Sample records for laboratory elementary science

  1. Improving the Effectiveness of Science Laboratory Instruction for Elementary Students through the Use of a Process Approach for Change.

    ERIC Educational Resources Information Center

    Vorsino, Wanda S.

    This practicum endeavored to improve science laboratory instruction for elementary students. The major goal of the practicum was to facilitate laboratory use so that teachers would incorporate laboratory experiences as an integral component in science instruction. To improve the instructional significance of the science laboratory, the writer…

  2. Promoting Science Outdoor Activities for Elementary School Children: Contributions from a Research Laboratory

    ERIC Educational Resources Information Center

    Boaventura, Diana; Faria, Claudia; Chagas, Isabel; Galvao, Cecilia

    2013-01-01

    The purposes of the study were to analyse the promotion of scientific literacy through practical research activities and to identify children's conceptions about scientists and how they do science. Elementary school children were engaged in two scientific experiments in a marine biology research laboratory. A total of 136 students answered a…

  3. Cognitive Research and Elementary Science Instruction: From the Laboratory, to the Classroom, and Back

    ERIC Educational Resources Information Center

    Klahr, David; Li, Junlei

    2005-01-01

    Can cognitive research generate usable knowledge for elementary science instruction? Can issues raised by classroom practice drive the agenda of laboratory cognitive research? Answering yes to both questions, we advocate building a reciprocal interface between basic and applied research. We discuss five studies of the teaching, learning, and…

  4. Safety in the Elementary Science Classroom.

    ERIC Educational Resources Information Center

    Dean, Robert A.; And Others

    This safety guide for elementary school science teachers who plan science activities or laboratories for their students, presents information in the form of a flip chart that can be posted in the classroom and referred to in an emergency. Space is provided for emergency telephone numbers. A safety checklist is given for the teacher. Topics…

  5. Elementary Science Literature Review

    ERIC Educational Resources Information Center

    Gustafson, Brenda; MacDonald, Dougal; d'Entremont, Yvette

    2007-01-01

    This report presents a literature review of elementary science and design technology education research. The review is intended to provide direction to the elementary science working groups charged with the responsibility to revise the "Alberta Elementary Science Program" (1996) by reflecting current ideas reported in research…

  6. National Science Resources Center Project for Improving Science Teaching in Elementary Schools. Appendix A. School Systems With Exemplary Elementary Science Programs. Appendix B. Elementary Science Network

    DTIC Science & Technology

    1988-12-01

    Department Campbell, Judy S., Principal Seedling Mile Elementary School Campbell, Kelly, Vice President International Services, Inc. Campbell, Larry...Agency #5 Coverdale, Miles , Principal Baxter Coveyou, Tony, Cowan, Ann, Education Specialist Hanford Science Center Cowan, Margaret, Cowan, Peggy...Science State Department of Education Ezell, James, No. 92 Elementary School Ezzell , Effie, No. 45 Elementary School 09/03/88 NSRC Elementary Science

  7. Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Elementary Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2011-01-01

    Curriculum materials are important resources with which teachers make pedagogical decisions about the design of science learning environments. To become well-started beginning elementary teachers capable of engaging their students in inquiry-based science, preservice elementary teachers need to learn to use science curriculum materials…

  8. Crowdfunding for Elementary Science Educators

    ERIC Educational Resources Information Center

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  9. Improving Pre-Service Elementary Teachers' Education via a Laboratory Course on Air Pollution: One University's Experience

    ERIC Educational Resources Information Center

    Mandrikas, Achilleas; Parkosidis, Ioannis; Psomiadis, Ploutarchos; Stoumpa, Artemisia; Chalkidis, Anthimos; Mavrikaki, Evangelia; Skordoulis, Constantine

    2013-01-01

    This paper describes the structure of the "Air Pollution Course", an environmental science laboratory course developed at the Science Education Laboratory of the Faculty of Primary Education, University of Athens, as well as the findings resulting from its implementation by pre-service elementary teachers. The course proposed in this…

  10. Learning Environment and Attitudes Associated with an Innovative Science Course Designed for Prospective Elementary Teachers

    ERIC Educational Resources Information Center

    Martin-Dunlop, Catherine; Fraser, Barry J.

    2008-01-01

    This study assessed the effectiveness of an innovative science course for improving prospective elementary teachers' perceptions of laboratory learning environments and attitudes towards science. The sample consisted of 27 classes with 525 female students in a large urban university. Changing students' ideas about science laboratory teaching and…

  11. Peer Assessment of Elementary Science Teaching Skills

    ERIC Educational Resources Information Center

    Kilic, Gulsen Bagci; Cakan, Mehtap

    2007-01-01

    In this study, peer assessment was applied in assessing elementary science teaching skills. Preservice teachers taught a science topic as a team to their peers in an elementary science methods course. The peers participating in the science lesson assessed teacher-groups' elementary science teaching skills on an assessment form provided by the…

  12. ELEMENTARY SCIENCE OUTLINE, A GUIDE TO SUGGESTED CURRICULUM PRACTICES IN ELEMENTARY SCHOOL SCIENCE.

    ERIC Educational Resources Information Center

    KARTSOTIS, A. THOMAS; MESSERSCHMIDT, RALPH M.

    THE COMMITTEE ON ELEMENTARY SCHOOL SCIENCE OF THE LEHIGH VALLEY SCHOOL STUDY COUNCIL REPORTS THEIR WORK ON SUGGESTED CURRICULUM FOR GRADES 1-6. THE BELIEF IS THAT SCIENCE IS A MAJOR STUDY AREA IN ELEMENTARY SCHOOL, AND SHOULD BE TAUGHT TO ALL PUPILS IN A PLANNED LEARNING SEQUENCE, WITH DUE CONSIDERATION BEING GIVEN TO THE MATURITY OF THE CHILD.…

  13. Earth-Space Science Activity Syllabus for Elementary and Junior High School Teachers of Science.

    ERIC Educational Resources Information Center

    Maier, Jack; And Others

    This syllabus is a collection of earth-space science laboratory activities and demonstrations intended for use at the elementary and junior high school levels. The activities are grouped into eight subject sections: Astronomy, Light, Magnetism, Electricity, Geology, Weather, Sound, and Space. Each section begins with brief background information,…

  14. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    ERIC Educational Resources Information Center

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-01-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This…

  15. Chemistry Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume III.

    ERIC Educational Resources Information Center

    Crosby, Glenn; And Others

    A group of scientists and science educators of Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Chemistry block of the physical science courses developed by the group. Included are…

  16. Geology Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume IV.

    ERIC Educational Resources Information Center

    Webster, Gary

    A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Geology block of the physical science courses developed by the group. Included are…

  17. Astronomy Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume I.

    ERIC Educational Resources Information Center

    Lutz, Julie H.; Orlich, Donald C.

    A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Astronomy block of the physical science courses developed by the group. Included are…

  18. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    NASA Astrophysics Data System (ADS)

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-06-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.

  19. Incorporating Formative Assessment and Science Content into Elementary Science Methods--A Case Study

    ERIC Educational Resources Information Center

    Brower, Derek John

    2012-01-01

    Just as elementary students enter the science classroom with prior knowledge and experiences, so do preservice elementary teachers who enter the science methods classroom. Elementary science methods instructors recognize the challenges associated with preparing teachers for the science classroom. Two of these challenges include overcoming limited…

  20. PROJECT SUCCESS: Marine Science. (Introductory Packet, Basic Marine Science Laboratory Techniques, Oceanographic Instruments, Individual Projects, Bibliography).

    ERIC Educational Resources Information Center

    Demaray, Bryan

    Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…

  1. "I'm Not the Science Type": Effect of an Inquiry Biology Content Course on Preservice Elementary Teachers' Intentions about Teaching Science

    ERIC Educational Resources Information Center

    Weld, Jeffrey; Funk, Lucas

    2005-01-01

    Inquiry Into Life Science is a content biology course expressly for the fulfillment of the General Education life science laboratory course requirement of elementary education majors at this university. The course is modeled on the Teaching Standards and Content Standards of the National Science Education Standards [National Research Council.…

  2. Implementing Elementary School Next Generation Science Standards

    ERIC Educational Resources Information Center

    Kennedy, Katheryn B.

    2017-01-01

    Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The…

  3. Using a Computer Simulation To Teach Science Process Skills to College Biology and Elementary Education Majors.

    ERIC Educational Resources Information Center

    Lee, Aimee T.; Hairston, Rosalina V.; Thames, Rachel; Lawrence, Tonya; Herron, Sherry S.

    2002-01-01

    Describes the Lateblight computer simulation implemented in the general biology laboratory and science methods course for elementary teachers to reinforce the processes of science and allow students to engage, explore, explain, elaborate, and evaluate the methods of building concepts in science. (Author/KHR)

  4. Carroll County hands-on elementary science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlocker, H.G.; Dunkleberger, G.L.

    1994-12-31

    Carroll County Hands-on Elementary Science is a nationally recognized Elementary Science Curriculum which has been disseminated in forty states, Puerto Rico, The Virgin Islands, Saipan, and Samoa. The curriculum is a non-textbook, process-based, constructivist approach to teaching science. Unique features of this curriculum include its teacher-written daily lesson plan format, its complete kit of science supplies, and its complete set of Spanish materials. In order to be included by the National Diffusion Network, Hands-on Elementary Science collected data to support the following claims: the program enhances teacher and student attitudes toward science; the program changes both the amount and themore » type of science instruction; the program is adaptable and transportable; the teacher training component is effective. The poster display will feature sample activities, data which demonstrates the effectiveness of the staff development plan, and samples which show the degree to which the program supports selected state curriculum frameworks.« less

  5. Student involvement in learning: Collaboration in science for PreService elementary teachers

    NASA Astrophysics Data System (ADS)

    Roychoudhury, Anita; Roth, Wolff-Michael

    1992-03-01

    The present study provided insights regarding the interactions that take place in collaborative science laboratory and regarding the outcome of such interactions. Science laboratory experiences structured by teachers have been criticized for allowing very little, if any, meaningful learning. However, this study showed that even structured laboratory experiments can provide insightful experience for students when conducted in a group setting that demanded interactive participation from all its members. The findings of the present study underscored the synergistic and supportive nature of collaborative groups. Here, students patiently repeated explanations to support the meaning construction on the part of their slower peers and elaborated their own understanding in the process; groups negotiated the meaning of observations and the corresponding theoretical explanations; students developed and practiced a range of social skills necessary in today’s workplace; and off-task behavior was thwarted by the group members motivated to work toward understanding rather than simply generating answers for task completion. The current findings suggest an increased use of collaborative learning environments for the teaching of science to elementary education majors. Some teachers have already made use of such settings in their laboratory teaching. However, collaborative learning should not be limited to the laboratory only, but be extended to more traditionally structured classes. The effects of such a switch in activity structures, increased quality of peer interaction, mastery of subject matter content, and decreased anxiety levels could well lead to better attitudes toward science among preservice elementary school teachers and eventually among their own students.

  6. Elementary Principals' Role in Science Instruction

    ERIC Educational Resources Information Center

    Casey, Patricia; Dunlap, Karen; Brown, Kristen; Davison, Michele

    2012-01-01

    This study explores the role elementary school principals play in science education. Specifically, the study employed an online survey of 16 elementary school principals at high-performing campuses in North Texas to explore their perceptions of how they influenced science education on their campuses. The survey used a combination of Likert-type…

  7. Differential Use of Elementary Science Kits

    ERIC Educational Resources Information Center

    Jones, Gail; Robertson, Laura; Gardner, Grant E.; Dotger, Sharon; Blanchard, Margaret R.

    2012-01-01

    The use of kits in elementary science classes is a growing trend in some countries. Kits provide materials and inquiry lessons in a ready-to-teach format for teachers to use in their science instruction. This study examined elementary teachers' instructional strategies, classroom practices, and assessment types in relation to the frequency of…

  8. Science for the Elementary School. Third Edition.

    ERIC Educational Resources Information Center

    Victor, Edward

    This book has been revised to reflect changes that have taken place in elementary science and to present the latest thinking and philosophy for teaching science in the elementary school. The book is intended to be useful for both prospective and experienced teachers to organize and conduct meaningful science learning experiences in the elementary…

  9. The science knowledge, conceptions of the nature of science, attitudes about teaching science, and science instructional strategies of bilingual and English-only elementary teachers

    NASA Astrophysics Data System (ADS)

    Alegria, Adelina Victoria

    use of similar instructional strategies, many of which are known to support science learning in the classroom (laboratory/hands-on activities, whole group discussion, questioning, and cooperative/small group activities). Concerning assessment strategies, both the bilingual and English-only groups reported very similar answers. They reported usually making use of students' projects, student's logs/journals/diaries, performance activities such as lab practicals and hands-on tests to assess science learning. They also reported seldom or never making use of paper/pencil quizzes nor end-of-chapter/unit tests. There was not enough clear information to decide whether bilingual and English-only elementary respondents hold similar or different views of science. This study's implications encompass two different areas: (a) changes that bilingual and elementary credentialing programs need to undergo and (b) further bilingual science teaching research. The findings concerned with science knowledge, that both bilingual and English-only elementary teachers possess a limited science knowledge base leads me to suggest, just as the science teaching literature has suggested, that elementary credentialing programs need to strengthen their candidates' science content by increasing the science content addressed in the science methodology courses and/or by requiring a greater number of science undergraduate courses (most liberal arts majors require no more than five courses, San Diego State University, 1999). (Abstract shortened by UMI.)

  10. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  11. Science and Technology Teachers' Views about the Causes of Laboratory Accidents

    ERIC Educational Resources Information Center

    Aydogdu, Cemil

    2015-01-01

    The aim of this study was to determine science and technology teachers' views about the causes of the problems encountered in laboratories. In this research, phenomenology, a qualitative research design, was used. 21 science and technology teachers who were working in elementary schools in Eskisehir during the 2010-2011 spring semester were the…

  12. Elementary Children's Retrodictive Reasoning about Earth Science

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Schneps, Matthew H.

    2012-01-01

    We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…

  13. Science: It's Elementary. Year Two Evaluation Report

    ERIC Educational Resources Information Center

    Banilower, Eric R.; Fulp, Sherri L.; Warren, Camille L.

    2008-01-01

    This report summarizes the activities and findings of the external evaluation of the "Science: It's Elementary" (SIE) program in the period June 2007 through May 2008. The SIE program is managed by ASSET Inc. and overseen by the Pennsylvania Department of Education. SIE is an initiative aimed at improving elementary science instruction…

  14. Science as experience, exploration, and experiments: elementary teachers' notions of `doing science'

    NASA Astrophysics Data System (ADS)

    Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.

    2017-11-01

    Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science - both in and out of schools - throughout their lives. Our work uses identity as a lens to examine the complexities of elementary teachers' narrative accounts of their experiences with science over the course of their lives. Our findings identify components of teachers' science-related experiences in order to lay the groundwork for making connections between teachers' personal experiences and professional practice. This work demonstrates that teachers' storied lives are important for educational researchers and teacher educators, as they reveal elements of teaching knowledge that may be productive and resourceful for refining teachers' science practice.

  15. Investigation of preservice elementary teachers' thinking about science

    NASA Astrophysics Data System (ADS)

    Cobern, William W.; Loving, Cathleen C.

    2002-12-01

    It is not uncommon to find media reports on the failures of science education, nor uncommon to hear prestigious scientists publicly lament the rise of antiscience attitudes. Given the position elementary teachers have in influencing children, antiscience sentiment among them would be a significant concern. Hence, this article reports on an investigation in which preservice elementary teachers responded to the Thinking about Science survey instrument. This newly developed instrument addresses the broadrelationship of science to nine important areas of society and culture and is intended to reveal the extent of views being consistent with or disagreeing with a commonly held worldview of science portrayed in the media and in popular science and science education literature. Results indicate that elementary teachers discriminate with respect to different aspects of culture and science but they are not antiscience.

  16. Science for All: Empowering Elementary School Teachers

    ERIC Educational Resources Information Center

    Plonczak, Irene

    2008-01-01

    This article addresses issues that are related to the empowerment of elementary teachers through teaching and learning science in socially and culturally meaningful contexts. It is based on the analysis of the attitudes and relationship to science of 10 elementary school teachers from inner city schools in Caracas, Venezuela. In the context of a…

  17. Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators

    NASA Astrophysics Data System (ADS)

    Carver, Cynthia G.

    Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The focus of this qualitative project study was on the needs of local elementary educators. These teachers were asked what they felt they needed most to be more effective science educators. The methodology of phenomenology was used in this study in which local elementary teachers were questioned in focus groups regarding their own science teaching efficacy and perceived needs. Using inductive analysis, data were coded for links to discussion questions as well as any additional patterns that emerged. Findings indicated that local elementary teachers desire improved communication among administrators and teachers as well as better science content support and training. Focus group participants agreed that teacher self-efficacy affects the time spent, effort toward, and quality of elementary science education. Using the results of the study, a science mentor program was developed to support the needs of elementary teachers and increase teacher self-efficacy, thus improving local elementary science education. Implications for positive social change include the development and support of elementary science programs in other school systems with the goal of improving science education for elementary students.

  18. Teaching science as argument: Prospective elementary teachers' knowledge

    NASA Astrophysics Data System (ADS)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry

  19. Science as Experience, Exploration, and Experiments: Elementary Teachers' Notions of "Doing Science"

    ERIC Educational Resources Information Center

    Murphy, Ashley N.; Luna, Melissa J.; Bernstein, Malayna B.

    2017-01-01

    Much of the literature on science teaching suggests that elementary teachers lack relevant prior experiences with science. This study begins to reframe the deficit approach to research in science teaching by privileging the experiences elementary teachers have had with science--both in and out of schools--throughout their lives. Our work uses…

  20. Designing laboratory activities in elementary school oriented to scientific approach for teachers SD-Kreatif Bojonegoro

    NASA Astrophysics Data System (ADS)

    Dwikoranto; Surasmi, W. A.; Suparto, A.; Tresnaningsih, S.; Sambada, D.; Setyowati, T.; Faqih, A.; Setiani, R.

    2018-03-01

    Important science lessons are introduced to elementary school students through inquiry. This training is important to do because one key determinant of succesful laboratory activities is teachers. This course aims to enable teachers to design an inquiry-based Laboratory Activity and be able to apply it in the classroom. The training was conducted at SD-Kreatif Bojonegoro by Modeling, Design Laboratory activities and Implementing. The results of Laboratory Activities designed to trace the seven aspects that can support the development of inquiry skills in either category. The teacher's response in this activity is positive. The conclusion of this training can improve the ability of teachers in designing and implementing laboratory activities of Science and then expected to positively affect the frequency of science laboratory activities. Usually teachers use learning by using this Laboratory Activity, it will be affected on the pattern of inquiry behavior to the students as well so that will achieve the expected goals. Teachers are expected to continue for other topics, even for other similarly characterized subjects. This habitation is important so that the teacher's skill in making Laboratory Activity continues to be well honed and useful for the students.

  1. Interacting with Elementary Interns about Their Perceptions of Science Teaching.

    ERIC Educational Resources Information Center

    Carnes, G. Nathan; Shull, Tiffany A.; Brown, Shanise N.; Munn, Wesley G.

    This research investigated three elementary preservice teachers' perceptions of elementary science teachers. Three questions guided this investigation. What images did elementary Masters of Arts in Teaching (M.A.T.) interns have of science teaching at the beginning and end of science methods courses? What changes, if any, did they make in their…

  2. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours formore » the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.« less

  3. Preservice elementary teachers' alternative conceptions of science and their self-efficacy beliefs about science teaching

    NASA Astrophysics Data System (ADS)

    Koc, Isil

    The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of

  4. Bringing the Science of Climate Change to Elementary Students with new Classroom Activities from Elementary GLOBE

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Hatheway, B.; Taylor, J.; Chambers, L. H.; Stanitski, D.

    2016-12-01

    To address the dearth of climate education resources at the elementary level, we have developed a new module of Elementary GLOBE to showcase the science of climate change for young learners. Elementary GLOBE builds K-4 student understanding of the science concepts and the practices of science research. At the heart of each Elementary GLOBE module is a fiction storybook, describing how three kids investigate a science question. Accompanying classroom activities allow students to explore the science concepts in the book in more depth and in a context appropriate for young learners. The book for the Elementary GLOBE climate module, "What in the World Is Happening to Our Climate?," is the account of an adventure to explore climate change, how it is affecting melting glacial ice and sea level rise, and how climate change is a problem that can be solved. Three hands-on activities, which will be presented at this session, allow students to explore the topics in greater depth including differences between weather and climate, how sea level rise affects coastal areas, and how they can shrink their carbon footprint to help address recent climate change. Each activity includes instructions for teachers, background information, and activity sheets for students, and is aligned to the Next Generation Science Standards and Common Core Math and Language Arts Standards. The storybook and activities were field tested in classrooms and reviewed by climate and Earth system scientists as well as elementary education and climate education specialists and educators to ensure scientific accuracy and clear explanations, and that the resources are age appropriate and reflect the needs of the climate education community. Other Elementary GLOBE modules include the science of seasonal change, water, soil, clouds, aerosols, and Earth as a system. All Elementary GLOBE educational resources are freely available online (www.globe.gov/elementaryglobe).

  5. Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers' Self-Efficacy for Science and Science Teaching

    ERIC Educational Resources Information Center

    Avery, Leanne M.; Meyer, Daniel Z.

    2012-01-01

    Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…

  6. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    ERIC Educational Resources Information Center

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  7. The Really Useful Elementary Science Book

    ERIC Educational Resources Information Center

    Bloom, Jeffrey W.

    2010-01-01

    Amongst the challenges that elementary teachers may often face as they introduce their students to science is the need to maintain a solid understanding of the many scientific concepts and details themselves. This indispensible resource, intended for pre- and in-service elementary school teachers, provides concise and comprehensible explanation of…

  8. A Collaborative Approach for Elementary Science

    ERIC Educational Resources Information Center

    Nelson, George D.; Landel, Carolyn C.

    2007-01-01

    The authors question whether elementary students will have access to effective science and mathematics instruction within the current structure of elementary schools, in which each classroom teachers is expected to possess the expertise to teach all subjects well. They review research showing that good teachers are the key to student achievement…

  9. Preparing perservice teachers to teach elementary school science

    NASA Astrophysics Data System (ADS)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  10. Physical Science Activities for Elementary and Middle School. CESI Sourcebook V. An Occasional Sourcebook of the Council for Elementary Science International.

    ERIC Educational Resources Information Center

    Malone, Mark R., Comp.

    Mounting research evidence has shown that an activity centered approach to elementary and middle school science education can be quite effective. This sourcebook, developed for teachers by teachers, presents many activity oriented science lessons that could be done in any elementary or middle school classroom with minimal additional experience.…

  11. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  12. The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers

    ERIC Educational Resources Information Center

    Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu

    2013-01-01

    We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers' developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The…

  13. In-Service Turkish Elementary and Science Teachers' Attitudes toward Science and Science Teaching: A Sample from Usak Province

    ERIC Educational Resources Information Center

    Turkmen, Lutfullah

    2013-01-01

    The purpose of this study is to reveal Turkish elementary teachers' and science teachers' attitudes toward science and science teaching. The sample of the study, 138 in-service elementary level science teachers from a province of Turkey, was selected by a clustered sampling method. The Science Teaching Attitude Scale-II was employed to measure the…

  14. Piaget and Elementary Science

    ERIC Educational Resources Information Center

    Chittenden, Edward A.

    1970-01-01

    Describes the intellectual development stages ascribed to children by Jean Piaget. Characteristics and examples are given for sensori-motor, preoperational, concrete operational, and formal operational thinking periods. Implications are given for elementary school science education, including (1) formal instruction does not accelerate acquisition…

  15. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    ERIC Educational Resources Information Center

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  16. Preparing Perservice Teachers to Teach Elementary School Science

    ERIC Educational Resources Information Center

    Lewis, Amy D.

    2017-01-01

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in…

  17. Preservice Teachers' Alternative Conceptions in Elementary Science Concepts

    ERIC Educational Resources Information Center

    Koc, Isil; Yager, Robert E.

    2016-01-01

    This study was conducted to investigate the extent to which preservice teachers held alternative conceptions in elementary science concepts. Eighty-six preservice elementary teachers participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions…

  18. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    ERIC Educational Resources Information Center

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  19. The aurora, Mars, and more! Increasing science content in elementary grades through art and literacy programs in earth and space science

    NASA Astrophysics Data System (ADS)

    Renfrow, S.; Wood, E. L.

    2011-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. One unintended result is that teachers in grades where science is tested must play catch-up with students for them to be successful on the assessment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy, social studies, and math into an integrated science program, thereby increasing the number of science contact hours. The Dancing Lights program, developed at the Laboratory for Atmospheric and Space Physics, is a science, art, and literacy program about the aurora designed to easily fit into a typical 3rd-5th grade instructional day. It mirrors other successful literacy programs and will provide a basis for the literacy program being developed for the upcoming MAVEN mission to Mars. We will present early findings, as well as "lessons learned" during our development and implementation of the Dancing Lights program and will highlight our goals for the MAVEN mission literacy program.

  20. Bringing Science Public Outreach to Elementary Schools

    NASA Astrophysics Data System (ADS)

    Miller, Lucas; Speck, A.; Tinnin, A.

    2012-01-01

    Many science "museums” already offer fantastic programs for the general public, and even some aimed at elementary school kids. However, these venues are usually located in large cities and are only occasionally used as tools for enriching science education in public schools. Here we present preliminary work to establish exciting educational enrichment environments for public schools that do not easily have access to such facilities. This program is aimed at motivating children's interest in science beyond what they learn in the classroom setting. In this program, we use the experience and experiments/demonstrations developed at a large science museum (in this case, The St. Louis Science Center) and take them into a local elementary school. At the same time, students from the University of Missouri are getting trained on how to present these outreach materials and work with the local elementary schools. Our pilot study has started with implementation of presentations/demonstrations at Benton Elementary School within the Columbia Public School district, Missouri. The school has recently adopted a STEM (Science, Technology, Engineering, and Mathematics) centered learning system throughout all grade levels (K-5), and is therefore receptive to this effort. We have implemented a program in which we have given a series of scientific demonstrations at each grade level's lunch hour. Further enrichment ideas and plans include: addition demonstrations, hands-on experiments, and question and answer sessions. However, the application of these events would be to compliment the curriculum for the appropriate grade level at that time. The focus of this project is to develop public communications which links science museums, college students and local public schools with an emphasis on encouraging college science majors to share their knowledge and to strengthen their ability to work in a public environment.

  1. The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu

    2013-10-01

    We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers’ developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The Science Semester was designed to provide inquiry-oriented and problem-based learning experiences, opportunities to examine socially relevant issues through cross-disciplinary perspectives, and align with content found in elementary curricula and standards. By the end of the semester, prospective elementary teachers moved from naïve to intermediate understandings of inquiry and significantly increased self-efficacy for science teaching as measured on one subscore of the STEBI-B. Reflecting on the semester, prospective teachers understood and appreciated the goals of the course and the PBL format, but struggled with the open-ended and student-directed elements of the course.

  2. An elective course to engage student pharmacists in elementary school science education.

    PubMed

    Woodard, Lisa J; Wilson, Judith S; Blankenship, James; Quock, Raymond M; Lindsey, Marti; Kinsler, Janni J

    2011-12-15

    To develop and assess the impact of an elective course (HealthWISE) on student pharmacists' skills in communication and health promotion and elementary school students' knowledge of and attitudes toward science. Three colleges and schools of pharmacy collaborated to develop a 1-credit elective course that used online and classroom teaching and learning techniques to prepare student pharmacists to teach science in elementary school classrooms. Student pharmacists delivered 6 science lessons to elementary students over the course of 2 months. In weekly journal reflections and a final paper, student pharmacists reported improved communication and health promotion skills. Elementary teachers reported they were satisfied with student pharmacists' performance in the classroom. On pretest and posttest evaluations, elementary students demonstrated increased science knowledge and enhanced enthusiasm for science following the lessons taught by student pharmacists. The HealthWISE elective course provided positive benefit for student pharmacists, elementary school teachers, and elementary students.

  3. Program Brings Science to Elementary Students.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1988-01-01

    Describes "Parents and Children for Terrific Science (PACTS)" program sponsored by the American Chemical Society's Education Division for encouraging the development of family science projects at the elementary and intermediate school levels. Discusses some examples and the results of the project. (YP)

  4. Discover science: Hands-on science workshops for elementary teachers and summer science camps for elementary students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotlib, L.; Bibby, E.; Cullen, B.

    1994-12-31

    Teams of local mentor teachers (assisted by college students in the NC Teaching Fellows Program) run week-long workshops for elementary teachers (at four sites in 1993, six in 1994). Major funding for the camps is provided through The Glaxo Foundation, supplemented with local funds. The workshops focus on hands-on science (using inexpensive materials) and provide familiarity and experience with the new NC science curriculum and assessment program. The use of local resources is stressed (including visiting scientists and readily available store-bought materials). Each camp has its own theme and provides teachers with a variety of resources to be used withmore » students of all abilities. The mentor teachers then run week-long, all expense paid, non-residential science camps for elementary students (open to all students, but with females and minorities as target groups). Students take part in long-and short-term projects, working individually and in groups. Pre and post participation surveys of all participants were conducted and analyzed, with favorable results for both the student and teacher weeks. Additional activities include parent nights, and follow-up workshops. Eighty-nine teachers and 208 students participated in 1993.« less

  5. Rethinking the Elementary Science Methods Course: A Case for Content, Pedagogy, and Informal Science Education.

    ERIC Educational Resources Information Center

    Kelly, Janet

    2000-01-01

    Indicates the importance of preparing prospective teachers who will be elementary science teachers with different methods. Presents the theoretical and practical rationale for developing a constructivist-based elementary science methods course. Discusses the impact student knowledge and understanding of science and student attitudes has on…

  6. Elementary Science Resource Guide.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin. Div. of Curriculum Development.

    This guide for elementary teachers provides information on getting ideas into action, designing and implementing the right situation, ways in which to evaluate science process activities with students, and seven sample units. The units cover using the senses, magnets, forces, weather forecasting, classification of living things, and the physical…

  7. An Elective Course to Engage Student Pharmacists in Elementary School Science Education

    PubMed Central

    Wilson, Judith S.; Blankenship, James; Quock, Raymond M.; Lindsey, Marti; Kinsler, Janni J.

    2011-01-01

    Objective. To develop and assess the impact of an elective course (HealthWISE) on student pharmacists’ skills in communication and health promotion and elementary school students’ knowledge of and attitudes toward science. Design. Three colleges and schools of pharmacy collaborated to develop a 1-credit elective course that used online and classroom teaching and learning techniques to prepare student pharmacists to teach science in elementary school classrooms. Student pharmacists delivered 6 science lessons to elementary students over the course of 2 months. Assessment. In weekly journal reflections and a final paper, student pharmacists reported improved communication and health promotion skills. Elementary teachers reported they were satisfied with student pharmacists’ performance in the classroom. On pretest and posttest evaluations, elementary students demonstrated increased science knowledge and enhanced enthusiasm for science following the lessons taught by student pharmacists. Conclusions. The HealthWISE elective course provided positive benefit for student pharmacists, elementary school teachers, and elementary students. PMID:22345722

  8. Your Science Classroom: Becoming an Elementary/Middle School Science Teacher

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Downey, Laura

    2012-01-01

    Designed around a practical "practice-what-you-teach" approach to methods instruction, "Your Science Classroom: Becoming an Elementary/Middle School Science Teacher" is based on current constructivist philosophy, organized around 5E inquiry, and guided by the National Science Education Teaching Standards. Written in a reader-friendly style, the…

  9. Elementary teachers' acquisition of science knowledge: Case-studies and implications for teaching preparation

    NASA Astrophysics Data System (ADS)

    Stein, Morton

    Elementary school is a key time for students to develop their understanding of basic science concepts as well as their attitudes towards science and science learning. Yet many elementary teachers do not feel comfortable teaching science; as a result, they are likely to devote less time on that subject and to be less effective as science teachers. The literature suggests that weaknesses in elementary teachers' knowledge of science could be a main cause of this problem and, furthermore, that current elementary teacher preparation programs have contributed to this weakness. This study aims at gaining more knowledge about how elementary teachers who are successful in teaching science have acquired their science content knowledge and how such knowledge could be best acquired, with the ultimate goal of informing the design of more effective elementary teacher preparation programs. More specifically, this study addresses the following research questions: Which science learning experiences for elementary teachers seem most conducive to develop the kind of science content knowledge and pedagogical content knowledge needed to support the teaching of science as called for by the most recent national and state standards? Which of these experiences should be included in elementary teacher preparation programs, and how? The core of this study consists of case studies of eight elementary school teachers who were identified as successful in teaching science. These subjects were selected so as to ensure differences in their teacher preparation programs, as well as gender and years of teaching experience. Information about each teacher's self-efficacy and motivation with respect to teaching science, history of pre-service and in-service preparation with respect to science, and how his/her current science knowledge was acquired, was sought through a series of interviews with each subject and triangulated with data collected from other sources. A cross-case analysis revealed some

  10. Elementary Science Curriculum, Grade 5.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  11. Elementary Science Curriculum, Grade 6.

    ERIC Educational Resources Information Center

    Stoneham Public Schools, MA.

    This is one of a set of curriculum guides for the Stoneham Elementary School Science Program (see SE 012 153 - SE 012 158). Each guide contains a chart illustrating the scope and sequence of the physical, life, and earth sciences introduced at each grade level. For each of the topics introduced at this grade level an overview of the topic, a list…

  12. Third Grade Elementary Students' Perception of Science

    ERIC Educational Resources Information Center

    Demir, Metin

    2015-01-01

    The current study investigated which dimensions of scientific process are capitalized on by elementary school third graders to explain the concept of science at conceptual level. The study was conducted by using "Basic Qualitative Research", one of the qualitative research approaches with the participation of 225 elementary school third…

  13. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    ERIC Educational Resources Information Center

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-01-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the "Next Generation Science Standards," prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning…

  14. Preparing Elementary Preservice Teachers for Urban Elementary Science Classrooms: Challenging Cultural Biases Toward Diverse Students

    NASA Astrophysics Data System (ADS)

    Moore, Felicia M.

    2008-02-01

    This study reports the learning of elementary preservice teachers regarding diversity and teaching science in diverse urban elementary classrooms. From participating in a semester-long book club, the preservice teachers reveal their cultural biases, connect and apply their knowledge of diversity, and understand that getting to know their students are important elements for teaching science in diverse classrooms. These 3 things connect in ways that allow the preservice teachers to understand how their cultural biases impede student learning and gain new knowledge of diversity as they change their cultural biases. Implications of this study reveal that preservice teachers need opportunities to reveal, confront, challenge, and change their cultural models and to develop new models for teaching science in urban elementary classrooms.

  15. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    ERIC Educational Resources Information Center

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  16. Reconceptualizing Elementary Teacher Preparation: A Case for Informal Science Education

    ERIC Educational Resources Information Center

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of informal science environments to teaching and…

  17. Science Alive!: Connecting with Elementary Students through Science Exploration.

    PubMed

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  18. Science Alive!: Connecting with Elementary Students through Science Exploration†

    PubMed Central

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-01-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach. PMID:27158309

  19. Structure and Form. Elementary Science Activity Series, Volume 2.

    ERIC Educational Resources Information Center

    Blackwell, Frank F.

    This book is number 2 of a series of elementary science books that presents a wealth of ideas for science activities for the elementary school teacher. Each activity includes a standard set of information designed to help teachers determine the activity's appropriateness for their students, plan its implementation, and help children focus on a…

  20. Science: It's Elementary. Year Three Evaluation Report

    ERIC Educational Resources Information Center

    Fulp, Sherri L.; Warren, Camille L.; Banilower, Eric R.

    2009-01-01

    This report summarizes the activities and findings of the external evaluation of the "Science: It's Elementary" (SIE) program during the period from July 2008 through June 2009. The SIE program is managed by ASSET Inc. and overseen by the Pennsylvania Department of Education. SIE is an initiative aimed at improving elementary science…

  1. Exploring the impact of an industrial volunteer/school science partnership on elementary teaching strategies and attitudes about future science study: A case study

    NASA Astrophysics Data System (ADS)

    White, Michael Robert

    This study reports the results of research designed to explore the impact of industrial volunteer/school partnerships on elementary science teaching behaviors and students' attitudes about future science study. Since these partnerships involved teachers and students in hands-on or laboratory-type science experiences, the study will add an elementary school component to a series of other studies conducted through the Science Education Program at Temple University that have addressed how to improve the learning outcomes from these experiences. Three suburban elementary schools were randomly selected by a single school district's science supervisor to be involved in this study. Two of the buildings were designated as the experimental schools and teachers worked directly with the researcher as an industrial partner. The third school served as a control with no organized industrial partner. An additional school building in a second suburban school district was selected to serve as a comparison school and a second scientist participated as an industrial volunteer. Unlike the researcher, this scientist had no formal training in science education. Each phase of the study included instruments piloted and reviewed by experienced elementary teachers for appropriateness or by objective experts in the field of education. A student attitude survey and selected tasks from the Inventory of Piagetian Developmental Tasks were administered to all students involved in the study. Empirical data collected through videotaped analysis using the validated Modified-Revised Vickery Science Teacher Behavior Inventory led to the development of a pattern of the most frequently used behaviors during elementary science instruction. A profile of each participating teacher was developed through the use of a validated attitude survey, notes taken during classroom interactions and from information collected during ethnographic interviews. A major conclusion drawn from this study is that neither type

  2. Using Citizen Science to Engage Preservice Elementary Educators in Scientific Fieldwork

    ERIC Educational Resources Information Center

    Scott, Catherine M.

    2016-01-01

    Preservice elementary teachers' lack of confidence in teaching science is an ongoing concern. Only 29% of elementary teachers in the field felt "very well prepared to teach life science," according to the National Survey of Science and Mathematics Education. Research has suggested that bridging informal and formal science education can…

  3. Looking back and moving forward: A mixed methods study of elementary science teacher preparation

    NASA Astrophysics Data System (ADS)

    Hulings, Melissa

    This study sought to understand how science learning experiences, and their potential influence, had on preservice elementary teachers' self-efficacy and perceptions of science teaching and learning at the beginning of their science methods course. Following an explanatory sequential mixed methods design, this study first involved the collection of quantitative data and then the collection of more in-depth qualitative data. In the first phase, the quantitative data included the Draw-a-Science-Teacher-Test Checklist (DASTT-C) and the Science Teaching Efficacy Belief Instrument (STEBI-B) of preservice elementary teachers (n = 69). Findings from this phase indicated preservice elementary teachers had a higher level of belief in their abilities to teach science (PSTE subscale) than to affect student outcomes in science (STOE subscale). However, the STOE was not found to be a reliable measure for this group of preservice elementary teachers and was not included in any further analysis. Findings from the DASTT-C images indicated the majority of these drawings could not be classified as student-centered. In the second phase of this study, the researcher explored selected science autobiographies written by these same preservice elementary teachers (n = 19), based on extremely high or low scores on the PSTE subscale and DASTT-C. Analysis of the science autobiographies revealed commonalities and differences. Commonalities included (a) the difficulty in remembering science from elementary school; (b) a mixture of positive and negative experiences in secondary school and college science classes; (c) the descriptions of good science days and good science teachers; and (d) the descriptions of bad science days and bad science teachers. Differences included (a) the people who influenced their attitudes toward science; (b) the types of experiences, when remembered, from elementary school; and (c) visions of their future classrooms. Based on these findings, these preservice

  4. A narrative study of novice elementary teachers' perceptions of science instruction

    NASA Astrophysics Data System (ADS)

    Harrell, Roberta

    It is hoped that, once implemented, the Next Generation Science Standards (NGSS) will engage students more deeply in science learning and build science knowledge sequentially beginning in Kindergarten (NRC, 2013). Early instruction is encouraged but must be delivered by qualified elementary teachers who have both the science content knowledge and the necessary instructional skills to teach science effectively to young children (Ejiwale, 2012, Spencer, Vogel, 2009, Walker, 2011). The purpose of this research study is to gain insight into novice elementary teachers' perceptions of science instruction. This research suggests that infusion of constructivist teaching in the elementary classroom is beneficial to the teacher's instruction of science concepts to elementary students. Constructivism is theory that learning is centered on the learner constructing new ideas or concepts built upon their current/past knowledge (Bruner, 1966). Based on this theory, it is recommended that the instructor should try to encourage students to discover principles independently; essentially the instructor presents the problem and lets students go (Good & Brophy, 2004). Discovery learning, hands-on, experimental, collaborative, and project-based learning are all approaches that use constructivist principles. The NGSS are based on constructivist principles. This narrative study provides insight into novice elementary teachers' perceptions of science instruction considered through the lens of Constructivist Theory (Bruner, 1960).

