Science.gov

Sample records for laboratory experiments conducted

  1. Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Beckers, Eléonore; Pichault, Mathieu; Pansak, Wanwisa; Degré, Aurore; Garré, Sarah

    2016-08-01

    Determining soil hydraulic properties is of major concern in various fields of study. Although stony soils are widespread across the globe, most studies deal with gravel-free soils, so that the literature describing the impact of stones on the hydraulic conductivity of a soil is still rather scarce. Most frequently, models characterizing the saturated hydraulic conductivity of stony soils assume that the only effect of rock fragments is to reduce the volume available for water flow, and therefore they predict a decrease in hydraulic conductivity with an increasing stoniness. The objective of this study is to assess the effect of rock fragments on the saturated and unsaturated hydraulic conductivity. This was done by means of laboratory experiments and numerical simulations involving different amounts and types of coarse fragments. We compared our results with values predicted by the aforementioned predictive models. Our study suggests that it might be ill-founded to consider that stones only reduce the volume available for water flow. We pointed out several factors of the saturated hydraulic conductivity of stony soils that are not considered by these models. On the one hand, the shape and the size of inclusions may substantially affect the hydraulic conductivity. On the other hand, laboratory experiments show that an increasing stone content can counteract and even overcome the effect of a reduced volume in some cases: we observed an increase in saturated hydraulic conductivity with volume of inclusions. These differences are mainly important near to saturation. However, comparison of results from predictive models and our experiments in unsaturated conditions shows that models and data agree on a decrease in hydraulic conductivity with stone content, even though the experimental conditions did not allow testing for stone contents higher than 20 %.

  2. Portable conduction velocity experiments using earthworms for the college and high school neuroscience teaching laboratory.

    PubMed

    Shannon, Kyle M; Gage, Gregory J; Jankovic, Aleksandra; Wilson, W Jeffrey; Marzullo, Timothy C

    2014-03-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities that can be easily measured by manipulating electrode placement and the tactile stimulus. Here, we present a portable and robust experimental setup that allows students to perform conduction velocity measurements within a 30-min to 1-h laboratory session. Our improvement over this well-known preparation is the combination of behaviorally relevant tactile stimuli (avoiding electrical stimulation) with the invention of minimal, low-cost, and portable equipment. We tested these experiments during workshops in both a high school and college classroom environment and found positive learning outcomes when we compared pre- and posttests taken by the students.

  3. Portable conduction velocity experiments using earthworms for the college and high school neuroscience teaching laboratory.

    PubMed

    Shannon, Kyle M; Gage, Gregory J; Jankovic, Aleksandra; Wilson, W Jeffrey; Marzullo, Timothy C

    2014-03-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities that can be easily measured by manipulating electrode placement and the tactile stimulus. Here, we present a portable and robust experimental setup that allows students to perform conduction velocity measurements within a 30-min to 1-h laboratory session. Our improvement over this well-known preparation is the combination of behaviorally relevant tactile stimuli (avoiding electrical stimulation) with the invention of minimal, low-cost, and portable equipment. We tested these experiments during workshops in both a high school and college classroom environment and found positive learning outcomes when we compared pre- and posttests taken by the students. PMID:24585472

  4. Portable conduction velocity experiments using earthworms for the college and high school neuroscience teaching laboratory

    PubMed Central

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities that can be easily measured by manipulating electrode placement and the tactile stimulus. Here, we present a portable and robust experimental setup that allows students to perform conduction velocity measurements within a 30-min to 1-h laboratory session. Our improvement over this well-known preparation is the combination of behaviorally relevant tactile stimuli (avoiding electrical stimulation) with the invention of minimal, low-cost, and portable equipment. We tested these experiments during workshops in both a high school and college classroom environment and found positive learning outcomes when we compared pre- and posttests taken by the students. PMID:24585472

  5. Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Pichault, M.; Beckers, E.; Degré, A.; Garré, S.

    2015-10-01

    Determining soil hydraulic properties is of major concern in various fields of study. Though stony soils are widespread across the globe, most studies deal with gravel-free soils so that the literature describing the impact of stones on soil's hydraulic conductivity is still rather scarce. Most frequently, models characterizing the saturated hydraulic conductivity of stony soils assume that the only effect of rock fragments is to reduce the volume available for water flow and therefore they predict a decrease in hydraulic conductivity with an increasing stoniness. The objective of this study is to assess the effect of rock fragments on the saturated and unsaturated hydraulic conductivity. This was done by means of laboratory and numerical experiments involving different amounts and types of coarse fragments. We compared our results with values predicted by the aforementioned models. Our study suggests that considering that stones only reduce the volume available for water flow might be ill-founded. We pointed out several drivers of the saturated hydraulic conductivity of stony soils, not considered by these models. On the one hand, the shape and the size of inclusions may substantially affect the hydraulic conductivity. On the other hand, the presence of rock fragments can counteract and even overcome the effect of a reduced volume in some cases. We attribute this to the creation of voids at the fine earth-stone interface. Nevertheless, these differences are mainly important near to saturation. However, we come up with a more nuanced view regarding the validity of the models under unsaturated conditions. Indeed, under unsaturated conditions, the models seem to represent the hydraulic behaviour of stones reasonably well.

  6. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    ERIC Educational Resources Information Center

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  7. Using Conductivity Measurements to Determine the Identities and Concentrations of Unknown Acids: An Inquiry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, K. Christopher; Garza, Ariana

    2015-01-01

    This paper describes a student designed experiment using titrations involving conductivity measurements to identify unknown acids as being either HCl or H[subscript 2]SO[subscript 4], and to determine the concentrations of the acids, thereby improving the utility of standard acid-base titrations. Using an inquiry context, students gain experience…

  8. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments.

    PubMed

    Barnes, Rebecca T; Gallagher, Morgan E; Masiello, Caroline A; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent.

  9. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    PubMed Central

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  10. Electrical conductivity of Icelandic deep geothermal reservoirs: insight from HT-HP laboratory experiments

    NASA Astrophysics Data System (ADS)

    Nono, Franck; Gibert, Benoit; Loggia, Didier; Parat, Fleurice; Azais, Pierre; Cichy, Sarah

    2016-04-01

    Although the Icelandic geothermal system has been intensively investigated over the years, targeting increasingly deeper reservoirs (i.e. under supercritical conditions) requires a good knowledge of the behaviour of physical properties of the host rock in order to better interpret large scale geophysical observations. In particular, the interpretation of deep electrical soundings remains controversial as only few studies have investigated the influence of altered minerals and pore fluid properties on electrical properties of rocks at high temperature and pressure. In this study, we investigate the electrical conductivity of drilled samples from different Icelandic geothermal fields at elevated temperature, confining pressure and pore pressure conditions (100°C < T < 600°C, confining pressure up to 100 MPa and pore pressure up to 35 MPa). The investigated rocks are composed of hyaloclastites, dolerites and basalts taken from depths of about 800 m for the hyaloclastites, to almost 2500 m for the dolerites. They display different porosity structures, from vuggy and intra-granular to micro-cracked porosities, and have been hydrothermally alterated in the chlorite to amphibolite facies. Electrical conductivity measurements are first determined at ambient conditions as a function of pore fluid conductivity in order to establish their relationships with lithology and pore space topology, prior to the high pressure and temperature measurements. Cementation factor varies from 1.5 for the dolerites to 2.83 for the basalt, reflecting changes in the shape of the conductive channels. The surface conductivities, measured at very low fluid conductivity, increases with the porosity and is correlated with the cation exchange capacity. At high pressure and temperature, we used the two guard-ring electrodes system. Measurements have been performed in dry and saturated conditions as a function of temperature and pore pressure. The supercritical conditions have been investigated and

  11. Portable Conduction Velocity Experiments Using Earthworms for the College and High School Neuroscience Teaching Laboratory

    ERIC Educational Resources Information Center

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey; Marzullo, Timothy C.

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction…

  12. Development of a Laboratory Experiment to Derivate the Thermal Conductivity based on Electrical Resistivity Measurments

    NASA Astrophysics Data System (ADS)

    Vienken, T.; Firmbach, L.; Dietrich, P.

    2014-12-01

    In the course of the energy transition, the number of shallow geothermal systems is constantly growing. These systems allow the exploitation of renewable energy from the subsurface, reduced CO2 emission and additionally, energy storage. An efficient performance of geothermal systems strongly depends upon the availability of exploration data (e.g. thermal conductivity distribution). However, due to high exploration costs, the dimensioning of smaller plants (< 30 kW) is generally based on literature values. While standard in-situ-tests are persistent for larger scale projects, they yield only integral values, e.g. entire length of a borehole heat exchanger. Hence, exploring the distribution of the thermal conductivity as important soil parameter requires the development of new cost-efficient technologies. The general relationship between the electrical (RE) and the thermal resistivity (RT) can be described as log(RE) = CR log(RT) with CRas a multiplier depending on additional soil parameter (e.g. water content, density, porosity, grain size and distribution). Knowing the influencing factor of these additional determining parameters, geoelectrical measurements could provide a cost-efficient exploration strategy of the thermal conductivity for shallow geothermal sites. The aim of this study now is to define the multiplier CRexperimentally to conclude the exact correlation of the thermal and electrical behavior. The set-up consists of an acrylic glass tube with two current electrodes installed at the upper and lower end of the tube. Four electrode chains (each with eight electrodes) measure the potential differences in respect to an induced heat flux initiated by a heat plate. Additional, eight temperature sensors measure the changes of the temperature differences. First, we use this set-up to analyze the influence of soil properties based on differing homogenous sediments with known chemical and petro-physical properties. Further, we analyze the influence of the water

  13. An Organoleptic Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Risley, John M.

    1996-12-01

    Flavorings in foods and fragrances in personal care products is a topic often discussed in chemistry classes designed for the general education of non-science majors. A laboratory experiment has been designed to accompany the lecture topic. Compounds in ten different classes of organic molecules that are used in the fragrance and food industry are provided to students. Students whiff the vapors of each compound and describe the organoleptic properties using a set of terms utilized in the fragrance and food industry. A set of questions guides students to an understanding of the relationship between structure of molecules and smell. Students are permitted to create their own fragrance based on the results of the experiment. Student response has been favorable. The experiment rectifies misconceptions students have about structure and odor, and gives positive reinforcement to the lecture material.

  14. Organic Laboratory Experiments.

    ERIC Educational Resources Information Center

    Smith, Sherrel

    1990-01-01

    Detailed is a method in which short pieces of teflon tubing may be used for collection tubes for collecting preparative fractions from gas chromatographs. Material preparation, laboratory procedures, and results of this method are discussed. (CW)

  15. Conducting Miller-Urey Experiments

    NASA Technical Reports Server (NTRS)

    Parker, Eric Thomas; Cleaves, Henderson James; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason; Zhou, Manshui; Bada, Jeffrey L.; Fernandez, Facundo M.

    2014-01-01

    In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200mmHg of CH4, and 200mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.

  16. Refinement of experimental design and conduct in laboratory animal research.

    PubMed

    Bailoo, Jeremy D; Reichlin, Thomas S; Würbel, Hanno

    2014-01-01

    The scientific literature of laboratory animal research is replete with papers reporting poor reproducibility of results as well as failure to translate results to clinical trials in humans. This may stem in part from poor experimental design and conduct of animal experiments. Despite widespread recognition of these problems and implementation of guidelines to attenuate them, a review of the literature suggests that experimental design and conduct of laboratory animal research are still in need of refinement. This paper will review and discuss possible sources of biases, highlight advantages and limitations of strategies proposed to alleviate them, and provide a conceptual framework for improving the reproducibility of laboratory animal research.

  17. Laboratory experiments on fronts

    NASA Astrophysics Data System (ADS)

    Chia, F.; Griffiths, R. W.; Linden, P. F.

    We describe a laboratory model of an upwelling front in a two-layer stratification. In the model the interface between the two layers slopes upwards toward a vertical boundary (or coastline) and can intersect the free surface to produce a front. Fluid motion in each layer is density driven and, in the undisturbed state, is in quasi-geostrophic balance. The front is observed to be unstable to (ageostrophic) disturbances with an along-front wavelength proportional to the Rossby radius of deformation. At very large amplitudes these unstable waves form closed circulations. However, in contrast to the behaviour of fronts far from vertical boundaries, where cyclone-anticyclone vortex pairs are formed, the presence of the coastline inhibits formation of anticyclonic eddies in the upper layer and enhances cyclonic rings of upper layer fluid which lie above cyclonic eddies in the lower layer. The cyclones move away from the vertical boundary and (as is also the case when no vertical boundary is present) they appear at the surface as eddies containing lower layer fluid on the seaward side of the mean frontal position.

  18. Boltzmann's constant: A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kruglak, Haym

    1989-03-01

    The mean-square displacement of a latex microsphere is determined from its projection on a TV monitor. The distribution of displacement is shown to be Gaussian. Boltzmann's constant, calculated from the pooled data of several observers, is in excellent agreement with the accepted value. The experiment is designed for one laboratory period in the advanced undergraduate laboratory.

  19. Condensed Laboratory Experiences for Nonmajors

    ERIC Educational Resources Information Center

    Thorne, James M.

    1975-01-01

    Describes the use of laboratory experiments termed hands-on demonstrations that are designed to reinforce the concepts covered in lecture with emphasis on maximizing the sense content (sight, smell, hearing) to improve retention by the student. (GS)

  20. Conducting Miller-Urey Experiments

    PubMed Central

    Parker, Eric T.; Cleaves, James H.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.; Zhou, Manshui; Bada, Jeffrey L.; Fernández, Facundo M.

    2014-01-01

    In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using an apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200 mmHg of CH4, and 200 mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage electric discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments. PMID:24473135

  1. Brownian motion - a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kruglak, Haym

    1988-09-01

    The availability of latex microspheres, compact television cameras and electronic calculators make it possible to perform an experiment on Brownian movement in one laboratory period. A more accurate value of N can be determined by other methods. However, the experiment described above has several valuable pedagogical outcomes. Undergraduate students get experience with several experimental techniques: (i) recording a `random walk' of a microphere; (ii) plotting a histogram of displacements; (iii) fitting a Gaussian curve to the histogram; (iv) checking the goodness of fit analytically or with probability graph paper; (v) calibrating screen displacements with a diffraction grating; (vi) calculating Avogadro's number from the experimental data; (vii) verifying data validity with the Einstein - Smoluchowski Law. The experiment also provides valuable practice in unit conversion and error analysis. Another instructive feature: the experiment makes the students aware of Einstein's work other than relativity. The students' reactions to the experiment were positive: `interesting', `challenging', `fun'.

  2. Conducting plant experiments in space.

    PubMed

    Kiss, John Z

    2015-01-01

    The growth and development of plants during spaceflight have important implications for both basic and applied research supported by NASA and other international space agencies. While there have been many reviews of plant space biology, the present chapter attempts to fill a gap in the literature on the actual process and methods of performing plant research in the spaceflight environment. The author has been a principal investigator on six spaceflight projects and has another two space experiments in development. These experiences include using the US Space Shuttle, the former Russian space station Mir, and the International Space Station, utilizing the Space Shuttle and Space X as launch vehicles. While there are several ways to obtain a spaceflight opportunity, this review focuses on using the NASA peer-reviewed sciences approach to get an experiment manifested for flight. Three narratives for the implementation of plant space biology experiments are considered from rapid turnaround of a few months to a project with new hardware development that lasted 6 years. The many challenges of spaceflight research include logistical and resource constraints such as crew time, power, cold stowage, and data downlinks, among others. Additional issues considered are working at NASA centers, hardware development, safety concerns, and the engineering versus science culture in space agencies. The difficulties of publishing the results from spaceflight research based on such factors as the lack of controls, limited sample size, and the indirect effects of the spaceflight environment also are summarized. Finally, lessons learned from these spaceflight experiences are discussed in the context of improvements for future space-based research projects with plants. PMID:25981781

  3. Conducting plant experiments in space.

    PubMed

    Kiss, John Z

    2015-01-01

    The growth and development of plants during spaceflight have important implications for both basic and applied research supported by NASA and other international space agencies. While there have been many reviews of plant space biology, the present chapter attempts to fill a gap in the literature on the actual process and methods of performing plant research in the spaceflight environment. The author has been a principal investigator on six spaceflight projects and has another two space experiments in development. These experiences include using the US Space Shuttle, the former Russian space station Mir, and the International Space Station, utilizing the Space Shuttle and Space X as launch vehicles. While there are several ways to obtain a spaceflight opportunity, this review focuses on using the NASA peer-reviewed sciences approach to get an experiment manifested for flight. Three narratives for the implementation of plant space biology experiments are considered from rapid turnaround of a few months to a project with new hardware development that lasted 6 years. The many challenges of spaceflight research include logistical and resource constraints such as crew time, power, cold stowage, and data downlinks, among others. Additional issues considered are working at NASA centers, hardware development, safety concerns, and the engineering versus science culture in space agencies. The difficulties of publishing the results from spaceflight research based on such factors as the lack of controls, limited sample size, and the indirect effects of the spaceflight environment also are summarized. Finally, lessons learned from these spaceflight experiences are discussed in the context of improvements for future space-based research projects with plants.

  4. IN-SERVICE HYDRAULIC CONDUCTIVITY OF GCLS IN LANDFILL COVERS - LABORATORY AND FIELD STUDIES

    EPA Science Inventory

    Laboratory experiments using multi-species inorganic solutions (containing calcium and sodium) were conducted on specimens of a new geosynthetic clay liner (GCL) containing sodium bentonite to determine how cation exchange and desiccation affected the hydraulic conductivity. Calc...

  5. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1998-03-20

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:18268748

  6. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1999-08-16

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:19399049

  7. Two LANL laboratory astrophysics experiments

    SciTech Connect

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.

  8. Laboratory experiments and space phenomena

    NASA Astrophysics Data System (ADS)

    Podgornyi, I.

    It is noted that two types of convection have been observed in the laboratory model of the magnetosphere: viscous convection and convection arising from field lines common to both the magnetosphere and artificial solar wind. With a southward field component in the solar wind, convection from the sun is observed in the polar cap, but with a large northward component, convection is directed toward the sun. A merging of the field lines is found to occur in the cleft. With the southward component, a visor appears in front of the boundary of the magnetosphere. The decay of the visor into a small magnetic structure is observed. The formation of an induced magnetosphere having a magnetic tail is shown in the experiments of the simulated conditions near nonmagnetic bodies with a plasma shell. Also investigated is a combined induced-intrinsic magnetosphere.

  9. Some Experiments with Biological Applications for the Elementary Laboratory

    ERIC Educational Resources Information Center

    Kammer, D. W.; Williams, J. A.

    1975-01-01

    Summarizes physics laboratory experiments with applications in the biological sciences. Includes the following topics: mechanics of the human arm, fluid flow in tubes, physics of learning, the electrocardiograph, nerve impulse conduction, and corrective lenses for eye defects. (Author/MLH)

  10. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  11. Pre-Student Teaching Laboratory Experiences.

    ERIC Educational Resources Information Center

    Verduin, John R., Jr.; Heinz, Charles R.

    This book (paperback), developed for preservice teachers in pre-student teaching laboratory experiences at Southern Illinois University, is intended also for wider use. The first half (text section) has three parts. Part 1 includes rationale for educational laboratory experiences and discussion of student, administrator, and classroom teacher…

  12. Modeling a Thermal Seepage Laboratory Experiment

    SciTech Connect

    Y. Zhang; J. Birkholzer

    2004-07-30

    A thermal seepage model has been developed to evaluate the potential for seepage into the waste emplacement drifts at the proposed high-level radioactive materials repository at Yucca Mountain when the rock is at elevated temperature. The coupled-process-model results show that no seepage occurs as long as the temperature at the drift wall is above boiling. This important result has been incorporated into the Total System Performance Assessment of Yucca Mountain. We have applied the same conceptual model to a laboratory heater experiment conducted by the Center for Nuclear Waste Regulatory Analyses. This experiment involves a fractured-porous rock system, composed of concrete slabs, heated by an electric heater placed in a 0.15 m diameter ''drift''. A substantial volume of water was released above the boiling zone over a time period of 135 days, giving rise to vaporization around the heat source. In this study, two basic conceptual models, similar to the thermal seepage models used in the Yucca Mountain Project, a dual-permeability model and an active-fracture model, are set up to predict evolution of temperature and saturation at the ''drift'' crown, and thereby to estimate potential for thermal seepage. Preliminary results from the model show good agreement with temperature profiles as well as with the potential seepage indicated in the lab experiments. These results build confidence in the thermal seepage models used in the Yucca Mountain Project. Different approaches are considered in our conceptual model to implement fracture-matrix interaction. Sensitivity analyses of fracture properties are conducted to help evaluation of uncertainty.

  13. A Kinetic Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Palmer, Richard E.

    1986-01-01

    Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)

  14. Laboratory Experience for Teaching Sensory Physiology

    ERIC Educational Resources Information Center

    Albarracin, Ana L.; Farfan, Fernando D.; Felice, Carmelo J.

    2009-01-01

    The major challenge in laboratory teaching is the application of abstract concepts in simple and direct practical lessons. However, students rarely have the opportunity to participate in a laboratory that combines practical learning with a realistic research experience. In the Bioengineering Department, we started an experiential laboratory…

  15. Practical Enzyme Kinetics: A Biochemical Laboratory Experiment.

    ERIC Educational Resources Information Center

    Rowe, H. Alan; Brown, Morris

    1988-01-01

    Describes an experiment that provides a fundamental understanding of the kinetics of the enzyme papain. Discusses background, materials, procedures and results. Mentions analogous experiments that can be conducted with enzymatic contact-lens cleaning solutions. (CW)

  16. Experiments On Transparent Conductive Films For Spacecraft

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Rutledge, Sharon K.; De Groh, Kim K.; Hung, Ching-Cheh; Malave-Sanabria, Tania; Hambourger, Paul; Roig, David

    1995-01-01

    Report describes experiments on thin, transparent, electrically conductive films made, variously, of indium tin oxide covered by magnesium fluoride (ITO/MgF2), aluminum-doped zinc oxide (AZO), or pure zinc oxide (ZnO). Films are candidates for application to such spacecraft components, including various optoelectronic devices and window surfaces that must be protected against buildup of static electric charge. On Earth, such films useful on heat mirrors, optoelectronic devices, gas sensors, and automotive and aircraft windows.

  17. Laboratory experiments on columnar jointing

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Morris, S. W.

    2003-12-01

    The mechanism causing columnar jointing has remained an enticing mystery since the basalt columns of the Giant's Causeway in N. Ireland were first reported to science in the 17th century. This phenomenon, in which shrinkage cracks form a quasi-hexagonal arrangement, has been shown to produce columns in starch, glass, coal, sandstone, and ice, as well as in a variety of lava flows. This suggests that this pattern-forming process is very general in nature. However, most studies of columnar jointing have been confined to field studies of basalt flows. Following Muller, we have experimented with desiccating corn starch in an effort to understand this pattern from a more general point of view. The diffusion and evaporation of water in starch is thought to be analogous to the diffusion and extraction of heat from a basalt flow. By combining direct sampling and x-ray tomography, fully 3D descriptions of columnar jointing were obtained with starch samples. We have characterized the pattern with several statistical indices, which describe its structure and relative disorder. These methods can resolve the ordering of the colonnade near the free surface. We identified two distinct mechanisms by which the mean column area increases during pattern evolution. We found both a slow, almost power-law increase in column area, as well as episodes of sudden catastrophic jumps in scale. The latter suggests that the column scale is not a simple single-valued function of drying rate, but rather a metastable state subject to hysteresis. Such metastable behaviour might explain a fundamental question about columnar jointing -- why the columns are so regular in the direction of their growth. Moreover, these experiments may help discriminate between the various theoretical models of this pattern forming process. Finally, our results lead to predictions that could be tested by field measurements on basaltic colonnades.

  18. CONDUCTIVITY PROFILE RATE OF CHANGE FROM FIELD AND LABORATORY DATA WITHIN BIODEGRADING PETROLEUM HYDROCARBON

    EPA Science Inventory

    We present the results of long term (500 days) measurements of the bulk conductivity in a field and laboratory experiment. Our objective was to determine the rate of change in bulk conductivity and whether this rate of change correlated with the petroleum hydrocarbon degradation...

  19. Kohlrausch Heat Conductivity Apparatus for Intermediate or Advanced Laboratory

    ERIC Educational Resources Information Center

    Jensen, H. G.

    1970-01-01

    Describes student experiment in measuring heat conductivity according to Kohlrausch's method. Theory, apparatus design, and experimental procedure is outlined. Results for copper are consistent to within 2 percent. (LC)

  20. Professional Laboratory Experiences at the Preservice Level.

    ERIC Educational Resources Information Center

    Gayles, Anne Richardson

    This monograph presents a completely theoretical analysis of data pertaining to professional laboratory experiences at the preservice level. The intention is to bring together in a useful pattern what is known and what is asserted about these experiences and to make specific functional proposals that, if implemented, may be conducive to enhancing…

  1. Plume Electrification: Laboratory and Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Mendez, J. S.; Dufek, J.

    2012-12-01

    The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Chaiten, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including triboelectric charging, charging from the brittle failure of rock, and charging due to phase change as material is carried aloft. While the overall electrification of the plume likely results from a combination of these processes, in the following work we focus on triboelectric charging—how a plume charges as particles collide with each other. To explore the role of triboelectric effects in plume charging we have conducted a number of small scale laboratory experiments similar to those designed by Forward et al (2009). Succinctly, the experiments consist of fluidizing an ash bed with nitrogen and monitoring the resulting currents induced by the moving particles. It is important to note that the reaction chamber only allows particle-particle interactions. The entire experimental setup is enclosed in a vacuum chamber, allowing us to carefully control the environment during experiments. Runs were carried out for different ash compositions, and driving pressures. We particularly focused on natural grain size distributions of ash and on quantifying not only the net charge but also the charging rate. Furthermore, we report on our progress to incorporate the collected data, namely charging rates, into a large eularian-eularian-lagrangian multiphase eruption dynamic model. Finally, to validate these results, we present our plans to deploy a large wireless sensor network of electrometers and magnetometers around active volcanoes to directly map the overhead E- and M-fields as an eruption occurs.

  2. Laboratory experiments of salt water intrusion

    NASA Astrophysics Data System (ADS)

    Crestani, Elena; Camporese, Matteo; Salandin, Paolo

    2015-04-01

    The problem of saltwater intrusion in coastal aquifers is dealt with by the proper setup of a sand-box device to develop laboratory experiments in a controlled environment. Saline intrusion is a problem of fundamental importance and affects the quality of both surface water and groundwater in coastal areas. In both cases the phenomenon may be linked to anthropogenic (construction of reservoirs, withdrawals, etc.) and/or natural (sea-level excursions, variability of river flows, etc.) changes. In recent years, the escalation of this problem has led to the development of specific projects and studies to identify possible countermeasures, typically consisting of underground barriers. Physical models are fundamental to study the saltwater intrusion problem, since they provide benchmarks for numerical model calibrations and for the evaluation of the effectiveness of solutions to contain the salt wedge. In order to study and describe the evolution of the salt wedge, the effectiveness of underground barriers, and the distance from the coast of a withdrawal that guarantees a continuous supply of fresh water, a physical model has been realized at the University of Padova to represent the terminal part of a coastal aquifer. It consists of a laboratory flume 500 cm long, 30 cm wide and 60 cm high, filled for an height of 45 cm with glass beads with a d50 of 0.6 mm and a uniformity coefficient d60/d10~= 1.5. The material is homogeneous and characterized by a porosity of about 0.37 and by an hydraulic conductivity of about 1.8×10-3 m/s. Upstream from the sand-box, a tank, continuously supplied by a pump, provides fresh water to recharge the aquifer, while the downstream tank, filled with salt water, simulates the sea. The volume of the downstream tank (~= 2 m3) is about five times the upstream one, so that density variations due to the incoming fresh water flow are negligible. The water level in the two tanks is continuously monitored by means of two level probes and is

  3. A laboratory experiment on internal solitary waves

    NASA Astrophysics Data System (ADS)

    Bourgault, Daniel; Richards, Clark

    2007-07-01

    A simple laboratory experiment is designed to show the properties of internal solitary waves. The procedure and analysis are suited for a senior undergraduate laboratory course, though the techniques described may also be used for demonstration purposes in a fluid mechanics course. The measurements collected can be compared to the weakly nonlinear Korteweg-deVries (KdV) theory for the wave shape, lengthscale-amplitude relationship, and phase speed. The experiment provides a good introduction to internal solitary waves in the ocean, along with an exploration of error analysis and the limits of applicability of a theory.

  4. Cell biology experiments conducted in space

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  5. Discovery & Interaction in Astro 101 Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.

    2016-01-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.

  6. Microscale Experiments in the Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Williamson, Kenneth L.

    1991-01-01

    Discusses the advent of microscale experiments within undergraduate organic chemistry laboratories mainly resulting from environmental safety concerns involving waste disposal. Considers the cost savings in purchasing less reagents and chemicals, the typical glassware and apparatus, the reduced hazards from elimination of open flames, and other…

  7. Ultrafiltration of Protein Solutions: A Laboratory Experiment

    ERIC Educational Resources Information Center

    Pansare, Vikram J.; Tien, Daniel; Prud'homme, Robert K.

    2015-01-01

    Biology is playing an increasingly important role in the chemical engineering curriculum. We describe a set of experiments we have implemented in our Undergraduate Laboratory course giving students practical insights into membrane separation processes for protein processing. The goal of the lab is to optimize the purification and concentration of…

  8. Value of Laboratory Experiments for Code Validations

    SciTech Connect

    Wawersik, W.R.

    1998-12-14

    Numerical codes have become indispensable for designing underground structures and interpretating the behavior of geologic systems. Because of the complexities of geologic systems, however, code calculations often are associated with large quantitative uncertainties. This papers presents three examples to demonstrate the value of laboratory(or bench scale) experiments to evaluate the predictive capabilities of such codes with five major conclusions: Laboratory or bench-scale experiments are a very cost-effective, controlled means of evaluating and validating numerical codes, not instead of but before or at least concurrent with the implementation of in situ studies. The design of good laboratory validation tests must identifj what aspects of a code are to be scrutinized in order to optimize the size, geometry, boundary conditions, and duration of the experiments. The design of good and sometimes difficult numerical analyses and sensitivity studies. Laboratory validation tests must involve: Good validation experiments will generate independent data sets to identify the combined effect of constitutive models, model generalizations, material parameters, and numerical algorithms. Successfid validations of numerical codes mandate a close collaboration between experimentalists and analysts drawing from the full gamut of observations, measurements, and mathematical results.

  9. Making Sparklers: An Introductory Laboratory Experiment.

    ERIC Educational Resources Information Center

    Keeney, Allen; Walters, Christina; Cornelius, Richard D.

    1995-01-01

    Describes a basic introductory chemistry experiment for science majors which departs from synthesis and moves instead into the realm of formulation. As part of a project that reorganizes the introductory chemistry sequence according to subjects with which students are acquainted, this laboratory makes use of oxidation-reduction chemistry to make…

  10. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  11. Laboratory and Field Experiments in Motor Learning.

    ERIC Educational Resources Information Center

    Singer, Robert N.; And Others

    This manual for research in motor learning was written for scientifically based physical educators, experimental psychologists, and others interested in the investigation of learning and performance phenomena associated with skill acquisition. Laboratory and field experiments are presented that can be run with or without the presence of a formal…

  12. Computer Based Simulation of Laboratory Experiments.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…

  13. Laser Mode Structure Experiments for Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Phillips, Richard A.; Gehrz, Robert D.

    Experiments dealing with laser mode structure are presented which are suitable for an upper division undergraduate laboratory. The theory of cavity modes is summarized. The mode structure of the radiation from a helium-neon laser is measured by using a photodiode detector and spectrum analyzer to detect intermode beating. Off-axial modes can be…

  14. Gigabar shock wave in a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.

    2016-03-01

    The current status of research on generating a powerful shock wave with a pressure of up to several gigabars in a laboratory experiment is reviewed. The focus is on results which give a possibility of shock-wave experiments to study an equation of state of matter (EOS) at the level of gigabar pressure. The proposals are discussed to achieve a plane record-pressure shock wave driven by laser-accelerated fast electrons with respect to EOS-experiment as well as to prospective method of inertial fusion target (ICF) ignition as shock ignition.

  15. The HAPPEX experiment at Jefferson Laboratory

    SciTech Connect

    Krishna Kumar; Paul Souder

    1997-10-01

    A new experimental program is under way at Jefferson Laboratory to probe the strange structure of the nucleon via parity violating electron scattering, HAPPEX is the first experiment from this program to run Jefferson Laboratory. We describe the physics motivation, provide an experimental overview and report on the results from the first data run. The asymmetry for the elastic scattering of 3.3 GeV electrons off target protons at a scattering angle of 12.5 degrees was measured to a precision of 15% of itself. The contribution from strange quark form factors was found to be zero within the experimental and theoretical uncertainties.

  16. Heat, Light, and Videotapes: Experiments in Heat Conduction Using Liquid Crystal Film.

    ERIC Educational Resources Information Center

    Bacon, Michael E.; And Others

    1995-01-01

    Presents a range of experiments in heat conduction suitable for upper-level undergraduate laboratories that make use of heat sensitive liquid crystal film to measure temperature contours. Includes experiments mathematically described by Laplace's equation, experiments theoretically described by Poisson's equation, and experiments that involve…

  17. Systems integration test laboratory application & experiences

    NASA Astrophysics Data System (ADS)

    Rimer, Melvyn; Falco, Michael; Solan, Michael J.

    1991-01-01

    The ability to safely control highly dynamic systems is of prime importance to designers. Whether the system is an aircraft, spacecraft, or propulsion system, control system designers must turn to test laboratories not only to verify and validate the control systems, but also to actually use the laboratory as a design and development tool. The use of the laboratory early in the development phase of a system—prior to committing to actual hardware/software (HW/SW)—permits early detection of system anomalies, thereby minimizing program development costs while enhancing safety. Later the laboratory can be used to train system operators (for example, pilots, ground crew) in preparation for flight/ground test. In the case of the statically unstable X-29 forward swept wing aircraft, a comprehensive real-time, hardware-in-the-loop test facility was critical in the development of the aircraft's digital fly-by-wire (FBW) flight control system. The X-29 laboratory initially was used to introduce control laws to a simulated real-time environment to verify control system characteristics. Later, actual flight hardware was introduced to the laboratory, at which point the formal system verification/validation test program began. The test program utilized detailed test plans and procedures derived from system requirements and specifications to map out all tests required. This assured that the maximum number of components of the system were exercised in the laboratory, and all components tested had traceability throughout the test program. The end-to-end hardware-in-the loop simulation provided the environment to perform critical failure modes testing, parameter sensitivity evaluation and ultimately pilot/ground crew training during normal and degraded flight control system operation. The X-29 test experience, applicable to the laboratory testing of all critical control systems, has ingrained the philosophy that successful development of complex systems requires an orderly build

  18. The BDX experiment at Jefferson Laboratory

    SciTech Connect

    Celentano, Andrea

    2015-06-01

    The existence of MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. The Beam Dump eXperiment (BDX) at Jefferson Laboratory aims to investigate this mass range. Dark matter particles will be detected through scattering on a segmented, plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls. The experiment will collect up to 1022 electrons-on-target (EOT) in a one-year period. For these conditions, BDX is sensitive to the DM-nucleon elastic scattering at the level of a thousand counts per year, and is only limited by cosmogenic backgrounds. The experiment is also sensitive to DM-electron elastic and inelastic scattering, at the level of 10 counts/year. The foreseen signal for these channels is a high-energy (> 100 MeV) electromagnetic shower, with almost no background. The experiment has been presented in form of a Letter of Intent to the laboratory, receiving positive feedback, and is currently being designed.

