used to complement traditional laboratory training is less understood. This paper explores the design of online training modules to teach molecular biology and user perception of those modules that were part of an intensive molecular biology “boot camp” targeting high school biology teachers in the State of Hawaii. The John A. Burns School of Medicine at the University of Hawaii had an opportunity to design and develop professional development that prepares science teachers with an introduction of skills, techniques, and applications for their students to conduct medical research in a laboratory setting. A group of 29 experienced teachers shared their opinions of the online materials and reported on how they used the online materials in their learning process or teaching. PMID:24319698

  8. Fast electrochemical membrane actuator: Design, fabrication and preliminary testing

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Shlepakov, P. S.; Naumov, V. V.; Koroleva, O. M.; Izyumov, M. O.; Svetovoy, V. B.

    2017-11-01

    An actuator based on water electrolysis with a fast change of voltage polarity is presented. It demonstrates a new actuation principle allowing significant increase the operation frequency of the device due to fast termination of the produced gas. The actuator consists of a working chamber with metallic electrodes and supplying channels filled with an electrolyte. The chamber is formed in a layer of SU-8 and covered by a flexible polydimethylsiloxane membrane, which deforms as the pressure in the chamber increases. Design, fabrication procedure, and first tests of the actuator are described.

  9. Design and Fabrication of Flying Saucer Utilizing Coanda Effect

    NASA Astrophysics Data System (ADS)

    Aabid, Abdul; Khan, S. A.

    2018-05-01

    Coanda effect is used in several engineering applications with distinctive designs and structures. It is also applied in aircrafts flying at low speeds for a comfortable ride. In this paper, we have designed and modelled Coanda effect in terms of a flying saucer. The fabrication was done by means of structural and electronic components. Electrical motor was used as a propeller to take off and land vertically (VTOL) along with hovering capability. The rotor disc diameter is smaller than the bulbous body unlike a helicopter which makes to fly very stable. Control flaps were used to regulate the path by altering the flow over the streamlined body. The model was then tested with a remote control. Numerical Simulation of the tesla turbine was done using ANSYS 14.5 software and displacements were obtained by applying different forces on designed model. CATIA V5 was used to analyse the shaft of the model to get minimum value of torque at which the shaft starts to deform.

  10. Design and fabrication of a super alloy thermal protection system

    NASA Technical Reports Server (NTRS)

    Varisco, A.; Wolter, W.; Bell, P.

    1978-01-01

    A lightweight metallic TPS was designed, and two test articles were fabricated, one from Haynes 188 and one from Rene 41. A baseline TPS concept, selected at the beginning of the program, consisted of a Haynes 25 corrugation-stiffened beaded skin surface panel, a specially designed support system, and an insulation system. By optimizing the structure for the design loads and by chem-milling to remove material not needed, the mass of the baseline surface panel was reduced 25%, and the mass of the support structure was reduced 50%. The insulation system mass was reduced 40% by using two types of insulation, each suited to its temperature range, and by eliminating a foul bag which encapsulated the baseline insulation system. These reductions resulted in an overall 35% reduction in mass of the Haynes 188 panel from the baseline Haynes 25 design. Similar reductions were achieved with the Rene 41 system.

  11. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    NASA Astrophysics Data System (ADS)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  12. LANSCE harp upgrade: analysis, design, fabrication and installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilpatrick, John D; Chacon, Phillip; Martinez, Derwin

    2010-01-01

    The primary goal of this newly installed beam profile measurement is to provide the facility operators and physicists with a reliable horizontal and vertical projected beam distribution and location with respect to the proton beam target and beam aperture. During a 3000-hour annual run cycle, 5 {mu}C of charge is delivered every 50 milliseconds through this harp to the downstream TRMS Mark III target. The resulting radioactive annual dose near this harp is at least 6 MGy. Because of this harsh environment, the new harp design has been further optimized for robustness. For example, compared to an earlier design, thismore » harp has half of the sensing wires and utilizes only a single bias plane. The sensing fibers are 0.079-mm diameter SiC fibers. To hold these fibers to a rigid ceramic structure, a collet fiber-clamping device accomplishes the three goals of maintaining a mechanical fiber clamp, holding the sense fibers under a slight tensile force, and providing a sense-fiber electrical connection. This paper describes the harp analysis and design, and provides fabrication, assembly, and some installation information, and discusses wiring alterations.« less

  13. The Design and Operation of an Effective Math Laboratory.

    ERIC Educational Resources Information Center

    Brown, Donald E.

    A mathematics laboratory is discussed in terms of (1) administrative support, (2) personnel, (3) curriculum design, (4) flexibility in design and equipment, (5) professional counseling, and (6) motivational devices. The discussion focuses upon the remedial math lab at Alvin Community College, Alvin, Texas. The roles of instructors, lab…

  14. Design and fabrication of a micron scale free-standing specimen for uniaxial micro-tensile tests

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Wang, Hong; Li, Shi Chen; Liu, Rui; Mao, Sheng Ping; Li, Xue Ping; Zhang, Cong Chun; Ding, Guifu

    2009-10-01

    This paper presents a novel design and fabrication of test chips with a nickel free-standing specimen for the micro uniaxial tensile test. To fabricate test chips on the quartz substrate significantly reduces the fabrication time, minimizes the number of steps and eliminates the effect of the wet anisotropic etching process on mechanical properties. The test chip can be gripped tightly to the test machine and aligned accurately in the pulling direction; furthermore, the approximately straight design of the specimen rather than the traditional dog-bone structure enables the strain be directly measured by a displacement sensor. Both finite-element method (FEM) analysis and experimental results indicate the reliability of the new design. The test chip can also be extended to other materials. The experimental measured Young's modulus of a thin nickel film and the ultimate tensile strength are approximately 94.5 Gpa and 1.76 Gpa, respectively. The results were substantially supported by the experiment on larger gauge specimens by a commercial dynamic mechanical analysis (DMA) instrument. These specimens were electroplated under the same conditions. The low Young's modulus and the high ultimate tensile strength might be explained by the fine grain in the electroplated structure.

  15. Laboratories | Energy Systems Integration Facility | NREL

    Science.gov Websites

    laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing

  16. Design, fabrication, and test of a graphite/epoxy metering truss. [as applied to the LST

    NASA Technical Reports Server (NTRS)

    Oken, S.; Skoumal, D. E.

    1975-01-01

    A graphite/epoxy metering truss as applied to the large space telescope was investigated. A full-scale truss was designed, fabricated and tested. Tests included static limit loadings, a modal survey and thermal-vacuum distortion evaluation. The most critical requirement was the demonstration of the dimensional stability provided by the graphite/epoxy truss concept. Crucial to the attainment of this objective was the ability to make very sophisticated thermal growth measurements which was provided by a seven beam laser interferometer. The design of the basic truss elements were tuned to provide the high degree of dimensional stability and stiffness required by the truss. The struts and spider assembly were fabricated with Fiberite's AS/934 and HMS/934 broadgoods. The rings utilized T300 graphite fabricate with the same materials. The predicted performance of the truss was developed using the NASTRAN program. These results showed conformance with the critical stiffness and thermal distortion requirements and correlated well with the test results.

  17. Subscale Testing of a Ceramic Composite Cooled Panel Led to Its Design and Fabrication for Scramjet Engine Testing

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    2004-01-01

    In a partnership between the NASA Glenn Research Center and Pratt & Whitney, a ceramic heat exchanger panel intended for use along the hot-flow-path walls of future reusable launch vehicles was designed, fabricated, and tested. These regeneratively cooled ceramic matrix composite (CMC) panels offer lighter weight, higher operating temperatures, and reduced coolant requirements in comparison to their more traditional metallic counterparts. A maintainable approach to the design was adopted which allowed the panel components to be assembled with high-temperature fasteners rather than by permanent bonding methods. With this approach, the CMC hot face sheet, the coolant containment system, and backside structure were all fabricated separately and could be replaced individually as the need occurred during use. This maintainable design leads to both ease of fabrication and reduced cost.

  18. Design and Implementation of an Undergraduate Laboratory Course in Psychophysiology

    ERIC Educational Resources Information Center

    Thibodeau, Ryan

    2011-01-01

    Most psychology curricula require the completion of coursework on the physiological bases of behavior. However, delivery of this critical content in a laboratory format is somewhat rare at the undergraduate level. To fill this gap, this article describes the design and implementation of an undergraduate laboratory course in psychophysiology at a…

  19. Design and fabrication of Ni nanowires having periodically hollow nanostructures.

    PubMed

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-10-07

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag 'barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 ± 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni(2+) for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.

  20. Optical fabrication of large area photonic microstructures by spliced lens

    NASA Astrophysics Data System (ADS)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  1. Highlights of the ASPE 2004 Winter Topical Meeting on Free-Form Optics: Design, Fabrication, Metrology, Assembly

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond G.; Dow, Thomas A.; Sohn, alex

    2004-01-01

    We present highlights from the American Society for Precision Engineering's 2004 winter topical meeting entitled Free-Form Optics: Design, Fabrication, Metrology, Assembly. We emphasize those papers that are most relevant to astronomical optics. Optical surfaces that transcend the bounds of rotational symmetry have been implemented in novel optical systems with fantastic results since the release of Polaroid's first instant camera. Despite these successes, free-form optics have found only a few niche applications and have yet to enter the mainstream. The purpose of this meeting is to identify the state of the art of free-form optics design, fabrication, metrology and assembly and to identify the technical and logistical challenges that inhibit their widespread use. Issues that will be addressed include: What are free-form optics? How can optical systems be made better with free-form optics? How can designers use free-form optics? How can free-form optics be fabricated? How can they be measured? How are free-form optical systems assembled? Control of multi-axis systems.

  2. Designing, Fabrication and Controlling Of Multipurpose3-DOF Robotic Arm

    NASA Astrophysics Data System (ADS)

    Nabeel, Hafiz Muhammad; Azher, Anum; Usman Ali, Syed M.; Wahab Mughal, Abdul

    2013-12-01

    In the present work, we have successfully designed and developed a 3-DOF articulated Robotic Arm capable of performing typical industrial tasks such as painting or spraying, assembling and handling automobiles parts and etc., in resemblance to a human arm. The mechanical assembly is designed on SOLIDWORKS and aluminum grade 6061 -T6 is used for its fabrication in order to reduce the structure weight. We have applied inverse kinematics to determine the joint angles, equations are fed into an efficient microcontroller ATMEGA16 which performs all the calculations to determine the joint angles on the basis of given coordinates to actuate the joints through motorized control. Good accuracy was obtained with quadrature optical encoders installed in each joint to achieve the desired position and a LabVIEW based GUI is designed to provide human machine interface.

  3. Fabrication process scale-up and optimization for a boron-aluminum composite radiator

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1973-01-01

    Design approaches to a practical utilization of a boron-aluminum radiator for the space shuttle orbiter are presented. The program includes studies of laboratory composite material processes to determine the feasibility of a structural and functional composite radiator panel, and to estimate the cost of its fabrication. The objective is the incorporation of boron-aluminum modulator radiator on the space shuttle.

  4. 49 CFR Appendix B to Part 219 - Designation of Laboratory for Post-Accident Toxicological Testing

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Designation of Laboratory for Post-Accident.... 219, App. B Appendix B to Part 219—Designation of Laboratory for Post-Accident Toxicological Testing The following laboratory is currently designated to conduct post-accident toxicological analysis under...

  5. Additive manufacturing capabilities applied to inertial confinement confusion at Los Alamos National Laboratory

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Peterson, Dominic S.

    2016-08-01

    We describe the use at Los Alamos National Laboratory of additive manufacturing (AM) for a variety of jigs and coating, assembly, and radiography fixtures. Additive manufacturing has also been used to produce shipping containers of complex design that would be too costly to have fabricated using traditional techniques. The current goal for AM use in target fabrication is to increase target accuracy and rigidity. This has been realized by implementing AM into target stalk fabrication, allowing increased complexity to address target strength and the addition of features for alignment at facilities. As a result, we will describe the fabrication ofmore » these components and our plans to utilize AM in the future.« less

  6. Design, Modeling, and Fabrication of Chemical Vapor Deposition Grown MoS2 Circuits with E-Mode FETs for Large-Area Electronics.

    PubMed

    Yu, Lili; El-Damak, Dina; Radhakrishna, Ujwal; Ling, Xi; Zubair, Ahmad; Lin, Yuxuan; Zhang, Yuhao; Chuang, Meng-Hsi; Lee, Yi-Hsien; Antoniadis, Dimitri; Kong, Jing; Chandrakasan, Anantha; Palacios, Tomas

    2016-10-12

    Two-dimensional electronics based on single-layer (SL) MoS 2 offers significant advantages for realizing large-scale flexible systems owing to its ultrathin nature, good transport properties, and stable crystalline structure. In this work, we utilize a gate first process technology for the fabrication of highly uniform enhancement mode FETs with large mobility and excellent subthreshold swing. To enable large-scale MoS 2 circuit, we also develop Verilog-A compact models that accurately predict the performance of the fabricated MoS 2 FETs as well as a parametrized layout cell for the FET to facilitate the design and layout process using computer-aided design (CAD) tools. Using this CAD flow, we designed combinational logic gates and sequential circuits (AND, OR, NAND, NOR, XNOR, latch, edge-triggered register) as well as switched capacitor dc-dc converter, which were then fabricated using the proposed flow showing excellent performance. The fabricated integrated circuits constitute the basis of a standard cell digital library that is crucial for electronic circuit design using hardware description languages. The proposed design flow provides a platform for the co-optimization of the device fabrication technology and circuits design for future ubiquitous flexible and transparent electronics using two-dimensional materials.

  7. Electrothermal actuators fabricated in four-level planarized surface-miromachined polycrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comtois, J.H.; Michalicek, A.; Barron, C.C.

    1997-11-01

    This paper presents the results of tests performed on a variety of electrochemical microactuators and arrays of these actuators fabricated in the SUMMiT process at the U.S. Department of Energy`s Sandia National Laboratories. These results are intended to aid designers of thermally actuated mechanisms, and they apply to similar actuators made in other polysilicon MEMS processes such as the MUMPS process. Measurements include force and deflection versus input power, maximum operating frequency, effects of long term operation, and ideal actuator and array geometries for different applications` force requirements. Also, different methods of arraying these actuators together are compared. It ismore » found that a method using rotary joints, enabled by the advanced features of the SUMMiT fabrication process, is the most efficient array design. The design and operation of a thermally actuated stepper motor is explained to illustrate a useful application of these arrays.« less

  8. Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application

    NASA Technical Reports Server (NTRS)

    Hennessy, Mary J.

    1992-01-01

    The Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application is in support of the Abrasion Resistance Materials Screening Test. The fundamental assumption made for the SEM abrasion analysis was that woven fabrics to be used as the outermost layer of the protective overgarment in the design of the future, planetary space suits perform best when new. It is the goal of this study to determine which of the candidate fabrics was abraded the least in the tumble test. The sample that was abraded the least will be identified at the end of the report as the primary candidate fabric for further investigation. In addition, this analysis will determine if the abrasion seen by the laboratory tumbled samples is representative of actual EVA Apollo abrasion.

  9. Design and fabrication of sub-wavelength anti-reflection grating

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Li, Chaoming; Chen, Xinrong; Cai, Zhijian; Wu, Jianhong

    2018-01-01

    In the high power laser system, the reflection of optical surface has a strong impact on the efficiency for luminous energy utilization. Fresnel reflection can be effectively suppressed by antireflection film. For that, the anti-reflection film is one of the important optical elements in high power laser system. The common preparation methods of anti-reflection film include monolayer film, multilayer film and sub-wavelength grating. The effectiveness of monolayer is unsatisfactory, and its application spectrum bandwidth is very narrow. The preparation process of multilayer film is complex and it is very expensive. The emerging technology of fabrication anti-reflection film is sub-wavelength grating. The zero order transmission diffraction efficiency depends on the period, etching depth and duty cycle of the grating. The structure parameters of antireflection grating were designed and optimized under small angle incidence of 351nm based on rigorous coupled wave analysis method. The impaction of zero order reflection diffraction and zero order transmission diffraction efficiency on period, duty cycle and etching depth of grating was discussed in detail in this paper. The sub-wavelength anti-reflection grating was fabricated by holographic and ion etching method.

  10. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    PubMed

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  11. Stormwater Pollution Prevention Plan for the TA-03-38 Metals Fabrication Shop, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector AA-Fabricated Metal Products as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-38 Metals Fabrication Shop at Los Alamos National Laboratory. Los Alamos National Laboratorymore » (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-38 Metals Fabrication Shop and associated areas. The current permit expires at midnight on June 4, 2020.« less

  12. Design and Fabrication of the All-Reflecting H-Lyman alpha Coronagraph/Polarimeter

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Johnson, R. Barry; Fineschi, Silvano; Walker, Arthur B. C., Jr.; Baker, Phillip C.; Zukic , Muamer; Kim, Jongmin

    1993-01-01

    We have designed, analyzed, and are now fabricating an All-Reflecting H-Lyman alpha Coronagraph/Polarimeter for solar research. This new instrument operates in a narrow bandpass centered at lambda 1215.7 A-the neutral hydrogen Lyman alpha (Ly-alpha) line. It is shorter and faster than the telescope which produced solar Ly-alpha images as a part of the MSSTA payload that was launched on May 13, 1991. The Ly-alpha line is produced and linearly polarized in the solar corona by resonance scattering, and the presence of a magnetic field modifies this polarization according to the Hanle effect. The Lyman alpha Coronagraph/Polarimeter instrument has been designed to measure coronal magnetic fields by interpreting, via the Hanle effect, the measured linear polarization of the coronal Ly-alpha line. Ultrasmooth mirrors, polarizers, and filters are being flow-polished for this instrument from CVD silicon carbide substrates. These optical components will be coated using advanced induced transmission and absorption thin film multilayer coatings, to optimize the reflectivity and polarization properties at 1215.7 A. We describe some of the solar imaging results obtained with the MSSTA Lyman alpha coronagraph. We also discuss the optical design parameters and fabrication plans for the All-Reflecting H-Lyman alpha Coronagraph/Polarimeter.

  13. Design and development of a solar powered mobile laboratory

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Simon, A.; Barrera, H.; Acharya, V.; Repke, W.

    2016-08-01

    This paper describes the design and development of a solar powered mobile laboratory (SPML) system. The SPML provides a mobile platform that schools, universities, and communities can use to give students and staff access to laboratory environments where dedicated laboratories are not available. The lab includes equipment like 3D printers, computers, and soldering stations. The primary power source of the system is solar PV which allows the laboratory to be operated in places where the grid power is not readily available or not sufficient to power all the equipment. The main system components include PV panels, junction box, battery, charge controller, and inverter. Not only is it used to teach students and staff how to use the lab equipment, but it is also a great tool to educate the public about solar PV technologies.

  14. Design, development and fabrication of a deployable/retractable truss beam model for large space structures application

    NASA Technical Reports Server (NTRS)

    Adams, Louis R.

    1987-01-01

    The design requirements for a truss beam model are reviewed. The concept behind the beam is described. Pertinent analysis and studies concerning beam definition, deployment loading, joint compliance, etc. are given. Design, fabrication and assembly procedures are discussed.

  15. Design and Implementation of Instructional Videos for Upper-Division Undergraduate Laboratory Courses

    ERIC Educational Resources Information Center

    Schmidt-McCormack, Jennifer A.; Muniz, Marc N.; Keuter, Ellie C.; Shaw, Scott K.; Cole, Renée S.

    2017-01-01

    Well-designed laboratories can help students master content and science practices by successfully completing the laboratory experiments. Upper-division chemistry laboratory courses often present special challenges for instruction due to the instrument intensive nature of the experiments. To address these challenges, particularly those associated…

  16. An economic analysis of a commercial approach to the design and fabrication of a space power system

    NASA Technical Reports Server (NTRS)

    Putney, Z.; Been, J. F.

    1979-01-01

    A commercial approach to the design and fabrication of an economical space power system is presented. Cost reductions are projected through the conceptual design of a 2 kW space power system built with the capability for having serviceability. The approach to system costing that is used takes into account both the constraints of operation in space and commercial production engineering approaches. The cost of this power system reflects a variety of cost/benefit tradeoffs that would reduce system cost as a function of system reliability requirements, complexity, and the impact of rigid specifications. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance cost estimates are detailed.

  17. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan

    2016-03-01

    In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.

  18. Laboratory prototype flash evaporator

    NASA Technical Reports Server (NTRS)

    Gaddis, J. L.

    1972-01-01

    A laboratory prototype flash evaporator that is being developed as a candidate for the space shuttle environmental control system expendable heat sink is described. The single evaporator configuration uses water as an evaporant to accommodate reentry and on-orbit peak heat loads, and Freon 22 for terrestrial flight phases below 120,000 feet altitude. The design features, fabrication techniques used for the prototype unit, redundancy considerations, and the fluid temperature control arrangement are reported in detail. The results of an extensive test program to determine the evaporator operational characteristics under a wide variety of conditions are presented.

  19. Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.

  20. Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    Results of tests conducted to demonstrate that composite structures save weight, possess long term durability, and can be fabricated at costs competitive with conventional metal structures are presented with focus on the use of graphite-epoxy in the design of a stabilizer for the Boeing 737 aircraft. Component definition, materials evaluation, material design properties, and structural elements tests are discussed. Fabrication development, as well as structural repair and inspection are also examined.

  1. Fabricating customized hydrogel contact lens

    NASA Astrophysics Data System (ADS)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  2. Fabricating customized hydrogel contact lens

    PubMed Central

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-01-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies. PMID:27748361

  3. Fabrication of Large YBCO Superconducting Disks

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Noever, David A.; Robertson, Glen A.