  5. Developing Elementary Science PCK for Teacher Education: Lessons Learned from a Second Grade Partnership

    NASA Astrophysics Data System (ADS)

    Bradbury, Leslie U.; Wilson, Rachel E.; Brookshire, Laura E.

    2017-06-01

    In this self-study, two science educators partnered with two elementary teachers to plan, implement, and reflect on a unit taught in second grade classrooms that integrated science and language arts. The researchers hoped to increase their pedagogical content knowledge (PCK) for elementary science teaching so that they might use their experiences working in an elementary context to modify their practices in their elementary science method instruction. The research question guiding the study was: What aspects of our PCK for elementary science teaching do we as science educators develop by co-planning, co-teaching, and reflecting with second grade teachers? Data include transcripts of planning meetings, oral reflections about the experience, and videos of the unit being enacted. Findings indicate that managing resources for science teaching, organizing students for science learning, and reflecting on science teaching were themes prevalent in the data. These themes were linked to the model of PCK developed by Park and Oliver (Research in Science Education, 38, 261-284, 2008) and demonstrate that we developed PCK for elementary science teaching in several areas. In our discussion, we include several proposed changes for our elementary science methods course based on the outcomes of the study.

  6. An analysis of elementary teachers' perceptions of teaching science as inquiry

    NASA Astrophysics Data System (ADS)

    Domjan, Heather Nicole

    The purpose of this study is to describe elementary school teachers' perceptions of science as inquiry in science instruction. A descriptive survey research design was used to collect data regarding elementary science teachers' knowledge and beliefs related to inquiry and its role in science education. The written section of the survey was analyzed and interpreted descriptively through phenomenological data and the constant comparative method (Glaser & Strauss, 1967; Lincoln & Guba, 1985). The researcher used the constant comparative method to identify statements, perceptions, and impressions that occurred over time during the study (Janesick, 1994). Ninety-two elementary school teachers who teach science in a large suburban district southwest of Houston, Texas were administered a three part Understanding Science as Inquiry Survey (USAI) developed by the researcher. Participants communicated in writing personal definitions of inquiry in elementary science as well as determined to what extent inquiry was used in four elementary science classroom scenarios. The survey items were based on the following four components of inquiry described by Inquiry and the National Science Education Standards (2000): (1) conceptual knowledge, (2) process skills, (3) nature of science, and (4) affect. The study describes elementary school teachers' perceptions about science as inquiry. Conclusions for Part A of the USAI Survey indicate that participants define inquiry as: mostly process skills, some conceptual knowledge, and very little affect with no perception of the nature of science. The Likert scale ratings for the scenarios in Part B of the USAI Survey reveal that participants have varied perceptions regarding teaching science as inquiry. The written section of Part B reveals participants' perceptions to be similar to that of their Likert scale ratings except in scenario one. The researcher concludes that the participants in this study appear to have an incomplete understanding

  7. Preparing Elementary Mathematics-Science Teaching Specialists.

    ERIC Educational Resources Information Center

    Miller, L. Diane

    1992-01-01

    Describes a professional development program to train math/science specialists for the upper elementary school grades. Using results from an interest survey, 30 teachers were chosen to participate in a 3-year program to become math/science specialists. Presents the teaching model used and the advantages for teachers and students in having subject…

  8. Approximations of Practice in the Preparation of Prospective Elementary Science Teachers

    ERIC Educational Resources Information Center

    Nelson, Michele M.

    2011-01-01

    Elementary teacher education involves learning to teach science. Even in elementary school, teaching science is demanding work--teachers must orchestrate a complex set of teaching practices to support students' science learning. This dissertation examines the application of Grossman and colleagues' (2009) cross-professional learning framework,…

  9. Caught in the Balance: An Organizational Analysis of Science Teaching in Schools with Elementary Science Specialists

    ERIC Educational Resources Information Center

    Marco-Bujosa, Lisa M.; Levy, Abigail Jurist

    2016-01-01

    Elementary schools are under increasing pressure to teach science and teach it well; yet, research documents that classroom teachers must overcome numerous personal and school-based challenges to teach science effectively at this level, such as access to materials and inadequate instructional time. The elementary science specialist model…

  10. A Study on Learning Effect among Different Learning Styles in a Web-Based Lab of Science for Elementary School Students

    ERIC Educational Resources Information Center

    Sun, Koun-tem; Lin, Yuan-cheng; Yu, Chia-jui

    2008-01-01

    The purpose of this study is to explore the learning effect related to different learning styles in a Web-based virtual science laboratory for elementary school students. The online virtual lab allows teachers to integrate information and communication technology (ICT) into science lessons. The results of this experimental teaching method…

  11. STEM Is Elementary: Challenges Faced by Elementary Teachers in the Era of the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.

    2017-01-01

    For students to achieve the goals of the Next Generation Science Standards (NGSS) by Grade 12, thinking and acting like scientists and engineers must begin in the elementary grades. However, elementary teachers may find this challenging -because language arts and mathematics still dominate many classrooms--often at the expense of science. This…

  12. Elementary Science Guide -- 6th Grade.

    ERIC Educational Resources Information Center

    Wieland, Anne; And Others

    Presented is a resource book to be used with instructional kits for elementary school science students, grade 6. The individual units at this grade level are based on curriculum which has been developed by the National Science Foundation in the 1960s and revised to meet student and teacher identified needs in Anchorage, Alaska. Six units are…

  13. Elementary Science Guide -- 1st Grade.

    ERIC Educational Resources Information Center

    Wieland, Anne; And Others

    Presented is a resource book to be used with instructional kits for elementary school science students, grade 1. The individual units at this grade level are based on curriculum which has been developed by the National Science Foundation in the 1960s and revised to meet student and teacher identified needs in Anchorage, Alaska. Four units are…

  14. Teaching planetary sciences to elementary school teachers: Programs that work

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  15. Exploring Exemplary Elementary Teachers' Conceptions and Implementation of Inquiry Science

    ERIC Educational Resources Information Center

    Morrison, Judith A.

    2013-01-01

    This study was an exploration of the conceptions of inquiry science held by exemplary elementary teachers. The origins of these conceptions were explored in order to establish how best to improve elementary teachers' understanding and implementation of inquiry science teaching. Four focus group sessions were held as well as classroom observations.…

  16. Oakland County Science Safety Series: Reference Guide for Elementary Science.

    ERIC Educational Resources Information Center

    Crowder, Betty Pogue; And Others

    This reference guide is designed to organize and suggest acceptable practices and procedures for dealing with safety in elementary science instruction. It is intended as a reference for teachers, administrators, and other school staff in planning for science activities and in making daily safety decisions. Topics covered in the guide include: (1)…

  17. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    NASA Astrophysics Data System (ADS)

    Riedinger, Kelly; Marbach-Ad, Gili; Randy McGinnis, J.; Hestness, Emily; Pease, Rebecca

    2011-02-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching methods and to encourage students to continue in teacher education. We redesigned the elementary science methods course to include aspects of informal science education. The informal science education course features included informal science educator guest speakers, a live animal demonstration and a virtual field trip. We compared data from a treatment course ( n = 72) and a comparison course ( n = 26). Data collection included: researchers' observations, instructors' reflections, and teacher candidates' feedback. Teacher candidate feedback involved interviews and results on a reliable and valid Attitudes and Beliefs about the Nature of and the Teaching of Science instrument. We used complementary methods to analyze the data collected. A key finding of the study was that while benefits were found in both types of courses, the difference in results underscores the need of identifying the primary purpose for innovation as a vital component of consideration.

  18. From inside the black box: Teacher perceptions of science instruction at the elementary level

    NASA Astrophysics Data System (ADS)

    Ferrini, Cynthia D.

    Science education reform projects aimed at elementary school children arose in the 1960's. The most prevalent of these reforms utilized the inquiry, or hands-on, science method. Billions of dollars have been invested in these reforms. Yet, reports indicate that science is not being taught at the level one might expect in elementary schools. This research was an analysis of the problems and concerns teachers at one school district faced as they tried to implement and sustain elementary inquiry science instruction. The district chosen was a large suburban district in the Western United States. The population was ninety percent Caucasian with a slightly more ethnically diverse school population. This district was chosen because it had an elementary science program for over twenty years and had received national acclaim for that program. The district had a stable and homogeneous staff there was a low administrator and teacher turnover rate and the elementary teaching population was ninety percent Caucasian and ninety percent female. Interviews with administrators and teachers were conducted. Data were collected from focus groups of teachers and science partners. Observations of elementary science classroom instruction and professional development sessions were made. Results of this research indicated that one important key to elementary science reform rests in the hands of teachers. Once the door to the classroom is closed, the teacher can decide to teach or not to teach science. The findings of this research illustrate that teachers hold ideas about science and science instruction that are antithetical to some tenets of inquiry science. Until these ideas are addressed it will be difficult, if not impossible, to implement a systemic elementary inquiry science program. This study demonstrates that professional development for elementary teachers in science needs to change from a focus on the mechanical usage of individual units to a focus on teacher expectations for

  19. Dilemmas of Teaching Inquiry in Elementary Science Methods

    ERIC Educational Resources Information Center

    Newman, William J., Jr.; Abell, Sandra K.; Hubbard, Paula D.; McDonald, James; Otaala, Justine; Martini, Mariana

    2004-01-01

    Because various definitions of inquiry exist in the science education literature and in classroom practice, elementary science methods students and instructors face dilemmas during the study of inquiry. Using field notes, instructor anecdotal notes, student products, and course artifacts, science methods course instructors created fictional…

  20. Preservice Elementary Teachers' Beliefs about Science Teaching

    ERIC Educational Resources Information Center

    Yilmaz-Tuzun, Ozgul

    2008-01-01

    In this study, a Beliefs About Teaching (BAT) scale was created to examine preservice elementary science teachers' self-reported comfort level with both traditional and reform-based teaching methods, assessment techniques, classroom management techniques, and science content. Participants included 166 preservice teachers from three different US…

  1. Authentic Science Research in Elementary School After-School Science Clubs

    ERIC Educational Resources Information Center

    Feldman, Allan; Pirog, Kelly

    2011-01-01

    In this paper we report on teachers' and students' participation in authentic science research in out of school time science clubs at elementary schools. In the program four to five teachers worked alongside practicing scientists as part of their research groups. Each teacher facilitated a club with 10-15 students who, by extension, were members…

  2. Instructional leadership in elementary science: How are school leaders positioned to lead in a next generation science standards era?

    NASA Astrophysics Data System (ADS)

    Winn, Kathleen Mary

    The Next Generation Science Standards (NGSS) are the newest K-12 science content standards created by a coalition of educators, scientists, and researchers available for adoption by states and schools. Principals are important actors during policy implementation especially since principals are charged with assuming the role of an instructional leader for their teachers in all subject areas. Science poses a unique challenge to the elementary curricular landscape because traditionally, elementary teachers report low levels of self-efficacy in the subject. Support in this area therefore becomes important for a successful integration of a new science education agenda. This study analyzed self-reported survey data from public elementary principals (N=667) to address the following three research questions: (1) What type of science backgrounds do elementary principals have? (2) What indicators predict if elementary principals will engage in instructional leadership behaviors in science? (3) Does self-efficacy mediate the relationship between science background and a capacity for instructional leadership in science? The survey data were analyzed quantitatively. Descriptive statistics address the first research question and inferential statistics (hierarchal regression analysis and a mediation analysis) answer the second and third research questions.The sample data show that about 21% of elementary principals have a formal science degree and 26% have a degree in a STEM field. Most principals have not had recent experience teaching science, nor were they every exclusively a science teacher. The analyses suggests that demographic, experiential, and self-efficacy variables predict instructional leadership practices in science.

  3. Instructional Support and Implementation Structure during Elementary Teachers' Science Education Simulation Use

    ERIC Educational Resources Information Center

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-01-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results…

  4. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    ERIC Educational Resources Information Center

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  5. Student Initiatives in Urban Elementary Science Classrooms

    ERIC Educational Resources Information Center

    Lewis, Scott; Lee, Okhee; Santau, Alexandra; Cone, Neporcha

    2010-01-01

    Student initiatives play an important role in inquiry-based science with all students, including English language learning (ELL) students. This study examined initiatives that elementary students made as they participated in an intervention to promote science learning and English language development over a three-year period. In addition, the…

  6. Seeing things through science eyes: A case study of an exemplary elementary teacher

    NASA Astrophysics Data System (ADS)

    Foster, Andrea Susan

    Science-eyed elementary teachers exhibit relentless passions for replacing traditional teaching with realistic, integrated, responsible instruction with science at its core. The purpose of this study was to explore an exemplary elementary teacher's thinking about science and how it serves as a vehicle for the learning that occurs in her primary classroom. Two research questions were investigated in this study. First, what does it mean for an exemplary elementary teacher to view all learning with science eyes? Second, in what ways does the science-oriented elementary teacher use her knowledge of science content, pedagogy, and practical experience to structure her students' learning and her classroom teaching? A naturalistic methodology was employed in this research effort. Classroom observations, teacher interviews, documents, and selected artifacts were analyzed using a constant comparative method (Glaser & Strauss, 1967; Lincoln & Guba, 1985) and the analysis tools of HyperRESEARCH (1994) in an effort to unravel the complex, intuitive knowledge of a nationally recognized first grade teacher. Data analyses provided insightful information about this exceptional teacher and how she organizes, plans, and implements effective lessons that integrate science with all subject areas. Four direct observation themes, Best Practice, Just Like a Scientist, Integrating Curriculum - A Balancing Act, and Expert Pedagogy, and six interview themes, Curriculum - What to Teach?, Instruction - How to Teach, Knowing Students, Getting Stuff, Professionalism, and Reflective Practitioner, emerged from independent analyses of two data sets. Three overall themes, Head, Heart, and Hands of an Exemplary Science Elementary Teacher, emerged from a convergent content analysis. The themes provide the foundation for a proposed model of an expert science pedagogue. Ten portrait-like, impressionistic, vignettes are included in this unique study to capture the spirit of the science-eyed elementary

  7. The Nature of Pre-Service Science Teachers' Argumentation in Inquiry-Oriented Laboratory Context

    ERIC Educational Resources Information Center

    Ozdem, Yasemin; Ertepinar, Hamide; Cakiroglu, Jale; Erduran, Sibel

    2013-01-01

    The aim of this study was to investigate the kinds of argumentation schemes generated by pre-service elementary science teachers (PSTs) as they perform inquiry-oriented laboratory tasks, and to explore how argumentation schemes vary by task as well as by experimentation and discussion sessions. The model of argumentative and scientific inquiry was…

  8. Learning Science through Talking Science in Elementary Classroom

    ERIC Educational Resources Information Center

    Tank, Kristina Maruyama; Coffino, Kara

    2014-01-01

    Elementary students in grade two make sense of science ideas and knowledge through their contextual experiences. Mattis Lundin and Britt Jakobson find in their research that early grade students have sophisticated understandings of human anatomy and physiology. In order to understand what students' know about human body and various systems,…

  9. Elementary Preservice Teachers' Science Vocabulary: Knowledge and Application

    ERIC Educational Resources Information Center

    Carrier, Sarah J.

    2013-01-01

    Science vocabulary knowledge plays a role in understanding science concepts, and science knowledge is measured in part by correct use of science vocabulary (Lee et al. in "J Res Sci Teach" 32(8):797-816, 1995). Elementary school students have growing vocabularies and many are learning English as a secondary language or depend on schools to learn…

  10. The Children's Lab at Northern State University. Elementary Teachers Moving toward Scientific Literacy.

    ERIC Educational Resources Information Center

    Knecht, Paul S.

    The Children's Lab at Northern State University (South Dakota) is a science concept development laboratory for use by students in a physical science course for preservice elementary teachers. Its function is to develop science content knowledge in preservice elementary teachers, with the ultimate goal of developing science literacy in children.…

  11. The Elementary Institute of Science 1964-1970

    ERIC Educational Resources Information Center

    Watts, Thomas H.

    1970-01-01

    Describes an elementary science institute intended to provide children with scientific training in such a way that science becomes a worthwhile and significant pursuit. The institute is financed by local donations, is staffed mostly by parents, and serves approximately 70 children four days a week after school and on Saturday. (BR)

  12. Curriculum-Dependent and Curriculum-Independent Factors in Preservice Elementary Teachers' Adaptation of Science Curriculum Materials for Inquiry-Based Science

    ERIC Educational Resources Information Center

    Forbes, Cory T.

    2013-01-01

    In this nested mixed methods study I investigate factors influencing preservice elementary teachers' adaptation of science curriculum materials to better support students' engagement in science as inquiry. Analyses focus on two "reflective teaching assignments" completed by 46 preservice elementary teachers in an undergraduate elementary science…

  13. Impact of instructional Approaches to Teaching Elementary Science on Student Achievement

    NASA Astrophysics Data System (ADS)

    Kensinger, Seth H.

    Strengthening our science education in the United States is essential to the future success of our country in the global marketplace. Immersing our elementary students with research-based quality science instruction is a critical component to build a strong foundation and motivate our students to become interested in science. The research for this study pertained to the type of elementary science instruction in correlation to academic achievement and gender. Through this study, the researcher answered the following questions: 1. What is the difference in achievement for elementary students who have been taught using one of the three science instructional approaches analyzed in this study: traditional science instruction, inquiry-based science instruction with little or no professional development and inquiry-based science instruction with high-quality professional development? 2. What is the difference in student achievement between inquiry-based instruction and non-inquiry based (traditional) instruction? 3. What is the difference in student achievement between inquiry with high quality professional development and inquiry with little or no professional development? 4. Do the three instructional approaches have differentiated effects across gender? The student achievement was measured using the 2010 fourth grade Pennsylvania System of School Assessment (PSSA) in Science. Data was collected from 15 elementary schools forming three main groupings of similar schools based on the results from the 2009 third grade PSSA in Mathematics and student and community demographics. In addition, five sub-group triads were formed to further analyze the data and each sub-group was composed of schools with matching demographic data. Each triad contained a school using a traditional approach to teaching science, a school utilizing an inquiry science approach with little or no professional development, and a school incorporating inquiry science instruction with high quality

  14. Five male preservice elementary teachers: Their understandings, beliefs and practice regarding science teaching

    NASA Astrophysics Data System (ADS)

    Hoover, Barbara Grambo

    Many factors influence teacher choices concerning the frequency, instructional methods, and content of science teaching. Although the role of gender in science learning has been studied extensively, the gender of elementary teachers as it intersects their teaching of science has not been investigated. In this ethnographic study, I focused on five male preservice elementary teachers as they experienced their student teaching internship, aiming to understand their underlying beliefs about science and science teaching and how those beliefs influenced their practice. In an attempt to illuminate the complex interplay of personality, experience, interests, and gender in the professional lives of these men, this study emphasized the importance of context in the formation and expression of their science beliefs and pedagogy. For this reason, I collected data from a number of sources. From September, 2001 to May, 2002, I observed my participants in their science methods courses and on multiple occasions as they taught science in elementary classrooms in a suburban school district. I reviewed journal entries required for the science methods class and examined documents such as handouts, readings and teacher guides from their elementary teaching experience. I conducted semi-structured and informal interviews. I analyzed data from these sources using grounded theory methodology. Although these five men had many similarities, they differed in their love of science, their exposure to science, their avocational interests, and their views of science pedagogy. This study, however, revealed a unifying theme: each participant had his own set of personal and academic resources that he carried into the classroom and used to construct a distinctive science learning environment. Some of these resources intersect with gender. For example, several men had science-related avocational interests. There was a common emphasis on creating a relaxed, enjoyable, hands-on teaching environment as

  15. Science Language Accommodation in Elementary School Read-Alouds

    ERIC Educational Resources Information Center

    Glass, Rory; Oliveira, Alandeom W.

    2014-01-01

    This study examines the pedagogical functions of accommodation (i.e. provision of simplified science speech) in science read-aloud sessions facilitated by five elementary teachers. We conceive of read-alouds as communicative events wherein teachers, faced with the task of orally delivering a science text of relatively high linguistic complexity,…

  16. Implementing Elementary School Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Kennedy, Katheryn B.

    Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The purpose of this basic qualitative interview study was to explore the research questions related to perceived learning needs of 8 elementary science teachers and 5 of their administrators serving as instructional leaders. Strategies needed for professional growth to support learning and barriers that hamper it at both building and district levels were included. These questions were considered through the lens of Schon's reflective learning and Weick's sensemaking theories. Analysis with provisional and open coding strategies identified informal and formal supports and barriers to teachers' learning. Results indicated that informal supports, primarily internet usage, emerged as most valuable to the teachers' learning. Formal structures, including professional learning communities and grade level meetings, arose as both supportive and restrictive at the building and district levels. Existing formal supports emerged as the least useful because of the dominance of other priorities competing for time and resources. Addressing weaknesses within formal supports through more effective planning in professional development can promote positive change. Improvement to professional development approaches using the internet and increased hands on activities can be integrated into formal supports. Explicit attention to these strategies can strengthen teacher effectiveness bringing positive social change.

  17. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    NASA Astrophysics Data System (ADS)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  18. Learning science through talking science in elementary classroom

    NASA Astrophysics Data System (ADS)

    Tank, Kristina Maruyama; Coffino, Kara

    2014-03-01

    Elementary students in grade two make sense of science ideas and knowledge through their contextual experiences. Mattis Lundin and Britt Jakobson find in their research that early grade students have sophisticated understandings of human anatomy and physiology. In order to understand what students' know about human body and various systems, both drawings and spoken responses provide rich evidence of their understanding of the connections between science drawings and verbal explanations. In this forum contribution, we present several theoretical connections between everyday language and science communication and argue that building communication skills in science are essential. We also discuss how young participants should be valued and supported in research. Finally we discuss the need for multimodal research methods when the research participants are young.

  19. Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium

    ERIC Educational Resources Information Center

    Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud

    2013-01-01

    This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…

  20. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    ERIC Educational Resources Information Center

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  1. Exploring Plant and Animal Content in Elementary Science Textbooks

    ERIC Educational Resources Information Center

    Schussler, Elisabeth E.; Link-Perez, Melanie A.; Weber, Kirk M.; Dollo, Vanessa H.

    2010-01-01

    Student knowledge about plants is typically less than student knowledge about animals. Textbooks are a commonly-used curriculum material in elementary grades and contain embedded cultural ideologies that may impact instruction. This study analyzed two nationally-syndicated elementary science textbook series to explore their presentation of plant…

  2. How the nature of science is presented to elementary students in science read-alouds

    NASA Astrophysics Data System (ADS)

    Rivera, Seema

    Students as early as elementary school age are capable of learning the aspects of the nature of science (NOS), and the National Benchmarks incorporate the NOS as part of the learning objectives for K--2 students. Learning more about elementary science instruction can aid in understanding how the NOS can be taught or potentially integrated into current teaching methods. Although many teaching methods exist, this study will focus on read-alouds because they are recommended for and are very common in elementary schools. The read-aloud practice is particularly helpful to young students because most of these students have a higher listening comprehension than reading comprehension. One of the main components of the read-aloud practice is the discourse that takes place about the trade book. Both explicit and implicit messages are communicated to students by teachers' language and discussion that takes place in the classroom. Therefore, six multisite naturalistic case studies were conducted to understand elementary teachers' understanding of the NOS, students' understandings of the NOS, trade book representations of the NOS, and read-aloud practices and understandings in upstate New York. The findings of the study revealed that teachers and students held mostly naive and mixed understandings of the NOS. The trade books that had explicit connections to the NOS helped teachers discuss NOS related issues, even when the teachers did not hold strong NOS views. Teachers who held more informed NOS views were able to ask students NOS related questions. All teachers showed they need guidance on how to translate their NOS views into discussion and see the significance of the NOS in their classroom. Explicit NOS instruction can improve student understanding of the NOS, however the focus should be not only on teachers and their NOS understanding but also on the books used. These results show that quality trade books with explicit connections to the NOS are a useful instructional tool

  3. Elementary and middle school science improvement project

    NASA Technical Reports Server (NTRS)

    Mcguire, Saundra Y.

    1989-01-01

    The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.

  4. The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction

    NASA Astrophysics Data System (ADS)

    Reif, C.; Oechel, W.

    2003-12-01

    The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz

  5. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    NASA Astrophysics Data System (ADS)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  6. Perceptions of science and art: An interdisciplinary investigation of preservice elementary teachers

    NASA Astrophysics Data System (ADS)

    Fleming, Michelle Ann

    Science and art have been intertwined throughout history. Leading educational organizations and researchers support interdisciplinary connections to maximize teaching scope and effectiveness. Preservice elementary teachers face unique challenges in developing appropriate pedagogical content knowledge in a variety of disciplines, including science and art. This multi-method, case study investigated the relationship between science and art as an example of two disciplines that seem disparate but actually have strong similarities. Attitudes and perceptions towards science and art, and the teaching of science and art were studied with a cohort of twenty-six preservice elementary teachers at a large, Midwestern university. Data was generated from pre- and post-tests, interviews, and observations in the elementary science and art methods courses. Interests and attitudes towards teaching science increased, and participants came to perceive science as a more creative and imaginative endeavor. Perceived self-efficacies towards teaching science and art increased significantly. Attitudes towards art and perceptions of outcome expectancy and cooperative peer relationships in both science and art did not change. Qualitative results suggested inadequate and naive views of science and art at the beginning and more developed views of science and art by the end of the coursework. Creativity and imagination in scientific and artistic inquiry was a pervading theme in the post-course data. Implications are discussed for elementary teacher education and further research in this area.

  7. Tailoring Inservice Training in Science to Elementary Teachers' Needs.

    ERIC Educational Resources Information Center

    Bethel, Lowell J.

    1982-01-01

    Elementary school teachers feel inadequately prepared to teach science and spend little class time on science instruction. Until undergraduate science preparation improves, inservice training must take up the slack. An inservice program developed by the Science Education Center at the University of Texas' College of Education shows positive…

  8. Shoring Up Math and Science in the Elementary Grades: Schools Enlist Specialists to Teach Science Lessons

    ERIC Educational Resources Information Center

    Jacobson, Linda

    2004-01-01

    As science gets squeezed in the elementary curriculum, at least two Florida districts are trying a new approach to keeping hands-on lessons a part of pupils' experiences. This article reports how Broward and Palm Beach county districts have increased the number of science specialists working in their elementary schools--teachers who, like physical…

  9. Improving Elementary Science Education in a Developing Country: A Case Study From Fiji

    ERIC Educational Resources Information Center

    Taylor, Neil; Maiwaikatakata, Tema; Biukoto, Emele; Suluma, Wili; Coll, Richard K.

    2008-01-01

    Improved science education is seen as an important goal for many developing countries. The role of elementary science is of particular importance, given that research has shown a high correlation between economic growth and the time spent on elementary science education. However, the teaching of science in many developing countries is dominated by…

  10. Reconceptualizing Elementary Teacher Preparation: A case for informal science education

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of informal science environments to teaching and learning. In order to address this question, data were collected in a period of an academic semester through the following sources: journal entries for each of the 3 experiences, a personal teaching philosophy statement and a 2-hour long semi-structured interview with each of the 12 participants. Open coding techniques were used to analyze the data in order to construct categories and subcategories and eventually to identify emerging themes. The outcomes of the analysis showed that the inclusion of informal science experiences in the context of teacher preparation has the potential to support beginning elementary teachers' development of contemporary ideas about science teaching and learning related to inquiry-based science, the nature of scientific work and the work of scientists, connecting science with everyday life, and making science fun and personally meaningful. These findings are discussed alongside implications for policy, teacher preparation, and research under these themes: (a) addressing reform recommendations; (b) developing positive orientations toward science and science teaching; and (c) constructing understandings about scientists' work.

  11. Elementary Teachers' Beliefs about Teaching Science and Classroom Practice: An Examination of Pre/Post NCLB Testing in Science

    ERIC Educational Resources Information Center

    Milner, Andrea R.; Sondergeld, Toni A.; Demir, Abdulkadir; Johnson, Carla C.; Czerniak, Charlene M.

    2012-01-01

    The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers' beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the…

  12. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    NASA Astrophysics Data System (ADS)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  13. A critical hermeneutic study: Third grade elementary African American students' views of the nature of science

    NASA Astrophysics Data System (ADS)

    Walls, Leon

    Nature of Science is one of the most fundamental aspects of understanding science. How different cultures, races and ethnicities see and interpret science differently is critical. However, the NOS views specific to African American teachers and learners have gone largely unresearched. The views of a purposeful sample of African American third grade children reported in this study contribute to efforts to make science equitable for all students. Conducted in two Midwest urban settings, within the students' regular classrooms, three instruments were employed: Views of Nature of Science Elementary (an interview protocol), Elementary Draw a Scientist Test (a drawing activity supplemented by an explicating narrative), and Identify a Scientist (a simple select-a-photo technique supported by Likert-measured sureness). The responses provided by twenty-three students were coded using qualitative content analysis. The findings are represented in three main categories: Science - is governed by experimentation, invention and discovery teach us about the natural world, school is not the only setting for learning science; Scientists - intelligent, happy, studious men and women playing multiple roles, with distinct physical traits working in laboratories; Students - capable users and producers of science and who view science as fun. This study advocates for: use of such instruments for constant monitoring of student views, using the knowledge of these views to construct inquiry based science lessons, and increased research about students of color.

  14. Reading Engagement in Science: Elementary Students' Read-Aloud Experiences

    ERIC Educational Resources Information Center

    Oliveira, Alandeom W.

    2015-01-01

    This study examines student reading engagement with children's science books in elementary classrooms. "Reading engagement" in science is conceived in terms of a Transmission-Transaction continuum. When centered on transmission, science reading entails passive reception of a textually encoded scientific message. By contrast, when science…

  15. What Are the Effects of Teaching Experience on In-Service Elementary Science Teachers' Conceptions of the Nature of Science?

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2007-01-01

    This study investigates relationships between understanding of nature of science and four key factors elementary science teachers possess, which are: (1) Their specializations in different science areas (Physics, chemistry, and biology), (2) Gender issues, (3) How long they have been teaching in elementary school environments, (4) Their…

  16. Finding the Hook: Computer Science Education in Elementary Contexts

    ERIC Educational Resources Information Center

    Ozturk, Zehra; Dooley, Caitlin McMunn; Welch, Meghan

    2018-01-01

    The purpose of this study was to investigate how elementary teachers with little knowledge of computer science (CS) and project-based learning (PBL) experienced integrating CS through PBL as a part of a standards-based elementary curriculum in Grades 3-5. The researchers used qualitative constant comparison methods on field notes and reflections…

  17. A qualitative case study to identify possible barriers that limit effective elementary science education

    NASA Astrophysics Data System (ADS)

    Foster, Donald Carey

    The purpose of this case study was to identify barriers that limit the effectiveness of elementary teachers in the teaching of science. It is of the utmost urgency that barriers be first identified, so that possible solutions can be explored to bring about the improvement of elementary science education. This urgency has been imposed by the scheduled national testing of students in science by 2007, as mandated by the No Child Left Behind Act of 2001. Using qualitative case study methods, the researcher conducted interviews with 8 elementary teachers from two schools within one school district who taught 3rd, 4th, and 5th grade. These interviews were designed to gain insight into barriers these elementary teachers perceived as factors limiting their effectiveness in teaching science and preparing students for high-stakes testing. Barriers in the areas of teacher background, typical teaching day, curriculum, inservices, and legislative influences were explored. This study concluded that the barriers explored do have a substantial negative affect on the teaching and learning of science in the elementary grades. Specifically, the barriers revealed in this study include the limited science background of elementary teachers, inadequate class time devoted to science, non-comprehensive curriculum, ineffective or lack of inservice training, and pressures from legislated mandates. But it is also clear that these barriers are so intertwined that one cannot remove these barriers one at a time. It will take a collective effort from all involved, including legislators, administrators, teachers, parents, and students, to alleviate these barriers and discover effective solutions to improve elementary science education.

  18. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    ERIC Educational Resources Information Center

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  19. Course and Curriculum Improvement Materials: Mathematics, Science, Social Sciences - Elementary, Intermediate, Secondary.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This is a list of curriculum improvement materials produced by major course and curriculum projects supported by the National Science Foundation's Division of Pre-College Education in Science. The materials are grouped by educational level (elementary, intermediate, and secondary) and within each level by broad discipline groupings (mathematics,…

  20. The Assessment of Hands-On Elementary Science Programs.

    ERIC Educational Resources Information Center

    Hein, George, Ed.

    This document contains 15 chapters on various topics related to elementary science assessment. A comprehensive description of efforts to introduce alternatives to multiple-choice, paper and pencil tests to assess science learning is provided. The monograph includes an analysis of assessment issues, descriptions of current practice, and suggestions…

  1. Mathematics Anxiety and Preservice Elementary Teachers' Confidence to Teach Mathematics and Science

    ERIC Educational Resources Information Center

    Bursal, Murat; Paznokas, Lynda

    2006-01-01

    Sixty-five preservice elementary teachers' math anxiety levels and confidence levels to teach elementary mathematics and science were measured. The confidence scores of subjects in different math anxiety groups were compared and the relationships between their math anxiety levels and confidence levels to teach mathematics and science were…

  2. Reach for Reference: Elementary-Middle School Science Reference Collections

    ERIC Educational Resources Information Center

    Safford, Barbara Ripp

    2005-01-01

    This article presents a brief review of some new school science reference works. Two of the sources are traditional, while one is considered experimental. The two traditional reference works reviewed are "The American Heritage Children's Science Dictionary" for upper elementary grades, and "The American Heritage Student Science Dictionary" for…

  3. Enhancement of Elementary School Students' Science Learning by Web-Quest Supported Science Writing

    ERIC Educational Resources Information Center

    Min-Hsiung, Chuang; Jeng-Fung, Hung; Quo-Cheng, Sung

    2011-01-01

    This study aimed to probe into the influence of implementing Web-quest supported science writing instruction on students' science learning and science writing. The subjects were 34 students in one class of grade six in an elementary school in Taiwan. The students participated in the instruction, which lasted for eight weeks. Data collection…

  4. Think Scientifically: The Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy; Wawro; Martha

    2012-03-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.

  5. Lexical Acquisition in Elementary Science Classes

    ERIC Educational Resources Information Center

    Best, Rachel M.; Dockrell, Julie E.; Braisby, Nick

    2006-01-01

    The purpose of this study was to further researchers' understanding of lexical acquisition in the beginning primary schoolchild by investigating word learning in small-group elementary science classes. Two experiments were conducted to examine the role of semantic scaffolding (e.g., use of synonymous terms) and physical scaffolding (e.g., pointing…

  6. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    ERIC Educational Resources Information Center

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  7. Enhancing Self-Efficacy in Elementary Science Teaching With Professional Learning Communities

    NASA Astrophysics Data System (ADS)

    Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew

    2013-11-01

    Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in personal self-efficacy and outcome expectancy among teachers engaged in PLCs that featured Demonstration Laboratories, Lesson Study, and annual Summer Institutes. Significant changes favoring the experimental group were found on all quantitative measures of self-efficacy. Structured clinical interviews revealed that observed changes were largely attributable to a wide range of direct (mastery) and vicarious experiences, as well as emotional reinforcement and social persuasion.

  8. Elementary Science Supplement to the Syllabus. Level I (Ages 4 through 7).

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    Developed to complement existing elementary science programs, the materials in this first volume of New York's Elementary Science Supplement to the Syllabus emphasize a direct experience, hands-on approach for children of ages 4 through 7. Major sections include: (1) guidelines for program activities (explaining the organizational format of the…

  9. Turkish Preservice Elementary Science Teachers' Conceptions of Learning Science and Science Teaching Efficacy Beliefs: Is There a Relationship?

    ERIC Educational Resources Information Center

    Bahcivan, Eralp; Kapucu, Serkan

    2014-01-01

    This study has been conducted to investigate conceptions of learning science (COLS) and personal science teaching efficacy belief (PSTE) of Turkish preservice elementary science teachers (PSTs) and to explore the relationship between these variables. Two instruments COLS questionnaire and PSTE subscale of Science Teaching Efficacy Beliefs…

  10. The development of elementary teacher identities as teachers of science

    NASA Astrophysics Data System (ADS)

    Carrier, Sarah J.; Whitehead, Ashley N.; Walkowiak, Temple A.; Luginbuhl, Sarah C.; Thomson, Margareta M.

    2017-09-01

    The purpose of this qualitative study was to investigate the contributions of pre-service teachers' memories of science and science education, combined with their experiences in a STEM-focused teacher preparation programme, to their developing identities as elementary school teachers of science. Data collected over three years include a series of interviews and observations of science teaching during elementary teacher preparation and the first year of teaching. Grounded within a theoretical framework of identity and using a case-study research design, we examined experiences that contributed to the participants' identity development, focusing on key themes from teacher interviews: memories of science and science instruction, STEM-focused teacher preparation programme, field experiences, first year of teaching, and views of effective science instruction. Findings indicate the importance of exposure to reform strategies during teacher preparation and are summarised in main assertions and discussed along with implications for teacher preparation and research.

  11. University and Elementary School Perspectives of Ideal Elementary Science Teacher Knowledge, Skills, and Dispositions

    NASA Astrophysics Data System (ADS)

    Sewart, Bethany Bianca

    Teacher education knowledge, skills, and dispositions have recently become a well-discussed topic among education scholars around the nation, mainly due to its attention by the National Council for Accreditation of Teacher Education (NCATE) over the past few years. Accrediting agencies, such as NCATE and the Interstate New Teacher and Assessment and Support Consortium (INTASC), have sought to improve the quality of teacher education programs by examining knowledge, skills, and dispositions as factors in preparing highly-qualified teachers. There is a paucity of research examining these factors for elementary science teachers. Because these factors influence instruction, and students are behind in scientific and mathematical knowledge, elementary science teachers should be studied. Teacher knowledge, skills, and dispositions should be further researched in order to ultimately increase the quality of teachers and teacher education programs. In this particular case, by determining what schools of education and public schools deem important knowledge, skills, and dispositions needed to teach science, higher education institutions and schools can collaborate to further educate these students and foster the necessary qualities needed to teach effectively. The study of knowledge, skills, and dispositions is crucial to nurturing effective teaching within the classroom. Results from this study demonstrated that there were prominent knowledge, skills, and dispositions identified by teachers, administrators, and science teacher educators as important for effective teaching of elementary science. These characteristics included: a willingness to learn, or open-mindedness; content knowledge; planning, organization, and preparation; significance of teaching science; and science-related assessment strategies. Interestingly, administrators in the study responded differently than their counterparts in the following areas: their self-evaluation of teacher effectiveness; how the

  12. An Integrated Earth Science, Astronomy, and Physics Course for Elementary Education Majors

    ERIC Educational Resources Information Center

    Plotnick, Roy E.; Varelas, Maria; Fan, Qian

    2009-01-01

    Physical World is a one-semester course designed for elementary education majors, that integrates earth science, astronomy, and physics. The course is part of a four-course set that explores science concepts, processes, and skills, along with the nature of scientific practice, that are included in state and national standards for elementary school…

  13. THE READABILITY OF SCIENCE TEXTBOOKS FOR ELEMENTARY SCHOOL.

    ERIC Educational Resources Information Center

    NEWPORT, JOHN F.