  19. Experience of maintaining laboratory educational website's sustainability

    PubMed Central

    Dimenstein, Izak B.

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular “niche of knowledge.” This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining “Grossing Technology in Surgical Pathology” (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal. PMID:27688928

  20. Experience of maintaining laboratory educational website's sustainability.

    PubMed

    Dimenstein, Izak B

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal. PMID:27688928

  1. Experience of maintaining laboratory educational website's sustainability.

    PubMed

    Dimenstein, Izak B

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.

  2. Experience of maintaining laboratory educational website's sustainability

    PubMed Central

    Dimenstein, Izak B.

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular “niche of knowledge.” This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining “Grossing Technology in Surgical Pathology” (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.

  3. Laboratory experiments from the toy store

    NASA Technical Reports Server (NTRS)

    Mcclelland, H. T.

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This material could be taught to a typical student of materials science or manufacturing at the high school level or above. The objectives of this experiment are as follows: (1) to qualitatively demonstrate the concepts of elasticity, plasticity, and the strain rate and temperature dependence of the mechanical properties of engineering materials; (2) to qualitatively demonstrate the basics of extrusion including material flow, strain rate dependence of defects, lubrication effects, and the making of hollow shapes by extrusion (the two parts may be two separate experiments done at different times when the respective subjects are covered); and (3) to demonstrate the importance of qualitative observations and the amount of information which can be gathered without quantitative measurements.

  4. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    SciTech Connect

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  5. Weld Tests Conducted by the Idaho National Laboratory

    SciTech Connect

    Larry Zirker; Lance Lauerhass; James Dowalo

    2007-02-01

    During the fiscal year of 2006, the Idaho National Laboratory (INL) performed many tests and work relating to the Mobile Melt-Dilute (MMD) Project components. Tests performed on the Staubli quick disconnect fittings showed promising results, but more tests were needed validate the fittings. Changes were made to the shield plug design—reduced the closure groove weld depth between the top of the canister and the top plate of the shielding plug from 0.5-in to 0.375-in deep. Other changes include a cap to cover the fitting, lifting pintle and welding code citations on the prints. Tests conducted showed stainless steel tubing, with 0.25-in, 0.375-in, and 0.5-in diameters, all with 0.035-in wall thickness, could be pinch seal welded using commercially available resistance welding equipment. Subsequent testing showed that these welds could be real-time inspected with ultrasonic inspection methods.

  6. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  7. A Guide for Conducting Outdoor Field Experiences.

    ERIC Educational Resources Information Center

    Matthews, Bruce; And Others

    Since research indicates teachers generally lack confidence in their ability to conduct lessons in the outdoors and feel inadequate regarding knowledge of the natural world, this guide has been developed to build teacher confidence in utilizing the outdoors. Designed to be used in conjunction with a practicum workshop, this guide presents…

  8. Recent Laboratory Astrophysics Experiments at LULI

    NASA Astrophysics Data System (ADS)

    Koenig, Michel; Michaut, Claire; Loupias, Bérénice; Falize, Emeric; Gregory, Chris; Kuramitsu, Yasuhiro; Dono, Seiichi; Vinci, Tommaso; Waugh, Jonny; Woolsey, Nigel; Ozaki, Norimasa; Benuzzi-Mounaix, Alessandra; Ravasio, Alessandra; Bouquet, Serge; Goahec, Marc Rabec Le; Nazarov, Wigen; Pikuz, Serguey; Sakawa, Youichi; Takabe, Hideaki; Kodama, Ryosuke

    At the LULI laboratory we developed since a few years a program on several topics related to laboratory astrophysics: high velocity jets, shock waves in density gradients, collisionless shocks, and radiative shocks (RS). In this paper, the latest experiments related to RS’s obtained on the new LULI2000 facility and on GEKKOXII are presented. In particular a strong radiative precursor was observed and its time evolution compared with 2D radiative simulations. The second topic developed at LULI is related to plasma jets which are often observed in Young Stellar Objects (YSO), during their phase of bulk contraction. They interact with the interstellar medium resulting in emission lobes, including the so-called bow shocks. The objective of our experiments was to generate plasma jets propagating through an ambient medium. To this aim, we developed a new target design (a foam filled cone ended with a “nozzle”) in order to generate a plasma jet. A jet-like structure was observed and its time evolution studied by varying the foam density. Interaction with ambient medium was recently performed showing growing instabilities for low density gas.

  9. Thermal-blooming laboratory experiments. (Reannouncement with new availability information)

    SciTech Connect

    Johnson, B.

    1992-12-31

    The authors conducted a multiphase series of laboratory experiments to explore the adaptive optics compensation of a laser beam distorted by strong thermal blooming. Their experimental approach was to create on a small, low-power beam the same phase distortion that would be experienced by a large, high-power beam propagating through the atmosphere and to apply phase compensation via deformable mirrors. The authors performed the investigations to lay the foundation for future ground-based laser experiments and their corresponding atmospheric-propagation computer models.

  10. Conductance of Ion Channels - Theory vs. Experiment

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  11. Wheel Abrasion Experiment Conducted on Mars

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1998-01-01

    Sojourner rover showing Lewis' wheel abrasion experiment. The Mars Pathfinder spacecraft soft-landed on Mars on July 4, 1997. Among the many experiments on its small Sojourner rover are three technology experiments from the NASA Lewis Research Center, including the Wheel Abrasion Experiment (WAE). The WAE was designed, built, delivered, and operated on Mars by a team of engineers and scientists from Lewis' Photovoltaics and Space Environments Branch. This experiment collected data to assess wheel surface wear on the Sojourner. It used a specially designed rover wheel, with thin films (200 to 1000 angstroms) of aluminum, nickel, and platinum deposited on black, anodized aluminum strips attached to the rover's right center wheel. As the wheel spun in the Martian soil, a photovoltaic sensor monitored changes in film reflectivity. These changes indicated abrasion of the metal films by Martian surface material. Rolling wear data were accumulated by the WAE. Also, at frequent intervals, all the rover wheels, except the WAE test wheel, were locked to hold the rover stationary while the test wheel alone was spun and dug into the Martian regolith. These tests created wear conditions more severe than simple rolling. The WAE will contribute substantially to our knowledge of Martian surface characteristics. Marked abrasion would indicate a surface composed of hard, possibly sharply edged grains, whereas lack of abrasion would suggest a somewhat softer surface. WAE results will be correlated with ground simulations to determine which terrestrial materials behave most like those on Mars. This knowledge will enable a deeper understanding of erosion processes on Mars and the role they play in Martian surface evolution. Preliminary results show that electrostatic charging of the rover wheels sometimes caused dust to accumulate on the WAE wheel, making interpretation of the reflectance data problematic. If electrostatic charging is the mechanism for dust attraction, this indicates

  12. Progress photograph of sample experiments being conducted with lunar material

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A progress photograph of sample experiments being conducted in the Manned Spacecraft Center's Lunar Receiving Laboratory with lunar material brought back to Earth by the crew of the Apollo 11 mission. Aseptic cultures of liverwort (marchantia polymorpha) - a species of plant commonly found growing on rocks or in wooded areas - are shown in two rows of sample containers. Seven weeks or some 50 days prior to this photograph 0.22 grams of finely ground lunar material was added to each of the upper samples of cultures. The lower cultures were untreated, and a noted difference can be seen in the upper row and the lower one, both in color and size of the culture.

  13. Laboratory Experiments of Rip Current Generation

    NASA Astrophysics Data System (ADS)

    Garnier, R.; Coco, G.; Lomonaco, P.; Dalrymple, R. A.; Alvarez, A.; Gonzalez, M.; Medina, R.

    2014-12-01

    The hypothesis of rip current generation from purely hydrodynamic processes is here investigated through laboratory experiments. The experiments have been performed at the Cantabria Coastal and Ocean Basin (CCOB) with a segmented wavemaker consisting of 64 waveboards. The basin measures 25m in the cross-shore and 32m in the alongshore direction and the water depth at the wavemaker is 1m. A concrete plane sloping (1:5) beach has been built in the opposite side of the wave machine, its toe is 15m from the waveboards. Reflective lateral walls covered the full length of the basin. The set of instruments consists of 33 wave gauges deployed along two longshore and two cross-shore transects, 7 acoustic Doppler velocimeters and 15 run-up wires. Furthermore a set of two cameras has been synchronized with the data acquisition system. Two types of experiments have been performed to specifically study the generation of rip currents under wave group forcing. First, similarly to the experiments of Fowler and Dalrymple (Proc. 22nd Int. Conf. Coast. Eng.,1990), two intersecting wave trains with opposite directions have been imposed. They give rise to the formation of a non-migrating rip current system with a wavelength that depends on wave frequency and direction. Second, single wave trains with alongshore periodic amplitude attenuation have been imposed. Although the attenuation has been set such that the incident wave field has the same envelope as in the first type of experiments, the rip current system differs due to diffraction and interference processes. The results for different wave conditions (maximum incident wave height from 0.2m to 0.4m, wave period from 1.4s to 2s) will be presented and the intensity of the rip currents will be compared to the alongshore variation in wave set-up. This research is part of the ANIMO project funded by the Spanish Government under contract BIA2012-36822.

  14. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  15. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  16. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  17. Electrical conductivity measurements from the STRATCOM 8 experiment

    NASA Technical Reports Server (NTRS)

    Mitchell, J. D.; Ho, K. J.; Half, L. C.; Croskey, C. L.; Olsen, R. O.

    1978-01-01

    A blunt probe experiment for measuring electrical conductivity was flown with the STRATCOM 8 instrument package. Data were obtained by the instrument throughout the entire measurement period. A preliminary analysis of the data indicates an enhancement in conductivity associated with the krypton discharge ionization lamp, particularly in negative conductivity. The conductivity values and their altitude dependence are consistent with previous balloon and rocket results.

  18. Armor breakup and reformation in a degradational laboratory experiment

    NASA Astrophysics Data System (ADS)

    Orrú, Clara; Blom, Astrid; Uijttewaal, Wim S. J.

    2016-06-01

    Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1 mm sand fraction and two gravel fractions (6 and 10 mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport conditions led to an abrupt spatial transition in the bed slope and in the mean grain size of the bed surface, as such showing similar results to a previous laboratory experiment conducted with a bimodal mixture. The focus of the current analysis is to study the mechanisms of armor breakup. After an increase in flow rate the armor broke up and a new coarser armor quickly formed. The breakup initially induced a bed surface fining due to the exposure of the finer substrate, which was accompanied by a sudden increase in the sediment transport rate, followed by the formation of an armor that was coarser than the initial one. The reformation of the armor was enabled by the supply of coarse material from the upstream degrading reach and the presence of gravel in the original substrate sediment. Here armor breakup and reformation enabled slope adjustment such that the new steady state was closer to normal flow conditions.

  19. Laboratory Studies to Examine the Impact of Polyacrylamide (PAM) on Soil Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Moran, E. A.; Young, M. H.; Yu, Z.

    2005-12-01

    Polyacrylamide (PAM) is a long-chain synthetic polymer made of the monomer acrylamide (AMD). PAM has numerous uses ranging from food processing to drilling to wastewater treatment. More recently it has been proposed as a canal sealant in the western US to improve water conservation. To support a larger field-based experimental program being implemented in Grand Junction, CO, soil column experiments are being conducted to evaluate the mechanisms of how, and to what extent, PAM reduces soil hydraulic conductivity. The goal of the experiments is to find the optimum concentration and application method of PAM that reduces hydraulic conductivity to the greatest extent. Column tests were conducted, in triplicate, using a constant head method in acrylic columns of 15 cm length and 6.4 cm diameter. An unbalanced multi-factorial design was used with experimental variables including soil type (medium silica sand, locally-derived sand, and locally-derived loam), PAM concentration (11, 22, 44, 88 kg/canal-ha), turbidity (0, 100, 350 NTU), and application method (hydrated PAM on dry soil and powdered PAM applied to water column above saturated soil). Non-crosslinked anionic PAM with a molecular weight of 12 to 24 Mg/mol was used for all experiments. Additional experiments were conducted in graduated cylinders to evaluate interactions between PAM, turbidity and water chemistry. Results of the laboratory tests will be presented and discussed in the context of water conservation in the western US.

  20. Magnetized laboratory plasma jets: experiment and simulation.

    PubMed

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 MA, 100 ns current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μm Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ∼1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μs current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics. PMID:25679726

  1. Magnetized laboratory plasma jets: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  2. Organic Laboratory Experiments: Micro vs. Conventional.

    ERIC Educational Resources Information Center

    Chloupek-McGough, Marge

    1989-01-01

    Presents relevant statistics accumulated in a fall organic laboratory course. Discusses laboratory equipment setup to lower the amount of waste. Notes decreased solid wastes were produced compared to the previous semester. (MVL)

  3. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  4. Meteorological Development Laboratory Student Career Experience Program

    NASA Astrophysics Data System (ADS)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  5. COLUMN EXPERIMENTS AND ANOMALOUS CONDUCTIVITY IN HYDROCARBON-IMPACTED SOILS

    EPA Science Inventory

    A laboratory experiment was designed to increase the understanding of the geoelectric effects of microbial " degradation of hydrocarbons. Eight large columns were were paired to provide a replicate of each of four experiments. These large-volume columns contained "sterilized" soi...

  6. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  7. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  8. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  9. The laboratory experience in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Di Stefano, Maria C.

    1997-03-01

    The last two decades or so have witnessed intense efforts to improve the teaching and learning of physics. Scholarly studies have provided the grounding for many projects which reform the structure of introductory courses. A number of these innovations, however, are resource intensive, or depend on the ability to introduce changes in areas which are beyond the control of the faculty (e.g., scheduling), thus inhibiting their implementation. An alternative strategy that overcomes these obstacles is to modify the nature of the laboratory experience (a component that practically nobody disputes is an essential part of the introductory course), to provide hands-on learning opportunities that differ from the traditional "follow-this-recipe-to-verify-this-law" approach. I have chosen to implement a variety of activities that support the overall objectives of the course: developing conceptual understanding and transferable skills, and providing practice in the ways scientists actually do science. Given the audience in this two-semester, algebra-based course, mostly biology majors and pre-professionals (health-related careers, such as medicine, physical therapy, and veterinary), these goals were identified as the most important and lasting contribution that a physics course can make to the students intellectual development. I offer here examples of the types of hands on activities that I have implemented, organized for the sake of this presentation in four rather loose categories, depending on which subset of the course objectives the activities mostly address: self-designed lab activities, discussion of demo-type activities, building concepts from simple to complex, and out-of-lab physical phenomena.

  10. Density Estimations in Laboratory Debris Flow Experiments

    NASA Astrophysics Data System (ADS)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Malcherek, Andreas; Fischer, Jan-Thomas; Pudasaini, Shiva P.

    2016-04-01

    Bulk density and its variation is an important physical quantity to estimate the solid-liquid fractions in two-phase debris flows. Here we present mass and flow depth measurements for experiments performed in a large-scale laboratory set up. Once the mixture is released and it moves down the inclined channel, measurements allow us to determine the bulk density evolution throughout the debris flow. Flow depths are determined by ultrasonic pulse reflection, and the mass is measured with a total normal force sensor. The data were obtained at 50 Hz. The initial two phase material was composed of 350 kg debris with water content of 40%. A very fine pebble with mean particle diameter of 3 mm, particle density of 2760 kg/m³ and bulk density of 1400 kg/m³ in dry condition was chosen as the solid material. Measurements reveal that the debris bulk density remains high from the head to the middle of the debris body whereas it drops substantially at the tail. This indicates lower water content at the tail, compared to the head and the middle portion of the debris body. This means that the solid and fluid fractions are varying strongly in a non-linear manner along the flow path, and from the head to the tail of the debris mass. Importantly, this spatial-temporal density variation plays a crucial role in determining the impact forces associated with the dynamics of the flow. Our setup allows for investigating different two phase material compositions, including large fluid fractions, with high resolutions. The considered experimental set up may enable us to transfer the observed phenomena to natural large-scale events. Furthermore, the measurement data allows evaluating results of numerical two-phase mass flow simulations. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural

  11. Do-It-Yourself Experiments for the Instructional Laboratory

    ERIC Educational Resources Information Center

    Craig, Norman C.; Hill, Cortland S.

    2012-01-01

    A new design for experiments in the general chemistry laboratory incorporates a "do-it-yourself" component for students. In this design, students perform proven experiments to gain experience with techniques for about two-thirds of a laboratory session and then spend the last part in the do-it-yourself component, applying the techniques to an…

  12. Operational Amplifier Experiments for the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Braun, Robert D.

    1996-01-01

    Provides details of experiments that deal with the use of operational amplifiers and are part of a course in instrumental analysis. These experiments are performed after the completion of a set of electricity and electronics experiments. (DDR)

  13. Proton conduction and hydrogen diffusion in olivine: an attempt to reconcile laboratory and field observations and implications for the role of grain boundary diffusion in enhancing conductivity

    NASA Astrophysics Data System (ADS)

    Jones, Alan G.

    2016-04-01

    Proton conduction in olivine is directly related to the diffusion rate of hydrogen by the Nernst-Einstein equation, but prior attempts to use this relationship have always invoked additional terms to try to reconcile laboratory measurements of proton conduction and hydrogen diffusion data. New diffusion experiments on olivine demonstrate that lattice diffusion associated with vacancies is indeed highly dependent on the defect site where hydrogen is bonded, but from none of the sites is diffusion fast enough to explain the observed laboratory proton conduction experiments. Hydrogen diffusion associated with polarons (redox-exchange) is significantly faster but still cannot explain the low activation energy typical of electrical conductivity measurements. A process of bulk diffusion, which combines lattice diffusion (either associated with redox-exchange or vacancies) with the far faster grain boundary diffusion, explains the laboratory results, but does not explain the field observations with an average grain size of 0.5-2 cm at 100 km below the Jagersfontein kimberlite field on the Kaapvaal craton. Either conduction is dominantly along well-interconnected grain boundaries of very fine-grained (0.01 mm) damp (80 wt ppm) olivine grains or fine-grained (0.05 mm), wet (400 wt ppm) pyroxene grains, or another conduction mechanism must be primarily responsible for the field observations. If diffusion is the correct explanation, the conductivity below the Gibeon kimberlite field in Namibia is too high to be explained by increased thermal state alone of a diffusion process, even for such fine-grained pyroxenes.

  14. Cryogenic Fracturing: Laboratory Visualization Experiments and Numerical Simulations Using Peridynamics

    NASA Astrophysics Data System (ADS)

    Martin-Short, R.; Edmiston, J. K.

    2015-12-01

    Typical hydraulic fracturing operations involve the use of a large quantity of water, which can be problematic for several reasons including possible formation (permeability) damage, disposal of waste water, and the use of precious local water resource. An alternate reservoir permeability enhancing technology not requiring water is cryogenic fracturing. This method induces controlled fracturing of rock formations by thermal shock and has potentially important applications in the geothermal and hydrocarbon industries. In this process, cryogenic fluid—such as liquid nitrogen—is injected into the subsurface, causing fracturing due to thermal gradients. These fractures may improve the formation permeability relative to that achievable by hydraulic fracturing alone. We conducted combined laboratory visualization and numerical simulations studies of thermal-shock-induced fracture initiation and propagation resulting from liquid nitrogen injection in rock and analog materials. The experiment used transparent soda-lime glass cubes to facilitate real-time visualization of fracture growth and the fracture network geometry. In this contribution, we report the effect of overall temperature difference between cryogenic fluid and solid material on the produced fracture network, by pre-heating the glass cubes to several temperatures and injecting liquid nitrogen. Temperatures are monitored at several points by thermocouple and the fracture evolution is captured visually by camera. The experiment was modeled using a customized, thermoelastic, fracture-capable numerical simulation code based on peridynamics. The performance of the numerical code was validated by the results of the laboratory experiments, and then the code was used to study the different factors affecting a cryogenic fracturing operation, including the evolution of residual stresses and constitutive relationships for material failure. In complex rock such as shale, understanding the process of cryogenic

  15. Laboratory Experiments for Network Security Instruction

    ERIC Educational Resources Information Center

    Brustoloni, Jose Carlos

    2006-01-01

    We describe a sequence of five experiments on network security that cast students successively in the roles of computer user, programmer, and system administrator. Unlike experiments described in several previous papers, these experiments avoid placing students in the role of attacker. Each experiment starts with an in-class demonstration of an…

  16. Results from the cascaded variable conductance heatpipe experiment on LDEF

    NASA Technical Reports Server (NTRS)

    Grote, Michael G.

    1991-01-01

    A Variable Conductance Heat Pipe Experiment (CVCHPE) was successfully flown onboard the LDEF and demonstrated temperature control better than +/- 0.3 C during 50 days of on-orbit data collection in a widely varying external environment. The experiment used two series connected, dry reservoir variable conductance heat pipes which require no electrical power for operation. The heat pipes used a central artery design with ammonia working fluid and nitrogen control gas.

  17. Brownian Motion--a Laboratory Experiment.

    ERIC Educational Resources Information Center

    Kruglak, Haym

    1988-01-01

    Introduces an experiment involving the observation of Brownian motion for college students. Describes the apparatus, experimental procedures, data analysis and results, and error analysis. Lists experimental techniques used in the experiment. Provides a circuit diagram, typical data, and graphs. (YP)

  18. Principles of Radio: A Laboratory Experiment

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2002-01-01

    An experiment is proposed for learning the principles of radio. A simple radio receiver illustrates amplitude modulation and demodulation, the selectivity of a receiver and the features of a directional antenna. Both normal and computerized versions of the experiment are described. The computerized experiment employs the "ScienceWorkshop"…

  19. Simulation of four pure conduction paraffin-wax freezing experiments

    SciTech Connect

    Deal, R.; Solomon, A.D.

    1981-01-01

    Four freezing experiments with N-Octadecane paraffin wax are described. Their results are analyzed using a variety of mathematical techniques for conduction phase-change problems. It is concluded, among other things, that the effective thermal conductivity of the solid wax in this case is about 3.5 times the literature value.

  20. An Experiment in Heat Conduction Using Hollow Cylinders

    ERIC Educational Resources Information Center

    Ortuno, M.; Marquez, A.; Gallego, S.; Neipp, C.; Belendez, A.

    2011-01-01

    An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is…

  1. Colorimetric Titration Experiment for the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Lopez, Edwin; Vassos, Basil H.

    1984-01-01

    Describes a colorimetric titration instrument usable in the undergraduate laboratory that fulfills the objectives of ruggedness, freedom from ambient light interference, and low cost. Although accessories can be added (raising the price), the basic instrument is low priced and can be used manually with a simple voltmeter. (JN)

  2. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  3. A Meaningful Experience in Laboratory Investigation

    ERIC Educational Resources Information Center

    Szinai, S. S.; Szinai, N.

    1976-01-01

    The framework of the course "Problems in Pharmaceutical Chemistry" was used to give second- and third-year pharmacy students at the University of Florida an opportunity to obtain an insight into the workings of laboratories dealing with drug-related problems. Goals, outline, and an illustrative project for the course are described. (LBH)

  4. Laboratory Experiences in Marine Biology, Student Edition.

    ERIC Educational Resources Information Center

    Raimist, Roger J.

    This manual contains instructions for laboratory exercises using marine organisms. For each exercise a problem is defined, materials are listed, possible ways to solve the problem are suggested, questions are asked to guide the student in interpreting data, and further reading is suggested. The exercises deal with the measurement of oxygen…

  5. Conducting a Teaching Experiment with a Gifted Student

    ERIC Educational Resources Information Center

    Hekimoglu, Serkan

    2004-01-01

    In this study, the teaching experiment methodology is used to observe firsthand a gifted student's mathematical learning and reasoning. A series of teaching experiments was conducted with 1 gifted and 1 average 7th-grade student to investigate how the gifted student's mathematical concepts and operation constructions differed from those of the…

  6. A Laboratory Experiment on the Statistical Theory of Nuclear Reactions

    ERIC Educational Resources Information Center

    Loveland, Walter

    1971-01-01

    Describes an undergraduate laboratory experiment on the statistical theory of nuclear reactions. The experiment involves measuring the relative cross sections for formation of a nucleus in its meta stable excited state and its ground state by applying gamma-ray spectroscopy to an irradiated sample. Involves 3-4 hours of laboratory time plus…

  7. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  8. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  9. Estimation on the self recovery behavior of low-conductivity layer in landfill final cover by laboratory conductivity tests.

    PubMed

    Kwon, O; Park, J

    2006-11-01

    This study examined the application of a Self Recovering Sustainable Layer (SRSL) as a landfill final cover. Low-conductivity layers in landfill covers are known to have problems associated with cracking as a result of the differential settlement or climatic changes. A SRSL is defined as a layer with chemical properties that reduces the increased hydraulic conductivity resulting from cracking by forming low-conductivity precipitates of chemicals contained in the layer. In this study, the formation of precipitates was confirmed using a batch test, spectroscopic analysis and mineralogical speciation tests. The possibility of secondary contamination due to the chemicals used for recovery was evaluated using a leaching test. A laboratory conductivity test was performed on a single layer composed of each chemical as well as on a 2-layer system. The recovery performance of the SRSL was estimated by developing artificial cracks in the specimens and observing the change in hydraulic conductivity as a function of time. In the laboratory conductivity test, the hydraulic conductivity of a 2-layer system as well as those of the individual layers that comprise the 2-layer system was estimated. In addition sodium ash was found to enhance the reduction in conductivity. A significant increase in conductivity was observed after the cracks developed but this was reduced with time, which indicated that the SRSL has a proper recovering performance. In conclusion, a SRSL can be used as a landfill final cover that could maintain low-conductivity even after the serious damages due to settlement.

  10. 49 CFR 40.91 - What validity tests must laboratories conduct on primary specimens?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false What validity tests must laboratories conduct on primary specimens? 40.91 Section 40.91 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.91 What validity tests must laboratories...

  11. 49 CFR 40.91 - What validity tests must laboratories conduct on primary specimens?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What validity tests must laboratories conduct on primary specimens? 40.91 Section 40.91 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.91 What validity tests must laboratories...

  12. Industrial Hygiene Laboratory accreditation: The JSC experience

    NASA Technical Reports Server (NTRS)

    Fadner, Dawn E.

    1993-01-01

    The American Industrial Hygiene Association (AIHA) is a society of professionals dedicated to the health and safety of workers and community. With more than 10,000 members, the AIHA is the largest international association serving occupational and environmental health professionals practicing industrial hygiene in private industry, academia, government, labor, and independent organizations. In 1973, AIHA developed a National Industrial Hygiene Laboratory Accreditation Program. The purposes of this program are shown.

  13. Macromolecular crystal growth experiments on International Microgravity Laboratory--1.

    PubMed Central

    Day, J.; McPherson, A.

    1992-01-01

    Macromolecular crystal growth experiments, using satellite tobacco mosaic virus (STMV) and canavalin from jack beans as samples, were conducted on a US Space Shuttle mission designated International Microgravity Laboratory--1 (IML-1), flown January 22-29, 1992. Parallel experiments using identical samples were carried out in both a vapor diffusion-based device (PCG) and a liquid-liquid diffusion-based instrument (CRYOSTAT). The experiments in each device were run at 20-22 degrees C and at colder temperatures. Crystals were grown in virtually every trial, but the characteristics of the crystals were highly dependent on the crystallization technique employed and the temperature experience of the sample. In general, very good results, based on visual inspection of the crystals, were obtained in both PCG and CRYOSTAT. Unusually impressive results were, however, achieved for STMV in the CRYOSTAT instrument. STMV crystals grown in microgravity by liquid-liquid diffusion were more than 10-fold greater in total volume than any STMV crystals previously grown in the laboratory. X-ray diffraction data collected from eight STMV crystals grown in CRYOSTAT demonstrated a substantial improvement in diffraction quality over the entire resolution range when compared to data from crystals grown on Earth. In addition, the extent of the diffraction pattern for the STMV crystals grown in space extended to 1.8 A resolution, whereas the best crystals that were ever grown under conditions of Earth's gravity produced data limited to 2.3 A resolution. Other observations indicate that the growth of macromolecular crystals is indeed influenced by the presence or absence of gravity. These observations further suggest, consistent with earlier results, that the elimination of gravity provides a more favorable environment for such processes. PMID:1303744

  14. Buffer Capacity: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Russo, Steven O.; Hanania, George I. H.

    1987-01-01

    Describes a quantitative experiment designed to demonstrate buffer action and the measurement of buffer capacity. Discusses how to make acetate buffers, determine their buffer capacity, plot the capacity/pH curve, and interpret the data obtained. (TW)

  15. Recycle with Heating: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foord, A.; Mason, G.

    1985-01-01

    Describes an apparatus (built from domestic plumbing pipes and fittings) that uses only water and electricity (as consumables) to investigate basic mass and heat balances in a system with recycle. Also describes experiments using the apparatus. (JN)

  16. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment.

    PubMed

    Good, J F; O'Sullivan, A D; Wicke, D; Cochrane, T A

    2012-01-01

    In order to evaluate the influence of substrate composition on stormwater treatment and hydraulic effectiveness, mesocosm-scale (180 L, 0.17 m(2)) laboratory rain gardens were established. Saturated (constant head) hydraulic conductivity was determined before and after contaminant (Cu, Zn, Pb and nutrients) removal experiments on three rain garden systems with various proportions of organic topsoil. The system with only topsoil had the lowest saturated hydraulic conductivity (160-164 mm/h) and poorest metal removal efficiency (Cu ≤ 69.0% and Zn ≤ 71.4%). Systems with sand and a sand-topsoil mix demonstrated good metal removal (Cu up to 83.3%, Zn up to 94.5%, Pb up to 97.3%) with adequate hydraulic conductivity (sand: 800-805 mm/h, sand-topsoil: 290-302 mm/h). Total metal amounts in the effluent were <50% of influent amounts for all experiments, with the exception of Cu removal in the topsoil-only system, which was negligible due to high dissolved fraction. Metal removal was greater when effluent pH was elevated (up to 7.38) provided by the calcareous sand in two of the systems, whereas the topsoil-only system lacked an alkaline source. Organic topsoil, a typical component in rain garden systems, influenced pH, resulting in poorer treatment due to higher dissolved metal fractions.

  17. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment.

    PubMed

    Good, J F; O'Sullivan, A D; Wicke, D; Cochrane, T A

    2012-01-01

    In order to evaluate the influence of substrate composition on stormwater treatment and hydraulic effectiveness, mesocosm-scale (180 L, 0.17 m(2)) laboratory rain gardens were established. Saturated (constant head) hydraulic conductivity was determined before and after contaminant (Cu, Zn, Pb and nutrients) removal experiments on three rain garden systems with various proportions of organic topsoil. The system with only topsoil had the lowest saturated hydraulic conductivity (160-164 mm/h) and poorest metal removal efficiency (Cu ≤ 69.0% and Zn ≤ 71.4%). Systems with sand and a sand-topsoil mix demonstrated good metal removal (Cu up to 83.3%, Zn up to 94.5%, Pb up to 97.3%) with adequate hydraulic conductivity (sand: 800-805 mm/h, sand-topsoil: 290-302 mm/h). Total metal amounts in the effluent were <50% of influent amounts for all experiments, with the exception of Cu removal in the topsoil-only system, which was negligible due to high dissolved fraction. Metal removal was greater when effluent pH was elevated (up to 7.38) provided by the calcareous sand in two of the systems, whereas the topsoil-only system lacked an alkaline source. Organic topsoil, a typical component in rain garden systems, influenced pH, resulting in poorer treatment due to higher dissolved metal fractions. PMID:22643410

  18. [Our experience with outside laboratory quality control].

    PubMed

    Dochev, D; Arakasheva, V; Nashkov, A; Tsachev, K

    1979-01-01

    The results from the national outside laboratory qualitative control of the clinical diagnostic laboratory investigations for the period September 1975 -- May 1977 were described. The following interlaboratory discrepancy was found on base of a systematic analysis of the data from the last two ring-like check-ups, November 1976 and May 1977, exressed by the variation coefficient (V.C. %); total protein, sodium, potassium and chlorides -- under 10%; cholesterol, urea and total fats -- between 10 and 20%; calcium, phosphorus, iron and creatinine -- over 20%. The highest per cent of admissible results are found with total protein -- to 85%; cholesterol -- to 70.38%; glucosa -- to 73.17%, urea -- to 69.23%, potassium -- to 59.46%, chlorides -- to 57.9%. With sodium, phosphorus, calcium, iron creatinine and uric acid the "admissibility" fluctuates about or under 50 per cent. The values of the qualitative-control indices discussed are comparable with the values obtained from them in the interlaboratory comparisons of other countries. PMID:494628

  19. Laboratory experiments in integrated circuit fabrication

    NASA Technical Reports Server (NTRS)

    Jenkins, Thomas J.; Kolesar, Edward S.

    1993-01-01

    The objectives of the experiment are fourfold: to provide practical experience implementing the fundamental processes and technology associated with the science and art of integrated circuit (IC) fabrication; to afford the opportunity for the student to apply the theory associated with IC fabrication and semiconductor device operation; to motivate the student to exercise engineering decisions associated with fabricating integrated circuits; and to complement the theory of n-channel MOS and diffused devices that are presented in the classroom by actually fabricating and testing them. Therefore, a balance between theory and practice can be realized in the education of young engineers, whose education is often criticized as lacking sufficient design and practical content.

  20. Integrated verification experiment data collected as part of the Los Alamos National Laboratory`s Source Region program. Appendix F: Regional data from Lawrence Livermore National Laboratory and Sandia National Laboratory Seismic Networks

    SciTech Connect

    Taylor, S.R.

    1993-06-11

    A dataset of regional seismograms assembled for a series of Integrated Verification Experiments conducted by the Los Alamos National Laboratory Source Region program is described. The seismic data has been assembled from networks operated by Lawrence Livermore National Laboratory and Sandia National Laboratory. Examples of the data are shown and basic recording characteristics of the network are described. The seismograms are available on a data tape in SAC format upon request.