    1999-01-01

    We have undertaken fabrication of large bulk items to develop a repeatable process and to provide test articles in laboratory experiments investigating reported coupling of electromagnetic fields with the local gravity field in the presence of rotating superconducting disks. A successful process was developed which resulted in fabrication of 30 cm diameter annular disks. The disks were fabricated of the superconductor YBa2Cu3O(7-x). Various material parameters of the disks were measured.

  4. Design, Fabrication, and Packaging of Mach-Zehnder Interferometers for Biological Sensing Applications

    NASA Astrophysics Data System (ADS)

    Novak, Joseph

    Optical biological sensors are widely used in the fields of medical testing, water treatment and safety, gene identification, and many others due to advances in nanofabrication technology. This work focuses on the design of fiber-coupled Mach-Zehnder Interferometer (MZI) based biosensors fabricated on silicon-on-insulator (SOI) wafer. Silicon waveguide sensors are designed with multimode and single-mode dimensions. Input coupling efficiency is investigated by design of various taper structures. Integration processing and packaging is performed for fiber attachment and enhancement of input coupling efficiency. Optical guided-wave sensors rely on single-mode operation to extract an induced phase-shift from the output signal. A silicon waveguide MZI sensor designed and fabricated for both multimode and single-mode dimensions. Sensitivity of the sensors is analyzed for waveguide dimensions and materials. An s-bend structure is designed for the multimode waveguide to eliminate higher-order mode power as an alternative to single-mode confinement. Single-mode confinement is experimentally demonstrated through near field imaging of waveguide output. Y-junctions are designed for 3dB power splitting to the MZI arms and for power recombination after sensing to utilize the interferometric function of the MZI. Ultra-short 10microm taper structures with curved geometries are designed to improve insertion loss from fiber-to-chip without significantly increasing device area and show potential for applications requiring misalignment tolerance. An novel v-groove process is developed for self-aligned integration of fiber grooves for attachment to sensor chips. Thermal oxidation at temperatures from 1050-1150°C during groove processing creates an SiO2 layer on the waveguide end facet to protect the waveguide facet during integration etch processing without additional e-beam lithography processing. Experimental results show improvement of insertion loss compared to dicing preparation

  5. Aerospace Energy Systems Laboratory - Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames/Dryden Flight Research Facility operates a mixed fleet of research aircraft employing NiCd batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has evolved over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  6. Recent Advances in Designing and Fabricating Self‐Supported Nanoelectrodes for Supercapacitors

    PubMed Central

    Zhao, Huaping; Liu, Long; Vellacheri, Ranjith

    2017-01-01

    Abstract Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self‐supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self‐supported nanoelectrodes for supercapacitors towards high energy storage capability. Self‐supported homogeneous and heterogeneous nanoelectrodes in the forms of one‐dimensional (1D) nanoarrays, two‐dimensional (2D) nanoarrays, and three‐dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed. PMID:29051862

  7. Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors.

    PubMed

    Zhao, Huaping; Liu, Long; Vellacheri, Ranjith; Lei, Yong

    2017-10-01

    Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self-supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors towards high energy storage capability. Self-supported homogeneous and heterogeneous nanoelectrodes in the forms of one-dimensional (1D) nanoarrays, two-dimensional (2D) nanoarrays, and three-dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed.

  8. Design and testing of RFID sensor tag fabricated using inkjet-printing and electrodeposition

    NASA Astrophysics Data System (ADS)

    Chien Dang, Mau; Son Nguyen, Dat; Dung Dang, Thi My; Tedjini, Smail; Fribourg-Blanc, Eric

    2014-06-01

    The passive RFID tag with an added sensing function is of interest to many applications. In particular, applications where RFID tagging is already considered to be the next step, such as food items, are a specific target. This paper demonstrates a flexible RFID tag sensor fabricated using a low cost technique with an added zero-cost sensing function. It is more specifically applied to the sensing of degradable food, in particular beef meat in our demonstrated example. To reach this, the antenna is designed in such a way to be sensitive to the variation of the dielectric permittivity of the meat over time. The design of the sensing tag as well as its fabrication process are described. The fabrication involves inkjet printing of a silver nanoparticle based ink on a commercial low cost PET film to create a seed layer. It is followed by a copper electrodeposition step on top of the silver pattern to complete the tag to obtain the desired thickness and conductivity of the tag antenna. The results of the electrical tests showed that with the inkjet printing-electrodeposition combination it is possible to produce flexible electrically conductive patterns for practical RFID applications. The tag was then tested in close-to-real-world conditions and it is demonstrated that it can provide a sensing function to detect the consumption limit of the packaged beef.

  9. Small, low-cost, expendable turbojet engine. 1: Design, fabrication, and preliminary testing

    NASA Technical Reports Server (NTRS)

    Dengler, R. P.; Macioce, L. E.

    1976-01-01

    A small experimental axial-flow turbojet engine in the 2,669-Newton (600-lbf) thrust class was designed, fabricated, and tested to demonstrate the feasibility of several low-cost concepts. Design simplicity was stressed in order to reduce the number of components and machining operations. Four engines were built and tested for a total of 157 hours. Engine testing was conducted at both sea-level static and simulated flight conditions for engine speeds as high as 38,000 rpm and turbine-inlet temperatures as high as 1,255 K (1,800 F).

  10. Self-cleaning and self-sanitizing coatings on plastic fabrics: design, manufacture and performance.

    PubMed

    Barletta, M; Vesco, S; Tagliaferri, V

    2014-08-01

    Self-cleaning and self-sanitizing coatings are of utmost interest in several manufacturing domains. In particular, fabrics and textile materials are often pre-treated by impregnation or incorporation with antimicrobial pesticides for protection purposes against bacteria and fungi that are pathogenic for man or other animals. In this respect, the present investigation deals with the design and manufacture of self-cleaning and self-sanitizing coatings on plastic fabrics. The functionalization of the coatings was yield by incorporating active inorganic matter alone (i.e., photo-catalytic TiO2 anatase and Ag(+) ions) inside an organic inorganic hybrid binder. The achieved formulations were deposited on coextruded polyvinylchloride-polyester fabrics by air-mix spraying and left to dry at ambient temperature. The performance of the resulting coatings were characterized for their self-cleaning and self-sanitizing ability according to standardized testing procedure and/or applicable international regulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. 3-D Printing as an Effective Educational Tool for MEMS Design and Fabrication

    ERIC Educational Resources Information Center

    Dahle, Reena; Rasel, Rafiul

    2016-01-01

    This paper presents a series of course modules developed as a high-impact and cost-effective learning tool for modeling and simulating the microfabrication process and design of microelectromechanical systems (MEMS) devices using three-dimensional (3-D) printing. Microfabrication technology is an established fabrication technique for small and…

  12. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    NASA Astrophysics Data System (ADS)

    Tan, Y.-R. E.; Wang, D.; Van Garderen, E.; McKinlay, J.

    2012-10-01

    To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM) has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR) of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre) of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal) and 75 um (vertical).

  13. Material property for designing, analyzing, and fabricating space structures

    NASA Technical Reports Server (NTRS)

    Kolkailah, Faysal A.

    1991-01-01

    An analytical study was made of plasma assisted bullet projectile. The finite element analysis and the micro-macromechanic analysis was applied to an optimum design technique for the multilayered graphite-epoxy composite projectile that will achieve hypervelocity of 6 to 10 Km/s. The feasibility was determined of dialectics to monitor cure of graphite-epoxies. Several panels were fabricated, cured, and tested with encouraging results of monitoring the cure of graphite-epoxies. The optimum cure process for large structures was determined. Different orientation were used and three different curing cycles were employed. A uniaxial tensile test was performed on all specimens. The optimum orientation with the optimum cure cycle were concluded.

  14. Guided Inquiry in a Biochemistry Laboratory Course Improves Experimental Design Ability

    ERIC Educational Resources Information Center

    Goodey, Nina M.; Talgar, Cigdem P.

    2016-01-01

    Many biochemistry laboratory courses expose students to laboratory techniques through pre-determined experiments in which students follow stepwise protocols provided by the instructor. This approach fails to provide students with sufficient opportunities to practice experimental design and critical thinking. Ten inquiry modules were created for a…

  15. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  16. Design and prototype fabrication of a 30 tesla cryogenic magnet

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Swanson, M. C.; Brown, G. V.

    1977-01-01

    A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.

  17. Man-computer Inactive Data Access System (McIDAS). [design, development, fabrication, and testing

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A technical description is given of the effort to design, develop, fabricate, and test the two dimensional data processing system, McIDAS. The system has three basic sections: an access and data archive section, a control section, and a display section. Areas reported include hardware, system software, and applications software.

  18. Aerospace energy systems laboratory: Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  19. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Knight, Norman F., Jr.

    2002-01-01

    A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.

  20. Atomic Force Microscopy Analysis of Nanocrystalline Patterns Fabricated Using Micromolding in Capillaries

    ERIC Educational Resources Information Center

    Lyman, Benjamin M.; Farmer, Orrin J.; Ramsey, Ryan D.; Lindsey, Samuel T.; Stout, Stephanie; Robison, Adam; Moore, Holly J.; Sanders, Wesley C.

    2012-01-01

    A cost-effective, hands-on laboratory exercise is described for demonstrating nanoscale fabrication at non-research-based educational institutions. The laboratory exercise also contains a component involving qualitative and quantitative surface characterization of student-fabricated nanoscale structures at institutions with on-site access to an…

  1. Digital fabrication of textiles: an analysis of electrical networks in 3D knitted functional fabrics

    NASA Astrophysics Data System (ADS)

    Vallett, Richard; Knittel, Chelsea; Christe, Daniel; Castaneda, Nestor; Kara, Christina D.; Mazur, Krzysztof; Liu, Dani; Kontsos, Antonios; Kim, Youngmoo; Dion, Genevieve

    2017-05-01

    Digital fabrication methods are reshaping design and manufacturing processes through the adoption of pre-production visualization and analysis tools, which help minimize waste of materials and time. Despite the increasingly widespread use of digital fabrication techniques, comparatively few of these advances have benefited the design and fabrication of textiles. The development of functional fabrics such as knitted touch sensors, antennas, capacitors, and other electronic textiles could benefit from the same advances in electrical network modeling that revolutionized the design of integrated circuits. In this paper, the efficacy of using current state-of-the-art digital fabrication tools over the more common trialand- error methods currently used in textile design is demonstrated. Gaps are then identified in the current state-of-the-art tools that must be resolved to further develop and streamline the rapidly growing field of smart textiles and devices, bringing textile production into the realm of 21st century manufacturing.

  2. 3D Printed Surgical Instruments: The Design and Fabrication Process.

    PubMed

    George, Mitchell; Aroom, Kevin R; Hawes, Harvey G; Gill, Brijesh S; Love, Joseph

    2017-01-01

    3D printing is an additive manufacturing process allowing the creation of solid objects directly from a digital file. We believe recent advances in additive manufacturing may be applicable to surgical instrument design. This study investigates the feasibility, design and fabrication process of usable 3D printed surgical instruments. The computer-aided design package SolidWorks (Dassault Systemes SolidWorks Corp., Waltham MA) was used to design a surgical set including hemostats, needle driver, scalpel handle, retractors and forceps. These designs were then printed on a selective laser sintering (SLS) Sinterstation HiQ (3D Systems, Rock Hill SC) using DuraForm EX plastic. The final printed products were evaluated by practicing general surgeons for ergonomic functionality and performance, this included simulated surgery and inguinal hernia repairs on human cadavers. Improvements were identified and addressed by adjusting design and build metrics. Repeated manufacturing processes and redesigns led to the creation of multiple functional and fully reproducible surgical sets utilizing the user feedback of surgeons. Iterative cycles including design, production and testing took an average of 3 days. Each surgical set was built using the SLS Sinterstation HiQ with an average build time of 6 h per set. Functional 3D printed surgical instruments are feasible. Advantages compared to traditional manufacturing methods include no increase in cost for increased complexity, accelerated design to production times and surgeon specific modifications.

  3. Evolutionary Design of a Phased Array Antenna Element

    NASA Technical Reports Server (NTRS)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  4. This Is not Participatory Design - A Critical Analysis of Eight Living Laboratories.

    PubMed

    Bygholm, Ann; Kanstrup, Anne Marie

    2017-01-01

    Design of Health Technology for elderly and care personnel has a high priority because of a severe increase of elderly citizens in need of health care combined with a decrease of resources in the health care sector. Desires for maintaining and improving the quality of care while reducing costs has resulted in a search for approaches that support co-operation between technology designers, elderly persons and health care professionals on innovating future care technology. Living laboratories, where areas of a care environment are transformed into a so-called platform for technology innovation, are popular. Expectations for living laboratories are high but examinations of how such laboratories support the intended participatory innovation are few. This paper presents and examines eight living laboratories set up in Danish nursing homes for technology innovation. We present the notion of a living laboratory and explicate the aspirations and expectations of this approach, and discuss why these expectations are hard to meet both on a general level and in the investigated labs. We question the basic assumptions of the possibility of reconciling the different interests of the stakeholders involved. In our analysis we focus on users in the living laboratories. We use guiding principles developed within Participatory Design to reveal the role and participation of the users - the health care professionals and the elderly - in the eight living laboratories. In general, these users played a minor role, in the labs where technical problems turned out to be main activity. We conclude that living laboratories do not nullify different/conflicting interests and that a real-life setting by itself is no guarantee for user participation.

  5. Design, fabrication, and testing of nanostructured carbons and composites

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong

    Many applications, such as catalysis, sensing, separation and energy storage and conversion, will benefit from the miniaturization of materials to nanometer length scales. This dissertation details my study of nanocomposites based on three-dimensionally ordered macroporous (3DOM) carbons and zirconia, and three-dimensionally ordered macroporous/mesoporous (3DOM/m) carbons. The macropores of these materials were produced using colloidal crystal templates while the mesopores were generated using surfactant templates. These solids are composed of close-packed and three-dimensionally interconnected spherical macropores surrounded by nanoscale solid or mesoporous wall skeletons. This unique architecture offers large surface areas, pore volumes, and good access into the bulk via a macroporous network. 3DOM carbons have been demonstrated as promising electrode materials for lithium ion batteries and sensors, but their electrochemical performance still needs to be improved. As a model system for the modification of the electrode, 3DOM C/TiO2 was synthesized by fabricating a conformal coating of TiO2 nanoparticles on the macropore walls of 3DOM C. My research further extended the micro-structural design of monolithic carbon from 3DOM to 3DOM/m. 3DOM/m C monoliths with high surface areas, controllable mesopore sizes, and mesopore ordering, were synthesized by three methods. One of the methods is simpler and more environment benign than previously reported methods. The mesopores in 3DOM/m C-based electrode provide room to accommodate secondary phases, such as graphitic carbon, SnO2 and Si which can improve the conductivity or lithium capacity of the electrode. Owing to this advantage, 3DOM/m C/C and 3DOM/m C/SnO2 exhibited significantly improved rate performance, lithium capacity and cycleability, compared with 3DOM C. To meet the demands of nano-sized functional materials in applications such as nano-device fabrication and drug delivery, mesoporous carbon nanoparticles with

  6. Designing laboratory activities in elementary school oriented to scientific approach for teachers SD-Kreatif Bojonegoro

    NASA Astrophysics Data System (ADS)

    Dwikoranto; Surasmi, W. A.; Suparto, A.; Tresnaningsih, S.; Sambada, D.; Setyowati, T.; Faqih, A.; Setiani, R.

    2018-03-01

    Important science lessons are introduced to elementary school students through inquiry. This training is important to do because one key determinant of succesful laboratory activities is teachers. This course aims to enable teachers to design an inquiry-based Laboratory Activity and be able to apply it in the classroom. The training was conducted at SD-Kreatif Bojonegoro by Modeling, Design Laboratory activities and Implementing. The results of Laboratory Activities designed to trace the seven aspects that can support the development of inquiry skills in either category. The teacher's response in this activity is positive. The conclusion of this training can improve the ability of teachers in designing and implementing laboratory activities of Science and then expected to positively affect the frequency of science laboratory activities. Usually teachers use learning by using this Laboratory Activity, it will be affected on the pattern of inquiry behavior to the students as well so that will achieve the expected goals. Teachers are expected to continue for other topics, even for other similarly characterized subjects. This habitation is important so that the teacher's skill in making Laboratory Activity continues to be well honed and useful for the students.

  7. Design and fabrication of single-crystal GaN nano-bridge on homogeneous substrate for nanoindentation

    NASA Astrophysics Data System (ADS)

    Hung, Shang-Chao

    2014-12-01

    This study reports a simple method to design and fabricate a freestanding GaN nano-bridge over a homogeneous short column as supporting leg. Test samples were fabricated from MOCVD-grown single-crystal GaN films over sapphire substrate using a FIB milling to leave freestanding short spans. We also investigated the nanoindentation characteristics and the corresponding nanoscopic mechanism of the GaN nano-bridge and its short column with a conical indenter inside transmission electron microscopy. The stress-strain mechanical properties and Young's modulus have also been examined and calculated as 108 GPa ± 4.8 % by the strain energy method. The significant slope switch of the L- D curve corresponds to the transition from the single-point bending indentation to the surface stretching indentation and has been interpreted with the evolution of TEM images. This freestanding fabrication and test have key advantages to characterize nanoscale behavior of one-dimensional bridge structure and greater ease of sample preparation over other micro-fabrication techniques.

  8. Design, fabrication, and testing of a low frequency MEMS piezoelectromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Fernandes, Egon; Martin, Blake; Rua, Isabel; Zarabi, Sid; Debéda, Hélène; Nairn, David; Wei, Lan; Salehian, Armaghan

    2018-03-01

    This paper details a power solution for smart grid applications to replace batteries by harvesting the electromagnetic energy from a current-carrying wire. A MEMS piezoelectromagnetic energy harvester has been fabricated using PZT screen-printing technology with a centrally-supported meandering geometry. The energy harvesting device employs a symmetric geometry to increase its power output by reducing the effects of the torsional modes and the resultant overall strain nodes in the system subsequently reduce the complexities for the electrode fabrication. The unit is modelled using COMSOL to determine mode shapes and frequency response functions. A 12.7 mm by 14.7 mm unit is fabricated by screen-printing 75 μm-thick PZT on a stainless steel substrate and then experimentally tested to validate the FEA results. Experimentally, the harvester is shown to produce 9 μW from a wire carrying 7 A while operating at a distance of 6.5 mm from the wire. The design of the current work results in a greater normalized power density than other MEMS based piezoelectromagnetic devices and shows great potential relative to larger devices that use bulk or thin film piezoelectrics.

  9. Fabrication and design of vanadium oxide microbolometer

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, M.; Al-Khalli, N.; Zia, M. F.; Alduraibi, M.; Ilahi, B.; Awad, E.; Debbar, N.

    2017-02-01

    Vanadium oxide (VxOy) multilayer sandwich structures previously studied by our group were found to yield a sensitive thermometer thin film material suitable for microbolometer applications. In this work, we aim to estimate the performance of a proposed air-bridge microbolometer configuration based on VxOy multilayer sandwich structure thermometer thin films. For this purpose, a microbolometer was fabricated on silicon (Si) substrate covered with a silicon nitride (Si3N4) insulating layer using VxOy thermometer thin film material. The fabricated microbolometer was patterned using electron-beam lithography and liftoff techniques and it was characterized in terms of its voltage repsonsivity (Rv), signal to noise ratio (SNR), noise equivalent power (NEP) and detectivity D*. A model was then developed by the aid of numerical optical/thermal simulations and experimentally measured parameters to estimate the performance of the microbolometer when fabricated in an air-bridge configuration. The estimated D* was found to be 1.55×107 cm.√Hz/ W.

  10. Design and Fabrication of Interdigital Nanocapacitors Coated with HfO2

    PubMed Central

    González, Gabriel; Kolosovas-Machuca, Eleazar Samuel; López-Luna, Edgar; Hernández-Arriaga, Heber; González, Francisco Javier

    2015-01-01

    In this article nickel interdigital capacitors were fabricated on top of silicon substrates. The capacitance of the interdigital capacitor was optimized by coating the electrodes with a 60 nm layer of HfO2. An analytical solution of the capacitance was compared to electromagnetic simulations using COMSOL and with experimental measurements. Results show that modeling interdigital capacitors using Finite Element Method software such as COMSOL is effective in the design and electrical characterization of these transducers. PMID:25602271

  11. Design, fabrication, and characterization of 4H-silicon carbide rectifiers for power switching applications

    NASA Astrophysics Data System (ADS)

    Sheridan, David Charles

    Silicon Carbide has received a substantial increase in research interest over the past few years as a base material system for high-frequency and high-power semiconductor devices. Of the over 1200 polytypes, 4H-SiC is the most attractive polytype for power devices due to its wide band gap (3.2eV), excellent thermal conductivity (4.9 W/cm·K), and high critical field strength (˜2 x 106 V/cm). Important for power devices, the 10x increase in critical field strength of SiC allows high voltage blocking layers to be fabricated significantly thinner than for comparable Si devices. For power rectifiers, this reduces device on-resistance, while maintaining the same high voltage blocking capability. In this work, 4H-SiC Schottky, pn, and junction barrier Schottky (JBS) rectifiers for use in high voltage switching applications have been designed, fabricated, and extensively characterized. First, a detailed review of 4H-SiC material parameters was performed and SiC models were implemented into a standard Si drift-diffusion numerical simulator. Using these models, a SiC simulation methodology was developed in order to enable predictive SiC device design. A wide variety of rectifier and edge termination designs were investigated and optimized with respect to breakdown efficiency, area consumption, resistance to interface charge, and fabrication practicality. Simulated termination methods include: field plates, floating guard rings, and a variety of junction termination extensions (JTE). Using the device simulation results, both Schottky and JBS rectifiers were fabricated with a novel self-aligned edge termination design, and fabricated with process elements developed at the Alabama Microelectronics Science and Technology Center facility. These rectifiers exhibited near-ideal forward characteristics and had blocking voltages in excess of 2.5kV. The SiC diodes were subjected to inductive switching tests, and were found to have superior reverse recovery characteristics compared

  12. Design and fabrication of multimode interference couplers based on digital micro-mirror system

    NASA Astrophysics Data System (ADS)

    Wu, Sumei; He, Xingdao; Shen, Chenbo

    2008-03-01

    Multimode interference (MMI) couplers, based on the self-imaging effect (SIE), are accepted popularly in integrated optics. According to the importance of MMI devices, in this paper, we present a novel method to design and fabricate MMI couplers. A technology of maskless lithography to make MMI couplers based on a smart digital micro-mirror device (DMD) system is proposed. A 1×4 MMI device is designed as an example, which shows the present method is efficient and cost-effective.