    AN INVESTIGATION WAS MADE OF THE READABILITY LEVELS OF NINE CONTINUOUS SERIES OF ELEMENTARY SCHOOL SCIENCE TEXTBOOKS, GRADES 1-6. THE FOLLOWING SCIENCE SERIES WERE EVALUATED--ALLYN AND BACON, AMERICAN BOOK COMPANY, GINN, HARPER AND ROW, HEATH, LYONS AND CARNAHAN, MACMILLAN, SINGER, AND WINSTON. THE SPACHE FORMULA (SAFIER METHOD) WAS APPLIED TO…

  14. Brain-Based Learning and Standards-Based Elementary Science.

    ERIC Educational Resources Information Center

    Konecki, Loretta R.; Schiller, Ellen

    This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…

  15. Wonder as a Tool to Engage Preservice Elementary Teachers in Science Learning and Teaching

    ERIC Educational Resources Information Center

    Gilbert, Andrew; Byers, Christie C.

    2017-01-01

    This exploratory project considers the use of "wonder" as a pedagogical tool with preservice elementary teachers (PSETs). An ongoing vexation facing science teacher educators is helping future elementary teachers overcome anxiety and negative associations with science due to their own school science experiences, while simultaneously…

  16. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    NASA Astrophysics Data System (ADS)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-06-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.

  17. Awakening the Scientist Inside: Global Climate Change and the Nature of Science in an Elementary Science Methods Course

    NASA Astrophysics Data System (ADS)

    Matkins, Juanita Jo; Bell, Randy L.

    2007-04-01

    This investigation assessed the impact of situating explicit nature of science (NOS) instruction within the issues surrounding global climate change and global warming (GCC/GW). Participants in the study were 15 preservice elementary teachers enrolled in a science methods course. The instructional intervention included explicit NOS instruction combined with explicit GCC/GW instruction situated within the normal elementary science methods curriculum. Participants’ conceptions of NOS and GCC/GW were assessed with pre- and postadministrations of open-ended questionnaires and interviews. Results indicated that participants’ conceptions of NOS and GCC/GW improved over the course of the semester. Furthermore, participants were able to apply their conceptions to decision making about socioscientific issues. The results provide support for context-based NOS instruction in an elementary science methods course.

  18. Professional Development of Elementary and Science Teachers in a Summer Science Camp: Changing Nature of Science Conceptions

    ERIC Educational Resources Information Center

    Karaman, Ayhan

    2016-01-01

    Many countries all over the world have recently integrated nature of science (NOS) concepts into their science education standards. Providing professional support to teachers about NOS concepts is crucially important for successful implementation of the standards. For this purpose, a summer science camp was offered to elementary and science…

  19. Supporting Academic Language Development in Elementary Science: A Classroom Teaching Experiment

    NASA Astrophysics Data System (ADS)

    Jung, Karl Gerhard

    Academic language is the language that students must engage in while participating in the teaching and learning that takes place in school (Schleppegrell, 2012) and science as a content area presents specific challenges and opportunities for students to engage with language (Buxton & Lee, 2014; Gee, 2005). In order for students to engage authentically and fully in the science learning that will take place in their classrooms, it is important that they develop their abilities to use science academic language (National Research Council, 2012). For this to occur, teachers must provide support to their students in developing the science academic language they will encounter in their classrooms. Unfortunately, this type of support remains a challenge for many teachers (Baecher, Farnsworth, & Ediger, 2014; Bigelow, 2010; Fisher & Frey, 2010) and teachers must receive professional development that supports their abilities to provide instruction that supports and scaffolds students' science academic language use and development. This study investigates an elementary science teacher's engagement in an instructional coaching partnership to explore how that teacher planned and implemented scaffolds for science academic language. Using a theoretical framework that combines the literature on scaffolding (Bunch, Walqui, & Kibler, 2015; Gibbons, 2015; Sharpe, 2001/2006) and instructional coaching (Knight, 2007/2009), this study sought to understand how an elementary science teacher plans and implements scaffolds for science academic language, and the resources that assisted the teacher in planning those scaffolds. The overarching goal of this work is to understand how elementary science teachers can scaffold language in their classroom, and how they can be supported in that work. Using a classroom teaching experiment methodology (Cobb, 2000) and constructivist grounded theory methods (Charmaz, 2014) for analysis, this study examined coaching conversations and classroom

  20. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    NASA Astrophysics Data System (ADS)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  1. Safety in the Elementary Science Classroom.

    ERIC Educational Resources Information Center

    National Science Teachers Association, Arlington, VA.

    This guide gives elementary school teachers suggestions for providing a safe environment for their students and covers general safety concerns in the science classroom. Information is printed in a flip chart format for easy reference. Safety areas covered include: (1) In Case of Accident; (2) Eye Protection; (3) Plants in the Classroom; (4) First…

  2. The Elementary Science Safety Manual. Revised.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Education, Trenton. Div. of General Academic Education.

    Based on the principle that safety education should be a vital component in science instruction, this manual was designed to assist elementary teachers in doing more experiments and activities more confidently by making them aware of dangers and precautions. It also aims to make students aware that safety is a lifetime process and responsibility.…

  3. Digital Science Notebooks: Perspectives from an Elementary Classroom Teacher

    ERIC Educational Resources Information Center

    Paek, Seungoh; Fulton, Lori A.

    2017-01-01

    This study investigates how tablet-based note-taking applications can be integrated into elementary science classes as digital science notebooks. A teacher with 20 students in Grades 4-5 from a public charter school in Hawaii participated in the study. The participating science teacher introduced a tablet-based note taking application (TNA) to her…

  4. Construction of teacher knowledge in context: Preparing elementary teachers to teach mathematics and science

    NASA Astrophysics Data System (ADS)

    Lowery, Maye Norene Vail

    1998-12-01

    The purposes of this study were to further the understanding of how preservice teacher construct teacher knowledge and pedagogical content knowledge of elementary mathematics and science and to determine the extent of that knowledge in a school-based setting. Preservice teachers, university instructors, inservice teachers, and other school personnel were involved in this context-specific study. Evidence of the preservice teachers' knowledge construction (its acquisition, its dimensions, and the social context) was collected through the use of a qualitative methodology. Collected data included individual and group interviews, course documents, artifacts, and preservice teaching portfolios. Innovative aspects of this integrated mathematics and science elementary methods course included standards-based instruction with immediate access to field experiences. Grade-level teams of preservice and inservice teachers planned and implemented lessons in mathematics and science for elementary students. An on-site, portable classroom building served as a mathematics and science teaching and learning laboratory. A four-stage analysis was performed, revealing significant patterns of learning. An ecosystem of learning within a constructivist learning environment was identified to contain three systems: the university system; the school system; and the cohort of learners system. A mega system for the construction of teacher knowledge was revealed in the final analysis. Learning venues were discovered to be the conduits of learning in a situated learning context. Analysis and synthesis of data revealed an extensive acquisition of teacher knowledge and pedagogical content knowledge through identified learning components. Patience, flexibility, and communication were identified as necessities for successful teaching. Learning components included: collaboration with inservice teachers; implementation of discovery learning and hands-on/minds-on learning; small groupwork; lesson planning

  5. The effect of electronic networking on preservice elementary teachers' science teaching self-efficacy and attitude towards science teaching

    NASA Astrophysics Data System (ADS)

    Mathew, Nishi Mary

    Preservice elementary teachers' science teaching efficacy and attitude towards science teaching are important determinants of whether and how they will teach science in their classrooms. Preservice teachers' understanding of science and science teaching experiences have an impact on their beliefs about their ability to teach science. This study had a quasi-experimental pretest-posttest control group design (N = 60). Preservice elementary teachers in this study were networked through the Internet (using e-mail, newsgroups, listserv, world wide web access and electronic mentoring) during their science methods class and student practicum. Electronic networking provides a social context in which to learn collaboratively, share and reflect upon science teaching experiences and practices, conduct tele-research effectively, and to meet the demands of student teaching through peer support. It was hoped that the activities over the electronic networks would provide them with positive and helpful science learning and teaching experiences. Self-efficacy was measured using a 23-item Likert scale instrument, the Science Teaching Efficacy Belief Instrument, Form-B (STEBI-B). Attitude towards science teaching was measured using the Revised Science Attitude Scale (RSAS). Analysis of covariance was used to analyze the data, with pretest scores as the covariate. Findings of this study revealed that prospective elementary teachers in the electronically networked group had better science teaching efficacy and personal science teaching efficacy as compared to the non-networked group of preservice elementary teachers. The science teaching outcome expectancy of prospective elementary teachers in the networked group was not greater than that of the prospective teachers in the non-networked group (at p < 0.05). Attitude towards science teaching was not significantly affected by networking. However, this is surmised to be related to the duration of the study. Information about the

  6. Track Picture Book. Elementary Science Study.

    ERIC Educational Resources Information Center

    Webster, David; And Others

    This picture book was designed to be used with an Elementary Science Study unit that provides opportunities for students in grades 4-6 to study animal tracks. Shown within this book are numerous examples of tracks, including those of tires, human beings, animal tracks, and others in various media, such as snow, sand, mud, dust, and cement. (CS)

  7. Exploring Elementary Science Methods Course Contexts to Improve Preservice Teachers' NOS of Science Conceptions and Understandings of NOS Teaching Strategies

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Weiland, Ingrid; Rogers, Meredith Park; Pongsanon, Khemmawaddee; Bilican, Kader

    2014-01-01

    We explored adaptations to an elementary science methods course to determine how varied contexts could improve elementary preservice teachers' conceptions of NOS as well as their ideas for teaching NOS to elementary students. The contexts were (a) NOS Theme in which the course focused on the teaching of science through the consistent teaching…

  8. Predicting Turkish Preservice Elementary Teachers' Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

    ERIC Educational Resources Information Center

    Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami

    2016-01-01

    The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…

  9. The Effects of a STEM Intervention on Elementary Students' Science Knowledge and Skills

    ERIC Educational Resources Information Center

    Cotabish, Alicia; Dailey, Debbie; Robinson, Ann; Hughes, Gail

    2013-01-01

    The purpose of the study was to assess elementary students' science process skills, content knowledge, and concept knowledge after one year of participation in an elementary Science, Technology, Engineering, and Mathematics (STEM) program. This study documented the effects of the combination of intensive professional development and the use of…

  10. The Effect on Elementary Science Education Based on Student's Pre-Inquiry

    ERIC Educational Resources Information Center

    Kang, Houn Tae; Noh, Suk Goo

    2017-01-01

    In this research, after extracting the pre-inquiries (student-level question) for which students had curiosity in the elementary science and analyzing their correlation with the elementary science curriculum, highly correlated inquiries (meaningful pre-inquiries) were selected and applied in class. After organizing an experiment group and a…

  11. Elementary Teachers' Views of Their Science Professional Development Attendance: An Expectancy-Value Approach

    ERIC Educational Resources Information Center

    Thomson, Margareta Maria; Kaufmann, Elisha

    2013-01-01

    This study explored primarily the elementary teachers' motivations and expectations for engagement in a science professional development. Participants (N=20) were elementary teachers in two public schools from the United States and were enrolled in a yearlong science professional development; however, due to various factors teachers did not…

  12. Elementary teachers past experiences: A narrative study of the past personal and professional experiences of elementary teachers who use science to teach math and reading

    NASA Astrophysics Data System (ADS)

    Acre, Andrea M.

    This qualitative study investigated the experiences of four elementary teachers who have elected to use science to teach math and reading/language arts in an attempt to identify what motivates them to do so. Identifying what experiences have motivated these teachers to go against the gain and teach elementary science in this current era of high-stakes tests is of the upmost importance given that science is being eliminated from the elementary curriculum and it is during the elementary years that students' nurture and develop their interest in science. Additionally, the United States is failing to produce enough college graduates in STEM areas to fill the thousands of STEM jobs each year. Through a review of the literature, the past trends and current trends of elementary science education were explored as well as teacher training. Furthermore, the literature reviewed inquiry teaching which is considered to be the most effective teaching method when teaching science at any level. Using John Dewey's Interest and Effort Relationship Theory and the Self-Determination Motivation Theory to guide this study, there were five prominent themes which emerged from the reconstructed stories of the four teachers: positive experiences with science, neutral/negative experiences with science, seeks meaningful professional development, influence and support from others, and regret/wants to do more.

  13. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    NASA Astrophysics Data System (ADS)

    Zhai, Junqing; Tan, Aik-Ling

    2015-12-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers can play the role of (1) dispenser of knowledge (giver), (2) mentor of learning (advisor), (3) monitor of students' activities (police), and (4) partner in inquiry (colearner). These roles are dynamic, and while teachers show a preference for one of the four roles, factors such as the nature of the task, the types of students, as well as the availability of time and resources affect the role that teachers adopt. The roles that teachers play in the classroom have implications for the practice of science as inquiry in the classroom as well as the identities that teachers and students form in the science learning process.

  14. High Hopes--Few Opportunities: The Status of Elementary Science Education in California. Summary Report & Recommendations. Strengthening Science Education in California

    ERIC Educational Resources Information Center

    Center for the Future of Teaching and Learning at WestEd, 2011

    2011-01-01

    This report summarizes research findings on science education in California's elementary schools from multiple sources of data collected during 2010-11, specifically, surveys of district administrators, elementary school principals, and elementary school teachers; case studies of elementary schools; analysis of statewide secondary data sets; and…

  15. Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Riegle-Crumb, Catherine; Morton, Karisma; Moore, Chelsea; Chimonidou, Antonia; LaBrake, Cynthis; Kopp, Sacha

    2015-01-01

    Owing to their potential impact on students' cognitive and noncognitive outcomes, the negative attitudes toward science held by many elementary teachers are a critical issue that needs to be addressed. This study focuses on the science education of preservice elementary teachers with the goal of improving their attitudes "before" they…

  16. Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy; Wawro, Martha

    2013-03-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.

  17. Creating contextually authentic science in a low-performing urban elementary school

    NASA Astrophysics Data System (ADS)

    Buxton, Cory A.

    2006-09-01

    This article reports on a 2-year collaborate project to reform the teaching and learning of science in the context of Mae Jemison Elementary, the lowest performing elementary school in the state of Louisiana. I outline a taxonomy of authentic science inquiry experiences and then use the resulting framework to focus on how project participants interpreted and enacted ideas about collaboration and authenticity. The resulting contextually authentic science inquiry model links the strengths of a canonically authentic model of science inquiry (grounded in the Western scientific canon) with the strengths of a youth-centered model of authenticity (grounded in student-generated inquiry), thus bringing together relevant content standards and topics with critical social relevance. I address the question of how such enactments may or may not promote doing science together and consider the implications of this model for urban science education.

  18. Changes in Student Science Interest from Elementary to Middle School

    ERIC Educational Resources Information Center

    Coutts, Trudi E.

    2012-01-01

    This study is a transcendental phenomenological study that described the experience of students' interest in science from elementary school through middle school grades and the identification of the factors that increase or decrease interest in science. Numerous researchers have found that interest in science changes among children and the change…

  19. An Investigation into Upper Elementary Students' Attitudes towards Science

    ERIC Educational Resources Information Center

    Kaya, Hasan

    2012-01-01

    Science and technology course that helps to improve cognitive aspects and enhance the creativity of the individuals is an important part of elementary school education as a core course. Students may gain scientific knowledge, scientific process skills, and attitudes during their science learning process. This study aimed to determine upper…

  20. The influence inquiry-based science has on elementary teachers' perception of instruction and self-efficacy

    NASA Astrophysics Data System (ADS)

    Lewis, Felecia J.

    The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted interviews with elementary teachers from five elementary schools within the same school district. The interviews focused on the teachers' experiences with inquiry-based science and their perceptions of quality science instruction. The Teachers' Sense of Efficacy Scale was used to collect quantitative data regarding the teachers' perception of instructional practice and student engagement. The study revealed that limited science content knowledge, inadequate professional development, and a low sense of self-efficacy have a substantial effect on teacher outcomes, instructional planning, and ability to motivate students to participate in inquiry-based learning. It will take a collective effort from administrators, teachers, parents, and students to discover ways to improve elementary science education.

  1. Development of preservice elementary teachers' science self- efficacy beliefs and its relation to science conceptual understanding

    NASA Astrophysics Data System (ADS)

    Menon, Deepika

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self

  2. Teaching for Conceptual Change in Elementary and Secondary Science Methods Courses.

    ERIC Educational Resources Information Center

    Marion, Robin; Hewson, Peter W.; Tabachnick, B. Robert; Blomker, Kathryn B.

    1999-01-01

    Describes and analyzes two science methods courses at the elementary and secondary levels for how they addressed four ideas: (1) how students learn science; (2) how teachers teach science to students; (3) how prospective science teachers learn about the first two ideas; and (4) how methods instructors teach prospective science teachers about the…

  3. Wanted: A Revolution in Elementary Science Teaching.

    ERIC Educational Resources Information Center

    Triangle Coalition for Science and Technology Education, College Park, MD.

    Children come to school with a foundation for formal learning from their early experiences with interactions of the natural and technological world. Failure of elementary schools to build on this experience can discourage children, especially those who do not identify readily with the science establishment (girls, blacks, Hispanics, and the…

  4. Learning from the best: Overcoming barriers to reforms-based elementary science teaching

    NASA Astrophysics Data System (ADS)

    Banchi, Heather May

    This study explored the characteristics of elementary science teachers who employ reforms-based practices. Particular attention was paid to the consistency of teachers' practices and their beliefs, the impact of professional development experiences on practices, and how teachers mitigated barriers to reforms-based instruction. Understanding how successful elementary science teachers develop fills a gap in the science reforms literature. Participants included 7 upper elementary science teachers from six different schools. All schools were located within two suburban school districts in the south-Atlantic United States and data was collected during the spring of 2008. Data collection included use of the Reformed Teaching Observation Protocol (RTOP) to evaluate the level of reforms-based instruction, as well as 35 hours of classroom observation field notes and 21 hours of audio-taped teacher interviews. The variety of data sources allowed for triangulation of evidence. The RTOP was analyzed using descriptive statistics and classroom observations and interview data were analyzed using Erickson's (1986) guidelines for analytic induction. Findings indicated (a) reforms-based elementary science teaching was attainable, (b) beliefs and practices were consistent and both reflected reforms-based philosophies and practices, (c) formal professional development experiences were limited and did not foster reforms-based practices, (d) informal professional development pursued by teachers had a positive impact on practices, (e) barriers to reforms-based instruction were present but mitigated by strong beliefs and practical strategies like curriculum integration. These findings suggest that there are common, salient characteristics of reforms-based teachers' beliefs, practices, and professional development experiences. These commonalities contribute to an understanding of how reforms-based teachers develop, and inform efforts to move all elementary teachers in the direction of

  5. Knowledge-Building Activity Structures in Japanese Elementary Science Pedagogy

    ERIC Educational Resources Information Center

    Oshima, Jun; Oshima, Ritsuko; Murayama, Isao; Inagaki, Shigenori; Takenaka, Makiko; Yamamoto, Tomokazu; Yamaguchi, Etsuji; Nakayama, Hayashi

    2006-01-01

    The purpose of this study is to refine Japanese elementary science activity structures by using a CSCL approach to transform the classroom into a knowledge-building community. We report design studies on two science lessons in two consecutive years and describe the progressive refinement of the activity structures. Through comparisons of student…

  6. Science in Elementary School: Generalist Genes and School Environments

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2008-01-01

    Using a genetically sensitive design, we investigated the etiology of academic performance in Science in elementary school, and its etiological links with other academic abilities and general cognitive ability ("g"). The sample consisted of over 2000 pairs of twins at 10 years of age from the Twins Early Development Study. Science performance, as…

  7. Urban Elementary Science Teacher Leaders: Responsibilities, Supports, and Needs

    ERIC Educational Resources Information Center

    Wenner, Julianne A.

    2017-01-01

    The challenge of science achievement gaps is one that scholars have struggled to solve. Teacher leadership holds great promise in closing those gaps. Therefore, the purpose of the research reported here was to explore the responsibilities and supports of formally designated science teacher leaders (STLs) in urban elementary schools that have been…

  8. Attitudes of pre-service elementary teachers towards science: A cross-national study between the United States of America and Turkey

    NASA Astrophysics Data System (ADS)

    Buldu, Nihal

    Preservice elementary teachers' attitudes toward science have been the subject of investigation by science educators for decades. Many of the recent attempts pertaining to preservice elementary teachers by science educators have focused on the effects of science method courses on the attitudes and relationships between attitudes and other variables. The research literature lacks studies that compare attitudes of preservice elementary teachers toward science across two or more nations. The current study investigated the attitudes of preservice elementary teachers toward science in the U.S. and Turkey in order to see if there is a difference between the U.S. and Turkish preservice elementary teachers' attitudes toward science, and to investigate whether variables such as gender and the grade the preservice teachers wish to teach make a difference in preservice elementary teachers' attitudes towards science. The sample consisted of 1144 preservice elementary teachers. Of the 1144 preservice elementary teachers for whom complete information is available, it is known that 371 preservice elementary teachers were from the U.S. and 773 were from Turkey. The attitudes of preservice elementary teachers in the U.S. and Turkey were assessed by the data gathered using Turkish and American Preservice Elementary Teachers Attitude Scale (TAPETAS). This scale is a revised version of the Modified Fennema Sherman Attitude Scale (Doepken, Lawsky, and Padwa, 1999). Results of the current study indicated that both U.S. and Turkish preservice elementary teachers had positive attitudes toward science. However, U.S. preservice elementary teachers had more confidence in science. They found science more useful than their Turkish peers. They had more positive attitudes towards their previous science teachers and were less likely to stereotype science as a male domain. There were not any significant differences between the U.S. preservice elementary teachers due to gender and the grade they

  9. An exploration of administrators' perceptions of elementary science: A case study of the role of science in two elementary schools based on the interactions of administrators with colleagues, science content and state standards

    NASA Astrophysics Data System (ADS)

    Brogdon, Lori-Anne Stelmark

    This research is a case study on the perceptions and attitudes of administrators in the area of elementary science and how their responses reflect agreement or dissonance with the perceptions of elementary teachers on the subject of science within the same district. The study used Likert-type surveys and interviews from both administrators and teachers on five key areas: 1) Attitudes towards science and teaching 2) Attitudes towards teaching science 3) Attitudes towards administrators 4) Time teaching science and 5) Attitudes about policy and standards. Survey data was analyzed within and across areas to identify similarity and difference within each group. The medians from the administrative and teacher surveys were then crossed referenced through the use of a Mann Whitney test to identify areas of similarity. Interview data was coded around three major themes: 1) Standards 2) Classroom Instruction and 3) Conversations. The findings show that even though administrators' perceptions favor the inclusion of science in the elementary classroom, both administrators and teachers in this study reported limited involvement from, and conversation with, each other on the topic of science education. Heavy reliance by the administrators was placed on the use of consultants to provide professional development in the area of science instruction and to review the use of state standards, resulting in limited conversation between administrators and teachers about science. Teachers reported a heavy reliance upon their colleagues in the area of science instruction and curriculum planning. In addition, both administrators and teachers reported a greater focus on math and English for classroom instruction. Findings in this research support implications that more focus should be placed on the role of administrators in the implementation of science instruction. Administrators can play a crucial role in the success of science programs at the building, district and state levels

  10. A Case Study Exploring the Identity of an In-Service Elementary Science Teacher: a Language Teacher First

    NASA Astrophysics Data System (ADS)

    Marco-Bujosa, Lisa; Levy, Abigail Jurist; McNeill, Katherine

    2018-01-01

    Teachers are central to providing high-quality science learning experiences called for in recent reform efforts, as their understanding of science impacts both what they teach and how they teach it. Yet, most elementary teachers do not enter the profession with a particular interest in science or expertise in science teaching. Research also indicates elementary schools present unique barriers that may inhibit science teaching. This case study utilizes the framework of identity to explore how one elementary classroom teacher's understandings of herself as a science specialist were shaped by the bilingual elementary school context as she planned for and provided reform-based science instruction. Utilizing Gee's (2000) sociocultural framework, identity was defined as consisting of four interrelated dimensions that served as analytic frames for examining how this teacher understood her new role through social positioning within her school. Findings describe the ways in which this teacher's identity as a science teacher was influenced by the school context. The case study reveals two important implications for teacher identity. First, collaboration for science teaching is essential for elementary teachers to change their practice. It can be challenging for teachers to form an identity as a science teacher in isolation. In addition, elementary teachers new to science teaching negotiate their emerging science practice with their prior experiences and the school context. For example, in the context of a bilingual school, this teacher adapted the reform-based science curriculum to better meet the unique linguistic needs of her students.

  11. Self-Efficacy for Science Teaching Scale Development: Construct Validation with Elementary School Teachers

    ERIC Educational Resources Information Center

    Yangin, Selami; Sidekli, Sabri

    2016-01-01

    The measurement of teacher self-efficacy has a history of more than 30 years. The purpose of this research is to evaluate the development and validation of a new scale to measure the science teaching self-efficacy of elementary school teachers. Therefore, a scale has been created to measure elementary teachers' science teaching self-efficacy and…

  12. Perspectives on learning, learning to teach and teaching elementary science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  13. A Comparison of Biologic Content in Three Elementary-School Science Curriculum Projects: ESS, S-APA, SCIS

    ERIC Educational Resources Information Center

    Simpson, Ronald D.

    1974-01-01

    Three elementary school science curriculum projects, Elementary Science Study (ESS), Science - A Process Approach (S-APA), and Science Curriculum Improvement Study (SCIS), are compared concerning the biologic content each project contains. The reviewer found a lack of activities designed to represent functions at the cellular level. Two projects…

  14. Perspectives, Partnerships, and Values in Science Education: A University and Public Elementary School Collaboration.

    ERIC Educational Resources Information Center

    Herwitz, Stanley R.; Guerra, Marion

    1996-01-01

    Describes a course teaching planetary science to elementary school students in collaboration with a university. Chronicles how a partnership between an elementary school teacher and a university-based research scientist effectively shaped the teacher's understanding of values and attitudes inherent in science education. Presents a model for…

  15. Developing Preservice Teachers' Self-Efficacy through Field-Based Science Teaching Practice with Elementary Students

    ERIC Educational Resources Information Center

    Flores, Ingrid M.

    2015-01-01

    Thirty preservice teachers enrolled in a field-based science methods course were placed at a public elementary school for coursework and for teaching practice with elementary students. Candidates focused on building conceptual understanding of science content and pedagogical methods through innovative curriculum development and other course…

  16. Science: It's Elementary. Year Four Evaluation Report

    ERIC Educational Resources Information Center

    Banilower, Eric R.; Fulp, Sherri L.; Warren, Camille L.

    2010-01-01

    This report summarizes the activities and findings of the external evaluation of the "Science: It's Elementary" (SIE) program during the period from July 2009 through June 2010. The SIE program is managed by ASSET Inc. and overseen by the Pennsylvania Department of Education (PDE). SIE is an initiative aimed at improving elementary…

  17. Science Teaching Efficacy Beliefs and the Lived Experience of Preservice Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Kettler, Karen A.

    The current study utilized a mixed methods approach to examine the science teaching efficacy beliefs (STEB) of preservice elementary teachers as they participated in a Science Methods course. The following questions were addressed using quantitative survey data and qualitative interviews: What are the STEB of preservice elementary teachers as they progress through a Science Methods course?; How do the STEB of preservice elementary teachers with higher and lower personal science teaching efficacy (PSTE) beliefs change as they progress through a Science Methods course?; What is the nature of the lived experiences of preservice elementary teachers with higher and lower PSTE beliefs as they progress through a Science Methods course?; and How does the meaning developed during the lived experience of preservice elementary teachers with higher and lower PSTE beliefs influence their STEB? The participants (n = 21) included preservice elementary teachers registered for a Science Methods course as part of the "Block" semester, during their final year of teacher preparation prior to the student teaching experience. Quantitative data was obtained via Science Teaching Efficacy Belief Instrument- form B (STEBI-B) surveys taken at the beginning and end of the Science Methods course. This data was utilized to categorize participants into low, medium, and high efficacy groups, depending on how they scored in relation to one another. Qualitative data was obtained concurrently, through in-depth interviews with four "lower" efficacy participants and four "higher" efficacy participants, and was conducted after the "pre" survey and before the "post" survey, utilizing transcendental phenomenological methodology. Results showed a significant difference between pre- and post- survey data, indicating that the participants, as a whole, experienced an increase in PSTE during the Science Methods course (p<0.001). An examination of the specific subgroups (low, medium, and high efficacy) show a

  18. Social Activism in Elementary Science Education: A Science, Technology, and Society Approach to Teach Global Warming

    ERIC Educational Resources Information Center

    Lester, Benjamin T.; Ma, Li; Lee, Okhee; Lambert, Julie

    2006-01-01

    As part of a large-scale instructional intervention research, this study examined elementary students' science knowledge and awareness of social activism with regard to an increased greenhouse effect and global warming. The study involved fifth-grade students from five elementary schools of varying demographic makeup in a large urban school…

  19. Who Wants to Learn More Science? The Role of Elementary School Science Experiences and Science Self-Perceptions

    ERIC Educational Resources Information Center

    Aschbacher, Pamela R.; Ing, Marsha

    2017-01-01

    Background/Context: Much science education reform has been directed at middle and high school students; however, earlier experiences in elementary school may well have an important impact on young people's future science literacy and preparation for possible STEM careers. Purpose/Objective/Research Question/Focus of Study: This study explores the…

  20. Integrating E-Books into Science Teaching by Preservice Elementary School Teachers

    ERIC Educational Resources Information Center

    Lai, Ching-San

    2016-01-01

    This study aims to discuss the issues of integrating e-books into science teaching by preservice elementary school teachers. The study adopts both qualitative and quantitative research methods. In total, 24 preservice elementary school teachers participated in this study. The main sources of research data included e-books produced by preservice…

  1. Development and Application of the Elementary School Science Classroom Environment Scale (ESSCES): Measuring Student Perceptions of Constructivism within the Science Classroom

    ERIC Educational Resources Information Center

    Peoples, Shelagh M.; O'Dwyer, Laura M.; Wang, Yang; Brown, Jessica J.; Rosca, Camelia V.

    2014-01-01

    This article describes the development, validation and application of a Rasch-based instrument, the Elementary School Science Classroom Environment Scale (ESSCES), for measuring students' perceptions of constructivist practices within the elementary science classroom. The instrument, designed to complement the Reformed Teaching Observation…

  2. Urban Elementary Teachers' Perspectives on Teaching Science to English Language Learners

    ERIC Educational Resources Information Center

    Lee, Okhee; Maerten-Rivera, Jaime; Buxton, Cory; Penfield, Randall; Secada, Walter G.

    2009-01-01

    This descriptive study examined urban elementary school teachers' perceptions of their science content knowledge, science teaching practices, and support for language development of English language learners. Also examined were teachers' perceptions of organizational supports and barriers associated with teaching science to nonmainstream students.…

  3. Science education in an urban elementary school: Case studies of teacher beliefs and classroom practices

    NASA Astrophysics Data System (ADS)

    King, Ken; Shumow, Lee; Lietz, Stephanie

    2001-03-01

    Through a case study approach, the state of science education in an urban elementary school was examined in detail. Observations made from the perspective of a science education specialist, an educational psychologist, and an expert elementary teacher were triangulated to provide a set of perspectives from which elementary science instruction could be examined. Findings revealed that teachers were more poorly prepared than had been anticipated, both in terms of science content knowledge and instructional skills, but also with respect to the quality of classroom pedagogical and management skills. Particularly significant, from a science education perspective, was the inconsistency between how they perceived their teaching practice (a hands-on, inquiry-based approach) and the investigator-observed expository nature of the lessons. Lessons were typically expository in nature, with little higher-level interaction of significance. Implications for practice and the associated needs for staff development among urban elementary teachers is discussed within the context of these findings.

  4. The DESTIN: Preservice Teachers' Drawings of the Ideal Elementary Science Teacher

    ERIC Educational Resources Information Center

    Mensah, Felicia Moore

    2011-01-01

    The aim of this study is to report findings from the Drawing-Elementary-Science-Teacher-Ideal-Not, or the DESTIN procedure. The study utilizes a simple drawing procedure accompanied by a narrative and discussion for understanding preservice teachers' images of science, science teaching, and the science teacher. Ninety drawings from two sections of…

  5. Effective Programs for Elementary Science: A Best-Evidence Synthesis. Educator's Summary

    ERIC Educational Resources Information Center

    Center for Research and Reform in Education, 2012

    2012-01-01

    Which science programs have been proven to help elementary students to succeed? To find out, this review summarizes evidence on three types of programs designed to improve the science achievement of students in grades K-6: (1) Inquiry-oriented programs without science kits, such as Increasing Conceptual Challenge, Science IDEAS, and Collaborative…

  6. Effect of structure in problem based learning on science teaching efficacy beliefs and science content knowledge of elementary preservice teachers

    NASA Astrophysics Data System (ADS)

    Sasser, Selena Kay

    This study examined the effects of differing amounts of structure within the problem based learning instructional model on elementary preservice teachers' science teaching efficacy beliefs, including personal science teaching efficacy and science teaching outcome expectancy, and content knowledge acquisition. This study involved sixty (60) undergraduate elementary preservice teachers enrolled in three sections of elementary science methods classes at a large Midwestern research university. This study used a quasi-experimental nonequivalent design to collect and analyze both quantitative and qualitative data. Participants completed instruments designed to assess science teaching efficacy beliefs, science background, and demographic data. Quantitative data from pre and posttests was obtained using the science teaching efficacy belief instrument-preservice (STEBI-B) developed by Enochs and Riggs (1990) and modified by Bleicher (2004). Data collection instruments also included a demographic questionnaire, an analytic rubric, and a structured interview; both created by the researcher. Quantitative data was analyzed by conducting ANCOVA, paired samples t-test, and independent samples t-test. Qualitative data was analyzed using coding and themes. Each of the treatment groups received the same problem scenario, one group experienced a more structured PBL setting, and one group experienced a limited structure PBL setting. Research personnel administered pre and posttests to determine the elementary preservice teachers' science teaching efficacy beliefs. The results show elementary preservice teachers'science teaching efficacy beliefs can be influence by the problem based learning instructional model. This study did not find that the amount of structure in the form of core ideas to consider and resources for further research increased science teaching efficacy beliefs in this sample. Results from the science content knowledge rubric indicated that structure can increase

  7. Preservice elementary teachers' personal science teaching efficacy and science teaching outcome expectancies: The influence of student teaching

    NASA Astrophysics Data System (ADS)

    Plourde, Lee Alton

    This study was unique in garnering an early view at how the deterioration of science teacher education begins. This investigation examined the impact of the student teaching semester on preservice elementary teachers' personal efficacy beliefs and outcome expectancy beliefs in science teaching. Participants in the study included the student teachers of three separate cohort groups commencing and completing their student teaching semester at the same time. Qualitative data were gathered from interviews and observations from selected individuals of these cohort groups. Quantitative and qualitative research methods were employed in the study. Utilizing a pretest and posttest one group research design, quantitative data were obtained from the administration of a psychometric test, Science Teaching Efficacy Belief Instrument for preservice teachers (STEBI-B). The pretest was administered at the beginning of the student teaching semester, before the student teachers began their "soloing" teaching, and the posttest was administered at the completion of the student teaching semester and "soloing" period. Qualitative data were derived from interviews and observations which were audio recorded and transcribed. The results of this study revealed that the student teaching semester did not have a statistically significant impact on the subjects' sense of personal self-efficacy, but the influence was statistically significant in regards to the student teachers' beliefs about children's ability to learn science. Data gathered through interviews and observations suggested that beliefs appear to originate from one or more of the following: a lack of practical work, personal involvement, and hands-on manipulation in science related activities in elementary, secondary, and tertiary education; a dependence of science courses on textbooks and lectures; the dispassionate association with science teachers/instructors; a focus on formalized tests with no performance assessments; the

  8. A comparative analysis of Science-Technology-Society standards in elementary, middle and high school state science curriculum frameworks

    NASA Astrophysics Data System (ADS)

    Tobias, Karen Marie

    An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each

  9. Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy M.

    2013-07-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solar science concepts, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions. These books are being distributed through teacher workshops and conferences, and are available free at http://sdo.gsfc.nasa.gov/epo/educators/thinkscientifically.php.

  10. Cross National Study on Pre-Service Elementary and Science Teachers' Opinions on Science Teaching

    ERIC Educational Resources Information Center

    Šorgo, Andrej; Pipenbaher, Nataša; Šašic, Slavica Šimic; Prokop, Pavol; Kubiatko, Milan; Golob, Nika; Erdogan, Mehmet; Tomažic, Iztok; Bilek, Martin; Fancovicova, Jana; Lamanauskas, Vincentas; Usak, Muhammet

    2015-01-01

    Cross national study on opinions on science teaching was revealed on a sample of 1799 (596 males, 1203 females) pre-service elementary and science teachers' enrolled in various departments at selected universities in Croatia, Czech Republic, Lithuania, Slovakia, Slovenia and Turkey. Three factors explaining 43.4% of variance were extracted from a…

  11. Developmental Perspectives on Reflective Practices of Elementary Science Education Students

    ERIC Educational Resources Information Center

    Olson, Joanne K.; Finson, Kevin D.

    2009-01-01

    Instructors of elementary science methods classes have long lamented the significant difficulties their students exhibit when trying to understand the many complexities of teaching science. As noted by some researchers and practicing teachers, preservice teachers often fail to developmentally function at desired levels with respect to…

  12. Science Teaching Efficacy of Preservice Elementary Teachers: Examination of the Multiple Factors Reported as Influential

    NASA Astrophysics Data System (ADS)

    Taştan Kırık, Özgecan

    2013-12-01

    This study explores the science teaching efficacy beliefs of pr-service elementary teachers and the relationship between efficacy beliefs and multiple factors such as antecedent factors (participation in extracurricular activities and number of science and science teaching methods courses taken), conceptual understanding, classroom management beliefs and science teaching attitudes. Science education majors ( n = 71) and elementary education majors ( n = 262) were compared with respect to these variables. Finally, the predictors of two constructs of science teaching efficacy beliefs, personal science teaching efficacy (PSTE) and science teaching outcome expectancy (STOE), were examined by multiple linear regression analysis. According to the results, participation in extracurricular activities has a significant but low correlation with science concept knowledge, science teaching attitudes, PSTE and STOE. In addition, there is a small but significant correlation between science concept knowledge and outcome expectancy, which leads the idea that preservice elementary teachers' conceptual understanding in science contributes to their science teaching self-efficacy. This study reveals a moderate correlation between science teaching attitudes and STOE and a high correlation between science teaching attitudes and PSTE. Additionally, although the correlation coefficient is low, the number of methodology courses was found to be one of the correlates of science teaching attitudes. Furthermore, students of both majors generally had positive self-efficacy beliefs on both the STOE and PSTE. Specifically, science education majors had higher science teaching self-efficacy than elementary education majors. Regression results showed that science teaching attitude is the major factor in predicting both PSTE and STOE for both groups.