  1. Preservice Teachers' Research Experiences in Scientists' Laboratories

    ERIC Educational Resources Information Center

    Brown, Sherri; Melear, Claudia

    2007-01-01

    To promote the use of scientific inquiry methods in K-12 classrooms, departments of teacher education must provide science teachers with experiences using such methods. To comply with state and national mandates, an apprenticeship course was designed to afford preservice secondary science teachers opportunities to engage in an authentic, extended,…

  2. Simple Laboratory Experiment for Illustrating Soil Respiration.

    ERIC Educational Resources Information Center

    Hattey, J. A.; Johnson, G. V.

    1997-01-01

    Describes an experiment to illustrate the effect of food source and added nutrients (N) on microbial activity in the soil. Supplies include air-dried soil, dried plant material, sources of carbon and nitrogen, a trap such as KOH, colored water, and a 500-mL Erlenmeyer flask. Includes a diagram of an incubation chamber to demonstrate microbial…

  3. Laboratory plate tectonics: a new experiment.

    PubMed

    Gans, R F

    1976-03-26

    A "continent" made of a layer of hexagonally packed black polyethylene spheres floating in clear silicon oil breaks into subcontinents when illuminated by an ordinary incandescent light bulb. This experiment may be a useful model of plate tectonics driven by horizontal temperature gradients. Measurements of the spreading rate are made to establish the feasibility of this model.

  4. "Crown Ether" Synthesis: An Organic Laboratory Experiment.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1979-01-01

    This experiment is designed to acquaint the student with a macromolecular synthesis of a crown ether type compound. The starting materials are readily available and the product, a cyclic polyether, belongs to a class of compounds that has aroused the interest of chemist and biologist alike. (Author/BB)

  5. Linking Laboratory Experiences to the Real World: The Extraction of Octylphenoxyacetic Acid from Water

    ERIC Educational Resources Information Center

    Loyo-Rosales, Jorge E.; Torrents, Alba; Rosales-Rivera, Georgina C.; Rice, Clifford C.

    2006-01-01

    Several chemical concepts to the extraction of a water pollutant OPC (octylphenoxyacetic acid) is presented. As an introduction to the laboratory experiment, a discussion on endocrine disrupters is conducted to familiarize the student with the background of the experiment and to explain the need for the extraction and quantitation of the OPC which…

  6. Preparation of Conductive Polymer Polyanilines for an Experiment for Students

    NASA Astrophysics Data System (ADS)

    Yano, Jun; Matsuzaki, Kiyoka; Ichimori, Hayato; Ito, Takeshi; Okano, Hiroshi; Osaki, Nobukazu

    For an organic and polymer chemistry experiment for students in university and college of technology, synthesis of conducting polymers was attempted. Three conductive polymers, polyaniline, poly (o-phenylenediamine) and poly (N-methylaniline) , were prepared by oxidative polymerizations of the corresponding monomers. Among four oxidizing agents, K2Cr2O7, KIO3, FeCl3 and (NH4) 2S2O8, (NH4) 2S2O8 was turned out to be the best oxidizing agent for the polymerizations. The polymerizing solutions gradually colored because of the formation of colored oligomers, which was monitored with the absorption spectra measured during the polymerizations. Since the time for experiment was limited, the molar ratio of [ (NH4) 2S2O8] to [monomer] was taken 2 : 1. The experiment was demonstrated in the organic and polymer chemistry experiments and was evaluated by students as well as teachers.

  7. Internal Gravity Waves: Generation and Breaking Mechanisms by Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico

    2016-04-01

    Internal gravity waves (IGWs), occurring within estuaries and the coastal oceans, are manifest as large amplitude undulations of the pycnocline. IGWs propagating horizontally in a two layer stratified fluid are studied. The breaking of an IGW of depression shoaling upon a uniformly sloping boundary is investigated experimentally. Breaking dynamics beneath the shoaling waves causes both mixing and wave-induced near-bottom vortices suspending and redistributing the bed material. Laboratory experiments are conducted in a Perspex tank through the standard lock-release method, following the technique described in Sutherland et al. (2013). Each experiment is analysed and the instantaneous pycnocline position is measured, in order to obtain both geometric and kinematic features of the IGW: amplitude, wavelength and celerity. IGWs main features depend on the geometrical parameters that define the initial experimental setting: the density difference between the layers, the total depth, the layers depth ratio, the aspect ratio, and the displacement between the pycnoclines. Relations between IGWs geometric and kinematic features and the initial setting parameters are analysed. The approach of the IGWs toward a uniform slope is investigated in the present experiments. Depending on wave and slope characteristics, different breaking and mixing processes are observed. Sediments are sprinkled on the slope to visualize boundary layer separation in order to analyze the suspension e redistribution mechanisms due to the wave breaking.

  8. Millikan's oil-drop experiment as a remotely controlled laboratory

    NASA Astrophysics Data System (ADS)

    Eckert, Bodo; Gröber, Sebastian; Vetter, Martin; Jodl, Hans-Jörg

    2012-09-01

    The Millikan oil-drop experiment, to determine the elementary electrical charge e and the quantization of charge Q = n · e, is an essential experiment in physics teaching but it is hardly performed in class for several reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). We describe the interactivity of the experiment and the quality of measurements. The added value to offer the Millikan experiment as an RCL is pointed out.

  9. An alloy solidification experiment conducted on Shenzhou spacecraft

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Luo, X.-H.; Li, Y.-Y.

    To gain a better understanding of how gravity-driven phenomena affect the solidification and crystal growth of metallic materials, directional solidification experiments have been performed on an Al-Al 3Ni eutectic alloy and an Al-Bi monotectic alloy on board the unmanned Chinese Shenzhou III spacecraft during its flight. For sake of comparison, identical experiments were also performed in the laboratory on earth. The results of investigations applying metallographic, SEM, EPMA and image analysis techniques are reported. Some interesting differences between the samples solidified in space and their counterparts solidified on the ground are described.

  10. Symmetron dark energy in laboratory experiments.

    PubMed

    Upadhye, Amol

    2013-01-18

    The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.

  11. A Simple Photochemical Experiment for the Advanced Laboratory.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart M.

    1986-01-01

    Describes an experiment to provide students with: (1) an introduction to photochemical techniques and theory; (2) an experience with semimicro techniques; (3) an application of carbon-14 nuclear magnetic resonance; and (4) a laboratory with some qualities of a genuine experiment. These criteria are met in the photooxidation of 9,…

  12. Millikan's Oil-Drop Experiment as a Remotely Controlled Laboratory

    ERIC Educational Resources Information Center

    Eckert, Bodo; Grober, Sebastian; Vetter, Martin; Jodl, Hans-Jorg

    2012-01-01

    The Millikan oil-drop experiment, to determine the elementary electrical charge e and the quantization of charge Q = n [middle dot] e, is an essential experiment in physics teaching but it is hardly performed in class for several reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). We describe the interactivity…

  13. Laboratory Impact Experiments: Collisional Processing of Simulated Cometary Materials

    NASA Astrophysics Data System (ADS)

    Lederer, Susan M.; Cintala, M. J.; Olney, R. D.; Nakamura-Messenger, K.; Smith, D. C.; Keller, L. P.; Zolensky, M. E.

    2008-09-01

    While residing in the Kuiper Belt, an average comet (d=2 km) experiences tens to hundreds of impacts with d>8m objects over 3.5Gyr, while a typical Kuiper Belt Object (KBO) with d=200km undergoes 1x106 collisions. Durda and Stern (2000) suggest the interiors of most comet nuclei have been heavily damaged by collisions, and 1/3 of KBOs surfaces have been reworked. We have initiated a laboratory program dedicated to investigating the chemical, mineralogical, and spectral effects that impacts have had on comets and KBOs throughout their histories. Experiments were conducted at the NASA Johnson Space Center Experimental Impact Laboratory using the Vertical Impact gun. In phase 1, 16 experiments over a range of impact speeds (2.0 - 2.8 km/s) were conducted. Targets included refractory components found in comet dust, including Mg-rich olivine (forsterite) and pyroxene (enstatite), diopside, and Fe-rich sulfides (pyrrhotite). In phase 2, low-porosity, volatile-rich targets were constructed by mixing refractory dust components plus amorphous carbon, volatiles (H2O, CO2), and organics (PAHs). Targets were then insolated with a solar simulator to generate a layered target with a volatile-free crust above the volatile-rich base, and impacted. Analyses of pre- and post-impacted materials will be presented, including a) spectral changes, using a Fourier Transform Infrared Spectrometer (FTIR, 5 - 15 um) to investigate changes in slope, band depths, band shifting, and new signatures, b) the structural/shock-induced effects of the dust, through Transmission Electron Microscope (TEM) data, and c) compositional information via X-ray Diffraction lab studies. Phase 1 experiments demonstrate that silicate targets impacted at 2.45 and 2.8 km/s have been altered, causing changes in FTIR spectra (e.g., darkening, shallowing of band depths) and clear evidence of shock (high density of planar dislocations) in TEM images. This study was supported by a Cottrell College Science Award from

  14. EFFECT OF FREEZE-THAW ON THE HYDRAULIC CONDUCTIVITY OF BARRIER MATERIALS: LABORATORY AND FIELD EVALUATION

    EPA Science Inventory

    Laboratory tests were conducted on barrier materials to determine if their hydraulic conductivity changes as a result of freezing and thawing. esults of the tests were compared to data collected from a field study. ests were conducted on two compacted clays, one sand-bentonite mi...

  15. Inventory Control. Easily Made Electronic Device for Conductivity Experiments.

    ERIC Educational Resources Information Center

    Gadek, Frank J.

    1987-01-01

    Describes how to construct an electronic device to be used in conductivity experiments using a 35 millimeter film canister, nine volt battery replacement snaps, a 200-300 ohm resistor, and a light-emitting diode. Provides a diagram and photographs of the device. (TW)

  16. Agreed Discoveries: Students' Negotiations in a Virtual Laboratory Experiment

    ERIC Educational Resources Information Center

    Karlsson, Goran; Ivarsson, Jonas; Lindstrom, Berner

    2013-01-01

    This paper presents an analysis of the scientific reasoning of a dyad of secondary school students about the phenomenon of dissolution of gases in water as they work on this in a simulated laboratory experiment. A web-based virtual laboratory was developed to provide learners with the opportunity to examine the influence of physical factors on gas…

  17. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Kissinger, Peter T.; And Others

    1977-01-01

    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  18. Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1977-01-01

    The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.

  19. Laboratory Experiments on the Electrochemical Remediation of the Environment

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Tellez-Giron, Monica; Alvarez, Diana

    2004-01-01

    Ferrate, which is a strong iron oxidant for removing pollutants from water, is developed electrochemically in the laboratory, and used for experiments simulating environmental situations. Thus, ferrate is a powerful oxidizing agent capable of destroying an immense variety of contaminants.

  20. Reaction Kinetics: An Experiment for Biochemistry and Organic Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Sheila

    1982-01-01

    Describes an experiment to examine the kinetics of carbamate decomposition and the effect of buffer catalysis on the reaction. Includes background information, laboratory procedures, evaluation of data, and teaching suggestions. (Author/JN)

  1. Fertilizers mobilization in alluvial aquifer: laboratory experiments

    NASA Astrophysics Data System (ADS)

    Mastrocicco, M.; Colombani, N.; Palpacelli, S.

    2009-02-01

    In alluvial plains, intensive farming with conspicuous use of agrochemicals, can cause land pollution and groundwater contamination. In central Po River plain, paleo-channels are important links between arable lands and the underlaying aquifer, since the latter is often confined by clay sediments that act as a barrier against contaminants migration. Therefore, paleo-channels are recharge zones of particular interest that have to be protected from pollution as they are commonly used for water supply. This paper focuses on fertilizer mobilization next to a sand pit excavated in a paleo-channel near Ferrara (Italy). The problem is approached via batch test leaking and columns elution of alluvial sediments. Results from batch experiments showed fast increase in all major cations and anions, suggesting equilibrium control of dissolution reactions, limited availability of solid phases and geochemical homogeneity of samples. In column experiments, early elution and tailing of all ions breakthrough was recorded due to preferential flow paths. For sediments investigated in this study, dispersion, dilution and chemical reactions can reduce fertilizers at concentration below drinking standards in a reasonable time frame, provided fertilizer loading is halted or, at least, reduced. Thus, the definition of a corridor along paleo-channels is recommended to preserve groundwater quality.

  2. Conducting real-time multiplayer experiments on the web.

    PubMed

    Hawkins, Robert X D

    2015-12-01

    Group behavior experiments require potentially large numbers of participants to interact in real time with perfect information about one another. In this paper, we address the methodological challenge of developing and conducting such experiments on the web, thereby broadening access to online labor markets as well as allowing for participation through mobile devices. In particular, we combine a set of recent web development technologies, including Node.js with the Socket.io module, HTML5 canvas, and jQuery, to provide a secure platform for pedagogical demonstrations and scalable, unsupervised experiment administration. Template code is provided for an example real-time behavioral game theory experiment which automatically pairs participants into dyads and places them into a virtual world. In total, this treatment is intended to allow those with a background in non-web-based programming to modify the template, which handles the technical server-client networking details, for their own experiments. PMID:25271089

  3. Establishing laboratory standards for biological flight experiments

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Moriarity, Debra M.

    1989-01-01

    The general objective of this research was to assess the effects of exposure to simulated microgravity on ultrastructural aspects of the contractile system in chicken skeletal muscle cells. This general objective had two specific experimental components: (1) the progression of changes in cell morphology, fusion, and patterns of contractile filament organization in muscle cell cultures grown in hollow fibers in the Clinostat were evaluated, with appropriate controls; (2) to initiate experiments in which muscle cells were grown on the surface of microcarrier beads. The ultimate objective of this second portion of the work is to determine if these beads can be rotated in a bioreactor and thereby obtain a more accurate approximation of the effects of simulated microgravity on differentiated muscle cells.

  4. Laboratory experiments for estimating chemical osmotic parameters of mudstones

    NASA Astrophysics Data System (ADS)

    Miyoshi, S.; Tokunaga, T.; Mogi, K.; Ito, K.; Takeda, M.

    2010-12-01

    Recent studies have quantitatively shown that mudstone can act as semi-permeable membrane and can generate abnormally high pore pressure in sedimentary basins. Reflection coefficient is one of the important properties that affect the chemical osmotic behavior of mudstones. However, not many quantitative studies on the reflection coefficient of mudstones have been done. We have developed a laboratory apparatus to observe chemical osmotic behavior, and a numerical simulation technique to estimate the reflection coefficient and other relating properties of mudstones. A core sample of siliceous mudstone obtained from the drilled core at Horonobe, Japan, was set into the apparatus and was saturated by 0.1mol/L sodium chloride solution. Then, the up-side reservoir was replaced with 0.05mol/L sodium chloride solution, and temporal changes of both pressure and concentration of the solution in both up-side and bottom-side reservoirs were measured. Using the data obtained from the experiment, we estimated the reflection coefficient, effective diffusion coefficient, hydraulic conductivity, and specific storage of the sample by fitting the numerical simulation results with the observed ones. A preliminary numerical simulation of groundwater flow and solute migration was conducted in the area where the core sample was obtained, using the reflection coefficient and other properties obtained from this study. The result suggested that the abnormal pore pressure observed in the region can be explained by the chemical osmosis.

  5. The JPL MSAT mobile laboratory and the pilot field experiments

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Emerson, Richard F.

    1988-01-01

    A Mobile Laboratory/Propagation Measurement Van (PMV) was developed to support the field experiments of the Mobile Satellite Experiment (MSAT-X) Project. This van was designed to provide flexibility, self-sufficiency and data acquisition to allow for both measurement of equipment performance and the mobile environment. The design philosophy and implementation of the PMV are described. The Pilot Field Experiments and an overall description of the three experiments in which the PMV was used are described.

  6. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  7. Carbonatisation of Weathered Peridotites in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Hövelmann, J.; Austrheim, H.; Beinlich, A.; Munz, I. A.

    2010-12-01

    Enhanced in-situ carbonatisation of ultramafic rocks has been proposed as a strategy for a permanent and safe storage of CO2 in order to reduce anthropogenic greenhouse gas emissions (e.g., Kelemen and Matter 2008). This idea emerged from studies of natural examples demonstrating that ultramafic rocks react extensively with CO2 to form ophicarbonates. However, despite their Mg-rich nature, ultramafic rocks are often associated with calcite (CaCO3) rather than magnesite (MgCO3) and dolomite (CaMg(CO3)2). Whether these so-called ophicalcites represent sedimentary or tectonic breccias or are produced during hydrothermal alteration of ultramafic rocks, has been discussed for many years (e.g., Folk and McBride 1976). The view that reactions between hydrothermal fluids and ultramafic rocks can result in the formation of ophicalcite was recently supported by Beinlich et al. (2010), who documented Ca- and CO2-metasomatism and extreme Mg depletion in serpentinised and weathered peridotite clasts from the conglomerates of the Solund basin (SW Norway). This study also suggests that weathering is an important factor for the carbonatisation of ultramafic rocks. We have performed hydrothermal experiments on weathered peridotites in order to better constrain the mechanisms and conditions that trigger Mg-loss from ultramafic rocks and subsequent calcite precipitation. Un-crushed, partly serpentinised and weathered peridotite samples were allowed to react in a Ca-bearing saline solution under CO2 pressure (PCO2: 130-160 bar) at 200°C. We were able to illustrate the textural and chemical evolution during the reaction through a detailed comparison of the solid and fluid samples before and after the experiments. The initial samples showed a typical mesh texture with veins of serpentine surrounding meshes filled either with fresh or weathered olivine. The experimentally treated samples reveal a strongly reacted rim, predominantly composed of calcite, but still showing ghosts of the

  8. Characterisation of rockfalls from seismic signal: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; de Rosny, Julien; Shapiro, Nikolai; Dewez, Thomas; Hibert, Clément; Mathon, Christian; Sedan, Olivier; Berger, Frédéric

    2015-04-01

    Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very difficult. Recent field studies showed that gravitational instabilities can be detected, localized and characterized thanks to the seismic signal they generate. Therefore, a burning challenge for risks assessment related to these events is to obtain quantiative informations on the characteristics of the rockfalls (mass, speed, extension,...) from the properties of the signal (seismic energy, frequencies,...). Using a theoretical model of viscoelastic impact of a sphere on a plane, we develop analytical scaling laws relating the energy radiated in elastic waves, the energy dissipated in viscoelasticity during the impact and the frequencies of the generated seismic signal to the mass m and the impact speed V z of the sphere and to the elastic parameters of the involved materials. The radiated elastic energy is shown to vary as m5/3V z11/5 on plates and as mV z13/5 on blocks, regardless of the elastic parameters. The energy dissipated in viscoelasticity does not depend on the support thickness and varies as m2/3V z11/5. The mean frequency of the generated signal is inversely proportional to the impact duration. Then, we conduct simple laboratory experiments that consist in dropping spherical beads of different size and materials and small gravels on thin plates of glass and PMMA and rock blocks. In the experiments, piezoelectric accelerometers are used to record the signals in a wide frequency range: 1 Hz to 56 kHz. The experiments are also monitored optically using fast cameras. The elastic energy emitted by an impact on the supports is first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We observe a quantitative agreement between experimental data and the analytical scaling laws, even when we use small

  9. A variable conductance heat pipe flight experiment - Performance in space

    NASA Technical Reports Server (NTRS)

    Wanous, D. J.; Marcus, B. D.; Kirkpatrick, J. P.

    1975-01-01

    The Ames Heat Pipe Experiment (AHPE) is a variable conductance heat pipe/radiator system which was launched aboard the OAO-C spacecraft in August, 1972. All available flight data was reviewed and those from a few orbits were selected for correlation with predictions from an analytical model of the system. The principal conclusion of this study is that gas controlled variable conductance heat pipes can perform reliably for long time periods in the space environment and can effectively provide temperature stabilization for spacecraft electronics. Furthermore, the performance of such systems can be adequately predicted using existing analysis tools.

  10. Procedure Manuals for the Comparative Systems Laboratory Experiments.

    ERIC Educational Resources Information Center

    Saracevic, Tefko, Ed.; Rothenberg, Leslie, Ed.

    The report deals with experiments in testing and evaluation of an information retrieval system within the Comparative Systems Laboratory (CSL). Section I outlines the approach and the general methodology developed in CSL, the operational design of the experiments, the construction and use of the manuals, and the general significance of the…

  11. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  12. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  13. Freeze Drying of Fruits and Vegetables: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Noble, Richard D.

    1979-01-01

    Describes a laboratory experiment for freeze-drying fruits and vegetables which aims to expose college students to the principles of drying and simultaneous heat and mass transfer. The experimental apparatus, procedure of the experiment, and data analysis are also included. (HM)

  14. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  15. Design and conduct of a windshear detection flight experiment

    NASA Technical Reports Server (NTRS)

    Lewis, Michael S.; Yenni, Kenneth R.; Verstynen, Harry A.; Person, Lee H.

    1992-01-01

    A description is presented of the design and conduct of a series of flight experiments that tested the performance of candidate windshear detection devices. A NASA 737 test aircraft with prototype windshear sensors installed flew numerous low altitude penetrations of microburst windshear conditions. These tests were preceded by extensive preparations including piloted simulations, determination of safe operating conditions, and the development of displays, unique flight test hardware, and procedures.

  16. Experiment definition phase shuttle laboratory: LDRL-10.6 experiment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress is reported in the development of the space shuttle laboratory laser data relay link. The system transmittance of various surfaces was considered in order to examine the coating tradeoffs for the beryllium mirrors. The results of six coating combinations considered are summarized. It is recommended that silver coatings be used throughout the system. Design of the pre-expander and a preliminary alignment procedure implemented to align all optical elements to the reference mechanical axis (the rotational axis of the outer gimbal bearing located between the two Gregorian telescopes) are included. The local oscillator subsystem, consisting of the laser, Stark cell, Stark cell electronics, power supply, starting circuit, and conditioning optics were completed and installed in the optimechanical subsystem and operation against a 10.6 micrometer source was attempted. Preliminary measurements of the HgCdTe mixer showed that this critical element was inoperative and in subsequent tests the receiver front end electronics had also failed. Possible reasons for these failures and corrective action and steps to prevent future recurrence are discussed.

  17. The student perspective of high school laboratory experiences

    NASA Astrophysics Data System (ADS)

    Lambert, R. Mitch

    High school science laboratory experiences are an accepted teaching practice across the nation despite a lack of research evidence to support them. The purpose of this study was to examine the perspective of students---stakeholders often ignored---on these experiences. Insight into the students' perspective was explored progressively using a grounded theory methodology. Field observations of science classrooms led to an open-ended survey of high school science students, garnering 665 responses. Twelve student interviews then focused on the data and questions evolving from the survey. The student perspective on laboratory experiences revealed varied information based on individual experience. Concurrent analysis of the data revealed that although most students like (348/665) or sometimes like (270/665) these experiences, some consistent factors yielded negative experiences and prompted suggestions for improvement. The category of responses that emerged as the core idea focused on student understanding of the experience. Students desire to understand the why do, the how to, and the what it means of laboratory experiences. Lacking any one of these, the experience loses educational value for them. This single recurring theme crossed the boundaries of age, level in school, gender, and even the student view of lab experiences as positive or negative. This study suggests reflection on the current laboratory activities in which science teachers engage their students. Is the activity appropriate (as opposed to being merely a favorite), does it encourage learning, does it fit, does it operate at the appropriate level of inquiry, and finally what can science teachers do to integrate these activities into the classroom curriculum more effectively? Simply stated, what can teachers do so that students understand what to do, what's the point, and how that point fits into what they are learning outside the laboratory?

  18. Preparation of Buffers. An Experiment for Quantitative Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Buckley, P. T.

    2001-10-01

    In our experience, students who have a solid grounding in the theoretical aspects of buffers, buffer preparation, and buffering capacity are often at a loss when required to actually prepare a buffer in a research setting. However, there are very few published laboratory experiments pertaining to buffers. This laboratory experiment for the undergraduate quantitative analysis lab gives students hands-on experience in the preparation of buffers. By preparing a buffer to a randomly chosen pH value and comparing the theoretical pH to the actual pH, students apply their theoretical understanding of the Henderson-Hasselbalch equation, activity coefficients, and the effect of adding acid or base to a buffer. This experiment gives students experience in buffer preparation for research situations and helps them in advanced courses such as biochemistry where a fundamental knowledge of buffer systems is essential.

  19. Does the Lack of Hands-On Experience in a Remotely Delivered Laboratory Course Affect Student Learning?

    ERIC Educational Resources Information Center

    Abdel-Salam, Tarek; Kauffman, Paul J.; Crossman, Gary

    2006-01-01

    Educators question whether performing a laboratory experiment as an observer (non-hands-on), such as conducted in a distance education context, can be as effective a learning tool as personally performing the experiment in a laboratory environment. The present paper investigates this issue by comparing the performance of distance education…

  20. Redefining authentic research experiences in introductory biology laboratories and barriers to their implementation.

    PubMed

    Spell, Rachelle M; Guinan, Judith A; Miller, Kristen R; Beck, Christopher W

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier.

  1. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  2. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    ERIC Educational Resources Information Center

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-01-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…

  3. Operating Experience of the Tritium Laboratory at CRL

    SciTech Connect

    Gallagher, C.L.; McCrimmon, K.D.

    2005-07-15

    The Chalk River Laboratories Tritium Laboratory has been operating safely and reliably for over 20 years. Safe operations are achieved through proper management, supervision, training and using approved operating procedures and techniques. Reliability is achieved through appropriate equipment selection, routine equipment surveillance testing and routine preventative maintenance. This paper summarizes the laboratory's standard operating protocols and formal compliance programs followed to ensure safe operations. The paper will also review the general set-up of the laboratory and will focus on the experience gained with the operation of various types of equipment such as tritium monitors, tritium analyzers, pumps, purification systems and other systems used in the laboratory during its 20 years of operation.

  4. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  5. Disposition of transuranic residues from plutonium isentropic compression experiment (Pu-ice) conducted at Z machine

    SciTech Connect

    Goyal, Kapil K; French, David M; Humphrey, Betty J; Gluth, Jeffry

    2010-01-01

    In 1992, the U.S. Congress passed legislation to discontinue above- and below-ground testing of nuclear weapons. Because of this, the U.S. Department of Energy (DOE) must rely on laboratory experiments and computer-based calculations to verify the reliability of the nation's nuclear stockpile. The Sandia National Laboratories/New Mexico (SNL/NM) Z machine was developed by the DOE to support its science-based approach to stockpile stewardship. SNL/NM researchers also use the Z machine to test radiation effects on various materials in experiments designed to mimic nuclear explosions. Numerous components, parts, and materials have been tested. These experiments use a variety of radionuclides; however, plutonium (Pu) isotopes with greater than ninety-eight percent enrichment are the primary radionuclides used in the experiments designed for stockpile stewardship. In May 2006, SNL/NM received authority that the Z Machine Isentropic Compression Experiments could commence. Los Alamos National Laboratory (LANL) provided the plutonium targets and loaded the target assemblies, which were fabricated by SNL/NM. LANL shipped the loaded assemblies to SNL/NM for Z machine experiments. Three experiments were conducted from May through July 2006. The residues from each experiment, which weighed up to 913 pounds, were metallic and packaged into a respective 55-gallon drum each. Based on a memorandum of understanding between the two laboratories, LANL provides the plutonium samples and the respective radio-isotopic information. SNL/NM conducts the experiments and provides temporary storage for the drums until shipment to LANL for final waste certification for disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. This paper presents a comprehensive approach for documenting generator knowledge for characterization of waste in cooperation with scientists at the two laboratories and addresses a variety of topics such as material control and accountability

  6. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    ERIC Educational Resources Information Center

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-01-01

    One of the goals of science education is to provide students with the ability to construct arguments--reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research…

  7. Developing School Laboratories To Promote the Establishment of Individual Experience Programs. Final Report.

    ERIC Educational Resources Information Center

    Valley Springs School District 2, AR.

    A project was conducted to promote and develop individual Supervised Agricultural Experience (SAE) programs in Arkansas through the development of laboratories. It was felt that strong SAE programs enhance the instructional portion of agriculture education, serve as a motivational tool, and improve the relations between the local school and…

  8. Development of sensorial experiments and their implementation into undergraduate laboratories

    NASA Astrophysics Data System (ADS)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  9. On integrating LES and laboratory turbulent flow experiments

    SciTech Connect

    Grinstein, Fernando Franklin

    2008-01-01

    Critical issues involved in large eddy simulation (LES) experiments relate to the treatment of unresolved subgrid scale flow features and required initial and boundary condition supergrid scale modelling. The inherently intrusive nature of both LES and laboratory experiments is noted in this context. Flow characterization issues becomes very challenging ones in validation and computational laboratory studies, where potential sources of discrepancies between predictions and measurements need to be clearly evaluated and controlled. A special focus of the discussion is devoted to turbulent initial condition issues.

  10. ORGANIC CONTAMINANT DISTRIBUTION IN SEDIMENTS, POLYCHAETES (NEREIS VIRENS) AND THE AMERICAN LOBSTER, HOMARUS AMERICANUS IN A LABORATORY FOOD CHAIN EXPERIMENT

    EPA Science Inventory

    A laboratory experiment was conducted to investigate the transfer of organic contaminants from an environmentally contaminated marine sediment through a simple marine food chain. The infaunal polychaete, Nereis virens, was exposed to contaminated sediment collected from the Passa...

  11. Laboratory experiments on planetary and stellar convection performed on spacelab 3.

    PubMed

    Hart, J E; Toomre, J; Deane, A E; Hurlburt, N E; Glatzmaier, G A; Fichtl, G H; Leslie, F; Fowlis, W W; Gilman, P A

    1986-10-01

    Experiments on thermal convection in a rotating, differentially heated hemispherical shell with a radial buoyancy force were conducted in an orbiting microgravity laboratory. A variety of convective structures, or planforms, were observed, depending on the magnitude of the rotation and the nature of the imposed heating distribution. The results are compared with numerical simulations that can be conducted at the more modest heating rates, and suggest possible regimes of motion in rotating planets and stars. PMID:17742634

  12. Effective Laboratory Experiences for Students with Disabilities: The Role of a Student Laboratory Assistant

    NASA Astrophysics Data System (ADS)

    Pence, Laura E.; Workman, Harry J.; Riecke, Pauline

    2003-03-01

    Two separate experiences with students whose disabilities significantly limited the number of laboratory activities they could accomplish independently has given us a general experience base for determining successful strategies for accommodating students facing these situatiuons. For a student who had substantially limited physical mobility and for a student who had no visual ability, employing a student laboratory assistant allowed the students with disabilities to have a productive and positive laboratory experience. One of the priorities in these situations should be to avoid depersonalizing the student with a disability. Interactions with the instructor and with other students should focus on the disabled student rather than the student laboratory assistant who may be carrying out specific tasks. One of the most crucial aspects of a successful project is the selection of a laboratory assistant who has excellent interpersonal skills and who will add his or her creativity to that of the student with a disability to meet unforeseen challenges. Other considerations are discussed, such as the importance of advance notification that a disabled student has enrolled in a course as well as factors that should contribute to choosing an optimum laboratory station for each situation.

  13. Soap from Nutmeg: An Integrated Introductory Organic Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    de Mattos, Marcio C. S.; Nicodem, David E.

    2002-01-01

    The extraction of trimyristin from nutmeg, its purification, and its conversion to a soap (sodium myristate) are described. Concepts such as the isolation of a natural product, recrystallization, identification of a solid, solubility, acidity and basicity, and organic reaction can be presented to students using integrated experiments in an introductory experimental chemistry laboratory. These experiments can easily be done in three class periods of four hours.

    See Letter re: this article.

  14. Laboratory Experiment in Semiconductor Surface-Field Effects

    ERIC Educational Resources Information Center

    Goodman, F. R.; And Others

    1974-01-01

    A laboratory instructional program involving metal-insulator-semiconductor (MIS) devices is described. In the first of a two-part experiment, students become familiar with the important parameters of a simple MIS device and learn measurement techniques; in the second part, device fabrication procedures are learned. (DT)

  15. Synthesis of Methyl Cyclopentanecarboxylate: A Laboratory Experience in Carbon Rearrangement

    ERIC Educational Resources Information Center

    Orchard, Alexandra; Maniquis, Roxanne V.; Salzameda, Nicholas T.

    2016-01-01

    We present a novel guided inquiry second semester organic chemistry laboratory rearrangement experiment. Students performed the Favorskii Rearrangement to obtain methyl cyclopentanecarboxylate in good yields. The students learned about the individual steps of the Favorskii mechanism and were required to propose a complete reaction mechanism and…

  16. Computer Simulation of Laboratory Experiments: An Unrealized Potential.

    ERIC Educational Resources Information Center

    Magin, D. J.; Reizes, J. A.

    1990-01-01

    Discussion of the use of computer simulation for laboratory experiments in undergraduate engineering education focuses on work at the University of New South Wales in the instructional design and software development of a package simulating a heat exchange device. The importance of integrating theory, design, and experimentation is also discussed.…

  17. Differentiating Biochemistry Course Laboratories Based on Student Experience

    ERIC Educational Resources Information Center

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  18. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    ERIC Educational Resources Information Center

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  19. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  20. Development of Sensorial Experiments and Their Implementation into Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Bromfield Lee, Deborah Christina

    2009-01-01

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only…

  1. The Science Laboratory Experiences of Utah's High School Students

    ERIC Educational Resources Information Center

    Campbell, Todd

    2007-01-01

    This research investigated the extent to which science laboratory experiences encountered by Utah high school students aligned with reform efforts outlined in national standards documents. Through both quantitative and qualitative methods the findings revealed that while there were instances of alignment found between science laboratory…

  2. Lidocaine Metabolism and Toxicity: A Laboratory Experiment for Dental Students.

    ERIC Educational Resources Information Center

    Kusek, J. C.

    1980-01-01

    A laboratory exercise for dental students is presented using a toxic dose of lidocaine in place of an anesthetic dose of pentobarbital. The use of lidocaine demonstrates its toxic and lethal actions and increases the relevance of the experience for dental students. (Author/MLW)

  3. Raising environmental awareness through applied biochemistry laboratory experiments.

    PubMed

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise.

  4. Forensics as a Laboratory Experience in Small Group Communication.

    ERIC Educational Resources Information Center

    Zeuschner, Raymond Bud

    Forensics programs can be laboratories for small group processes, whether or not they are explicitly recognized by either the participants or their teachers. Small group dynamics, as identified by M. Shaw (1981), are present and clearly define the forensic activity as a small group experience. The combination of being a small group, spending…

  5. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  6. Propulsion Integrated Vehicle Health Management Technology Experiment (PITEX) Conducted

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Chicatelli, Amy K.; Fulton, Christopher E.