  13. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  14. Salt pill design and fabrication for adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; McCammon, Dan

    2014-07-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of “salt pills” for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single- or poly-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low- and mid-temperature applications.

  15. Salt Pill Design and Fabrication for Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Mccammon, Dan

    2014-01-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of "salt pills" for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single-­- or poly-­-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low-­- and mid-­-temperature applications.

  16. Re-design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels

    NASA Technical Reports Server (NTRS)

    Blair, W.; Meaney, J. E., Jr.; Rosenthal, H. A.

    1984-01-01

    The Titanium Multi-wall Thermal Protection System (TIPS) panel was re-designed to incorporate Ti-6-2-4-2 outer sheets for the hot surface, ninety degree side closures for ease of construction and through panel fastness for ease of panel removal. Thermal and structural tests were performed to verify the design. Twenty-five panels were fabricated and delivered to NASA for evaluation at Langley Research Center and Johnson Space Center.

  17. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    NASA Technical Reports Server (NTRS)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  18. Design, fabrication, and testing of a SMA hybrid composite jet engine chevron

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cabell, Randolph H.; Cano, Roberto J.; Fleming, Gary A.

    2006-01-01

    Control of jet noise continues to be an important research topic. Exhaust nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from deployable chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). The actuators are embedded on one side of the middle surface such that thermal excitation generates a moment and deflects the structure. A brief description of the chevron design is given followed by details of the fabrication approach. Results from bench top tests are presented and correlated with numerical predictions from a model for such structures that was recently implemented in MSC.Nastran and ABAQUS. Excellent performance and agreement with predictions is demonstrated. Results from tests in a representative flow environment are also presented. Excellent performance is again achieved for both open- and closed-loop tests, the latter demonstrating control to a specified immersion into the flow. The actuation authority and immersion performance is shown to be relatively insensitive to nozzle pressure ratio (NPR). Very repeatable immersion control with modest power requirements is demonstrated.

  19. Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty terabit-scale data transmission.

    PubMed

    Du, Jing; Wang, Jian

    2017-11-27

    Here we design and fabricate a hybrid surface plasmon polarities (SPP) waveguide on the silicon-on-insulator (SOI) photonics platform. The designed hybrid SPP waveguide is composed of a metal ridge, an air gap, and a silicon ridge. We simulate the mode characteristics in the structure and design the waveguide with a wide air gap that can simplify the fabrication process and maintain the advantages of the hybrid SPP mode. The performance of ultrahigh-bandwidth data transmission through the proposed waveguide is then investigated using 161 wavelength-division multiplexing (WDM) channels, each carrying a 11.2-Gbit/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. The bit-error rates (BERs) of all 161 channels are less than 1e-3. The favorable results show the prospect of on-chip optical interconnection using the proposed hybrid SPP waveguide.

  20. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    NASA Astrophysics Data System (ADS)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  1. A Developed Meta-model for Selection of Cotton Fabrics Using Design of Experiments and TOPSIS Method

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shankar; Chatterjee, Prasenjit

    2017-12-01

    Selection of cotton fabrics for providing optimal clothing comfort is often considered as a multi-criteria decision making problem consisting of an array of candidate alternatives to be evaluated based of several conflicting properties. In this paper, design of experiments and technique for order preference by similarity to ideal solution (TOPSIS) are integrated so as to develop regression meta-models for identifying the most suitable cotton fabrics with respect to the computed TOPSIS scores. The applicability of the adopted method is demonstrated using two real time examples. These developed models can also identify the statistically significant fabric properties and their interactions affecting the measured TOPSIS scores and final selection decisions. There exists good degree of congruence between the ranking patterns as derived using these meta-models and the existing methods for cotton fabric ranking and subsequent selection.

  2. Design and fabrication of x-ray Kirkpatrick-Baez microscope for ICF

    NASA Astrophysics Data System (ADS)

    Mu, Baozhong; Wang, Zhanshan; Huang, Shengling; Yi, Shengzhen; Shen, Zhengxiang

    2007-12-01

    A hard x-ray (8 keV, Kα line of Cu) Kirkpatrick-Baez (KB) microscope was designed for the diagnostics of inertial confinement fusion (ICF). Three main parts including optical design, fabrication of multilayers, and alignment method were discussed in this paper. According to the deduced equation of aberration in whole field, an optical system was designed, which gives attention to not only spatial resolution but also the collection efficiency. Tungsten (W) and boron carbide (B4C) were chosen as multilayer materials and the non-periodic multilayer with 40 layers was deposited. The measured reflectivity by XRD is better than 18% in the bandwidth range of about 0.3%. Super accurately alignment is another difficulty in the application of KB microscope. To meet the requirements of pointing and co-focusing, a binocular laser pointer which is flexible enough was designed. Finally, an 8keV x-ray tube was used as source in x-ray imaging experiment and images with magnification of 2× were obtained.

  3. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Principal program activities dealt with the literature survey, design of joint concepts, assessment of GR/PI material quality, fabrication of test panels and specimens, and small specimen testing. Bonded and bolted designs are presented for each of the four major attachment types. Quality control data are presented for prepreg Lots 2W4651 and 3W2020. Preliminary design allowables test results for tension tests and compression tests of laminates are also presented.

  4. Design and fabrication of a large area freestanding compressive stress SiO2 optical window

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Sangu, Suguru; Ono, Takahito

    2016-07-01

    This paper reports the design and fabrication of a 7.2 mm  ×  9.6 mm freestanding compressive stress SiO2 optical window without buckling. An application of the SiO2 optical window with and without liquid penetration has been demonstrated for an optical modulator and its optical characteristic is evaluated by using an image sensor. Two methods for SiO2 optical window fabrication have been presented. The first method is a combination of silicon etching and a thermal oxidation process. Silicon capillaries fabricated by deep reactive ion etching (deep RIE) are completely oxidized to form the SiO2 capillaries. The large compressive stress of the oxide causes buckling of the optical window, which is reduced by optimizing the design of the device structure. A magnetron-type RIE, which is investigated for deep SiO2 etching, is the second method. This method achieves deep SiO2 etching together with smooth surfaces, vertical shapes and a high aspect ratio. Additionally, in order to avoid a wrinkling optical window, the idea of a Peano curve structure has been proposed to achieve a freestanding compressive stress SiO2 optical window. A 7.2 mm  ×  9.6 mm optical window area without buckling integrated with an image sensor for an optical modulator has been successfully fabricated. The qualitative and quantitative evaluations have been performed in cases with and without liquid penetration.

  5. Design and fabrication of a PZT cantilever for low frequency vibration energy harvesting.

    PubMed

    Kim, Moonkeun; Hwang, Beomseok; Min, Nam Ki; Jeong, Jaehwa; Kwon, Kwang-Ho; Park, Kang-Bak

    2011-07-01

    In this study, a PZT cantilever with a Si proof mass is designed and fabricated for a low frequency energy harvesting application. A mathematical model of a multi-layer composite beam was derived and applied in a parametric analysis of the piezoelectric cantilever. Finally, the dimensions of the cantilever were determined for the resonant frequency of the cantilever. Our cantilever design was based on MATLAB and ANSYS simulations. For this simulation, the proof mass volumes were varied from 0 to 0.5 mm3 and resonant frequencies were calculated from 833.5 Hz to 125.5 Hz, respectively. Based on simulation, we fabricated a device with beam dimensions of about 4.10 mm x 0.48 mm x 0.012 mm, and an integrated Si proof mass with dimensions of about 0.481 mm x 0.48 mm x 0.45 mm. The resonant frequency, maximum peak voltage, and highest average power of the cantilever device were 224.8 Hz, 4.8 mV, and 2.24 nW, respectively.

  6. Design and fabrication of a novel self-powered solid-state neutron detector

    NASA Astrophysics Data System (ADS)

    LiCausi, Nicholas

    There is a strong interest in intercepting special nuclear materials (SNM) at national and international borders and ports for homeland security applications. Detection of SNM such as U and Pu is often accomplished by sensing their natural or induced neutron emission. Such detector systems typically use thermal neutron detectors inside a plastic moderator. In order to achieve high detection efficiency gas filled detectors are often used; these detectors require high voltage bias for operation, which complicates the system when tens or hundreds of detectors are deployed. A better type of detector would be an inexpensive solid-state detector that can be mass-produced like any other computer chip. Research surrounding solid-state detectors has been underway since the late 1990's. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion material that converts incident thermal neutrons into detectable alpha-particles and 7Li ions. Existing work has typically used 6LiF or 10B as this conversion layer. Although a simple planar detector can act as a highly portable, low cost detector, it is limited to relatively low detection efficiency (˜10%). To increase the efficiency, 3D perforated p-i-n silicon devices were proposed. To get high efficiency, these detectors need to be biased, resulting in increased leakage current and hence detector noise. In this research, a new type of detector structure was proposed, designed and fabricated. Among several detector structures evaluated, a honeycomb-like silicon p-n structure was selected, which is filled with natural boron as the neutron converter. A silicon p+-n diode formed on the thin silicon wall of the honeycomb structure detects the energetic alpha-particles emitted from the boron conversion layer. The silicon detection layer is fabricated to be fully depleted with an integral step during the boron filling process. This novel feature results in a simplified fabrication process. Three

  7. Laminated turbine vane design and fabrication. [utilizing film cooling as a cooling system

    NASA Technical Reports Server (NTRS)

    Hess, W. G.

    1979-01-01

    A turbine vane and associated endwalls designed for advanced gas turbine engine conditions are described. The vane design combines the methods of convection cooling and selective areas of full coverage film cooling. The film cooling technique is utilized on the leading edge, pressure side, and endwall regions. The turbine vane involves the fabrication of airfoils from a stack of laminates with cooling passages photoetched on the surface. Cold flow calibration tests, a thermal analysis, and a stress analysis were performed on the turbine vanes.

  8. Additive Manufacturing, Design, Testing, and Fabrication: A Full Engineering Experience at JSC

    NASA Technical Reports Server (NTRS)

    Zusack, Steven

    2016-01-01

    I worked on several projects this term. While most projects involved additive manufacturing, I was also involved with two design projects, two testing projects, and a fabrication project. The primary mentor for these was Richard Hagen. Secondary mentors were Hai Nguyen, Khadijah Shariff, and fabrication training from James Brown. Overall, my experience at JSC has been successful and what I have learned will continue to help me in my engineering education and profession long after I leave. My 3D printing projects ranged from less than a 1 cubic centimeter to about 1 cubic foot and involved several printers using different printing technologies. It was exciting to become familiar with printing technologies such as industrial grade FDM (Fused Deposition Modeling), the relatively new SLA (Stereolithography), and PolyJet. My primary duty with the FDM printers was to model parts that came in from various sources to print effectively and efficiently. Using methods my mentor taught me and the Stratasys Insight software, I was able to minimize imperfections, hasten build time, improve strength for specific forces (tensile, shear, etc...), and reduce likelihood of a print-failure. Also using FDM, I learned how to repair a part after it was printed. This is done by using a special kind of glue that chemically melts the two faces of plastic parts together to form a fused interface. My first goal with SLA technology was to bring the printer back to operational readiness. In becoming familiar with the Pegasus SLA printer, I researched the leveling, laser settings, and different vats to hold liquid material. With this research, I was successfully able to bring the Pegasus back online and have successfully printed multiple sample parts as well as functional parts. My experience with PolyJet technology has been focused on an understanding of the abilities/limits, costs, and the maintenance for daily use. Still upcoming will be experience with using a composite printer that uses FDM

  9. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators,more » hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and

  10. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication.

    PubMed

    Bilgin, Mehmet Selim; Baytaroğlu, Ebru Nur; Erdem, Ali; Dilber, Erhan

    2016-01-01

    The aim of this review was to investigate usage of computer-aided design/computer-aided manufacture (CAD/CAM) such as milling and rapid prototyping (RP) technologies for removable denture fabrication. An electronic search was conducted in the PubMed/MEDLINE, ScienceDirect, Google Scholar, and Web of Science databases. Databases were searched from 1987 to 2014. The search was performed using a variety of keywords including CAD/CAM, complete/partial dentures, RP, rapid manufacturing, digitally designed, milled, computerized, and machined. The identified developments (in chronological order), techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication are summarized. Using a variety of keywords and aiming to find the topic, 78 publications were initially searched. For the main topic, the abstract of these 78 articles were scanned, and 52 publications were selected for reading in detail. Full-text of these articles was gained and searched in detail. Totally, 40 articles that discussed the techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication and the articles were incorporated in this review. Totally, 16 of the papers summarized in the table. Following review of all relevant publications, it can be concluded that current innovations and technological developments of CAD/CAM and RP allow the digitally planning and manufacturing of removable dentures from start to finish. As a result according to the literature review CAD/CAM techniques and supportive maxillomandibular relationship transfer devices are growing fast. In the close future, fabricating removable dentures will become medical informatics instead of needing a technical staff and procedures. However the methods have several limitations for now.

  11. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication

    PubMed Central

    Bilgin, Mehmet Selim; Baytaroğlu, Ebru Nur; Erdem, Ali; Dilber, Erhan

    2016-01-01

    The aim of this review was to investigate usage of computer-aided design/computer-aided manufacture (CAD/CAM) such as milling and rapid prototyping (RP) technologies for removable denture fabrication. An electronic search was conducted in the PubMed/MEDLINE, ScienceDirect, Google Scholar, and Web of Science databases. Databases were searched from 1987 to 2014. The search was performed using a variety of keywords including CAD/CAM, complete/partial dentures, RP, rapid manufacturing, digitally designed, milled, computerized, and machined. The identified developments (in chronological order), techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication are summarized. Using a variety of keywords and aiming to find the topic, 78 publications were initially searched. For the main topic, the abstract of these 78 articles were scanned, and 52 publications were selected for reading in detail. Full-text of these articles was gained and searched in detail. Totally, 40 articles that discussed the techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication and the articles were incorporated in this review. Totally, 16 of the papers summarized in the table. Following review of all relevant publications, it can be concluded that current innovations and technological developments of CAD/CAM and RP allow the digitally planning and manufacturing of removable dentures from start to finish. As a result according to the literature review CAD/CAM techniques and supportive maxillomandibular relationship transfer devices are growing fast. In the close future, fabricating removable dentures will become medical informatics instead of needing a technical staff and procedures. However the methods have several limitations for now. PMID:27095912

  12. Design, modeling, and fabrication of crab-shape capacitive microphone using silicon-on-isolator wafer

    NASA Astrophysics Data System (ADS)

    Ganji, Bahram Azizollah; Sedaghat, Sedighe Babaei; Roncaglia, Alberto; Belsito, Luca; Ansari, Reza

    2018-01-01

    This paper presents design, modeling, and fabrication of a crab-shape microphone using silicon-on-isolator (SOI) wafer. SOI wafer is used to prevent the additional deposition of sacrificial and diaphragm layers. The holes have been made on diaphragm to prevent back plate etching. Dry etching is used for removing the sacrificial layer, because wet etching causes adhesion between the diaphragm and the back plate. Crab legs around the perforated diaphragm allow for improving the microphone performance and reducing the mechanical stiffness and air damping of the microphone. In this structure, the supply voltage is decreased due to the uniform deflection of the diaphragm due to the designed low-K (spring constant) structure. An analytical model of the structure for description of microphone behavior is presented. The proposed method for estimating the basic parameters of the microphone is based on the calculation of the spring constant using the energy method. The microphone is fabricated using only one mask to pattern the crab-shape diaphragm, resulting in a low-cost and easy fabrication process. The diaphragm size is 0.3 mm×0.3 mm, which is smaller than the conventional microelectromechanical systems capacitive microphone. The results show that the analytical equations have a good agreement with measurement results. The device has the pull-in voltage of 14.3 V, a resonant frequency of 90 kHz, an open-circuit sensitivity of 1.33 mV/Pa under bias voltage of 5 V. Comparing with previous works, this microphone has several advantages: SOI wafer decreases the fabrication process steps, the microphone is smaller than the previous works, and crab-shape diaphragm improves the microphone performances.

  13. Design, fabrication and characterisation of a microfluidic time-temperature indicator

    NASA Astrophysics Data System (ADS)

    Schmitt, P.; Wedrich, K.; Müller, L.; Mehner, H.; Hoffmann, M.

    2017-11-01

    This paper describes a concept for a passive microfluidic time-temperature indicator (TTI) intended for intelligent food packaging. A microfluidic system is presented that makes use of the temperature-dependent flow of suitable food ingredients in a microcapillary. Based on the creeping distance inside the capillary, the time-temperature integral can be determined. A demonstrator of the microsystem has been designed, fabricated and characterised using liquid sugar alcohols as indicator fluids. To enable a first wireless read-out of the passive TTI, the sensor was read out using a commercial RFID equipment, and capacitive measurements have been carried out.

  14. Design of fabric preforms for double diaphragm forming

    NASA Technical Reports Server (NTRS)

    Luby, Steven; Bernardon, Edward

    1992-01-01

    Resin Transfer Molding (RTM) has the potential of becoming one of the most cost effective ways of producing composite structures since the raw materials used, resin and dry fabric, are less costly than prepregs. Unfortunately these low material costs are offset by the high labor costs incurred to layup the dry fabric into 3D shapes. To reduce the layup costs, double diaphragm forming is being investigated as a potential technique for creating a complex 3D preform from a simple flat layup. As part of our effort to develop double diaphragm forming into a production capable process, we have undertaken a series of experiments to investigate the interactions between process parameters, mold geometry, fabric weave, tow size, and the quality of the formed part. The results of these tests will be used to determine the forming geometry limitations of double diaphragm forming and to characterize the formability of fabric configurations. An important part of this work was the development of methods to measure and analyze fiber orientations, deformation angles, tow spreading, and shape conformation of the formed parts. This paper will describe the methods used to mark plies, the double diaphragm forming process, the techniques used to measure the formed parts, and the calculation of the parameters of interest. The results can be displayed as 3D contour plots. These experimental results have also been used to verify and improve a computer model which simulates the draping of fabrics over 3D mold shapes.

  15. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application

    PubMed Central

    Kwon, Ki Yong; Lee, Hyung-Min; Ghovanloo, Maysam; Weber, Arthur; Li, Wen

    2015-01-01

    The recent development of optogenetics has created an increased demand for advancing engineering tools for optical modulation of neural circuitry. This paper details the design, fabrication, integration, and packaging procedures of a wirelessly-powered, light emitting diode (LED) coupled optrode neural interface for optogenetic studies. The LED-coupled optrode array employs microscale LED (μLED) chips and polymer-based microwaveguides to deliver light into multi-level cortical networks, coupled with microelectrodes to record spontaneous changes in neural activity. An integrated, implantable, switched-capacitor based stimulator (SCS) system provides high instantaneous power to the μLEDs through an inductive link to emit sufficient light and evoke neural activities. The presented system is mechanically flexible, biocompatible, miniaturized, and lightweight, suitable for chronic implantation in small freely behaving animals. The design of this system is scalable and its manufacturing is cost effective through batch fabrication using microelectromechanical systems (MEMS) technology. It can be adopted by other groups and customized for specific needs of individual experiments. PMID:25999823

  16. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    PubMed Central

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  17. 100-kW hingeless metal wind turbine blade design, analysis and fabrication

    NASA Technical Reports Server (NTRS)

    Donham, R. E.; Schmidt, J.; Linscott, B. S.

    1975-01-01

    The design, fabrication and analysis of aluminum wind turbine rotor blades is discussed. The blades are designed to meet criteria established for a 100-kilowatt wind turbine generator operating between 8 and 60-mile-per-hour speeds at 40 revolutions per minute. The design wind speed is 18 miles per hour. Two rotor blades are used on a new facility which includes a hingeless hub and its shaft, gearbox, generator and tower. Experience shows that, for stopped rotors, safe wind speeds are strongly dependent on blade torsional and bending rigidities which the basic D spar structural blade design provides. The 0.25-inch-thick nose skin is brake/bump formed to provide the basic 'D' spar structure for the tapered, twisted blades. Adequate margins for flutter and divergence are predicted from the use of existing, correlated stopped rotor and helicopter rotor analysis programs.

  18. Design, evaluation, and fabrication of low-cost composite blades for intermediate-size wind turbines

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1981-01-01

    Low cost approaches for production of 60 ft long glass fiber/resin composite rotor blades for the MOD-OA wind turbine were identified and evaluated. The most cost-effective configuration was selected for detailed design. Subelement and subscale specimens were fabricated for testing to confirm physical and mechanical properties of the composite blade materials, to develop and evaluate blade fabrication techniques and processes, and to confirm the structural adequacy of the root end joint. Full-scale blade tooling was constructed and a partial blade for tool and process tryout was built. Then two full scale blades were fabricated and delivered to NASA-LeRC for installation on a MOD-OA wind turbine at Clayton, New Mexico for operational testing. Each blade was 60 ft. long with 4.5 ft. chord at root end and 2575 lbs weight including metal hub adapter. The selected blade configuration was a three cell design constructed using a resin impregnated glass fiber tape winding process that allows rapid wrapping of primarily axially oriented fibers onto a tapered mandrel, with tapered wall thickness. The ring winder/transverse filament tape process combination was used for the first time on this program to produce entire rotor blade structures. This approach permitted the complete blade to be wound on stationary mandrels, an improvement which alleviated some of the tooling and process problems encountered on previous composite blade programs.