  13. Investigating Elementary Principals' Science Beliefs and Knowledge and Its Relationship to Students' Science Outcomes

    ERIC Educational Resources Information Center

    Khan, Uzma Zafar

    2012-01-01

    The aim of this quantitative study was to investigate elementary principals' beliefs about reformed science teaching and learning, science subject matter knowledge, and how these factors relate to fourth grade students' superior science outcomes. Online survey methodology was used for data collection and included a demographic…

  14. Changes in Elementary Student Perceptions of Science, Scientists and Science Careers after Participating in a Curricular Module on Health and Veterinary Science

    PubMed Central

    Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; SanMiguel, Sandra

    2015-01-01

    This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students’ aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of science. The curriculum was developed by a research-based university program and has been put into practice in two early elementary classrooms in an urban school in the Midwest. An attitudinal rating survey and the Draw-A-Scientist Test (DAST) were used to assess pre to post changes in student attitudes toward science, perceptions of scientists, perceived relevance of science, and aspiration for science careers. Findings indicated that the implementation of this curriculum contributed positively to student attitudes toward science, decreased students’ stereotypical images of scientists, and increased student aspirations to become a scientist. PMID:26726271

  15. The Self-Efficacy of Preservice Elementary Teachers in Kuwaiti Science Programs

    ERIC Educational Resources Information Center

    Ebrahim, Ali H.

    2012-01-01

    This study examined educational factors that positively influenced the confidence of students training to be elementary science educators (self efficacy). Specifically, it compared the impacts of a science method course and a practicum teaching course on Kuwait University students. Using a pre/post design, The Science Teaching Efficacy Belief…

  16. Improving science inquiry with elementary students of diverse backgrounds

    NASA Astrophysics Data System (ADS)

    Cuevas, Peggy; Lee, Okhee; Hart, Juliet; Deaktor, Rachael

    2005-03-01

    This study examined the impact of an inquiry-based instructional intervention on (a) children's ability to conduct science inquiry overall and to use specific skills in inquiry, and (b) narrowing the gaps in children's ability among demographic subgroups of students. The intervention consisted of instructional units, teacher workshops, and classroom practices. The study involved 25 third- and fourth-grade students from six elementary schools representing diverse linguistic and cultural groups. Quantitative results demonstrated that the intervention enhanced the inquiry ability of all students regardless of grade, achievement, gender, ethnicity, socioeconomic status (SES), home language, and English proficiency. Particularly, low-achieving, low-SES, and English for Speakers of Other Languages (ESOL) exited students made impressive gains. The study adds to the existing literature on designing learning environments that foster science inquiry of all elementary students.

  17. Targeted Courses in Inquiry Science for Future Elementary School Teachers

    ERIC Educational Resources Information Center

    Steinberg, Richard; Wyner, Yael; Borman, Greg; Salame, Issa I.

    2015-01-01

    This study reports on targeted science courses for undergraduate childhood education majors. We describe an inquiry-oriented, three-course sequence spanning physical, life, and environmental science. All three courses are hands-on and are designed to reflect the content and pedagogy most important to future elementary school teachers.

  18. Improving Science Education in Rural Elementary Schools: A New Approach.

    ERIC Educational Resources Information Center

    Dacus, Judy M.; Hutto, Nora

    Rural elementary school teachers interested in improving science instruction are frequently hampered by inadequate training in science, lack of information on local natural history resources, and time and curriculum constraints. On the other hand, rural schools are usually located near meadows, forests, or undeveloped land, and rural students…

  19. The impact of science methods courses on preservice elementary teachers' science teaching self-efficacy beliefs: Case studies from Turkey and the United States

    NASA Astrophysics Data System (ADS)

    Bursal, Murat

    Four case studies in two American and two Turkish science methods classrooms were conducted to investigate the changes in preservice elementary teachers' personal science teaching efficacy (PSTE) beliefs during their course periods. The findings indicated that while Turkish preservice elementary teachers (TR sample) started the science methods course semester with higher PSTE than their American peers (US sample), due to a significant increase in the US sample's and an insignificant decline in the TR sample's PSTE scores, both groups completed the science methods course with similar PSTE levels. Consistent with Bandura's social cognitive theory, describing four major sources of self-efficacy, the inclusion of mastery experiences (inquiry activities and elementary school micro-teaching experiences) and vicarious experiences (observation of course instructor and supervisor elementary teacher) into the science methods course, providing positive social persuasion (positive appraisal from the instructor and classmates), and improving physiological states (reduced science anxiety and positive attitudes toward becoming elementary school teachers), were found to contribute to the significant enhancement of the US sample's PSTE beliefs. For the TR sample, although some of the above sources were present, the lack of student teaching experiences and inservice teacher observations, as well as the TR samples' negative attitudes toward becoming elementary school teachers and a lack of positive classroom support were found to make Turkish preservice teachers rely mostly on their mastery in science concepts, and therefore resulted in not benefiting from their science methods course, in terms of enhancing their PSTE beliefs. Calls for reforms in the Turkish education system that will include more mastery experiences in the science methods courses and provide more flexibility for students to choose their high school majors and college programs, and switch between them are made. In

  20. Examining student-generated questions in an elementary science classroom

    NASA Astrophysics Data System (ADS)

    Diaz, Juan Francisco, Jr.

    This study was conducted to better understand how teachers use an argument-based inquiry technique known as the Science Writing Heuristic (SWH) approach to address issues on teaching, learning, negotiation, argumentation, and elaboration in an elementary science classroom. Within the SWH framework, this study traced the progress of promoting argumentation and negotiation (which led to student-generated questions) during a discussion in an elementary science classroom. Speech patterns during various classroom scenarios were analyzed to understand how teacher--student interactions influence learning. This study uses a mixture of qualitative and quantitative methods. The qualitative aspect of the study is an analysis of teacher--student interactions in the classroom using video recordings. The quantitative aspect uses descriptive statistics, tables, and plots to analyze the data. The subjects in this study were fifth grade students and teachers from an elementary school in the Midwest, during the academic years 2007/2008 and 2008/2009. The three teachers selected for this study teach at the same Midwestern elementary school. These teachers were purposely selected because they were using the SWH approach during the two years of the study. The results of this study suggest that all three teachers moved from using teacher-generated questions to student-generated questions as they became more familiar with the SWH approach. In addition, all three promoted the use of the components of arguments in their dialogs and discussions and encouraged students to elaborate, challenge, and rebut each other's ideas in a non-threatening environment. This research suggests that even young students, when actively participating in class discussions, are capable of connecting their claims and evidence and generating questions of a higher-order cognitive level. These findings demand the implementation of more professional development programs and the improvement in teacher education to help

  1. Effects of a Science Content Course on Elementary Preservice Teachers' Self-Efficacy of Teaching Science

    ERIC Educational Resources Information Center

    Bergman, Daniel J.; Morphew, Jason

    2015-01-01

    The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…

  2. Science as a Learner and as a Teacher: Measuring Science Self-Efficacy of Elementary Preservice Teachers

    ERIC Educational Resources Information Center

    Knaggs, Christine M.; Sondergeld, Toni A.

    2015-01-01

    Academic science achievement of U.S. students has raised concerns regarding our ability as a nation to compete in a global economy. Additionally, research has shown that many elementary teachers have weak science content backgrounds and had poor/negative experiences as students of science, resulting in a lack of confidence regarding teaching…

  3. Engaging in science inquiry: Prospective elementary teachers' learning in an innovative life science course

    NASA Astrophysics Data System (ADS)

    Haefner, Leigh Boardman

    2001-10-01

    This study examined prospective elementary teachers' learning about science inquiry in the context of an innovative life science course that engaged them in an original science investigation. Eleven elementary education majors participated in the study. A multiple case study approach that was descriptive, interpretive, and framed by grounded theory was employed. Primary data sources included transcripts of semi-structured interviews, text associated with online threaded discussions, and course project documents, such as lesson plans and written reflections. Secondary data sources included videotaped class sessions and field notes. Data were analyzed using analytical induction techniques, and trustworthiness was developed through the use of multiple data sources, triangulation of data, and the use of counterexamples to the assertions. Three major findings emerged from the cross-case analysis. First, engaging in an original science investigation assisted prospective teachers in becoming more attentive to the processes of science and developing more elaborated and data-driven explanations of how science is practiced. Second, when prospective teachers struggled with particular aspects of their investigations, those aspects became foci of change in their thinking about science and doing science. Third, as prospective teachers came to place a greater emphasis on questions, observations, and experimentation as fundamental aspects of doing science, they became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include the need to re-conceptualize teacher preparation programs to include multiple opportunities to engage prospective teachers in learning science as inquiry, and attend to connections among subject matter knowledge, subject-specific pedagogy and experiences with children.

  4. Elementary Teachers' Perceptions about the Effective Features of Explicit-Reflective Nature of Science Instruction

    ERIC Educational Resources Information Center

    Adibelli-Sahin, Elif; Deniz, Hasan

    2017-01-01

    This qualitative study explored elementary teachers' perceptions about the effective features of explicit-reflective nature of science (NOS) instruction. Our participants were four elementary teachers from a public charter school located in the Southwestern U.S.A. The four elementary teachers participated in an academic year-long professional…

  5. Hybrid-Mentoring Programs for Beginning Elementary Science Teachers

    ERIC Educational Resources Information Center

    Bang, EunJin

    2013-01-01

    This study examines four induction models and teacher changes in science teaching practices, as a result of several mentoring programs. It explores three different computer-mediated mentoring programs, and a traditional offline induction program--in terms of interactivity, inquiry-based teaching, and topics of knowledge. Fifteen elementary science…

  6. Children's Environmental Identity and the Elementary Science Classroom

    ERIC Educational Resources Information Center

    Tugurian, Linda P.; Carrier, Sarah J.

    2017-01-01

    This qualitative research explores children's environmental identity by describing how fifth grade children view their relationship with the natural world alongside their experience of elementary school science. Qualitative analysis of in-depth interviews with 17 grade 5 children was supported with a survey that included responses to open-ended…

  7. A readability analysis of elementary-level science textbooks

    NASA Astrophysics Data System (ADS)

    Trainer, Robyn

    Given both the unprecedented attention to the importance of providing children with the best possible science textbooks and the overwhelming evidence that students in the United States are severely lacking the most basic science knowledge, the decline in the number of students pursuing science degrees is alarming. In spite of all the efforts being made, a disparity still exists between (1) the wealth of science information available, (2) the apparent ease of access to scientific information, and (3) the lack of scientific academic progress being made in classrooms across the United States. A literature review was conducted which included the areas of textbook analysis and textbook readability levels, the fields of textbook analysis and readability, and findings from recently published books about textbook readability. The majority of the literature reflected an urgent need for science textbooks to be revised. Based on the information gathered during the literature review, the study examined the readability levels of elementary level science textbooks that were published by six textbook publishers. Results from the study revealed that when used properly, readability formulas provide an objective look at textbooks. After applying these formulas to the selected elementary level science textbooks, it became clear that very few changes were implemented between the most recent previous editions and the current editions. The textbooks remain too difficult for the students using them. The findings from this study will help science textbook publishers and textbook writers see that some changes need to be made in the way their textbooks are written. In order to maintain a competitive edge in the global marketplace, more students need to pursue science. In order for more students to do that, they need to pursue science degrees, but in order for them to pursue science degrees, they need to have a certain degree of confidence and level of interest in the subject matter. For

  8. Project science inquiry: An exploration of elementary teachers' beliefs and perceptions about science teaching and learning

    NASA Astrophysics Data System (ADS)

    Wilcox, Dawn Renee

    This dissertation examined elementary teachers' beliefs and perceptions of effective science instruction and documents how these teachers interpret and implement a model for Inquiry-Based (I-B) science in their classrooms. The study chronicles a group of teachers working in a large public school division and documents how these teachers interpret and implement reform-based science methods after participating in a professional development course on I-B science methods administered by the researcher. I-B science teaching and its implementation is discussed as an example of one potential method to address the current call for national education reform to meet the increasing needs of all students to achieve scientific literacy and the role of teachers in that effort. The conviction in science reform efforts is that all students are able to learn science and consequently must be given the crucial opportunities in the right environment that permits optimal science learning in our nation's schools. Following this group of teachers as they attempted to deliver I-B science teaching revealed challenges elementary science teachers face and the professional supports necessary for them to effectively meet science standards. This dissertation serves as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Education at George Mason University.

  9. Exploring Elementary Teachers' Perceptions about the Developmental Appropriateness and Importance of Nature of Science Aspects

    ERIC Educational Resources Information Center

    Sahin, Elif Adibelli; Deniz, Hasan

    2016-01-01

    This study explored how four elementary teachers assessed the developmental appropriateness and importance of nine nature of science (NOS) aspects after participating in a yearlong professional development program. A multiple-embedded case study design was employed. The primary data sources included (a) Views of Nature of Science Elementary School…

  10. Teacher talk about science: An examination of the constructed understanding of science held by four elementary school teachers

    NASA Astrophysics Data System (ADS)

    Price, Robert John

    The elementary school teacher's personal understanding of science has not been a primary focus of consideration in educational reform discussions. This study examines how four elementary school teachers have constructed their personal understanding of science. The purpose of this study is to explore core understandings about science held by these teachers, and to examine the origins of these ideas. This study assumes that a teacher's understanding of science is unique and constructed on personal experiences affected by influences. This study further explores the relationship of the teachers understanding to the school's stated curriculum. The theoretical framework of this research recognizes three guiding assumptions: science exists as a set of ideas that have developed over time through competing discourses; the teacher plays an important role in the implementation of the science curriculum; and the guiding influences of a teacher's understanding of science are associated with power that emerges from discourse. The methodology in this qualitative study is closely associated with narrative inquiry. Data collection methods include a questionnaire, focus group sessions, and individual interviews. Teachers' stories were collected through collaborative interview opportunities between the researcher and the participants. The findings are presented through the narratives of the four teachers, and are organized through the guiding influences, and talk related to the stated science curriculum. The teachers' talk can be categorized by three broad guiding influences: family, education, and an image of science. The talk related to the stated curriculum illustrates both conflicts, and a relationship between the teachers' understanding of science and the curriculum. The finding of this study provides evidence that each teacher's understanding of science is unique and developed over time. Additionally, this understanding plays a role in how the stated curriculum is discussed and

  11. Examining the Effects of Science Manipulatives on Achievement, Attitudes, and Journal Writing of Elementary Science Students.

    ERIC Educational Resources Information Center

    Frederick, Lynda R.; Shaw, Edward L., Jr.

    This study examined several aspects of elementary science students' achievement, attitudes, and journal writing in conjunction with an Alabama Hands-on Activity Science Program (HASP) grant utilizing the Full Option Science System (FOSS) kit. The sample of 56 fourth grade students in two classes was administered a 15-item pretest and post-test.…

  12. A New Approach to Teaching Science to Elementary Education Majors in Response to the NGSS

    NASA Astrophysics Data System (ADS)

    Brevik, C.; Daniels, L.; McCoy, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) place an equal emphasis on science process skills and science content. The goal is to have K-12 students "doing" science, not just "learning about" science. However, most traditional college science classes for elementary education majors place a much stronger emphasis on science content knowledge with the hands-on portion limited to a once-a-week lab. The two models of instruction are not aligned. The result is that many elementary school teachers are unprepared to offer interactive science with their students. Without additional coaching, many teachers fall back on the format they learned in college - lecture, handouts, homework. If we want teachers to use more hands-on methods in the classroom, these techniques should be taught to elementary education majors when they are in college. Dickinson State University has begun a collaboration between the Teacher Education Department and the Department of Natural Sciences. The physical science course for elementary education majors has been completely redesigned to focus equally on the needed science content and the science process skills emphasized by the NGSS. The format of the course has been adjusted to more closely mirror a traditional K-5 classroom; the course meets for 50 minutes five days a week. A flipped-classroom model has been adopted to ensure no content is lost, and hands-on activities are done almost every day as new concepts are discussed. In order to judge the effectiveness of these changes, a survey tool was administered to determine if there was a shift in the students' perception of science as an active instead of a passive field of study. The survey also measured the students' comfort-level in offering a hands-on learning environment in their future classrooms and their confidence in their ability to effectively teach science concepts to elementary students. Results from the first year of the study will be presented.

  13. Elementary and middle school science improvement project

    NASA Technical Reports Server (NTRS)

    Mcguire, Saundra Yancy

    1987-01-01

    The Alabama A & M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted in response to a need to improve the ability of North Alabama teachers to teach science effectively using the experimental or hands-on approach. The major component of the project was a two-week workshop. Follow-up visits were made to the classrooms of many of the participating teachers to obtain information on how the program was being implemented in the classroom. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcomes are addressed.

  14. Teacher Perspectives on Specialisation in the Elementary Classroom: Implications for Science Instruction

    ERIC Educational Resources Information Center

    Poland, Susan; Colburn, Amanda; Long, David E.

    2017-01-01

    In the current educational climate of testing and accountability, many elementary teachers find they lack adequate time and confidence to enact reform-based science teaching due to pressure to perform in reading and mathematics. With this tension in mind, we explore the phenomenon of elementary teacher specialisation in comparison to the…

  15. Preservice Teachers' Uptake and Understanding of Funds of Knowledge in Elementary Science

    ERIC Educational Resources Information Center

    McLaughlin, David S.; Barton, Angela Calabrese

    2013-01-01

    In this manuscript, we use a "learning to notice" framework to suggest that preservice elementary teachers bring a range of interpretations and responses to their students' funds of knowledge and science teaching and learning. By examining data from three sections of an elementary methods course, we find that preservice teachers recognized…

  16. Levels of use of an elementary school inquiry-based instructional innovation among a selected group of teacher participants in the Delaware Elementary Science Initiative

    NASA Astrophysics Data System (ADS)

    Bouchelle, Henry Ellsworth Wirt, III

    Science education in Delaware's public elementary and middle schools has experienced much change in recent years as a result of the adoption of state standards and, in particular, the adoption by school districts of the Smithsonian/National Science Resources Council-sponsored inquiry-based instruction modules as part of the "Elementary Science Initiative." As part of this adoption process, each participating elementary teacher and middle school science teacher receives extensive training in the use of several discrete science kits. The trainings include reinforcement and development of content knowledge, in addition to the modeling of and practice with complementary pedagogy. One measure of the effectiveness of the science kit training process (and perhaps the Initiative itself) is the teachers' levels of use of the Initiative. The purpose of this study was to determine the participating teachers' use of the science kit innovation through the use of the Concerns-based Adoption Model Levels of Use Questionnaire. Eight K--5 elementary classroom teachers who had completed at least three science kit trainings participated. The results of this study indicate that on the Overall Level of Use Rating Scale, teachers who had completed training in at least three science kits generally scored at the Routine (IVA) level. All of the teachers, regardless of the wide range in the number of years of experience, had achieved the Mechanical Use level in Overall (III) LoU, and 6 of the 8 participants (75%) were operating at no less than the Refinement (IVA) Overall LoU level.

  17. Issues in Science Assessment in a Bilingual/Biliterate Elementary Classroom.

    ERIC Educational Resources Information Center

    Karpel, Jennifer A.; Abell, Sandra K.

    This study examines the types, uses, and roles of science assessment in a bilingual/biliterate (Spanish/English) elementary classroom in the Honduras during one unit of science instruction. Focus is placed on how one teacher used assessment to a) inform practice; b) evaluate student learning; and c) modify curricula and teaching strategies to meet…

  18. Changes in Student Science Interest from Elementary to Middle School

    NASA Astrophysics Data System (ADS)

    Coutts, Trudi E.

    This study is a transcendental phenomenological study that described the experience of students’ interest in science from elementary school through middle school grades and the identification of the factors that increase or decrease interest in science. Numerous researchers have found that interest in science changes among children and the change in interest seems to modulate student motivation, which ultimately leads to fewer children choosing not only science classes in the future but science careers. Research studies have identified numerous factors that affect student interest in science; however, this study incorporated the lived experience of the child and looked at this interest in science through the lens of the child. The study design was a collective cross-case study that was multi-site based. This study utilized a sample of children in fifth grade classes of three different elementary schools, two distinct seventh grade classes of different middle schools, and ninth grade children from one high school in the State of Illinois. The phenomenon was investigated through student interviews. The use of one-on-one semi-structured interviews limited to 45 minutes in length provided the researcher with data of each child’s description of science interest. All interviews were audio- recorded and transcribed verbatim. The data was collected and analyzed in order to identify themes, and finally checked for validity. The most significant findings of this study, and possible factors contributing to science interest in children as they progress from elementary to high school, were those findings relating to hands-on activities, the degree to which a student was challenged, the offering of new versus previously studied topics in the curriculum, the perceived relevance of the curricular materials to personal life, and the empowerment children felt when they were allowed to make choices related to their learning experiences. This study’s possible implications for

  19. Changes in Elementary Student Perceptions of Science, Scientists, and Science Careers after Participating in a Curricular Module on Health and Veterinary Science

    ERIC Educational Resources Information Center

    Shin, Soo Yeon; Parker, Loran Carleton; Adedokun, Omolola; Mennonno, Ann; Wackerly, Amy; San Miguel, Sandra

    2015-01-01

    This study examined to what extent a curriculum module that uses animal and human health scientists and science concepts to portray science and scientists in a relevant and authentic manner could enhance elementary students' aspiration for science careers, attitudes to science, positive perceptions of scientists, and perceived relevance of…

  20. Live Storybook Outcomes of Pilot Multidisciplinary Elementary Earth Science Collaborative Project

    NASA Astrophysics Data System (ADS)

    Soeffing, C.; Pierson, R.

    2017-12-01

    Live Storybook Outcomes of pilot multidisciplinary elementary earth science collaborative project Anchoring phenomena leading to student led investigations are key to applying the NGSS standards in the classroom. This project employs the GLOBE elementary storybook, Discoveries at Willow Creek, as an inspiration and operational framework for a collaborative pilot project engaging 4th grade students in asking questions, collecting relevant data, and using analytical tools to document and understand natural phenomena. The Institute of Global Environmental Strategies (IGES), a GLOBE Partner, the Outdoor Campus, an informal educational outdoor learning facility managed by South Dakota Game, Fish and Parks, University of Sioux Falls, and All City Elementary, Sioux Falls are collaborating partners in this project. The Discoveries at Willow Creek storyline introduces young students to the scientific process, and models how they can apply science and engineering practices (SEPs) to discover and understand the Earth system in which they live. One innovation associated with this project is the formal engagement of elementary students in a global citizen science program (for all ages), GLOBE Observer, and engaging them in data collection using GLOBE Observer's Cloud and Mosquito Habitat Mapper apps. As modeled by the fictional students from Willow Creek, the 4th grade students will identify their 3 study sites at the Outdoor Campus, keep a journal, and record observations. The students will repeat their investigations at the Outdoor Campus to document and track change over time. Students will be introduced to "big data" in a manageable way, as they see their observations populate GLOBE's map-based data visualization and . Our research design recognizes the comfort and familiarity factor of literacy activities in the elementary classroom for students and teachers alike, and postulates that connecting a science education project to an engaging storybook text will contribute to a

  1. Elementary Teachers' Past Experiences: A Narrative Study of the Past Personal and Professional Experiences of Elementary Teachers Who Use Science to Teach Math and Reading

    ERIC Educational Resources Information Center

    Acre, Andrea M.

    2014-01-01

    This qualitative study investigated the experiences of four elementary teachers who have elected to use science to teach math and reading/language arts in an attempt to identify what motivates them to do so. Identifying what experiences have motivated these teachers to go against the gain and teach elementary science in this current era of…

  2. Development and Validation of Nature of Science Instrument for Elementary School Students

    ERIC Educational Resources Information Center

    Hacieminoglu, Esme; Yilmaz-Tüzün, Özgül; Ertepinar, Hamide

    2014-01-01

    The purposes of this study were to develop and validate an instrument for assessing elementary students' nature of science (NOS) views and to explain the elementary school students' NOS views, in terms of varying grade levels and gender. The sample included 782 students enrolled in sixth, seventh, and eighth grades. Exploratory factor analysis…

  3. The Effects of a Science-Focused STEM Intervention on Gifted Elementary Students' Science Knowledge and Skills

    ERIC Educational Resources Information Center

    Robinson, Ann; Dailey, Debbie; Hughes, Gail; Cotabish, Alicia

    2014-01-01

    To develop Science, Technology, Engineering, and Mathematics (STEM) talents, both researchers and policy developers recommend that educators begin early. In this randomized study, we document the efficacy of teacher professional development and a rich problem-based inquiry curriculum to develop the science talent of elementary students. The…

  4. Impacts of Contextual and Explicit Instruction on Preservice Elementary Teachers' Understandings of the Nature of Science

    ERIC Educational Resources Information Center

    Bell, Randy L.; Matkins, Juanita Jo; Gansneder, Bruce M.

    2011-01-01

    This mixed-methods investigation compared the relative impacts of instructional approach and context of nature of science instruction on preservice elementary teachers' understandings. The sample consisted of 75 preservice teachers enrolled in four sections of an elementary science methods course. Independent variables included instructional…

  5. Idea Cards for Water Flow. Elementary Science Study.

    ERIC Educational Resources Information Center

    Elementary Science Study, Newton, MA.

    Presented are 29 activity cards designed for use with the Elementary Science Study (ESS) program. Each card describes an experiment on one aspect of water flow such as siphoning, methods of removing water from a container, aspirators, floats, and water behavior in various tubing linkups. Activities are intended for individual or small group study;…

  6. Instructional support and implementation structure during elementary teachers' science education simulation use

    NASA Astrophysics Data System (ADS)

    Gonczi, Amanda L.; Chiu, Jennifer L.; Maeng, Jennifer L.; Bell, Randy L.

    2016-07-01

    This investigation sought to identify patterns in elementary science teachers' computer simulation use, particularly implementation structures and instructional supports commonly employed by teachers. Data included video-recorded science lessons of 96 elementary teachers who used computer simulations in one or more science lessons. Results indicated teachers used a one-to-one student-to-computer ratio most often either during class-wide individual computer use or during a rotating station structure. Worksheets, general support, and peer collaboration were the most common forms of instructional support. The least common instructional support forms included lesson pacing, initial play, and a closure discussion. Students' simulation use was supported in the fewest ways during a rotating station structure. Results suggest that simulation professional development with elementary teachers needs to explicitly focus on implementation structures and instructional support to enhance participants' pedagogical knowledge and improve instructional simulation use. In addition, research is needed to provide theoretical explanations for the observed patterns that should subsequently be addressed in supporting teachers' instructional simulation use during professional development or in teacher preparation programs.

  7. Promoting science for all by way of student interest in a transformative undergraduate microbiology laboratory for nonmajors.

    PubMed

    Marbach-Ad, Gili; McGinnis, J Randy; Dai, Amy H; Pease, Rebecca; Schalk, Kelly A; Benson, Spencer

    2009-01-01

    In this study, we investigated a pedagogical innovation in an undergraduate microbiology course, Microbes and Society, for non-microbiology majors and education majors. The aim was to improve students' understanding by connecting their science experience to their areas of interest. Based on this idea of teaching, we redesigned the laboratory portion of a microbiology course. We had students in the laboratory component choose their areas of interest and use the areas as a framework for understanding science and how it influences and shapes the world around them. This course was part of a longitudinal project (Project Nexus) which prepares, supports, and sustains upper elementary and middle-level specialist science teachers. We used a battery of data collection instruments. We analyzed all data in several dimensions including using active-learning techniques, forming linkages between science and teaching, and connecting science and society. Our hypothesis was that we could promote science for all by connecting the diverse students' areas of interest in science to the laboratory's curriculum. We assessed the success of achieving our goal by using researchers' observations, the instructors' perspectives, and students' feedback. Our findings suggested that this course was appreciated by the students, especially education majors, who recognized the innovations as engaging and worthwhile.

  8. Can Experiential Education Strategies Improve Elementary Science Teachers' Perceptions of and Practices in Science Teaching?

    ERIC Educational Resources Information Center

    Sindel, Kasey D.

    2010-01-01

    This study was prompted by the growing amount of research that is in support of science reform and from this researcher's personal experience and concern that science instructions is no longer a top priority in elementary schools nor are young scientists given the opportunities to act as scientists in a real world setting. This study uses…

  9. Urban school leadership for elementary science education: Meeting the needs of English Language Learners

    NASA Astrophysics Data System (ADS)

    Alarcon, Maricela H.

    Science education reform and state testing accountability call upon principals to become instructional leaders in science. Specifically, elementary school principals must take an active role in science instruction to effectively improve science education for all students including English Language Learners. As such, the research questioned posed in this study centered on How are elementary school principals addressing the academic needs of Latino Spanish-speaking English language learners within science education? This study employed a qualitative research design to identify the factors contributing to the exemplary performance in science, as measured by the Texas Assessment of Knowledge and Skills (TAKS), for English Language Learner students in three high poverty bilingual elementary schools based on a multiple case study. As part of the data collection process, interviews were conducted with three school principals, three science academic support teachers, and two 5th grade bilingual teachers. Additionally, observations were acquired through school principal shadowing. The findings revealed four attributes necessary for effective instructional leadership in science education. First, Positive School Culture was defined as the core that linked the other three instructional leadership attributes and thus increased their effectiveness. Second, Clear Goals and Expectations were set by making science a priority and ensuring that English language learners were transitioning from Spanish to English instruction by the fifth grade. Third, Critical Resourcing involved hiring a science academic support teacher, securing a science classroom on campus, and purchasing bilingual instructional materials. Fourth, principal led and supported Collaboration in which teachers met to discuss student performance based data in addition to curriculum and instruction. These research findings are vital because by implementing these best practices of elementary school principals, educators

  10. Changes in Preservice Elementary Teachers' Personal Science Teaching Efficacy and Science Teaching Outcome Expectancies: The Influence of Context

    ERIC Educational Resources Information Center

    Hechter, Richard P.

    2011-01-01

    This study investigated contextual changes in perceptions of science teaching self-efficacy through pre-, post- and retrospective administrations of the Science Teaching Expectancy Belief Instrument (STEBI-B) among preservice elementary teachers when exposed to a science teaching methods course. Findings revealed that the number of postsecondary…

  11. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-01-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…

  12. TEAM Science Advances STEM through Experiential Learning about Karst Geology at the Ozark Underground Laboratory.

    NASA Astrophysics Data System (ADS)

    Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.

    2017-12-01

    Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)

  13. The Science Teaching Self-Efficacy of Prospective Elementary Education Majors Enrolled in Introductory Geology Lab Sections

    ERIC Educational Resources Information Center

    Baldwin, Kathryn A.

    2014-01-01

    This study examined prospective elementary education majors' science teaching self-efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI-B) was administered during the first and last lab class sessions. Additionally, students were…

  14. Investigating How Nontraditional Elementary Pre-service Teachers Negotiate the Teaching of Science

    NASA Astrophysics Data System (ADS)

    Shelton, Mythianne

    This qualitative study was designed to investigate the influences on nontraditional preservice teachers as they negotiated the teaching of science in elementary school. Based upon a sociocultural theoretical framework with an identity-in-practice lens, these influences included beliefs about science teaching, life experiences, and the impact of the teacher preparation program. The study sample consisted of two nontraditional preservice teachers who were student teaching in an elementary classroom. Data, collected over a five-month period, included in-depth individual interviews, classroom observations, audio recordings, and reviews of documentations. Interviews focused on the participants' beliefs relating to the teaching of science, prior experiences, and their teacher preparation program experiences relating to the teaching of science. Classroom observations provided additional insights into the classroom setting, participants' teaching strategies, and participants' interactions with the students and cooperating teacher. A whole-text analysis of the interview transcripts, observational field notes, audio recordings and documents generated eight major categories: beliefs about science teaching, role of family, teaching science in the classroom, teacher identity, non-teacher identity, relationships with others, discourses of classroom teaching, and discourses of teachers. The following significant findings emerged from the data: (a) the identity of nontraditional student teachers as science teachers related to early life experiences in science classes; (b) the identity of nontraditional student teachers as science teachers was influenced by their role as parents; (c) nontraditional student teachers learned strategies that supported their beliefs about inquiry learning; and (d) nontraditional student teachers valued the teacher preparation program support system. The results from this qualitative study suggest that sociocultural theory with an identity

  15. Mars Science Laboratory's Descent Stage

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of NASA's Mars Science Laboratory, called the descent stage, does its main work during the final few minutes before touchdown on Mars.

    The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground.

    The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  16. Supporting elementary science education for English learners: An evaluation instrument to promote constructivist teaching

    NASA Astrophysics Data System (ADS)

    Gibbons, Beatrice Lowney

    2002-01-01

    The purpose of this study was to develop an evaluation instrument to be used by elementary school administrators in the promotion of constructivist teaching of elementary science for English Learners using a qualitative and quantitative design that identified effective instructional strategies to be included on the evaluation instrument. This study was conducted in fifth grade classrooms of predominately English Learners whose teachers are CLAD-certified, tenured teachers with at least three years of teaching experience. The classroom observations took place within a multicultural school district with predominantly Hispanic and Filipino students in the Southern San Joaquin Valley of California. The evaluation instrument was used to observe these teachers teach elementary science lessons to classrooms of predominately English Learners. The frequency of the use of the ELD/SDAIE instructional strategies were noted on the evaluation instrument with a check mark, indicating the fact that an instructional technique was employed by the teacher. These observation visits revealed what type of instructional strategies were being utilized in the teaching of science to fifth grade English Learners, whether these CLAD-certified teachers were using ELD strategies, and whether the incidence of ELD/SDAIE constructivist instructional techniques increased with the repeated use of the evaluation instrument. As a result of this study, an evaluation instrument to be utilized by school administrators in the evaluation of elementary science instruction to English Learners was developed. The repeated use of this evaluation instrument coupled with preobservation and postobservation conferences may result in the increase in frequency of ELD/SDAIE methodology and constructivist strategies listed on the evaluation instrument in the elementary science classroom.

  17. The Role of Struggle in Pre-Service Elementary Teachers' Experiences as Students and Approaches to Facilitating Science Learning

    ERIC Educational Resources Information Center

    Wilson, Rachel E.; Kittleson, Julie M.

    2012-01-01

    Science education researchers are concerned with preparing pre-service elementary teachers (PSETs) to teach in ways that support students to learn science in a meaningful way. Preparing elementary teachers to teach science is complicated given that they tend to be generalists and may not have the same experience with science as secondary teachers.…

  18. Integrating Astronomy with Elementary Non-Science Curricula

    NASA Astrophysics Data System (ADS)

    Bobrowsky, M.

    1996-05-01

    A workshop was developed for elementary school teachers to enhance students' understanding of astronomy during the formative years of elementary school by incorporating astronomy into various non-science curricula. Educational material was compiled for teachers and students and training was provided for the teachers in the form of a workshop where both information and hands-on activities were disseminated. In addition, we are producing a video tape from the workshop which will be available not only to those who attended the workshop but to other teachers as well. A useful ``multiplier effect" in this project came from our focus on a school that was hosting a group of teachers in training. After these teachers receive certification, they will end up working in all different schools, thereby reaching large numbers of students for many years. The non-scientific subjects that we will connect to astronomy include history, music, art, language arts, social studies, and mathematics, as well as incidental subjects such as health and public safety. Support for this work was provided by NASA through grant number ED90024.01-94A from the Space Telescope Science Institute which is operated by the Association of Universities for Research in Astronomy Inc. under NASA Contract NAS5-26555.

  19. Quality knowledge of science through virtual laboratory as an element of visualization

    NASA Astrophysics Data System (ADS)

    Rizman Herga, Natasa

    Doctoral dissertation discusses the use of virtual laboratory for learning and teaching chemical concepts at science classes in the seventh grade of primary school. The dissertation has got a two-part structure. In the first theoretical part presents a general platform of teaching science in elementary school, teaching forms and methods of teaching and among modern approaches we highlight experimental work. Particular emphasis was placed on the use of new technologies in education and virtual laboratories. Scientific findings on the importance of visualization of science concepts and their triple nature of their understanding are presented. These findings represent a fundamental foundation of empirical research presented in the second part of the doctoral dissertation, whose basic purpose was to examine the effectiveness of using virtual laboratory for teaching and learning chemical contents at science from students' point of view on knowledge and interest. We designed a didactic experiment in which 225 pupils participated. The work was conducted in the experimental and control group. Prior to its execution, the existing school practice among science and chemistry teachers was analysed in terms of: (1) inclusion of experimental work as a fundamental method of active learning chemical contents, (2) the use of visualization methods in the classroom and (3) the use of a virtual laboratory. The main findings of the empirical research, carried out in the school year 2012/2013, in which 48 science and chemistry participated, are that teachers often include experimental work when teaching chemical contents. Interviewed science teachers use a variety of visualization methods when presenting science concepts, in particular computer animation and simulation. Using virtual laboratory as a new strategy for teaching and learning chemical contents is not common because teachers lack special-didactic skills, enabling them to use virtual reality technology. Based on the didactic

  20. A Cross Age Study of Elementary Students' Motivation towards Science Learning

    ERIC Educational Resources Information Center

    Guvercin, Ozge; Tekkaya, Ceren; Sungur, Semra

    2010-01-01

    The purpose of this study was to investigate the effect of grade level and gender on elementary school students' motivation towards science learning. A total of 2231 sixth and eight grade students participated in the study. Data were collected through Students' Motivation towards Science Learning Questionnaire. Two-way Multivariate Analysis of…

  1. Collaborating to Improve Inquiry-Based Teaching in Elementary Science and Mathematics Methods Courses

    ERIC Educational Resources Information Center

    Magee, Paula A.; Flessner, Ryan

    2012-01-01

    This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…

  2. Elementary Students' Self-Efficacy Beliefs in Science: Role of Grade Level, Gender, and Socio-Economic Status

    ERIC Educational Resources Information Center

    Karaarslan, Guliz; Sungur, Semra

    2011-01-01

    This study examined grade level and gender difference with respect to elementary students' science and technology self-efficacy. Additionally, relationship between socio-economic status (SES) and self-efficacy was examined. A total of 145 elementary students participated in the study. Self efficacy towards Science and Technology Scale was used to…

  3. A Comparison of Two Methods of Teaching an Elementary School Science Methods Course at Hunter College.

    ERIC Educational Resources Information Center

    Graeber, Mary

    The typical approach to the teaching of an elementary school science methods course for undergraduate students was compared with an experimental approach based upon activities appearing in the Conceptually Oriented Program in Elementary Science (COPES) teacher's guides. The typical approach was characterized by a coverage of many topics and a…

  4. A Multi-Year Study of the Impact of the Rice Model Teacher Professional Development on Elementary Science Teachers

    ERIC Educational Resources Information Center

    Diaconu, Dana Viorica; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn

    2012-01-01

    A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one…

  5. A Mile Wide or an Inch Deep? Improving Elementary Preservice Teachers' Science Content Knowledge within the Context of a Science Methods Course

    ERIC Educational Resources Information Center

    Santau, Alexandra O.; Maerten-Rivera, Jaime L.; Bovis, Stephanie; Orend, Jacob

    2014-01-01

    Since the beginning of the reform movement in science education, there has been concern that elementary teachers lack the science content knowledge (SCK) needed to engage students in authentic scientific inquiry. This study included 19 preservice elementary teachers and examined the development of their SCK within the context of a uniquely…

  6. Learning to teach science for all in the elementary grades: What do preservice teachers bring?

    NASA Astrophysics Data System (ADS)

    Howes, Elaine V.

    2002-11-01

    Implicit in the goal of recent reforms is the question: What does it mean to prepare teachers to teach science for all? Through a teacher research study, I have encountered characteristics that may assist prospective elementary teachers in developing effective, inclusive science instruction. I describe these strengths, link them to requirements for teaching, and suggest how science teacher educators might draw on the strengths of their own students to support teaching practices aimed at universal scientific literacy. My conceptual framework is constructed from scholarship concerning best practice in elementary science education, as well as that which describes the dispositions of successful teachers of diverse learners. This study is based on a model of teacher research framed by the concept of research as praxis and phenomenological research methodology. The findings describe the research participants' strengths thematically as propensity for inquiry, attention to children, and awareness of school/society relationships. I view these as potentially productive aspects of knowledge and dispositions about science and about children that I could draw on to further students' development as elementary science teachers.