    2004-01-01

    The Propulsion Integrated Vehicle Health Management (IVHM) Technology Experiment (PITEX) is a continuing NASA effort being conducted cooperatively by the NASA Glenn Research Center, the NASA Ames Research Center, and the NASA Kennedy Space Center. It was a key element of a Space Launch Initiative risk-reduction task performed by the Northrop Grumman Corporation in El Segundo, California. PITEX's main objectives are the continued maturation of diagnostic technologies that are relevant to second generation reusable launch vehicle (RLV) subsystems and the assessment of the real-time performance of the PITEX diagnostic solution. The PITEX effort has considerable legacy in the NASA IVHM Technology Experiment for X-vehicles (NITEX) that was selected to fly on the X-34 subscale RLV that was being developed by Orbital Sciences Corporation. NITEX, funded through the Future-X Program Office, was to advance the technology-readiness level of selected IVHM technologies within a flight environment and to begin the transition of these technologies from experimental status into RLV baseline designs. The experiment was to perform realtime fault detection and isolation and suggest potential recovery actions for the X-34 main propulsion system (MPS) during all mission phases by using a combination of system-level analysis and detailed diagnostic algorithms.

  7. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  8. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 2: Experiment selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.

  9. Copper Conductivity Model Development and Validation Using Flyer Plate Experiments on the Z-machine

    NASA Astrophysics Data System (ADS)

    Riford, L.; Lemke, R. W.; Cochrane, K.

    2015-11-01

    Magnetically accelerated flyer plate experiments done on Sandia's Z-machine provide insight into a multitude of materials problems at high energies and densities including conductivity model development and validation. In an experiment with ten Cu flyer plates of thicknesses 500-1000 μm, VISAR measurements exhibit a characteristic jump in the velocity correlated with magnetic field burn-through and the expansion of melted material at the free surface. The experiment is modeled using Sandia's shock and multiphysics MHD code ALEGRA. Simulated free surface velocities are within 1% of the measured data early in time, but divergence occurs at the feature, where the simulation indicates a slower burn through time. The cause was found to be in the Cu conductivity model's compressed regime. The model was improved by lowering the conductivity in the region 12.5-16 g/cc and 350-16000 K with a novel parameter based optimization method using the velocity feature as a figure of merit. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Experiences and prospects of nuclear astrophysics in underground laboratories

    SciTech Connect

    Junker, M.

    2014-05-09

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

  11. Multiuser Droplet Combustion Apparatus Developed to Conduct Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Myhre, Craig A.

    2001-01-01

    A major portion of the energy produced in the world today comes from the combustion or burning of liquid hydrocarbon fuels in the form of droplets. However, despite vigorous scientific examinations for over a century, researchers still lack a full understanding of many fundamental combustion processes of liquid fuels. Understanding how these fuel droplets ignite, spread, and extinguish themselves will help us develop more efficient ways of energy production and propulsion, as well as help us deal better with the problems of combustion-generated pollution and fire hazards associated with liquid combustibles. The ability to conduct more controlled experiments in space, without the complication of gravity, provides scientists with an opportunity to examine these complicated processes closely. The Multiuser Droplet Combustion Apparatus (MDCA) supports this continued research under microgravity conditions. The objectives are to improve understanding of fundamental droplet phenomena affected by gravity, to use research results to advance droplet combustion science and technology on Earth, and to address issues of fire hazards associated with liquid combustibles on Earth and in space. MDCA is a multiuser facility designed to accommodate different combustion science experiments. The modular approach permits the on-orbit replacement of droplet combustion principal investigator experiments such as different fuels, droplet-dispensing needles, and droplet-tethering mechanisms. Large components such as the avionics, diagnostics, and base-plate remain on the International Space Station to reduce the launch mass of new experiments. MDCA is also designed to operate in concert with ground systems on Earth to minimize the involvement of the crew during orbit.

  12. Simulation of astrophysical jets in a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2006-04-01

    Astrophysical jets are routinely simulated in a reproducible, well-diagnosed laboratory experiment. The experimental sequence starts by imposing a vacuum poloidal magnetic field linking a disk electrode to a co-planar annular electrode. Neutral gas (H, Ne, N, or Ar) is then injected via 8 nozzles located on the disk and 8 nozzles on the annulus. A 120 μF capacitor bank power supply charged to 4-7 kV is applied via ignitron switches across the electrodes, breaking down the injected gas to form plasma. The low impedance (<10 mφ) of the highly conducting plasma causes the power supply to behave as a current source, rather than a voltage source. The discharging capacitor bank drives a ˜100 kA poloidal electric current through the plasma; this current initially flows in eight distinct `spider legs' (see photo in April meeting poster) that span from the disk to the annulus. The spider legs quickly merge via mutual attraction of their currents to form the simulated astrophysical jet. The axial gradient of the toroidal magnetic field energy density provides the force that accelerates the jet. The mass flux boundary condition at the electrodes is tightly coupled to the jet behavior. The jet is `fueled' by plasma ingested from the nozzles and the accumulation (pile-up) of the ingested plasma collimates the jet because of the associated pile-up of frozen-in toroidal magnetic flux convected with the plasma. The jet undergoes a kink instability when it becomes long enough to satisfy the Kruskal-Shafranov q=1 condition.

  13. Analysis of Thermal-Conductivity Measurement Data from International Comparison of National Laboratories

    NASA Astrophysics Data System (ADS)

    Hay, B.; Zarr, R.; Stacey, C.; Lira-Cortes, L.; Hammerschmidt, U.; Sokolov, N.; Zhang, J.; Filtz, J.-R.; Fleurence, N.

    2013-05-01

    For the first time under the auspices of the Bureau International des Poids et Mesures (BIPM), seven national metrology institutes (NMIs) participated in an international interlaboratory comparison on thermal-conductivity measurements by the guarded hot-plate method. Measurements were conducted successively by all participants on the same set of specimens of insulating materials (mineral wool and expanded polystyrene) at temperatures ranging from 10 °C to 40 °C, according to the International Standard ISO 8302. This protocol aims to minimize issues of material variability by circulating the same pairs of specimens among the laboratories following the strict format of a round-robin test program. This comparison is a pilot study which is intended as a first stage for future key comparisons between NMIs. The descriptive analysis of obtained results shows good agreement between laboratories for the mineral wool (MW) specimens and the thicker specimens of expanded polystyrene (EPS), with relative deviations within the uncertainties of measurement. A positive drift of thermal-conductivity values, which has appeared progressively during the comparison process, seems to be correlated with the size of the metering area of the guarded hot plates used. A statistical analysis was applied to repeated thermal-conductivity measurements at 23 °C, to identify anomalous and outlying data, to assess the within- and between-laboratory variability, and to evaluate the participant laboratories' performance.

  14. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  15. Infrasound Generated by Strombolian Eruptions - Insights from Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Dabrowa, A.; Phillips, J. C.; Rust, A.; Green, D. N.

    2010-12-01

    In recent years infrasonic monitoring at volcanoes has become an increasingly common tool. Much of the current work on interpreting volcano infrasound has concentrated on Strombolian eruptions, and several mechanisms have been suggested for the sound produced at these eruptions. However, the precise mechanisms at the vent need to be identified and understood if infrasound recorded in the field is to be used to infer conditions in the volcanic system. In this work, laboratory experiments using audio recordings coupled with high speed video footage have been conducted to gain a deeper understanding of these sounds. A simplified analogue model is used as an analogy for a Strombolian eruption: an air bubble rises through a tank containing a viscous Newtonian liquid (golden syrup) and bursts at the surface. Although the experimental set-up is simple and idealized, it allows control of physical properties and measurement of the processes observed far more accurately than would be possible in the field. Physical parameters which may control the form of the acoustic wave produced, such as liquid viscosity (achieved by dilution of pure golden syrup with water) and bubble volume are investigated. Initial results show that the onset of the main part of the acoustic waveform occurs concurrently with the onset of bubble rupture. Trends in the amplitude and frequency of the acoustic waveform, as well as bubble rupture speed are seen as the liquid viscosity varied. A number of candidate mechanisms for the production of sound during the experiments have been investigated, and synthetic waveforms compared to experimental data. These include the flow of gas through a growing hole from a pressurised reservoir (the bubble), and the mass flux due to the collapse of the bubble film. Importantly it has been shown that even in this very simple case - the sound produced by the bursting of a hemispherical bubble formed at the surface of a viscous liquid - is not as simple as some theories

  16. Scientific equity: experiments in laboratory education in Ghana.

    PubMed

    Osseo-Asare, Abena Dove

    2013-12-01

    During the 1960s the Ministry of Education in Ghana created a network of school laboratories to increase scientific literacy among young citizens. The ministry stocked these "Science Centres" with imported beakers, Bunsen burners, and books. Education officials and university scientists worked with teachers to create lesson plans on water, air, plants, and other topics. The government hoped that scientifically minded schoolchildren would be better prepared to staff the industries of the future. The adoption of laboratory norms represented a desire for scientific equity, rather than a condition of cultural mimicry. Interviews with ministry officials and science educators, alongside letters and reports, indicate how students and teachers appropriated the laboratories in the small West African nation. Their experiences in mobilizing resources from across Ghana and around the world provide a metaphor for ongoing efforts to establish access to scientific goods in Africa.

  17. Scientific equity: experiments in laboratory education in Ghana.

    PubMed

    Osseo-Asare, Abena Dove

    2013-12-01

    During the 1960s the Ministry of Education in Ghana created a network of school laboratories to increase scientific literacy among young citizens. The ministry stocked these "Science Centres" with imported beakers, Bunsen burners, and books. Education officials and university scientists worked with teachers to create lesson plans on water, air, plants, and other topics. The government hoped that scientifically minded schoolchildren would be better prepared to staff the industries of the future. The adoption of laboratory norms represented a desire for scientific equity, rather than a condition of cultural mimicry. Interviews with ministry officials and science educators, alongside letters and reports, indicate how students and teachers appropriated the laboratories in the small West African nation. Their experiences in mobilizing resources from across Ghana and around the world provide a metaphor for ongoing efforts to establish access to scientific goods in Africa. PMID:24783491

  18. Electrical conductivity of lunar surface rocks - Laboratory measurements and implications for lunar interior temperatures

    NASA Technical Reports Server (NTRS)

    Schwerer, F. C.; Huffman, G. P.; Fisher, R. M.; Nagata, T.

    1974-01-01

    Results are reported for laboratory measurements of the dc and low-frequency ac electrical conductivity of three lunar rocks with ferrous iron contents of 5 to 26 wt %. The measurements were made at temperatures ranging from 20 to 1000 C, and Mossbauer spectroscopy was used to determine the dependence of electrical conductivity on furnace atmosphere. It is found that the magnitude of electrical conductivity generally increases with increasing iron content. A comparison of the data on these samples with data on terrestrial olivines and pyroxenes shows that the electrical conductivity of anhydrous silicate minerals is influenced primarily by the concentration, oxidation state, and distribution of iron, while the silicate crystal structure is only of secondary importance. Lunar interior temperatures are deduced from experimental lunar conductivity profiles, and the resulting temperature-depth profiles are found to be consistent with those calculated for two different lunar evolutionary models as well as with various experimental constraints.

  19. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-06-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual student contributions to collaborative group/teamwork throughout the processes of experimental design, data analysis, display and communication of their outcomes in relation to their research question(s). Traditional assessments in the form of laboratory notebooks or experimental reports provide limited insight into the processes of collaborative inquiry-based activities. A wiki environment offers a collaborative domain that can potentially support collaborative laboratory processes and scientific record keeping. In this study, the effectiveness of the wiki in supporting laboratory learning and assessment has been evaluated through analysis of the content and histories for three consenting, participating groups of students. The conversational framework has been applied to map the relationships between the instructor, tutor, students and laboratory activities. Analytics that have been applied to the wiki platform include: character counts, page views, edits, timelines and the extent and nature of the contribution by each student to the wiki. Student perceptions of both the role and the impact of the wiki on their experiences and processes have also been collected. Evidence has emerged from this study that the wiki environment has enhanced co-construction of understanding of both the experimental process and subsequent communication of outcomes and data. A number of features are identified to support success in the use of the wiki platform for laboratory notebooks.

  20. An Introductory Laboratory Exercise on Solution Preparation: A Rewarding Experience

    NASA Astrophysics Data System (ADS)

    Wang, M. Rachel

    2000-02-01

    This exercise provides beginning students a firsthand experience in solution preparation. It can be completed within two hours. The format of the student handout promotes active learning in the laboratory by having text and questions interspersed among laboratory procedures. This exercise has been used successfully in various introductory courses I have taught for more than 14 years. Factors contributing to its effectiveness include (i) students are motivated to prepare solutions for the fascinating Briggs-Rauscher (BR) oscillation reaction; (ii) the exercise involves a variety of situations commonly encountered in solution preparation; (iii) the challenge of demonstrating the BR reaction seems to be at the appropriate level for beginning students, and meeting the challenge is a rewarding experience and serves as a measure of success in solution preparation; (iv) the exercise lends itself to further take-home studies suitable for different types of introductory chemistry courses.

  1. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    SciTech Connect

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec le Goahec, M.; Falize, E.; Bouquet, S.; Courtois, C.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Schiavi, A.

    2007-08-02

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  2. Equipment qualification testing evaluation experiences at Sandia National Laboratories

    SciTech Connect

    Bustard, L.D.; Wyant, F.J.; Bonzon, L.L.; Gillen, K.T.

    1986-01-01

    The USNRC has sponsored a number of programs at Sandia National Laboratories specifically addressing safety-related equipment qualification. The most visible of these programs has been the Qualification Testing Evaluation (QTE) program. Other relevant programs have included the Equipment Qualification Methodology Research Test program (CAP). Over a ten year period these programs have collectively tested numerous types of safety-related equipment. Some insights and conclusions extracted from these testing experiences are summarized in this report.

  3. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec Le Goahec, M.; Falize, E.; Bouquet, S.; Michaut, C.; Herpe, G.; Baroso, P.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Courtois, C.; Woolsey, N. C.; Gregory, C. D.; Howe, J.; Schiavi, A.; Atzeni, S.

    2007-08-01

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  4. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    ERIC Educational Resources Information Center

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  5. Differentiating biochemistry course laboratories based on student experience.

    PubMed

    Jakubowski, Henry V

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or no experience with biochemical techniques and biology and biochemistry majors who do. This manuscript describes a strategy for differentiating biochemistry labs to meet the needs of students with differing backgrounds.

  6. Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil.

    PubMed

    Herrero-Hernández, E; Marín-Benito, J M; Andrades, M S; Sánchez-Martín, M J; Rodríguez-Cruz, M S

    2015-11-01

    This study reports the effect that adding spent mushroom substrate (SMS) to a representative vineyard soil from La Rioja region (Spain) has on the behaviour of azoxystrobin in two different environmental scenarios. Field dissipation experiments were conducted on experimental plots amended at rates of 50 and 150 t ha(-1), and similar dissipation experiments were simultaneously conducted in the laboratory to identify differences under controlled conditions. Azoxystrobin dissipation followed biphasic kinetics in both scenarios, although the initial dissipation phase was much faster in the field than in the laboratory experiments, and the half-life (DT50) values obtained in the two experiments were 0.34-46.3 days and 89.2-148 days, respectively. Fungicide residues in the soil profile increased in the SMS amended soil and they were much higher in the top two layers (0-20 cm) than in deeper layers. The persistence of fungicide in the soil profile is consistent with changes in azoxystrobin adsorption by unamended and amended soils over time. Changes in the dehydrogenase activity (DHA) of soils under different treatments assayed in the field and in the laboratory indicated that SMS and the fungicide had a stimulatory effect on soil DHA. The results reveal that the laboratory studies usually reported in the literature to explain the fate of pesticides in amended soils are insufficient to explain azoxystrobin behaviour under real conditions. Field studies are necessary to set up efficient applications of SMS and fungicide, with a view to preventing the possible risk of water contamination.

  7. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience.

  8. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience. PMID:21618385

  9. Impact of Modified Conductivity Models on Numerical Simulation of Strongly Coupled Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Munson, Carter P.; Benage, John F.; Tierney, Thomas E.; Workman, Jonathan

    2000-10-01

    1-D MHD codes have routinely been employed in the preliminary design of pulsed power hydrodynamics and strongly coupled plasma experiments at Los Alamos National Laboratory. Recent experimental work by Benage, et. al.(Benage, J.F., Shanahan, W.R., and Murillo, M.S., Physical Review Letters), 83, no. 15, pg. 2953, (1999) however, has shown that the established theories used to generate the resistivity tables previously employed in these numerical codes are inadequate in relevant portions of the density and temperature parameter regimes. The best theoretical match to the resistivity data of Benage is provided by a density functional model of Perrot and Dharma-Wardana. Newly available conductivity tables for Aluminum(provided by Mike Desjarlais and Steve Rosenthal of Sandia National Laboratory) are being used to re-evaluate previously modeled experimental configurations. Details of the impact of the various resistivity models on prediction of experimental configurations will be presented.

  10. Lunar temperature and global heat flux from laboratory electrical conductivity and lunar magnetometer data

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Duba, A.

    1975-01-01

    Three-layer monotonic electrical conductivity models for the lunar interior to a depth of 600 km are used in conjunction with laboratory measurements of the electrical conductivity of olivine and pyroxene to estimate a temperature-depth profile. The temperatures calculated for depths of 400-600 km are consistent with attenuation of the seismic shear wave. The temperature calculated at a depth of 100-250 km yields a heat flow that is in good agreement with the directly measured lunar heat flow. The temperature, however, is sufficiently close to melting that mascon anisostasy would not be maintained. Thus a better conductor is required at this depth.

  11. Laboratory experiments on the structure of salt fingers

    NASA Astrophysics Data System (ADS)

    Taylor, John; Bucens, Paul

    1989-11-01

    We investigated the structure of salt fingers in a laboratory tank using horizontal and vertical conductivity and temperature profiles; similar measurements have been made of salt finger microstructure in the ocean. Visualization of the salt fingers using fluorescent dye mixed into the upper layer showed that they were disordered, with new fingers being formed at the edge of the gradient region then growing into the gradient. Because of the disordered state of the fingers the average coherence between the signals for two vertically separated sensors was small, even though the separation of the sensors was of the order of the finger width. The peak in horizontal gradient spectrum was close to both the wavenumber of salt fingers with the maximum growth rate and to the wavenumber of fingers that maximize the buoyancy flux in HOWARD and VERONIS' (1987, Journal of Fluid Mechanics, 183, 1-23), salt finger model. Assuming that the vertical advection of the mean temperature gradient within an individual finger was balanced by horizontal heat diffusion, we derived an estimate for the buoyancy flux due to heat from the variance of the horizontal temperature gradient. On average, this estimate for the flux was 0.6 that determined from the rate of change of the mean layer properties, and our result supports the use of this technique for estimating salt finger fluxes in the ocean. We also derived the buoyancy flux ratio, defined as the ratio of the buoyancy flux due to heat to that due to salt, from the ratio of the variances of the horizontal temperature and salinity profiles. Our estimate for the flux ratio from horizontal profiles was in agreement with that derived from the vertical profiles. At comparable stability ratios the salt flux and buoyancy flux ratio determined from the present experiments were closer to those presented by TURNER (1967, Deep-Sea Research, 14, 599-611) and SCHMITT (1979a, Journal of Marine Research, 37, 419-436) than to the later results of

  12. PUREX environmental radiological surveillance - preoperational and operational support program conducted by Pacific Northwest Laboratory

    SciTech Connect

    Sula, M.J.; Price, K.R.

    1983-10-01

    This report describes the radiological environmental sampling program that is being conducted at the US Department of Energy's (DOE) Hanford Site in support of resumed operation of the PUREX fuel processing plant. The report also summarizes preoperational radiological environmental data collected to date. The activities described herein are part of the ongoing Hanford Environmental Surveillance Program, operated by the Pacific Northwest Laboratory (PNL) for the DOE.

  13. Inter-Laboratory Uranium Double-Spike Experiment

    SciTech Connect

    Russ, G. P

    1999-11-11

    In environmental samples, the major analytical limitation on the use of uranium {sup 238}U/{sup 235}U determinations as an indicator of uranium enrichment is mass dependent bias occurring during the measurement. The double-spike technique can be used to correct the data for this effect. The purpose of this experiment was to evaluate the variation of mass bias among several laboratories and to determine the extent to which the double-spike could be used to reduce analytical uncertainty. Four laboratories performed replicate analyses on each of three samples. Generally mass bias was determined to be small compared to the random scatter of the measurements, but in at least one case, the bias was > 1%. In 8 of 12 cases, intra-laboratory variance was reduced when the double-spike correction was applied. For all three samples, the inter-laboratory variance was decreased, though the decrease was small. Based on a reasonable assumption about the true isotopic compositions of the samples, the accuracy of 11 of the twelve analyses was improved by applying the double spike correction. When the double spike is used to correct for mass bias, the {sup 238}U/{sup 235}U accuracy is better than 1% even for samples as small as 1 ng. For 50 ng of uranium, 0.1% accuracy was achieved.

  14. Analysis of Microgravity Experiments Conducted on the Apollo Spacecraft

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum (TM) discusses the microgravity experiments carried out during the later missions of the Apollo program. Microgravity experiments took place during the Apollo 14, 16, and 17 missions and consisted of four experiments in various materials processing concentrations with two of the four experiments taking place over the course of two missions. Experiments consist of composite casting, electrophoresis, heat flow and convection, and liquid transfer. This TM discusses the background, the workup, execution, and results of each experiment. In addition, the historical significance of each experiment to future applications/NASA programs is discussed.

  15. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  16. The Heavy Photon Search experiment at Jefferson Laboratory

    SciTech Connect

    Celentano, Andrea

    2014-11-01

    The Heavy Photon Search experiment (HPS) at Jefferson Laboratory will search for a new U(1) massive gauge boson, or "heavy-photon", mediator of a new fundamental interaction, called "dark-force", that couples to ordinary photons through kinetic mixing. HPS has sensitivity in the mass range 20 MeV – 1 GeV and coupling epsilon2 between 10-5 and 10-10. The HPS experiment will look for the e+e- decay of the heavy photon, by resonance search and detached vertexing, in an electron beam fixed target experiment. HPS will use a compact forward spectrometer, which employs silicon microstrip detectors for vertexing and tracking, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering.

  17. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    NASA Astrophysics Data System (ADS)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  18. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 4: Programmatics

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Details are provided for scheduling, cost estimates, and support research and technology requirements for a space shuttle supported manned research laboratory to conduct selected communication and navigation experiments. A summary of the candidate program and its time phasing is included, as well as photographs of the 1/20 scale model of the shuttle supported Early Comm/Nav Research Lab showing the baseline, in-bay arrangement and the out-of-bay configuration.

  19. Laboratory assessment of factor VIII inhibitor titer: the North American Specialized Coagulation Laboratory Association experience.

    PubMed

    Peerschke, Ellinor I B; Castellone, Donna D; Ledford-Kraemer, Marlies; Van Cott, Elizabeth M; Meijer, Piet

    2009-04-01

    Quantification of inhibitory antibodies against infused factor VIII (FVIII) has an important role in the management of patients with hemophilia A. This article summarizes results from the largest North American FVIII inhibitor proficiency testing challenge conducted to date. Test samples, 4 negative and 4 positive (1-3 Bethesda units [BU]/mL), were distributed by the ECAT Foundation in conjunction with the North American Specialized Coagulation Laboratory Association and analyzed by 38 to 42 laboratories in 2006 and 2007. Whereas laboratories were able to distinguish between the absence and presence of low-titer FVIII inhibitors, the intralaboratory coefficient of variation was high (30%-42%) for inhibitor-positive samples, and the definition of lower detection limits of the assay was variable (0-1 BU/mL). Most laboratories performed the Bethesda assay with commercially supplied buffered normal pooled plasma in a 1:1 mix with patient plasma. These data provide information for the development of consensus guidelines to improve FVIII inhibitor quantification.

  20. Constraining PCP Violating Varying Alpha Theory through Laboratory Experiments

    SciTech Connect

    Maity, Debaprasad; Chen, Pisin; /NCTS, Taipei /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-06-06

    In this report we have studied the implication of a parity and charge-parity (PCP) violating interaction in varying alpha theory. Due to this interaction, the state of photon polarization can change when it passes through a strong background magnetic field. We have calculated the optical rotation and ellipticity of the plane of polarization of an electromagnetic wave and tested our results against different laboratory experiments. Our model contains a PCP violating parameter {beta} and a scale of alpha variation {omega}. By analyzing the laboratory experimental data, we found the most stringent constraints on our model parameters to be 1 {le} {omega} {le} 10{sup 13} GeV{sup 2} and -0.5 {le} {beta} {le} 0.5. We also found that with the existing experimental input parameters it is very difficult to detect the ellipticity in the near future.

  1. Unsaturated Flow Through a Fractured-Matrix-Network: Dynamic Pathways in Meso-Scale Laboratory Experiments

    SciTech Connect

    Wood, Thomas Ronald

    2002-12-01

    We conducted two laboratory experiments at the meter scale in which water was applied to the top of an initially dry, uncemented wall composed of porous bricks. One experiment (Experiment 1) encouraged evaporation and resulting mineral precipitation, while the other (Experiment 2) was designed to minimize these processes. In both cases, processes acting within the fracture network controlled early time behavior, forming discrete pathways and demonstrating fractures to act as both flow conductors and capillary barriers. At a later time, evaporation–mineral precipitation in Experiment 1 constrained flow, strengthening some pathways and starving others. In Experiment 2, the wetted structure took on the appearance of a diffuse plume; however, individual pathways persisted within the wetted structure and interacted, displaying erratic outflow over a wide range of timescales, including switching between pathways. Thus, under conditions of constant supply and both with and without evaporation–mineral precipitation, unsaturated flow through fractured rock can create dynamic preferential pathways.

  2. Crossing Over: The Lived Experiences of Clinical Laboratory Science Education Teachers as They Transition from Traditional to Online Instruction

    ERIC Educational Resources Information Center

    Veldkamp, Ruth B.

    2013-01-01

    A phenomenological study was undertaken to understand and describe the nature and meaning of the live experiences of faculty transition from traditional to teaching online clinical laboratory science courses. In order to gain insight into the lived experiences of faculty, in-depth interviews were conducted with 10 faculty members. The task of the…

  3. Experiments at The Virtual National Laboratory for Heavy Ion Fusion

    SciTech Connect

    Seidl, P.A.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Kwan, J.W.; MacLaren, S.A.; Ponce, D.; Shuman, D.; Yu, S.; Ahle, L.; Lund, S.; Molvik, A.; Sangster, T.C.

    2000-07-24

    An overview of experiments is presented, in which the physical dimensions, emittance and perveance are scaled to explore driver-relevant beam dynamics. Among these are beam merging, focusing to a small spot, and bending and recirculating beams. The Virtual National Laboratory for Heavy Ion Fusion (VNL) is also developing two driver-scale beam experiments involving heavy-ion beams with I(sub beam) about 1 Ampere to provide guidance for the design of an Integrated Research Experiment (IRE) for driver system studies within the next 5 years. Multiple-beam sources and injectors are being designed and a one-beam module will be built and tested. Another experimental effort will be the transport of such a beam through about 100 magnetic quadrupoles. The experiment will determine transport limits at high aperture fill factors, beam halo formation, and the influence on beam properties of secondary electron Research into driver technology will be briefly presented, including the development of ferromagnetic core materials, induction core pulsers, multiple-beam quadrupole arrays and plasma channel formation experiments for pinched transport in reactor chambers.

  4. Laboratory and in-flight experiments to evaluate 3-D audio display technology

    NASA Technical Reports Server (NTRS)

    Ericson, Mark; Mckinley, Richard; Kibbe, Marion; Francis, Daniel

    1994-01-01

    Laboratory and in-flight experiments were conducted to evaluate 3-D audio display technology for cockpit applications. A 3-D audio display generator was developed which digitally encodes naturally occurring direction information onto any audio signal and presents the binaural sound over headphones. The acoustic image is stabilized for head movement by use of an electromagnetic head-tracking device. In the laboratory, a 3-D audio display generator was used to spatially separate competing speech messages to improve the intelligibility of each message. Up to a 25 percent improvement in intelligibility was measured for spatially separated speech at high ambient noise levels (115 dB SPL). During the in-flight experiments, pilots reported that spatial separation of speech communications provided a noticeable improvement in intelligibility. The use of 3-D audio for target acquisition was also investigated. In the laboratory, 3-D audio enabled the acquisition of visual targets in about two seconds average response time at 17 degrees accuracy. During the in-flight experiments, pilots correctly identified ground targets 50, 75, and 100 percent of the time at separation angles of 12, 20, and 35 degrees, respectively. In general, pilot performance in the field with the 3-D audio display generator was as expected, based on data from laboratory experiments.

  5. Simulation studies of plasma lens experiments at Daresbury laboratory

    NASA Astrophysics Data System (ADS)

    Hanahoe, K.; Mete, O.; Xia, G.; Angal-Kalinin, D.; Jones, J.; Smith, J.

    2016-03-01

    Experiments are planned to study plasma lensing using the VELA and CLARA Front End accelerators at Daresbury Laboratory. This paper presents results of 2-dimensional particle-in-cell simulations of the proposed experiments. The variation in focusing strength and emittance growth with beam and plasma parameters are studied in the overdense (plasma density much greater than bunch density) regime for the VELA beam. The effect of spherical and longitudinal aberrations on the beam emittance was estimated through numerical and theoretical studies. Simulation results show that a focusing strength equivalent to a magnetic field gradient of 10 T m-1 can be achieved using VELA, and a gradient of 247 T m-1 can be achieved using CLARA Front End.

  6. Laboratory experiments on stratified flow through a suspended porous fence

    NASA Astrophysics Data System (ADS)

    Delavan, Sarah; Nokes, Roger; Plew, David

    2012-11-01

    This study explores stratified flow through a suspended, porous, fence-like obstacle to simulate flow through fish farm cages, mussel farm rope suspensions, flow through suspended aquatic vegetation, underwater energy production structures, or windbreak and wave break fencing. Laboratory experiments were performed in a density stratified, stationary flume with a suspended porous fence model using a particle tracking velocimetry (PTV) system. Experiments explored the effect on the fluid of the fence depth to total depth ratio, the system Richardson number, and the porosity of the fence. Preliminary results suggest that the density stratification of the fluid inhibits vertical fluid motion, that fence porosity greatly controls the vertical mixing of the fluid, and that there may be an optimal fence depth to total depth ratio for full development of the system flow structures.

  7. An Integrated Laboratory Approach toward the Preparation of Conductive Poly(phenylene vinylene) Polymers

    ERIC Educational Resources Information Center

    Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.

    2014-01-01

    Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the…

  8. Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Cho, Hyun Woo; Kim, Sang Won; Kim, Jeongmin; Kim, Un Jeong; Im, Kyuhyun; Park, Jong-Jin; Sung, Bong June

    2016-05-01

    We investigate how the electrical conductance of microfibers (made of polymers and conductive nanofillers) decreases upon uniaxial deformation by performing both experiments and simulations. Even though various elastic conductors have been developed due to promising applications for deformable electronic devices, the mechanism at a molecular level for electrical conductance change has remained elusive. Previous studies proposed that the decrease in electrical conductance would result from changes in either distances or contact numbers between conductive fillers. In this work, we prepare microfibers of single walled carbon nanotubes (SWCNTs)/polyvinyl alcohol composites and investigate the electrical conductance and the orientation of SWCNTs upon uniaxial deformation. We also perform extensive Monte Carlo simulations, which reproduce experimental results for the relative decrease in conductance and the SWCNTs orientation. We investigate the electrical networks of SWCNTs in microfibers and find that the decrease in the electrical conductance upon uniaxial deformation should be attributed to a subtle change in the topological structure of the electrical network.

  9. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGES

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; et al

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  10. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\\bar{Z}$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  11. Laboratory Experiments, Numerical Simulations, and Astronomical Observations of Deflected Supersonic Jets: Application to HH 110

    NASA Astrophysics Data System (ADS)

    Hartigan, P.; Foster, J. M.; Wilde, B. H.; Coker, R. F.; Rosen, P. A.; Hansen, J. F.; Blue, B. E.; Williams, R. J. R.; Carver, R.; Frank, A.

    2009-11-01

    Collimated supersonic flows in laboratory experiments behave in a similar manner to astrophysical jets provided that radiation, viscosity, and thermal conductivity are unimportant in the laboratory jets and that the experimental and astrophysical jets share similar dimensionless parameters such as the Mach number and the ratio of the density between the jet and the ambient medium. When these conditions apply, laboratory jets provide a means to study their astrophysical counterparts for a variety of initial conditions, arbitrary viewing angles, and different times, attributes especially helpful for interpreting astronomical images where the viewing angle and initial conditions are fixed and the time domain is limited. Experiments are also a powerful way to test numerical fluid codes in a parameter range in which the codes must perform well. In this paper, we combine images from a series of laboratory experiments of deflected supersonic jets with numerical simulations and new spectral observations of an astrophysical example, the young stellar jet HH 110. The experiments provide key insights into how deflected jets evolve in three dimensions, particularly within working surfaces where multiple subsonic shells and filaments form, and along the interface where shocked jet material penetrates into and destroys the obstacle along its path. The experiments also underscore the importance of the viewing angle in determining what an observer will see. The simulations match the experiments so well that we can use the simulated velocity maps to compare the dynamics in the experiment with those implied by the astronomical spectra. The experiments support a model where the observed shock structures in HH 110 form as a result of a pulsed driving source rather than from weak shocks that may arise in the supersonic shear layer between the Mach disk and bow shock of the jet's working surface.

  12. LABORATORY EXPERIMENTS, NUMERICAL SIMULATIONS, AND ASTRONOMICAL OBSERVATIONS OF DEFLECTED SUPERSONIC JETS: APPLICATION TO HH 110

    SciTech Connect

    Hartigan, P.; Carver, R.; Foster, J. M.; Rosen, P. A.; Williams, R. J. R.; Wilde, B. H.; Coker, R. F.; Hansen, J. F.; Blue, B. E.; Frank, A.

    2009-11-01

    Collimated supersonic flows in laboratory experiments behave in a similar manner to astrophysical jets provided that radiation, viscosity, and thermal conductivity are unimportant in the laboratory jets and that the experimental and astrophysical jets share similar dimensionless parameters such as the Mach number and the ratio of the density between the jet and the ambient medium. When these conditions apply, laboratory jets provide a means to study their astrophysical counterparts for a variety of initial conditions, arbitrary viewing angles, and different times, attributes especially helpful for interpreting astronomical images where the viewing angle and initial conditions are fixed and the time domain is limited. Experiments are also a powerful way to test numerical fluid codes in a parameter range in which the codes must perform well. In this paper, we combine images from a series of laboratory experiments of deflected supersonic jets with numerical simulations and new spectral observations of an astrophysical example, the young stellar jet HH 110. The experiments provide key insights into how deflected jets evolve in three dimensions, particularly within working surfaces where multiple subsonic shells and filaments form, and along the interface where shocked jet material penetrates into and destroys the obstacle along its path. The experiments also underscore the importance of the viewing angle in determining what an observer will see. The simulations match the experiments so well that we can use the simulated velocity maps to compare the dynamics in the experiment with those implied by the astronomical spectra. The experiments support a model where the observed shock structures in HH 110 form as a result of a pulsed driving source rather than from weak shocks that may arise in the supersonic shear layer between the Mach disk and bow shock of the jet's working surface.