  19. Design and fabrication of a variable optical attenuator based on polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    She, Jun; Xu, Su; Tao, Tao; Wang, Qian

    2005-02-01

    In order to obtain a low polarization dependent loss (PDL) and a large attenuation range simultaneously, an optimal design and fabrication of a polymer-dispersed liquid crystal (PDLC) based variable optical attenuator (VOA) is presented. First, an optimal diameter of the liquid crystal droplets is determined by the anomalous diffraction approach (ADA). This optimal diameter gives maximal scattering and thus a large attenuation range is achieved with a relatively thin liquid crystal cell. Secondly, the fabrication of PDLC cell is carried out. The influence of the ultraviolet (UV) curing condition on the morphology of the LC droplets is investigated. For a given liquid crystal concentration, the optimal UV curing power is obtained after a series of statistically designed experiments. Finally, an optical configuration of the PDLC based VOA is presented. Measurements of the attenuation and the PDL are carried out with this configuration. The measured results show that the device has a typical attenuation range of 25dB. The corresponding PDL is nearly 1dB and the insertion loss is 1.8dB. The threshold voltage is 8Vrms and the saturation voltage is 40Vrms. From these measured results, one can see that the fabricated VOA based on PDLC is much more practical for optical communications as compared to the existing ones.

  20. Improved Design and Fabrication of Hydrated-Salt Pills

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  1. Developing Digital Courseware for a Virtual Nano-Biotechnology Laboratory: A Design-Based Research Approach

    ERIC Educational Resources Information Center

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Lin, Weijane; Sheen, Horn-Jiunn

    2014-01-01

    This paper first reviews applications of multimedia in engineering education, especially in laboratory learning. It then illustrates a model and accreditation criteria adopted for developing a specific set of nanotechnology laboratory courseware and reports the design-based research approach used in designing and developing the e-learning…

  2. Overview of the Design, Fabrication and Performance Requirements of Micro-Spec, an Integrated Submillimeter Spectrometer

    NASA Technical Reports Server (NTRS)

    Barrentine, Emily M.; Noroozian, Omid; Brown, Ari D.; Cataldo, Giuseppe; Ehsan, Negar; Hsieh, Wen-Ting; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Moseley, S. Harvey

    2015-01-01

    Micro-Spec is a compact submillimeter (350-700 GHz) spectrometer which uses low loss superconducting niobium microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a grating-analog spectrometer onto a single chip. Here we present details of the fabrication and design of a prototype Micro-Spec spectrometer with resolution, R64, where we use a high-yield single-flip wafer bonding process to realize instrument components on a 0.45 m single-crystal silicon dielectric. We discuss some of the electromagnetic design concerns (such as loss, stray-light, cross-talk, and fabrication tolerances) for each of the spectrometer components and their integration into the instrument as a whole. These components include a slot antenna with a silicon lens for optical coupling, a phase delay transmission line network, parallel plate waveguide interference region, and aluminum microstrip transmission line kinetic inductance detectors with extremely low cross-talk and immunity to stray light. We have demonstrated this prototype spectrometer with design resolution of R64. Given the optical performance of this prototype, we will also discuss the extension of this design to higher resolutions suitable for balloon-flight.

  3. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope.

    PubMed

    Gao, Mingyuan; Hu, Chengzhi; Chen, Zhenzhi; Zhang, Honghai; Liu, Sheng

    2010-12-01

    This paper investigates design, modeling, simulation, and control issues related to self-propelled endoscopic capsule navigated inside the human body through external magnetic fields. A novel magnetic propulsion system is proposed and fabricated, which has great potential of being used in the field of noninvasive gastrointestinal endoscopy. Magnetic-analysis model is established and finite-element simulations as well as orthogonal design are performed for obtaining optimized mechanical and control parameters for generating appropriate external magnetic field. Simulated intestinal tract experiments are conducted, demonstrating controllable movement of the capsule under the developed magnetic propulsion system.

  4. Design and fabrication of a 1-DOF drive mode and 2-DOF sense mode micro-gyroscope using SU-8 based UV-LIGA process

    NASA Astrophysics Data System (ADS)

    Verma, Payal; Juneja, Sucheta; Savelyev, Dmitry A.; Khonina, Svetlana N.; Gopal, Ram

    2016-04-01

    This paper presents design and fabrication of a 1-DOF (degree-of-freedom) drive mode and 2-DOF sense mode micro-gyroscope. It is an inherently robust structure and offers a high sense frequency bandwidth. The proposed design utilizes resonance of the1-DOF drive mode oscillator and employs dynamic amplification concept in sense modes to increase the sensitivity while maintaining robustness. The 2-DOF in the sense direction renders the device immune to process imperfections and environmental effects. The design is simulated using FEA software (CoventorWare®). The device is designed considering process compatibility with SU-8 based UV-LIGA process, which is an economical fabrication technique. The complete fabrication process is presented along with SEM images of the fabricated device. The device has 9 µm thick Nickel as the key structural layer with an overall reduced key structure size of 2.2 mm by 2.1 mm.

  5. Stirling Laboratory Research Engine: Preprototype configuration report

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.

  6. Fabrication Division Staff in the Machine Shop

    NASA Image and Video Library

    1946-07-21

    Machine Shop technicians in the Technical Service Building at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 260-person Fabrication Division, led by Dan White and John Dalgleish, created almost all of the equipment and models used at the laboratory. The Technical Services Building, referred to as the Fab Shop, contained a number of specialized shops in the 1940s and 1950s. These included a Machine Shop, Sheet Metal Shop, Wood and Pattern Shop, Instrument Shop, Thermocouple Shop, Heat Treating Shop, Metallurgical Laboratory, and Fabrication Office. The Machine Shop fabricated specialized research equipment not commercially available. During World War II these technicians produced high-speed cameras for combustion research, impellers and other supercharger components, and key equipment for the lab’s first supersonic wind tunnel. The Wood and Pattern Shop created everything from control panels and cabinets to aircraft model molds for sheet metal work. The Sheet Metal Shop had the ability to work with 0.01 to 4-inch thick steel plates. The Instrument Shop specialized in miniature parts and instrumentation, while the Thermocouple Shop standardized the installation of pitot tubes and thermocouples.

  7. Guided-mode resonant filters and reflectors: Principles, design, and fabrication

    NASA Astrophysics Data System (ADS)

    Niraula, Manoj

    In this dissertation, we overview the operational principles of these resonant periodic structures, discuss the methods of their design and fabrication, and propose and demonstrate novel functionalities for spatial and spectral filtering, and unpolarized wideband reflection. Fashioned with materially sparse gratings, these optical devices are easy to fabricate and integration friendly compared to their traditional multi-layer counterparts making their research and development critical for practical applications. We study, theoretically, modal properties and parametric dependence of resonant periodic bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. We provide the first experimental demonstration of high-efficiency and narrow-linewidth resonant bandpass filter applying a single patterned silicon layer on a quartz substrate. Its performance corresponds to bandpass filters requiring 15 traditional Si/SiO2 thin-film layers. The feasibility of sparse narrowband, high-efficiency bandpass filters with extremely wide, flat, and low sidebands is thereby demonstrated. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied. We demonstrate concurrent spatial and spectral filtering as a new outstanding attribute of resonant periodic devices. This functionality is enabled by a unique, near-complete, reflection state that is discrete in both

  8. Variable curvature mirror having variable thickness: design and fabrication

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Gong, Jie

    2017-10-01

    Variable curvature mirror (VCM) can change its curvature radius dynamically and is usually used to correct the defocus and spherical aberration caused by thermal lens effect to improve the output beam quality of high power solid-state laser. Recently, the probable application of VCM in realizing non-moving element optical zoom imaging in visible band has been paid much attention. The basic requirement for VCM lies in that it should provide a large enough saggitus variation and still maintains a high enough surface figure at the same time. Therefore in this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/80λ could provide bigger than 36um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/40λ with the spherical aberration removed, which proves that the effectiveness of the theoretical design.

  9. Design and fabrication of multispectral optics using expanded glass map

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George

    2015-06-01

    As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.

  10. Annular Momentum Control Device (AMCD). Volume 1: Laboratory model development

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The annular momentum control device (AMCD) a thin hoop-like wheel with neither shaft nor spokes is described. The wheel floats in a magnetic field and can be rotated by a segmented motor. Potential advantages of such a wheel are low weight, configuration flexibility, a wheel that stiffens with increased speed, vibration isolation, and increased reliability. The analysis, design, fabrication, and testing is described of the laboratory model of the AMCD.

  11. Ultralight Fabric Reflux Tube (UFRT) Thermal/Vacuum Test

    NASA Technical Reports Server (NTRS)

    Hurlbert, K. M.; Ewert, M. K.; Graf, J. P.; Keller, J. R.; Pauley, K. A.; Guenther, R. J.; Antoniak, Z. I.

    1996-01-01

    Spacecraft thermal control systems are essential to provide the necessary environment for the crew and equipment to function adequately on space missions. The Ultralight Fabric Reflux Tube (UFRT) was developed by Pacific Northwest Laboratory (PNL) as a lightweight radiator concept to be used on planetary-type missions (e.g., Moon, Mars). The UFRT consists of a thin-walled tube (acting as the fluid boundary), overwrapped with a low-mass ceramic fabric (acting as the primary pressure boundary). The tubes are placed in an array in the vertical position with the evaporators at the lower end. Heat is added to the evaporators, which vaporizes the working fluid. The vapor travels to the condenser end above and cools as heat is radiated to the environment. The fluid condensed on the tube wall is then returned to the evaporator by gravity. The primary objectives for the fiscal year 1994 program included the design and fabrication of prototype UFRTs and thermal/vacuum chamber testing of these test articles. Six UFRTS, with improved titanium liners, were successfully manufactured and provided to the Johnson Space Center in July 1994. Five were tested in a thermal/vacuum chamber in September 1994. Data obtained to characterize the performance of the UFRTs under simulated lunar conditions demonstrated the design concept successfully. In addition, a trade study showed that an optimized/improved UFRT could achieve as much as a 25% mass savings in the heat rejection subsystem of future planetary-type thermal control systems.

  12. Toward identifying specification requirements for digital bone-anchored prosthesis design incorporating substructure fabrication: a pilot study.

    PubMed

    Eggbeer, Dominic; Bibb, Richard; Evans, Peter

    2006-01-01

    This paper is the first in a series that aims to identify the specification requirements for advanced digital technologies that may be used to design and fabricate complex, soft tissue facial prostheses. Following a review of previously reported techniques, appropriate and currently available technologies were selected and applied in a pilot study. This study uses a range of optical surface scanning, computerized tomography, computer-aided design, and rapid prototyping technologies to capture, design, and fabricate a bone-anchored auricular prosthesis, including the retentive components. The techniques are assessed in terms of their effectiveness, and the results are used to identify future research and specification requirements to direct developments. The case study identifies that while digital technologies may be used to design implant-retained facial prostheses, many limitations need to be addressed to make the techniques clinically viable. It also identifies the need to develop a more robust specification that covers areas such as resolution, accuracy, materials, and design, against which potential technologies may be assessed. There is a need to develop a specification against which potential technologies may be assessed for their suitability in soft tissue facial prosthetics. The specification will be developed using further experimental research studies.

  13. Geometrical effect, optimal design and controlled fabrication of bio-inspired micro/nanotextures for superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Ma, F. M.; Li, W.; Liu, A. H.; Yu, Z. L.; Ruan, M.; Feng, W.; Chen, H. X.; Chen, Y.

    2017-09-01

    Superhydrophobic surfaces with high water contact angles and low contact angle hysteresis or sliding angles have received tremendous attention for both academic research and industrial applications in recent years. In general, such surfaces possess rough microtextures, particularly, show micro/nano hierarchical structures like lotus leaves. Now it has been recognized that to achieve the artificial superhydrophobic surfaces, the simple and effective strategy is to mimic such hierarchical structures. However, fabrications of such structures for these artificial surfaces involve generally expensive and complex processes. On the other hand, the relationships between structural parameters of various surface topography and wetting properties have not been fully understood yet. In order to provide guidance for the simple fabrication and particularly, to promote practical applications of superhydrophobic surfaces, the geometrical designs of optimal microtextures or patterns have been proposed. In this work, the recent developments on geometrical effect, optimal design and controlled fabrication of various superhydrophobic structures, such as unitary, anisotropic, dual-scale hierarchical, and some other surface geometries, are reviewed. The effects of surface topography and structural parameters on wetting states (composite and noncomposite) and wetting properties (contact angle, contact angle hysteresis and sliding angle) as well as adhesive forces are discussed in detail. Finally, the research prospects in this field are briefly addressed.

  14. Design, Fabrication, and Testing of Lumped Element Kinetic inductance Detectors for 3 mm CMB Observations

    NASA Technical Reports Server (NTRS)

    Lowitz, Amy E.; Brown, Ari David; Stevenson, Thomas R.; Timbie, Peter T.; Wollack, Edward J.

    2014-01-01

    Kinetic inductance detectors (KIDs) are a promising technology for low-noise, highly-multiplexible mm- and submm-wave detection. KIDs have a number of advantages over other detector technologies, which make them an appealing option in the cosmic microwave background B-mode anisotropy search, including passive frequency domain multiplexing and relatively simple fabrication, but have suffered from challenges associated with noise control. Here we describe design and fabrication of a 20-pixel prototype array of lumped element molybdenum KIDs. We show Q, frequency and temperature measurements from the array under dark conditions. We also present evidence for a double superconducting gap in molybdenum.

  15. Design and fabrication of brazed Rene 41 honeycomb sandwich structural panels for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Swegle, A. R.

    1981-01-01

    The design and fabrication of two large brazed Rene 41 honeycomb panels, the establishment of a test plan, the design and fabrication of a test fixture to subject the panels to cyclic thermal gradients and mechanical loads equivalent to those imposed on an advanced space transportation vehicle during its boost and entry trajectories are discussed. The panels will be supported at four points, creating three spans. The outer spans are 45.7 cm (18 in.) and the center span 76.2 cm (30 in). Specimen width is 30.5 cm (12 in.). The panels were primarily designed by boost conditions simulated by subjecting the panels to liquid nitrogen, 77K (-320 F) on one side and 455K (360 F) on the other side and by mechanically imposing loads representing vehicle fuel pressure loads. Entry conditions were simulated by radiant heating to 1034K (1400 F). The test program subjected the panels to 500 boost thermal conditions. Results are presented.

  16. Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization.

    PubMed

    Ruffato, Gianluca; Massari, Michele; Romanato, Filippo

    2016-04-20

    During the last decade, the orbital angular momentum (OAM) of light has attracted growing interest as a new degree of freedom for signal channel multiplexing in order to increase the information transmission capacity in today's optical networks. Here we present the design, fabrication and characterization of phase-only diffractive optical elements (DOE) performing mode-division (de)multiplexing (MDM) and spatial-division (de)multiplexing (SDM) at the same time. Samples have been fabricated with high-resolution electron-beam lithography patterning a polymethylmethacrylate (PMMA) resist layer spun over a glass substrate. Different DOE designs are presented for the sorting of optical vortices differing in either OAM content or beam size in the optical regime, with different steering geometries in far-field. These novel DOE designs appear promising for telecom applications both in free-space and in multi-core fibers propagation.

  17. Analysis, design, fabrication and testing of an optical tip clearance sensor. [turbocompressor blade tips

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Marple, D. T. F.; Kingsley, J. D.

    1981-01-01

    Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed.

  18. Orbital transfer vehicle oxygen turbopump technology. Volume 1: Design, fabrication, and hydrostatic bearing testing

    NASA Technical Reports Server (NTRS)

    Buckmann, P. S.; Hayden, W. R.; Lorenc, S. A.; Sabiers, R. L.; Shimp, N. R.

    1990-01-01

    The design, fabrication, and initial testing of a rocket engine turbopump (TPA) for the delivery of high pressure liquid oxygen using hot oxygen for the turbine drive fluid are described. This TPA is basic to the dual expander engine which uses both oxygen and hydrogen as working fluids. Separate tasks addressed the key issue of materials for this TPA. All materials selections emphasized compatibility with hot oxygen. The OX TPA design uses a two-stage centrifugal pump driven by a single-stage axial turbine on a common shaft. The design includes ports for three shaft displacement/speed sensors, various temperature measurements, and accelerometers.

  19. Design, analysis, fabrication and test of the Space Shuttle solid rocket booster motor case

    NASA Technical Reports Server (NTRS)

    Kapp, J. R.

    1978-01-01

    The motor case used in the solid propellant booster for the Space Shuttle is unique in many respects, most of which are indigenous to size and special design requirements. The evolution of the case design from initial requirements to finished product is discussed, with increased emphasis of reuse capability, special design features, fracture mechanics and corrosion control. Case fabrication history and the resulting procedure are briefly reviewed with respect to material development, processing techniques and special problem areas. Case assembly, behavior and performance during the DM-1 static firing are reviewed, with appropriate comments and conclusions.

  20. Design, fabrication, and testing of duralumin zoom mirror with variable thickness

    NASA Astrophysics Data System (ADS)

    Hui, Zhao; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Liu, Meiying; Gong, Jie

    2016-10-01

    Zoom mirror is a kind of active optical component that can change its curvature radius dynamically. Normally, zoom mirror is used to correct the defocus and spherical aberration caused by thermal lens effect to improve the beam quality of high power solid-state laser since that component was invented. Recently, the probable application of zoom mirror in realizing non-moving element optical zoom imaging in visible band has been paid much attention. With the help of optical leveraging effect, the slightly changed local optical power caused by curvature variation of zoom mirror could be amplified to generate a great alteration of system focal length without moving elements involved in, but in this application the shorter working wavelength and higher surface figure accuracy requirement make the design and fabrication of such a zoom mirror more difficult. Therefore, the key to realize non-moving element optical zoom imaging in visible band lies in zoom mirror which could provide a large enough saggitus variation while still maintaining a high enough surface figure. Although the annular force based actuation could deform a super-thin mirror having a constant thickness to generate curvature variation, it is quite difficult to maintain a high enough surface figure accuracy and this phenomenon becomes even worse when the diameter and the radius-thickness ratio become bigger. In this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/50λ could provide at least 21um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be

  1. Design, fabrication and test of graphite/polymide composite joints and attachments: Summary

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1983-01-01

    The design, analysis and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561K (550 F) are summarized. Material properties and 'small specimen' tests were conducted to establish design data and to evaluate specific design details. 'Static discriminator' tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours 589K (600 F)) and thermal cycled (116K to 589K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589K (600 F) for 125 hours.

  2. Design and characterization of low-cost fabric-based flat pneumatic actuators for soft assistive glove application.

    PubMed

    Yap, Hong Kai; Sebastian, Frederick; Wiedeman, Christopher; Yeow, Chen-Hua

    2017-07-01

    We present the design of low-cost fabric-based Hat pneumatic actuators for soft assistive glove application. The soft assistive glove is designed to assist hand impaired patients in performing activities of daily living and rehabilitation. The actuators consist of flexible materials such as fabric and latex bladder. Using zero volume actuation concept, the 2D configuration of the actuators simplifies the manufacturing process and allows the actuators to be more compact. The actuators achieve bi-directional flexion and extension motions. Compared to previously developed inflatable soft actuators, the actuators generate sufficient force and torque to assist in both finger flexion and extension at lower air pressure. Preliminary evaluation results show that the glove is able to provide both active finger flexion and extension assistance for activities of daily living and rehabilitative training.

  3. Design and fabrication of a stringer stiffened discrete-tube actively cooled panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Halenbrook, R. G.

    1981-01-01

    A 0.61 x 1.22 m (2 x 4 ft) test panel was fabricated and delivered to the Langley Research Center for assessment of the thermal and structural features of the optimized panel design. The panel concept incorporated an aluminum alloy surface panel actively cooled by a network of discrete, parallel, redundant, counterflow passage interconnected with appropriate manifolding, and assembled by adhesive bonding. The cooled skin was stiffened with a mechanically fastened conventional substructure of stringers and frames. A 40 water/60 glycol solution was the coolant. Low pressure leak testing, radiography, holography and infrared scanning were applied at various stages of fabrication to assess integrity and uniformity. By nondestructively inspecting selected specimens which were subsequently tested to destruction, it was possible to refine inspection standards as applied to this cooled panel design.

  4. Design, fabrication, and test of a Graphite/Epoxy Metering Shell (GEMS). [for the large space telescope

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A program to design, fabricate and test a dimensionally stable metering structure in support of the large space telescope (LST) program is discussed. Graphite/epoxy was the material selected as the only viable candidate material which can meet the stringent thermal expansion criteria of the LST. A metering shell was designed and fabricated, with emphasis on dimensional stability in conjunction with low cost. Thermal expansion test coupons extracted from the layups of the skin panels indicated the attainment of a coefficient of thermal expansion of 0.0666 micrometers/m K. Subsequent thermal vacuum chamber tests on the complete metering shell demonstrated an expansion of the 2.95-meter overall length of 0.27 micrometers/K. Static and dynamics tests, which demonstrated adequacy with respect to limit loads and stiffness, were also accomplished.

  5. Fabric circuits and method of manufacturing fabric circuits

    NASA Technical Reports Server (NTRS)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  6. Design, development and fabrication of a Solar Experiment Alignment Sensor (SEAS)

    NASA Technical Reports Server (NTRS)

    Bancroft, J. R.; Fain, M. Z.; Johnson, D. F.