  7. Distinguishing Science from Non-Science: Preservice Elementary Teachers' Perspectives on Evolution, Creationism, and Intelligent Design

    ERIC Educational Resources Information Center

    Binns, Ian C.; Bloom, Mark A.

    2017-01-01

    Biological evolution stands out as critically important content for K-12 education as it is considered a cornerstone of the biological sciences. Yet, it remains one of the most socially controversial topics related to science education. In this exploratory study, we are seeking to understand the ways elementary preservice teachers (PSTs) use their…

  8. A survey of specific individualized instruction strategies in elementary science methods courses in Tennessee teacher education institutions

    NASA Astrophysics Data System (ADS)

    Hazari, Alan A.

    The purpose of the study was to determine the status of individualized science instruction in Tennessee teacher education institutions. Specifically, the study sought to investigate the extent of teaching about and/or use of 31 strategies for individualizing instruction in elementary science teaching methods courses. The individualized instruction frameworks, with strategies for individualizing instruction, were developed by Rowell, et al. in the College of Education at the University of Tennessee, Knoxville. A review of the literature on the preparation of preservice elementary science teachers for individualized instruction in K-8 classrooms revealed very limited research. This investigation sought to identify how the elementary science teacher educators prepared their preservice elementary science teachers to (1) learn about the children they will teach, (2) determine differences among learners, (3) plan for individualized science instruction in the elementary school classroom, and (4) help attend to individual student differences. The researcher prepared and used a 31-item survey to poll elementary science teacher educators in Tennessee. The participants included K-8 educators from 40 state-approved teacher education institutions. The high teacher education institution response rate (72.5%) brought input from institutions of varying sizes, operated privately or publicly across the state of Tennessee. In general, Tennessee elementary science teacher educators reported that they tended to teach about and/or use a fair number of the 31 individualized instruction strategies that involve both learning about K-8 students and their differences. On the other hand, many of these educators provided preservice teachers with quite a bit of the strategies that lead to planning for individualized science instruction and to attending to individual student differences. The two strategies that were the most taught about and/or used in elementary science methods by Tennessee

  9. Exploring the Effects of Concreteness Fading across Grades in Elementary School Science Education

    ERIC Educational Resources Information Center

    Jaakkola, Tomi; Veermans, Koen

    2018-01-01

    The present study investigates the effects that concreteness fading has on learning and transfer across three grade levels (4-6) in elementary school science education in comparison to learning with constantly concrete representations. 127 9- to 12-years-old elementary school students studied electric circuits in a computer-based simulation…

  10. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    NASA Astrophysics Data System (ADS)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  11. Improving Preservice Elementary Teachers' Writing in a Science Context

    ERIC Educational Resources Information Center

    Everett, Susan; Luera, Gail; Otto, Charlotte

    2008-01-01

    The authors investigated whether a series of mini prewriting assignments linked to a formal paper describing an original research project would improve preservice elementary teachers' writing abilities in a science context. They compared 38 final reports from students who completed the prewriting assignments with 38 reports randomly selected from…

  12. Growing minds: The effect of school gardening programs on the science achievement of elementary students

    NASA Astrophysics Data System (ADS)

    Klemmer, Cynthia Davis

    Science literacy refers to a basic knowledge and understanding of science concepts and processes needed to consider issues and make choices on a daily basis in an increasingly technology-driven society. A critical precursor to producing science literate adults is actively involving children in science while they are young. National and state (TX) science standards advocate the use of constructivist methods including hands-on, experiential activities that foster the development of science process skills through real-world investigations. School gardens show promise as a tool for implementing these guidelines by providing living laboratories for active science. Gardens offer opportunities for a variety of hands-on investigations, enabling students to apply and practice science skills. School gardens are increasing in popularity; however, little research data exists attesting to their actual effectiveness in enhancing students' science achievement. The study used a quasi-experimental posttest-only research design to assess the effects of a school gardening program on the science achievement of 3rd, 4th, and 5th grade elementary students. The sample consisted of 647 students from seven elementary schools in Temple, Texas. The experimental group participated in school gardening activities as part of their science curriculum. The control group did not garden and were taught using traditional classroom-based methods. Results showed higher scores for students in the experimental group which were statistically significant. Post-hoc tests using Scheffe's method revealed that these differences were attributed to the 5th grade. No statistical significance was found between girls and boys in the experimental group, indicating that gardening was equally effective for both genders. Within each gender, statistical significance was found between males in the experimental and control groups at all three grade levels, and for females in the 5 th grade. This research indicated that

  13. Predicting Scientific Understanding of Prospective Elementary Teachers: Role of Gender, Education Level, Courses in Science, and Attitudes Toward Science and Mathematics

    NASA Astrophysics Data System (ADS)

    Kumar, David D.; Morris, John D.

    2005-12-01

    A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.

  14. Emotions and elementary school science teaching: Postmodernism in practice

    NASA Astrophysics Data System (ADS)

    Zembylas, Michalinos

    This is an ethnographic study about an elementary school teacher's emotions in her science teaching and pedagogy. This study is an interdisciplinary account of emotions in teaching and draws both methodologically and theoretically from a variety of disciplines: philosophy, sociology, psychology, anthropology, cultural studies and feminist studies. The account developed here is based on my understanding of the role of one teacher's (Catherine) emotions in her classroom life for three years. I describe my approach in terms of what I call emotional genealogies of teaching; referring to an account of the events, objects, persons and their relationships that are present or absent in the realization of emotions, and the ways that these emotions are experienced in relation to the self (individual reality), the others (social interactions) and the world in general (sociopolitical context). Applied to my study, an emotional genealogy of Catherine's science teaching seeks not to trace the gradual evolution of her emotions but to record the singularity of various events that make some emotions present and others absent. My study shows how certain emotions are constructed in the science classroom and how they are transformed over the years (as mediated by values, philosophies, beliefs and so on). Catherine's emotions in science teaching is a "history of the present," a history of her emotions' "presences and absences" in her daffy interactions with her students, parents and administrators in the context of the science classroom. This work raises important questions that go beyond the meaning and interpretation of teachers' emotions: How can teachers' emotions become a legitimate topic in (science) education as well as in efforts for science curricular reform? Further, how can educational institutions (universities and schools) and elementary school science teachers themselves support their personal and professional emotional growth?

  15. Influence of Joyful Learning on Elementary School Students’ Attitudes Toward Science

    NASA Astrophysics Data System (ADS)

    Anggoro, S.; Sopandi, W.; Sholehuddin, M.

    2017-02-01

    This study investigated the effects of joyful learning approach on elementary school students’ attitudes toward science. The method used is quasy experiment with the participants were divided into two groups. Thirty three of 4th grade students volunteered as an experimental group, and the other forty two act as a control group. The data was collected by questionnaire that are given before and after the lesson, observation sheet, and interview. The effect of joyful learning on students’ attitude was obtained by determining the n-gain and independent t-test. Observation and interview results were used to triangulate and support the quantitative findings. The data showed that the gain scores of the experimental group students’ attitudes toward science were significantly higher than the gain scores of control group. In addition, the experimental group made significantly greater progress in their cognitive, affective and conative experiences. Interviews and observations indicated that their attitude toward science changed over the intervention. This indicated that joyful learning approach can enhance the elementary school students’ attitudes toward science. According to these findings, it can be concluded that joyful learning approach can be used as an alternative approach to improve student’s attitude toward science.

  16. The Effects of Activity-Based Elementary Science Programs on Student Outcomes and Classroom Practices: A Meta Analysis of Controlled Studies.

    ERIC Educational Resources Information Center

    Bredderman, Ted

    A quantitative synthesis of research findings on the effects of three major activity-based elementary science programs developed with National Science Foundation support was conducted. Controlled evaluation studies of the Elementary Science Study (ESS), Science-A Process Approach (SAPA), or The Science Curriculum Improvement Study (SCIS) were used…

  17. High Hopes--Few Opportunities: The Status of Elementary Science Education in California. Strengthening Science Education in California

    ERIC Educational Resources Information Center

    Dorph, R.; Shields, P.; Tiffany-Morales, J.; Hartry, A.; McCaffrey, T.

    2011-01-01

    This report addresses how well California is doing to prepare its young people for the evolving economy and societal challenges. Specifically, it describes the status of science teaching and learning in California public elementary schools. This study was conducted in support of "Strengthening Science Education in California," a…

  18. Elementary Teachers' Perceptions of Teaching Science to Improve Student Content Knowledge

    NASA Astrophysics Data System (ADS)

    Stephenson, Robert L.

    The majority of Grade 5 students demonstrate limited science knowledge on state assessments. This trend has been documented since 2010 with no evidence of improvement. Because state accountability formulas include proficiency scores and carry sanctions against districts that fail to meet proficiency thresholds, improved student performance in science is an important issue to school districts. The purpose of this study was to explore elementary teachers' perceptions about their students' science knowledge, the strategies used to teach science, the barriers affecting science teaching, and the self-efficacy beliefs teachers maintain for teaching science. This study, guided by Vygotsky's social constructivist theory and Bandura's concept of self-efficacy, was a bounded instrumental case study in which 15 participants, required to be teaching K-5 elementary science in the county, were interviewed. An analytic technique was used to review the qualitative interview data through open coding, clustering, and analytical coding resulting in identified categorical themes that addressed the research questions. Key findings reflect students' limited content knowledge in earth and physical science. Teachers identified barriers including limited science instructional time, poor curricular resources, few professional learning opportunities, concern about new state standards, and a lack of teaching confidence. To improve student content knowledge, teachers identified the need for professional development. The project is a professional development series provided by a regional education service agency for K-5 teachers to experience science and engineering 3-dimensional learning. Area students will demonstrate deeper science content knowledge and benefit from improved science instructional practice and learning opportunities to become science problem solvers and innovative contributors to society.

  19. Examining the Effects of Integrated Science, Engineering, and Nonfiction Literature on Student Learning in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Tank, Kristina Maruyama

    In recent years there has been an increasing emphasis on the integration of multiple disciplines in order to help prepare more students to better address the complex challenges they will face in the 21st century. Exposing students to an integrated and multidisciplinary approach will help them to better understand the connections between subjects instead of as individual and separate subjects. Science, Technology, Engineering and Mathematics (STEM) Integration has been suggested as an approach that would model a multidisciplinary approach while also offering authentic and meaningful learning experiences to students. However, there is limited research on STEM integration in the elementary classroom and additional research is needed to better define and explore the effects of this integration for both students and science educators. With the recent recommendations for teaching both science and engineering in elementary classrooms (NRC, 2012), two common models include teaching science through inquiry and teaching science through engineering-design pedagogies. This study will explore both of these models as it seeks to better understand one piece of the larger issue of STEM and STEM integration by examining how the integration of science, engineering, and nonfiction literature affects students learning in elementary classrooms. This study employed an embedded mixed methods design to measure the effects of this integration on student learning in four fifth grade classrooms from the same elementary school. The findings revealed that the students who participated in the nonfiction reading instruction that was integrated with their science instruction showed a greater increase in all measures of student learning in both science and reading when compared to the control students. The findings from the integrated science, engineering and nonfiction literature revealed similar findings with the treatment students showing a greater increase in the measures of student learning

  20. Exploring the Impact of an Out-of-School Science Program on the Science Learning of Upper Elementary School Children

    ERIC Educational Resources Information Center

    Marshall, Karen Benn

    2009-01-01

    This study sought to explore qualitatively how participation in an informal science program might affect the following aspects of upper elementary school children's scientific thinking: conceptual understanding, epistemology of science, and the formation of their identity as science learners. A purposefully selected, maximum variation sample of…

  1. The transfer of learning process: From an elementary science methods course to classroom instruction

    NASA Astrophysics Data System (ADS)

    Carter, Nina Leann

    The purpose of this qualitative multiple-case study was to explore the transfer of learning process in student teachers. This was carried out by focusing on information learned from an elementary science methods and how it was transferred into classroom instruction during student teaching. Participants were a purposeful sampling of twelve elementary education student teachers attending a public university in north Mississippi. Factors that impacted the transfer of learning during lesson planning and implementation were sought. The process of planning and implementing a ten-day science instructional unit during student teaching was examined through lesson plan documentation, in-depth individual interviews, and two focus group interviews. Narratives were created to describe the participants' experiences as well as how they plan for instruction and consider science pedagogical content knowledge (PCK). Categories and themes were then used to build explanations applying to the research questions. The themes identified were Understanding of Science PCK, Minimalism, Consistency in the Teacher Education Program, and Emphasis on Science Content. The data suggested that the participants lack in their understanding of science PCK, took a minimalistic approach to incorporating science into their ten-day instructional units, experienced inconsistencies in the teacher education program, and encountered a lack of emphasis on science content in their field experience placements. The themes assisted in recognizing areas in the elementary science methods courses, student teaching field placements, and university supervision in need of modification.

  2. Elementary Teacher Self-Efficacy in Engineering and Student Achievement in Math and Science

    ERIC Educational Resources Information Center

    Gorena, Jacquelyn L.

    2015-01-01

    STEM education is a national priority, and more schools are implementing STEM K-12. Elementary teachers are prepared to teach science, mathematics, and technology, but teachers may not feel as prepared to teach engineering. Engineering is a new genre for elementary schools, and it is not typically a content area included in teacher preparation…

  3. Professional development in inquiry-based science for elementary teachers of diverse student groups

    NASA Astrophysics Data System (ADS)

    Lee, Okhee; Hart, Juliet E.; Cuevas, Peggy; Enders, Craig

    2004-12-01

    As part of a larger project aimed at promoting science and literacy for culturally and linguistically diverse elementary students, this study has two objectives: (a) to describe teachers' initial beliefs and practices about inquiry-based science and (b) to examine the impact of the professional development intervention (primarily through instructional units and teacher workshops) on teachers' beliefs and practices related to inquiry-based science. The research involved 53 third- and fourth-grade teachers at six elementary schools in a large urban school district. At the end of the school year, teachers reported enhanced knowledge of science content and stronger beliefs about the importance of science instruction with diverse student groups, although their actual practices did not change significantly. Based on the results of this first year of implementation as part of a 3-year longitudinal design, implications for professional development and further research are discussed.

  4. Elementary Science Curriculum Implementation: As It Was and As It Should Be.

    ERIC Educational Resources Information Center

    Horn, Jerry G.; Marsh, Marilyn A.

    School districts were identified that were involved in implementation of recent National Science Foundation (NSF) elementary school science curricula and in corresponding in-service work. Questionnaires sent to 6 school districts, selected somewhat randomly from across the 50 states and the District of Columbia, compiled information regarding…

  5. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    ERIC Educational Resources Information Center

    Eick, Charles J.; Stewart, Bethany

    2010-01-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…

  6. Features of Computerized Educational Games in Sciences of the Elementary Phase in Jordan from the Point of View of Specialists in Teaching Science and Computer Subjects

    ERIC Educational Resources Information Center

    Al Sarhan, Khaled Ali; AlZboon, Saleem Odeh; Olimat, Khalaf Mufleh; Al-Zboon, Mohammad Saleem

    2013-01-01

    The study aims at introducing the features of the computerized educational games in sciences at the elementary school in Jordan according to the specialists in teaching science and computer subjects, through answering some questions such as: What are the features of the computerized educational games in sciences at the elementary schools in Jordan…

  7. Writing Like a Scientist: Exploring Elementary Teachers' Understandings and Practices of Writing in Science

    NASA Astrophysics Data System (ADS)

    Glen, Nicole J.; Dotger, Sharon

    2013-10-01

    This qualitative study examined the connections between elementary teachers’ conceptions of how scientists use writing and how the teachers used writing during science lessons. Data collected included lesson observations, interviews, handouts to students, and curriculum resources. The findings revealed that teachers in this study thought scientists write for several purposes: the presentation of data, observations, experiences, procedures, and facts. The teachers used writing tasks that mirrored this with their students. The teachers also had a limited definition of creativity in writing, and when they had students write creatively in science it was to add in fictional elements. Implications of this study include providing teachers with better models for how and why scientists write, including these models in more inquiry-based science lessons, and directly relating concepts of nature of science to elementary science writing.

  8. Effective Programs for Elementary Science: A Best-Evidence Synthesis

    ERIC Educational Resources Information Center

    Slavin, Robert E.; Lake, Cynthia; Hanley, Pam; Thurston, Allen

    2012-01-01

    This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A…

  9. Urban School Leadership for Elementary Science Education: Meeting the Needs of English Language Learners

    ERIC Educational Resources Information Center

    Alarcon, Maricela H.

    2012-01-01

    Science education reform and state testing accountability call upon principals to become instructional leaders in science. Specifically, elementary school principals must take an active role in science instruction to effectively improve science education for all students including English Language Learners. As such, the research questioned posed…

  10. Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.

    2006-12-01

    Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth

  11. Disciplined knowledge: Differentiating and binding the elementary science curriculum

    NASA Astrophysics Data System (ADS)

    Hayes, Michael Thomas

    The purpose of this research was to investigate elementary science curriculum differentiation at two schools with widely divergent student demographics. Historically, elementary school students of ethnic-minority and low-socioeconomic backgrounds have not performed on traditional assessments of academic achievement and progress in science education at the same level as their White and more affluent peers. This inequality has long been of interest to the proponents of science education reform who are concerned with the ability of students to participate successfully in a democratic society and in the labor market. Differentiating the curriculum such that students, because of their socioeconomic, ethnic, or racial backgrounds, receive different knowledge, skills, and experiences is a key component of school activity that supports social inequality. Participants in the study included the teachers and students of four classrooms in two schools with student populations that differed in their socioeconomic and ethnic demographics. Qualitative research methods, including fieldnotes, audiorecordings, and interviews, were utilized to gather data. The collection and analysis of data were articulated in a developmental research process in which theories and interpretations were continuously constructed and tested for validity. The results of this research show that the science curricula at the two schools were different, with differences being understood in terms of the populations served. The particular form of differentiation observed in this study was closely correlated to elements of social discipline, knowledge segmentation and reconfiguration, time and pacing, control of bodies, and testing. The elementary science curriculum at the two schools differed in the formality and intensity with which the curriculum was constructed in adherence to these elements of discipline. Such differences cannot be understood in traditional terms as supporting White middle-class students

  12. Pathways in Learning to Teach Elementary Science: Navigating Contexts, Roles, Affordances and Constraints

    ERIC Educational Resources Information Center

    Smith, Deborah C.; Jang, Shinho

    2011-01-01

    This case study of a fifth-year elementary intern's pathway in learning to teach science focused on her science methods course, placement science teaching, and reflections as a first-year teacher. We studied the sociocultural contexts within which the intern learned, their affordances and constraints, and participants' perspectives on their roles…

  13. Teaching Physical Science through Children's Literature. 20 Complete Lessons for Elementary Grades.

    ERIC Educational Resources Information Center

    Gertz, Susan E.; Portman, Dwight J.; Sarquis, Mickey

    This guide focuses on teaching hands-on, discovery-oriented physical science in the elementary classroom using children's literature. Each lesson is an integrated learning episode with a clearly defined science content objective which is supported and enriched through literature, writing, and mathematics. The three sections are: (1) "Properties of…

  14. Low-Cost Aids for Elementary Science Teaching in Asia and the Pacific.

    ERIC Educational Resources Information Center

    National Inst. for Educational Research, Tokyo (Japan).

    Regional workshops sponsored by the National Institute for Educational Research (Japan) were held to strengthen national efforts in the development of elementary science aids/materials. This document provides: (1) guidelines for the development of appropriate and low-cost aids for science instruction; (2) inventory of aids; (3) synthesis of…

  15. Prospective Elementary Science Teachers and Biomythographies: An Exploratory Approach to Autobiographical Research.

    ERIC Educational Resources Information Center

    Nichols, Sharon E.; Tippins, Deborah J.

    2000-01-01

    Explores an approach to autobiographical research based on a notion of "outlaw genre" autobiography, referred to as "biomythography". Describes the use of photo essays to learn about prospective elementary teachers' stories of science and science education. Calls for an examination of hegemonies extending from students' personal histories as…

  16. A Collaborative Diagonal Learning Network: The role of formal and informal professional development in elementary science reform

    NASA Astrophysics Data System (ADS)

    Cooke-Nieves, Natasha Anika

    Science education research has consistently shown that elementary teachers have a low self-efficacy and background knowledge to teach science. When they teach science, there is a lack of field experiences and inquiry-based instruction at the elementary level due to limited resources, both material and pedagogical. This study focused on an analysis of a professional development (PD) model designed by the author known as the Collaborative Diagonal Learning Network (CDLN). The purpose of this study was to examine elementary school teacher participants pedagogical content knowledge related to their experiences in a CDLN model. The CDLN model taught formal and informal instruction using a science coach and an informal educational institution. Another purpose for this research included a theoretical analysis of the CDLN model to see if its design enabled teachers to expand their resource knowledge of available science education materials. The four-month-long study used qualitative data obtained during an in-service professional development program facilitated by a science coach and educators from a large natural history museum. Using case study as the research design, four elementary school teachers were asked to evaluate the effectiveness of their science coach and museum educator workshop sessions. During the duration of this study, semi-structured individual/group interviews and open-ended pre/post PD questionnaires were used. Other data sources included researcher field notes from lesson observations, museum field trips, audio-recorded workshop sessions, email correspondence, and teacher-created artifacts. The data were analyzed using a constructivist grounded theory approach. Themes that emerged included increased self-efficacy; increased pedagogical content knowledge; increased knowledge of museum education resources and access; creation of a professional learning community; and increased knowledge of science notebooking. Implications for formal and informal

  17. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    NASA Astrophysics Data System (ADS)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated

  18. Science Laboratory Environment and Academic Performance

    NASA Astrophysics Data System (ADS)

    Aladejana, Francisca; Aderibigbe, Oluyemisi

    2007-12-01

    The study determined how students assess the various components of their science laboratory environment. It also identified how the laboratory environment affects students' learning outcomes. The modified ex-post facto design was used. A sample of 328 randomly selected students was taken from a population of all Senior Secondary School chemistry students in a state in Nigeria. The research instrument, Science Laboratory Environment Inventory (SLEI) designed and validated by Fraser et al. (Sci Educ 77:1-24, 1993) was administered on the selected students. Data analysis was done using descriptive statistics and Product Moment Correlation. Findings revealed that students could assess the five components (Student cohesiveness, Open-endedness, Integration, Rule clarity, and Material Environment) of the laboratory environment. Student cohesiveness has the highest assessment while material environment has the least. The results also showed that the five components of the science laboratory environment are positively correlated with students' academic performance. The findings are discussed with a view to improving the quality of the laboratory environment, subsequent academic performance in science and ultimately the enrolment and retaining of learners in science.

  19. Promoting Creative Thinking and Expression of Science Concepts among Elementary Teacher Candidates through Science Content Movie Creation and Showcasing

    ERIC Educational Resources Information Center

    Hechter, Richard P.; Guy, Mark

    2010-01-01

    This article reports the phases of design and use of video editing technology as a medium for creatively expressing science content knowledge in an elementary science methods course. Teacher candidates communicated their understanding of standards-based core science concepts through the creation of original digital movies. The movies were assigned…

  20. A Longitudinal Investigation of the Science Teaching Efficacy Beliefs and Science Experiences of a Cohort of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2017-01-01

    This paper assesses the relationship between participation in two tertiary science courses and the science teaching efficacy beliefs (STEBs) of one cohort of preservice elementary teachers over a four-year period. Two Type II case studies were conducted within the courses. Data were collected through 26 administrations of the Science Teaching…

  1. Preservice Teachers' Knowledge of Interdisciplinary Pedagogy: The Case of Elementary Mathematics-Science Integrated Lessons

    ERIC Educational Resources Information Center

    An, Song A.

    2017-01-01

    The purpose of the study is to explore how elementary preservice teachers' mathematics-science integrated teaching strategies changed as a result of participating in exemplary interdisciplinary activities with multiple themes across school curricula. The participating elementary preservice teachers (n = 28) were recruited for this study from the…

  2. The Effect of an Integrated Science and Mathematics Content-Based Course on Science and Mathematics Teaching Efficacy of Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Moseley, Christine; Utley, Juliana

    2006-01-01

    The purpose of this study was to determine the effect of an earth systems science course (integrated mathematics and science content) on preservice elementary teachers' mathematics and science teaching efficacy. Paired t-tests revealed that the personal mathematics and science teaching efficacy and science teaching outcome expectancy significantly…

  3. The Analysis of Nine Process-Concepts in Elementary Science. Technical Report No. 428.

    ERIC Educational Resources Information Center

    Klausmeier, Herbert J.; And Others

    Theory and research background regarding the teaching of concepts are presented. Procedures are given in detail on how a concept can be analyzed in order to aid in teaching and preparing instructional materials. Nine processes of science drawn from a published elementary science curriculum ("Science: A Process Approach") are treated as concepts…

  4. Awakening the Scientist Inside: Global Climate Change and the Nature of Science in an Elementary Science Methods Course

    ERIC Educational Resources Information Center

    Matkins, Juanita Jo; Bell, Randy L.

    2007-01-01

    This investigation assessed the impact of situating explicit nature of science (NOS) instruction within the issues surrounding global climate change and global warming (GCC/GW). Participants in the study were 15 preservice elementary teachers enrolled in a science methods course. The instructional intervention included explicit NOS instruction…

  5. Slowmation: Preservice Elementary Teachers Representing Science Knowledge through Creating Multimodal Digital Animations

    ERIC Educational Resources Information Center

    Hoban, Garry; Loughran, John; Nielsen, Wendy

    2011-01-01

    Research has identified the value of learners using technology to construct their own representations of science concepts. In this study, we investigate how learners, such as preservice elementary teachers, design and make a narrated animation to represent their science knowledge. The type of animation exemplified is called a "Slowmation"…

  6. 16 CFR 1000.30 - Directorate for Laboratory Sciences.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Directorate for Laboratory Sciences. 1000.30... AND FUNCTIONS § 1000.30 Directorate for Laboratory Sciences. The Directorate for Laboratory Sciences, which is managed by the Associate Executive Director for Laboratory Sciences, is responsible for...

  7. 16 CFR 1000.30 - Directorate for Laboratory Sciences.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Directorate for Laboratory Sciences. 1000.30... AND FUNCTIONS § 1000.30 Directorate for Laboratory Sciences. The Directorate for Laboratory Sciences, which is managed by the Associate Executive Director for Laboratory Sciences, is responsible for...

  8. 16 CFR 1000.30 - Directorate for Laboratory Sciences.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Directorate for Laboratory Sciences. 1000.30... AND FUNCTIONS § 1000.30 Directorate for Laboratory Sciences. The Directorate for Laboratory Sciences, which is managed by the Associate Executive Director for Laboratory Sciences, is responsible for...

  9. 16 CFR 1000.30 - Directorate for Laboratory Sciences.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Directorate for Laboratory Sciences. 1000.30... AND FUNCTIONS § 1000.30 Directorate for Laboratory Sciences. The Directorate for Laboratory Sciences, which is managed by the Associate Executive Director for Laboratory Sciences, is responsible for...

  10. Mars Science Laboratory Rover Taking Shape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The rover is about 9 feet wide and 10 feet long.

    Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin.

    JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.

  11. Teacher perspectives on specialisation in the elementary classroom: implications for science instruction

    NASA Astrophysics Data System (ADS)

    Poland, Susan; Colburn, Amanda; Long, David E.

    2017-09-01

    In the current educational climate of testing and accountability, many elementary teachers find they lack adequate time and confidence to enact reform-based science teaching due to pressure to perform in reading and mathematics. With this tension in mind, we explore the phenomenon of elementary teacher specialisation in comparison to the traditional, generalist model of teaching, wherein a teacher is responsible for teaching all subjects to one group of students each year. This mixed-methods study examines teacher perspectives on the practice of specialisation and generalisation through teacher interview data. Our teachers spoke candidly about their attitudes towards specialisation, the perceived impacts of specialization on teachers and students, and the role of accountability, administration, and testing in their decisions to specialise. Additionally, our teachers discussed time dedicated to science in specialist and generalist classrooms. Our findings suggest that specialist roles are sought by those who see specialisation as a means of reducing workload, while allowing for content mastery and improved instruction. Alternatively, generalist roles are sought by those who primarily view the role of elementary teaching as the care and development of children, and who prefer to focus on the classroom as a holistic, fluid space. Implications for science teaching are discussed.

  12. Elementary student teachers' science content representations

    NASA Astrophysics Data System (ADS)

    Zembal-Saul, Carla; Krajcik, Joseph; Blumenfeld, Phyllis

    2002-08-01

    This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject-specific considerations for teaching and learning.

  13. An Implementation Study: An Analysis of Elementary Student and Teacher Attitudes toward Science in Process-Approach vs. Traditional Science Classes.

    ERIC Educational Resources Information Center

    Kyle, William C.; And Others

    In anticipation of House Bill 246 (now Texas Administrative Code Chapter 75) which requires an inquiry-based, process-approach to the teaching of science, the Richardson Independent School District established the Elementary Science Pilot Project and adopted the Science Curriculum Improvement Study (SCIS) as part of their new K-6 Science through…

  14. "From the Beginning, I Felt Empowered": Incorporating an Ecological Approach to Learning in Elementary Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Birmingham, Daniel; Smetana, Lara; Coleman, Elizabeth

    2017-09-01

    While a renewed national dialog promotes the importance of science education for future technological and economic viability, students must find science personally relevant to themselves and their communities if the goals set forth in recent reform movements are to be achieved. In this paper, we investigate how incorporating an ecological perspective to learning in teacher education, including opportunities to participate with science in connection to their everyday lives, influenced the ways in which elementary teacher candidates (TCs) envisioned learning and doing science and its potential role in their future classroom. We draw from data collected across three sections of a field-based elementary methods course focused on learning to teach science and social studies through inquiry. We argue that participating in an authentic interdisciplinary inquiry project impacted the ways in which TCs conceived of science, their identities as science learners and teachers and their commitments to bringing inquiry-based science instruction to their future classrooms. This paper addresses issues regarding access to quality science learning experiences in elementary classrooms through empowering TCs to build identities as science learners and teachers in order to impact conditions in their future classrooms.

  15. Chance, choice and opportunity: Life history study of two exemplary female elementary science teachers

    NASA Astrophysics Data System (ADS)

    Hitt, Kathleen Milligan

    The purpose of this two-year study was to investigate why two female elementary teachers became exemplary science teachers, despite conditions which do not promote such achievement. Each teachers' progress was examined using life history methodology. The study's theoretical grounding included females' academic and attitudinal success in science education. Purposeful sampling of peers, administrators, and college professors produced two research participants. Both teachers participated in interviews, observations, and member checks lasting over one year. Data were analyzed inductively, resulting in two life histories. Comparing the life stories using confluence theory (Feldman, 1986) indicated four major categories for consideration: risk-taking; life-long learning; gender equity; and mentors. Risk-taking is necessary for female elementary teachers because of their often poor educational background. Few female role models support efforts for achievement. Life-long learning, including extensive reading and graduate-level classes, supports female teachers' personal and professional growth. Exposure to new ideas and teacher practices encourages curricular change and refinement in science education. Gender inequity and the male-packaging of science is an issue to be resolved by female elementary teachers. Mentors can provide interaction and feedback to refine science instructional practices. Professors, peers, and mentor teachers support instructional and content knowledge efforts. Recommendations for science education in classroom practices, preservice teacher education and continuing professional development include female-friendly approaches to science instruction. Decreased competitive practices through cooperative learning and gender inclusive language encourages female participation and achievement in classrooms. Hands-on, inquiry-based instruction and verbalization encourages female students' achievement in science education. Preservice teachers must receive

  16. An Analysis of Pre-Service Elementary Teachers' Understanding of Inquiry-Based Science Teaching

    ERIC Educational Resources Information Center

    Lee, Carole K.; Shea, Marilyn

    2016-01-01

    This study examines how pre-service elementary teachers (PSETs) view inquiry-based science learning and teaching, and how the science methods course builds their confidence to teach inquiry science. Most PSETs think that inquiry is asking students questions rather than a formal set of pedagogical tools. In the present study, three groups of PSETs…

  17. Multiple Perspectives on Elementary Teachers' Science Identities: A Case Study

    ERIC Educational Resources Information Center

    Madden, Lauren; Wiebe, Eric

    2015-01-01

    This narrative case study examined the relationship between teacher identity and elementary science teaching. Teacher identity was described using a modification of Gee's framework incorporating three perspectives: the teachers' self-described identity, the researchers' view of teacher identity, and the students' views of teacher identity. Over…

  18. Teaching Science in Elementary and Middle School: A Cognitive and Cultural Approach. Second Edition

    ERIC Educational Resources Information Center

    Buxton, Cory A.; Provenzo, Eugene F., Jr.

    2010-01-01

    Featuring an increased emphasis on the way today's changing science and technology is shaping our culture, this Second Edition of "Teaching Science in Elementary and Middle School" provides pre- and in-service teachers with an introduction to basic science concepts and methods of science instruction, as well as practical strategies for the…

  19. Geology and Earth Sciences Sourcebook for Elementary and Secondary Schools, Second Edition.

    ERIC Educational Resources Information Center

    Heller, Robert L.

    This earth science resource book, designed for use by elementary and secondary school teachers, presents aspects of earth science which illustrate the significance of matter, energy, forces, motion, time, and space in the dynamics and history of the earth. The major content of this resource manual consists of authoritative information about earth…

  20. Elementary teachers' perceptions of science inquiry and professional development challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Jones, Kathleen M.

    Inquiry science, including a focus on evidence-based discourse, is essential to spark interest in science education in the early grades and maintain that interest throughout children's schooling. The researcher was interested in two broad areas: inquiry science in the elementary classroom and the need/desire for professional development opportunities for elementary teachers related to science education, and specifically professional development focused on inquiry science. A cross sectional survey design was prepared and distributed in May 2005 and usable responses were received from 228 elementary teachers from the south-central area of Pennsylvania which was a representative sample of socio-economical and geographical factors. Areas of particular interest in the results section include: (1) The use of Science Kits which is popular, but may not have the desired impact since they are "adjusted" by teachers often removing the opportunity for evidence-based discourse by the students. This may be partly based on the lack of time dedicated to science instruction and, secondly, the teachers' lack of comfort with the science topics. Another issue arising from science kits is the amount of preparation time required to utilize them. (2) Teachers demonstrated understanding of the high qualities of professional development but, when it came to science content professional development, they were more inclined to opt for short-term opportunities as opposed to long-term learning opportunities. Since elementary teachers are generalists and most schools are not focusing on science, the lack of attention to a subject where they are least comfortable is understandable, but disappointing. (3) There is a great need for more training in evidence--based discourse so teachers can implement this needed skill and increase students' understanding of science content so they are more able to compete in the international science and math measurements. (4) Professional development, especially

  1. The use of Banyumas traditional art as analog sources of elementary school science materials

    NASA Astrophysics Data System (ADS)

    Handayani, L.; Nugroho, S. E.; Rohidi, T. R.; Wiyanto

    2018-03-01

    All various traditional arts of Banyumas area support this area to be one famous region located in the periphery of West and Central Java with its unique cultural identity. In science learning, these traditional arts are very important aspect which can be implemented as a source of analog by students thinking a science concept analogically. This paper discusses a kind of Banyumas traditional art: the ebeg, and its cultural characteristics which can play a significant role in supporting elementary school students’ analogical thinking of a science material. The method used were literature and documentary studies. It is concluded that the ebeg provides many cultural characteristics which can be used as analog of elementary school science material, in terms of its music player’s motion, kinds of musical instruments played and its dancer motion.

  2. Essential Laboratory Activities Guide. Secondary Science.

    ERIC Educational Resources Information Center

    Duval County Schools, Jacksonville, FL.

    This teacher's guide was developed for use in junior and senior high schools in Duval County, Jacksonville, Florida, for the purpose of identifying those secondary science laboratory experiences which are essential to the development of science content knowledge and competency in handling science laboratory equipment and consumables. The guide…

  3. Technology Enhanced Elementary and Middle School Science (TEEMSS). What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "Technology Enhanced Elementary and Middle School Science" ("TEEMSS") is a physical science curriculum for grades 3-8 that utilizes computers, sensors, and interactive models to support investigations of real-world phenomena. Through 15 inquiry-based instructional units, students interact with computers, gather and analyze…

  4. Exploring Relations among Preservice Elementary Teachers' Ideas about Evolution, Understanding of Relevant Science Concepts, and College Science Coursework

    ERIC Educational Resources Information Center

    Rice, Diana C.; Kaya, Sibel

    2012-01-01

    This study investigated the relations among preservice elementary teachers' ideas about evolution, their understanding of basic science concepts and college science coursework. Forty-two percent of 240 participants did not accept the theory of human evolution, but held inconsistent ideas about related topics, such as co-existence of humans and…

  5. Elementary School Garden Programs Enhance Science Education for All Learners

    ERIC Educational Resources Information Center

    Rye, James A.; Selmer, Sarah J.; Pennington, Sara; Vanhorn, Laura; Fox, Sarah; Kane, Sarah

    2012-01-01

    A national movement is underway to establish elementary school gardens, which can serve both academic and social purposes. These gardens can positively impact students' science achievement and provide the thematic and hands-on approach especially conducive to learning for students with disabilities. Garden-based learning (GBL) broadens the scope…

  6. The Nature of Pre-service Science Teachers' Argumentation in Inquiry-oriented Laboratory Context

    NASA Astrophysics Data System (ADS)

    Ozdem, Yasemin; Ertepinar, Hamide; Cakiroglu, Jale; Erduran, Sibel

    2013-10-01

    The aim of this study was to investigate the kinds of argumentation schemes generated by pre-service elementary science teachers (PSTs) as they perform inquiry-oriented laboratory tasks, and to explore how argumentation schemes vary by task as well as by experimentation and discussion sessions. The model of argumentative and scientific inquiry was used as a design framework in the present study. According to the model, the inquiry of scientific topics was employed by groups of participants through experimentation and critical discussion sessions. The participants of the study were 35 PSTs, who teach middle school science to sixth through eighth grade students after graduation. The data were collected through video- and audio-recordings of the discussions made by PSTs in six inquiry-oriented laboratory sessions. For the analysis of data, pre-determined argumentation schemes by Walton were employed. The results illustrated that PSTs applied varied premises rather than only observations or reliable sources to ground their claims or to argue for a case or an action. It is also worthy of notice that the construction and evaluation of scientific knowledge claims resulted in different numbers and kinds of arguments. Results of this study suggest that designing inquiry-oriented laboratory environments, which are enriched with critical discussion, provides discourse opportunities that can support argumentation. Moreover, PSTs can be encouraged to support and promote argumentation in their future science classrooms if they engage in argumentation integrated instructional strategies.

  7. Teaching Teachers: Bringing First-Rate Science to the Elementary Classroom. An NSTA Press Journals Collection.

    ERIC Educational Resources Information Center

    Smith, Betty, Ed.

    This document presents a collection of papers published in the "Teaching Teachers" column in the elementary-level journal, "Science and Children." Contents include: (1) "Science is Part of the Big Picture: Teachers Become Science Learners" (Anita Greenwood); (2) "Reaching the Reluctant Science Teacher: Learning How To Teach Inquiry-Based Science"…

  8. Elementary teachers' perceptions about the effective features of explicit-reflective nature of science instruction

    NASA Astrophysics Data System (ADS)

    Adibelli-Sahin, Elif; Deniz, Hasan

    2017-04-01

    This qualitative study explored elementary teachers' perceptions about the effective features of explicit-reflective nature of science (NOS) instruction. Our participants were four elementary teachers from a public charter school located in the Southwestern U.S.A. The four elementary teachers participated in an academic year-long professional development about NOS which consisted of NOS training and NOS teaching phases. After each phase of the professional development, we specifically asked our participants which features of the explicit-reflective NOS instruction they found effective in improving their NOS conceptions by presenting pre- and post-profiles of their NOS conceptions. We identified nine features perceived by the participants as effective components of explicit-reflective NOS instruction: (1) specific focus on NOS content, (2) participation in hands-on NOS activities, (3) introductory NOS readings, (4) multiple types/forms of reflection, (5) multiple exposure to NOS content, (6) structural consistency in the presentation of NOS content, (7) the evaluation of secondary NOS data from elementary students, (8) the analysis of national and state science standards in terms of NOS content, and (9) NOS teaching experience.