  13. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    NASA Astrophysics Data System (ADS)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was

  14. How to Conduct Clinical Qualitative Research on the Patient's Experience

    ERIC Educational Resources Information Center

    Chenail, Ronald J.

    2011-01-01

    From a perspective of patient-centered healthcare, exploring patients' (a) preconceptions, (b) treatment experiences, (c) quality of life, (d) satisfaction, (e) illness understandings, and (f) design are all critical components in improving primary health care and research. Utilizing qualitative approaches to discover patients' experiences can…

  15. Measurement of cardiac output in small laboratory animals using recordings of blood conductivity.

    PubMed

    Vogel, J

    1997-11-01

    No method exists which enables easy, frequent, and, at the same time, reliable cardiac output (CO) measurements in mice. To validate a simple indicator-dilution method suitable for frequent measurements of CO in small laboratory animals, a 5% glucose solution was injected as a bolus into femoral veins of mice and rats. The corresponding blood conductivity was measured continuously between an intra-aortic and a rectal electrode. The resulting conductivity-dilution curves were used to calculate CO in mice during hypervolemia and hypovolemia and in conscious as well as halothane-anesthetized mice and rats. In rats, conductivity-dilution curves and time courses of plasma glucose concentration were recorded simultaneously. Compared with CO in awake animals, CO in both species was slightly, but not significantly, reduced during halothane anesthesia. CO was significantly and gradually reduced in hypovolemic mice (up to 58 ml blood/kg body wt), whereas hypervolemia (23 ml saline/kg body wt) had no significant effect. Simultaneous recordings of conductivity-dilution curves and time courses of plasma glucose concentration yielded corresponding values of CO (P < 0.001). Measurement of blood conductivity appears to be a reliable, simple, and convenient method for quantification of CO in small animals. PMID:9374792

  16. Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary

    1999-05-01

    Enzyme kinetics experiments are popular in the undergraduate laboratory. These experiments have pedagogic value because they reinforce the concepts of Michaelis-Menten kinetics covered in the lecture portion of the course and give students the experience of calculating kinetic constants from data they themselves have generated. In this experiment, we investigate the kinetics of the thiol protease papain. The source of the papain is commercially available papaya latex. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained. If time permits, students carry out additional investigations in which e of p-nitroaniline is measured, the enzyme solution protein concentration is measured, the enzyme purity is evaluated by SDS-PAGE, and a pH-rate profile is constructed from experimental data.

  17. Subduction to Continental Delamination: Insights From Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Gogus, O. H.; Corbi, F.; Faccenna, C.; Pysklywec, R. N.

    2009-05-01

    The evolution of the lithosphere through subduction-collision and delamination and its surface/crustal response (topography/deformation) is investigated in this work. We present a series of lithosphere scale two dimensional (2-D) and three dimensional (3-D) laboratory experiments to better understand such processes. In these experiments, an idealized viscously deforming crust-mantle lithosphere-mantle system is configured with silicone putty (representing lithospheric mantle and upper crust) and glucose syrup (representing the upper mantle and lower crust). The initial focus was to investigate the physical development of delamination versus continental subduction without plate convergence. Experiments show that the delamination or continental subduction is strongly dependent on the density of the crust (both crust and mantle lithosphere subducts when crust has a higher density, instead of delamination), while in the investigated range, the viscosity of the weak layer does not have much influence on the process. In all the experiments, the topography is asymmetric with subsidence above the delaminating hinge due to the dynamic vertical pulling driven by the delaminating slab, and uplift above the delaminated region due to the buoyancy of asthenosphere. Our investigation on the oceanic subduction with a convergence rate of ~ 3cm/year plate velocity suggests that subduction -collision - delamination is well defined and at the end, the delaminating crust from the lithosphere is overthrusted on top of the overriding plate. Our results provide integrated insights on the Alpine-Himalayan type orogenies, in particular the neotectonic evolution of Eastern Anatolian plateau.

  18. School Placement and Conductive Education: The Experiences of Education Administrators

    ERIC Educational Resources Information Center

    Morgan, Angela; Hogan, Kevin

    2005-01-01

    A placement at the National Institute of Conductive Education (NICE) in Birmingham for children with motor disorders is strongly preferred over mainstream or special schools by some parents, but it has been noted that this is usually refused following the current statementing process. Although funding constraints have been articulated, Angela…

  19. Payload specialists Baudry and Al-Saud conduct Postural experiment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Payload specialists Patrick Baudry (left) and Sultan Salman Abdelazize Al-Saud team up to conduct a French Postural Experement (FPE) on the middeck of the Space shuttle Discovery during the STS 51-G flight. Behind them on the middeck walls are two sleep restraints.

  20. Payload specialist Sultan Abdelazize Al-Saud conducts Postural experiment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Payload specialist Sultan Salman Abdelazize Al-Saud assists in conducting a French Postural Experement (FPE) on the middeck of the Space shuttle Discovery during the STS 51-G flight. Behind him on the middeck walls are two sleep restraints. At the bottom of the frame, foot restraints are visible.

  1. The Software Engineering Laboratory: An operational software experience factory

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon

    1992-01-01

    For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.

  2. Laboratory astrophysical collisionless shock experiments on Omega and NIF

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Ross, J. S.; Huntington, C. M.; Fiuza, F.; Ryutov, D.; Casey, D.; Drake, R. P.; Fiksel, G.; Froula, D.; Gregori, G.; Kugland, N. L.; Kuranz, C.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R.; Plechaty, C.; Remington, B.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Zylstra, A. B.

    2016-03-01

    We are performing scaled astrophysics experiments on Omega and on NIF. Laser driven counter-streaming interpenetrating supersonic plasma flows can be studied to understand astrophysical electromagnetic plasma phenomena in a controlled laboratory setting. In our Omega experiments, the counter-streaming flow plasma state is measured using Thomson scattering diagnostics, demonstrating the plasma flows are indeed super-sonic and in the collisionless regime. We observe a surprising additional electron and ion heating from ion drag force in the double flow experiments that are attributed to the ion drag force and electrostatic instabilities. [1] A proton probe is used to image the electric and magnetic fields. We observe unexpected large, stable and reproducible electromagnetic field structures that arise in the counter-streaming flows [2]. The Biermann battery magnetic field generated near the target plane, advected along the flows, and recompressed near the midplane explains the cause of such self-organizing field structures [3]. A D3He implosion proton probe image showed very clear filamentary structures; three-dimensional Particle-In-Cell simulations and simulated proton radiography images indicate that these filamentary structures are generated by Weibel instabilities and that the magnetization level (ratio of magnetic energy over kinetic energy in the system) is ∼0.01 [4]. These findings have very high astrophysical relevance and significant implications. We expect to observe true collisionless shock formation when we use >100 kJ laser energy on NIF.

  3. Transverse dispersion: From laboratory experiments to field applications

    NASA Astrophysics Data System (ADS)

    Grathwohl, Peter; Rügner, Hermann

    2016-04-01

    Transverse dispersion is relevant for dilution of contaminant plumes in groundwater and in many cases controls the length of steady state plumes during natural attenuation. Also dissolution kinetics of NAPLs in porous media and mass transfer of vapor phase compounds across the capillary fringe (e.g. supply of oxygen) is limited by transverse dispersion. In bench scale laboratory experiments typically very small dispersion coefficients are observed. Transverse dispersivities determined in DNAPL pool dissolution experiments in coarse sands are less than 0.1 mm which agrees with results from lab experiments on dilution of tracers and transfer of oxygen across the capillary fringe. Such low dispersivities lead to long-term persistence of DNAPL pools of many decades to centuries which is confirmed e.g. for chlorinated solvents and coal tars by observations at contaminated sites. However, larger scale investigations, e.g. determination of the length of steady state plumes or reduction of mass fluxes of biodegradable compounds suggest that transverse dispersivities at field scale are up to 3 orders of magnitude higher (1 -10 cm). Reasons for this discrepancy are still unclear, but may be partly explained by processes enhancing transverse mixing such as flow focusing due to aquifer geometries or high permeability inclusions and helical groundwater flow induced by herringbone structures in sediments.

  4. Integrating responsible conduct of research education into undergraduate biochemistry and molecular biology laboratory curricula.

    PubMed

    Hendrickson, Tamara L

    2015-01-01

    Recently, a requirement for directed responsible conduct in research (RCR) education has become a priority in the United States and elsewhere. In the US, both the National Institutes of Health and the National Science Foundation require RCR education for all students who are financially supported by federal awards. The guidelines produced by these agencies offer useful templates for the introduction of RCR materials into courses worldwide. Many academic programs already offer courses or workshops in RCR for their graduate students and for undergraduate science majors and/or researchers. Introducing RCR into undergraduate biochemistry and molecular biology laboratory curricula is another, highly practical way that students can be exposed to these important topics. In fact, a strong argument can be made for integrating RCR into laboratory courses because these classes often introduce students to a scientific environment like that they might encounter in their careers after graduation. This article focuses on general strategies for incorporating explicit RCR education into biochemistry and molecular biology laboratory coursework using the topics suggested by NIH as a starting point.

  5. Dimensioning IRGA gas sampling systems: laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Aubinet, Marc; Joly, Lilian; Loustau, Denis; De Ligne, Anne; Chopin, Henri; Cousin, Julien; Chauvin, Nicolas; Decarpenterie, Thomas; Gross, Patrick

    2016-03-01

    Both laboratory and field experiments were carried out in order to define suitable configuration ranges for the gas sampling systems (GSSs) of infrared gas analyzers (IRGAs) used in eddy covariance measurements.

    In the laboratory, an original dynamic calibration bench was developed in order to test the frequency attenuation and pressure drop generated by filters. In the field, three IRGAs of the same type equipped with different filters or different rain caps were installed and run and the real frequency response of the complete setup was tested. The main results are as follows. - Filters may have a strong impact on the pressure drop in the GSS and this impact increases with flow rate. - Conversely, no impact of the tested filters on cut-off frequency was found, GSSs with and without filters presenting similar cut-off frequencies. - The main limiting factor of cut-off frequency in the field was found to be the rain cap design. In addition, the impact of this design on pressure drop was also found to be noteworthy.

  6. Magnetic shielding of a laboratory Hall thruster. II. Experiments

    SciTech Connect

    Hofer, Richard R. Goebel, Dan M.; Mikellides, Ioannis G.; Katz, Ira

    2014-01-28

    The physics of magnetic shielding in Hall thrusters were validated through laboratory experiments demonstrating essentially erosionless, high-performance operation. The magnetic field near the walls of a laboratory Hall thruster was modified to effectively eliminate wall erosion while maintaining the magnetic field topology away from the walls necessary to retain efficient operation. Plasma measurements at the walls validate our understanding of magnetic shielding as derived from the theory. The plasma potential was maintained very near the anode potential, the electron temperature was reduced by a factor of two to three, and the ion current density was reduced by at least a factor of two. Measurements of the carbon backsputter rate, wall geometry, and direct measurement of plasma properties at the wall indicate that the wall erosion rate was reduced by a factor of 1000 relative to the unshielded thruster. These changes effectively eliminate wall erosion as a life limitation in Hall thrusters, enabling a new class of deep-space missions that could not previously be attempted.

  7. The Nature of Laboratory Learning Experiences in Secondary Science Online

    NASA Astrophysics Data System (ADS)

    Crippen, Kent J.; Archambault, Leanna M.; Kern, Cindy L.

    2013-06-01

    Teaching science to secondary students in an online environment is a growing international trend. Despite this trend, reports of empirical studies of this phenomenon are noticeably missing. With a survey concerning the nature of laboratory activities, this study describes the perspective of 35-secondary teachers from 15-different U.S. states who are teaching science online. The type and frequency of reported laboratory activities are consistent with the tradition of face-to-face instruction, using hands-on and simulated experiments. While provided examples were student-centered and required the collection of data, they failed to illustrate key components of the nature of science. The features of student-teacher interactions, student engagement, and nonverbal communications were found to be lacking and likely constitute barriers to the enactment of inquiry. These results serve as a call for research and development focused on using existing communication tools to better align with the activity of science such that the nature of science is more clearly addressed, the work of students becomes more collaborative and authentic, and the formative elements of a scientific inquiry are more accessible to all participants.

  8. Dimensioning IRGA gas sampling system : laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Aubinet, Marc; Joly, Lilian; Loustau, Denis; De Ligne, Anne; Chopin, Henri; Cousin, Julien; De Carpenterie, Thomas; Gross, Patrick; Chauvin, Nicolas

    2016-04-01

    Both laboratory and field experiments were carried out in order to define suitable configuration ranges for the gas sampling systems (GSS) of infrared gas analyzers (IRGA) used in eddy covariance measurements. In the laboratory, an original dynamic calibration bench was developed in order to test the frequency attenuation and pressure drop generated by filters. In the field, three IRGAs of the same type equipped with different filters or different rain caps were installed and run and the real frequency response of the complete set-up was tested. The main results are that: - Filters may have a strong impact on the pressure drop in the GSS and this impact increases with flow rate. - On the contrary, no impact of the tested filters on cut off frequency was found, GSS with and without filters presenting similar cut off frequencies. - The main limiting factor of cut off frequency in the field was found to be the rain cap design. In addition, the impact of this design on pressure drop was also found noteworthy.

  9. Astronaut Mike Fincke Conducts Fluid Merging Viscosity Measurement (FMVM) Experiment

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or 'thickness' of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.

  10. Deformation Monitoring of Materials Under Stress in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Skarlatos, D.; Yiatros, S.

    2016-06-01

    Photogrammetry is a valid alternative solution to linear variable differential transformer (LVDT) measurements in structural testing in laboratory conditions. Although the use of LVDTs boasts a high degree of accuracy, on the other hand it is limiting as it offers measurements between two points and it thus might be unable to capture localized deformations and strains over a bigger area of a structural specimen. In this aspect photogrammetry seems to offer certain advantages. Commercial solutions provide limited testing envelopes, while on the other hand, the wide range on new materials need more versatile techniques. Based on the need to develop an in-house photogrammetric toolbox to support several structural and material experiments in the department Advanced Pore Morphology (APM) aluminium foam specimens developed at Fraunhofer IFAM in Germany and cured at CUT, were tested under monotonic compressive load. Data acquisition, analysis and results, along with lessons learnt from the process are presented in this work.

  11. Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)

    NASA Technical Reports Server (NTRS)

    Kakad, Yogendra P.

    1992-01-01

    This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.

  12. Laboratory experiment of the rock anelastic strain recovery compliances

    NASA Astrophysics Data System (ADS)

    Gao, Lu; Wang, Lianjie

    2012-09-01

    Anelastic strain recovery (ASR) compliances are the important parameters for the ASR in situ stress measurement method to accurately evaluate the magnitude of the stress. The laboratory experiment of the creep and ASR processes for three types of rocks (sandstone, marble and granite) were performed. The tests were carried out at 50% of the uniaxial compressive strength (UCS). And the ASR compliances of the shear mode Jas(t), the volumetric mode Jav(t) and the ratio of Jas(t) and Jav(t) were obtained, respectively. The experimental result show that both the magnitude and increase rate of the ASR compliance greatly depend on the rock type, and the ratios of Jas(t) and Jav(t) trend to different constant values after enough elapsed time for each type of rock specimen.

  13. Seeded FEL Microbunching Experiments at the UCLA Neptune Laboratory

    SciTech Connect

    Tochitsky, S. Ya.; Musumeci, P.; Rosenzweig, J. B.; Joshi, C.; Gottschalk, S. C.

    2010-11-04

    Seeded high-gain FELs, which can generate very powerful radiation pulses in a relatively compact undulator and simultaneously modulate the electron beam longitudinally at the seed wavelength, are important tools for advanced accelerator development. A single-pass 0.5-9 THz FEL amplifier-buncher driven by a regular photoinjector is being built at the UCLA Neptune Laboratory. FEL interactions at 340 {mu}m (1 THz) are considered for the first experiment, since time-resolved measurements of longitudinal current distribution of the bunched beam using the RF deflecting cavity are possible. A design of a 0.2-2.0 {mu}m FEL using the same undulators is presented. In this case the FEL is driven by a high-peak current beam from the laser-plasma accelerator tunable in the 100-300 MeV range.

  14. Experience of Implementing ISO 15189 Accreditation at a University Laboratory

    PubMed Central

    2015-01-01

    The present article summarizes the authors’ experience with the implementation of a quality management system based on ISO 17025 and ISO 15189 standards at university laboratories. The accreditation of the analytical procedures at the Universidad Mariano Gálvez represented a challenge due to the unique nature of an educational institution and the difference in nature to the standards implemented. Sample handling and care of the patient were combined to achieve an integrated management system. We explain the development of the management system, the obstacles and benefits of the system and concluding that it is possible to design a management system based on ISO 15189 for the university lab that allowed delivering results assuring technical competence to patient care and welfare. PMID:27683499

  15. Experience of Implementing ISO 15189 Accreditation at a University Laboratory.

    PubMed

    Solis-Rouzant, Patricia

    2015-11-01

    The present article summarizes the authors' experience with the implementation of a quality management system based on ISO 17025 and ISO 15189 standards at university laboratories. The accreditation of the analytical procedures at the Universidad Mariano Gálvez represented a challenge due to the unique nature of an educational institution and the difference in nature to the standards implemented. Sample handling and care of the patient were combined to achieve an integrated management system. We explain the development of the management system, the obstacles and benefits of the system and concluding that it is possible to design a management system based on ISO 15189 for the university lab that allowed delivering results assuring technical competence to patient care and welfare. PMID:27683499

  16. Electrical Conductivity in Transparent Silver Nanowire Networks: Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Sherrott, Michelle; Mutiso, Rose; Rathmell, Aaron; Wiley, Benjamin; Winey, Karen

    2012-02-01

    We model and experimentally measure the electrical conductivity of two-dimensional networks containing finite, conductive cylinders with aspect ratio ranging from 33 to 333. We have previously used our simulations to explore the effects of cylinder orientation and aspect ratio in three-dimensional composites, and now extend the simulation to consider two-dimensional silver nanowire networks. Preliminary results suggest that increasing the aspect ratio and area fraction of these rods significantly decreases the sheet resistance of the film. For all simulated aspect ratios, this sheet resistance approaches a constant value for high area fractions of rods. This implies that regardless of aspect ratio, there is a limiting minimum sheet resistance that is characteristic of the properties of the nanowires. Experimental data from silver nanowire networks will be incorporated into the simulations to define the contact resistance and corroborate experimentally measured sheet resistances of transparent thin films.

  17. Status of the Nuclear-Induced Conductivity Experiment (NICE) Project

    NASA Technical Reports Server (NTRS)

    Bitteker, Leo; Bragg-Sitton, Shannon M.; Litchford, Ron J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Nuclear-based magnetohydrodynamic (MHD) energy conversion has been pursued in various forms since the 1950's. The majority of this work was motivated by the compatibility of MHD generators with the high temperature achievable with a nuclear reactor and the associated potential for very high cycle efficiency. As a result of this perspective, methods for enhancing the electrical conductivity of the MHD flow have primarily focused on traditional thermal ionization processes, especially those utilizing alkali metal seeds. However, electrical conductivity enhancement via thermal interactions imposes significant limitations on the flow expansion through the generator, and hence on the ultimate power density. Furthermore, the introduction of an alkali metal seed into the flow significantly complicates the engineering design and increases the potential for system failures due to plating of the evaporated metal on cold surfaces.

  18. Rainfall estimation using moving cars as rain gauges - laboratory experiments

    NASA Astrophysics Data System (ADS)

    Rabiei, E.; Haberlandt, U.; Sester, M.; Fitzner, D.

    2013-11-01

    The spatial assessment of short time-step precipitation is a challenging task. Low density of observation networks, as well as the bias in radar rainfall estimation motivated the new idea of exploiting cars as moving rain gauges with windshield wipers or optical sensors as measurement devices. In a preliminary study, this idea has been tested with computer experiments (Haberlandt and Sester, 2010). The results have shown that a high number of possibly inaccurate measurement devices (moving cars) provide more reliable areal rainfall estimations than a lower number of precise measurement devices (stationary gauges). Instead of assuming a relationship between wiper frequency (W) and rainfall intensity (R) with an arbitrary error, the main objective of this study is to derive valid W-R relationships between sensor readings and rainfall intensity by laboratory experiments. Sensor readings involve the wiper speed, as well as optical sensors which can be placed on cars and are usually made for automating wiper activities. A rain simulator with the capability of producing a wide range of rainfall intensities is designed and constructed. The wiper speed and two optical sensors are used in the laboratory to measure rainfall intensities, and compare it with tipping bucket readings as reference. Furthermore, the effect of the car speed on the estimation of rainfall using a car speed simulator device is investigated. The results show that the sensor readings, which are observed from manual wiper speed adjustment according to the front visibility, can be considered as a strong indicator for rainfall intensity, while the automatic wiper adjustment show weaker performance. Also the sensor readings from optical sensors showed promising results toward measuring rainfall rate. It is observed that the car speed has a significant effect on the rainfall measurement. This effect is highly dependent on the rain type as well as the windshield angle.

  19. Experimenting in a constructivist high school physics laboratory

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    Although laboratory activities have long been recognized for their potential to facilitate the learning of science concepts and skills, this potential has yet to be realized. To remediate this problem, researchers have called for constructivist learning environments in which students can pursue open inquiry and frame their own research problems. The present study was designed to describe and understand students' experimenting and problem solving in such an environment. An interpretive research methodology was adopted for the construction of meaning from the data. The data sources included videotapes, their transcripts, student laboratory reports and reflections, interviews with the students, and the teacher's course outline and reflective notes. Forty-six students from three sections of an introductory physics course taught at a private school for boys participated in the study. This article shows the students' remarkable ability and willingness to generate research questions and to design and develop apparatus for data collection. In their effort to frame research questions, students often used narrative explanations to explore and think about the phenomena to be studied. In some cases, blind alleys, students framed research questions and planned experiments that did not lead to the expected results. We observed a remarkable flexibility to deal with problems that arose during the implementation of their plans in the context of the inquiry. These problems, as well as their solutions and the necessary decision-making processes, were characterized by their situated nature. Finally, students pursued meaningful learning during the interpretation of data and graphs to arrive at reasonable answers of their research questions. We concluded that students should be provided with problem-rich learning environments in which they learn to investigate phenomena of their own interest and in which they can develop complex problem-solving skills.

  20. LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL

    SciTech Connect

    Stephen M. Masutani

    1999-12-31

    This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

  1. Lunar electrical conductivity, permeability and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. The measured lunar remanent fields range from 3 gammas minimum at the Apollo 15 site to 327 gammas maximum at the Apollo 16 site. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Remanent fields at Apollo 12 and Apollo 16 are increased 16 gammas and 32 gammas, respectively, by a solar plasma bulk pressure increase of 1.5 X 10 to the -7th power dynes/sq cm. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate an electrical conductivity profile for the moon. From nightside magnetometer data in the solar wind it was found that deeper than 170 km into the moon the conductivity rises from .0003 mhos/m to .10 mhos/m at 100 km depth. Recent analysis of data obtained in the geomagnetic tail, in regions free of complicating plasma effects, yields results consistent with nightside values.

  2. Using Phenomenology to Conduct Environmental Education Research: Experience and Issues

    ERIC Educational Resources Information Center

    Nazir, Joanne

    2016-01-01

    Recently, I applied a phenomenological methodology to study environmental education at an outdoor education center. In this article, I reflect on my experience of doing phenomenological research to highlight issues researchers may want to consider in using this type of methodology. The main premise of the article is that phenomenology, with its…

  3. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 3: Laboratory descriptions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.

  4. Cyclic deformations in the Opalinus clay: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Huber, Emanuel; Huggenberger, Peter; Möri, Andreas; Meier, Edi

    2015-04-01

    The influence of tunnel climate on deformation cycles of joint openings and closings is often observed immediately after excavation. At the EZ-B niche in the Mt. Terri rock laboratory (Switzerland), a cyclic deformation of the shaly Opalinus clay has been monitored for several years. The deformation cycles of the joints parallel to the clay bedding planes correlate with seasonal variations in relative humidity of the air in the niche. In winter, when the relative humidity is the lowest (down to 65%), the joints open as the clay volume decreases, whereas they tend to close in the summer when the relative humidity reaches up to 100%. Furthermore, in situ measurements have shown the trend of an increasingly smaller aperture of joints with time. A laboratory experiment was carried out to reproduce the observed cyclic deformation in a climate chamber using a core sample of Opalinus clay. The main goal of the experiment was to investigate the influence of the relative humidity on the deformation of the Opalinus clay while excluding the in situ effects (e.g. confining stress). The core sample of Opalinus clay was put into a closed ended PVC tube and the space between the sample and the tube was filled with resin. Then, the sample (size: 28 cm × 14 cm × 6.5 cm) was cut in half lengthways and the open end was cut, so that the half-core sample could move in one direction. The mounted sample was exposed to wetting and drying cycles in a climate chamber. Air temperature, air humidity and sample weight were continuously recorded. Photographs taken at regular time intervals by a webcam allowed the formation/deformation of cracks on the surface of the sample to be monitored. A crackmeter consisting of a double-plate capacitor attached to the core sample was developed to measure the dynamics of the crack opening and closing. Preliminary results show that: - Deformation movements during different climate cycles can be visualized with the webcam - The crackmeter signal gives a

  5. Laboratory Experiments on Convective Entrainment Using a Saline Water Tank

    NASA Astrophysics Data System (ADS)

    Jonker, Harmen J. J.; Jiménez, Maria A.

    2014-06-01

    Entrainment fluxes in a shear-free convective boundary layer have been measured with a saline water tank set-up. The experiments were targeted towards measuring the entrainment behaviour for medium to high Richardson numbers and use a two-layer design, i.e. two stacked non-stratified (neutral) layers with different densities. With laser induced fluorescence (LIF), the entrainment flux of a fluorescent dye is measured for bulk Richardson numbers in the range 30-260. It is proposed that a carefully chosen combination of top-down and bottom-up processes improves the accuracy of LIF-based entrainment observations. The observed entrainment fluxes are about an order of magnitude lower than reported for thermal water tanks: the derived buoyancy entrainment ratio, , is found to be , which is to be compared with for a thermal convection tank (Deardorff et al., J Fluid Mech 100:41-64, 1980). An extensive discussion is devoted to the influence of the Reynolds and Prandtl numbers in laboratory experiments on entrainment.

  6. Characterization of rockfalls from seismic signal: Insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; Rosny, Julien de; Shapiro, Nikolai; Dewez, Thomas; Hibert, Clément; Mathon, Christian; Sedan, Olivier; Berger, Frédéric

    2015-10-01

    The seismic signals generated by rockfalls can provide information on their dynamics and location. However, the lack of field observations makes it difficult to establish clear relationships between the characteristics of the signal and the source. In this study, scaling laws are derived from analytical impact models to relate the mass and the speed of an individual impactor to the radiated elastic energy and the frequency content of the emitted seismic signal. It appears that the radiated elastic energy and frequencies decrease when the impact is viscoelastic or elastoplastic compared to the case of an elastic impact. The scaling laws are validated with laboratory experiments of impacts of beads and gravels on smooth thin plates and rough thick blocks. Regardless of the involved materials, the masses and speeds of the impactors are retrieved from seismic measurements within a factor of 3. A quantitative energy budget of the impacts is established. On smooth thin plates, the lost energy is either radiated in elastic waves or dissipated in viscoelasticity when the impactor is large or small with respect to the plate thickness, respectively. In contrast, on rough thick blocks, the elastic energy radiation represents less than 5% of the lost energy. Most of the energy is lost in plastic deformation or rotation modes of the bead owing to surface roughness. Finally, we estimate the elastic energy radiated during field scale rockfalls experiments. This energy is shown to be proportional to the boulder mass, in agreement with the theoretical scaling laws.

  7. Bacterial transport in heterogeneous porous media: Observations from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Silliman, S. E.; Dunlap, R.; Fletcher, M.; Schneegurt, M. A.

    2001-11-01

    Transport of bacteria through heterogeneous porous media was investigated in small-scale columns packed with sand and in a tank designed to allow the hydraulic conductivity to vary as a two-dimensional, lognormally distributed, second-order stationary, exponentially correlated random field. The bacteria were Pseudomonas ftuorescens R8, a strain demonstrating appreciable attachment to surfaces, and strain Ml, a transposon mutant of strain R8 with reduced attachment ability. In bench top, sand-filled columns, transport was determined by measuring intensity of fluorescence of stained cells in the effluent or by measuring radiolabeled cells that were retained in the sand columns. Results demonstrated that strain Ml was transported more efficiently than strain R8 through columns packed with either a homogeneous silica sand or a more heterogeneous sand with iron oxide coatings. Two experiments conducted in the tank involved monitoring transport of bacteria to wells via sampling from wells and sample ports in the tank. Bacterial numbers were determined by direct plate count. At the end of the first experiment, the distribution of the bacteria in the sediment was determined by destructive sampling and plating. The two experiments produced bacterial breakthrough curves that were quite similar even though the similarity between the two porous media was limited to first- and second-order statistical moments. This result appears consistent with the concept of large-scale, average behavior such as has been observed for the transport of conservative chemical tracers. The transported bacteria arrived simultaneously with a conservative chemical tracer (although at significantly lower normalized concentration than the tracer). However, the bacterial breakthrough curves showed significant late time tailing. The concentrations of bacteria attached to the sediment surfaces showed considerably more spatial variation than did the concentrations of bacteria in the fluid phase. This

  8. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    2015-06-11

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or Kd values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  9. Laboratory experiment on boundaries of upper stage plane bed regime

    NASA Astrophysics Data System (ADS)

    Zrostlík, Štěpán; Matoušek, Václav

    2016-04-01

    Results are discussed of laboratory experiments on criteria determining the transition between the regime of dunes and the upper stage plane bed (UPB) regime and the transition between the UPB regime and the regime of wavy flow. The experiments were carried for 3 fractions of plastic material and two fractions of glass beads in a broad range of flow conditions (different discharges of water and solids and longitudinal bed slopes) in a tilting flume. The experiments reveal that, contrary to expectations, a constant value of the Shields parameter is not an appropriate criterion for the transition between the dune regime and the UPB regime. Furthermore, the transition appears to be insensitive to the total discharge of solids and water. Instead, the criterion seems to be well represented by a constant value of the average transport concentration of sediment (the ratio of volumetric discharge of solids and volumetric discharge of mixture). The experimental results exhibit a very tight correlation between the transport concentration and the longitudinal bed slope. Hence, a constant value of the bed slope can be considered an appropriate criterion for the transition. The transition between the UPB regime and the wavy regime (significant waves develop but they are not always standing waves) is found at a constant value of Froude number, which is in agreement with literature, although it is found at a higher value than the literature usually suggests (Fr = 1.2 instead of 1.0). Hence, the transition occurs in the super-critical flow but it is not necessarily associated with the critical flow.

  10. Modification of sandy soil hydrophysical environment through bagasse additive under laboratory experiment

    NASA Astrophysics Data System (ADS)

    Abd El-Halim, A. A.; Kumlung, Arunsiri

    2015-01-01

    Until now sandy soils can be considered as one roup having common hydrophysical problems. Therefore, a laboratory experiment was conducted to evaluate the influence of bagasse as an amendment to improve hydrophysical properties of sandy soil, through the determination of bulk density, aggregatesize distribution, total porosity, hydraulic conductivity, pore-space structure and water retention. To fulfil this objective, sandy soils were amended with bagasse at the rate of 0, 0.5, 1, 2, 3 and 4% on the dry weight basis. The study results demonstrated that the addition of bagasse to sandy soils in between 3 to 4% on the dry weight basis led to a significant decrease in bulk density, hydraulic conductivity, and rapid-drainable pores, and increase in the total porosity, water-holding pores, fine capillary pores, water retained at field capacity, wilting point, and soil available water as compared with the control treatment

  11. Understanding the dynamics of volcanic jet through laboratory experiments

    NASA Astrophysics Data System (ADS)

    Cigala, Valeria; Kueppers, Ulrich; Dingwell, Donald Bruce

    2015-04-01

    Explosive volcanic eruptions pose great hazards in both the near- and far-field. Understanding the factors controlling the dynamics of pyroclast ejection is essential for better assessment of related hazards. The dynamics of volcanic explosions, which can be observed and characterized in the field only in a very incomplete manner due to their inaccessibility and hazards, can be simulated in the laboratory where experiments can be performed in their immediate proximity under controlled conditions. Using a shock-tube we ejected loose particles while controlling parameters such as temperature, applied overpressure, starting grain size distribution, conduit length and exit vent geometry. We recorded each explosion with a high-speed camera and collected the sample after deposition, thereby quantifying the velocity of individual particles, the jet spreading angle and the production of fines. The experiments were performed at 500°C and 15MPa using materials of two different densities ("Schaumlava" and "Laacher See Bims") and three grain size ranges (1-2 mm, 0.5-1 mm and 0.125-0.250 mm). Additionally, we varied the setup to allow for different sample-to-gas ratios and varying fragmentation depth at start of each experiment. We also deployed four different exit vents: a cylindrical continuation of the shock-tube, a funnel with a flaring of 30°, a funnel with a flaring of 15° and a nozzle. All vents are characterized by the same height and bottom diameter. The results of the current investigation together with comparison with other experimental campaigns showed particle velocities ranging from 130 to 290 m/s, gas spreading angles varying from 14 to 37° and particles spreading angles from 12° to 2°. Moreover we observed dynamically evolving ejection characteristics (speed and spreading angle) and strong variations in the production of fines (up to a factor of 2) during the course of individual experiments. We further qualitatively present the impact of experimental

  12. Conducting fluid dynamics experiments with vertically falling soap films

    NASA Astrophysics Data System (ADS)

    Rutgers, M. A.; Wu, X. L.; Daniel, W. B.

    2001-07-01

    This article gives a detailed description of an apparatus in which flowing soap films are used to perform two dimensional fluid dynamics experiments. We have previously reported scientific findings made with the apparatus, but never carefully described the technique, or its full potential. A brief introduction is given on the nature of soap films as fluids and then all the details necessary for creating robust flowing films are listed. Typical parameters for the system are: flow speeds from 0.5 to 4 m/s, film thickness between 1 and 10 μm, and typical film sizes are 3 m tall and 10 cm wide although films of 20 m tall and 4 m wide have also been made. A vacuum apparatus is also described in which the air drag on the film can be reduced by a factor of 5-10. Finally, a large number of techniques for measuring flow and thickness are outlined and referenced.