    1971-01-01

    The design, development and testing of a laboratory SEAS (Solar Experiment Alignment Sensor) system are presented. The system is capable of overcoming traditional alignment and calibration problems to permit pointing anywhere on the solar disc to an accuracy of five arc seconds. The concept, development and laboratory testing phases of the program are discussed, and particular attention has been given to specific problems associated with selection of materials, and components. The conclusions summarize performance capability and discuss areas for further study including the effects of solar limb darkening and effects of annual variations in the apparent solar diameter.

  7. Design and Fabrication of Tunable Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sun, Leming

    In this dissertation, we first reviewed the naturally occurring nanoparticles and their limitations (Chapter 1). We then discussed the need and the parameters to design and fabricate bio-inspired tunable nanoparticles for wound healing, Alzheimer's disease (AD) diagnosis and progression monitoring. Tunable nanoparticles enhanced adhesive was inspired from the self-assembly processes, nanocomposite and chemical structures. Fluorescent peptide nanoparticles were inspired from the biological peptide self-assembly and naturally occurring fluorescent proteins. Then we reported the development of an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives inspired from the strong adhesive produced by English ivy in Chapter 2. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive were proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. Using a bio-inspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels in Chapter 3. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing; when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites; which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose derived stem cells (ADSCs), and compared to other therapeutic

  8. Acoustic Characteristics of Various Treatment Panel Designs for HSCT Ejector Liner Acoustic Technology Development Program

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Kraft, R. E.; Syed, A. a.; Vu, D. D.; Mungur, P.; Langenbrunner, L. E.; Majjigi, R. K.

    2006-01-01

    The objectives of the initial effort (Phase I) of HSR Liner Technology Program, the selection of promising liner concepts, design and fabrication of these concepts for laboratory tests, testing these liners in the laboratory by using impedance tube and flow ducts, and developing empirical impedance/suppression correlation, are successfully completed. Acoustic and aerodynamic criteria for the liner design are established. Based on these criteria several liners are designed. The liner concepts designed and fabricated include Single-Degree-of-Freedom (SDOF), Two-Degree-of-Freedom (2DOF), and Bulk Absorber. Two types of SDOF treatment are fabricated, one with a perforated type face plate and the other with a wiremesh (woven) type faceplate. In addition, special configurations of these concepts are also included in the design. Several treatment panels are designed for parametric study. In these panels the facesheets of different porosity, hole diameter, and sheet thickness are utilized. Several deep panels (i.e., 1 in. deep) are designed and instrumented to measure DC flow resistance and insitu impedance in the presence of grazing flow. Basic components of these panels (i.e., facesheets, bulk materials, etc.) are also procured and tested. The results include DC flow resistance, normal impedance, and insertion loss.

  9. Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray

    PubMed Central

    Ramirez, Lisa S.; Wang, Jun

    2016-01-01

    Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications. PMID:26780370

  10. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    PubMed

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Design and fabrication of a duoplasmatron extraction geometry and LEBT for the LANSCE H{sup +} RFQ project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortgang, C. M., E-mail: cfortgang@lanl.gov; Batygin, Y. K.; Draganic, I. N.

    The 750-keV H{sup +} Cockcroft-Walton at LANSCE will be replaced with a recently fabricated 4-rod Radio Frequency Quadrupole (RFQ) with injection energy of 35 keV. The existing duoplasmatron source extraction optics need to be modified to produce up to 35 mA of H{sup +} current with an emittance <0.02 π-cm-mrad (rms, norm) for injection into the RFQ. Parts for the new source have been fabricated and assembly is in process. We will use the existing duoplasmatron source with a newly designed extraction system and low energy beam transport (LEBT) for beam injection into the RFQ. In addition to source modifications,more » we need a new LEBT for transport and matching into the RFQ. The LEBT uses two magnetic solenoids with enough drift space between them to accommodate diagnostics and a beam deflector. The LEBT is designed to work over a range of space-charge neutralized currents and emittances. The LEBT is optimized in the sense that it minimizes the beam size in both solenoids for a point design of a given neutralized current and emittance. Special attention has been given to estimating emittance growth due to source extraction optics and solenoid aberrations. Examples of source-to-RFQ matching and emittance growth (due to both non-linear space charge and solenoid aberrations) are presented over a range of currents and emittances about the design point. A mechanical layout drawing will be presented along with the status of the source and LEBT, design, and fabrication.« less

  12. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer.

    PubMed

    Gregor, Aleš; Filová, Eva; Novák, Martin; Kronek, Jakub; Chlup, Hynek; Buzgo, Matěj; Blahnová, Veronika; Lukášová, Věra; Bartoš, Martin; Nečas, Alois; Hošek, Jan

    2017-01-01

    The primary objective of Tissue engineering is a regeneration or replacement of tissues or organs damaged by disease, injury, or congenital anomalies. At present, Tissue engineering repairs damaged tissues and organs with artificial supporting structures called scaffolds. These are used for attachment and subsequent growth of appropriate cells. During the cell growth gradual biodegradation of the scaffold occurs and the final product is a new tissue with the desired shape and properties. In recent years, research workplaces are focused on developing scaffold by bio-fabrication techniques to achieve fast, precise and cheap automatic manufacturing of these structures. Most promising techniques seem to be Rapid prototyping due to its high level of precision and controlling. However, this technique is still to solve various issues before it is easily used for scaffold fabrication. In this article we tested printing of clinically applicable scaffolds with use of commercially available devices and materials. Research presented in this article is in general focused on "scaffolding" on a field of bone tissue replacement. Commercially available 3D printer and Polylactic acid were used to create originally designed and possibly suitable scaffold structures for bone tissue engineering. We tested printing of scaffolds with different geometrical structures. Based on the osteosarcoma cells proliferation experiment and mechanical testing of designed scaffold samples, it will be stated that it is likely not necessary to keep the recommended porosity of the scaffold for bone tissue replacement at about 90%, and it will also be clarified why this fact eliminates mechanical properties issue. Moreover, it is demonstrated that the size of an individual pore could be double the size of the recommended range between 0.2-0.35 mm without affecting the cell proliferation. Rapid prototyping technique based on Fused deposition modelling was used for the fabrication of designed scaffold

  13. Quantitative Analysis, Design, and Fabrication of Biosensing and Bioprocessing Devices in Living Cells

    DTIC Science & Technology

    2015-03-10

    AFRL-OSR-VA-TR-2015-0080 Biosensing and Bioprocessing Devices in Living Cells Domitilla Del Vecchio MASSACHUSETTS INSTITUTE OF TECHNOLOGY Final...Of Biosensing And Bioprocessing Devices In Living Cells FA9550-12-1-0129 D. Del Vecchio Massachusetts Institute of Technology -- 77 Massachusetts...research is to develop quantitative techniques for the de novo design and fabrication of biosensing devices in living cells . Such devices will be entirely

  14. A TEMPLATE-BASED FABRICATION TECHNIQUE FOR SPATIALLY-DESIGNED POLYMER MICRO/NANOFIBER COMPOSITES

    PubMed Central

    Naik, Nisarga; Caves, Jeff; Kumar, Vivek; Chaikof, Elliot; Allen, Mark G.

    2013-01-01

    This paper reports a template-based technique for the fabrication of polymer micro/nanofiber composites, exercising control over the fiber dimensions and alignment. Unlike conventional spinning-based methods of fiber production, the presented approach is based on micro-transfer molding. It is a parallel processing technique capable of producing fibers with control over both in-plane and out-of-plane geometries, in addition to packing density and layout of the fibers. Collagen has been used as a test polymer to demonstrate the concept. Hollow and solid collagen fibers with various spatial layouts have been fabricated. Produced fibers have widths ranging from 2 µm to 50 µm, and fiber thicknesses ranging from 300 nm to 3 µm. Also, three-dimensionality of the process has been demonstrated by producing in-plane serpentine fibers with designed arc lengths, out-of-plane wavy fibers, fibers with focalized particle encapsulation, and porous fibers with desired periodicity and pore sizes. PMID:24533428

  15. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  16. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  17. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  18. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  19. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  20. Design and fabrication of a flexible substrate microelectrode array for brain machine interfaces.

    PubMed

    Patrick, Erin; Ordonez, Matthew; Alba, Nicolas; Sanchez, Justin C; Nishida, Toshikazu

    2006-01-01

    We report a neural microelectrode array design that leverages the recording properties of conventional microwire electrode arrays with the additional features of precise control of the electrode geometries. Using microfabrication techniques, a neural probe array is fabricated that possesses a flexible polyimide-based cable. The performance of the design was tested with electrochemical impedance spectroscopy and in vivo studies. The gold-plated electrode site has an impedance value of 0.9 M Omega at 1 kHz. Acute neural recording provided high neuronal yields, peak-to-peak amplitudes (as high as 100 microV), and signal-to-noise ratios (27 dB).

  1. Sandia Advanced MEMS Design Tools v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarberry, Victor R.; Allen, James J.; Lantz, Jeffrey W.

    This is a major revision to the Sandia Advanced MEMS Design Tools. It replaces all previous versions. New features in this version: Revised to support AutoCAD 2014 and 2015 This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standard Parts Library) d) Facilitate the process of having MEMS fabricated at Sandia National Laboratories e) Facilitate the process of having post-fabrication services performed. While there exists somemore » files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  2. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  3. Planar microlens with front-face angle: design, fabrication, and characterization

    NASA Astrophysics Data System (ADS)

    Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee

    2016-07-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  4. Experimental Equipment Design and Fabrication Study for Delta-G Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Research Machine Shop at UAH did not develop any new technology in the performance of the following tasks. All tasks were performed as specified.UAH RMS shall design and fabricate a "poor" model of a silicon-carbide high-temperature crucible with dimensions of 8 inches in diameter and 4 inches high-temperature crucible for pouring liquid ceramic materials at 1200 C into molds from heating ovens. The crucible shall also be designed with a manipulation fixture to facilitate holding and pouring of the heated liquid material. UAH RMS shall investigate the availability of 400 Hz, high-current (65 volts @ 100 amperes) power systems for use in high-speed rotating disk experiments, UAH RMS shall investigate, develop a methodology, and experiment on the application of filament-wound carbon fibers to the periphery of ceramic superconductors to withstand high levels of rotational g-forces. UAH RMS shall provide analytical data to verify the resulting improved disc with carbon composite fibers.

  5. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  6. Design and evaluation of low-cost laminated wood composite blades for intermediate size wind turbines: Blade design, fabrication concept, and cost analysis

    NASA Technical Reports Server (NTRS)

    Lieblein, S.; Gaugeon, M.; Thomas, G.; Zueck, M.

    1982-01-01

    As part of a program to reduce wind turbine costs, an evaluation was conducted of a laminated wood composite blade for the Mod-OA 200 kW wind turbine. The effort included the design and fabrication concept for the blade, together with cost and load analyses. The blade structure is composed of laminated Douglas fir veneers for the primary spar and nose sections, and honeycomb cored plywood panels for the trailing edges sections. The attachment of the wood blade to the rotor hub was through load takeoff studs bonded into the blade root. Tests were conducted on specimens of the key structural components to verify the feasibility of the concept. It is concluded that the proposed wood composite blade design and fabrication concept is suitable for Mod-OA size turbines (125-ft diameter rotor) at a cost that is very competitive with other methods of manufacture.

  7. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lux, Kenneth; Imam, Tahmina; Chevanan, Nehru

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  8. Design, fabricate, and provide engineering support for radiosotope thermoelectric generators for NASA'S CRHF and CASSINI missions

    NASA Astrophysics Data System (ADS)

    The technical progress achieved during the period 11 January through 31 March 1991 on Contract DE-AC03-91SF18852.000 Radioisotope Thermoelectric Generators and ancillary activities is described. The system contract consists of the following tasks: (1) Spacecraft Integration and Liaison; (2) Engineering Support; (3) Safety; (4) Qualify Unicouple Fabrication; (5) ETG Fabrication, Assembly and Test; (6) GSE; (7) RTG Shipping and Launch Support; (8) Designs, Reviews, and Mission Applications; (9) Project Management, Quality Assurance and Reliability; and (10) CAGO Acquisition (Capital Funds). The progress achieved is broken down into these tasks.

  9. Design and Fabrication of the Second-Generation KID-Based Light Detectors of CALDER

    NASA Astrophysics Data System (ADS)

    Colantoni, I.; Cardani, L.; Casali, N.; Cruciani, A.; Bellini, F.; Castellano, M. G.; Cosmelli, C.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2018-04-01

    The goal of the cryogenic wide-area light detectors with excellent resolution project is the development of light detectors with large active area and noise energy resolution smaller than 20 eV RMS using phonon-mediated kinetic inductance detectors (KIDs). The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double readout of the light and the heat released by particles interacting in the bolometers. In this work we present the fabrication process, starting from the silicon wafer arriving to the single chip. In the first part of the project, we designed and fabricated KID detectors using aluminum. Detectors are designed by means of state-of-the-art software for electromagnetic analysis (SONNET). The Al thin films (40 nm) are evaporated on high-quality, high-resistivity (> 10 kΩ cm) Si(100) substrates using an electron beam evaporator in a HV chamber. Detectors are patterned in direct-write mode, using electron beam lithography (EBL), positive tone resist poly-methyl methacrylate and lift-off process. Finally, the chip is diced into 20 × 20 mm2 chips and assembled in a holder OFHC (oxygen-free high conductivity) copper using PTFE support. To increase the energy resolution of our detectors, we are changing the superconductor to sub-stoichiometric TiN (TiN x ) deposited by means of DC magnetron sputtering. We are optimizing its deposition by means of DC magnetron reactive sputtering. For this kind of material, the fabrication process is subtractive and consists of EBL patterning through negative tone resist AR-N 7700 and deep reactive ion etching. Critical temperature of TiN x samples was measured in a dedicated cryostat.

  10. A Project-Based Laboratory for Learning Embedded System Design with Industry Support

    ERIC Educational Resources Information Center

    Lee, Chyi-Shyong; Su, Juing-Huei; Lin, Kuo-En; Chang, Jia-Hao; Lin, Gu-Hong

    2010-01-01

    A project-based laboratory for learning embedded system design with support from industry is presented in this paper. The aim of this laboratory is to motivate students to learn the building blocks of embedded systems and practical control algorithms by constructing a line-following robot using the quadratic interpolation technique to predict the…

  11. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  12. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  13. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  14. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  15. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  16. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  17. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  18. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  19. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  20. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  1. Behavior of an indigenously fabricated transferred arc plasma furnace for smelting studies

    NASA Astrophysics Data System (ADS)

    A, K. MANDAL; R, K. DISHWAR; O, P. SINHA

    2018-03-01

    The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace (TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K (200 °C) melt temperature and noise levels decreased by ∼10 dB compared to a normal arc. Hydrogen plasma offered 100 K (100 °C) higher melt temperature with ∼5 dB higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.

  2. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, K. M.; Lucas, J. J.

    1975-01-01

    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacture of large helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D helicopter was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR-49/epoxy skin and graphite/epoxy frames and stringers. To support the selection of this specific design concept a materials study was conducted to develop and select a cure compatible graphite and KEVLAR-49/epoxy resin system, and a foam system capable of maintaining shape and integrity under the processing conditions established. The materials selected were, Narmco 5209/Thornel T-300 graphite, Narmco 5209/KEVLAR-49 woven fabric, and Stathane 8747 polyurethane foam. Eight specimens were fabricated, representative of the frame, stringer, and splice joint attachments. Evaluation of the results of analysis and test indicate that design predictions are good to excellent except for some conservatism of the complex frame splice.

  3. Developing a gate-array capability at a research and development laboratory

    NASA Astrophysics Data System (ADS)

    Balch, J. W.; Current, K. W.; Magnuson, W. G., Jr.; Pocha, M. D.

    1983-03-01

    Experiences in developing a gate array capability for low volume applications in a research and development (R and D) laboratory are described. By purchasing unfinished wafers and doing the customization steps in-house. Turnaround time was shortened to as little as one week and the direct costs reduced to as low as $5K per design. Designs generally require fast turnaround (a few weeks to a few months) and very low volumes (1 to 25). Design costs must be kept at a minimum. After reviewing available commercial gate array design and fabrication services, it was determined that objectives would best be met by using existing internal integrated circuit fabrication facilities, the COMPUTERVISION interactive graphics layout system, and extensive computational capabilities. The reasons and the approach taken for; selection for a particular gate array wafer, adapting a particular logic simulation program, and how layout aids were enhanced are discussed. Testing of the customized chips is described. The content, schedule, and results of the internal gate array course recently completed are discussed. Finally, problem areas and near term plans are presented.

  4. Fabrication of Monolithic RERTR Fuels by Hot Isostatic Pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan-Fong Jue; Blair H. Park; Curtis R. Clark

    2010-11-01

    The RERTR (Reduced Enrichment for Research and Test Reactors) Program is developing advanced nuclear fuels for high-power test reactors. Monolithic fuel design provides higher uranium loading than that of the traditional dispersion fuel design. Hot isostatic pressing is a promising process for low-cost batch fabrication of monolithic RERTR fuel plates for these high-power reactors. Bonding U Mo fuel foil and 6061 Al cladding by hot isostatic press bonding was successfully developed at Idaho National Laboratory. Due to the relatively high processing temperature, the interaction between fuel meat and aluminum cladding is a concern. Two different methods were employed to mitigatemore » this effect: (1) a diffusion barrier and (2) a doping addition to the interface. Both types of fuel plates have been fabricated by hot isostatic press bonding. Preliminary results show that the direct fuel/cladding interaction during the bonding process was eliminated by introducing a thin zirconium diffusion barrier layer between the fuel and the cladding. Fuel plates were also produced and characterized with a silicon-rich interlayer between fuel and cladding. This paper reports the recent progress of this developmental effort and identifies the areas that need further attention.« less

  5. Removal design report for the 108-F Biological Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded bymore » adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.« less

  6. Design and fabrication of N x N optical couplers based on organic polymer optical waveguides

    NASA Astrophysics Data System (ADS)

    Krchnavek, Robert R.; Rode, Daniel L.

    1994-08-01

    In this report, we examine the design and fabrication of a planar, 10x10 optical coupler utilizing photopolymerizable organic polymers. Background information on the theory of operation of the coupler culminating in a set of design equations is presented. The details of the material processing are described, including the preparation of monomer mixtures that result in single-mode polymer waveguides (lambda = 1300 nm) that have core dimensions approximately equal to those of single-mode fiber. This is necessary to insure high coupling efficiency between the planar device and optical fiber. A unique method of aligning and attaching optical fibers to the coupler is demonstrated. This method relies on patterned alignment ways, a transcision cut, and single-mode D-fiber. A theoretical analysis of the in situ monitoring technique used to fabricate the single-mode D-fiber is presented and compared favorably with the experimental results. Finally, the 10x10 coupler is characterized. We have measured an excess loss of approximately 8 dB.

  7. Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.

    1976-01-01

    A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material.

  8. Design and fabrication of continuous-profile diffractive micro-optical elements as a beam splitter.

    PubMed

    Feng, Di; Yan, Yingbai; Jin, Guofan; Fan, Shoushan

    2004-10-10

    An optimization algorithm that combines a rigorous electromagnetic computation model with an effective iterative method is utilized to design diffractive micro-optical elements that exhibit fast convergence and better design quality. The design example is a two-dimensional 1-to-2 beam splitter that can symmetrically generate two focal lines separated by 80 microm at the observation plane with a small angle separation of +/- 16 degrees. Experimental results are presented for an element with continuous profiles fabricated into a monocrystalline silicon substrate that has a width of 160 microm and a focal length of 140 microm at a free-space wavelength of 10.6 microm.

  9. Experimental validation of an integrated controls-structures design methodology for a class of flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliott, Kenny B.; Joshi, Suresh M.; Walz, Joseph E.

    1994-01-01

    This paper describes the first experimental validation of an optimization-based integrated controls-structures design methodology for a class of flexible space structures. The Controls-Structures-Interaction (CSI) Evolutionary Model, a laboratory test bed at Langley, is redesigned based on the integrated design methodology with two different dissipative control strategies. The redesigned structure is fabricated, assembled in the laboratory, and experimentally compared with the original test structure. Design guides are proposed and used in the integrated design process to ensure that the resulting structure can be fabricated. Experimental results indicate that the integrated design requires greater than 60 percent less average control power (by thruster actuators) than the conventional control-optimized design while maintaining the required line-of-sight performance, thereby confirming the analytical findings about the superiority of the integrated design methodology. Amenability of the integrated design structure to other control strategies is considered and evaluated analytically and experimentally. This work also demonstrates the capabilities of the Langley-developed design tool CSI DESIGN which provides a unified environment for structural and control design.

  10. Computational Protein Engineering: Bridging the Gap between Rational Design and Laboratory Evolution

    PubMed Central

    Barrozo, Alexandre; Borstnar, Rok; Marloie, Gaël; Kamerlin, Shina Caroline Lynn

    2012-01-01

    Enzymes are tremendously proficient catalysts, which can be used as extracellular catalysts for a whole host of processes, from chemical synthesis to the generation of novel biofuels. For them to be more amenable to the needs of biotechnology, however, it is often necessary to be able to manipulate their physico-chemical properties in an efficient and streamlined manner, and, ideally, to be able to train them to catalyze completely new reactions. Recent years have seen an explosion of interest in different approaches to achieve this, both in the laboratory, and in silico. There remains, however, a gap between current approaches to computational enzyme design, which have primarily focused on the early stages of the design process, and laboratory evolution, which is an extremely powerful tool for enzyme redesign, but will always be limited by the vastness of sequence space combined with the low frequency for desirable mutations. This review discusses different approaches towards computational enzyme design and demonstrates how combining newly developed screening approaches that can rapidly predict potential mutation “hotspots” with approaches that can quantitatively and reliably dissect the catalytic step can bridge the gap that currently exists between computational enzyme design and laboratory evolution studies. PMID:23202907

  11. Recent advances in design and fabrication of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid; Wang, Chunlei

    2012-06-01

    Recent development in miniaturized electronic devices has increased the demand for power sources that are sufficiently compact and can potentially be integrated on a chip with other electronic components. Miniaturized electrochemical capacitors (EC) or micro-supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. Recently, we have developed several types of micro-supercapacitors with different structural designs and active materials. Carbon-Microelectromechanical Systems (C-MEMS) with three dimensional (3D) interdigital structures are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of pseudo-capacitive materials. More recently, we have also developed microsupercapacitor based on hybrid graphene and carbon nanotube interdigital structures. In this paper, the recent advances in design and fabrication of on-chip micro-supercapacitors are reviewed.