  9. Life histories of female elementary teachers and their science/teacher role construction

    NASA Astrophysics Data System (ADS)

    Ramseur, Aletha Johnson

    The research conducted in this study focuses on life histories of female elementary teachers and their science/teacher role construction. Identity theorists argue that the self consists of a collection of identities founded on occupying a particular role. Who we are depends on the roles we occupy. These roles are often referred to as "role identities". In the case of these participants, many role identities (mother, wife, sibling, and teacher) exist. This study focuses primarily on their (science) teacher role identity. Literature on women's lives, as learners and teachers, suggest that women's experiences, currently and throughout history influenced their teacher role construction. There is however, little knowledge of women's lives as elementary teachers of science and the affect of their experiences, currently and throughout history, on their (science) teacher identity construction. Schools delineated by race, class, and gender relations, are similar to other sectors of society's, social and cultural spheres within which race, class, and gender identities are constructed. Using in-depth-interviews female elementary teachers were encouraged to actively reconstruct their life and work-life experiences focusing on family, school and science interactions. They addressed the intellectual and emotional connections between their life and work experiences by focusing on details of their past and present experiences and examining the meaning of those experiences. It was the scrutiny of these connections between their life and work experiences, the meaning derived from them and historical events, and the constraints imposed on their personal choices by broader power relations, such as those of class, race, and gender that informed why we teach, how we teach, and what we teach.

  10. Cognitive Structures of Elementary School Students: What Is Science?

    ERIC Educational Resources Information Center

    Armagan, Fulya Öner

    2015-01-01

    The aim of this study is to examine the change in the cognitive structures of elementary school students in respect to the concept of science through word association test in a constructivist approach based project. The study was conducted with 50 students attending to 6th and 7th grades. Students were applied a 90-minute activity in scope of the…

  11. A Comparative Study of Turkish Elementary and Science Education Major Students' Knowledge Levels at the Popular Biotechnological Issues

    ERIC Educational Resources Information Center

    Turkmen, Lutfullah; Darcin, Emine Selcen

    2007-01-01

    The purpose of this study was to determine the knowledge levels of popular biotechnological issues of Turkish science and elementary teacher candidates. A questionnaire was administered during 2006-2007 school term to 336 students pursuing their education in the departments of science and elementary education in two Turkish universities. The…

  12. Promoting Science for All by Way of Student Interest in a Transformative Undergraduate Microbiology Laboratory for Nonmajors†

    PubMed Central

    Marbach-Ad, Gili; McGinnis, J. Randy; Dai, Amy H.; Pease, Rebecca; Schalk, Kelly A.; Benson, Spencer

    2009-01-01

    In this study, we investigated a pedagogical innovation in an undergraduate microbiology course, Microbes and Society, for non-microbiology majors and education majors. The aim was to improve students’ understanding by connecting their science experience to their areas of interest. Based on this idea of teaching, we redesigned the laboratory portion of a microbiology course. We had students in the laboratory component choose their areas of interest and use the areas as a framework for understanding science and how it influences and shapes the world around them. This course was part of a longitudinal project (Project Nexus) which prepares, supports, and sustains upper elementary and middle-level specialist science teachers. We used a battery of data collection instruments. We analyzed all data in several dimensions including using active-learning techniques, forming linkages between science and teaching, and connecting science and society. Our hypothesis was that we could promote science for all by connecting the diverse students’ areas of interest in science to the laboratory’s curriculum. We assessed the success of achieving our goal by using researchers’ observations, the instructors’ perspectives, and students’ feedback. Our findings suggested that this course was appreciated by the students, especially education majors, who recognized the innovations as engaging and worthwhile. PMID:23653691

  13. Learning to Teach Elementary Science in an Experiential, Informal Context: Culture, Learning, and Identity

    ERIC Educational Resources Information Center

    Wallace, Carolyn S.; Brooks, Lori

    2015-01-01

    Lack of time for teaching science in traditional classroom placements in the United States has led some science teacher educators to provide practice teaching time for elementary education students in informal science settings. The purposes of this study were to describe the culture of one science methods course taught in conjunction with a K-7…

  14. Aeroshell for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver.

    This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested.

    The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent.

    The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet.

    In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell.

    The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in

  15. Impact of Integrated Science and English Language Arts Literacy Supplemental Instructional Intervention on Science Academic Achievement of Elementary Students

    NASA Astrophysics Data System (ADS)

    Marks, Jamar Terry

    The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction with traditional science classroom instruction as compared to when instructed using solely traditional science classroom instruction. The targeted sample population consisted of fourth-grade students enrolled in a public elementary school located in the southeastern region of the United States. The convenience sample size consisted of 115 fourth-grade students enrolled in science classes. The pretest and posttest academic achievement data collected consisted of the science segment from the Spring 2015, and Spring 2016 state standardized assessments. Pretest and posttest academic achievement data were analyzed using an ANCOVA statistical procedure to test for differences, and the researcher reported the results of the statistical analysis. The results of the study show no significant difference in science academic achievement between treatment and control groups. An interpretation of the results and recommendations for future research were provided by the researcher upon completion of the statistical analysis.

  16. Research on Historical Environments in Elementary Schools' Social Sciences Textbooks Taught in Northern Cyprus

    ERIC Educational Resources Information Center

    Kasot, Nazim; Özsezer, Mete

    2015-01-01

    A comprehensive study has yet to be carried out depending on the historical environment particular to the Elementary Schools in Northern Cyprus. The aim of this study is hence to determine whether the coverage of historical environment subjects in elementary school social sciences textbooks is absorbed or not by the 4th and 5th Grades in the…

  17. Life Sciences Laboratories for the Shuttle/Spacelab

    NASA Technical Reports Server (NTRS)

    Schulte, L. O.; Kelly, H. B.; Secord, T. C.

    1976-01-01

    Space Shuttle and Spacelab missions will provide scientists with their first opportunity to participate directly in research in space for all scientific disciplines, particularly the Life Sciences. Preparations are already underway to ensure the success of these missions. The paper summarizes the results of the 1975 NASA-funded Life Sciences Laboratories definition study which defined several long-range life sciences research options and the laboratory designs necessary to accomplish high-priority life sciences research. The implications and impacts of Spacelab design and development on the life sciences missions are discussed. An approach is presented based upon the development of a general-purposs laboratory capability and an inventory of common operational research equipment for conducting life sciences research. Several life sciences laboratories and their capabilities are described to demonstrate the systems potentially available to the experimenter for conducting biological and medical research.

  18. The Effects of a STEM Professional Development Intervention on Elementary Teachers' Science Process Skills

    ERIC Educational Resources Information Center

    Cotabish, Alicia; Dailey, Deborah; Hughes, Gail D.; Robinson, Ann

    2011-01-01

    In order to increase the quality and quantity of science instruction, elementary teachers must receive professional development in science learning processes. The current study was part of a larger randomized field study of teacher and student learning in science. In two districts in a southern state, researchers randomly assigned teacher…

  19. Impact of Integrated Science and English Language Arts Literacy Supplemental Instructional Intervention on Science Academic Achievement of Elementary Students

    ERIC Educational Resources Information Center

    Marks, Jamar Terry

    2017-01-01

    The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction…

  20. Inquiring into Three Approaches to Hands-On Learning in Elementary and Secondary Science Methods Courses.

    ERIC Educational Resources Information Center

    Barnes, Marianne B.; Foley, Kathleen R.

    1999-01-01

    Investigates three approaches to hands-on science learning in two contexts, an elementary science methods class and a secondary science methods class. Focused on an activity on foam. Concludes that when developing models for teaching science methods courses, methods instructors need to share power with prospective teachers. (Author/MM)

  1. Something of Value. A Summary of Findings and Recommendations for Improving Elementary Science in Massachusetts.

    ERIC Educational Resources Information Center

    Whitla, Dean K.; Pinck, Dan C.

    Presented is a summary of findings and recommendations provided by the Harvard Study Committee under the auspices of the Massachusetts Advisory Council on Education. The study is mainly concerned with the four National Science Foundation (NSF) programs: Elementary Science Study, Science Curriculum Improvement Study, Science - A Process Approach,…

  2. A Review of Relationship between Prospective Science Teachers' Attitudes towards Science Education and Their Self-Efficacy

    ERIC Educational Resources Information Center

    Türer, Betül; Kunt, Halil

    2015-01-01

    In this research, we aim to review relationship between prospective science teachers' attitudes against science education (physics, chemistry, biology, laboratory) and their self-efficacy. Population of the research constitutes 497 students studying Science Education in Department of Elementary Education in Celal Bayar University Faculty of…

  3. Preservice Elementary Teachers Increase Descriptive Science Vocabulary by Making Descriptive Adjective Object Boxes

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Crisafulli, Sherry; DeCare, Heather; DeLeo, Tonya; Eastman, Keri; Farrell, Liz; Geblein, Jennifer; Gioia, Chelsea; Joyce, Ashley; Killian, Kali; Knoop, Kelly; LaRocca, Alison; Meyer, Katie; Miller, Julianne; Roth, Vicki; Throo, Julie; Van Arsdale, Jim; Walker, Malissa

    2007-01-01

    Descriptive vocabulary is needed for communication and mental processing of science observations. Elementary preservice teachers in a science methods class at a mid-sized public college in central New York State increased their descriptive vocabularies through a course assignment of making a descriptive adjective object box. This teaching material…

  4. Elementary Science Education in Classrooms and Outdoors: Stakeholder Views, Gender, Ethnicity, and Testing

    ERIC Educational Resources Information Center

    Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Stevenson, Kathryn Tate

    2014-01-01

    In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students'…

  5. Science Teaching Efficacy of Preservice Elementary Teachers: Examination of the Multiple Factors Reported as Influential

    ERIC Educational Resources Information Center

    Tastan Kirik, Özgecan

    2013-01-01

    This study explores the science teaching efficacy beliefs of preservice elementary teachers and the relationship between efficacy beliefs and multiple factors such as antecedent factors (participation in extracurricular activities and number of science and science teaching methods courses taken), conceptual understanding, classroom management…

  6. Pre-service elementary teachers' understanding of scientific inquiry and its role in school science

    NASA Astrophysics Data System (ADS)

    Macaroglu, Esra

    The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.

  7. Transforming Beliefs and Practices: Elementary Teacher Candidates' Development through Shared Authentic Teaching and Reflection Experiences within an Innovative Science Methods Course

    ERIC Educational Resources Information Center

    Naidoo, Kara

    2013-01-01

    Elementary teachers are criticized for failing to incorporate meaningful science instruction in their classrooms or avoiding science instruction altogether. The lack of adequate science instruction in elementary schools is partially attributed to teacher candidates' anxiety, poor content and pedagogical preparation, and low science teaching…

  8. Experimental Evaluations of Elementary Science Programs: A Best-Evidence Synthesis

    ERIC Educational Resources Information Center

    Slavin, Robert E.; Lake, Cynthia; Hanley, Pam; Thurston, Allen

    2014-01-01

    This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A…

  9. Intersections of life histories and science identities: the stories of three preservice elementary teachers

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2016-03-01

    Grounded within Connelly and Clandinin's conceptualization of teachers' professional identity in terms of 'stories to live by' and through a life-history lens, this multiple case study aimed to respond to the following questions: (a) How do three preservice elementary teachers view themselves as future science teachers? (b) How have the participants' life histories shaped their science identity trajectories? In order to characterize the participants' formation of science identities over time, various data regarding their life histories in relation to science were collected: science biographies, self-portraits, interviews, reflective journals, lesson plans, and classroom observations. The analysis of the data illustrated how the three participants' identities have been in formation from the early years of their lives and how various events, experiences, and interactions had shaped their identities through time and across contexts. These findings are discussed alongside implications for theory, specifically, identity and life-history intersections, for teacher preparation, and for research related to explorations of beginning elementary teachers' identity trajectories.

  10. Elementary girls' science reading at home and school

    NASA Astrophysics Data System (ADS)

    Ford, Danielle J.; Brickhouse, Nancy W.; Lottero-Perdue, Pamela; Kittleson, Julie

    2006-03-01

    Although reading is a critical part of science and science learning, it is no longer a part of many children's elementary science instruction. This is of concern because girls often develop strong identities as readers, but do not develop scientific identities with ease. In this study, we investigate girls' science reading to know (1) if science books were available to girls in homes and classrooms, (2) if girls were choosing to read them, and (3) what influences their choices. Forty-five third-grade girls, 29 of their families, and three of their teachers were interviewed to ascertain girls' preferences among various book genres, as well as to learn the ways in which families and teachers influence the choices girls make. We found that girls had access to science books at school, and teachers had strategies to encourage reading them. At home, parents encouraged reading, but were generally less directive than teachers as to what the girls read, and underestimated their daughters' science-related interests. The families studied rely largely on major bookstores as their primary source of books. Our findings suggest we need to understand better the way gender influences girls' engagement with science in a variety of contexts, particularly those in which girls exercise choice.

  11. Dialogical argumentation in elementary science classrooms

    NASA Astrophysics Data System (ADS)

    Kim, Mijung; Roth, Wolff-Michael

    2018-02-01

    To understand students' argumentation abilities, there have been practices that focus on counting and analyzing argumentation schemes such as claim, evidence, warrant, backing, and rebuttal. This analytic approach does not address the dynamics of epistemic criteria of children's reasoning and decision-making in dialogical situations. The common approach also does not address the practice of argumentation in lower elementary grades (K-3) because these children do not master the structure of argumentation and, therefore, are considered not ready for processing argumentative discourse. There is thus little research focusing on lower elementary school students' argumentation in school science. This study, drawing on the societal-historical approach by L. S. Vygotsky, explored children's argumentation as social relations by investigating the genesis of evidence-related practices (especially burden of proof) in second- and third-grade children. The findings show (a) students' capacity for connecting claim and evidence/responding to the burden of proof and critical move varies and (b) that teachers play a significant role to emphasize the importance of evidence but experience difficulties removing children's favored ideas during the turn taking of argumentative dialogue. The findings on the nature of dialogical reasoning and teacher's role provide further insights about discussions on pedagogical approaches to children's reasoning and argumentation.

  12. How Elementary Teachers' Beliefs About the Nature of Science Mediate Implementing Prescribed Science Curricula in Their Classrooms

    NASA Astrophysics Data System (ADS)

    Giglio, Kathleen Rose Fitzgerald

    This is an in depth study of two elementary school teachers, who are generalists because they teach multiple subjects to their classes, in addition to science, respectively in grade 3 and grade 6. The teachers taught and their students learned using a contemporary understanding of the nature of science (NOS), which they learned by actually doing science investigations, rather than being explicitly told about NOS (contrary to what some scholars claim). Neither teacher completed any formal/informal science training/experiences, especially connected to the construct NOS. Even though the teachers did not explicitly reference NOS in the classroom, their teaching about NOS was made possible through their implementation of the FOSS ( Full Option Science System) curriculum. Although their students enthusiastically demonstrated competence in both science process and content, as prescribed by the FOSS curriculum, the teachers' felt undermined by the state mandated assessments and the inclusion of student performance as a criterion for the state teacher evaluation system. This research was designed to answer the following questions: (1) What are elementary teachers' conceptions about NOS? (2) How are the teachers' NOS views manifested in their implementation of the FOSS program and their choices of instructional methods/materials? (3) What factors may have enhanced or hindered how the teachers sustained their NOS conceptions as they implemented the FOSS program? To explicate the relationship between teachers' views of NOS and the extent to which constructivist practices were employed in their science instruction, a multiple research methodology using grounded theory as the foundation and employing both quantitative and qualitative measures, was needed. Sources of quantitative data were written survey results using the Student Understanding of Science and Scientific Inquiry Questionnaire (SUSSI; Liang et al., 2008) Likert scale responses and constructed responses. Face

  13. An Exploration of Elementary Teachers' Beliefs and Perceptions About Science Inquiry: A Mixed Methods Study

    NASA Astrophysics Data System (ADS)

    Hamadeh, Linda

    In order for science-based inquiry instruction to happen on a large scale in elementary classrooms across the country, evidence must be provided that implementing this reform can be realistic and practical, despite the challenges and obstacles teachers may face. This study sought to examine elementary teachers' knowledge and understanding of, attitudes toward, and overall perceptions of inquiry-based science instruction, and how these beliefs influenced their inquiry practice in the classroom. It offered a description and analysis of the approaches elementary science teachers in Islamic schools reported using to promote inquiry within the context of their science classrooms, and addressed the challenges the participating teachers faced when implementing scientific inquiry strategies in their instruction. The research followed a mixed method approach, best described as a sequential two-strand design (Teddlie & Tashakkori, 2006). Sequential mixed designs develop two methodological strands that occur chronologically, and in the case of this research, QUAN→QUAL. Findings from the study supported the notion that the school and/or classroom environment could be a contextual factor that influenced some teachers' classroom beliefs about the feasibility of implementing science inquiry. Moreover, although teacher beliefs are influential, they are malleable and adaptable and influenced primarily by their own personal direct experiences with inquiry instruction or lack of.

  14. Emotional intelligence in medical laboratory science

    NASA Astrophysics Data System (ADS)

    Price, Travis

    The purpose of this study was to explore the role of emotional intelligence (EI) in medical laboratory science, as perceived by laboratory administrators. To collect and evaluate these perceptions, a survey was developed and distributed to over 1,400 medical laboratory administrators throughout the U.S. during January and February of 2013. In addition to demographic-based questions, the survey contained a list of 16 items, three skills traditionally considered important for successful work in the medical laboratory as well as 13 EI-related items. Laboratory administrators were asked to rate each item for its importance for job performance, their satisfaction with the item's demonstration among currently working medical laboratory scientists (MLS) and the amount of responsibility college-based medical laboratory science programs should assume for the development of each skill or attribute. Participants were also asked about EI training in their laboratories and were given the opportunity to express any thoughts or opinions about EI as it related to medical laboratory science. This study revealed that each EI item, as well as each of the three other items, was considered to be very or extremely important for successful job performance. Administrators conveyed that they were satisfied overall, but indicated room for improvement in all areas, especially those related to EI. Those surveyed emphasized that medical laboratory science programs should continue to carry the bulk of the responsibility for the development of technical skills and theoretical knowledge and expressed support for increased attention to EI concepts at the individual, laboratory, and program levels.

  15. Teachers' Perceptions of Policy Influences on Science Instruction with Culturally and Linguistically Diverse Elementary Students

    ERIC Educational Resources Information Center

    Shaver, Annis; Cuevas, Peggy; Lee, Okhee; Avalos, Mary

    2007-01-01

    This study asked elementary school teachers how educational policies affected their science instruction with a majority of English language learners. The study employed a questionnaire followed by focus group interviews with 43 third and fourth grade teachers from six elementary schools in a large urban school district with high populations of…

  16. Examining How Activity Shapes Students' Interactions While Creating Representations in Early Elementary Science

    ERIC Educational Resources Information Center

    Danish, Joshua Adam; Saleh, Asmalina

    2014-01-01

    It is common practice in elementary science classrooms to have students create representations, such as drawings, as a way of exploring new content. While numerous studies suggest the benefits of representation in science, the majority focus on specific, canonical representations, such as graphs. Few offer insight or guidance regarding how…

  17. A Diagnostic-Remediation Teaching System for Enhancing Elementary Students' Science Listening Comprehension

    ERIC Educational Resources Information Center

    Lin, Sheau-Wen; Liu, Yu

    2017-01-01

    The purpose of this study was to explore elementary students' listening comprehension changes using a Web-based teaching system that can diagnose and remediate students' science listening comprehension problems during scientific inquiry. The 3-component system consisted of a 9-item science listening comprehension test, a 37-item diagnostic test,…

  18. Influence of Nature and History of Science Courses on Value Perceptions of Elementary Science Teacher Candidates in Conceptual Dimension in Turkey

    ERIC Educational Resources Information Center

    Aktamis, Hilal; Higde, Emrah

    2018-01-01

    This study aimed to determine the changes in understanding about the nature of science (NOS) and conceptual values of 28 elementary science teacher candidates who engaged in the instruction of the nature and history of science (NHOS). A values scale was used to determine the values of science teacher candidates in six areas of the conceptual…

  19. Discovering Animal Ways, Elementary School Science, Level Three, Teaching Manual.

    ERIC Educational Resources Information Center

    Hale, Helen E.

    This pilot teaching unit is one of a series developed for use in elementary school science programs. This unit is designed to promote children's natural curiosity and to help those who show a reluctance to work with animals to overcome some of their fears. The student activities employ important scientific processes, such as observation,…

  20. The Challenges of Science Inquiry Teaching for Pre-Service Teachers in Elementary Classrooms: Difficulties on and under the Scene

    ERIC Educational Resources Information Center

    Yoon, Hye-Gyoung; Joung, Yong Jae; Kim, Mijung

    2012-01-01

    In the context of the emphasis on inquiry teaching in science education, this study looks into how pre-service elementary teachers understand and practice science inquiry teaching during field experience. By examining inquiry lesson preparation, practice, and reflections of pre-service elementary teachers, we attempt to understand the difficulties…

  1. Exploring Instructional Strategies to Develop Prospective Elementary Teachers' Children's Literature Book Evaluation Skills for Science, Ecology and Environmental Education

    ERIC Educational Resources Information Center

    Hug, J. William

    2010-01-01

    This article is an auto-ethnographic account of the development of a children's literature book critique assignment by a science teacher educator sharing instructional dilemmas and pedagogical responses. Prospective elementary teachers enrolled in an elementary school science teaching methods course in the US selected and evaluated children's…

  2. Integrating Service-Learning Pedagogy for Preservice Elementary Teachers' Science Identity Development

    NASA Astrophysics Data System (ADS)

    Wilson, Rachel E.; Bradbury, Leslie U.; McGlasson, Martha A.

    2015-04-01

    The purpose of this article is to explore how preservice elementary teachers (PSETs) interpreted their service-learning experiences within a pre-methods environmentally focused course and how their interpretations shaped their science teaching identities. Along a continuum of service-learning experiences were events that emphasized science learning, that focused on science teaching, and that were transitional, with elements of both science learning and science teaching. These various service-learning experiences were designed to be "boundary experiences" for professional identity development (Geijsel & Meijers in Educational Studies, 3(4), 419-430, 2005), providing opportunities for PSETs to reflect on meanings in cultural contexts and how they are related to their own personal meanings. We analyzed written reflections and end-of-course oral reflection interviews from 42 PSETs on their various service-learning experiences. PSETs discussed themes related to the meanings they made of the service-learning experiences: (a) experiencing science in relation to their lives as humans and future teachers, (b) interacting with elementary students and other PSETs, and (c) making an impact in the physical environment and in the community. The connections that PSETs were making between the discursive spaces (service-learning contexts) and their own meaning-making of these experiences (as connected to their own interests in relation to their future professions and daily lives) shows evidence of the potential that various types of science service-learning experiences have for PSETs in developing inbound science teaching identity trajectories (Wenger in Communities of practice: Learning, meaning, and identity. Cambridge: Cambridge University Press, 1998). The findings of this study point to positive outcomes for PSETs when they participate in structured service-learning experiences along a learning to teaching continuum (246).

  3. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  4. Embedding Probeware Technology in the Context of Ocean Acidification in Elementary Science Methods Courses

    NASA Astrophysics Data System (ADS)

    Ensign, Todd I.; Rye, James A.; Luna, Melissa J.

    2017-12-01

    Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an elementary science methods course participated in a mixed-methods study through which they utilized probeware in a thematic experience on ocean acidification. One-way repeated measures ANOVA of pre and post survey data measuring subscales of utility, ability, and intent to use probeware demonstrated a statistically significant increase with medium to large effect sizes for all subscales across all sections (p<0.01,{η}_p^2=0.384;p<0.001,{η}_p^2=0.517;p<0.001,{η}_p^2=0.214) . Analysis of reflective journals revealed over 60% felt the multiple capabilities (notably graphing) of probeware make it a useful classroom tool, and almost one-half believed that its use makes science more enjoyable and engaging. Mapping of the unitized data from the journals on the Next Generation Science Standards suggested that probeware use especially engages learners in planning and carrying out investigations and in analyzing and interpreting data. Journals also revealed that despite PT having prior experience with probeware in science courses, its use in their future elementary classroom is conditional on having a positive experience with probeware in a science methods course. Further, embedding a probeware experience in a unit on ocean acidification provides PT with strategies for addressing climate change and engaging in argument from evidence.

  5. Scientists, Teachers and the "Scientific" Textbook: Interprofessional Relations and the Modernisation of Elementary Science Textbooks in Nineteenth-Century Sweden

    ERIC Educational Resources Information Center

    Hultén, Magnus

    2016-01-01

    In research on the development of a nineteenth-century "science for the people", initiatives by scientists or people well-trained in science has been emphasised, while the writings, roles and initiatives of elementary teachers are normally just mentioned in passing. In this study the development of nineteenth-century elementary science…

  6. Elementary Teacher Perceptions of Principal Leadership, Teacher Self-Efficacy in Math and Science, and Their Relationships to Student Academic Achievement

    ERIC Educational Resources Information Center

    Richard, Bertha Cookie

    2013-01-01

    The purpose of this study was to investigate elementary teacher perceptions of elementary principal instructional leadership and elementary teacher evaluation of self-efficacy at low and high performing low socio-economic elementary schools. These variables were examined to determine whether relationships with math and science academic achievement…

  7. Performance-based classrooms: A case study of two elementary teachers of mathematics and science

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth W.

    This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.

  8. 2011 Mars Science Laboratory Mission Design Overview

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2010-01-01

    Scheduled to launch in the fall of 2011 with arrival at Mars occurring in the summer of 2012, NASA's Mars Science Laboratory will explore and assess whether Mars ever had conditions capable of supporting microbial life. In order to achieve its science objectives, the Mars Science Laboratory will be equipped with the most advanced suite of instruments ever sent to the surface of the Red Planet. Delivering the next mobile science laboratory safely to the surface of Mars has various key challenges derived from a strict set of requirements which include launch vehicle performance, spacecraft mass, communications coverage during Entry, Descent, and Landing, atmosphere-relative entry speeds, latitude accessibility, and dust storm season avoidance among others. The Mars Science Laboratory launch/arrival strategy selected after careful review satisfies all these mission requirements.

  9. Language of poverty strategies: Implemented in the urban elementary science classroom

    NASA Astrophysics Data System (ADS)

    Jeanpierre, Bobby Jo

    2000-08-01

    This research study reports the results of school-based staff development models used at three urban elementary schools that had liaison teachers assisting classroom teachers in implementing instructional strategies in science teaching from "Language of Poverty," a curriculum framework designed to address the academic needs of disadvantaged students. The case study of two urban elementary schools and six classroom teachers, and survey and interview data results of a third school, uncovered insights into several areas of science teaching in urban settings. One conclusion is that in spite of substantial allocation of resources and assistance, teachers did not translate instructional strategies from "Language of Poverty" curriculum into their classroom practices in a way that would foster urban disadvantaged students' understanding of "big science concepts." A second conclusion is that the school-based staff development models were limited in their ability to address the diverse professional needs of all of its staff. Third, as it relates to students, discipline issues occurred in these urban classrooms across ethnicity and gender. And in addition to teachers being knowledgeable of relevant social and cultural group norms' application of this knowledge in an appropriate and consistent manner is needed to effectively address discipline concerns.

  10. Turkish Elementary and Secondary Students' Views about Science and Scientist

    ERIC Educational Resources Information Center

    Akcay, Behiye

    2011-01-01

    The aim of this study was to determine elementary and secondary students' views concerning science and scientists. Data gathered from Draw-a-Scientist Test (DAST) and essays written by students were used to analyze their views. The study involved 359 students in grades 5 through 11. The results indicate that student's perceived scientists as to be…

  11. The Effects of Teaching Notetaking Strategies on Elementary Students' Science Learning

    ERIC Educational Resources Information Center

    Lee, Pai-Lin; Lan, William; Hamman, Douglas; Hendricks, Bret

    2008-01-01

    The research examined effects of notetaking instruction on elementary-aged students' abilities to recall science information and their notetaking behaviors. Classes of eight to nine years old third grade students were randomly assigned to three treatment conditions: strategic notetaking, partial strategic notetaking, and control, for four training…

  12. Elementary Science Teacher Education: International Perspectives on Contemporary Issues and Practice

    ERIC Educational Resources Information Center

    Appleton, Ken, Ed.

    2006-01-01

    Reflecting recent policy and standards initiatives, emerging research agendas, and key innovations, this volume provides a contemporary overview of important developments and issues that have that have in recent years shaped elementary science education pre-service courses and professional development, and practices that are shaping future…

  13. Free Teaching Materials: Classroom and Curriculum Aids for Elementary School Science.

    ERIC Educational Resources Information Center

    Raimist, Roger J.; Mester, Rose A.

    Free teaching materials suitable for elementary school science available from 168 agencies and companies are listed. Materials include booklets, teacher's source books and guides, charts and posters, and concrete materials such as mineral samples. Suggestions and materials for student activities range from experiments to song sheets. Topics…

  14. Integrating Service-Learning Pedagogy for Preservice Elementary Teachers' Science Identity Development

    ERIC Educational Resources Information Center

    Wilson, Rachel E.; Bradbury, Leslie U.; McGlasson, Martha A.

    2015-01-01

    The purpose of this article is to explore how preservice elementary teachers (PSETs) interpreted their service-learning experiences within a pre-methods environmentally focused course and how their interpretations shaped their science teaching identities. Along a continuum of service-learning experiences were events that emphasized science…

  15. Improving Elementary Mathematics and Science Teaching and Learning: Lessons from a School-University Partnership

    ERIC Educational Resources Information Center

    Norman, Patricia J.; Nordine, Jeffrey

    2016-01-01

    The challenges of teaching elementary mathematics and science, particularly in urban settings, have been well documented. While evidence exists that sustained professional development in mathematics and science can promote inquiry-oriented instruction and bolster student achievement, little has been written about the particular challenges…

  16. Multilevel Effects of Student and Classroom Factors on Elementary Science Achievement in Five Countries

    ERIC Educational Resources Information Center

    Kaya, Sibel; Rice, Diana C.

    2010-01-01

    This study examined the effects of individual student factors and classroom factors on elementary science achievement within and across five countries. The student-level factors included gender, self-confidence in science and home resources. The classroom-level factors included teacher characteristics, instructional variables and classroom…

  17. 16 CFR § 1000.30 - Directorate for Laboratory Sciences.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Directorate for Laboratory Sciences. § 1000... ORGANIZATION AND FUNCTIONS § 1000.30 Directorate for Laboratory Sciences. The Directorate for Laboratory Sciences, which is managed by the Associate Executive Director for Laboratory Sciences, is responsible for...

  18. Teaching and Learning Science in Authoritative Classrooms: Teachers' Power and Students' Approval in Korean Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-A.; Kim, Chan-Jong

    2017-09-01

    This study aims to understand interactions in Korean elementary science classrooms, which are heavily influenced by Confucianism. Ethnographic observations of two elementary science teachers' classrooms in Korea are provided. Their classes are fairly traditional teaching, which mean teacher-centered interactions are dominant. To understand the power and approval in science classroom discourse, we have adopted Critical Discourse Analysis (CDA). Based on CDA, form and function analysis was adopted. After the form and function analysis, all episodes were analyzed in terms of social distance. The results showed that both teachers exercised their power while teaching. However, their classes were quite different in terms of getting approval by students. When a teacher got students' approval, he could conduct the science lesson more effectively. This study highlights the importance of getting approval by students in Korean science classrooms.

  19. Mars Science Laboratory Spacecraft Assembled for Testing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions.

    These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  20. Taking risks with a growth mindset: long-term influence of an elementary pre-service after school science practicum

    NASA Astrophysics Data System (ADS)

    Cartwright, T. J.; Hallar, B.

    2018-02-01

    In this study, we present the long-term influence of an after school science practicum associated with an elementary science methods course. The practicum or field experience could be considered a community-based service learning programme as it is situated both within and for the community. Study participants included eight third- and fifth-grade teachers who had participated in elementary science methods courses; four of these teachers participated in the after school teaching practicum while four participants experienced a more traditional observation-based elementary science practicum. All of these teachers were in their second or third year teaching which was 3-4 years after taking the methods course. Investigation methods included questionnaires, field observations and semi-structured, individual interviews. Teachers more regularly utilised reform-based teaching strategies and cited the after school teaching practicum as preparing them to use these strategies in their own classrooms. All teachers exhibited a growth mindset to some degree, but the after school practicum participants did demonstrate a wider use of reformed-based teaching strategies and a higher growth mindset. Elementary teachers perceive risk associated with these key aspects of instruction: (1) managing instruction and classroom management, (2) teaching science through guided inquiry, and (3) overcoming adoptions in other 'mandated' curriculum like math and reading.

  1. Elementary Students Using a Tablet-Based Note-Taking Application in the Science Classroom

    ERIC Educational Resources Information Center

    Paek, Seungoh; Fulton, Lori A.

    2016-01-01

    This exploratory study investigates the potential of a tablet-based note-taking application (TbNA) to serve as a digital notebook in support of students' classroom science practices. An elementary teacher (Grades 4-5) from a public charter school integrated a TbNA into her science class for one semester while participating in professional…

  2. Characterizing Elementary Teachers' Enactment of High-Leverage Practices through Engineering Design-Based Science Instruction

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; DeLisi, Jacqueline; Radloff, Jeffrey

    2018-01-01

    In an effort to document teachers' enactments of new reform in science teaching, valid and scalable measures of science teaching using engineering design are needed. This study describes the development and testing of an approach for documenting and characterizing elementary science teachers' multiday enactments of engineering design-based science…

  3. The effects of formative assessment on student self-regulation, motivational beliefs, and achievement in elementary science

    NASA Astrophysics Data System (ADS)

    King, Melissa Digennaro

    Goals 2000 set forth a bold vision for U.S. students: they would be "first in the world in science and mathematics" by the year 2000. Performance indicators such as the TIMSS-R (1999) and NAEP (2000) reports suggest that U.S. students have not yet reached that goal. This study intended to learn how specific assessment strategies might contribute to improved student performance in science. This quasi-experimental study investigated the effects of formative assessment with reflection on students' motivational beliefs, self-regulatory skills, and achievement in elementary science. The study aimed to find out whether and how classroom applications of formative assessment during science instruction might influence fifth-grade students' attitudes and self-perceptions about science learning, self-regulatory learning behaviors, and achievement. To explore the effects of the assessment intervention, the study utilized a mixed methods approach involving quantitative and qualitative investigations of treatment and control groups during a four-week intervention period. Quantitative measures included student self-report surveys administered pre- and post-treatment and an end-of-unit science test. Qualitative measures included classroom observations, student interviews (post-treatment), and a teacher interview (post-treatment). Findings indicated that the fifth-grade students in this study had positive attitudes toward science and high levels of self-efficacy for science. Results suggested that these elementary students employed a wide variety of cognitive and metacognitive strategies to support science learning. Findings revealed that these fifth graders believed formative assessment with reflection was beneficial for science learning outcomes. Research results did not show that the formative assessment intervention contributed to significant differences between treatment and control groups. However, the data revealed different levels of academic achievement and self

  4. Teacher collaboration and elementary science teaching: Using action research as a tool for instructional leadership

    NASA Astrophysics Data System (ADS)

    Roberts, Sara Hayes

    The primary purpose of this action research study was to explore an elementary science program and find ways to support science education as an administrator of an elementary school. The study took place in a large suburban school system in the southeastern United States. Seven teachers at a small rural school volunteered to participate in the study. Each participant became an active member of the research by determining what changes needed to take place and implementing the lessons in science. The study was also focused on teacher collaboration and how it influenced the science instruction. The data collected included two interviews, ten observations of science lessons, the implementation of four science units, and informal notes from planning sessions over a five month period. The questions that guided this study focused on how teachers prepare to teach science through active learning and how instruction shifts due to teacher collaboration. Teachers were interviewed at the beginning of the study to gain the perceptions of the participants in the areas of (a) planning, (b) active learning, (c) collaboration, and (d) teaching science lessons. The teachers and principal then formed a research team that determined the barriers to teaching science according to the Standards, designed units of study using active learning strategies, and worked collaboratively to implement the units of study. The action research project reviewed the National Science Education Standards, the theory of constructivism, active learning and teacher collaboration as they relate to the actions taken by a group of teachers in an elementary school. The evidence from this study showed that by working together collaboratively and overcoming the barriers to teaching science actively, teachers feel more confident and knowledgeable about teaching the concepts.

  5. The effects of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Logerwell, Mollianne G.

    The purpose of this study was to investigate the impact of a summer science camp teaching experience on preservice elementary teachers' science teaching efficacy, science content knowledge, and understanding of the nature of science. Master's degree students enrolled in the elementary Fairfax Partnership Schools (FPS, n = 21) cohort served as the treatment group, while those enrolled in the Loudoun Partnership Schools (LPS, n = 15) and Professional Development Schools (PDS, n = 24) cohorts at George Mason University served as the control groups. The treatment group planned for and taught a two-week inquiry- and problem-based summer science camp as part of their science methods course, while the control groups did not. The Science Teaching Efficacy Belief Instrument (STEBI), a science content assessment, a personal data questionnaire, and a modified version of the Views of Nature of Science Questionnaire (VNOS-C) were administered to the participants at the beginning and end of their science methods course. Analyses revealed significant increases for the FPS group in general science teaching efficacy, personal science teaching efficacy, science teaching outcome expectancy, general science knowledge, biology content knowledge, chemistry content knowledge, and understanding of NOS; the LPS group in general science teaching efficacy, personal science teaching efficacy, chemistry content knowledge, and understanding of NOS; and, the PDS group in general science teaching efficacy, personal science teaching efficacy, and chemistry content knowledge. Additionally, the FPS group had significantly higher general science teaching efficacy than both control groups, personal science teaching efficacy than the PDS group, and understanding of NOS than the LPS group. Overall, the findings indicate that course length is not as important for developing preservice teachers' teaching efficacy and understanding of content as having connected, authentic field-based teaching experiences

  6. Writing in elementary school science: Factors that influence teacher beliefs and practices

    NASA Astrophysics Data System (ADS)

    Glen, Nicole J.