  13. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  14. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2004-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30,60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  15. Calcium-activated conductance in skate electroreceptors: current clamp experiments

    PubMed Central

    1977-01-01

    When current clamped, skate electroreceptor epithelium produces large action potentials in response to stimuli that depolarize the lumenal faces of the receptor cells. With increasing stimulus strength these action potentials become prolonged. When the peak voltage exceeds about 140 mV the repolarizing phase is blocked until the end of the stimulus. Perfusion experiments show that the rising phase of the action potential results from an increase in calcium permeability in the lumenal membranes. Perfusion of the lumen with cobalt or with a zero calcium solution containing EGTA blocks the action potential. Perfusion of the lumen with a solution containing 10 mM Ca and 20 mM EGTA initially slows the repolarizing process at all voltages and lowers the potential at which it is blocked. With prolonged perfusion, repolarization is blocked at all voltages. When excitability is abolished by perfusion with cobalt, or with a zero calcium solution containing EGTA, no delayed rectification occurs. We suggest that repolarization during the action potential depends on an influx of calcium into the cytoplasm, and that the rate of repolarization depends on the magnitude of the inward calcium current. Increasingly large stimuli reduce the rate of repolarization by reducing the driving force for calcium, and then block repolarization by causing the lumenal membrane potential to exceed ECa. Changes in extracellular calcium affect repolarization in a manner consistent with the resulting change in ECa. PMID:190338

  16. iPads in the Science Laboratory: Experience in Designing and Implementing a Paperless Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Hesser, Tiffany L.; Schwartz, Pauline M.

    2013-01-01

    In the fall of 2012, 20 General Chemistry Honors students at the University of New Haven were issued the new iPad 3 to incorporate these devices both in the classroom and the laboratory. This paper will focus on the integration of the iPad into the laboratory curriculum while creating a paperless experience, an environment where no paper would…

  17. Laboratory experiments on eelgrass (Zostera Marina L.) decomposition

    NASA Astrophysics Data System (ADS)

    Pellikaan, G. C.

    Eelgrass, Zostera marina L., forms large quantities of detritus in Lake Grevelingen. Laboratory experiments with green eelgrass and eelgrass detritus have been performed under aerobic and anaerobic conditions to study leaching and chemical changes of plant matter and surrounding medium. DW losses were less than 30%, demonstrating that field litterbag experiments overestimated the decomposition rate highly. This leads to the conclusion that eelgrass detritus should accumulate in Lake Grevelingen. POC and AFDW decreased during decomposition. PON and POP fluctuated and only C/P ratio in anaerobically incubated detritus showed a clear pattern. C/N ratio behaved rather stable and cannot be used as a valuable index for decomposition processes. Initial contents of Na, K, Ca and Mg in eelgrass differed from literature values. During decomposition Na, K and Ca increased, while Mg remained constant. Leaching of DOC, PO 4, NH 4 and NO 3 was rapid in the first hours of incubation, but leaching products did not change pH. Initial DOC and PO 4 concentrations were much higher in media with green eelgrass than in detritus series; no differences between aerobic and anaerobic series were found. In all series NO 3 concentrations were low. HN 4 and total dissolved N increased in anaerobic incubations. pH remained constant in detritus series, but changed significantly in the green grass series, concomittantly with drastic DOC decreases and DW increases, after 9 to 10 days, especially under aerobic conditions. This indicated high activity and growth of particle associated bacteria or formation of aggregates. A conversion factor of 66% for DOC to POC has been calculated. About 10% of DOC remained in the incubation vessels and will be refractory. In budgets for C, N and P the dissolved fractions were always small (1 to 20%) compared with the particulate fractions. The lost fractions were due to non-recovered, very small particulate matter. High losses for P have possibly been caused by

  18. Emulating JWST Exoplanet Transit Observations in a Testbed laboratory experiment

    NASA Astrophysics Data System (ADS)

    Touli, D.; Beichman, C. A.; Vasisht, G.; Smith, R.; Krist, J. E.

    2014-12-01

    The transit technique is used for the detection and characterization of exoplanets. The combination of transit and radial velocity (RV) measurements gives information about a planet's radius and mass, respectively, leading to an estimate of the planet's density (Borucki et al. 2011) and therefore to its composition and evolutionary history. Transit spectroscopy can provide information on atmospheric composition and structure (Fortney et al. 2013). Spectroscopic observations of individual planets have revealed atomic and molecular species such as H2O, CO2 and CH4 in atmospheres of planets orbiting bright stars, e.g. Deming et al. (2013). The transit observations require extremely precise photometry. For instance, Jupiter transit results to a 1% brightness decrease of a solar type star while the Earth causes only a 0.0084% decrease (84 ppm). Spectroscopic measurements require still greater precision <30ppm. The Precision Projector Laboratory (PPL) is a collaboration between the Jet Propulsion Laboratory (JPL) and California Institute of Technology (Caltech) to characterize and validate detectors through emulation of science images. At PPL we have developed a testbed to project simulated spectra and other images onto a HgCdTe array in order to assess precision photometry for transits, weak lensing etc. for Explorer concepts like JWST, WFIRST, EUCLID. In our controlled laboratory experiment, the goal is to demonstrate ability to extract weak transit spectra as expected for NIRCam, NIRIS and NIRSpec. Two lamps of variable intensity, along with spectral line and photometric simulation masks emulate the signals from a star-only, from a planet-only and finally, from a combination of a planet + star. Three masks have been used to simulate spectra in monochromatic light. These masks, which are fabricated at JPL, have a length of 1000 pixels and widths of 2 pixels, 10 pixels and 1 pixel to correspond respectively to the noted above JWST instruments. From many-hour long

  19. Dynamics of spacecraft control laboratory experiment (SCOLE) slew maneuvers

    NASA Technical Reports Server (NTRS)

    Kakad, Y. P.

    1987-01-01

    This is the first of two reports on the dynamics and control of slewing maneuvers of the NASA Spacecraft Control Laboratory Experiment (SCOLE). In this report, the dynamics of slewing maneuvers of SCOLE are developed in terms of an arbitrary maneuver about any given axis. The set of dynamical equations incorporate rigid-body slew maneuver and three-dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interaction between the rigid shuttle and the flexible appendage. The final set of dynamical equations obtained for slewing maneuvers is highly nonlinear and coupled in terms of the flexible modes and the rigid-body modes. The equations are further simplified and evaluated numerically to include the first ten flexible modes and the SCOLE data to yield a model for designing control systems to perform slew maneuvers.

  20. Control of Spacecraft Control Laboratory Experiment (SCOLE) slew maneuvers

    NASA Technical Reports Server (NTRS)

    Kakad, Y. P.

    1987-01-01

    This is the second report of a set of two reports on the dynamics and control of slewing maneuvers of NASA Spacecraft Control Laboratory Experiment (SCOLE). The control problem of slewing maneuvers of SCOLE is developed in terms of an arbitrary maneuver about any given axis. The control system is developed for the combined problem of rigid-body slew maneuver and vibration suppression of flexible appendage. The control problem is formulated by incorporating the nonlinear equations derived in the previous report and is expressed in terms of a two-point boundary value problem utilizing a quadratic type of performance index. The two-point boundary value problem is solved as a hierarchical control problem with the overall system being split in terms of two subsystems, namely the slewing of the entire assembly and the vibration suppression of the flexible antenna. The coupling variables between the two dynamical subsystems are identified and these two subsystems for control purposes are treated independently in parallel at the first level. Then the state-space trajectory of the combined problem is optimized at the second level.

  1. Geochemistry of shale groundwaters: Results of preliminary laboratory leaching experiments

    SciTech Connect

    Von Damm, K.L.; Johnson, K.O.

    1987-09-01

    Twelve shales were reacted with distilled water at 20/sup 0/C and 100/sup 0/C; the composition of the waters and the mineralogy were determined before and after reaction. The experiments were conducted in a batch mode over a period of approximately 40 days. Major changes occurred in the solution chemistry; in most cases sulfate became the dominant anion while either sodium or calcium was the major cation. The high sulfate is most likely a result of the oxidation of pyrite in the samples. In the 100/sup 0/C experiments some of the solutions became quite acidic. Examination of the observed mineralogy and comparison to the mineral assemblage calculated to be in equilibrium with the experimentally determined waters, suggests that the acidic waters are generated when no carbonate minerals remain to buffer the groundwaters to a more neutral pH. The pH of shale waters will be determined by the balance between the oxidation of pyrite and organic matter and the dissolution of carbonate minerals. The experimental data are helping to elucidate the chemical reactions that control the pH of shale groundwaters, a critical parameter in determining other water-rock and waste-water-rock interactions and ultimate solute mobility. An experimental approach also provides a means of obtaining data for shales for which no groundwater data are available as well as data on chemical species which are not usually determined or reported.

  2. Electron Beam-Induced Conductivity Experiments in a Static Cell for Application to MHD Accelerators

    SciTech Connect

    Lipinski, Ronald L.; Nelson, Gordon L.; Pena, Gary E.; Reed, Kim W.

    1999-06-24

    Past analyses of conventional MHD accelerator systems, which employ arc heaters in conjunction with alkali metal seeding of the air, have concluded that this approach to acceleration of air is not capable of reaching the high total enthalpy, low temperatures, and high dynamic pressures required to support advanced engine testingl'2>3. The very high temperatures required to ionize the seed material, coupled with known limits on the maximum operating pressures attainable in arc heaters, dictate that the final entropy of the test gas will exceed the targeted test section value, resulting in test section pressures or Mach numbers which are too low. This was the basic conclusion of the NASA-sponsored MARIAH study3. The present work describes the fist phase of a planned multi-year experimental effort to demonstrate an alternative mode of MHD accelerator operation which can potentially obviate these limitations. The concept is to exploit the ionizing power of electron beams to create a nonequilibrium ionization condition in the MHD channel, thus greatly increasing the electrical conductivity compared to its thermodynamic equilibrium (essentially zero) value. The advantage of this mode of operation is that the static temperatures can be kept relatively low through the MHD channel. The paper summa rizes the theoretical model for electron beam ionization in air, recently developed by Macheret et a12. Experiments conducted at San&a National Laboratories for the purpose of validating this model are also described. The fust phase of these experiments consist of measuring the bulk electrical conductivity of static air in a confined volume in the vicinity of an energetic electron beam. The experimental method is described, preliminary data is presented, and the results are interpreted in the light of the theoretical model.

  3. Sampling Participants’ Experience in Laboratory Experiments: Complementary Challenges for More Complete Data Collection

    PubMed Central

    McAuliffe, Alan; McGann, Marek

    2016-01-01

    Speelman and McGann’s (2013) examination of the uncritical way in which the mean is often used in psychological research raises questions both about the average’s reliability and its validity. In the present paper, we argue that interrogating the validity of the mean involves, amongst other things, a better understanding of the person’s experiences, the meaning of their actions, at the time that the behavior of interest is carried out. Recently emerging approaches within Psychology and Cognitive Science have argued strongly that experience should play a more central role in our examination of behavioral data, but the relationship between experience and behavior remains very poorly understood. We outline some of the history of the science on this fraught relationship, as well as arguing that contemporary methods for studying experience fall into one of two categories. “Wide” approaches tend to incorporate naturalistic behavior settings, but sacrifice accuracy and reliability in behavioral measurement. “Narrow” approaches maintain controlled measurement of behavior, but involve too specific a sampling of experience, which obscures crucial temporal characteristics. We therefore argue for a novel, mid-range sampling technique, that extends Hurlburt’s descriptive experience sampling, and adapts it for the controlled setting of the laboratory. This controlled descriptive experience sampling may be an appropriate tool to help calibrate both the mean and the meaning of an experimental situation with one another. PMID:27242588

  4. Variability in Small Hive Beetle (Coleoptera: Nitidulidae) Reproduction in Laboratory and Field Experiments.

    PubMed

    Meikle, William G; Holst, Niels; Cook, Steven C; Patt, Joseph M

    2015-06-01

    Experiments were conducted to examine how several key factors affect population growth of the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). Laboratory experiments were conducted to examine effects of food quantity and temperature on reproduction of cohorts of young A. tumida adults (1:1 sex ratio) housed in experimental arenas. Daily numbers and total mass of larvae exiting arenas were highly variable within treatment. Either one or two cohorts of larvae were observed exiting the arenas. Food quantity, either 10 g or 20 g, did not significantly affect the number of larvae exiting arenas at 32°C, but did at 28°C; arenas provided 20 g food produced significantly more larvae than arenas provided 10 g. Temperature did not affect the total mass of larvae provided 10 g food, but did affect larval mass provided 20 g; beetles kept at 28°C produced more larval mass than at 32°C. Field experiments were conducted to examine A. tumida reproductive success in full strength bee colonies. Beetles were introduced into hives as egg-infested frames and as adults, and some bee colonies were artificially weakened through removal of sealed brood. Efforts were unsuccessful; no larvae were observed exiting from, or during the inspection of, any hives. Possible reasons for these results are discussed. The variability observed in A. tumida reproduction even in controlled laboratory conditions and the difficulty in causing beetle infestations in field experiments involving full colonies suggest that accurately forecasting the A. tumida severity in such colonies will be difficult.

  5. Variability in Small Hive Beetle (Coleoptera: Nitidulidae) Reproduction in Laboratory and Field Experiments.

    PubMed

    Meikle, William G; Holst, Niels; Cook, Steven C; Patt, Joseph M

    2015-06-01

    Experiments were conducted to examine how several key factors affect population growth of the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). Laboratory experiments were conducted to examine effects of food quantity and temperature on reproduction of cohorts of young A. tumida adults (1:1 sex ratio) housed in experimental arenas. Daily numbers and total mass of larvae exiting arenas were highly variable within treatment. Either one or two cohorts of larvae were observed exiting the arenas. Food quantity, either 10 g or 20 g, did not significantly affect the number of larvae exiting arenas at 32°C, but did at 28°C; arenas provided 20 g food produced significantly more larvae than arenas provided 10 g. Temperature did not affect the total mass of larvae provided 10 g food, but did affect larval mass provided 20 g; beetles kept at 28°C produced more larval mass than at 32°C. Field experiments were conducted to examine A. tumida reproductive success in full strength bee colonies. Beetles were introduced into hives as egg-infested frames and as adults, and some bee colonies were artificially weakened through removal of sealed brood. Efforts were unsuccessful; no larvae were observed exiting from, or during the inspection of, any hives. Possible reasons for these results are discussed. The variability observed in A. tumida reproduction even in controlled laboratory conditions and the difficulty in causing beetle infestations in field experiments involving full colonies suggest that accurately forecasting the A. tumida severity in such colonies will be difficult. PMID:26470208

  6. Near surface geophysical techniques on subsoil contamination: laboratory experiments

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo

    2016-04-01

    Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of

  7. Background study of absorbed dose in biological experiments at the Modane Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Lampe, Nathanael; Marin, Pierre; Castor, Jean; Warot, Guillaume; Incerti, S.; Maigne, Lydia; Sarramia, David; Breton, Vincent

    2016-09-01

    Aiming to explore how biological systems respond to ultra-low background environ-ments, we report here our background studies for biological experiments in the Modane Under-ground Laboratory. We find that the minimum radioactive background for biology experiments is limited by the potassium content of the biological sample itself, coming from its nutritive me-dium, which we find in our experimental set-up to be 26 nGy hr-1. Compared to our reference radiation environment in Clermont-Ferrand, biological experiments can be conducted in the Modane laboratory with a radiation background 8.2 times lower than the reference above-ground level. As the radiation background may be further reduced by using different nutritive media, we also provide measurements of the potassium concentration by gamma spectroscopy of yeast extract (63.3±1.2 mg g-1) and tryptone (2.5±0.2 mg g-1) in order to guide media selection in future experiments.

  8. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    SciTech Connect

    Oostrom, Martinus; Wietsma, Thomas W.

    2014-09-30

    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  9. Plasmid Instability in Batch Cultures of Recombinant Bacteria. A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Bentley, William E.; Kompala, Dhinakar S.

    1990-01-01

    Described is a laboratory experiment designed to expose students to problem-solving methods individually and as a group. Included are background information, a list of materials, laboratory procedures, analysis methods, and probable results. (CW)

  10. Experiences with the magnetism of conducting loops: Historical instruments, experimental replications, and productive confusions

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth

    2003-02-01

    This study investigates nineteenth century laboratory work on electromagnetism through historical accounts and experimental replications. Oersted found that when a magnetic needle was placed in varying positions around a conducting wire, its orientation changed: in moving from a spot above the wire to one below, its sense inverted. This behavior was confusing and provocative. Early experimenters such as Johann Schweigger, Johann Poggendorff, and James Cumming engaged it by bending wire into loops. These loops, which increased the magnetic effect on a compass placed within, also provided evidence of their understanding and confusion. Coiling conducting wires around iron magnetized it, but when some wires coiled oppositely from others, the effect diminished. This effect confused contemporaries of Joseph Henry who made electromagnets, and amateurs later in the century who constructed multisection induction coils. I experienced these confusions myself while working with multilayer coils and induction coils that I made to replicate the historical instruments. This study shows how confusion can be a productive element in learning, by engaging learners to ask questions and invent experiments. By providing space for learners' confusions, teachers can support the development of their students' physical understandings.

  11. An "in Silico" DNA Cloning Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Elkins, Kelly M.

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced…

  12. Crack-Detection Experiments on Simulated Turbine Engine Disks in NASA Glenn Research Center's Rotordynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abdul-Aziz, Ali

    2010-01-01

    The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.

  13. Microwave-based laboratory experiments for internally-heated mantle convection

    SciTech Connect

    Limare, A.; Di Giuseppe, E.; Vilella, K.; Farnetani, C. G.; Kaminski, E.; Jaupart, C.; Surducan, E.; Surducan, V.; Neamtu, C.

    2013-11-13

    The thermal evolution of terrestrial planets is mainly controlled by the amount of radioactive heat sources in their mantle, and by the geometry and efficiency of solid state thermo-chemical convection within. So far, these systems have been studied using numerical methods only and cross validation by laboratory analogous experiments has not been conducted yet. To fill this gap we perform the first laboratory experiments of mantle convection driven by microwave-generated internal heating. We use a 30×30×5 cm{sup 3} experimental tank filled with 0.5 % Natrosol in water mixture (viscosity 0.6 Pa.s at 20°C). The fluid is heated from within by a microwave device that delivers a uniform volumetric heating from 10 to 70 kW/m{sup 3}; the upper boundary of the fluid is kept at constant temperature, whereas the lower boundary is adiabatic. The velocity field is determined with particle image velocimetry and the temperature field is measured using thermochromic liquid crystals which enable us to charaterize the geometry of the convective regime as well as its bulk thermal evolution. Numerical simulations, conducted using Stag-3D in 3D cartesian geometry, reproduce the experimental setup (i.e., boundary conditions, box aspect ratio, temperature dependence of physical parameters, internal heating rate). The successful comparison between the experimental and numerical results validates our approach of modelling internal heating using microwaves.

  14. Middle School Counselors' Competence in Conducting Developmental Classroom Lessons: Is Teaching Experience Necessary?

    ERIC Educational Resources Information Center

    Bringman, Nancy; Lee, Sang Min

    2008-01-01

    Is teaching experience necessary for school counselors to feel competent when conducting developmental classroom lessons? The study in this article investigated the relationship between previous teaching experience and practicing middle school counselors' perceived competence in conducting developmental classroom lessons. Results suggested that…

  15. Flux Tube Dynamics Following Pellet Release Experi- ments in Laboratory Magnetospheres

    NASA Astrophysics Data System (ADS)

    Garnier, D.; Davis, M.; Mauel, M.; Roberts, M.; Worstell, M.; Chilenski, M.; Kesner, J.; Woskov, P.

    2013-10-01

    The rapid release of particles in the magnetosphere has allowed study of a wide range of space plasma dynamics including particle transport, magnetic bubble formation, and rapid flux-tube dynamics. We report new experiments using the Levitated Dipole Experiment (LDX) (http://www.psfc.mit.edu/ldx/) where we explore the high-speed plasma dynamics following the release of 0.2 mm polystyrene pellets. The pellets are released into high-beta steady-state plasmas containing significant population of quasi-relativistic electrons. Similiar experiments, conducted in a smaller, mechanically-supported, laboratory magnetosphere show pellet ``explosions,'' electron precipitation, ``blob'' formation, and rapid changes of plasma density. A variety of diagnostics are available, including microwave reflectometry, high-speed videography, multi-tip probe arrays, and accurate magnetic reconstruction. Results and analyses will be reported along with plans for futher efforts to increase plasma density and conduct a variety of controlled physics experiments associated with magnetospheric events. Supported by the NSF-DOE Partnership in Plasma Science.

  16. A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory

    SciTech Connect

    Wileveau, Yannick; Su, Kun; Ghoreychi, Mehdi

    2007-07-01

    A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature, pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)

  17. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum.

  18. Using Pneumatics to Perform Laboratory Hydraulic Conductivity Tests on Gravel with Underdamped Responses

    NASA Astrophysics Data System (ADS)

    Judge, A. I.

    2011-12-01

    A permeameter has been designed and built to perform laboratory hydraulic conductivity tests on various kinds of gravel samples with hydraulic conductivity values ranging from 0.1 to 1 m/s. The tests are commenced by applying 200 Pa of pneumatic pressure to the free surface of the water column in a riser connected above a cylinder that holds large gravel specimens. This setup forms a permeameter specially designed for these tests which is placed in a barrel filled with water, which acts as a reservoir. The applied pressure depresses the free surface in the riser 2 cm until it is instantly released by opening a ball valve. The water then flows through the base of the cylinder and the specimen like a falling head test, but the water level oscillates about the static value. The water pressure and the applied air pressure in the riser are measured with vented pressure transducers at 100 Hz. The change in diameter lowers the damping frequency of the fluctuations of the water level in the riser, which allows for underdamped responses to be observed for all tests. The results of tests without this diameter change would otherwise be a series of critically damped responses with only one or two oscillations that dampen within seconds and cannot be evaluated with equations for the falling head test. The underdamped responses oscillate about the static value at about 1 Hz and are very sensitive to the hydraulic conductivity of all the soils tested. These fluctuations are also very sensitive to the inertia and friction in the permeameter that are calculated considering the geometry of the permeameter and verified experimentally. Several gravel specimens of various shapes and sizes are tested that show distinct differences in water level fluctuations. The friction of the system is determined by calibrating the model with the results of tests performed where the cylinder had no soil in it. The calculation of the inertia in the response of the water column for the typical testing

  19. The 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, part 2

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1990-01-01

    A collection of papers from the workshop are presented. The topics addressed include: the modeling, systems identification, and control synthesis for the Spacecraft Control Laboratory Experiment (SCOLE) configuration.

  20. Laboratory Experiment for the Transient Response of a Stirred Vessel.

    ERIC Educational Resources Information Center

    Noble, R. D.; And Others

    1983-01-01

    Provides background information, apparatus needed, and procedures for an experiment to measure transient response of a stirred vessel. The inexpensive apparatus can be used for two different experiments, reducing cost per experiment. Both experiments use salt dilution as the method of demonstration. (Author/JN)

  1. Combining Laboratory Experiments with Digital Tools to Do Scientific Inquiry

    ERIC Educational Resources Information Center

    Kluge, Anders

    2014-01-01

    This qualitative study investigates the gap between a lab experiment and theory of science. Two groups of 4 students in 2 different classes in 11th grade (15-16 years old) are followed as they process results and experiences from a lab experiment using a digital environment. The experiment is as a part of a larger project about genes and cells,…

  2. Fractal analysis of the hydraulic conductivity on a sandy porous media reproduced in a laboratory facility.

    NASA Astrophysics Data System (ADS)

    de Bartolo, S.; Fallico, C.; Straface, S.; Troisi, S.; Veltri, M.

    2009-04-01

    The complexity characterization of the porous media structure, in terms of the "pore" phase and the "solid" phase, can be carried out by means of the fractal geometry which is able to put in relationship the soil structural properties and the water content. It is particularly complicated to describe analytically the hydraulic conductivity for the irregularity of the porous media structure. However these can be described by many fractal models considering the soil structure as the distribution of particles dimensions, the distribution of the solid aggregates, the surface of the pore-solid interface and the fractal mass of the "pore" and "solid" phases. In this paper the fractal model of Yu and Cheng (2002) and Yu and Liu (2004), for a saturated bidispersed porous media, was considered. This model, using the Sierpinsky-type gasket scheme, doesn't contain empiric constants and furnishes a well accord with the experimental data. For this study an unconfined aquifer was reproduced by means of a tank with a volume of 10 Ã- 7 Ã- 3 m3, filled with a homogeneous sand (95% of SiO2), with a high percentage (86.4%) of grains between 0.063mm and 0.125mm and a medium-high permeability. From the hydraulic point of view, 17 boreholes, a pumping well and a drainage ring around its edge were placed. The permeability was measured utilizing three different methods, consisting respectively in pumping test, slug test and laboratory analysis of an undisturbed soil cores, each of that involving in the measurement a different support volume. The temporal series of the drawdown obtained by the pumping test were analyzed by the Neuman-type Curve method (1972), because the saturated part above the bottom of the facility represents an unconfined aquifer. The data analysis of the slug test were performed by the Bouwer & Rice (1976) method and the laboratory analysis were performed on undisturbed saturated soil samples utilizing a falling head permeameter. The obtained values either of the

  3. Recording the PHILAE Touchdown using CASSE: Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Knapmeyer, Martin; Faber, Claudia; Tune, Jean-Baptiste; Arnold, Walter; Witte, Lars; Schröder, Silvio; Roll, Reinhard; Chares, Bernd; Fischer, Hans-Herbert; Möhlmann, Diedrich; Seidensticker, Klaus

    2014-05-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Its landing feet house the triaxial acceleration sensors of CASSE (Comet Acoustic Surface Sounding Experiment) which will thus be the first sensors to be in mechanical contact with the cometary surface. It is planned that CASSE will be in listening mode to record the deceleration of the lander by the collision with the comet. The analysis of this data will not only support an engineering analysis of the landing process itself but also yield information about the mechanical properties of the comet's surface. Here, we describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths and under simulated low gravity. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. Attached to each leg is a foot with two soles and a mechanically driven ice screw to secure the lander on the comet. The right one of these soles, if viewed from the outside towards the lander body, houses a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that the X-axis of the accelerometer points downwards while the Y and Z axes are horizontal. This somewhat uncommon orientation was necessary due to the position of the electric connector on the 4506. Data was recorded at a sampling rate of 8.2 kHz for a duration of 2 s. Touchdown measurements were conducted on three types of ground with different landing velocities. Landings with low velocities were carried out on the concrete floor of the LAMA to determine the stiffness of the landing gear based on the deceleration data measured with the accelerometer. Landings on fine

  4. Laboratory Experiments of Radar-Detected Layering in Ice

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Koenig, L. S.; Courville, Z. R.; Ghent, R. R.; Koutnik, M. R.

    2016-09-01

    In a cold room at the Cold Regions Research and Engineering Laboratory, we constructed layered ice with a variety of layer types and thicknesses to investigate how the layers appear to ground-penetrating radar at a variety of frequencies.

  5. Kinetic Analysis of Metal Ions: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Williams, Kathryn R.

    1985-01-01

    Reports on the adaptation of a kinetic method of analysis of metal ions for use in an undergraduate teaching laboratory. Background information, procedures used, and analysis of typical results obtained are provided. (JN)

  6. Research and Laboratory Instruction--An Experiment in Teaching

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1976-01-01

    Describes an attempt to incorporate research into laboratory work in an introductory ecology class and a senior seminar. The investigation involves the examination of rhythms of food consumption and circadian activities in humans. (GS)

  7. If Your Rehearsals Are Unfulfilling Experiences, Try a Choral Laboratory

    ERIC Educational Resources Information Center

    Moore, Ray

    1973-01-01

    Music teachers can make learning about music more rewarding and effective by improving the setting for conceptual development. The choral laboratory is one important step in music education and a positive method for learning music concepts. (RK)

  8. Measurement and Its Reliability: An Introductory Laboratory Experiment

    ERIC Educational Resources Information Center

    Poultney, Sherman K.

    1971-01-01

    Describes a laboratory activity about measurement and its reliability for general education students. The measurement focuses on automobile speeds and allows for estimates of errors, experimental design, and relativity in addition to kinematical concepts. (DS)

  9. Observations of slip behavior in plate-rate laboratory friction experiments

    NASA Astrophysics Data System (ADS)

    Ikari, Matt; Kopf, Achim

    2016-04-01

    Much of what we understand regarding fault slip behavior on plate-boundary faults is based on laboratory friction experiments conducted at a wide range of driving velocities, from slip rates of μm/s to over 1 m/s. Less data exists for shearing experiments driven at slow velocities approximating plate tectonic rates on the order of cm/yr (nm/s). Previous work using International Ocean Drilling Program samples from the Tohoku region at the Japan Trench, which experienced the 2011 M9 Tohoku earthquakes, showed that shearing at an imposed rate of 8.5 cm/yr produced small stick slips and slow slip events in the laboratory. The Tohoku fault zone material is mostly composed of the frictionally weak clay mineral smectite; however weak phyllosilicates are expected to exhibit velocity-strengthening friction favorable for stable creep rather than unstable or transient slip events. Therefore, the observations in the Tohoku material suggest that very slow forcing may be favorable for slip instability not necessarily predicted by experiments at higher velocity. We report here on results of laboratory friction experiments using both natural and analogue fault gouge materials, conducted at cm/yr driving velocities. At these slow rates, we observe a wide range of slip behaviors. Consistent stick-slip with large stress drops is observed for several high-friction materials such as Westerly granite and Carrara marble. Behavior is more variable for weaker materials; stick-slip with smaller stress drops is observed for kaolinite, but no instabilities, either slow or fast, are observed in the illite-rich Rochester shale. For natural samples, chalk samples from offshore Costa Rica recovered during the Ocean Drilling Program exhibit stick-slip, consistent with the results for marble. Hemipelagic clay from the same region is weaker and exhibits slow events, similar to the Tohoku fault samples. Slow stick-slip is also observed in a sample of the Alpine Fault from New Zealand, sampled during

  10. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  11. Three-dimensional Simulation of Gas Conductance Measurement Experiments on Alcator C-Mod

    SciTech Connect

    D.P. Stotler; B. LaBombard

    2004-06-15

    Three-dimensional Monte Carlo neutral transport simulations of gas flow through the Alcator C-Mod subdivertor yield conductances comparable to those found in dedicated experiments. All are significantly smaller than the conductance found with the previously used axisymmetric geometry. A benchmarking exercise of the code against known conductance values for gas flow through a simple pipe provides a physical basis for interpreting the comparison of the three-dimensional and experimental C-Mod conductances.

  12. Laboratory scaled simulation of lidar cloud sounding experiments

    NASA Technical Reports Server (NTRS)

    Zaccanti, G.; Bruscaglioni, P.; Gurioli, M.; Sansoni, P.

    1992-01-01

    The results of lidar measurements carried out on laboratory scale models of clouds are presented. Measurements on laboratory scale models are important since one has the knowledge of the relevant parameters of the diffusing medium, such as: scattering and absorption coefficients, phase function, homogeneity, shape, etc. Knowledge of these parameters enables one to use the results to test the reliability of theoretical and numerical investigations. To obtain a laboratory scaled model of a lidar system sounding a cloud, it is necessary to scale down all the geometrical quantities by the same factor to reduce distances of the order of kilometers to the order of meters, keeping the size and the optical depth of the diffusers unchanged. If a time resolution of the order of nanoseconds is necessary for a lidar sounding actual clouds, the corresponding time resolution for the laboratory model should be of the order of picoseconds. It is possible to obtain this resolution by using picosecond laser systems and fast electrooptical detectors like the streak camera. The results of the laboratory measurements showed that the multiple scattering effect strongly depends on the size of the diffusers, as well as on the concentration. The experimental results were compared with the numerical results of a Monte Carlo code. A generally good agreement was obtained.

  13. Some More Simple Laser Experiments for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Yap, F. Y.

    1969-01-01

    Describes three elementary optics experiments using a laser instead of conventional light sources. Experiments illustrate the Fresnel-Arago law, elliptical polarization, double refraction and polarization in calcite, and interference by a Fresnel biprism. Because of the high intensity of the laser beam, these experiments lend themselves very well…

  14. Laboratory Experiments of Sand Ripples with Bimodal Size Distributions Under Asymmetric Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Landry, B. J.

    2010-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the

  15. Laboratory experiment on poroelastic behavior of Berea sandstone under two-phase fluid flow condition

    NASA Astrophysics Data System (ADS)

    Goto, H.; Aichi, M.; Tokunaga, T.; Yamamoto, H.; Ogawa, T.; Aoki, T.

    2013-12-01

    Coupled two-phase fluid flow and deformation of Berea sandstone was discussed through laboratory experiments and numerical simulation. In the experiment, a triaxial compression apparatus with flow pipes to pass fluids through a rock sample was used. The experimental procedures were as follows. Firstly, external stresses close to hydrostatic condition were applied to a water saturated cylindrical Berea sandstone sample. Then, compressed air was infiltrated from the bottom of the sample. During the experiment, both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were measured. Both strains showed sudden extensions after a few seconds, and monotonically extended thereafter. The volumetric discharge of water showed that air breakthrough occurred in around 100 seconds after the commencement of the air injection. Numerical simulations based on thermodynamically consistent constitutive equations were conducted in order to quantitatively analyze the experimental results. In a simulation in which the material was assumed to be homogeneous isotropic, the axial strain at half the height of the sample and the volumetric discharge of water at the outlet were reproduced well by using reasonable parameters, while that was not the case with the circumferential strain at half the height of the sample. On the other hand, in a simulation in which anisotropy of the material was introduced, all experimental data were reproduced well by using reasonable parameters. This result is reasonable because Berea sandstone is well known to be anisotropic under such Terzaghi effective stress condition as used in our experiment, i.e., 3.0 MPa (Hart and Wang, 1999; Hart, 2000). Our results indicate that the theory of poroelasticity for two-phase fluid system can explain the strain behavior of porous media for two-phase fluid flow observed in laboratory experiments.

  16. Exploration of the Kinked Jet in the Crab Nebula with Scaled Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Li, Chikang

    2015-11-01

    X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also frequently observed for jets in other pulsar-wind nebulae and in other astrophysical objects. Numerical simulations suggest that it may be a consequence of current-driven, magnetohydrodynamic (MHD) instabilities taking place in the jet, yet that is just a hypothesis without verification in controlled experiments. To that end, we recently conducted scaled laboratory experiments that reproduced this phenomenon. In these experiments, a supersonic plasma jet was generated in the collision of two laser-produced plasma plumes, and this jet was radiographed from the side using 15-MeV and 3-MeV protons. It was observed that if self-generated toroidal magnetic fields around the jet were strong enough, they triggered plasma instabilities that caused substantial deflections throughout the jet propagation, mimicking the kinked jet structure seen in the Crab Nebula. We have modeled these laboratory experiments with comprehensive two- and three-dimensional numerical simulations, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed jet in the Crab Nebula. The work described here was performed in part at the LLE National Laser User's Facility (NLUF), and was supported in part by US DOE (Grant No. DE-FG03- 03SF22691), LLNL (subcontract Grant No. B504974) and LLE (subcontract Grant No. 412160-001G).