  12. Marginal accuracy of computer-aided design- and computer-aided manufacturing-fabricated full-arch zirconia restoration

    PubMed Central

    Sirisathit, Issarawas

    2018-01-01

    Objective This study evaluated marginal accuracy of full-arch zirconia restoration fabricated from two digital computer-aided design and computer-aided manufacturing (CAD-CAM) systems (Trios-3 and CS3500) in comparison to conventional cast metal restoration. Materials and methods A stainless steel model comprising two canine and two molar abutments was used as a master model for full-arch reconstruction. The canine and molar abutments were machined in a cylindrical shape with 5° taper and chamfer margin. The CAD-CAM systems based on the digital approach were used to construct the full-arch zirconia restoration. The conventional cast metal restoration was fabricated according to a conventional lost-wax technique using nickel–chromium alloys. Ten restorations were fabricated from each system. The marginal accuracy of each restoration was determined at four locations for each abutment. An analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) multiple comparisons were used to determine statistically significant difference at 95% confidence interval. Results The mean values of marginal accuracy of restorations fabricated from conventional casting, Trios-3, and CS3500 were 48.59±4.16 μm, 53.50±5.66 μm, and 56.47±5.52 μm, respectively. ANOVA indicated significant difference in marginal fit of restorations among various systems. The marginal discrepancy of zirconia restoration fabricated from the CS3500 system demonstrated significantly larger gap than that fabricated from the 3Shape system (p<0.05). Tukey’s HSD multiple comparisons indicated that the zirconia restoration fabricated from either CS3500 or Trios-3 demonstrated a significantly larger marginal gap than the conventional cast metal restoration (p<0.05). Conclusion Full-arch zirconia restoration fabricated from the Trios-3 illustrated better marginal fits than that from the CS3500, although, both were slightly less accurate than the conventional cast restoration. However, the

  13. Marginal accuracy of computer-aided design- and computer-aided manufacturing-fabricated full-arch zirconia restoration.

    PubMed

    Juntavee, Niwut; Sirisathit, Issarawas

    2018-01-01

    This study evaluated marginal accuracy of full-arch zirconia restoration fabricated from two digital computer-aided design and computer-aided manufacturing (CAD-CAM) systems (Trios-3 and CS3500) in comparison to conventional cast metal restoration. A stainless steel model comprising two canine and two molar abutments was used as a master model for full-arch reconstruction. The canine and molar abutments were machined in a cylindrical shape with 5° taper and chamfer margin. The CAD-CAM systems based on the digital approach were used to construct the full-arch zirconia restoration. The conventional cast metal restoration was fabricated according to a conventional lost-wax technique using nickel-chromium alloys. Ten restorations were fabricated from each system. The marginal accuracy of each restoration was determined at four locations for each abutment. An analysis of variance (ANOVA) and Tukey's honest significant difference (HSD) multiple comparisons were used to determine statistically significant difference at 95% confidence interval. The mean values of marginal accuracy of restorations fabricated from conventional casting, Trios-3, and CS3500 were 48.59±4.16 μm, 53.50±5.66 μm, and 56.47±5.52 μm, respectively. ANOVA indicated significant difference in marginal fit of restorations among various systems. The marginal discrepancy of zirconia restoration fabricated from the CS3500 system demonstrated significantly larger gap than that fabricated from the 3Shape system ( p <0.05). Tukey's HSD multiple comparisons indicated that the zirconia restoration fabricated from either CS3500 or Trios-3 demonstrated a significantly larger marginal gap than the conventional cast metal restoration ( p <0.05). Full-arch zirconia restoration fabricated from the Trios-3 illustrated better marginal fits than that from the CS3500, although, both were slightly less accurate than the conventional cast restoration. However, the marginal discrepancies of restoration produced by both

  14. ITER Central Solenoid Module Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort betweenmore » the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of

  15. Using the Universal Design for Learning Approach in Science Laboratories to Minimize Student Stress

    ERIC Educational Resources Information Center

    Miller, Daniel K.; Lang, Patricia L.

    2016-01-01

    This commentary discusses how the principles of universal design for learning (UDL) can be applied in the science laboratory with an emphasis on assisting students who experience stress in the laboratory environment. The UDL approach in the laboratory is based on three elements: open-mindedness, supportive communication, and analysis and…

  16. Design and fabrication of a continuously tuned capacitor by microfluidic actuation

    NASA Astrophysics Data System (ADS)

    Habbachi, Nizar; Boussetta, Hatem; Boukabache, Ali; Adel Kallala, Mohamed; Pons, Patrick; Besbes, Kamel

    2018-03-01

    This paper presents the design and fabrication of a continuously tunable RF MEMS capacitor using micro fluidics as a tuning parameter. The impedance variation principle is based on the modification of the capacitor gap permittivity produced by the presence of deionized (DI) water and its displacement in a channel inserted between electrodes. In addition, the electric field distribution changes in an equiponderant way according to the DI water positions in the channel. This change modifies the capacitive coupling, the stored energy and, consequently, the self-resonant frequency. The fabrication process is based on two parts: metallic paths having a spiral form, and obtained by electroplating a 7 µm thick gold layer to constitute electrodes; and fluidic channels, realized by super imposing two SU-8 films. The measurements show a nonlinear variation of the capacitor value according to the water positions. The tuning range is very large, reaching to 4650% for capacitance, and 335% for resonant frequency. However, the quality factor reaches Q max  =  79 at 550 MHz if the capacitor is empty and decreases with the fluid displacement to Q min  =  3.13.

  17. Design and fabrication of a prototype system for a photovoltaic residence in the Northeast

    NASA Astrophysics Data System (ADS)

    1982-08-01

    This project consisted of the design, fabrication, and testing of a photovoltaic residence which is suitable for construction in the Northeast. A full size residence was designed which included energy conserving and passive features, and the energy performance of the residence was completed for a 5 kW PV array in a standoff configuration. Actual construction consisted of the roof structure and a building enclosure large enough to contain the PCU, test equipment, and load simulation equipment. The PV array consists of 78 modules along with a line tie inverter.

  18. Randomized controlled within-subject evaluation of digital and conventional workflows for the fabrication of lithium disilicate single crowns. Part II: CAD-CAM versus conventional laboratory procedures.

    PubMed

    Sailer, Irena; Benic, Goran I; Fehmer, Vincent; Hämmerle, Christoph H F; Mühlemann, Sven

    2017-07-01

    Clinical studies are needed to evaluate the entire digital and conventional workflows in prosthetic dentistry. The purpose of the second part of this clinical study was to compare the laboratory production time for tooth-supported single crowns made with 4 different digital workflows and 1 conventional workflow and to compare these crowns clinically. For each of 10 participants, a monolithic crown was fabricated in lithium disilicate-reinforced glass ceramic (IPS e.max CAD). The computer-aided design and computer-aided manufacturing (CAD-CAM) systems were Lava C.O.S. CAD software and centralized CAM (group L), Cares CAD software and centralized CAM (group iT), Cerec Connect CAD software and lab side CAM (group CiL), and Cerec Connect CAD software with centralized CAM (group CiD). The conventional fabrication (group K) included a wax pattern of the crown and heat pressing according to the lost-wax technique (IPS e.max Press). The time for the fabrication of the casts and the crowns was recorded. Subsequently, the crowns were clinically evaluated and the corresponding treatment times were recorded. The Paired Wilcoxon test with the Bonferroni correction was applied to detect differences among treatment groups (α=.05). The total mean (±standard deviation) active working time for the dental technician was 88 ±6 minutes in group L, 74 ±12 minutes in group iT, 74 ±5 minutes in group CiL, 92 ±8 minutes in group CiD, and 148 ±11 minutes in group K. The dental technician spent significantly more working time for the conventional workflow than for the digital workflows (P<.001). No statistically significant differences were found between group L and group CiD or between group iT and group CiL. No statistical differences in time for the clinical evaluation were found among groups, indicating similar outcomes (P>.05). Irrespective of the CAD-CAM system, the overall laboratory working time for a digital workflow was significantly shorter than for the conventional

  19. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas safe, secure, reliable, and can fully support the Nation's deterrence policy. Employing only the most support of this mission, Sandia National Laboratories has a significant role in advancing the "state

  20. Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results

    EPA Science Inventory

    We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...

  1. Optimal design and fabrication of ring resonator composed of Ge02-doped silica waveguides for IOG

    NASA Astrophysics Data System (ADS)

    Guo, Lijun; Shi, Bangren; Chen, Chen; Lv, Hao; Zhao, Zhenming; Zhao, Meng

    2009-07-01

    The ring resonator is the core sensing element in the resonant integration optical gyroscope (IOG) . Its performances influence the minimum resolution and the error items of gyroscope directly and it is the key of the design and manufacturing. This paper presents optimal design of ring resonator composed of Ge02 -doped silica waveguides fabricated on silicon substrates using wide angle beam propagation method (WA-BPM). The characteristic of the light propagating across the ring resonator is analyzed. According to the design results, we succeed in fabricating the ring resonator by Plasma Enhanced Chemical Vapor Deposition (PECVD) method and Reactive Ion Etching (RIE) technology. In order to characterize the ring resonator, an optical measurement setup is built, fiber laser line-width is 50 kHz, detector responsibility is 0.95A/W and integral time is 10s. By testing, propagation loss and total loss of ring resonator are 0.02dB/cm and 0.1dB/circuit respectively. Observed from the resonance curve, a finesse of 12.5.

  2. Occulting focal plane masks for Terrestrial Planet Finder Coronagraph: design, fabrication, simulations and test results

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Hoppe, Daniel J.; Halverson, Peter G.; Wilson, Daniel W.; Echternach, Pierre M.; Shi, Fang; Lowman, Andrew E.; Niessner, Albert F.; Trauger, John T.; Shaklan, Stuart B.

    2005-01-01

    Occulting focal plane masks for the Terrestrial Planet Finder Coronagraph (TPF-C) could be designed with continuous gray scale profile of the occulting pattern such as 1-sinc2 on a suitable material or with micron-scale binary transparent and opaque structures of metallic pattern on glass. We have designed, fabricated and tested both kinds of masks. The fundamental characteristics of such masks and initial test results from the High Contrast Imaging Test bed (HCIT) at JPL are presented.

  3. Design and fabrication of a hybrid maglev model employing PML and SML

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Zheng, J.; Zhan, L. J.; Huang, S. Y.; Li, H. T.; Deng, Z. G.

    2017-10-01

    A hybrid maglev model combining permanent magnet levitation (PML) and superconducting magnetic levitation (SML) was designed and fabricated to explore a heavy-load levitation system advancing in passive stability and simple structure. In this system, the PML was designed to levitate the load, and the SML was introduced to guarantee the stability. In order to realize different working gaps of the two maglev components, linear bearings were applied to connect the PML layer (for load) and the SML layer (for stability) of the hybrid maglev model. Experimental results indicate that the hybrid maglev model possesses excellent advantages of heavy-load ability and passive stability at the same time. This work presents a possible way to realize a heavy-load passive maglev concept.

  4. Guidelines for the Design, Fabrication, Testing, Installation and Operation of Srf Cavities

    NASA Astrophysics Data System (ADS)

    Theilacker, J.; Carter, H.; Foley, M.; Hurh, P.; Klebaner, A.; Krempetz, K.; Nicol, T.; Olis, D.; Page, T.; Peterson, T.; Pfund, P.; Pushka, D.; Schmitt, R.; Wands, R.

    2010-04-01

    Superconducting Radio-Frequency (SRF) cavities containing cryogens under pressure pose a potential rupture hazard to equipment and personnel. Generally, pressure vessels fall within the scope of the ASME Boiler and Pressure Vessel Code however, the use of niobium as a material for the SRF cavities is beyond the applicability of the Code. Fermilab developed a guideline to ensure sound engineering practices governing the design, fabrication, testing, installation and operation of SRF cavities. The objective of the guideline is to reduce hazards and to achieve an equivalent level of safety afforded by the ASME Code. The guideline addresses concerns specific to SRF cavities in the areas of materials, design and analysis, welding and brazing, pressure relieving requirements, pressure testing and quality control.

  5. Design, fabrication and acceptance testing of a zero gravity whole body shower

    NASA Technical Reports Server (NTRS)

    Schumacher, E. A.; Lenda, J. A.

    1974-01-01

    Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.

  6. Design, Fabrication, and Testing of SMA Enabled Adaptive Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Buehrle, Ralph D.; Cano, Roberto J.; Fleming, Gary A.

    2004-01-01

    This study presents the status and results from an effort to design, fabricate, and test an adaptive jet engine chevron concept based upon embedding shape memory alloy (SMA) actuators in a composite laminate, termed a SMA hybrid composite (SMAHC). The approach for fabricating the adaptive SMAHC chevrons involves embedding prestrained Nitinol actuators on one side of the mid-plane of the composite laminate such that thermal excitation generates a thermal moment and deflects the structure. A glass-epoxy pre-preg/Nitinol ribbon material system and a vacuum hot press consolidation approach are employed. A versatile test system for control and measurement of the chevron deflection performance is described. Projection moire interferometry (PMI) is used for global deformation measurement and infrared (IR) thermography is used for 2-D temperature measurement and feedback control. A recently commercialized constitutive model for SMA and SMAHC materials is used in the finite element code ABAQUS to perform nonlinear static analysis of the chevron prototypes. Excellent agreement is achieved between the predicted and measured chevron deflection performance, thereby validating the design tool. Although the performance results presented in this paper fall short of the requirement, the concept is proven and an approach for achieving the performance objectives is evident.

  7. [Design and fabrication of the custom-made titanium condyle by selective laser melting technology].

    PubMed

    Chen, Jianyu; Luo, Chongdai; Zhang, Chunyu; Zhang, Gong; Qiu, Weiqian; Zhang, Zhiguang

    2014-10-01

    To design and fabricate the custom-made titanium mandibular condyle by the reverse engineering technology combined with selective laser melting (SLM) technology and to explore the mechanical properties of the SLM-processed samples and the application of the custom-made condyle in the temporomandibular joint (TMJ) reconstruction. The three-dimensional model of the mandibular condyle was obtained from a series of CT databases. The custom-made condyle model was designed by the reverse engineering software. The mandibular condyle was made of titanium powder with a particle size of 20-65 µm as the basic material and the processing was carried out in an argon atmosphere by the SLM machine. The yield strength, ultimate strength, bending strength, hardness, surface morphology and roughness were tested and analyzed. The finite element analysis (FEA) was used to analyze the stress distribution. The complex geometry and the surface of the custom-made condyle can be reproduced precisely by the SLM. The mechanical results showed that the yield strength, ultimate strength, bending strength and hardness were (559±14) MPa, (659±32) MPa, (1 067±42) MPa, and (212±4)HV, respectively. The surface roughness was reduced by sandblast treatment. The custom-made titanium condyle can be fabricated by SLM technology which is time-saving and highly digitized. The mechanical properties of the SLM sample can meet the requirements of surgical implant material in the clinic. The possibility of fabricating custom-made titanium mandibular condyle combined with the FEA opens new interesting perspectives for TMJ reconstruction.

  8. Preliminary Solar Sail Design and Fabrication Assessment: Spinning Sail Blade, Square Sail Sheet

    NASA Technical Reports Server (NTRS)

    Daniels, J. B.; Dowdle, D. M.; Hahn, D. W.; Hildreth, E. N.; Lagerquist, D. R.; Mahaonoul, E. J.; Munson, J. B.; Origer, T. F.

    1977-01-01

    Blade design aspects most affecting producibility and means of measurement and control of length, scallop, fullness and straightness requirements and tolerances were extensively considered. Alternate designs of the panel seams and edge reinforcing members are believed to offer advantages of seam integrity, producibility, reliability, cost and weight. Approaches to and requirements for highly specialized metalizing methods, processes and equipment were studied and identified. Alternate methods of sail blade fabrication and related special machinery, tooling, fixtures and trade offs were examined. A preferred and recommended approach is also described. Quality control plans, inspection procedures, flow charts and special test equipment associated with the preferred manufacturing method were analyzed and are discussed.

  9. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology

    PubMed Central

    Chen, Jiawen; Li, Jianhua; Li, Yiyuan; Chen, Yulong

    2018-01-01

    A miniaturized Co-based amorphous wire GMI (Giant magneto-impedance) magnetic sensor was designed and fabricated in this paper. The Co-based amorphous wire was used as the sense element due to its high sensitivity to the magnetic field. A three-dimensional micro coil surrounding the Co-based amorphous wire was fabricated by MEMS (Micro-Electro-Mechanical System) technology, which was used to extract the electrical signal. The three-dimensional micro pick-up coil was designed and simulated with HFSS (High Frequency Structure Simulator) software to determine the key parameters. Surface micro machining MEMS (Micro-Electro-Mechanical System) technology was employed to fabricate the three-dimensional coil. The size of the developed amorphous wire magnetic sensor is 5.6 × 1.5 × 1.1 mm3. Helmholtz coil was used to characterize the performance of the device. The test results of the sensor sample show that the voltage change is 130 mV/Oe and the linearity error is 4.83% in the range of 0~45,000 nT. The results indicate that the developed miniaturized magnetic sensor has high sensitivity. By testing the electrical resistance of the samples, the results also showed high uniformity of each device. PMID:29494477

  10. A Solder Based Self Assembly Project in an Introductory IC Fabrication Course

    ERIC Educational Resources Information Center

    Rao, Madhav; Lusth, John C.; Burkett, Susan L.

    2015-01-01

    Integrated circuit (IC) fabrication principles is an elective course in a senior undergraduate and early graduate student's curriculum. Over the years, the semiconductor industry relies heavily on students with developed expertise in the area of fabrication techniques, learned in an IC fabrication theory and laboratory course. The theory course…

  11. Design and fabrication of optical homogenizer with micro structure by injection molding process

    NASA Astrophysics Data System (ADS)

    Chen, C.-C. A.; Chang, S.-W.; Weng, C.-J.

    2008-08-01

    This paper is to design and fabricate an optical homogenizer with hybrid design of collimator, toroidal lens array, and projection lens for beam shaping of Gaussian beam into uniform cylindrical beam. TracePro software was used to design the geometry of homogenizer and simulation of injection molding was preceded by Moldflow MPI to evaluate the mold design for injection molding process. The optical homogenizer is a cylindrical part with thickness 8.03 mm and diameter 5 mm. The micro structure of toroidal array has groove height designed from 12 μm to 99 μm. An electrical injection molding machine and PMMA (n= 1.4747) were selected to perform the experiment. Experimental results show that the optics homogenizer has achieved the transfer ratio of grooves (TRG) as 88.98% and also the optical uniformity as 68% with optical efficiency as 91.88%. Future study focuses on development of an optical homogenizer for LED light source.

  12. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    NASA Astrophysics Data System (ADS)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-04-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and

  13. Design, fabrication & performance analysis of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Salam, M. A.; Afsar, M. R.; Huda, M. N.; Mahmud, T.

    2016-07-01

    An Unmanned Aerial Vehicle was designed, analyzed and fabricated to meet design requirements and perform the entire mission for an international aircraft design competition. The goal was to have a balanced design possessing, good demonstrated flight handling qualities, practical and affordable manufacturing requirements while providing a high vehicle performance. The UAV had to complete total three missions named ferry flight (1st mission), maximum load mission (2nd mission) and emergency medical mission (3rd mission). The requirement of ferry flight mission was to fly as many as laps as possible within 4 minutes. The maximum load mission consists of flying 3 laps while carrying two wooden blocks which simulate cargo. The requirement of emergency medical mission was complete 3 laps as soon as possible while carrying two attendances and two patients. A careful analysis revealed lowest rated aircraft cost (RAC) as the primary design objective. So, the challenge was to build an aircraft with minimum RAC that can fly fast, fly with maximum payload, and fly fast with all the possible configurations. The aircraft design was reached by first generating numerous design concepts capable of completing the mission requirements. In conceptual design phase, Figure of Merit (FOM) analysis was carried out to select initial aircraft configuration, propulsion, empennage and landing gear. After completion of the conceptual design, preliminary design was carried out. The preliminary design iterations had a low wing loading, high lift coefficient, and a high thrust to weight ratio. To make the aircraft capable of Rough Field Taxi; springs were added in the landing gears for absorbing shock. An airfoil shaped fuselage was designed to allowed sufficient space for payload and generate less drag to make the aircraft fly fast. The final design was a high wing monoplane with conventional tail, single tractor propulsion system and a tail dragger landing gear. Payload was stored in

  14. Craftsmen in the Wood Model Shop at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1953-01-21

    Craftsmen work in the wood model shop at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Fabrication Division created almost all of the equipment and models used at the laboratory. The Fabrication Shop building contained a number of specialized shops in the 1940s and 1950s. These included a Machine Shop, Sheet Metal Shop, Wood Model and Pattern Shop, Instrument Shop, Thermocouple Shop, Heat Treating Shop, Metallurgical Laboratory, and Fabrication Office. The Wood Model and Pattern Shop created everything from control panels and cabinets to aircraft models molds for sheet metal work.