    Recent calls for scientifically literate citizens have prompted science educators to examine the roles that literacy holds in students' science learning processes. Although many studies have investigated the cognitive gains students acquire when they write in science, these writing-to-learn studies have typically been conducted with only middle and secondary school students. Few studies have explored how teachers, particularly elementary teachers, understand the use of writing in science and the factors that influence their science and writing lessons. This was a qualitative case study conducted in one suburban school with four elementary teachers. The purpose of this study was to understand: (a) how teachers' uses of and purposes for writing in science compared to that in English language arts; (b) the factors that drove teachers' pedagogical decisions to use writing in certain ways; (c) teachers' beliefs about science teaching and learning and its relation to how they used writing; (d) teachers' perceptions of students' writing abilities and its relation to how they used writing; and (e) teachers' views about how writing is used by scientists. Seven main findings resulted from this research. In summary, teachers' main uses of and purposes for writing were similar in science and English language arts. For much of the writing done in both subjects, teachers' expectations of students' writing were typically based on their general literacy writing skills. The teachers believed that scientific writing is factual, for the purpose of communicating about science, and is not as creative or "fun" as other types of writing. The teachers' pedagogical practices in science included teaching by experiences, reading, and the transmission of information. These practices were related to their understanding of scientific writing. Finally, additional factors drove the decisions teachers made regarding the use of writing in science, including time, knowledge of curriculum

  7. Effects of Sustained Teacher Professional Development on the Classroom Science Instruction of Elementary School Teachers

    ERIC Educational Resources Information Center

    Hauck, Nancy

    2012-01-01

    The purpose of this study was to determine the extent to which sustained teacher professional development in science education affects the classroom instruction of elementary school teachers in third through sixth grade over a 3-year period. The teachers in the study were all elementary endorsed and prepared to be generalists in the content areas.…

  8. Enhancing Self-Efficacy in Elementary Science Teaching with Professional Learning Communities

    ERIC Educational Resources Information Center

    Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew

    2013-01-01

    Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in…

  9. "Using" Computer Graphic Representations to Promote Learning in Elementary Science Courses

    ERIC Educational Resources Information Center

    Lazaros, Edward J.; Spotts, Thomas H.

    2009-01-01

    This interdisciplinary activity promotes science, technology, and language arts and is well suited for upper elementary grade students. In the activity, students' research about a teacher-assigned weather phenomenon facilitates their study of the weather. When they have completed their research, students word process a paper summarizing their…

  10. Rockets: A Teaching Guide for an Elementary Science Unit on Rocketry.

    ERIC Educational Resources Information Center

    Vogt, Gregory L.

    Utilizing simple and inexpensive equipment, elementary and middle school science teachers can conduct interesting, exciting, and productive units on rockets, the oldest form of self-contained vehicles in existence. This teaching guide contains the following: (1) a brief history of experimentation and research on rockets and rocket propulsion from…

  11. Elementary Science Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Six new experiments are described for use in elementary school classrooms. Phenomena explored include friction, mass of air, kinetic energy, air condensers, and hot-air balloons. Instructions are explicit. (PS)

  12. Exploring the Use of Lesson Study to Develop Elementary Preservice Teachers' Pedagogical Content Knowledge for Teaching Nature of Science

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Pongsanon, Khemmawadee; Park Rogers, Meredith A.; Carter, Ingrid; Galindo, Enrique

    2017-01-01

    This study explored a modified version of Japanese Lesson Study to determine whether and how it influenced preservice elementary teachers in their abilities to deliver science lessons that included nature of science (NOS) to their own students. We used a case study approach that focused on one subset of a cohort of preservice elementary teachers…

  13. Laboratory Experiences in an Introduction to Natural Science Course.

    ERIC Educational Resources Information Center

    Barnard, Sister Marquita

    1984-01-01

    Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)

  14. Urban school leadership for elementary science instruction: Identifying and activating resources in an undervalued school subject

    NASA Astrophysics Data System (ADS)

    Spillane, James P.; Diamond, John B.; Walker, Lisa J.; Halverson, Rich; Jita, Loyiso

    2001-10-01

    This article explores school leadership for elementary school science teaching in an urban setting. We examine how school leaders bring resources together to enhance science instruction when there appear to be relatively few resources available for it. From our study of 13 Chicago elementary (K-8) schools' efforts to lead instructional change in mathematics, language arts, and science education, we show how resources for leading instruction are unequally distributed across subject areas. We also explore how over time leaders in one school successfully identified and activated resources for leading change in science education. The result has been a steady, although not always certain, development of science as an instructional area in the school. We argue that leading change in science education involves the identification and activation of material resources, the development of teachers' and school leaders' human capital, and the development and use of social capital.

  15. The Use of Science Kits in the Professional Development of Rural Elementary School Teachers

    ERIC Educational Resources Information Center

    Sherman, Ann; MacDonald, A. Leo

    2008-01-01

    This study reports on a science professional development initiative with elementary school teachers in Canada. Grades 4 and 5 teachers were involved in the implementation and modification of science kits, together with corresponding professional development activities. Each kit was aligned to specific outcomes in the curriculum and provided a…

  16. Observing and Producing Sounds, Elementary School Science, Level Four, Teaching Manual.

    ERIC Educational Resources Information Center

    Hale, Helen E.

    This pilot teaching unit is one of a series developed for use in elementary school science programs. This unit is designed to help children discover specific concepts which relate to sound, such as volume, pitch, and echo. The student activities employ important scientific processes, such as observation, communication, inference, classification,…

  17. Elementary Science Teachers' Integration of Engineering Design into Science Instruction: Results from a Randomised Controlled Trial

    ERIC Educational Resources Information Center

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-01-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). "Teaching engineering…

  18. Equity in Elementary Science Education: A Study of Institutional and Policy Factors

    NASA Astrophysics Data System (ADS)

    Hayes, Kathryn N.

    Despite recognition that the foundation for interest in science is laid down at the elementary level (Tai, et al., 2006), in the last ten years elementary science instruction time has declined in K-6 schooling (Center on Education Policy, 2007). A lack of access to excellent science education is exacerbated for low-income students, prompting significant questions regarding inequities within the science education pipeline (Maulucci, 2010). The critical factors needed to address these inequities include teacher preparation, access to resources, and instructional leadership, as well as a supportive policy and institutional milieu. However, although the former three have been studied extensively, the role of policy and institutions in creating the conditions for equity in science education are little understood despite their likely significant role (Lemke, 2001). This mixed methods study addressed this gap by examining the role the policy and institutional milieu play in constraining or supporting equitable elementary science education. Institutional theory provides the framework for understanding how various institutional logics and regulatory pressures permeate schools and districts across contexts, influencing science education implementation (Scott, 2014). Two distinct approaches were used to first quantitatively examine the predictors of differentiation in elementary science education instructional time and methods, and second qualitatively analyze the nature and process by which these mechanisms exert influence. Data for the first two papers was derived from a case study of a purposively sampled district, including surveys of 200 teachers and embedded case studies of four schools. Analysis consisted of multi-level models of teacher attributes and school and policy factors in predicting differential distribution of science education instructional time and methods (Raudenbush & Bryk, 2002). Data for the third paper arose out of a series of principal, administrator

  19. Curriculum coherence: A comparative analysis of elementary science content standards in People's Republic of China and the USA

    NASA Astrophysics Data System (ADS)

    Huang, Fang

    This study examines elementary science content standards curriculum coherence between the People's Republic of China and the United States of America. Three aspects of curriculum coherence are examined in this study: topic inclusion, topic duration, and curriculum structure. Specifically this study centers on the following research questions: (1) What science knowledge is intended for elementary students in each country? (2) How long each topic stays in the curriculum? (3) How these topics sequence and connect with each other? (4) And finally, what is the implication for elementary science curriculum development? Four intended science curriculum frameworks were selected respectively for each country. A technique of General Topic Trace Mapping (GTTM) was applied to generate the composite science content standards out of the selected curriculum for each country. In comparison, the composite USA and Chinese elementary science content standards form a stark contrast: a bunch of broad topics vs. a focus on a set of key topics at each grade; an average of 3.4 year topic duration vs. an average of 1.68 year topic duration; a stress on connections among related ideas vs. a discrete disposition of related ideas; laundry list topic organization vs. hierarchical organization of science topics. In analyzing the interrelationships among these characteristics, this study reached implications for developing coherent science content standards: First, for the overall curriculum, the topic inclusion should reflect the logical and sequential nature of knowledge in science. Second, for each grade level, less, rather than more science topics should be focused. Third, however, it should be clarified that a balance should be made between curriculum breadth and depth by considering student needs, subject matter, and child development. Fourth, the topic duration should not be too long. The lengthy topic duration tends to undermine links among ideas as well as lead to superficial treatment

  20. Testing Predictors of Instructional Practice in Elementary Science Education: The Significant Role of Accountability

    ERIC Educational Resources Information Center

    Hayes, Kathryn N.; Trexler, Cary J.

    2016-01-01

    Many resources have been committed to research on science teaching pedagogies, resulting in a robust understanding of best instructional practices. Yet, exposure to excellent science instruction in elementary school is haphazard at best and often inequitable. Although the research community has attended to the role of teacher traits, such as…

  1. Theory and Practice in a Science Education Course for Elementary Teachers

    ERIC Educational Resources Information Center

    Lacueva, Aurora

    2014-01-01

    In this action research work, I analyze the theory-practice integration in teacher preparation within the context of a science and technology (S&T) education teaching methodology course aimed at future elementary teachers. The course was designed, developed and evaluated taking into account this relationship as one of its axes. The results…

  2. Prisoners or Volunteers: Developing Mutual Respect in the Elementary Science Classroom.

    ERIC Educational Resources Information Center

    Huber, Richard A.; And Others

    This study was conducted to investigate how teacher educators might help preservice teachers enrolled in a science methods course understand the need for mutual respect rather than coercion between pupil and teacher in an elementary classroom. An evaluation instrument was developed that consisted of a pre and post open-ended response to a…

  3. Transformation through Language Use: Children's Spontaneous Metaphors in Elementary School Science

    ERIC Educational Resources Information Center

    Jakobson, Britt; Wickman, Per-Olof

    2007-01-01

    This article examines the role elementary school children's spontaneous metaphors play in learning science. The data consists of tape recordings of about 25 h from five different schools. The material is analysed using a practical epistemology analysis and by using Dewey's ideas on the continuity and transformation of experience. The results show…

  4. Comparing the Preparedness, Content Knowledge, and Instructional Quality of Elementary Science Specialists and Self-Contained Teachers

    ERIC Educational Resources Information Center

    Brobst, Joseph; Markworth, Kimberly; Tasker, Tammy; Ohana, Chris

    2017-01-01

    In this article, we report on the results of a study comparing the preparedness, content knowledge, and instructional practices of elementary science specialist (ESS) teachers with those of a matched sample of self-contained elementary teachers. Analysis of survey data collected for the two groups indicated that ESS teachers were more likely than…

  5. Exploring preservice elementary teachers' critique and adaptation of science curriculum materials in respect to socioscientific issues

    NASA Astrophysics Data System (ADS)

    Forbes, Cory T.; Davis, Elizabeth A.

    2008-09-01

    The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students’ learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers’ critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate this process. Four undergraduate preservice elementary teachers were studied over the course of one semester. Results indicate that the teachers navigated multiple learning goals, as well as their own subject-matter knowledge, informal reasoning about SSI, and role identity, in their critique and adaptation of SSI-oriented science instructional materials. Implications for science teacher education and the design of curriculum materials in respect to SSI are discussed.

  6. Humorous Cartoons Made by Preservice Teachers for Teaching Science Concepts to Elementary Students: Process and Product

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Sallis, Derek A.; Donaldson, J. Ana

    2008-01-01

    Elementary school science is an often-neglected subject in the current literacy-focused political atmosphere. However, reading informational trade books about science in literacy class can help children increase their science knowledge. Incorporating humor through content-related cartoons is an effective way to engage students in deeper…

  7. A study of preservice elementary teachers enrolled in a discrepant-event-based physical science class

    NASA Astrophysics Data System (ADS)

    Lilly, James Edward

    This research evaluated the POWERFUL IDEAS IN PHYSICAL SCIENCE (PIiPS) curriculum model used to develop a physical science course taken by preservice elementary teachers. The focus was on the evaluation of discrepant events used to induce conceptual change in relation to students' ideas concerning heat, temperature, and specific heat. Both quantitative and qualitative methodologies were used for the analysis. Data was collected during the 1998 Fall semester using two classes of physical science for elementary school teachers. The traditionally taught class served as the control group and the class using the PIiPS curriculum model was the experimental group. The PIiPS curriculum model was evaluated quantitatively for its influence on students' attitude toward science, anxiety towards teaching science, self efficacy toward teaching science, and content knowledge. An analysis of covariance was performed on the quantitative data to test for significant differences between the means of the posttests for the control and experimental groups while controlling for pretest. It was found that there were no significant differences between the means of the control and experimental groups with respect to changes in their attitude toward science, anxiety toward teaching science and self efficacy toward teaching science. A significant difference between the means of the content examination was found (F(1,28) = 14.202 and p = 0.001), however, the result is questionable. The heat and energy module was the target for qualitative scrutiny. Coding for discrepant events was adapted from Appleton's 1996 work on student's responses to discrepant event science lessons. The following qualitative questions were posed for the investigation: (1) what were the ideas of the preservice elementary students prior to entering the classroom regarding heat and energy, (2) how effective were the discrepant events as presented in the PIiPS heat and energy module, and (3) how much does the "risk taking

  8. An Analysis of Argumentation Discourse Patterns in Elementary Teachers' Science Classroom Discussions

    ERIC Educational Resources Information Center

    Kim, Sungho; Hand, Brian

    2015-01-01

    This multiple case study investigated how six elementary teachers' argumentation discourse patterns related to students' discussions in the science classroom. Four categories of classroom characteristics emerged through the analysis of the teachers' transcripts and recorded class periods: "Structure of teacher and student argumentation,"…

  9. Varying Readability of Science-Based Text in Elementary Readers: Challenges for Teachers

    ERIC Educational Resources Information Center

    Gallagher, Tiffany L.; Fazio, Xavier; Gunning, Thomas G.

    2012-01-01

    This investigation compared readability formulae to publishers' identified reading levels in science-based elementary readers. Nine well-established readability indices were calculated and comparisons were made with the publishers' identified grade designations and between different genres of text. Results revealed considerable variance among the…

  10. The Sea, An Interdisciplinary Approach to Marine Science for Elementary School Children.

    ERIC Educational Resources Information Center

    Vaiuso, Frank

    This teacher's guide develops an interdisciplinary approach to marine science for elementary school children. The lessons are concerned with food chains, interdependencies, physical characteristics, comparative dissections, and student involvement in political issues dealing with water and air pollution. For each activity suggestions are provided…

  11. Different Conceptions of the Nature of Science among Preservice Elementary Teachers of Two Countries

    ERIC Educational Resources Information Center

    Park, Do-Yong; Lee, Yong Bok

    2009-01-01

    This study examined the differences of the nature of science (NOS) conceptions portrayed by preservice teachers in Korea (N = 42) and the United States (N = 50). We conducted a survey of preservice elementary science teachers' NOS conceptions followed by interviews in both countries to further investigate their viewpoints. The NOS domains of this…

  12. The Nature of Science Instrument-Elementary (NOSI-E): Using Rasch principles to develop a theoretically grounded scale to measure elementary student understanding of the nature of science

    NASA Astrophysics Data System (ADS)

    Peoples, Shelagh

    The purpose of this study was to determine which of three competing models will provide, reliable, interpretable, and responsive measures of elementary students' understanding of the nature of science (NOS). The Nature of Science Instrument-Elementary (NOSI-E), a 28-item Rasch-based instrument, was used to assess students' NOS understanding. The NOS construct was conceptualized using five construct dimensions (Empirical, Inventive, Theory-laden, Certainty and Socially & Culturally Embedded). The competing models represent three internal models for the NOS construct. One postulate is that the NOS construct is unidimensional where one latent construct explains the relationship between the 28 items of the NOSI-E. Alternatively, the NOS construct is composed of five independent unidimensional constructs (the consecutive approach). Lastly, the NOS construct is multidimensional and composed of five inter-related but separate dimensions. A validity argument was developed that hypothesized that the internal structure of the NOS construct is best represented by the multidimensional Rasch model. Four sets of analyses were performed in which the three representations were compared. These analyses addressed five validity aspects (content, substantive, generalizability, structural and external) of construct validity. The vast body of evidence supported the claim that the NOS construct is composed of five separate but inter-related dimensions that is best represented by the multidimensional Rasch model. The results of the multidimensional analyses indicated that the items of the five subscales were of excellent technical quality, exhibited no differential item functioning (based on gender), had an item hierarchy that conformed to theoretical expectations; and together formed subscales of reasonable reliability (> 0.7 on each subscale) that were responsive to change in the construct. Theory-laden scores from the multidimensional model predicted students' science achievement with

  13. An Evaluation of an Elementary Science Methods Course with Respect to Preservice Teacher's Pedagogical Development

    ERIC Educational Resources Information Center

    Lee, Carole Kwan-Ping

    2012-01-01

    The science methods course is a requirement for the Bachelor of Science degree in elementary education licensure program in a mid-west state university in the U.S.A. In one semester, the author decided to evaluate the effectiveness of the science methods course in pedagogical content knowledge areas such as theory, planning and implementation.…

  14. The Influence of Laboratory Instruction on Science Achievement and Attitude Toward Science across Gender Differences

    NASA Astrophysics Data System (ADS)

    Freedman, Michael P.

    This study investigated the use of a hands-on laboratory program to improve attitudes toward science and increase achievement levels in science knowledge among students in a ninth grade physical science course. An objective final examination measured achievement in science knowledge, and a Q sort survey measured attitude toward science. A t test compared the groups' differences in achievement and attitude toward science. An analysis of covariance determined the effect of the laboratory treatment on the dependent variable, with attitude toward science as the covariable. The findings showed that students with regular laboratory instruction scored significantly higher (p < .05) on achievement in science knowledge than those without laboratory instruction, girls with regular laboratory instruction scored significantly higher (p < .05) on achievement in science knowledge than those without laboratory instruction, and girls and boys within the treatment group did not differ significantly on achievement in science knowledge. No significant differences were reported in attitude toward science between or within groups.

  15. Knowledge, Skills, or Attitudes/Beliefs: The Contexts of Agricultural Literacy in Upper-Elementary Science Curricula

    ERIC Educational Resources Information Center

    Vallera, Farah L.; Bodzin, Alec M.

    2016-01-01

    Agricultural literacy connects knowledge, skills, and attitudes/beliefs (KSABs) about agriculture to KSABs in environmental education, education for sustainable development, and science education identified in recent reform initiatives. This study conducted a content analysis of 12 current upper-elementary U.S. science textbooks and curriculum…

  16. Human Ecology: An Approach to the Science Laboratory.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.; And Others

    1981-01-01

    Discusses the use of and recommends a new direction for laboratory work within the context of teaching human ecology for science and social science teachers and compares traditional and human ecological approaches to science laboratory work. (CS)

  17. Developing Elementary Math and Science Process Skills Through Engineering Design Instruction

    NASA Astrophysics Data System (ADS)

    Strong, Matthew G.

    This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.

  18. Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers

    PubMed Central

    Riegle-Crumb, Catherine; Morton, Karisma; Moore, Chelsea; Chimonidou, Antonia; Labrake, Cynthia; Kopp, Sacha

    2016-01-01

    Due to their potential impact on students' cognitive and non-cognitive outcomes, the negative attitudes towards science held by many elementary teachers are a critical issue that needs to be addressed. This study focuses on the science education of pre-service elementary teachers with the goal of improving their attitudes before they begin their professional lives as classroom teachers. Specifically, this study builds on a small body of research to examine whether exposure to inquiry-based science content courses that actively involve students in the collaborative process of learning and discovery can promote a positive change in attitudes towards science across several different dimensions. To examine this issue, surveys and administrative data were collected from over 200 students enrolled in the Hands on Science (HoS) program for pre-service teachers at the University of Texas at Austin, as well as more than 200 students in a comparison group enrolled in traditional lecture-style classes. Quantitative analyses reveal that after participating in HoS courses, pre-service teachers significantly increased their scores on scales measuring confidence, enjoyment, anxiety, and perceptions of relevance, while those in the comparison group experienced a decline in favorable attitudes to science. These patterns offer empirical support for the attitudinal benefits of inquiry-based instruction and have implications for the future learning opportunities available to students at all education levels. PMID:27667862

  19. Mobile Technology Education Laboratory: An Alternative for Elementary Technology Education in a Restructuring School District in Central California.

    ERIC Educational Resources Information Center

    Britton, Steven M.

    The purpose of this study was to explore what options exist for a school district that has chosen to implement or reinforce an elementary technology education program. The option selected was a mobile technology education laboratory. A mobile laboratory can offer the advantages of financial flexibility, currentness, ability to serve a large…

  20. A Multi-Year Study of the Impact of the Rice Model Teacher Professional Development on Elementary Science Teachers

    NASA Astrophysics Data System (ADS)

    Viorica Diaconu, Dana; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn

    2012-04-01

    A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one full day each week throughout an academic year, to create a classroom culture for science instruction. Approximately 80 teachers each year received professional development in science content and pedagogy using the same inquiry-based constructivist methods that the teachers were expected to use in their classrooms. During this four-year study, scientists and educators worked with elementary teachers in a year-long model science lab environment to provide science content and science pedagogy. The effectiveness of the program was measured using a mix of quantitative and qualitative methods that allowed the researchers to triangulate the findings from quantitative measures, such as content test and surveys, with the emerging themes from the qualitative instruments, such as class observations and participant interviews. Results showed that, in all four years, teachers from the REMSL Treatment group have significantly increased their science content knowledge (p < 0.05). During the last two years, their gains in science content knowledge, use of inquiry-based instruction and leadership skills were significantly higher than those of the Control group teachers' (p < 0.01, p < 0.001 and p < 0.05, respectively). Three themes resonated in the interviews with participants: science content knowledge growth, constructivist pedagogy and leadership skills.

  1. Investigating elementary principals' science beliefs and knowledge and its relationship to students' science outcomes

    NASA Astrophysics Data System (ADS)

    Khan, Uzma Zafar

    The aim of this quantitative study was to investigate elementary principals' beliefs about reformed science teaching and learning, science subject matter knowledge, and how these factors relate to fourth grade students' superior science outcomes. Online survey methodology was used for data collection and included a demographic questionnaire and two survey instruments: the K-4 Physical Science Misconceptions Oriented Science Assessment Resources for Teachers (MOSART) and the Beliefs About Reformed Science Teaching and Learning (BARSTL). Hierarchical multiple regression analysis was used to assess the separate and collective contributions of background variables such as principals' personal and school characteristics, principals' science teaching and learning beliefs, and principals' science knowledge on students' superior science outcomes. Mediation analysis was also used to explore whether principals' science knowledge mediated the relationship between their beliefs about science teaching and learning and students' science outcomes. Findings indicated that principals' science beliefs and knowledge do not contribute to predicting students' superior science scores. Fifty-two percent of the variance in percentage of students with superior science scores was explained by school characteristics with free or reduced price lunch and school type as the only significant individual predictors. Furthermore, principals' science knowledge did not mediate the relationship between their science beliefs and students' science outcomes. There was no statistically significant variation among the variables. The data failed to support the proposed mediation model of the study. Implications for future research are discussed.

  2. Learning from the Best: Overcoming Barriers to Reforms-Based Elementary Science Teaching

    ERIC Educational Resources Information Center

    Banchi, Heather May

    2009-01-01

    This study explored the characteristics of elementary science teachers who employ reforms-based practices. Particular attention was paid to the consistency of teachers' practices and their beliefs, the impact of professional development experiences on practices, and how teachers mitigated barriers to reforms-based instruction. Understanding how…

  3. The nature of science and the preservice elementary teacher: Changes in understanding and practice

    NASA Astrophysics Data System (ADS)

    Rivas, Michael Gerald

    This action research project studies preservice elementary teachers in a science methods course. The purpose of this research project was to enhance preservice teachers' understanding of specific nature of science (NOS) tenets so as to promote equity and access within the elementary science classroom. In particular, I chose five NOS tenets that were listed in the first chapter of the AAAS (1989) document titled, "The Nature of Science," and connected them to equitable educational goals and practices. The theoretical framework guiding this study came from bodies of scholarship relating to the NOS, social constructivism, and action research. This study addressed the following three questions: (1) What opportunities were provided the preservice teachers so that they could enhance their understandings of the NOS? (2) What were the changes in preservice teachers' understanding of the NOS as a result? (3) How did the prospective teachers' understandings of the NOS translate into their classroom practice? The analysis revealed that the science methods course's operational curriculum consisted of implicit and explicit teaching of the NOS, as well as intended and untended NOS tenets. The prospective teachers initially held a limited view of the NOS, but by the end of the course their view had been enhanced. In addition, the participants made direct connections between their new understandings of the NOS and equity and access in the science classroom. In their teaching, the preservice teachers as a group implicitly taught all five of the NOS tenets. In fact, a majority taught three of the five intended tenets. Explicitly, only one tenet was taught, but it was taught with a direct connection to making the science classroom more inclusive. The findings of this study indicate that preservice teachers can have their views of the NOS enhanced even though they may have experienced years of deficient science instruction. They pointed out that this enhanced view of the NOS can be

  4. The Viability of Distance Education Science Laboratories.

    ERIC Educational Resources Information Center

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  5. Science Language Accommodation in Elementary School Read-Alouds

    NASA Astrophysics Data System (ADS)

    Glass, Rory; Oliveira, Alandeom W.

    2014-03-01

    This study examines the pedagogical functions of accommodation (i.e. provision of simplified science speech) in science read-aloud sessions facilitated by five elementary teachers. We conceive of read-alouds as communicative events wherein teachers, faced with the task of orally delivering a science text of relatively high linguistic complexity, open up an alternate channel of communication, namely oral discussion. By doing so, teachers grant students access to a simplified linguistic input, a strategy designed to promote student comprehension of the textual contents of children's science books. It was found that nearly half (46%) of the read-aloud time was allotted to discussions with an increased percentage of less sophisticated words and reduced use of more sophisticated vocabulary than found in the books through communicative strategies such as simplified rewording, simplified definition, and simplified questioning. Further, aloud reading of more linguistically complex books required longer periods of discussion and an increased degree of teacher oral input and accommodation. We also found evidence of reversed simplification (i.e. sophistication), leading to student uptake of scientific language. The main significance of this study is that it reveals that teacher talk serves two often competing pedagogical functions (accessible communication of scientific information to students and promotion of student acquisition of the specialized language of science). It also underscores the importance of giving analytical consideration to the simplification-sophistication dimension of science classroom discourse as well as the potential of computer-based analysis of classroom discourse to inform science teaching.

  6. The Perceptions of Elementary School Teachers Regarding Their Efforts to Help Students Utilize Student-to-Student Discourse in Science

    NASA Astrophysics Data System (ADS)

    Craddock, Jennifer Lovejoy

    The purpose of this phenomenological study was to examine the perceptions of elementary teachers who teach science as opposed to science teacher specialists regarding their efforts to help students use student-to-student discourse for improving science learning. A growing body of research confirms the importance of a) student-to-student discourse for making meaning of science ideas and b) moving students' conceptual development towards a more scientific understanding of the natural world. Based on those foundations, the three research questions that guided this study examined the value elementary teachers place on student-to-student discourse, the various approaches teachers employ to promote the use of student-to-student discourse for learning science, and the factors and conditions that promote and inhibit the use of student-to-student discourse as an effective pedagogical strategy in elementary science. Data were gathered from 23 elementary teachers in a single district using an on-line survey and follow-up interviews with 8 teachers. All data were analyzed and evolving themes led to the following findings: (1) elementary teachers value student-to-student discourse in science, (2) teachers desire to increase time using student-to-student discourse, (3) teachers use a limited number of student-to-student discourse strategies to increase student learning in science, (4) teachers use student-to-student discourse as formative assessment to determine student learning in science, (5) professional development focusing on approaches to student-to-student discourse develops teachers' capacity for effective implementation, (6) teachers perceive school administrators' knowledge of and support for student-to-student discourse as beneficial, (7) time and scheduling constraints limit the use of student-to-student discourse in science. Implications of this study included the necessity of school districts to focus on student-to-student discourse in science, provide teacher and

  7. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  8. Science and fun in a Magic Show of Light from optical demonstrations on an overhead projector for elementary school students

    NASA Astrophysics Data System (ADS)

    Lones, Joe J.; Maltseva, Nadezhda K.; Peterson, Kurt N.

    2007-06-01

    We seek methods of stimulating young school children to develop an interest in science and engineering through a natural curiosity for the reaction of light. Science learning now begins fully at middle school. Reading skills develop with activity at home and progress through the elementary school curriculum, and in a like manner, a curious interest in science also should begin at that stage of life. Within the ranks of educators, knowledge of optical science needs to be presented to elementary school students in an entertaining manner. One such program used by the authors is Doug Goodman's Optics Demonstrations With the Overhead Projector, co-published by and available from OSA (Optical Society of America) and SPIE-The International Society of Optical Engineering. These demonstrations have found their way into middle and high schools; however, as a special approach, the authors have presented selected Goodman demonstrations as a "Magic Show of Light" to elementary schools. Both students and faculty have found the show most entertaining! If optical knowledge is utilized to stimulate science learning in the coming generation at elementary school level, there's a good chance we can sow some fertile seeds of advancement for all future segments of the workforce. Students can enjoy what they are doing while building a foundation for contributing gainfully to society in any profession. We need to explore expanding exposure of the "Magic Show of Light" to elementary schools.

  9. Trends in teachers' recommendations for changing elementary and junior-high school science programs

    NASA Astrophysics Data System (ADS)

    Stronck, David R.

    Since 1978 many studies have called for changes in the practices of science teaching. These changes in instruction will occur only when the teachers decide to change their practices. This study uses surveys to consider the question of what were the trends in the teachers' recommendations for changes in elementary and junior-high school science programs between the years of 1978 and 1982. Large samples of teachers in British Columbia, Canada, responded anonymously to questionnaires in these years: 3040 teachers in 1978 and 1631 in 1982, with return rates ranging from 77.5% to 85%. These teachers described themselves as shifting their classroom practices toward ones that emphasize passive learning and memorization. The British Columbia Science Assessments recommend more inservice programs to stop this trend. There were very few differences in the teachers' recommendations for changes in the schools. The elementary-school teachers had major changes in their rankings of only two activities: they increased their ranking of activity-centered learning and reduced their ranking of outdoor education.

  10. The Conceptual Complexity of Vocabulary in Elementary-Grades Core Science Program Textbooks

    ERIC Educational Resources Information Center

    Fitzgerald, W. Jill; Elmore, Jeff; Kung, Melody; Stenner, A. Jackson

    2017-01-01

    The researchers explored the conceptual complexity of vocabulary in contemporary elementary-grades core science program textbooks to address two research questions: (1) Can a progression of concepts' complexity level be described across grades? (2) Was there gradual developmental growth of the most complex concepts' networks of associated concepts…

  11. Using Blogs to Improve Elementary School Students' Environmental Literacy in Science Class

    ERIC Educational Resources Information Center

    Saltan, Fatih; Divarci, Omer Faruk

    2017-01-01

    The purpose of this study is to examine the effects of blog activities on elementary students' environmental literacy in science class. The relationships between students' environmental literacy levels, their parents' interest in environmental activities and the frequency of outdoor activities they do have also been also examined. Pre-test…

  12. The Effect of Explicit-Reflective and Historical Approach on Preservice Elementary Teachers' Views of Nature of Science

    ERIC Educational Resources Information Center

    Pekbay, Canay; Yilmaz, Serkan

    2015-01-01

    This study aims to explore the influence of nature of science (NOS) activities based on explicit-reflective and historical approach on preservice elementary teachers' views of NOS aspects. Mixed-method approach including both qualitative and quantitative methods was used. The sample consisted of 83 preservice elementary teachers of a public…

  13. Elementary Teachers' Perceptions of Their Professional Teaching Competencies: Differences between Teachers of Math/Science Majors and Non-Math/Science Majors in Taiwan

    ERIC Educational Resources Information Center

    Wu, Li-Chen; Chao, Li-ling; Cheng, Pi-Yun; Tuan, Hsiao-Lin; Guo, Chorng-Jee

    2018-01-01

    The purpose of this study was to probe the differences of perceived professional teaching competence between elementary school math/science teachers in Taiwan who are majored in math/science and those who are not. A researcher-developed Math/Science Teachers' Professional Development Questionnaire was used in a nationwide survey, using a two-stage…

  14. Do Thinking Styles Matter for Science Achievement and Attitudes toward Science Class in Male and Female Elementary School Students in Taiwan?

    ERIC Educational Resources Information Center

    Wang, Tzu-Ling; Tseng, Yi-Kuan

    2015-01-01

    The purposes of this study were to explore the effects of thinking styles on science achievement and attitudes toward science class among Taiwanese elementary school students and to explore the differences between male and female students in their modes of thinking. Participants included 756 sixth-grade students from 28 classes in four elementary…

  15. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    DTIC Science & Technology

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  16. The Integration of English Language Development and Science Instruction in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Zwiep, Susan Gomez; Straits, William J.; Stone, Kristin R.; Beltran, Dolores D.; Furtado, Leena

    2011-12-01

    This paper explores one district's attempt to implement a blended science and English Language Development (ELD) elementary program, designed to provide English language learners opportunities to develop proficiency in English through participation in inquiry-based science. This process resulted in blended program that utilized a combined science/ELD lesson plan format to structure and guide teachers' efforts to use science as the context for language development. Data, collected throughout the first 2 years of the program, include teacher-generated lesson plans, observation notes, and interviews with teachers and principals. The process by which the blended program was developed, the initial implementation of the program, the resulting science/ELD lesson plan format, and teachers' perceptions about the program and its impact on their students are described.

  17. Elementary Science-Magnet School Student Attitudes toward Science as Measured by Selected National Assessment of Educational Progress Items and Achievement in Science: A Replication and Extension.

    ERIC Educational Resources Information Center

    Solomon, Alan; Rachild, Bruce

    Attitudes toward science of magnet school students were compared with those of their counterparts in two regular schools. This study attempted to replicate the findings of a 1988 study by A. Solomon and J. Wroblewski involving the same magnet school, the John Moffett Neighborhood Elementary Science Magnet School located in North Philadelphia…

  18. Elementary Science Education in Classrooms and Outdoors: Stakeholder views, gender, ethnicity, and testing

    NASA Astrophysics Data System (ADS)

    Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Tate Stevenson, Kathryn

    2014-09-01

    In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students' science and outdoor views and activity choices along with those of adults (teachers, parents, and principals). Significant differences were found between pre- and posttest measures along with gender and ethnic differences with respect to students' science knowledge and environmental attitudes. Interview data exposed limitations of outdoor learning at both schools including standardized test pressures, teachers' views of science instruction, and desultory connections of alternative learning settings to 'school' science.

  19. Use of Creative Drama in Science and Mathematics by Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Ozdemir, Pinar; Akkus Cikla, Oylum

    2005-01-01

    The purpose of this study is to analyse science and mathematics lesson plans prepared in the light of drama based instruction by preservice elementary teachers. For this purpose, 12 female participants were chosen volunteerly. They gained basic knowledge and experience about creative drama by involving sample creative drama activities and lesson…

  20. An Examination of Prospective Elementary Science Teachers' Perspective towards Socio-Scientific Argumentation

    ERIC Educational Resources Information Center

    Kutluca, Ali Yigit; Aydin, A.

    2016-01-01

    The purpose of this study was to examine the altering perceptions and opinions of prospective elementary science teachers regarding argumentation while they were engaged in argumentative discourse. The participating teachers were engaged in socio-scientific argumentation for 9 weeks involving a 6-step process on a course "Special Topics in…

  1. Excellence in Elementary School Science (EESS): Teachers' Perceptions & Technology Integration from a Professional Development

    ERIC Educational Resources Information Center

    Hu, Helen; Garimella, Uma

    2017-01-01

    This proceeding paper will report about a study that investigated how a group of elementary school teachers responded to a professional development training on Science and Technology as demonstrated in their perceived preparedness and comfort with teaching science, and their subsequent implementation with K-4 students. The results from the study…

  2. Problems with Science Teaching and Learning for English Language Learners in One Diverse Elementary School

    ERIC Educational Resources Information Center

    Rodriguez, Karen Margaret

    2012-01-01

    This qualitative study centered on science instruction and learning that occurred in a Title I elementary school in a suburban district in southeast Texas. Twelve teachers were interviewed in order to understand their perceptions of their classroom practices in terms of science instruction and learning for English Language Learners (ELL). This…

  3. Relationships between Prospective Elementary Teachers' Classroom Practice and Their Conceptions of Biology and of Teaching Science.

    ERIC Educational Resources Information Center

    Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju

    1999-01-01

    Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)

  4. Mars Atmosphere and Volatile EvolutioN (MAVEN) mission's Red Planet program: Bridging the gap in elementary school science through climate studies of Mars

    NASA Astrophysics Data System (ADS)

    Wood, E. L.

    2012-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of 2011 of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. In our interaction with elementary teachers, it is also apparent that many are uncomfortable with science concepts. In order for us to successfully address the Next Generation Science Standards, teachers must be able to reconcile all of the different requirements placed on them in a given school day and in a given school environment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy into an integrated science program, thereby increasing the number of science contact hours. The Red Planet: Read, Write, Explore program, developed for the MAVEN mission, is a science, art, and literacy program designed to easily fit into a typical 3rd-5th grade instructional day. Red Planet tackles climate change through Mars' geologic history and makes Mars-Earth comparisons, while encouraging students to reflect on the environmental requirements needed to keep a biological organisms (including humans) happy, healthy, and alive. The Red Planet program is currently being pilot tested at Acres Green Elementary School in Colorado.

  5. Development and Implementation of an Integrated Science Course for Elementary Eduation Majors

    NASA Astrophysics Data System (ADS)

    Gunter, Mickey E.; Gammon, Steven D.; Kearney, Robert J.; Waller, Brenda E.; Oliver, David J.

    1997-02-01

    Currently the scientific community is trying to increase the general populationapos;s knowledge of science. These efforts stem from the fact that the citizenry needs a better understanding of scientific knowledge to make informed decisions on many issues of current concern. The problem of scientific illiteracy begins in grade school and can be traced to inadequate exposure to science and scientific thinking during the preparation of K - 8 teachers. Typically preservice elementary teachers are required to take only one or two disconnected science courses to obtain their teaching certificates. Also, introductory science courses are often large and impersonal, with the result that while students pass the courses, they may learn very little and retain even less.

  6. Providing undergraduate science partners for elementary teachers: benefits and challenges.

    PubMed

    Goebel, Camille A; Umoja, Aminata; DeHaan, Robert L

    2009-01-01

    Undergraduate college "science partners" provided content knowledge and a supportive atmosphere for K-5 teachers in a university-school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed "participatory reform"; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers' skills in inquiry-based science instruction. Here, we describe some of the program's successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children's science learning abilities to express more mature, positive views.

  7. Providing Undergraduate Science Partners for Elementary Teachers: Benefits and Challenges

    PubMed Central

    Goebel, Camille A.; Umoja, Aminata

    2009-01-01

    Undergraduate college “science partners” provided content knowledge and a supportive atmosphere for K–5 teachers in a university–school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed “participatory reform”; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers' skills in inquiry-based science instruction. Here, we describe some of the program's successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children's science learning abilities to express more mature, positive views. PMID:19723818

  8. Developing a Professional Identity as an Elementary Teacher of Nature of Science: A Self-Study of Becoming an Elementary Teacher

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Pongsanon, Khemmawadee; Weiland, Ingrid S.; Nargund-Joshi, Vanashri

    2014-01-01

    This study explores the development of professional identity as a teacher of nature of science (NOS). Our research question was "How can a teacher develop a professional identity as an elementary teacher of NOS?" Through a researcher log, videotaped lessons, and collection of student work, we were able to track efforts in teaching NOS as…

  9. A quantitative analysis of whether elementary teachers' science kit usage and beliefs can predict state science assessment scores

    NASA Astrophysics Data System (ADS)

    Rice, Tony E.