  17. Social setting, intuition and experience in laboratory experiments interact to shape cooperative decision-making

    PubMed Central

    Capraro, Valerio; Cococcioni, Giorgia

    2015-01-01

    Recent studies suggest that cooperative decision-making in one-shot interactions is a history-dependent dynamic process: promoting intuition versus deliberation typically has a positive effect on cooperation (dynamism) among people living in a cooperative setting and with no previous experience in economic games on cooperation (history dependence). Here, we report on a laboratory experiment exploring how these findings transfer to a non-cooperative setting. We find two major results: (i) promoting intuition versus deliberation has no effect on cooperative behaviour among inexperienced subjects living in a non-cooperative setting; (ii) experienced subjects cooperate more than inexperienced subjects, but only under time pressure. These results suggest that cooperation is a learning process, rather than an instinctive impulse or a self-controlled choice, and that experience operates primarily via the channel of intuition. Our findings shed further light on the cognitive basis of human cooperative decision-making and provide further support for the recently proposed social heuristics hypothesis. PMID:26156762

  18. Laboratory experiments on turbulent mixing across sheared density interfaces

    NASA Astrophysics Data System (ADS)

    Stephenson, Philip; Fernando, Harindra J. S.

    1991-05-01

    An experimental study was carried out to investigate turbulent mixing and entrainment across a density interface subjected to velocity shear. The flow configuration consisted of a salinity (stably) stratified two-fluid system with a driven upper turbulent layer and a quiescent lower layer. The experiments were performed in an Odell-Kovasznay tank and the mean flow in the upper layer was generated by using a conventional disk pump. The velocity and salinity measurements were made using a laser-Doppler anemometer and conductivity probes, respectively, and (quantitative) flow visualization was performed using the laser-induced fluorescence LIF technique. The refractive indices of upper and lower layers were matched, using salt and alcohol, to facilitate the use of laser-based flow diagnostic techniques. The measurements show that the rms velocity fluctuation u in bulk of the mixed layer scales well with the mean velocity jump Δu across the interface. The Thorpe, buoyancy, overturning, and integral length scales, as well as the maximum Thorpe displacement in the mixed layer, were also found to be proportional to the depth h of the upper mixed layer. The structure of the entrainment interface was found to depend strongly on the bulk Richardson number Ri (=Δb h/u2), where Δb is the buoyancy jump across the interfacial layer. At lower Ri, the entrainment occurred rapidly, as in a nonstratified fluid, but as Ri increases, the entrainment rate becomes a strong function of Ri: under the latter conditions, the interfacial wave breaking and Kelvin-Helmholtz instabilities were common features. At still higher Ri, the entrainment rate becomes vanishingly small and the interfacial mixing events were found to be controlled by the molecular diffusive effects. The measurement of the interfacial-layer thickness using LIF shows that it is much thinner than that measured using less-accurate techniques such as traversing probes. The nondimensional rms amplitude of the interfacial

  19. Laboratory experiments and observations of cyclonic and anticyclonic eddies impinging on an island

    NASA Astrophysics Data System (ADS)

    Andres, Magdalena; Cenedese, Claudia

    2013-02-01

    experiments are conducted to investigate the interactions of self-propagating barotropic cyclones and baroclinic anticyclones with an island. Results are interpreted in the context of observations around Okinawa Island, Japan, where ubiquitous arrivals of cyclones and anticyclones on the southeastern side of the island influence the flow around it, thereby impacting both the Ryukyu Current's and the Kuroshio's transport. In the laboratory, baroclinic anticyclones generate a buoyant current that flows clockwise around an island whereas barotropic cyclones generate a counterclockwise current. In both cases, the interaction is governed by conservation of circulation Γ around the island, which establishes a balance between the dissipation along the island in contact with the eddy and the dissipation along the island in contact with the generated current. Laboratory results and scaling analysis suggest that the interaction between an anticyclone (cyclone) and Okinawa Island should result in an instantaneous increase (decrease) of the Ryukyu Current transport and a delayed increase (decrease) of the Kuroshio transport. The estimated delays are in good agreement with those obtained with field measurements suggesting that the dynamics at play in the laboratory may be relevant for the flow around Okinawa Island.

  20. Thermal insulating layer on a conducting substrate. Analysis of thermoreflectance experiments

    NASA Astrophysics Data System (ADS)

    Frétigny, C.; Duquesne, J.-Y.; Fournier, D.; Xu, F.

    2012-04-01

    Thermoreflectance experiments are sensitive to the thermal properties of thin layers deposited on substrates (conductivity and diffusivity). However, retrieving these properties from experimental data remains a difficult issue. The case of a conducting layer deposited on an insulating substrate was studied previously. We present here a mathematical and experimental analysis of the thermoreflectance response in the opposite case: an insulating layer on a conducting substrate. We show theoretically that conductivity and diffusivity can be determined independently thanks to a comparison with the substrate. The method is applied to experiments performed on a silicon substrate covered with a thin layer deposited by sputtering a titanium target.

  1. Reactive barrier system for nitrate removal from mine effluents in northern Sweden: Laboratory experiments

    NASA Astrophysics Data System (ADS)

    Herbert, Roger

    2010-05-01

    Laboratory column experiments have been conducted to determine nitrate removal rates from mine effluents by denitrification, with the purpose of providing initial data for the construction of a pilot scale reactive barrier system at the Malmberget iron mine, Sweden. Experiments were conducted at several different flow rates at 5C, 10C and room temperature; annual mean temperatures at the Malmberget site lie close to 0C. Columns were filled with an organic substrate consisting of sawdust mixed with sewage sludge, the source of denitrifying bacteria, supported by oven-dried clay pellets. Apparent denitrification rates, calculated from inflow and outflow nitrate concentrations and column hydraulic residence time, ranged from 5 to 13 mg N/L/d, with the lowest rates corresponding to the 5C experiments. These rates are, however, limited to a certain degree by the low flow rate and the supply of electrons acceptors (i.e. nitrate) to denitrifying bacteria. Results from the column experiment have been used to construct a barrier system in Malmberget, Sweden. Trial runs with the pilot-scale barrier will be conducted during 2010, with the purpose of determining the performance of the barrier as mean air temperatures increase from below to above 0C and saturated flow commences in the barrier. The barrier system is constructed as a rectangular container with steel sheet walls (9m length in flow direction, 1.5m deep), and the flow rate will be adjusted to a hydraulic residence time of 1 day. The pilot-scale barrier system currently lies above ground, but a permanent barrier system would be installed below the ground surface so that the system can be maintained at positive temperatures throughout the year.

  2. A Virtual Laboratory on Natural Computing: A Learning Experiment

    ERIC Educational Resources Information Center

    de Castro, Leandro Nunes; Muñoz, Yupanqui Julho; de Freitas, Leandro Rubim; El-Hani, Charbel Niño

    2008-01-01

    Natural computing is a terminology used to describe computational algorithms developed by taking inspiration from information processing mechanisms in nature, methods to synthesize natural phenomena in computers, and novel computational approaches based on natural materials. The virtual laboratory on natural computing (LVCoN) is a Web environment…

  3. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  4. Students' Experience in a General Chemistry Cooperative Problem Based Laboratory

    ERIC Educational Resources Information Center

    Sandi-Urena, Santiago; Cooper, Melanie M.; Gatlin, Todd A.; Bhattacharyya, Gautam

    2011-01-01

    Most educators and scientists would agree that science laboratory instruction has the potential of developing science practices fundamental to achieving scientific literacy. However, there is scant evidence to support that this potential is realized, particularly in tertiary level education. This paper reports qualitative results from a sequential…

  5. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  6. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    ERIC Educational Resources Information Center

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  7. The Nature of Laboratory Learning Experiences in Secondary Science Online

    ERIC Educational Resources Information Center

    Crippen, Kent J.; Archambault, Leanna M.; Kern, Cindy L.

    2013-01-01

    Teaching science to secondary students in an online environment is a growing international trend. Despite this trend, reports of empirical studies of this phenomenon are noticeably missing. With a survey concerning the nature of laboratory activities, this study describes the perspective of 35-secondary teachers from 15-different U.S. states who…

  8. Laboratory Experiences in an Introduction to Natural Science Course.

    ERIC Educational Resources Information Center

    Barnard, Sister Marquita

    1984-01-01

    Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)

  9. Restructuring a General Microbiology Laboratory into an Investigative Experience.

    ERIC Educational Resources Information Center

    Deutch, Charles E.

    1994-01-01

    Describes an investigative laboratory sequence based upon the isolation and characterization of soil bacteria to aid microbiology teachers in providing students with activities that expose them to basic techniques of microbiology as well as demonstrates the scientific process and the experimental analysis of microorganisms. (ZWH)

  10. Interactive Screen Experiments--Innovative Virtual Laboratories for Distance Learners

    ERIC Educational Resources Information Center

    Hatherly, P. A.; Jordan, S. E.; Cayless, A.

    2009-01-01

    The desirability and value of laboratory work for physics students is a well-established principle and issues arise where students are inherently remote from their host institution, as is the case for the UK's Open University. In this paper, we present developments from the Physics Innovations Centre for Excellence in Teaching and Learning…

  11. EXPERIMENTS ON BUOYANT PLUME DISPERSION IN A LABORATORY CONVENTION TANK

    EPA Science Inventory

    Buoyant plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focus is on highly-buoyant plumes that loft near the CBL capping inversion and resist downward mixing. Highly- buoyant plumes are those with dimen...

  12. Sodium concentration measurement during hemodialysis through ion-exchange resin and conductivity measure approach: in vitro experiments.

    PubMed

    Tura, Andrea; Sbrignadello, Stefano; Mambelli, Emanuele; Ravazzani, Paolo; Santoro, Antonio; Pacini, Giovanni

    2013-01-01

    Sodium measurement during hemodialysis treatment is important to preserve the patient from clinical events related to hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some "mixed samples", i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity was measured again. On average, the difference in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. After treatment with the exchange resin, it was 14.7%, i.e., 42% lower. Similar experiments were performed with calcium chloride and magnesium chloride as confounding factors, with similar results. We also performed some experiments on actual dialysate solution during hemodialysis sessions in 15 patients, and found that the correlation between conductivity measures and sodium concentration improved after resin treatment (R=0.839 before treatment, R=0.924 after treatment, P<0.0001). We conclude that ion-exchange resin treatment coupled with conductivity measures may improve the measurement of sodium compared to conductivity measures alone, and may become a possible simple approach for continuous and automatic sodium measurement during hemodialysis.

  13. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    ERIC Educational Resources Information Center

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  14. An Example of a Laboratory Teaching Experience in a Professional Year (Plan B) Program

    ERIC Educational Resources Information Center

    Miller, P. J.; And Others

    1978-01-01

    A laboratory teaching experience (L.T.E.) was designed to focus on three teaching behaviors. It was recognized that a behavioral approach to teaching simplified its complexity by isolating specific teaching behaviors. Discusses the development and evaluation of the laboratory teaching experience. (Author/RK)

  15. Redefining Authentic Research Experiences in Introductory Biology Laboratories and Barriers to Their Implementation

    ERIC Educational Resources Information Center

    Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are…

  16. Capillary Electrophoresis Analysis of Cations in Water Samples: An Experiment for the Introductory Laboratory

    ERIC Educational Resources Information Center

    Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.

    2004-01-01

    Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…

  17. Parallel Combinatorial Synthesis of Azo Dyes: A Combinatorial Experiment Suitable for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Gung, Benjamin W.; Taylor, Richard T.

    2004-01-01

    An experiment in the parallel synthesis of azo dyes that demonstrates the concepts of structure-activity relationships and chemical diversity with vivid colors is described. It is seen that this experiment is suitable for the second-semester organic chemistry laboratory and also for the one-semester organic laboratory.

  18. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    ERIC Educational Resources Information Center

    Simon, Nicole A.

    2013-01-01

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory…

  19. An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin

    ERIC Educational Resources Information Center

    Bailey, James A.

    2011-01-01

    Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…

  20. The Need Of Laboratory Experiments In Parallel To Astrobiological Space Fligth Experiments

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    For laboratory studies on the responses of resistant life forms to simulated interplane- tary space conditions, test beds are available that simulate the parameters of space, such as vacuum, solar electromagnetic and cosmic ionizing radiation, temperature extremes and reduced gravity, which can be applied separately or in selected com- binations. Appropriate biological test systems are extremophiles, i.e. microorganisms that are adapted to grow or survive in extreme conditions of our biosphere. Examples are airborne microbes, endolithic or endoevaporitic microbial communities, or isolated biomolecules. The studies contribute to answer several questions of astrobiology, such as (i) the role of solar UV radiation in genetic stability, (ii) the role of gravity in basic biological functions, (iii) the chances and limits for interplanetary transfer of life, (iv) strategies of adaptation to environmental extremes, and (v) the needs for planetary protection. As an example, the ground controls that were performed in parallel with 3 BIOPAN flight experiments will be presented.

  1. Property-Transfer Modeling to Estimate Unsaturated Hydraulic Conductivity of Deep Sediments at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kim S.; Winfield, Kari A.

    2007-01-01

    The unsaturated zone at the Idaho National Laboratory is complex, comprising thick basalt flow sequences interbedded with thinner sedimentary layers. Understanding the highly nonlinear relation between water content and hydraulic conductivity within the sedimentary interbeds is one element in predicting water flow and solute transport processes in this geologically complex environment. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is desirable. A capillary bundle model was used to estimate unsaturated hydraulic conductivity for 40 samples from sedimentary interbeds using water-retention parameters and saturated hydraulic conductivity derived from (1) laboratory measurements on core samples, and (2) site-specific property transfer regression models developed for the sedimentary interbeds. Four regression models were previously developed using bulk-physical property measurements (bulk density, the median particle diameter, and the uniformity coefficient) as the explanatory variables. The response variables, estimated from linear combinations of the bulk physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. The degree to which the unsaturated hydraulic conductivity curves estimated from property-transfer-modeled water-retention parameters and saturated hydraulic conductivity approximated the laboratory-measured data was evaluated using a goodness-of-fit indicator, the root-mean-square error. Because numerical models of variably saturated flow and transport require parameterized hydraulic properties as input, simulations were run to evaluate the effect of the various parameters on model results. Results show that the property transfer models based on easily measured bulk properties perform nearly as well as using curve fits to laboratory-measured water

  2. Going GLP: Conducting Toxicology Studies in Compliance with Good Laboratory Practices.

    PubMed

    Carroll, Erica Eggers

    2016-01-01

    Good laboratory practice standards are US federal regulations enacted as part of the Federal Insecticide, Fungicide, and Rodenticide Act (40 CFR Part 160), the Toxic Substance Control Act (40 CFR Part 792), and the Good Laboratory Practice for Nonclinical Laboratory Studies (21 CFR Part 58) to support protection of public health in the areas of pesticides, chemicals, and drug investigations in response to allegations of inaccurate data acquisition. Essentially, good laboratory practices (GLPs) are a system of management controls for nonclinical research studies involving animals to ensure the uniformity, consistency, reliability, reproducibility, quality, and integrity of data collected as part of chemical (including pharmaceuticals) tests, from in vitro through acute to chronic toxicity tests. The GLPs were established in the United States in 1978 as a result of the Industrial Bio-Test Laboratory scandal which led to congressional hearings and actions to prevent fraudulent data reporting and collection. Although the establishment of infrastructure for GLPs compliance is labor-intensive and time-consuming, achievement and maintenance of GLP compliance ensures the accuracy of the data collected from each study, which is critical for defending results, advancing science, and protecting human and animal health. This article describes how and why those in the US Army Medical Department responsible for protecting the public health of US Army and other military personnel made the policy decision to have its toxicology laboratory achieve complete compliance with GLP standards, the first such among US Army laboratories. The challenges faced and how they were overcome are detailed. PMID:27613211

  3. Going GLP: Conducting Toxicology Studies in Compliance with Good Laboratory Practices.

    PubMed

    Carroll, Erica Eggers

    2016-01-01

    Good laboratory practice standards are US federal regulations enacted as part of the Federal Insecticide, Fungicide, and Rodenticide Act (40 CFR Part 160), the Toxic Substance Control Act (40 CFR Part 792), and the Good Laboratory Practice for Nonclinical Laboratory Studies (21 CFR Part 58) to support protection of public health in the areas of pesticides, chemicals, and drug investigations in response to allegations of inaccurate data acquisition. Essentially, good laboratory practices (GLPs) are a system of management controls for nonclinical research studies involving animals to ensure the uniformity, consistency, reliability, reproducibility, quality, and integrity of data collected as part of chemical (including pharmaceuticals) tests, from in vitro through acute to chronic toxicity tests. The GLPs were established in the United States in 1978 as a result of the Industrial Bio-Test Laboratory scandal which led to congressional hearings and actions to prevent fraudulent data reporting and collection. Although the establishment of infrastructure for GLPs compliance is labor-intensive and time-consuming, achievement and maintenance of GLP compliance ensures the accuracy of the data collected from each study, which is critical for defending results, advancing science, and protecting human and animal health. This article describes how and why those in the US Army Medical Department responsible for protecting the public health of US Army and other military personnel made the policy decision to have its toxicology laboratory achieve complete compliance with GLP standards, the first such among US Army laboratories. The challenges faced and how they were overcome are detailed.

  4. Decision-making under uncertainty: results from an experiment conducted at EGU 2012

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; van Andel, Schalk Jan; Pappenberger, Florian

    2013-04-01

    Do probabilistic forecasts lead to better decisions? At the EGU General Assembly 2012, we conducted a laboratory-style experiment to address this question. Several cases of flood forecasts and a choice of actions to take were presented as part of a game to participants, who acted as decision makers. Participants were prompted to make decisions when forecasts were provided with and without uncertainty information. They had to decide whether to open or not a gate which was the inlet of a retention basin designed to protect a town. The rules were such that: if they decided to open the gate, the retention basin was flooded and the farmers in this basin demanded a compensation for flooding their land; if they decided not to open the gate and a flood occurred on the river, the town was flooded and they had to pay a fine to the town. Participants were encouraged to keep note of their individual decisions in a worksheet. About 100 worksheets were collected at the end of the game and the results of their evaluation are presented here. In general, they show that decisions are based on a combination of what is displayed by the expected (forecast) value and what is given by the uncertainty information. In the absence of uncertainty information, decision makers are compelled towards a more risk-averse attitude. Besides, more money was lost by a large majority of participants when they had to make decisions without uncertainty information. Limitations of the experiment setting are discussed, as well as the importance of the development of training tools to increase effectiveness in the use of probabilistic predictions to support decisions under uncertainty.

  5. Summary of recent experiments on focusing of target-normal-sheath-accelerated proton beam with a stack of conducting foils

    SciTech Connect

    Ni, P. A.; Alexander, N.; Barnard, J. J.; Lund, S. M.

    2014-05-15

    We present a summary of recent experiments on focusing of laser target-normal-sheath-accelerated (TNSA) proton beam with a stack of thin conducting foils. The experiments were performed using the Phelix laser (GSI-Darmstadt) and the Titan laser, Lawrence Livermore National Laboratory. The phenomena consistent with self-collimation (or weak self-focusing) of TNSA protons were experimentally observed for the first time at the Phelix laser user facility, in a specially engineered structure ('lens') consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. Follow up experiments using the Titan laser obtained results consistent with the collimation/focusing observed in the initial experiments using the Phelix. The Titan experiments employed improved, 25 μm- and 50 μm-gap targets and the new fine mesh diagnostic. All the experiments were carried out in a “passive environment,” i.e., no external fields were applied, and no neutralization plasma or injection of secondary charged particles was imposed. A plausible interpretation of the observed phenomena is that the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the conducting foils inhibits radial expansion of the beam.

  6. Exploring Fundamental Concepts in Aqueous Solution Conductivity: A General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Stevanov, Kelly; Barlag, Rebecca

    2010-01-01

    Using a conductivity sensor, a temperature sensor, and a datalogger, fundamental factors that affect conductivity are explored. These factors are (i) concentration, (ii) temperature, (iii) ion charge, and (iv) size and or mass of anion. In addition, the conductivities of a number of other solutions are measured. This lab has been designed to…

  7. Risk Assessment and Hazard Elimination for Undergraduate Laboratory Experiments.

    ERIC Educational Resources Information Center

    Young, Jay A.

    1982-01-01

    Describes a procedure which identifies an experiment as unreasonably hazardous or indicates precautions to be taken rendering the experiment acceptable for assignment to undergraduate students. The procedure follows in parallel form the procedure used to prepare chemical labels. (Author/JN)

  8. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  9. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  10. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  11. A Cyclic Voltammetry Experiment for the Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Baldwin, Richard P.; And Others

    1984-01-01

    Background information and procedures are provided for experiments that illustrate the nature of cyclic voltammetry and its application in the characterization of organic electrode processes. The experiments also demonstrate the concepts of electrochemical reversibility and diffusion-controlled mass transfer. (JN)

  12. Undergraduate Laboratory Experiment Modules for Probing Gold Nanoparticle Interfacial Phenomena

    ERIC Educational Resources Information Center

    Karunanayake, Akila G.; Gunatilake, Sameera R.; Ameer, Fathima S.; Gadogbe, Manuel; Smith, Laura; Mlsna, Deb; Zhang, Dongmao

    2015-01-01

    Three gold-nanoparticle (AuNP) undergraduate experiment modules that are focused on nanoparticles interfacial phenomena have been developed. Modules 1 and 2 explore the synthesis and characterization of AuNPs of different sizes but with the same total gold mass. These experiments enable students to determine how particle size affects the AuNP…

  13. Reactions of Thiocyanate Ions with Acid: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1984-01-01

    Background information, procedures, and typical results are provided for a three-part experiment involving reactions of potassium thiocynate (KNCS) with sulfuric acid. The experiment represents the final stage of structured work prior to students' research projects during their final year. (JM)

  14. The RC Circuit--A Multipurpose Laboratory Experiment.

    ERIC Educational Resources Information Center

    Wood, Herbert T.

    1993-01-01

    Describes an experiment that demonstrates the use of Kirchoff's rules in the analysis of electrical circuits. The experiment also involves the solution of a linear nonhomogeneous differential equation that is slightly different from the standard one for the simple RC circuit. (ZWH)

  15. A Thin Layer Chromatography Laboratory Experiment of Medical Importance

    ERIC Educational Resources Information Center

    Sharma, Loretta; Desai, Ankur; Sharma, Ajit

    2006-01-01

    A thin layer chromatography experiment of medical importance is described. The experiment involves extraction of lipids from simulated amniotic fluid samples followed by separation, detection, and scanning of the lecithin and sphingomyelin bands on TLC plates. The lecithin-to-sphingomyelin ratio is calculated. The clinical significance of this…

  16. A Membrane Gas Separation Experiment for the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Davis, Richard A.; Sandall, Orville C.

    1991-01-01

    Described is a membrane experiment that provides students with experience in fundamental engineering skills such as mass balances, modeling, and using the computer as a research tool. Included are the experimental design, theory, method of solution, sample calculations, and conclusions. (KR)

  17. Microcomputer-Based Digital Signal Processing Laboratory Experiments.

    ERIC Educational Resources Information Center

    Tinari, Jr., Rocco; Rao, S. Sathyanarayan

    1985-01-01

    Describes a system (Apple II microcomputer interfaced to flexible, custom-designed digital hardware) which can provide: (1) Fast Fourier Transform (FFT) computation on real-time data with a video display of spectrum; (2) frequency synthesis experiments using the inverse FFT; and (3) real-time digital filtering experiments. (JN)

  18. Exploring the Effectiveness of a Field Experience Program in a Pedagogical Laboratory: The Experience of Teacher Candidates

    ERIC Educational Resources Information Center

    Ma, Yuxin; Lai, Guolin; Williams, Doug; Prejean, Louise; Ford, Mary Jane

    2008-01-01

    Researchers argue that teachers' beliefs are the final barrier that prevents technology integration. To affect change in teacher candidates' beliefs of technology integration, we created a pedagogical laboratory as well as a field experience program that operates within the pedagogical laboratory. This article presents a qualitative study of…

  19. Laser-driven ICF experiments: Laboratory Report No. 223

    SciTech Connect

    McCrory, R.L.

    1991-04-01

    Laser irradiation uniformity is a key issue and is treated in some detail. The basic irradiation uniformity requirements and practical ways of achieving these requirements are both discussed, along with two beam-smoothing techniques: induced spatial incoherence (ISI), and smoothing by spectral dispersion (SSD). Experiments to measure and control the irradiation uniformity are also highlighted. Following the discussion of irradiation uniformity, a brief review of coronal physics is given, including the basic physical processes and their experimental signatures, together with a summary of pertinent diagnostics and results from experiments. Methods of determining ablation rates and thermal transport are also described. The hydrodynamics of laser-driven targets must be fully understood on the basis of experiments. Results from implosion experiments, including a brief description of the diagnostics, are presented. Future experiments aimed at determining ignition scaling and demonstrating hydrodynamically equivalent physics applicable to high-gain designs.

  20. Laptops in Psychology: Conducting Flexible In-Class Research and Writing Laboratories

    ERIC Educational Resources Information Center

    Stephens, Benjamin R.

    2005-01-01

    This chapter describes an undergraduate psychology research methods course in which laptops facilitated online organization, electronic portfolios, and flexible laboratories to improve student engagement, capability, and understanding. (Contains 3 figures.)

  1. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a field and laboratory investigation of unconsolidated sediments contaminated by petroleum hydrocarbons and undergoing natural biodegradation are presented. Fundamental to geophysical investigations of hydrocarbon impacted sediments is the assessment of how microbi...

  2. Compendium of Test Results of Recent Single Event Effect Tests Conducted by the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    McClure, Steven S.; Allen, Gregory R.; Irom, Farokh; Scheick, Leif Z.; Adell, Philippe C.; Miyahira, Tetsuo F.

    2010-01-01

    This paper reports heavy ion and proton-induced single event effect (SEE) results from recent tests for a variety of microelectronic devices. The compendium covers devices tested over the last two years by the Jet Propulsion Laboratory.

  3. 9 CFR 55.8 - Official CWD tests and approval of laboratories to conduct official CWD tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Official CWD tests and approval of laboratories to conduct official CWD tests. 55.8 Section 55.8 Animals and Animal Products ANIMAL AND PLANT... POULTRY DISEASES CONTROL OF CHRONIC WASTING DISEASE Chronic Wasting Disease Indemnification Program §...

  4. Laboratory Experiment of Magnetic Reconnection between Merging Flux Tubes with Strong Guide FIeld

    NASA Astrophysics Data System (ADS)

    Inomoto, M.; Kamio, S.; Kuwahata, A.; Ono, Y.

    2013-12-01

    Magnetic reconnection governs variety of energy release events in the universe, such as solar flares, geomagnetic substorms, and sawtooth crash in laboratory nuclear fusion experiments. Differently from the classical steady reconnection models, non-steady behavior of magnetic reconnection is often observed. In solar flares, intermittent enhancement of HXR emission is observed synchronously with multiple ejection of plammoids [1]. In laboratory reconnection experiments, the existence of the guide field, that is perpendicular to the reconnection field, makes significant changes on reconnection process. Generally the guide field will slow down the reconnection rate due to the increased magnetic pressure inside the current sheet. It also brings about asymmetric structure of the separatrices or effective particle acceleration in collisionless conditions. We have conducted laboratory experiments to study the behavior of the guide-field magnetic reconnection using plasma merging technique (push reconnection). Under substantial guide field even larger than the reconnection field, the reconnection generally exhibits non-steady feature which involves intermittent detachment of X-point and reconnection current center[2]. Transient enhancement of reconnection rate is observed simultaneously with the X-point motion[3]. We found two distinct phenomena associated with the guide-field non-steady reconnection. The one is the temporal and localized He II emission from X-point region, suggesting the production of energetic electrons which could excite the He ions in the vicinity of the X-point. The other is the excitation of large-amplitude electromagnetic waves which have similar properties with kinetic Alfven waves, whose amplitude show positive correlation with the enhancement of the reconnection electric field[4]. Electron beam instability caused by the energetic electrons accelerated to more than twice of the electron thermal velocity could be a potential driver of the

  5. Reflectance Experiment Laboratory (RELAB) Description and User's Manual

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.; Hiroi, Takahiro; Pratt, Steve F.; Patterson, Bill

    2004-01-01

    Spectroscopic data acquired in the laboratory provide the interpretive foundation upon which compositional information about unexplored or unsampled planetary surfaces is derived from remotely obtained reflectance spectra. The RELAB is supported by NASA as a multi-user spectroscopy facility, and laboratory time can be made available at no charge to investigators who are in funded NASA programs. RELAB has two operational spectrometers available to NASA scientists: 1) a near- ultraviolet, visible, and near-infrared bidirectional spectrometer and 2) a near- and mid- infrared FT-IR spectrometer. The overall purpose of the design and operation of the RELAB bidirectional spectrometer is to obtain high precision, high spectral resolution, bidirectional reflectance spectra of earth and planetary materials. One of the key elements of its design is the ability to measure samples using viewing geometries specified by the user. This allows investigators to simulate, under laboratory conditions, reflectance spectra obtained remotely (i.e., with spaceborne, telescopic, and airborne systems) as well as to investigate geometry dependent reflectance properties of geologic materials. The Nicolet 740 FT-IR spectrometer currently operates in reflectance mode from 0.9 to 25 Fm. Use and scheduling of the RELAB is monitored by a 4-member advisory committee. NASA investigators should direct inquiries to the Science Manager or RELAB Operator.

  6. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    NASA Astrophysics Data System (ADS)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  7. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  8. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.

  9. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  10. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS AT IDAHO NATIONAL LABORATORY: DESCRIPTION AND SUMMARY OF DATA

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2010-09-01

    Idaho National Laboratory performed air ingress experiments as part of validating computational fluid dynamics code (CFD). An isothermal stratified flow experiment was designed and set to understand stratified flow phenomena in the very high temperature gas cooled reactor (VHTR) and to provide experimental data for validating computer codes. The isothermal experiment focused on three flow characteristics unique in the VHTR air-ingress accident: stratified flow in the horizontal pipe, stratified flow expansion at the pipe and vessel junction, and stratified flow around supporting structures. Brine and sucrose were used as heavy fluids and water was used as light fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between heavy and light fluids is generated even for very small density differences. The code was validated by conducting blind CFD simulations and comparing the results to the experimental data. A grid sensitivity study was also performed based on the Richardson extrapolation and the grid convergence index method for modeling confidence. As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  11. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    SciTech Connect

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-04-05

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  12. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers. PMID:24116529

  13. Column displacement experiments to evaluate electrical conductivity effects on electromagnetic soil water sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk electrical conductivity (EC) in superactive soils has been shown to strongly influence electromagnetic sensing of permittivity. However, these effects are dependent on soil water content and temperature as well as the pore water conductivity. We carried out isothermal column displacement experi...

  14. Analyses of internal tides generation and propagation over a Gaussian ridge in laboratory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Floor, Jochem

    2010-05-01

    Internal tides are suggested to play a major role in the sustaining of the global oceanic circulation [1][5]. Although the exact origin of the energy conversions occurring in stratified fluids is questioned [2], it is clear that the diapycnal energy transfers provided by the energy cascade of internal gravity waves generated at tidal frequencies in regions of steep bathymetry is strongly linked to the general circulation energy balance. Therefore a precise quantification of the energy supply by internal waves is a crucial step in forecasting climate, since it improves our understanding of the underlying physical processes. We focus on an academic case of internal waves generated over an oceanic ridge in a linearly stratified fluid. In order to accurately quantify the diapycnal energy transfers caused by internal waves dynamics, we adopt a complementary approach involving both laboratory and numerical experiments. The laboratory experiments are conducted in a 4m long tank of the CNRM-GAME fluid mechanics laboratory, well known for its large stratified water flume (e.g. Knigge et al [3]). The horizontal oscillation at precisely controlled frequency of a Gaussian ridge immersed in a linearly stratified fluid generates internal gravity waves. The ridge of e-folding width 3.6 cm is 10 cm high and spans 50 cm. We use PIV and Synthetic Schlieren measurement techniques, to retrieve the high resolution velocity and stratification anomaly fields in the 2D vertical plane across the ridge. These experiments allow us to get access to real and exhaustive measurements of a wide range of internal waves regimes by varying the precisely controlled experimental parameters. To complete this work, we carry out some direct numerical simulations with the same parameters (forcing amplitude and frequency, initial stratification, boundary conditions) as the laboratory experiments. The model used is a non-hydrostatic version of the numerical model Symphonie [4]. Our purpose is not only to

  15. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  16. NASA's Rodent Research Project: Validation of Capabilities for Conducting Long Duration Experiments in Space

    NASA Technical Reports Server (NTRS)

    Choi, Sungshin Y.; Cole, Nicolas; Reyes, America; Lai, San-Huei; Klotz, Rebecca; Beegle, Janet E.; Wigley, Cecilia L.; Pletcher, David; Globus, Ruth K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Prior rodent experiments on the Shuttle were limited by the short flight duration. The International Space Station (ISS) provides a new platform for conducting rodent experiments under long duration conditions. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 days (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNAlater at -80C (n2group) until their return to Earth. Remaining carcasses on-orbit were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls housed in standard cages, and Ground Controls (GC) housed in flight hardware within an environmental chamber. Upon return to Earth, there were no differences in body weights between Flight (FLT) and GC at the end of the 37 days in space. Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were processed under optimal conditions in the laboratory. Liver samples dissected on-orbit yielded high quality RNA (RIN8.99+-0.59, n7). Liver samples dissected post-flight from the intact, frozen FLT carcasses yielded RIN of 7.27 +- 0.52 (n6). Additionally, wet weights of various tissues were measured. Adrenal glands and spleen showed no significant differences in FLT compared to GC although thymus and livers weights were significantly greater in FLT compared to GC. Over 3,000 tissue aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for future Biospecimen

  17. The plasma dynamics of hypersonic spacecraft: Applications of laboratory simulations and active in situ experiments

    NASA Technical Reports Server (NTRS)

    Stone, N. H.; Samir, Uri

    1986-01-01

    Attempts to gain an understanding of spacecraft plasma dynamics via experimental investigation of the interaction between artificially synthesized, collisionless, flowing plasmas and laboratory test bodies date back to the early 1960's. In the past 25 years, a number of researchers have succeeded in simulating certain limited aspects of the complex spacecraft-space plasma interaction reasonably well. Theoretical treatments have also provided limited models of the phenomena. Several active experiments were recently conducted from the space shuttle that specifically attempted to observe the Orbiter-ionospheric interaction. These experiments have contributed greatly to an appreciation for the complexity of spacecraft-space plasma interaction but, so far, have answered few questions. Therefore, even though the plasma dynamics of hypersonic spacecraft is fundamental to space technology, it remains largely an open issue. A brief overview is provided of the primary results from previous ground-based experimental investigations and the preliminary results of investigations conducted on the STS-3 and Spacelab 2 missions. In addition, several, as yet unexplained, aspects of the spacecraft-space plasma interaction are suggested for future research.