  15. Design and fabrication of composite blades for the Mod-1 wind turbine generator

    NASA Technical Reports Server (NTRS)

    Batesole, W. R.; Gunsallus, C. T.

    1981-01-01

    The design, tooling, fabrication, quality control, and testing phases carried out to date, as well as testing still planned are described. Differences from the 150 foot blade which were introduced for cost and manufacturing improvement purposes are discussed as well as the lightning protection system installed in the blades. Actual costs and manhours expended for Blade No. 2 are provided as a base, along with a projection of costs for the blade in production.

  16. Design, development, fabrication and delivery of register and multiplexer units. [CMOS monolithic chip development

    NASA Technical Reports Server (NTRS)

    Feller, A.; Lombardi, T.

    1978-01-01

    Several approaches for implementing the register and multiplexer unit into two CMOS monolithic chip types were evaluated. The CMOS standard cell array technique was selected and implemented. Using this design automation technology, two LSI CMOS arrays were designed, fabricated, packaged, and tested for proper static, functional, and dynamic operation. One of the chip types, multiplexer register type 1, is fabricated on a 0.143 x 0.123 inch chip. It uses nine standard cell types for a total of 54 standard cells. This involves more than 350 transistors and has the functional equivalent of 111 gates. The second chip, multiplexer register type 2, is housed on a 0.12 x 0.12 inch die. It uses 13 standard cell types, for a total of 42 standard cells. It contains more than 300 transistors, the functional equivalent of 112 gates. All of the hermetically sealed units were initially screened for proper functional operation. The static leakage and the dynamic leakage were measured. Dynamic measurements were made and recorded. At 10 V, 14 megabit shifting rates were measured on multiplexer register type 1. At 5 V these units shifted data at a 6.6 MHz rate. The units were designed to operate over the 3 to 15 V operating range and over a temperature range of -55 to 125 C.

  17. Data encryption standard ASIC design and development report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Perry J.; Pierson, Lyndon George; Witzke, Edward L.

    2003-10-01

    This document describes the design, fabrication, and testing of the SNL Data Encryption Standard (DES) ASIC. This device was fabricated in Sandia's Microelectronics Development Laboratory using 0.6 {micro}m CMOS technology. The SNL DES ASIC was modeled using VHDL, then simulated, and synthesized using Synopsys, Inc. software and finally IC layout was performed using Compass Design Automation's CAE tools. IC testing was performed by Sandia's Microelectronic Validation Department using a HP 82000 computer aided test system. The device is a single integrated circuit, pipelined realization of DES encryption and decryption capable of throughputs greater than 6.5 Gb/s. Several enhancements accommodate ATMmore » or IP network operation and performance scaling. This design is the latest step in the evolution of DES modules.« less

  18. FABRIC FILTER MODEL SENSITIVITY ANALYSIS

    EPA Science Inventory

    The report gives results of a series of sensitivity tests of a GCA fabric filter model, as a precursor to further laboratory and/or field tests. Preliminary tests had shown good agreement with field data. However, the apparent agreement between predicted and actual values was bas...

  19. Flight service evaluation of composite components on the Bell Helicopter model 206L: Design, fabrication and testing

    NASA Technical Reports Server (NTRS)

    Zinberg, H.

    1982-01-01

    The design, fabrication, and testing phases of a program to obtain long term flight service experience on representative helicopter airframe structural components operating in typical commercial environments are described. The aircraft chosen is the Bell Helicopter Model 206L. The structural components are the forward fairing, litter door, baggage door, and vertical fin. The advanced composite components were designed to replace the production parts in the field and were certified by the FAA to be operable through the full flight envelope of the 206L. A description of the fabrication process that was used for each of the components is given. Static failing load tests on all components were done. In addition fatigue tests were run on four specimens that simulated the attachment of the vertical fin to the helicopter's tail boom.

  20. Fabrication of nano-scale Cu bond pads with seal design in 3D integration applications.

    PubMed

    Chen, K N; Tsang, C K; Wu, W W; Lee, S H; Lu, J Q

    2011-04-01

    A method to fabricate nano-scale Cu bond pads for improving bonding quality in 3D integration applications is reported. The effect of Cu bonding quality on inter-level via structural reliability for 3D integration applications is investigated. We developed a Cu nano-scale-height bond pad structure and fabrication process for improved bonding quality by recessing oxides using a combination of SiO2 CMP process and dilute HF wet etching. In addition, in order to achieve improved wafer-level bonding, we introduced a seal design concept that prevents corrosion and provides extra mechanical support. Demonstrations of these concepts and processes provide the feasibility of reliable nano-scale 3D integration applications.

  1. Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok

    2018-01-01

    Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.

  2. Practical experience with graphical user interfaces and object-oriented design in the clinical laboratory.

    PubMed

    Wells, I G; Cartwright, R Y; Farnan, L P

    1993-12-15

    The computing strategy in our laboratories evolved from research in Artificial Intelligence, and is based on powerful software tools running on high performance desktop computers with a graphical user interface. This allows most tasks to be regarded as design problems rather than implementation projects, and both rapid prototyping and an object-oriented approach to be employed during the in-house development and enhancement of the laboratory information systems. The practical application of this strategy is discussed, with particular reference to the system designer, the laboratory user and the laboratory customer. Routine operation covers five departments, and the systems are stable, flexible and well accepted by the users. Client-server computing, currently undergoing final trials, is seen as the key to further development, and this approach to Pathology computing has considerable potential for the future.

  3. Design and fabrication of one-dimensional and two- dimensional photonic bandgap devices

    NASA Astrophysics Data System (ADS)

    Lim, Kuo-Yi

    1999-10-01

    One-dimensional and two-dimensional photonic bandgap devices have been designed and fabricated using III-V compound semiconductors. The one-dimensional photonic bandgap devices consist of monorail and air-bridge waveguide microcavities, while the two-dimensional photonic bandgap devices consist of light-emitting devices with enhanced extraction efficiency. Fabrication techniques such as gas source molecular beam epitaxy, direct-write electron-beam lithography, reactive ion etching and thermal oxidation of AlxGa1- xAs have been employed. The III-V thermal oxide, in particular, is used as an index confinement material, as a sacrificial material for micromechanical fabrication of the air-bridge microcavity, and in the realization of a wide-bandwidth distributed Bragg reflector. The one-dimensional photonic bandgap waveguide microcavities have been designed to operate in the wavelength regimes of 4.5 m m and 1.55 m m. The devices designed to operate in the 1.55 m m wavelength regime have been optically characterized. The transmission spectra exhibit resonances at around 1.55 m m and cavity quality factors (Q's) ranging from 136 to 334. The resonant modal volume is calculated to be about 0.056 m m3. Tunability in the resonance wavelengths has also been demonstrated by changing the size of the defect in the one-dimensional photonic crystal. The two-dimensional photonic bandgap light-emitting device consists of a In0.51Ga0.49P/In0.2Ga0.8As/In 0.51Ga0.49P quantum well emitting at 980nm with a triangular photonic lattice of holes in the top cladding layer of the quantum well. The photonic crystal prohibits the propagation of guided modes in the semiconductor, thus enhancing the extraction of light vertical to the light-emitting device. A wide-bandwidth GaAs/AlxOy distributed Bragg reflector mirror under the quantum well structure further enhances the extraction of light from the devices. The extraction efficiency of the two-dimensional photonic bandgap light-emitting device

  4. Radiation and Health Technology Laboratory Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.

    2005-07-09

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrumentmore » calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.« less

  5. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Johnson, F. C.

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at

  6. Design and implementation of an internet-based electrical engineering laboratory.

    PubMed

    He, Zhenlei; Shen, Zhangbiao; Zhu, Shanan

    2014-09-01

    This paper describes an internet-based electrical engineering laboratory (IEE-Lab) with virtual and physical experiments at Zhejiang University. In order to synthesize the advantages of both experiment styles, the IEE-Lab is come up with Client/Server/Application framework and combines the virtual and physical experiments. The design and workflow of IEE-Lab are introduced. The analog electronic experiment is taken as an example to show Flex plug-in design, data communication based on XML (Extensible Markup Language), experiment simulation modeled by Modelica and control terminals' design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    NASA Technical Reports Server (NTRS)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth's gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth's gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA's KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns. In November of 2003, this new apparatus was used on the KC-135 aircraft to test cotton and cotton/polyester blend fabric specimens in microgravity. These materials were also been tested using the same apparatus in 1-g, and using a standard vertical flammability test that utilizes a flame. In this presentation, the design of the test apparatus will be briefly described. Examples of results from the KC-135 tests will be provided, including

  8. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  9. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  10. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  11. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  12. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  13. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  14. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  15. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  16. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  17. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  18. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh, K.

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductorsmore » under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.« less

  19. Preliminary results for the design, fabrication, and performance of a backside-illuminated avalanche drift detector

    NASA Astrophysics Data System (ADS)

    Qiao, Yun; Liang, Kun; Chen, Wen-Fei; Han, De-Jun

    2013-10-01

    The detection of low-level light is a key technology in various experimental scientific studies. As a photon detector, the silicon photomultiplier (SiPM) has gradually become an alternative to the photomultiplier tube (PMT) in many applications in high-energy physics, astroparticle physics, and medical imaging because of its high photon detection efficiency (PDE), good resolution for single-photon detection, insensitivity to magnetic field, low operating voltage, compactness, and low cost. However, primarily because of the geometric fill factor, the PDE of most SiPMs is not very high; in particular, for those SiPMs with a high density of micro cells, the effective area is small, and the bandwidth of the light response is narrow. As a building block of the SiPM, the concept of the backside-illuminated avalanche drift detector (ADD) was first proposed by the Max Planck Institute of Germany eight years ago; the ADD is promising to have high PDE over the full energy range of optical photons, even ultraviolet light and X-ray light, and because the avalanche multiplication region is very small, the ADD is beneficial for the fabrication of large-area SiPMs. However, because of difficulties in design and fabrication, no significant progress had been made, and the concept had not yet been verified. In this paper, preliminary results in the design, fabrication, and performance of a backside-illuminated ADD are reported; the difficulties in and limitations to the backside-illuminated ADD are analyzed.

  20. The design and development of a space laboratory to conduct magnetospheric and plasma research

    NASA Technical Reports Server (NTRS)

    Rosen, A.

    1974-01-01

    A design study was conducted concerning a proposed shuttle-borne space laboratory for research on magnetospheric and plasma physics. A worldwide survey found two broad research disciplines of interest: geophysical studies of the dynamics and structure of the magnetosphere (including wave characteristics, wave-particle interactions, magnetospheric modifications, beam-plasma interactions, and energetic particles and tracers) and plasma physics studies (plasma physics in space, wake and sheath studies, and propulsion and devices). The Plasma Physics and Environmental Perturbation Laboratory (PPEPL) designed to perform experiments in these areas will include two 50-m booms and two maneuverable subsatellites, a photometer array, standardized proton, electron, and plasma accelerators, a high-powered transmitter for frequencies above 100 kHz, a low-power transmitter for VLF and below, and complete diagnostic packages. Problem areas in the design of a space plasma physics laboratory are indicated.

  1. Design, Fabrication, Optical Testing, and Performance of Diamond Machined Aspheric Mirrors for Ground-Based Near-IR Astronomy

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond G.; Mink, Ronald; Chambers, V. John; Connelly, Joseph A.; Mentzell, J. Eric; Tveekrem, June L.; Howard, Joseph M.; Preuss, Werner; Schroeder, Mechthild; Sohn, Alex; hide

    2002-01-01

    Challenges in fabrication and testing have historically limited the choice of surfaces available for the design of reflective optical instruments. Spherical and conic mirrors are common, but, for future science instruments, more degrees of freedom are necessary to meet challenging performance and packaging requirements. These instruments will be composed of unusual aspheres located far off-axis with large spherical departure, and some designs will require asymmetric surface profiles. In particular, single-surface astigmatism correction in spectrographs necessitates a toroidal surface, which lacks an axis of rotational symmetry. We describe the design, fabrication, optical testing, and performance of three rotationally symmetric, off-axis, aspheric mirrors and one toroidal, off-axis, biconic camera mirror on aluminum substrates for the Infrared Multi-Object Spectrograph (IRMOS) instrument. IRMOS is a facility instrument for the Kitt Peak National Observatory's Mayall Telescope (3.8 m) and an engineering prototype for a possible design of the Next Generation Space Telescope/Multi-Object Spectrograph. The symmetric mirrors range in aperture from 94x86 mm to 286x269 mm and in f-number from 0.9 to 2.4. They are various off-axis, convex and concave, prolate and oblate ellipsoids. The concave biconic mirror has a 94x76 mm aperture, Rx=377 mm, kx=0.0778, Ry=407 mm, and ky=0.1265 and is decentered. by -2 mm in x and 227 mm in y. The mirrors have an aspect ratio of approximately 4:1. The surface error fabrication tolerances are less than 63.3 nm RMS figure error and less than 10 nm RMS microroughness. The mirrors are attached to the instrument bench via a semi-kinematic, integral flexure mount. We describe mirror design, diamond machining, the results of figure testing using computer-generated holograms, and imaging and scattered light modeling and performance.

  2. Nanorobotic end-effectors: Design, fabrication, and in situ characterization

    NASA Astrophysics Data System (ADS)

    Fan, Zheng

    Nano-robotic end-effectors have promising applications for nano-fabrication, nano-manufacturing, nano-optics, nano-medical, and nano-sensing; however, low performances of the conventional end-effectors have prevented the widespread utilization of them in various fields. There are two major difficulties in developing the end-effectors: their nano-fabrication and their advanced characterization in the nanoscale. Here we introduce six types of end-effectors: the nanotube fountain pen (NFP), the super-fine nanoprobe, the metal-filled carbon nanotube (m CNT)-based sphere-on-pillar (SOP) nanoantennas, the tunneling nanosensor, and the nanowire-based memristor. The investigations on the NFP are focused on nano-fluidics and nano-fabrications. The NFP could direct write metallic "inks" and fabricating complex metal nanostructures from 0D to 3D with a position servo control, which is critically important to future large-scale, high-throughput nanodevice production. With the help of NFP, we could fabricate the end-effectors such as super-fine nanoprobe and m CNT-based SOP nanoantennas. Those end-effectors are able to detect local flaws or characterize the electrical/mechanical properties of the nanostructure. Moreover, using electron-energy-loss-spectroscopy (EELS) technique during the operation of the SOP optical antenna opens a new basis for the application of nano-robotic end-effectors. The technique allows advanced characterization of the physical changes, such as carrier diffusion, that are directly responsible for the device's properties. As the device was coupled with characterization techniques of scanning-trasmission-electron-microscopy (STEM), the development of tunneling nanosensor advances this field of science into quantum world. Furthermore, the combined STEM-EELS technique plays an important role in our understanding of the memristive switching performance in the nanowire-based memristor. The developments of those nano-robotic end-effectors expend the study

  3. Design and Fabrication of a Precision Template for Spine Surgery Using Selective Laser Melting (SLM).

    PubMed

    Wang, Di; Wang, Yimeng; Wang, Jianhua; Song, Changhui; Yang, Yongqiang; Zhang, Zimian; Lin, Hui; Zhen, Yongqiang; Liao, Suixiang

    2016-07-22

    In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM) technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient's body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient's surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness) were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units) in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians.

  4. Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines

    NASA Technical Reports Server (NTRS)

    Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)

    2001-01-01

    This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.

  5. Designing easy DNA extraction: Teaching creativity through laboratory practice.

    PubMed

    Susantini, Endang; Lisdiana, Lisa; Isnawati; Tanzih Al Haq, Aushia; Trimulyono, Guntur

    2017-05-01

    Subject material concerning Deoxyribose Nucleic Acid (DNA) structure in the format of creativity-driven laboratory practice offers meaningful learning experience to the students. Therefore, a laboratory practice in which utilizes simple procedures and easy-safe-affordable household materials should be promoted to students to develop their creativity. This study aimed to examine whether designing and conducting DNA extraction with household materials could foster students' creative thinking. We also described how this laboratory practice affected students' knowledge and views. A total of 47 students participated in this study. These students were grouped and asked to utilize available household materials and modify procedures using hands-on worksheet. Result showed that this approach encouraged creative thinking as well as improved subject-related knowledge. Students also demonstrated positive views about content knowledge, social skills, and creative thinking skills. This study implies that extracting DNA with household materials is able to develop content knowledge, social skills, and creative thinking of the students. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):216-225, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. Superhydrophobic Superoleophobic Woven Fabrics (Preprint)

    DTIC Science & Technology

    2011-06-01

    AFRL-RX-TY-TP-2011-0050 SUPERHYDROPHOBIC SUPEROLEOPHOBIC WOVEN FABRICS (PREPRINT) Hoonjoo Lee Department of Textile and Apparel...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) JUN 2011 Book Chapter 20-JUN-2008 -- 30-APR-2011 Superhydrophobic Superoleophobic Woven Fabrics...roll-off angles are analyzed, and finally superhydrophobic , superoleophobic, woven fabric is designed and developed using chemical and geometrical

  7. Design and Fabrication of High-Performance LWIR Photodetectors Based on Type-II Superlattices

    DTIC Science & Technology

    2017-08-11

    SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2017-0090 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public...unlimited. 13 DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2... AFRL -RV-PS- AFRL -RV-PS- TR-2017-0090 TR-2017-0090 DESIGN AND FABRICATION OF HIGH- PERFORMANCE LWIR PHOTODETECTORS BASED ON TYPE-II SUPERLATTICES

  8. Design, fabrication and actuation of a MEMS-based image stabilizer for photographic cell phone applications

    NASA Astrophysics Data System (ADS)

    Chiou, Jin-Chern; Hung, Chen-Chun; Lin, Chun-Ying

    2010-07-01

    This work presents a MEMS-based image stabilizer applied for anti-shaking function in photographic cell phones. The proposed stabilizer is designed as a two-axis decoupling XY stage 1.4 × 1.4 × 0.1 mm3 in size, and adequately strong to suspend an image sensor for anti-shaking photographic function. This stabilizer is fabricated by complex fabrication processes, including inductively coupled plasma (ICP) processes and flip-chip bonding technique. Based on the special designs of a hollow handle layer and a corresponding wire-bonding assisted holder, electrical signals of the suspended image sensor can be successfully sent out with 32 signal springs without incurring damage during wire-bonding packaging. The longest calculated traveling distance of the stabilizer is 25 µm which is sufficient to resolve the anti-shaking problem in a three-megapixel image sensor. Accordingly, the applied voltage for the 25 µm moving distance is 38 V. Moreover, the resonant frequency of the actuating device with the image sensor is 1.123 kHz.

  9. Fabrication and performance analysis of a DEA cuff designed for dry-suit applications

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Camacho Mattos, A.; Barbazza, A.; Soleimani, M.; Boscariol, P.; Menon, C.

    2013-03-01

    A method for manufacturing a cylindrical dielectric elastomer actuator (DEA) is presented. The cylindrical DEA can be used in fabricating the cuff area of dry-suits where the garment is very tight and wearing the suit is difficult. When electrically actuated, the DEA expands radially and the suit can be worn more comfortably. In order to study the performance of the DEA, a customized testing setup was designed, and silicone-made cuff samples with different material stiffnesses were tested. Analytical and FEM modeling were considered to evaluate the experimental output. The results revealed that although the stiffness of the DEA material has a direct relationship with the radial constrictive pressure caused by mechanically stretching the DEA, it has a minor effect on the actuation pressure. It was also found that stacking multiple layers of the DEA to fabricate a laminated structure enabled the attainment of a desired variation of pressure required for the implementation of an electrically tunable cuff.

  10. Design and fabrication of 55-gallon drum shuffler standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, S.M.; Hsue, F.; Hoth, C.

    1994-08-01

    To analyze waste with varying levels of nuclear material, suitable standards are needed to calibrate analytical instrumentation. At the Los Alamos Plutonium Facility, the authors have designed and fabricated a single drum standard for a passive-active neutron counter (shuffler). The standard is modified simply by adding or subtracting plutonium of uranium cylinders to adapt to a range of nuclear material. The plutonium or uranium oxide was placed into small cylindrical containers (1-in. diameter by 5-in. long) and diluted with diatomaceous earth. The cylinders were welded closed and removed from the glove box environment without any external contamination. The containers weremore » leak tested and then placed on a segmented gamma scanner to assure homogeneous distribution of the nuclear material. The cylinders are now placed into the drum to achieve the needed ranges for calibration of the instruments.« less

  11. [Teaching design and practice of human blood type traits in genetics comprehensive laboratory course].

    PubMed

    Zhao, Jian; Hu, Dong-mei; Yu, Da-de; Dong, Ming-liang; Li, Yun; Fan, Ying-ming; Wang, Yan-wei; Zhang, Jin-feng

    2016-05-01

    Comprehensive laboratory courses, which enable students to aptly apply theoretic knowledge and master experiment skills, play an important role in the present educational reform of laboratory courses. We utilized human ABO blood type as the experimental subject, and designed the experiment--"Molecular Genotyping of Human ABO Blood Type and Analysis of Population Genetic Equilibrium". In the experiment, DNA in mucosal cells is extracted from students' saliva, and each student's genotype is identified using a series of molecular genetics technologies, including PCR amplification of target fragments, enzymatic digestion, and electrophoretic separation. Then, taking the whole class as an analogous Mendel population, a survey of genotype frequency of ABO blood type is conducted, followed with analyses of various population genetic parameters using Popgene. Through the open laboratory course, students can not only master molecular genetic experimental skills, but also improve their understanding of theoretic knowledge through independent design and optimization of molecular techniques. After five years of research and practice, a stable experimental system of molecular genetics has been established to identify six genotypes of ABO blood types, namely I(A)I(A), I(A)i, I(B)I(B), I(B)i, I(A)I(B) and ii. Laboratory courses of molecular and population genetics have been integrated by calculating the frequencies of the six genotypes and three multiple alleles and testing population genetic equilibrium. The goal of the open laboratory course with independent design and implementation by the students has been achieved. This laboratory course has proved effective and received good reviews from the students. It could be applied as a genetics laboratory course for the biology majors directly, and its ideas and methods could be promoted and applied to other biological laboratory courses.