    The purpose of this survey was to describe and analyze the perceptions of elementary school teachers' in a Midwestern state concerning their use of a science kit program, including to what extent a school's state science assessment scores can be predicated from the level of science kit usage. Prior research indicates that elementary school teachers lack the confidence in teaching science primarily because of their weak undergraduate training in inquiry-based instruction and the lack of a strong science background. Authors such as Dickerson et al. (2006) and Riggs and Enochs (2006) argued that science kits and the materials included in them are valuable in increasing teacher confidence. The teacher perceptions I collected matched the literature quite closely as far as what the teachers found to be of the most value and use. Teachers perceptions of the science kits were positive including: (a) student engagement in using the science kits, (b) use of most of the instructional items included in the kits, (c) the amount of teacher confidence in using them, (d) the support from the math and science center for using them, (e) and the professional development provided. Teachers liked using many components of the kits, especially the experiments. Their main complaint concerned time: time to teach science and time to complete the kit lessons. I used multiple regression to understand the components of the kit program that had a significant correlation to the state test scores. The following variables could explain a high proportion of the variance (.796): (a) teacher confidence, (b) student science learning success, (c) teacher beliefs about science education and (d) the percentage of students eligible for the National School Lunch Program. These findings might lead to school principals and teachers increasing their 5th grade state science exam scores by using the findings to identify which components of the kit program are most important in this endeavor.

  10. Elementary Science Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Ideas for elementary school teachers are proposed. Demonstration experiments include thermal conductivity of gases, wetting power of detergents, external pressure effects on boiling point of water, frequency-wavelength relations, density of hot and cold water. Other useful tips are given for protecting wall charts and making descriptive labels.…

  11. A Safety Handbook for Science Teachers.

    ERIC Educational Resources Information Center

    Everett, K.; Jenkins, E. W.

    This publication is a safety handbook designed for science teachers of elementary and secondary schools. In an effort to insure prevention of accidents in school laboratories, it advocates careful planning, adequate experimental design, and the acquisition of correct laboratory techinques on the part of the teacher. The handbook gives instructions…

  12. Clinical Laboratory Sciences: The Next Twenty Years.

    ERIC Educational Resources Information Center

    Morris, Frances J.

    The views of professionals concerning the future of the clinical laboratory sciences were assessed using a modification of the Delphi technique. The participating administrators, educators, and bench technologists were asked what they felt the clinical laboratory sciences would be like in 20 years, and their responses were used to develop…

  13. Diversity in Laboratory Animal Science: Issues and Initiatives

    PubMed Central

    Alworth, Leanne; Ardayfio, Krystal L; Blickman, Andrew; Greenhill, Lisa; Hill, William; Sharp, Patrick; Talmage, Roberta; Plaut, Victoria C; Goren, Matt J

    2010-01-01

    Since diversity in the workplace began receiving scholarly attention in the late 1980s, many corporations and institutions have invested in programs to address and manage diversity. We encourage laboratory animal science to address the challenges and to build on the strengths that personal diversity brings to our field and workplaces. Diversity is already becoming increasingly relevant in the workplace and the laboratory animal science field. By addressing issues related to diversity, laboratory animal science could benefit and potentially fulfill its goals more successfully. To date, diversity has received minimal attention from the field as a whole. However, many individuals, workplaces, and institutions in industry, academia, and the uniformed services that are intimately involved with the field of laboratory animal science are actively addressing issues concerning diversity. This article describes some of these programs and activities in industry and academia. Our intention is that this article will provide useful examples of inclusion-promoting activities and prompt further initiatives to address diversity awareness and inclusion in laboratory animal science. PMID:20353686

  14. Diversity in laboratory animal science: issues and initiatives.

    PubMed

    Alworth, Leanne; Ardayfio, Krystal L; Blickman, Andrew; Greenhill, Lisa; Hill, William; Sharp, Patrick; Talmage, Roberta; Plaut, Victoria C; Goren, Matt

    2010-03-01

    Since diversity in the workplace began receiving scholarly attention in the late 1980s, many corporations and institutions have invested in programs to address and manage diversity. We encourage laboratory animal science to address the challenges and to build on the strengths that personal diversity brings to our field and workplaces. Diversity is already becoming increasingly relevant in the workplace and the laboratory animal science field. By addressing issues related to diversity, laboratory animal science could benefit and potentially fulfill its goals more successfully. To date, diversity has received minimal attention from the field as a whole. However, many individuals, workplaces, and institutions in industry, academia, and the uniformed services that are intimately involved with the field of laboratory animal science are actively addressing issues concerning diversity. This article describes some of these programs and activities in industry and academia. Our intention is that this article will provide useful examples of inclusion-promoting activities and prompt further initiatives to address diversity awareness and inclusion in laboratory animal science.

  15. A laboratory animal science pioneer.

    PubMed

    Kostomitsopoulos, Nikolaos

    2014-11-01

    Nikolaos Kostomitsopoulos, DVM, PhD, is Head of Laboratory Animal Facilities and Designated Veterinarian, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece. Dr. Kostomitsopoulos discusses his successes in implementing laboratory animal science legislation and fostering collaboration among scientists in Greece.

  16. A Longitudinal Study of Preservice Elementary Teachers' Personal and Science Teaching Efficacy.

    ERIC Educational Resources Information Center

    Ginns, Ian S.; Watters, James J.

    This paper reports the results of a longitudinal study into the personal and science teaching efficacy of a group of preservice elementary teachers. Quantitative and qualitative research methods were employed in the study. Using a pretest and a post-test one group research design, quantitative data were obtained from the administration of a…

  17. Taking an active stance: How urban elementary students connect sociocultural experiences in learning science

    NASA Astrophysics Data System (ADS)

    Upadhyay, Bhaskar; Maruyama, Geoffrey; Albrecht, Nancy

    2017-12-01

    In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards self-determining the sciences that are personally meaningful. Furthermore, tying sociocultural experiences with science learning helps generate sociopolitical awareness among students. We collected interview and observation data in an urban elementary classroom over one academic year to understand the value of urban students' sociocultural experiences in learning science and choosing science activities.

  18. Exploring Gender Differences across Elementary, Middle, and High School Students' Science and Math Attitudes and Interest

    NASA Astrophysics Data System (ADS)

    LeGrand, Julie

    The issue of female underrespresentation in science, mathematics, engineering, and technology careers and courses has been well researched over the last several decades. However, as gender gaps in achievement close and representation becomes more equitable in certain academic domains, research has turned to social and cultural factors to explain why fewer women persist in STEM studies and careers than men. The purpose of this study was to examine gender differences in science and math attitudes and interests from elementary school, to middle school, to high school. To examine possible gender-specific shifts in students' interest and attitudes in science and math, 136 students from a suburban, public school district were surveyed at the elementary school level (N=31), middle school level (N=54), and high school level (N=51) and various constructs were used to assess the responses in accordance with expectancy-value theory. Utilizing a mixed-methods approach, a random sample of students from each grade level then participated in focus groups, and corollary themes were identified. Results from a logistical regression analysis and Mann-Whitney Test indicated that significant gender differences exist for interest, efficacy, expectancy, and value within science domains (p<.05), although these differences are not the same at each grade level or for each scientific discipline. Significant gender differences in mathematics are present only at the elementary school level.

  19. Attitude toward Science Teaching of Spanish and Turkish In-Service Elementary Teachers: Multi-Group Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Korur, Fikret; Vargas, Rocío Vargas; Torres Serrano, Noemí

    2016-01-01

    Elementary school teachers' having a positive attitude toward science teaching might encourage students to develop positive attitudes toward science learning. This cross-cultural study aimed to validate the seven-factor structure of the Dimensions of Attitude toward Science (DAS) scale by applying it in two countries. Moreover, it aimed to…

  20. Adopting Just-in-Time Teaching in the Context of an Elementary Science Education Methodology Course

    ERIC Educational Resources Information Center

    Osmond, Pamela; Goodnough, Karen

    2011-01-01

    In this self-study, Pamela, a new science teacher educator, adopted Just-in-Time Teaching (JiTT) in the context of an elementary science education methodology course. JiTT is a teaching and learning strategy involving interaction between web-based study assignments and face-to-face class sessions. Students respond electronically to web-based…

  1. Exploring How Second Grade Elementary Teachers Translate Their Nature of Science Views into Classroom Practice After a Graduate Level Nature of Science Course

    NASA Astrophysics Data System (ADS)

    Deniz, Hasan; Adibelli, Elif

    2015-12-01

    The main purpose of this study was to explore the factors mediating the translation of second grade teachers' nature of science (NOS) views into classroom practice after completing a graduate level NOS course. Four second grade in-service elementary teachers comprised the sample of this study. Data were collected from several sources during the course of this study. The primary data sources were (a) assessment of the elementary teachers' NOS views before and after the graduate level NOS course using the Views of Nature of Science Questionnaire Version B (VNOS-B) (Lederman et al., 2002) coupled with interviews, and (b) a classroom observation and videotaped recording of the elementary teachers' best NOS lessons coupled with interview. We identified three distinct but related factors that mediated the translation of NOS views into classroom practice: the teachers' perspectives about the developmental appropriateness of the NOS aspect, the teachers' selection of target NOS aspects, and the relative importance placed by teachers on each NOS aspect.

  2. Perceived Teacher Factors in Relation to Students' Achievement-Related Outcomes in Science Classrooms in Elementary School

    ERIC Educational Resources Information Center

    Sakiz, Gönül

    2015-01-01

    The purpose of the current study was to investigate the roles that perceived teacher affective support (PTAS), perceived teacher mastery goal orientation (PTMGO), academic emotions, self-efficacy and behavioural engagement play on students' science achievement in elementary school science classrooms. The potential relations of different levels of…

  3. Prospective Elementary Teachers' Understanding of the Nature of Science and Perceptions of the Classroom Learning Environment

    ERIC Educational Resources Information Center

    Martin-Dunlop, Catherine S.

    2013-01-01

    This study investigated prospective elementary teachers' understandings of the nature of science and explored associations with their guided-inquiry science learning environment. Over 500 female students completed the Nature of Scientific Knowledge Survey (NSKS), although only four scales were analyzed-Creative, Testable, Amoral, and Unified. The…

  4. Mixing It Up: Integrated, Interdisciplinary, Intriguing Science in the Elementary Classroom. An NSTA Press Journals Collection.

    ERIC Educational Resources Information Center

    National Science Teachers Association, Arlington, VA.

    This compendium of articles from "Science and Children", the elementary school journal of the National Science Teachers Association (NSTA), aims to help teachers build connections in their students' minds. The articles describe lessons and units that are interdisciplinary, both integrated and interdisciplinary, or thematic. Each article is…

  5. The Acquisition and Transfer of Botanical Classification by Elementary Science Methods Students.

    ERIC Educational Resources Information Center

    Knapp, Clifford Edward

    Investigated were two questions related to the acquisition and transfer of botanical classification skill by elementary science methods students. Data were collected from a sample of 89 students enrolled in methods courses. Sixty-two students served as the experimental sample, and 27 served as the control for the transfer portion of the research.…

  6. Group Work in Elementary Science: Towards Organisational Principles for Supporting Pupil Learning

    ERIC Educational Resources Information Center

    Howe, Christine; Tolmie, Andy; Thurston, Allen; Topping, Keith; Christie, Donald; Livingston, Kay; Jessiman, Emma; Donaldson, Caroline

    2007-01-01

    Group work has been promoted in many countries as a key component of elementary science. However, little guidance is given as to how group work should be organized, and because previous research has seldom been conducted in authentic classrooms, its message is merely indicative. A study is reported, which attempts to address these limitations.…

  7. Effects of Problem-Based Learning with Web-Anchored Instruction in Nanotechnology on the Science Conceptual Understanding, the Attitude towards Science, and the Perception of Science in Society of Elementary Students

    ERIC Educational Resources Information Center

    Yurick, Karla Anne

    2011-01-01

    This study explored the effects of Problem-Based Leaning (PBL) with web-anchored instruction in nanotechnology on the science conceptual understanding, the attitude towards science, and the perception of science in society of elementary students. A mixed-methods approach was used. Subjects (N=46) participated in the study for approximately two…

  8. Some Experiments with Biological Applications for the Elementary Laboratory

    ERIC Educational Resources Information Center

    Kammer, D. W.; Williams, J. A.

    1975-01-01

    Summarizes physics laboratory experiments with applications in the biological sciences. Includes the following topics: mechanics of the human arm, fluid flow in tubes, physics of learning, the electrocardiograph, nerve impulse conduction, and corrective lenses for eye defects. (Author/MLH)

  9. The attitudinal and cognitive effects of interdisciplinary collaboration on elementary pre-service teachers development of biological science related lesson plans

    NASA Astrophysics Data System (ADS)

    Mills, Jada Jamerson

    There is a need for STEM (science, technology, engineering, and mathematics) education to be taught effectively in elementary schools. In order to achieve this, teacher preparation programs should graduate confident, content strong teachers to convey knowledge to elementary students. This study used interdisciplinary collaboration between the School of Education and the College of Liberal Arts through a Learning-by-Teaching method (LdL): Lernen durch Lernen in German. Pre-service teacher (PST) achievement levels of understanding science concepts based on pretest and posttest data, quality of lesson plans developed, and enjoyment of the class based on the collaboration with science students. The PSTs enrolled in two treatment sections of EDEL 404: Science in the Elementary Classroom collaborated with science students enrolled in BISC 327: Introductory Neuroscience to enhance their science skills and create case-based lesson plans on neurothology topics: echolocation, electrosensory reception, steroid hormones, and vocal learning. The PSTs enrolled in the single control section of EDEL 404 collaborated with fellow elementary education majors to develop lesson plans also based on the same selected topics. Qualitative interviews of education faculty, science faculty, and PSTs provided depth to the quantitative findings. Upon lesson plan completion, in-service teachers also graded the two best and two worst plans for the treatment and control sections and a science reviewer graded the plans for scientific accuracy. Statistical analyses were conducted for hypotheses, and one significant hypothesis found that PSTs who collaborated with science students had more positive science lesson plan writing attitudes than those who did not. Despite overall insignificant statistical analyses, all PSTs responded as more confident after collaboration. Additionally, interviews provided meaning and understanding to the insignificant statistical results as well as scientific accuracy of

  10. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Dawn Sumner, geologist, University of California, Davis speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  11. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grant, geologist, Smithsonian National Air and Space Museum in Washington, speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  12. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    NASA chief scientist, Dr. Waleed Abdalati, speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  13. Science education in Elementary school by using of "Geopark", Oki Islands, Japan

    NASA Astrophysics Data System (ADS)

    Oku, S.; Matsumoto, I.

    2012-12-01

    The Oki islands are located at Japan sea coast side of southwest Japan and belonging to Shimane Prefecture. And there is rich Nature which is consist of mainly alkaline volcanic rocks and metamorphic rocks. Aiming at authorization "Geopark" authorization of Oki Islands, Geologist, Biologist, and residents of Oki Islands are doing investigation and advertisement. Promotion of the science education which utilized the precious Nature, or environmental education is very important in the viewpoint of the science literacy which can protect a Nature and the earth. In this presentation, we mainly propose activity at an elementary school about how to advance the science education by using of this precious Nature. Children learn about the geology which constitutes the ground, and its petro-genesis in the Science of the sixth grade of elementary school. The viewpoint of having been formed by volcano, Earthquake, etc, in long global time is important for the precious and beautiful geology which constitutes the ground. It is at the same time important for a global change to teach also about often doing serious damage to human beings or a living thing with an Earthquake, a volcano, tsunami, etc. That is, we can push (teaching beautiful geology and a precious living thing using "Geopark"), and can learn about the blessing and disaster of a Nature. Moreover, teaching materials and teaching tools like a local textbook or a signboard with which a teacher and a resident can teach them to a child are required.

  14. Providing Elementary Teachers in South Texas with Professional Development to Improve Earth Science Instruction

    NASA Astrophysics Data System (ADS)

    Borrego, H.; Ellins, K. K.

    2011-12-01

    Through three years of participation in the TeXas Earth and Space Science (TXESS) Revolution, an NSF-sponsored teacher professional development program, my knowledge of earth science, new pedagogical approaches, and confidence has improved dramatically. I have also received instructional materials and learned how to access high quality online resources and use a variety of web-based tools. In this session, I will share my experiences and report on how I used my own learning to help both teachers and students to become more earth science literate individuals. Earth Science test scores at the elementary level throughout South Texas are consistently low in comparison to other regions in the state. The majority of the teachers lack the content-knowledge, confidence, or experience to teach Earth Sciences. My TXESS Revolution experience helped me to understand the needs of these teachers and to identify teaching resources that would be useful to them. Particularly noteworthy are TERC's EarthLabs: Earth System Science and GLOBE activities. Although these Earthlab investigations are designed for high schools students, I demonstrated how they could be adapted for elementary students. As a result, I have provided professional development in the Earth Sciences to about 300 South Texas elementary teachers. TXESS Revolution has also equipped me to empower the students I teach. My students this past year presented their challenge Legacy Cycle Project to the community. The TXESS Revolution teamed up with the Texas Water Development Board to deliver training on the implementation of a new online challenged-based curriculum called the Water Exploration Legacy Cycles. This training gave me the tools to guide my students learning through authentic scientific research. To carry out their challenge, students researched an area of interest, read literature, consulted with experts in the field, consider different prospective, and presented their final products via PowerPoint, poster

  15. We teach as we are taught: exploring the potential for emotional climate to enhance elementary science preservice teacher education

    NASA Astrophysics Data System (ADS)

    Olitsky, Stacy

    2013-09-01

    Bellocchi, Ritchie, Tobin, Sandhu and Sandhu's (2013) study highlights the crucial role that emotions play in learning at the university level in a preservice secondary science teacher education class. They examine the classroom structures that tended to lead to both a positive valence and a high level of intensity of the emotional climate (EC). This article explores the implications of their study for better understanding how to foster a positive classroom emotional climate for elementary level preservice teachers, given the specifics of elementary school environments. Drawing on theories of interactional solidarity. I explore the implications of EC for increasing pre-service teachers' capacity to avoid order-giving rituals and to create science-centered communities in their classrooms. I also suggest possible areas for future research, such as the role of expectations in EC, the different EC outcomes of lectures, EC and the development of confidence in science, and the ways in which teacher candidates are positioned within interaction rituals in elementary science methods classes.

  16. Efficacy development in science: Investigating the effects of the Teacher-to-Teacher (T2T) professional development model in Hilo elementary schools

    NASA Astrophysics Data System (ADS)

    Pinner, Pascale Creek

    Conderman and Sheldon Woods (2008) suggest that although science plays a central role in our world today, science instruction seems to be minimized particularly at the elementary grade levels. Research has investigated the construct of efficacy (Bandura, 1977, 2006a; Riggs & Enochs, 1990; Ramey-Gassert, Shroyer & Staver, 1996; Tschannen-Moran, Hoy & Hoy, 1998, 2001). Professional and conceptual development in teachers has also been explored (Gordon, 1990; Sheerer, 1997; Skaalvik & Skaalvik, 2007). The purpose of this research was to describe the changes in efficacy elementary teachers experience as they participated in science professional development. Data from a Math/Science Partnership (MSP) grant sample suggested significant changes in science self-efficacy and improved pedagogy. Mixed methods revealed connections resulting in a multi-faceted Progression of Efficacy Growth flowchart. The results suggest that utilizing the Teacher-to-Teacher (T2T) professional development model has created a pathway for more science teaching across the Hilo elementary schools.

  17. Solar Science Digital Comic Series that promotes Science Literacy with Upper Elementary and Middle School Students

    NASA Astrophysics Data System (ADS)

    Kellagher, E.; Scherrer, D. K.; Buhr Sullivan, S. M.

    2013-12-01

    The SDO instruments (EVE, AIA and HMI) teams have created a digital comic book series for upper elementary and middle school students featuring solar science aficionados Camilla and Colours, 2 cool mascot characters. These comics may be printed or read on mobile devices and are available as a free download. Many teachers are looking for resources to use with their students via the IPad so our collaboration helps supply teachers with a great resource that teaches about solar concepts and helps dispel solar misconceptions. It doesn't come as a surprise to a lot of us, but a recent study confirms what's been theorized for years: Comics are a stronger learning tool than text books. Image-based storytelling is a powerful educational tool. Comics are probably more able to combine story and information simultaneously, more effectively and seamlessly, than almost any other medium. There's also a great potential to incorporate interactive elements into digital versions, so that more information can be presented on certain items on a page. For example, videos, animations and even historic footage and audio can be embedded into digital comics. Really, the possibilities are limited only by the creators' imaginations as to how to find new ways to create a rich experience that is interesting to explore for students. We are excited to unveil this new series of solar science comics that promotes science literacy with upper elementary and middle school students.

  18. Effects of physical science courses which emphasize content or process on efficacy beliefs of preservice elementary teachers

    NASA Astrophysics Data System (ADS)

    Aldrich, Lynn Karter

    1997-09-01

    Concerns about the teaching of science in elementary grades have led in recent years to studies of teacher efficacy beliefs, their relation to teaching behaviors, and mechanisms which promote positive changes in those beliefs. The purpose of this study was to determine if science teaching efficacy beliefs of preservice elementary teachers are changed by a process emphasis physical science course and by a content emphasis physical science course and to compare these two effects. The STEBI-B instrument was given as a pretest at the beginning and a posttest at the conclusion of semester physical science courses to 94 subjects in a small liberal arts-based college. The STEBI-B instrument was also given as a pretest at the beginning and a posttest at the conclusion of semester science teaching methods courses to 61 subjects at the same college. No significant change occurred in the outcome expectancy subscale for the content emphasis course, the process emphasis course, or the science methods course. No significant change occurred in the self-efficacy subscale for the content emphasis course. A significant increase occurred in the self-efficacy subscale for the process emphasis course and the science methods course. When the process emphasis subjects were broken down into subgroups based on when the methods course was taken, a significant increase was found only for the subgroups who had previously taken or were concurrently taking a methods course with the physical science course. No significant difference was found in either outcome expectancy or self-efficacy between the content emphasis and process emphasis with ANCOVA using the pretest STEBI-B subscale as a covariate. The results suggest that a physical science course which emphasizes science process by using an integrated approach of lecture, hands-on activities and discussion may result in increased science teaching self-efficacy beliefs for preservice elementary teachers. The results also suggest that these

  19. Infusing Science, Technology, and Society Into an Elementary Teacher Education Program: The Impact on Preservice Teachers

    ERIC Educational Resources Information Center

    Henning, Mary Beth; Peterson, Barbara R.; King, Kenneth Paul

    2011-01-01

    In an effort to improve science and social studies instruction, preservice teachers developed original science, technology, and society units to teach in elementary and middle school classrooms during their clinical field experience. Data revealed that the preservice teachers fell into categories of being skeptics, open-minded instructors, or…

  20. The Potential Impacts of Upcoming High-Stakes Testing on the Teaching of Science in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Pringle, Rose M.; Martin, Sarah Carrier

    2005-09-01

    In 1983, the National Commission on Excellence in Education in the United States issued a report called A Nation at Risk: The Imperative for Educational Reform. This report and other policy initiatives such as the No Child Left Behind Legislation recommended that the individual states institute assessments to hold schools accountable. This research explored the potential impact of impending standardised testing on teaching science in elementary schools in one school district in Florida. We explored the teachers' concerns about the upcoming high-stakes tests in science, possible impact on their curriculum and what changes, if any, will be made in the approach to science teaching and learning in their classrooms. As the teachers look toward the implementation of high-stakes testing in science, they have recognised the need to teach science. This recognition is not borne out of the importance of science learning for elementary school children, but rather out of fear of failure and the effects of tangible rewards or punishments that accompany high-stakes testing. In anticipation, the teachers are preparing to align their teaching to the science standards while aggressively searching for test preparatory materials. Schools are also involved in professional development and structural changes to facilitate teaching of science.

  1. Physical Science Laboratory Manual, Experimental Version.

    ERIC Educational Resources Information Center

    Cooperative General Science Project, Atlanta, GA.

    Provided are physical science laboratory experiments which have been developed and used as a part of an experimental one year undergraduate course in general science for non-science majors. The experiments cover a limited number of topics representative of the scientific enterprise. Some of the topics are pressure and buoyancy, heat, motion,…

  2. The Divergent Thinking of Basic Skills of Sciences Process Skills of Life Aspects on Natural Sciences Subject in Indonesian Elementary School Students

    ERIC Educational Resources Information Center

    Subali, Bambang; Paidi; Mariyam, Siti

    2016-01-01

    This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…

  3. The Nature of Science Instrument-Elementary (NOSI-E): the end of the road?

    PubMed

    Peoples, Shelagh M; O'Dwyer, Laura M

    2014-01-01

    This research continues prior work published in this journal (Peoples, O'Dwyer, Shields and Wang, 2013). The first paper described the scale development, psychometric analyses and part-validation of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). In the first paper, evidence was provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. The research described in this paper examines two additional validity aspects (structural and external). The purpose of this study was to determine which of three competing internal models provides reliable, interpretable, and responsive measures of students' understanding of NOS. One postulate is that the NOS construct is unidimensional;. alternatively, the NOS construct is composed of five independent unidimensional constructs (the consecutive approach). Lastly, the NOS construct is multidimensional and composed of five inter-related but separate dimensions. The vast body of evidence supported the claim that the NOS construct is multidimensional. Measures from the multidimensional model were positively related to student science achievement and students' perceptions of their classroom environment; this provided supporting evidence for the external validity aspect of the NOS construct. As US science education moves toward students learning science through engaging in authentic scientific practices and building learning progressions (NRC, 2012), it will be important to assess whether this new approach to teaching science is effective, and the NOSI-E may be used as a measure of the impact of this reform.

  4. The Roles of Aesthetic Experience in Elementary School Science

    NASA Astrophysics Data System (ADS)

    Jakobson, Britt; Wickman, Per-Olof

    2008-01-01

    The role of aesthetic experiences for learning was examined in elementary school science. Numerous authors have argued for a science education also involving aesthetic experiences, but few have examined what this means empirically. Recordings of children’s talk with each other and with the teacher during hands-on activities in nine different science units were made. How the children and teachers used aesthetic judgements and how these judgements were part of aesthetic experiences of the science assignments were analysed. For the analysis a pragmatist perspective was used, especially drawing on Dewey and the later Wittgenstein. The results showed how aesthetic judgements occurred in moments of anticipation and moments when the science activities were brought to fulfilment. In this way children used aesthetic judgements normatively about what belonged in science class and what to include and exclude. In this way aesthetic judgements were an important part of learning how to proceed in science class. In using aesthetic judgements the children also talked about their own place in science class and whether they belonged there or not. In this way aesthetic experience is tightly related to learning science as participation. Learning science also meant learning a special kind of aesthetics, that is, learning how to distinguish the science context from other contexts. The fact that children liked or disliked something outside school did not necessarily mean that it was experienced aesthetically in the same way in school, but needed to be re-learnt. What these results mean for science education is discussed at length. The connection between aesthetics and learning to observe is also briefly discussed.

  5. The effectiveness of a popular science promotion program on nanotechnology for elementary school students in I-Lan City

    NASA Astrophysics Data System (ADS)

    Lin, Show-Yu; Wu, Ming-Ta; Cho, Ya-I.; Chen, Hui-Huang

    2015-01-01

    Background:Nanotechnology education has become an urgent priority to nurture skilled human resources for the rapidly developing nanotechnology-related industries. The promotion of popular science education focusing on nanotechnology is an ideal approach to bridge the gaps in formal curricula, and to stimulate curiosity about and interest in nanotechnology among schoolchildren. Purpose:The objective of this study was to evaluate the effectiveness of the Nanotechnology-based Popular Science Education Promotion and Teaching (NPSEPT) program through camp activity that was implemented in elementary schools in I-Lan City, Taiwan. Program description:To create a competitive advantage, a human resources development program was implemented as one of the nanotechnology incubation projects in Taiwan and focused on developing an appropriately-skilled professional workforce as well as promoting popular science education. Sample:The volunteer research participants were 323 sixth grade students in four elementary schools in I-Lan City, Taiwan, who were evaluated at the beginning and the end of the nanotechnology-based popular science promotion camp activity. Design and methods:A research tool called the 'NPSEPT test' was designed specifically for this study and was approved by experts who evaluated its content and face validity. The questionnaire was divided into three aspects: 'Nanophenomena in the natural world'; 'Nanomaterials and their scaling effects'; and 'Definition, characteristics, and applications of nanotechnology.' The effectiveness of learning among the students was analyzed using descriptive statistics, a paired sample t-test, analysis of variance (ANOVA) and a post hoc comparison. Results:The results of the three-part 'NPSEPT test' revealed that NPSEPT significantly advanced nanotechnology learning performance and outcomes among students in the four participating elementary schools. Of the 15 questions included in the NPSEPT test, positive change for more than 30

  6. From Metacognition to Whole Language: The Spectrum of Literacy in Elementary School Science.

    ERIC Educational Resources Information Center

    Balajthy, Ernest

    This paper considers the integration of reading and writing into elementary science teaching by way of the implications of two leading theories pertaining to literacy: metacognitive theory and whole language theory. Discussion of the implications of metacognition includes attention to the issue of helping to overcome readers' nonscientific…

  7. Development of Syntactic Subject Matter Knowledge and Pedagogical Content Knowledge for Science by a Generalist Elementary Teacher

    ERIC Educational Resources Information Center

    Anderson, Dayle; Clark, Megan

    2012-01-01

    The nature of knowledge needed for teaching elementary science and the development of such knowledge is a focus of ongoing research in science education. Internationally, there is a move to include scientific literacy as an aim of science education curricula. In order to teach such curricula teachers need two types of subject matter knowledge…

  8. Stories we live, identities we build: how are elementary teachers' science identities shaped by their lived experiences?

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2018-02-01

    The aim of this multiple case study was to uncover a series of critical events and experiences related to the formation of the science identities of four beginning elementary female teachers, through a life-history approach and a conceptualization of teacher identity as lived experience. Grounded within the theoretical framework of Figured Worlds, the study used qualitative, interpretive methods for data collection (interviews, biographies, teaching philosophies) and analysis. The analysis shed light on the ways in which various experiences situated within different Figured Worlds (science, family and childhood, schooling, out-of-school, university, professional) impacted the participants' identity trajectories. The findings provided three main insights that contribute to science identity research and have implications for elementary teacher preparation: (a) science teacher identity is multidimensional and extends beyond cognitive domains of becoming to include affective dimensions; (b) science teacher identity is relational, linked and shaped by various other constructs or sub-identities; (c) place and time, defined as a space with meaning created by experiences, and science teacher identity are inextricably bound to one another.

  9. The effect of concept mapping on preservice elementary teachers' knowledge of science inquiry teaching

    NASA Astrophysics Data System (ADS)

    Jackson, Diann Carol

    This study examined the effect of concept mapping as a method of stimulating reflection on preservice elementary teachers' knowledge of science inquiry instruction methods. Three intact classes of science education preservice teachers participated in a non-randomized comparison group with a pretest and posttest design to measure the influence of mapping on participants' knowledge of inquiry science instruction. All groups followed the same course syllabus, in class activities, readings, assignments and assessment tasks. The manner in which they presented their ideas about inquiry science teaching varied. Groups constructed pre-lesson, post-lesson, and homework lists or maps across three inquiry based instruction modules (ecosystems, food chains, and electricity). Equivalent forms of the Teaching Science Inventory (TSI) were used to investigate changes in preservice teachers' propositional knowledge about how to teach using inquiry science instruction methods. Equivalent forms of the Science Lesson Planning (SLP) test were used to investigate changes in preservice teachers' application knowledge about how to teach using inquiry science instruction methods. Data analysis included intrarater reliability, ANOVAs, ANCOVAs, and correlations between lists and maps and examination responses. SLP and TSI scores improved from the pretest to the posttest in each of the three study groups. The results indicate that, in general, there were basically no relationships between the treatment and outcome measures. In addition, there were no significant differences between the three groups in their knowledge about how to teach science. Conclusions drawn from this study include, first, the learners did learn how to teach science using inquiry. Second, in this study there is little evidence to support that concept mapping was more successful than the listing strategy in improving preservice elementary teachers' knowledge of teaching science using inquiry science instruction methods.

  10. Mars Science Laboratory Rover Taking Shape

    NASA Image and Video Library

    2008-11-19

    This image taken in August 2008 in a clean room at NASA JPL, Pasadena, Calif., shows NASA next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

  11. Elementary and Advanced Computer Projects for the Physics Classroom and Laboratory

    DTIC Science & Technology

    1992-12-01

    are SPF/PC, MS Word, n3, Symphony, Mathematics, and FORTRAN. The authors’ programs assist data analysis in particular laboratory experiments and make...assist data analysis in particular laboratory experiments and make use of the Monte Carlo and other numerical techniques in computer simulation and...the language of science and engineering in industry and government laboratories (alth..4h C is becoming a powerful competitor ). RM/FORTRAN (cost $400

  12. Pathways in Learning to Teach Elementary Science: Navigating Contexts, Roles, Affordances and Constraints

    NASA Astrophysics Data System (ADS)

    Smith, Deborah C.; Jang, Shinho

    2011-12-01

    This case study of a fifth-year elementary intern's pathway in learning to teach science focused on her science methods course, placement science teaching, and reflections as a first-year teacher. We studied the sociocultural contexts within which the intern learned, their affordances and constraints, and participants' perspectives on their roles and responsibilities, and her learning. Semi-structured interviews were conducted with all participants. Audiotapes of the science methods class, videotapes of her science teaching, and field notes were collected. Data were transcribed and searched for affordances or constraints within contexts, perspectives on roles and responsibilities, and how views of her progress changed. Findings show the intern's substantial progress, the ways in which affordances sometimes became constraints, and participants' sometimes contradictory perspectives.

  13. POSITION AND MOTION, A SCIENCE UNIT FOR THE UPPER ELEMENTARY GRADES, STUDENT MANUAL.

    ERIC Educational Resources Information Center

    BERGER, CARL; MONTGOMERY, MARSHALL

    THIS MANUAL IS DESIGNED FOR STUDENTS IN UPPER ELEMENTARY GRADES STUDYING THE SCIENCE CURRICULUM IMPROVEMENT STUDY (SCIS) UNIT "POSITION AND MOTION". THE OVERALL STRUCTURE OF THE UNIT FOLLOWS A CYCLE OF PRELIMINARY EXPLORATION, INVENTION OF SPECIFIC CONCEPTS RELATED TO REFERENCE FRAMES, AND DISCOVERY OF THE USEFULNESS OF THE CONCEPT.…

  14. The Influence Inquiry-Based Science Has on Elementary Teachers' Perception of Instruction and Self-Efficacy

    ERIC Educational Resources Information Center

    Lewis, Felecia J.

    2017-01-01

    The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted…

  15. Factors Affecting Early Elementary (K-4) Teachers' Introduction of the Nature of Science: A National Survey

    ERIC Educational Resources Information Center

    Sweeney, Sophia Jean

    2010-01-01

    A researcher-developed questionnaire regarding the importance and developmental appropriateness of 12 specific elements of the nature of science (Alshamrani, 2008) for early elementary (kindergarten through fourth grade [K-4]) science instruction was mailed to a random sample of U.S. K-4 teachers. At least half (N = 377) of the respondents…

  16. Critical Issues in Reforming Elementary Teacher Preparation in Mathematics and Science. Conference Proceedings (Greeley, Colorado, October 10-13, 1991).

    ERIC Educational Resources Information Center

    Gardner, April L., Ed.; Cochran, Kathryn F., Ed.

    The purpose of the conference reported in this document was to bring together national leaders in teacher education to disseminate findings and innovations in the reform of elementary teacher preparation in mathematics and science. The proceedings begin with a presentation of invited addresses: "New Curricula in Elementary Mathematics: What…

  17. A case of learning to teach elementary science: Investigating beliefs, experiences, and tensions

    NASA Astrophysics Data System (ADS)

    Bryan, Lynn Ann

    This study examines how preservice elementary teacher beliefs and experiences within the context of reflective science teacher education influence the development of professional knowledge. From a cognitive constructivist theoretical perspective, I conducted a case analysis to investigate the beliefs about science teaching and learning held by a preservice teacher (Barbara), identify the tensions she encountered in learning to teach elementary science, understand the frames from which she identified problems of practice, and discern how her experiences influenced the process of reflecting on her own science teaching. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs about science teaching and learning. Her foundational beliefs concerned: (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about: (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. The dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in life-long science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well-grounded in experience, embraced a hands-on approach and predominantly guided her vision of practice. Barbara encountered tensions in thinking about science teaching and learning as a result of inconsistencies between her vision of science teaching and her actual practice. Confronting these tensions prompted Barbara to rethink the connections between her classroom actions and students' learning, create new perspectives for viewing her practice, and consider alternative practices more resonant with her visionary beliefs. However, the self-reinforcing belief system created by her

  18. Argumentation in elementary science education: addressing methodological issues and conceptual understanding

    NASA Astrophysics Data System (ADS)

    Kaya, Ebru

    2017-11-01

    In this review essay I respond to issues raised in Mijung Kim and Wolff-Michael Roth's paper titled "Dialogical argumentation in elementary science classrooms", which presents a study dealing with dialogical argumentation in early elementary school classrooms. Since there is very limited research on lower primary school students' argumentation in school science, their paper makes a contribution to research on children's argumentation skills. In this response, I focus on two main issues to extend the discussion in Kim and Roth's paper: (a) methodological issues including conducting a quantitative study on children's argumentation levels and focusing on children's written argumentation in addition to their dialogical argumentation, and (b) investigating children's conceptual understanding along with their argumentation levels. Kim and Roth emphasize the difficulty in determining the level of children's argumentation through the Toulmin's Argument Pattern and lack of high level arguments by children due to their difficulties in writing texts. Regarding these methodological issues, I suggest designing quantitative research on coding children's argument levels because such research could potentially provide important findings on children's argumentation. Furthermore, I discuss alternative written products including posters, figures, or pictures generated by children in order to trace children's arguments, and finally articulating argumentation and conceptual understanding of children.

  19. Voices from inside the elementary classroom: Three teachers' perspectives on the Alabama Reading Initiative and elementary science

    NASA Astrophysics Data System (ADS)

    Webb, Brenda Hainley

    The influences of mandates, particularly the Alabama Reading Initiative (ARI) as the response to No Child Left Behind (2002), on elementary science education in Alabama were investigated. Teachers' voices provided insights to the status of science education in kindergarten, second grade, and third grade, and all three case participants reported negative influences of ARI on science education in their classrooms. The multiple case study, framed by critical theory and critical pedagogy, indicated that these teachers sometimes accepted marginalized roles in determining curriculum and pedagogy yet at other times made the decisions to empower themselves and negotiate or discard mandates in favor of meeting their children's learning needs or their own professional needs as they perceived them to be. Whether the case participants reached a threshold of resisting mandates or not, they struggled with the view of the political hierarchy that continues to force them into the status of being a technician rather than being a teaching professional. NCLB currently mandates standardized science testing, beginning in the spring of 2008. Historically, standardized testing reduces learning to low-level recall and teaching to rigid, uncreative, uncritical strategies. All of this intersects with science education reform and a national call for more attention to be given to science, technology, and mathematics learning. Research should track the continued influences of intersecting mandates on science education at every level.

  20. The effects of computer-assisted instruction and locus of control upon preservice elementary teachers' acquisition of the integrated science process skills

    NASA Astrophysics Data System (ADS)

    Wesley, Beth Eddinger; Krockover, Gerald H.; Devito, Alfred

    The purpose of this study was to determine the effects of computer-assisted instruction (CAI) versus a text mode of programmed instruction (PI), and the cognitive style of locus of control, on preservice elementary teachers' achievement of the integrated science process skills. Eighty-one preservice elementary teachers in six sections of a science methods class were classified as internally or externally controlled. The sections were randomly assigned to receive instruction in the integrated science process skills via a microcomputer or printed text. The study used a pretest-posttest control group design. Before assessing main and interaction effects, analysis of covariance was used to adjust posttest scores using the pretest scores. Statistical analysis revealed that main effects were not significant. Additionally, no interaction effects between treatments and loci of control were demonstrated. The results suggest that printed PI and tutorial CAI are equally effective modes of instruction for teaching internally and externally oriented preservice elementary teachers the integrated science process skills.