  12. FINAL DESIGN REVIEW REPORT Subcritical Experiments Gen 2, 3-ft Confinement Vessel Weldment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Christopher

    A Final Design Review (FDR) of the Subcritical Experiments (SCE) Gen 2, 3-ft. Confinement Vessel Weldment was held at Los Alamos National Laboratory (LANL) on September 14, 2017. The review was a focused review on changes only to the confinement vessel weldment (versus a system design review). The changes resulted from lessons-learned in fabricating and inspecting the current set of confinement vessels used for the SCE Program. The baseline 3-ft. confinement vessel weldment design has successfully been used (to date) for three (3) high explosive (HE) over-tests, two (2) fragment tests, and five (5) integral HE experiments. The design teammore » applied lessons learned from fabrication and inspection of these vessel weldments to enhance fit-up, weldability, inspection, and fitness for service evaluations. The review team consisted of five (5) independent subject matter experts with engineering design, analysis, testing, fabrication, and inspection experience. The« less

  13. Aerothermodynamic Design of the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2009-01-01

    Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule heatshield. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux, shear stress, and pressure) entry trajectories from a 2009 launch. Boundary layer transition is expected prior to peak heat flux, a first for Mars entry, and the heatshield environments were defined for a fully-turbulent heat pulse. The effects of distributed surface roughness on turbulent heat flux and shear stress peaks are included using empirical correlations. Additional biases and uncertainties are based on computational model comparisons with experimental data and sensitivity studies. The peak design conditions are 197 W/sq cm for heat flux, 471 Pa for shear stress, 0.371 Earth atm for pressure, and 5477 J/sq cm for total heat load. Time-varying conditions at fixed heatshield locations were generated for thermal protection system analysis and flight instrumentation development. Finally, the aerothermodynamic effects of delaying launch until 2011 are previewed.

  14. High Reynolds Number Hybrid Laminar Flow Control (HLFC) Flight Experiment. 3; Leading Edge Design, Fabrication, and Installation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This document describes the design, fabrication, and installation of the suction panel and the required support structure, ducting, valving, and high-lift system (Krueger flaps) for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane.

  15. Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing.

    PubMed

    Chen, Tian; Mueller, Jochen; Shea, Kristina

    2017-03-31

    Multi-material 3D printing has created new opportunities for fabricating deployable structures. We design reversible, deployable structures that are fabricated flat, have defined load bearing capacity, and multiple, predictable activated geometries. These structures are designed with a hierarchical framework where the proposed bistable actuator serves as the base building block. The actuator is designed to maximise its stroke length, with the expansion ratio approaching one when serially connected. The activation force of the actuator is parameterised through its joint material and joint length. Simulation and experimental results show that the bistability triggering force can be tuned between 0.5 and 5.0 N. Incorporating this bistable actuator, the first group of hierarchical designs demonstrate the deployment of space frame structures with a tetrahedron module consisting of three active edges, each containing four serially connected actuators. The second group shows the design of flat structures that assume either positive or negative Gaussian curvature once activated. By flipping the initial configuration of the unit actuators, structures such as a dome and an enclosure are demonstrated. A modified Dynamic Relaxation method is used to simulate all possible geometries of the hierarchical structures. Measured geometries differ by less than 5% compared to simulation results.

  16. Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing

    PubMed Central

    Chen, Tian; Mueller, Jochen; Shea, Kristina

    2017-01-01

    Multi-material 3D printing has created new opportunities for fabricating deployable structures. We design reversible, deployable structures that are fabricated flat, have defined load bearing capacity, and multiple, predictable activated geometries. These structures are designed with a hierarchical framework where the proposed bistable actuator serves as the base building block. The actuator is designed to maximise its stroke length, with the expansion ratio approaching one when serially connected. The activation force of the actuator is parameterised through its joint material and joint length. Simulation and experimental results show that the bistability triggering force can be tuned between 0.5 and 5.0 N. Incorporating this bistable actuator, the first group of hierarchical designs demonstrate the deployment of space frame structures with a tetrahedron module consisting of three active edges, each containing four serially connected actuators. The second group shows the design of flat structures that assume either positive or negative Gaussian curvature once activated. By flipping the initial configuration of the unit actuators, structures such as a dome and an enclosure are demonstrated. A modified Dynamic Relaxation method is used to simulate all possible geometries of the hierarchical structures. Measured geometries differ by less than 5% compared to simulation results. PMID:28361891

  17. Design and fabrication of zeolite macro- and micromembranes

    NASA Astrophysics Data System (ADS)

    Chau, Lik Hang Joseph

    2001-07-01

    The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (<5 mum), as well as zeolite arrays (<10 mum) were successfully fabricated onto highly orientated supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

  18. Improving consistency in large laboratory courses: a design for a standardized practical exam.

    PubMed

    Chen, Xinnian; Graesser, Donnasue; Sah, Megha

    2015-06-01

    Laboratory courses serve as important gateways to science, technology, engineering, and mathematics education. One of the challenges in assessing laboratory learning is to conduct meaningful and standardized practical exams, especially for large multisection laboratory courses. Laboratory practical exams in life sciences courses are frequently administered by asking students to move from station to station to answer questions, apply knowledge gained during laboratory experiments, interpret data, and identify various tissues and organs using various microscopic and gross specimens. This approach puts a stringent time limit on all questions regardless of the level of difficulty and also invariably increases the potential risk of cheating. To avoid potential cheating in laboratory courses with multiple sections, the setup for practical exams is often changed in some way between sections. In laboratory courses with multiple instructors or teaching assistants, practical exams may be handled inconsistently among different laboratory sections, due to differences in background knowledge, perceptions of the laboratory goals, or prior teaching experience. In this article, we describe a design for a laboratory practical exam that aims to align the assessment questions with well-defined laboratory learning objectives and improve the consistency among all laboratory sections. Copyright © 2015 The American Physiological Society.

  19. Analysis, design, fabrication and testing of the mini-Brayton rotating unit (Mini-BRU). Volume 1: Text and tables

    NASA Technical Reports Server (NTRS)

    Dobler, F. X.

    1978-01-01

    A 500 to 2100 watt power output Mini-Brayton Rotating Unit (Mini-BRU)was analyzed, designed, fabricated and tested. Performance and test data for the various components is included. Components tested include the 2.12 in. diameter compressor, the 2.86 in. diameter turbine, the Rice alternator and the cantilevered foil-type journal and thrust bearings. Also included are results on the fabrication of a C-103 turbine plenum/nozzle assembly and on offgassing of the organic materials in the alternator stator.

  20. An integrated design and fabrication strategy for entirely soft, autonomous robots.

    PubMed

    Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J

    2016-08-25

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

  1. Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device.

    PubMed

    Dsa, Joyline; Goswami, Manish; Singh, B R; Bhatt, Nidhi; Sharma, Pankaj; Chauhan, Meenakshi K

    2018-07-01

    We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λ max of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.

  2. End-to-End Information System design at the NASA Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1978-01-01

    Recognizing a pressing need of the 1980s to optimize the two-way flow of information between a ground-based user and a remote space-based sensor, an end-to-end approach to the design of information systems has been adopted at the Jet Propulsion Laboratory. The objectives of this effort are to ensure that all flight projects adequately cope with information flow problems at an early stage of system design, and that cost-effective, multi-mission capabilities are developed when capital investments are made in supporting elements. The paper reviews the End-to-End Information System (EEIS) activity at the Laboratory, and notes the ties to the NASA End-to-End Data System program.

  3. Photovoltaic retinal prosthesis for restoring sight to the blind: implant design and fabrication

    NASA Astrophysics Data System (ADS)

    Wang, Lele; Mathieson, Keith; Kamins, Theodore I.; Loudin, James; Galambos, Ludwig; Harris, James S.; Palanker, Daniel

    2012-03-01

    We have designed and fabricated a silicon photodiode array for use as a subretinal prosthesis aimed at restoring sight to patients who lost photoreceptors due to retinal degeneration. The device operates in photovoltaic mode. Each pixel in the two-dimensional array independently converts pulsed infrared light into biphasic electric current to stimulate remaining retinal neurons without a wired power connection. To enhance the maximum voltage and charge injection levels, each pixel contains three photodiodes connected in series. An active and return electrode in each pixel ensure localized current flow and are sputter coated with iridium oxide to provide high charge injection. The fabrication process consists of eight mask layers and includes deep reactive ion etching, oxidation, and a polysilicon trench refill for in-pixel photodiode separation and isolation of adjacent pixels. Simulation of design parameters included TSUPREM4 computation of doping profiles for n+ and p+ doped regions and MATLAB computation of the anti-reflection coating layers thicknesses. The main process steps are illustrated in detail, and problems encountered are discussed. The IV characterization of the device shows that the dark reverse current is on the order of 10-100 pA-negligible compared to the stimulation current; the reverse breakdown voltage is higher than 20 V. The measured photo-responsivity per photodiode is about 0.33A/W at 880 nm.

  4. Fabrication of capsule assemblies, phase 3

    NASA Technical Reports Server (NTRS)

    Keeton, A. R.; Stemann, L. G.

    1973-01-01

    Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.

  5. Educational area for learning of optics and technologies: union of open laboratories of ideas, methods and practices (OLIMP)

    NASA Astrophysics Data System (ADS)

    Ivashchenko, Maksim; Bodrov, Kirill; Tolstoba, Nadezhda

    2016-09-01

    The paper deals with the concept of creating the union of Open Laboratories of Ideas, Methods and Practices (OLIMP). It describes the structure designed to simplify the relationship, such as business incubators, start-up accelerators, small innovative enterprises, fabrication laboratories and student centers. We consider their advantages and disadvantages for the specific audience of students and enthusiasts who do not have funding for their own projects. The experience of interaction between the Open Laboratories of Ideas, Methods and Practices and the Student Research Laboratory for Optical Engineering shows the relative impact of structures on each other and the value of using such interaction in the learning process. The paper also addresses issues such as: the motivation of students, enthusiasm for the direction the lab participants identify and maintain the initiatives, profiling in the design, scientific, commercial, social sphere.

  6. Digital impression and jaw relation record for the fabrication of CAD/CAM custom tray.

    PubMed

    Kanazawa, Manabu; Iwaki, Maiko; Arakida, Toshio; Minakuchi, Shunsuke

    2018-03-16

    This article describes the protocol of a digital impression technique to make an impression and recording of the jaw relationship of edentulous patients for the fabrication of CAD/CAM custom tray using computer-aided design and manufacturing (CAD/CAM) technology. Scan the maxillary and mandibular edentulous jaws using an intraoral scanner. Scan the silicone jig with the maxillary and mandibular jaws while keeping the jig between the jaws. Import the standard tessellation language data of the maxillary and mandibular jaws and jig to make a jaw relation record and fabricate custom trays (CAD/CAM trays) using a rapid prototyping system. Make a definitive impression of the maxillary and mandibular jaws using the CAD/CAM trays. Digitalization of the complete denture fabrication process can simplify the complicated treatment and laboratory process of conventional methods In addition, the proposed method enables quality control regardless of the operator's experience and technique. Copyright © 2018. Published by Elsevier Ltd.

  7. Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System

    NASA Technical Reports Server (NTRS)

    Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.

    2008-01-01

    Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.

  8. The design, fabrication and characterization of fluidic membranes for micro-engines with the aim of frequency lowering

    NASA Astrophysics Data System (ADS)

    Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.

    2016-12-01

    This paper describes the design, microfabrication and linear dynamic characterization of low frequency thick membranes as a potential technological solution for resonant micro-engines, for which classical pistons cannot be used. The proposed structure is called a hybrid fluid-membrane and consists of two thin flexible membranes that encapsulate an incompressible fluid. Lower frequency structures, compared to geometrically equivalent single layer membranes, are thus obtained. Each flexible membrane is based on a composite structure which comprises a silicon planar logarithmic spiral spring embedded in a room temperature vulcanization silicone polymer. Thus, the stiffness and sealing features are dissociated for a better design control. The developed realization and assembly process is demonstrated at the wafer level. The process involves the anodic bonding of multiple stacks of silicon/glass structures, fluid filling and sealing. Various dimensions of hybrid fluid-membranes are successfully fabricated. Their dynamic characterization underlines the agreement between experimental and theoretical results. The results provide the opportunity for the design and fabrication of low frequency membranes to match the dynamics requirements of micro-engines.

  9. An Approach to Developing the Laboratory Through Senior Design Projects.

    ERIC Educational Resources Information Center

    Faghri, Amir

    1987-01-01

    Describes a program in which senior engineering students are given the opportunity to design, make, and test apparatus intended for an upper-level teaching laboratory. Discusses such projects as a vapor compressor test stand with refrigerant mass flow measurement, a double-walled concentric annular heat pipe, and a vacuum filling station. (TW)

  10. Tests of Flammability of Cotton Fabrics and Expected Skin Burns in Microgravity

    NASA Technical Reports Server (NTRS)

    Cavanagh, Jane M.; Torvi, David A.; Gabriel, Kamiel S.; Ruff, Gary A.

    2004-01-01

    During a shuttle launch and other portions of space flight, astronauts wear specialized flame resistant clothing. However during most of their missions on board the Space Shuttle or International Space Station, astronauts wear ordinary clothing, such as cotton shirts and pants. As the behaviour of flames is considerably different in microgravity than under earth s gravity, fabrics are expected to burn in a different fashion in microgravity than when tested on earth. There is interest in determining how this change in burning behaviour may affect times to second and third degree burn of human skin, and how the results of standard fabric flammability tests conducted under earth s gravity correlate with the expected fire behaviour of textiles in microgravity. A new experimental apparatus was developed to fit into the Spacecraft Fire Safety Facility (SFSF), which is used on NASA s KC-135 low gravity aircraft. The new apparatus was designed to be similar to the apparatus used in standard vertical flammability tests of fabrics. However, rather than using a laboratory burner, the apparatus uses a hot wire system to ignite 200 mm high by 80 mm wide fabric specimens. Fabric temperatures are measured using thermocouples and/or an infrared imaging system, while flame spread rates are measured using real time observations or video. Heat flux gauges are placed between 7 and 13 mm away from the fabric specimen, so that heat fluxes from the burning fabric to the skin can be estimated, along with predicted times required to produce skin burns.

  11. Marginal fit of indirect composite inlays using a new system for manual fabrication.

    PubMed

    Pott, P; Rzasa, A; Stiesch, M; Eisenburger, M

    2016-09-01

    This in vitro study compares a new system for manual chair side fabrication of indirect composite restorations, which uses silicone models after alginate impressions, to CAD/CAM-technology and laboratory manual production techniques. MATRIALS AND METHODS: and study design Each 10 composite inlays were fabricated using different types of production techniques: CAD/CAM- technology (A), the new inlay system (B), plaster model after alginate impression (C) or silicone impression (D). The inlays were adapted into a metal tooth and silicone replicas of the cement gaps were made and measured. Statistical analysis was performed using ANOVA and Tukey's test. Results and Statistics In group A the biggest marginal gaps (174.9μm ± 106.2μm) were found. In group B the gaps were significantly smaller (119.5 μm ± 90.6 μm) than in group A (p=0.035). Between groups C (64.6 μm ± 68.0μm) and D (58.2 μm ± 61.7 μm) no significant differences could be found (p=0.998), but the gaps were significantly smaller compared with group B. Conclusion Chairside manufacturing of composite inlays resulted in better marginal precision than CAD/CAM technology. In comparison to build restorations in a laboratory, the new system is a timesaving and inexpensive alternative. Nevertheless, production of indirect composite restorations in the dental laboratory showed the highest precision.

  12. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications.

    PubMed

    Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho

    2013-12-01

    We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.

  13. ADVANCED ELECTROSTATIC ENHANCEMENT OF FABRIC FILTRATION

    EPA Science Inventory

    The paper discusses laboratory and pilot plant studies of a modification of the U.S. EPA's Electrically Stimulated Fabric Filtration (ESFF) method in which corona voltage on a center-wire electrode replaces the subcorona electrodes at the bag surface. The electric field which aff...

  14. Design and fabrication of facial prostheses for cancer patient applying computer aided method and manufacturing (CADCAM)

    NASA Astrophysics Data System (ADS)

    Din, Tengku Noor Daimah Tengku; Jamayet, Nafij; Rajion, Zainul Ahmad; Luddin, Norhayati; Abdullah, Johari Yap; Abdullah, Abdul Manaf; Yahya, Suzana

    2016-12-01

    Facial defects are either congenital or caused by trauma or cancer where most of them affect the person appearance. The emotional pressure and low self-esteem are problems commonly related to patient with facial defect. To overcome this problem, silicone prosthesis was designed to cover the defect part. This study describes the techniques in designing and fabrication for facial prosthesis applying computer aided method and manufacturing (CADCAM). The steps of fabricating the facial prosthesis were based on a patient case. The patient was diagnosed for Gorlin Gotz syndrome and came to Hospital Universiti Sains Malaysia (HUSM) for prosthesis. The 3D image of the patient was reconstructed from CT data using MIMICS software. Based on the 3D image, the intercanthal and zygomatic measurements of the patient were compared with available data in the database to find the suitable nose shape. The normal nose shape for the patient was retrieved from the nasal digital library. Mirror imaging technique was used to mirror the facial part. The final design of facial prosthesis including eye, nose and cheek was superimposed to see the result virtually. After the final design was confirmed, the mould design was created. The mould of nasal prosthesis was printed using Objet 3D printer. Silicone casting was done using the 3D print mould. The final prosthesis produced from the computer aided method was acceptable to be used for facial rehabilitation to provide better quality of life.

  15. Design, Fabrication, and Testing of a Hopper Spacecraft Simulator

    NASA Astrophysics Data System (ADS)

    Mucasey, Evan Phillip Krell

    A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.

  16. Fabrication of sinterable silicon nitride by injection molding

    NASA Technical Reports Server (NTRS)

    Quackenbush, C. L.; French, K.; Neil, J. T.

    1982-01-01

    Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.

  17. Design, fabrication, and verification of a three-dimensional autocollimator.

    PubMed

    Yin, Yanhe; Cai, Sheng; Qiao, Yanfeng

    2016-12-10

    The autocollimator is an optical instrument for noncontact angle measurement with high resolution and a long detection range. It measures two-dimensional angles, i.e., pitch and yaw, but not roll. In this paper, we present a novelly structured autocollimator capable of measuring three-dimensional (3D) angles simultaneously. In this setup, two collimated beams of different wavelengths are projected onto a right-angle prism. One beam is reflected by the hypotenuse of the prism and received by an autocollimation unit for detecting pitch and yaw. The other is reflected by the two legs of the right-angle prism and received by a moiré fringe imaging unit for detecting roll. Furthermore, a prototype is designed and fabricated. Experiments are carried out to evaluate its basic performance. Calibration results show that this prototype has angular RMS errors of less than 5 arcsec in all 3Ds over a range of 1000 arcsec at a working distance of 2 m.

  18. Implementing Inclusive Design for Learning in an introductory geology laboratory

    NASA Astrophysics Data System (ADS)

    Robert, G.; Merriman, J. D.; Ceylan, G. M.

    2013-12-01

    As an expansion of universal design for learning, IDL provides a framework for opening up and adapting classroom interaction systems, minimizing barriers through promoting perception, engagement, expression, and accommodation for diverse learners. We implemented an introductory-level laboratory for communicating the concept of magma viscosity using the guidelines and principles of IDL. We developed the lab as a mini-implementation project for an IDL course offered by the University of Missouri (MU) Graduate School. The laboratory was subsequently taught during the summer session of Principles of Geology in our Department of Geological Sciences. Traditional geology laboratories rely heavily on visual aids, either physical (rocks and minerals) or representative (idealized cartoons of processes, videos), with very few alternative representations and descriptions made available to the students. Our main focus for this new lab was to diversify the means of representation available to the students (and instructor) to make the lab as equitable and flexible as possible. We considered potential barriers to learning arising from the physical lab environment, from the means of representation, engagement and expression, and tried to minimize them upfront. We centred the laboratory on the link between volcano shape and viscosity as an applied way to convey that viscosity is the resistance to flow. The learning goal was to have the students observe that more viscous eruptives resulted in steeper-sided volcanoes through experimentation. Students built their own volcanoes by erupting lava (foods of various viscosities) onto the Earth's surface (a piece of sturdy cardboard with a hole for the 'vent') through a conduit (pastry bag). Such a hands on lab exercise allows students to gain a tactile and visual, i.e., physical representation of an abstract concept. This specific exercise was supported by other, more traditional, means of representation (e.g., lecture, videos, cartoons, 3D

  19. Optimizing laboratory animal stress paradigms: The H-H* experimental design.

    PubMed

    McCarty, Richard

    2017-01-01

    Major advances in behavioral neuroscience have been facilitated by the development of consistent and highly reproducible experimental paradigms that have been widely adopted. In contrast, many different experimental approaches have been employed to expose laboratory mice and rats to acute versus chronic intermittent stress. An argument is advanced in this review that more consistent approaches to the design of chronic intermittent stress experiments would provide greater reproducibility of results across laboratories and greater reliability relating to various neural, endocrine, immune, genetic, and behavioral adaptations. As an example, the H-H* experimental design incorporates control, homotypic (H), and heterotypic (H*) groups and allows for comparisons across groups, where each animal is exposed to the same stressor, but that stressor has vastly different biological and behavioral effects depending upon each animal's prior stress history. Implementation of the H-H* experimental paradigm makes possible a delineation of transcriptional changes and neural, endocrine, and immune pathways that are activated in precisely defined stressor contexts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Berg, D. E.

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.