  18. A teaching intervention for reading laboratory experiments in college-level introductory chemistry

    NASA Astrophysics Data System (ADS)

    Kirk, Maria Kristine

    The purpose of this study was to determine the effects that a pre-laboratory guide, conceptualized as a "scientific story grammar," has on college chemistry students' learning when they read an introductory chemistry laboratory manual and perform the experiments in the chemistry laboratory. The participants (N = 56) were students enrolled in four existing general chemistry laboratory sections taught by two instructors at a women's liberal arts college. The pre-laboratory guide consisted of eight questions about the experiment, including the purpose, chemical species, variables, chemical method, procedure, and hypothesis. The effects of the intervention were compared with those of the traditional pre-laboratory assignment for the eight chemistry experiments. Measures included quizzes, tests, chemistry achievement test, science process skills test, laboratory reports, laboratory average, and semester grade. The covariates were mathematical aptitude and prior knowledge of chemistry and science processes, on which the groups differed significantly. The study captured students' perceptions of their experience in general chemistry through a survey and interviews with eight students. The only significant differences in the treatment group's performance were in some subscores on lecture items and laboratory items on the quizzes. An apparent induction period was noted, in that significant measures occurred in mid-semester. Voluntary study with the pre-laboratory guide by control students precluded significant differences on measures given later in the semester. The groups' responses to the survey were similar. Significant instructor effects on three survey items were corroborated by the interviews. The researcher's students were more positive about their pre-laboratory tasks, enjoyed the laboratory sessions more, and were more confident about doing chemistry experiments than the laboratory instructor's groups due to differences in scaffolding by the instructors.

  19. Zero-gravity atmospheric Cloud Physics Experiment Laboratory; Programmatics report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The programmatics effort included comprehensive analyses in four major areas: (1) work breakdown structure, (2) schedules, (3) costs, and (4) supporting research and technology. These analyses are discussed in detail in the following sections which identify and define the laboratory project development schedule, cost estimates, funding distributions and supporting research and technology requirements. All programmatics analyses are correlated among themselves and with the technical analyses by means of the work breakdown structure which serves as a common framework for program definition. In addition, the programmatic analyses reflect the results of analyses and plans for reliability, safety, test, and maintenance and refurbishment.

  20. Laboratory experiments duplicate conditions in the Earth’s crust

    USGS Publications Warehouse

    Peselnick, L.; Dieterich, J.H.; Stewart, R.M.

    1974-01-01

    An experimental device that simulates conditions in the Earth's crust at depths of up to 30 kilometers has been constructed by geophysicists working at the U.S Geological Survey laboratories in Menlo Park, California. A high pressure "bomb" is being used to experimentally measure the velocity of seismic waves in different types of rock at various confining pressures and temperatures. The principal purpose of these measurements is to determine the elastic and non-elastic properties of rocks and minerals under conditions of high-pressure such as exist deep in the Earth's crust. 

  1. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  2. LC Card Order Experiment Conducted at University of Utah Marriott Library

    ERIC Educational Resources Information Center

    Cluff, E. Dale; Anderson, Karen

    1973-01-01

    Between the months of October 1971 and March 1972 the University of Utah Marriott Library conducted an experiment to test the turn-around time of card orders sent to the Library of Congress. This article is a brief report of that experiment. (1 reference) (Author)

  3. Long term experience with semi-conductive glaze high voltage post insulators

    SciTech Connect

    Baker, A.C.; Maney, J.W.; Szilagyi, Z. )

    1990-01-01

    Insulators using semi-conductive glaze have long been known for their superior contamination performance. Early glazes for this type however were not stable and successful use of semi-conductive glazed porcelain insulators was delayed many years until tin-antimony oxide glazes were developed. Service experience of eighteen years is now available for line and station post insulators with this type of glaze. Based on this experience, the aging characteristics of tin-antimony oxide semi-conductive glazes are described and quantified. Several different applications of these insulators are also described.

  4. From laboratory to industry Phasics experience (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wattellier, Benoit F.; Lebrun, Marie-Begoña.

    2016-03-01

    We describe several examples of technology transfer from academic laboratories to PHASICS. PHASICS was created in 2003 as a spin-off of LULI an academic laboratory working on plasma physics and developing high power lasers to create such objects which temperature and pressure conditions are close to those at the center of stars. In order to optimize the intensity at laser focus, several thesis treated the subject of adaptive optics for lasers. LULI decided to collaborate with ONERA who just invented a technique for wave front sensing called multiwave lateral shearing interferometry. Though developed at first for infrared metrology applications, this technique proved to be very efficient with lasers because it was able to analyze wave front of modulated beams with sharp edges. Before being industrialized the technique was further improved to a compact version called quadriwave lateral shearing interferometry. As soon as PHASICS was created, we felt the potential of making wave front images from transparent objects because of QWLSI high spatial resolution. PHASICS and Institut Fresnel started a collaboration to study applications in microscopy imaging. Research subjects include biological imaging, CARS microscopy, anisotropy imaging, or laser damage testing. The results of research were then included in PHASICS products but sometimes only a tool developed during the project became a product. We will present research works that led to transfers as well as the method we used to ensure fruitful collaboration and transfer.

  5. Computer assisted laboratory diagnosis: a ten-year experience.

    PubMed

    Zatti, M; Guidi, G; Marcolini, F

    1988-10-01

    An automated procedure to help general practitioners in clinical diagnosis and decision making is presented. The computer-based program is conceived to process results from laboratory tests performed on outpatients, providing general practitioners with possible causes of abnormal results. When only one or two abnormal tests are observed, a series of suggestions pertinent to each abnormality is printed. When there are more abnormal test results, the program performs a more complex procedure ending with the output of some diagnostic hypotheses. Messages are also printed to focus the physician's attention to particular aspects of patient pathology that were sometimes missed or disregarded and to suggest new investigations the laboratory can perform to improve diagnostic efficiency. Moreover some advice is supplied to allow a better evaluation of particular risk conditions, as those associated with the development of coronary heart disease. The program has been recently extended with the calculation of intraindividual reference intervals. The system described has been working since 1976 and appears particularly useful when the general practitioner is faced with a number of pathological results of difficult interpretation.

  6. Millikan Oil-Drop Experiment in the Introductory Laboratory

    ERIC Educational Resources Information Center

    Heald, Mark A.

    1974-01-01

    Discusses a simplified Millikan oil-drop experiment which emphasizes the enplanation of basic concepts in mechanics and electrostatics, the use of home-made apparatus, the request for an individual's observation of his own drop, and the application of statistical analysis in data interpretation. (CC)

  7. Cavity Ring down Spectroscopy Experiment for an Advanced Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Stacewicz, T.; Wasylczyk, P.; Kowalczyk, P.; Semczuk, M.

    2007-01-01

    A simple experiment is described that permits advanced undergraduates to learn the principles and applications of the cavity ring down spectroscopy technique. The apparatus is used for measurements of low concentrations of NO[subscript 2] produced in air by an electric discharge. We present the setup, experimental procedure, data analysis and some…

  8. Car-Crash Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ball, Penny L.; And Others

    1974-01-01

    Describes an interesting, inexpensive, and highly motivating experiment to study uniform and accelerated motion by measuring the position of a car as it crashes into a rigid wall. Data are obtained from a sequence of pictures made by a high speed camera. (Author/SLH)

  9. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  10. A Process Dynamics and Control Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Spencer, Jordan L.

    2009-01-01

    This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…

  11. A Laboratory Experiment on How to Create Dimensionless Correlations

    ERIC Educational Resources Information Center

    Edwards, Robert V.

    2010-01-01

    An experiment is described that illustrates how chemical engineering correlations are created. Balls of different diameters and different specific gravities (all less than one) are dropped from several heights into a pool of water, and the maximum depth reached by the ball is measured. This data is used to estimate the coefficients for a…

  12. Laboratory-Equivalent Minicomputer Experiments: A Kinetic Application

    ERIC Educational Resources Information Center

    Cabrol, D.; And Others

    1975-01-01

    Describes programs that have been developed to allow kinetic experiments to be simulated on a small computer. Reports the principles that have guided the conception of the programs and describes an instance of their application to a complex reaction. (Author/GS)

  13. Coulometric Analysis Experiment for the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Thor, Ryan

    2011-01-01

    An undergraduate experiment on coulometric analysis of four commercial household products is presented. A special type of coulometry cell made of polydimethylsiloxane (PDMS) polymer is utilized. The PDMS cell consists of multiple analyte compartments and an internal network of salt bridges. Experimental procedure for the analysis of the acid in a…

  14. A Nonlinear, Multiinput, Multioutput Process Control Laboratory Experiment

    ERIC Educational Resources Information Center

    Young, Brent R.; van der Lee, James H.; Svrcek, William Y.

    2006-01-01

    Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…

  15. User Experience in Digital Games: Differences between Laboratory and Home

    ERIC Educational Resources Information Center

    Takatalo, Jari; Hakkinen, Jukka; Kaistinen, Jyrki; Nyman, Gote

    2011-01-01

    Playing entertainment computer, video, and portable games, namely, digital games, is receiving more and more attention in academic research. Games are studied in different situations with numerous methods, but little is known about if and how the playing situation affects the user experience (UX) in games. In addition, it is hard to understand and…

  16. An Approach to Poiseuille's Law in an Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Sianoudis, I. A.; Drakaki, E.

    2008-01-01

    The continuous growth of computer and sensor technology allows many researchers to develop simple modifications and/or refinements to standard educational experiments, making them more attractive and comprehensible to students and thus increasing their educational impact. In the framework of this approach, the present study proposes an alternative…

  17. Radiative Transfer Theory Verified by Controlled Laboratory Experiments

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur

    2013-01-01

    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

  18. Field and laboratory experiments on high dissolution rates of limestone in stream flow

    NASA Astrophysics Data System (ADS)

    Hattanji, Tsuyoshi; Ueda, Mariko; Song, Wonsuh; Ishii, Nobuyuki; Hayakawa, Yuichi S.; Takaya, Yasuhiko; Matsukura, Yukinori

    2014-01-01

    Field and laboratory experiments were performed to examine dissolution rates of limestone in stream flow. Field experiments were conducted in three stream sites (A-C) with different lithological or hydrological settings around a limestone plateau in the Abukuma Mts., Japan. Sites A and B are allogenic streams, which flow from non-limestone sources into dolines, and site C has a karst spring source. Tablets made of limestone from the same plateau with a diameter of 3.5 cm and a thickness of 1 cm were placed in the streams for 3 years (2008-2011) where alkalinity, pH and major cation concentrations were measured periodically. The saturation indices of calcite (SIc) of stream water were - 2.8 ± 0.4 at site A, - 2.5 ± 0.4 at site B and - 0.5 ± 0.4 at site C. Annual weight loss ratios for tablets were extremely high at site A (0.11-0.14 mg cm- 2 d- 1), high at site B (0.05 mg cm- 2 d- 1), and low at site C (0.005 mg cm- 2 d- 1). The contrasting rates of weight loss are mainly explained by chemical conditions of stream water. In addition, laboratory experiments for dissolution of limestone tablets using a flow-through apparatus revealed that flow conditions around the limestone tablet is another important factor for dissolution in the stream environment. These results revealed that limestone dissolves at a rapid rate where water unsaturated to calcite continuously flows, such as in an allogenic stream.

  19. Mean Flow and Turbulence Structure in Ice-Covered Channels: Laboratory Experiments and Preliminary Field Observations

    NASA Astrophysics Data System (ADS)

    Robert, A.; Tran, T.

    2009-12-01

    Northern rivers experience freeze-up over the winter, creating asymmetric under-ice flows. Field measurements were conducted along an ice-covered, gravel-bed river in order to investigate average downstream velocity profile characteristics and the spatial variability of under-ice average flow conditions (itself attributed to the areal distribution of sediment and the heterogeneous nature of ice cover roughness). At the reach scale, measured under-ice flows typically exhibit flow asymmetry and its characteristics depend on the presence of roughness elements on the ice cover underside. River flows were subsequently modeled in the flume laboratory based on an average Froude number derived from field data. Extensive experiments were performed for shallower and deeper flows with a simulated ice cover of varying roughness and a gravel bed. Detailed profile measurements of the root-mean square components of turbulence intensity, Reynolds stresses and turbulent kinetic energy indicate that the turbulence structure is strongly influenced by the presence of an ice cover and its roughness characteristics. A central region of faster flow can develop with the addition of a rough cover at the height where average velocity is routinely sampled. For the case of deeper flows, streamwise and vertical turbulence intensities generally increase in the near-bed and outer flow regions when a cover is added. For deeper flows, Reynolds stresses also increase with addition of a cover and its roughening. Spatially-averaged profiles also suggest that flow depth significantly affects the turbulent flow structure of covered flows with similar low Froude numbers. Bed roughness elements appear to exert the greatest influence on near-bed flow distribution. Laboratory experiments also suggest that the addition of a cover - and its roughening - does not significantly alter estimates of near-bed velocity gradients. These results are discussed in the context of the impact of a warming climate on

  20. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a l6-month field and l6-month meso-scale laboratory investigation of unconsolidated sandy environments contaminated by petroleum hydrocarbons that are undergoing natural biodegradation is presented. The purpose was to understand the processes responsible for causin...

  1. Designing and Conducting a Purification Scheme as an Organic Chemistry Laboratory Practical

    ERIC Educational Resources Information Center

    Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.; Schaller, Chris P.

    2008-01-01

    An open-ended laboratory practical has been developed that challenges students to evaluate when different purification techniques are appropriate. In contrast to most lab practicals, the overall grade includes an evaluation of spectral analysis as well as writing skills. However, a significant portion of the grade lies in successful execution of a…

  2. Clinical and laboratory characteristics of atopic myelitis: Korean experience.

    PubMed

    Yoon, Jung Han; Joo, In Soo; Li, Wen Yu; Sohn, Seong Yeon

    2009-10-15

    HyperIgEemia and atopy have recently been reported to be related to various neurological diseases such as Hirayama disease and idiopathic myelitis. The aims of this study are to determine frequency of atopy or hyperIgEemia in idiopathic myelitis and to characterize the clinical and laboratory profiles of atopic myelitis (AM). From January 2006 to August 2008, 29 consecutive patients with idiopathic myelitis were recruited. We compared demographic data, laboratory results and radiologic findings between patients with atopic diathesis and those without. Allergic or atopic history was found in only 4 patients (13%), but hyperIgEemia and mite antigen-specific IgE were observed in 17 (58%) and 19 (65%) of idiopathic myelitis patients, respectively. Patients with AM (n=14, 48%) showed the following distinctive features: (1) younger age at onset, (2) non-acute onset and long duration of symptoms at admission, (3) predominant sensory symptoms with mild weakness, (4) low EDSS score, (5) low frequency of abnormal SEP findings, and (6) increased eosinophils in peripheral blood. Common MR findings of AM included eccentric lesions occupying more than two-thirds of spinal cord with focal peripheral enhancement on axial image. These lesions were usually extended over more than 3 to 5 vertebral segments with cord swelling. HyperIgEemia and mite antigen-specific IgE are fairly common in idiopathic myelitis patients. The AM patients show relatively homogenous clinicolaboratory and radiological features. It is noteworthy that none of these patients showed brain abnormalities suggestive of multiple sclerosis or neuromyelitis optica (NMO).

  3. Acid/base front propagation in saturated porous media: 2D laboratory experiments and modeling

    NASA Astrophysics Data System (ADS)

    Loyaux-Lawniczak, Stéphanie; Lehmann, François; Ackerer, Philippe

    2012-09-01

    We perform laboratory scale reactive transport experiments involving acid-basic reactions between nitric acid and sodium hydroxide. A two-dimensional experimental setup is designed to provide continuous on-line measurements of physico-chemical parameters such as pH, redox potential (Eh) and electrical conductivity (EC) inside the system under saturated flow through conditions. The electrodes provide reliable values of pH and EC, while sharp fronts associated with redox potential dynamics could not be captured. Care should be taken to properly incorporate within a numerical model the mixing processes occurring inside the electrodes. The available observations are modeled through a numerical code based on the advection-dispersion equation. In this framework, EC is considered as a variable behaving as a conservative tracer and pH and Eh require solving the advection dispersion equation only once. The agreement between the computed and measured pH and EC is good even without recurring to parameters calibration on the basis of the experiments. Our findings suggest that the classical advection-dispersion equation can be used to interpret these kinds of experiments if mixing inside the electrodes is adequately considered.

  4. Laboratory hydraulic fracturing experiments in intact and pre-fractured rock

    USGS Publications Warehouse

    Zoback, M.D.; Rummel, F.; Jung, R.; Raleigh, C.B.

    1977-01-01

    Laboratory hydraulic fracturing experiments were conducted to investigate two factors which could influence the use of the hydrofrac technique for in-situ stress determinations; the possible dependence of the breakdown pressure upon the rate of borehole pressurization, and the influence of pre-existing cracks on the orientation of generated fractures. The experiments have shown that while the rate of borehole pressurization has a marked effect on breakdown pressures, the pressure at which hydraulic fractures initiate (and thus tensile strength) is independent of the rate of borehole pressurization when the effect of fluid penetration is negligible. Thus, the experiments indicate that use of breakdown pressures rather than fracture initiation pressures may lead to an erroneous estimate of tectonic stresses. A conceptual model is proposed to explain anomalously high breakdown pressures observed when fracturing with high viscosity fluids. In this model, initial fracture propagation is presumed to be stable due to large differences between the borehole pressure and that within the fracture. In samples which contained pre-existing fractures which were 'leaky' to water, we found it possible to generate hydraulic fractures oriented parallel to the direction of maximum compression if high viscosity drilling mud was used as the fracturing fluid. ?? 1977.

  5. Acid/base front propagation in saturated porous media: 2D laboratory experiments and modeling.

    PubMed

    Loyaux-Lawniczak, Stéphanie; Lehmann, François; Ackerer, Philippe

    2012-09-01

    We perform laboratory scale reactive transport experiments involving acid-basic reactions between nitric acid and sodium hydroxide. A two-dimensional experimental setup is designed to provide continuous on-line measurements of physico-chemical parameters such as pH, redox potential (Eh) and electrical conductivity (EC) inside the system under saturated flow through conditions. The electrodes provide reliable values of pH and EC, while sharp fronts associated with redox potential dynamics could not be captured. Care should be taken to properly incorporate within a numerical model the mixing processes occurring inside the electrodes. The available observations are modeled through a numerical code based on the advection-dispersion equation. In this framework, EC is considered as a variable behaving as a conservative tracer and pH and Eh require solving the advection dispersion equation only once. The agreement between the computed and measured pH and EC is good even without recurring to parameters calibration on the basis of the experiments. Our findings suggest that the classical advection-dispersion equation can be used to interpret these kinds of experiments if mixing inside the electrodes is adequately considered.

  6. The Heavy Photon Search experiment at Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    De Napoli, Marzio

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, aka "dark" or "heavy photon", directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ɛ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  7. Laser fusion experiments, facilities and diagnostics at Lawrence Livermore Laboratory

    SciTech Connect

    Ahlstrom, H.G.

    1980-02-01

    The progress of the LLL Laser Fusion Program to achieve high gain thermonuclear micro-explosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex, 10-beam, 30 TW Shiva laser system. A 400 kJ design of the 20-beam Nova laser has been completed. The construction of the first phase of this facility has begun. New diagnostic instruments are described which provide one with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. Measurements were made on the absorption and Brillouin scattering for target irradiations at both 1.064 ..mu..m and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Implosion experiments have been performed which have produced final fuel densities over the range of 10x to 100x liquid DT density.

  8. The Heavy Photon Search experiment at Jefferson Laboratory

    SciTech Connect

    De Napoli, Marzio

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, a.k.a. 'dark' or 'heavy photon', directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  9. Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2016-01-01

    What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…

  10. Laboratory experiments on solute transport in bimodal porous media under cyclic precipitation-evaporation boundary conditions

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa

    2016-04-01

    Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and

  11. Experimenting with spirituality: analyzing The God Gene in a nonmajors laboratory course.

    PubMed

    Silveira, Linda A

    2008-01-01

    References linking genes to complex human traits, such as personality type or disease susceptibility, abound in the news media and popular culture. In his book The God Gene: How Faith is Hardwired into Our Genes, Dean Hamer argues that a variation in the VMAT2 gene plays a role in one's openness to spiritual experiences. In a nonmajors class, we read and discussed The God Gene and conducted on a small scale an extension of the study it describes. Students used polymerase chain reaction to replicate a portion of their VMAT2 genes, and they analyzed three polymorphic sites in the sequence of these products. Associations between particular VMAT2 alleles and scores on a personality test were assessed by t test. The course, of which this project was a major part, stimulated student learning; scores on a test covering basic genetic concepts, causation/correlation, and laboratory methodology improved after completion of the course. In a survey, students reported the laboratory project aided their learning, especially in the areas of statistics and the linking of genes to behaviors. They reported high levels of engagement with the project, citing in particular its personal nature as motivating their interest.

  12. Experimenting with Spirituality: Analyzing The God Gene in a Nonmajors Laboratory Course

    PubMed Central

    2008-01-01

    References linking genes to complex human traits, such as personality type or disease susceptibility, abound in the news media and popular culture. In his book The God Gene: How Faith is Hardwired into Our Genes, Dean Hamer argues that a variation in the VMAT2 gene plays a role in one's openness to spiritual experiences. In a nonmajors class, we read and discussed The God Gene and conducted on a small scale an extension of the study it describes. Students used polymerase chain reaction to replicate a portion of their VMAT2 genes, and they analyzed three polymorphic sites in the sequence of these products. Associations between particular VMAT2 alleles and scores on a personality test were assessed by t test. The course, of which this project was a major part, stimulated student learning; scores on a test covering basic genetic concepts, causation/correlation, and laboratory methodology improved after completion of the course. In a survey, students reported the laboratory project aided their learning, especially in the areas of statistics and the linking of genes to behaviors. They reported high levels of engagement with the project, citing in particular its personal nature as motivating their interest. PMID:18316816

  13. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  14. Laboratory studies of the electrical conductivity of silicate perovskites at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivities of two silicate perovskites and a perovskite-magnesiowuestite assemblage, all having an atomic ratio of Mg to Fe equal to 0.88/0.12, have been measured with alternating current and direct current (dc) techniques at simultaneously high pressures and temperatures. Measurements up to pressures of 80 GPa and temperatures of 3500 K, using a laser-heated diamond anvil cell, demonstrate that the electrical conductivity of these materials remains below 10-3 S/m at lower mantle conditions. The activation energies for electrical conduction are between 0.1 and 0.4 eV from the data, and the conduction in these perovskites is ascribed to an extrinsic electronic process. The new measurements are in agreement with a bound that was previously obtained from dc measurements for the high-PT conductivity of perovskite-dominated assemblages. The results show that the electrical conductivity of (Mg/0.88/Fe/0.12)SiO3 perovskite differs significantly from that of the earth's deep mantle, as inferred from geophysical observations.

  15. Insights into oil cracking based on laboratory experiments

    USGS Publications Warehouse

    Hill, R.J.; Tang, Y.; Kaplan, I.R.

    2003-01-01

    The objectives of this pyrolysis investigation were to determine changes in (1) oil composition, (2) gas composition and (3) gas carbon isotope ratios and to compare these results with hydrocarbons in reservoirs. Laboratory cracking of a saturate-rich Devonian oil by confined, dry pyrolysis was performed at T = 350-450??C, P = 650 bars and times ranging from 24 h to 33 days. Increasing thermal stress results in the C15+ hydrocarbon fraction cracking to form C6-14 and C1-5 hydrocarbons and pyrobitumen. The C6-14 fraction continues to crack to C 1-5 gases plus pyrobitumen at higher temperatures and prolonged heating time and the ?? 13Cethane-?? 13Cpropane difference becomes greater as oil cracking progresses. There is considerable overlap in product generation and product cracking. Oil cracking products accumulate either because the rate of generation of any product is greater than the rate of removal by cracking of that product or because the product is a stable end member under the experimental conditions. Oil cracking products decrease when the amount of product generated from a reactant is less than the amount of product cracked. If pyrolysis gas compositions are representative of gases generated from oil cracking in nature, then understanding the processes that alter natural gas composition is critical. ?? 2003 Elsevier Ltd. All rights reserved.

  16. Laboratory and clinical experience with neodymium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Since 1991, we have undertaken extensive laboratory and clinical studies of the Neodymium:YAG (Nd:YAG) laser for surgical treatment of bladder outlet obstruction due to prostatic enlargement or benign prostatic hyperplasia (BPH). Side-firing optical fibers which emit a divergent, relatively low energy density Nd:YAG laser beam produce coagulation necrosis of obstructing periurethral prostate tissue, followed by gradual dissolution and slough in the urinary stream. Laser-tissue interactions and Nd:YAG laser dosimetry for prostatectomy have been studied in canine and human prostate model systems, enhancing clinical application. Ongoing studies examine comparative Nd:YAG laser dosimetry for various beam configurations produced by available side-firing optical fibers and continue to refine operative technique. We have documented clinical outcomes of Nd:YAG laser prostatectomy in 230 consecutive patients treated with the UrolaseTM side-firing optical fiber. Nd:YAG laser coagulation the prostate produces a remarkably low acute morbidity profile, with no significant bleeding or fluid absorption. No postoperative incontinence has been produced. Serial assessments of voiding outcomes over more than 3 years of followup show objective and symptomatic improvement following Nd:YAG laser prostatectomy which is comparable to older but more morbid electrosurgical approaches. Nd:YAG laser prostatectomy is a safe, efficacious, durable and cost-effective treatment for BPH.

  17. The work of fault growth in laboratory sandbox experiments

    NASA Astrophysics Data System (ADS)

    Herbert, Justin W.; Cooke, Michele L.; Souloumiac, Pauline; Madden, Elizabeth H.; Mary, Baptiste C. L.; Maillot, Bertrand

    2015-12-01

    Contractional sandbox experiments that simulate crustal accretion and direct shear tests both provide direct data on the amount of work required to create faults (Wprop) in granular materials. Measurements of force changes associated with faulting reveal the work consumed by fault growth, which can be used to predict fault growth path and timing. Within the contractional experiments, the sequence and style of early faulting is consistent for the range of sand pack thicknesses tested, from 12 to 30 mm. Contrary to expectations that Wprop is only a material property, the experimental data show that for the same material, Wprop increases with sand pack thickness. This normal stress dependence stems from the frictional nature of granular materials. With the same static and sliding friction values, incipient faults initiated deeper in the sand pack have larger shear stress drops, due to increased normal compression, σn. For CV32 sand, the relationship between Wprop and σn, calculated from the force drop data as Wprop (J/m2) = 2.0 ×10-4 (m)σn (Pa), is consistent with the relationship calculated from direct shear test data as Wprop (J/m2) = 2.4 ×10-4 (m)σn (Pa). Testing of different materials within the contractional sandbox (fine sand and glass beads) shows the sensitivity of Wprop to material properties. Both material properties and normal stress should be considered in calculations of the work consumed by fault growth in both analog experiments and crustal fault systems.

  18. Subpicosecond compression experiments at Los Alamos National Laboratory

    SciTech Connect

    Carlsten, B.E.; Russell, S.J.; Kinross-Wright, J.M.

    1995-09-01

    The authors report on recent experiments using a magnetic chicane compressor at 8 MeV. Electron bunches at both low (0.1 nC) and high (1 nC) charges were compressed from 20 ps to less than 1 ps (FWHM). A transverse deflecting rf cavity was used to measure the bunch length at low charge; the bunch length at high charge was inferred from an induced energy spread of the beam. The longitudinal centrifugal-space charge force is calculated using a point-to-point numerical simulation and is shown not to influence the energy-spread measurement.

  19. The microphysics of ash tribocharging: New insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Joshua, M. S.; Dufek, J.

    2014-12-01

    The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Sakurajima, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including charging from the brittle failure of rock, charging due to phase change as material is carried aloft, and triboelectric charging, also known as contact charging. While the first two mechanisms (fracto-emission and volatile charging) have been described by other authors (James et al, 2000 and McNutt et al., 2010, respectively), the physics of tribocharging--charging related to the collisions of particles--of ash are still relatively unknown. Because the electric fields and lightning present in volcanic clouds result from the multiphase dynamics of the plume itself, understanding the electrodynamics of these systems may provide a way to detect eruptions and probe the interior of plumes remotely. In the present work, we describe two sets of experiments designed to explore what controls the exchange of charge during particle collisions. We employ natural material from Colima, Mt. Saint Helens, and Tungurahua. Our experiments show that the magnitude and temporal behavior of ash charging depend on a number of factors, including particle size, shape, chemistry, and collisional energy. The first set of experiments were designed to determine the time-dependent electrostatic behavior of a parcel of ash. These experiments consist of fluidizing an ash bed and monitoring the current induced in a set of ring electrodes. As such, we are able to extract charging rates for ash samples driven by different flow rates. The second experimental setup allows us to measure how much charge is exchanged during a single particle-particle collision. Capable of measuring charges as small as 1 fC, this

  20. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This study was undertaken to develop conceptual designs for a manned, space shuttle sortie mission laboratory capable of supporting a wide variety of experiments in conjunction with communications and navigation research. This space/laboratory would be one in which man may effectively increase experiment efficiency by certain observations, modifications, setup, calibration, and limited maintenance steps. In addition, man may monitor experiment progress and perform preliminary data evaluation to verify proper equipment functioning and may terminate or redirect experiments to obtain the most desirable end results. The flexibility and unique capabilities of man as an experimenter in such a laboratory will add greatly to the simplification of space experiments and this provides the basis for commonality in many of the supportive subsystems, thus reaping the benefits of reusability and reduced experiment costs. For Vol. 4, see N73-19268.

  1. An Analysis of High School Students' Perceptions and Academic Performance in Laboratory Experiences

    ERIC Educational Resources Information Center

    Mirchin, Robert Douglas

    2012-01-01

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published…

  2. Combustion and Energy Transfer Experiments: A Laboratory Model for Linking Core Concepts across the Science Curriculum

    ERIC Educational Resources Information Center

    Barreto, Jose C.; Dubetz, Terry A.; Schmidt, Diane L.; Isern, Sharon; Beatty, Thomas; Brown, David W.; Gillman, Edward; Alberte, Randall S.; Egiebor, Nosa O.

    2007-01-01

    Core concepts can be integrated throughout lower-division science and engineering courses by using a series of related, cross-referenced laboratory experiments. Starting with butane combustion in chemistry, the authors expanded the underlying core concepts of energy transfer into laboratories designed for biology, physics, and engineering. This…

  3. Using Laboratory Experiments and Circuit Simulation IT Tools in an Undergraduate Course in Analog Electronics

    ERIC Educational Resources Information Center

    Baltzis, Konstantinos B.; Koukias, Konstantinos D.

    2009-01-01

    Laboratory-based courses play a significant role in engineering education. Given the role of electronics in engineering and technology, laboratory experiments and circuit simulation IT tools are used in their teaching in several academic institutions. This paper discusses the characteristics and benefits of both methods. The content and structure…

  4. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  5. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  6. The Synthesis of a Cockroach Pheromone: An Experiment for the Second-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Feist, Patty L.

    2008-01-01

    This experiment describes the synthesis of gentisyl quinone isovalerate, or blattellaquinone, a sex pheromone of the German cockroach that was isolated and identified in 2005. The synthesis is appropriate for the second semester of a second-year organic chemistry laboratory course. It can be completed in two, three-hour laboratory periods and uses…

  7. Laboratory: Undergraduate Laboratory Experiment Teaching Fundamental Concepts of Rheology in Context of Sickle Cell Anemia

    ERIC Educational Resources Information Center

    Vernengo, Jennifer; Purdy, Caitlin; Farrell, Stephanie

    2014-01-01

    This paper describes a biomedical engineering experiment that introduces students to rheology. Healthy and sickle-cell blood analogs are prepared that are composed of chitosan particles suspended in aqueous glycerol solutions, which substitute for RBCs and plasma, respectively. Students study flow properties of the blood analogs with a viscometer…

  8. Screening for Saponins Using the Blood Hemolysis Test. An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Sotheeswaran, Subramaniam

    1988-01-01

    Describes an experiment for undergraduate chemistry laboratories involving a chemical found in plants and some sea animals. Discusses collection and identification of material, a hemolysis test, preparation of blood-coated agar plates, and application of samples. (CW)

  9. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  10. The Synthesis and Proton NMR Spectrum of Methyl 7-Cycloheptatrienylacetate: An Advanced Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Jurch, G. R., Jr.; And Others

    1980-01-01

    Describes an advanced undergraduate laboratory experiment designed to give the senior chemistry student an opportunity to apply several synthetic and purification techniques as well as possibilities for the application of NMR spectroscopy. (CS)

  11. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  12. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: I. Fundamentals and Instrumentation

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The fundamentals, as well as the instrumentation of the quartz-crystal microbalance (QCM) technique that is used in an undergraduate laboratory experiment are being described. The QCM response can be easily used to change the properties of any system.

  13. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  14. Laboratory experiments of an atmospheric/oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Thacker, Adrien; Eiff, Olivier; waves, turbulence, environment Team

    2015-11-01

    Atmospheric or oceanic turbulence is strongly influenced by the effects of stratification leading to the emmergence of quasi-horizontal layers often described as ``pancake'' structures. The mechanisms of this layering and the selection of the vertical length scale of pancake structures is discussed for one decade whereas it is of a major importance to elucidate the energetic cascade that leads to viscous dissipation. In this present work, we analyze a new series of decaying grid turbulence experiments under the effects of stratification aiming to identify and observe the strongly stratified turbulence regime. The experiments have been performed in a large water towing tank with salt stratification and measurements have been carried out using a scanning correlation imaging velocimetry technique providing instantaneous 3D3C velocity fields along the decaying turbulence. Self similar power laws of the decaying grid turbulence have been assessed and allow the definition of empirical critical time giving transitions to the strongly stratified turbulence regime. A first experimental evidence of overturning process between layers of pancake vortices has been obtained through vorticity fields observation. This observation support the existence of a downscale energy cascade.

  15. Laboratory experiments of heat and moisture fluxes through supraglacial debris

    NASA Astrophysics Data System (ADS)

    Nicholson, Lindsey; Mayer, Christoph; Wirbel, Anna

    2014-05-01

    Inspired by earlier work (Reznichenko et al., 2010), we have carried out experiments within a climate chamber to explore the best ways to measure the heat and moisture fluxes through supraglacial debris. Sample ice blocks were prepared with debris cover of varying lithology, grain size and thickness and were instrumented with a combination of Gemini TinyTag temperature/relative humidity sensors and Decagon soil moisture sensors in order to monitor the heat and moisture fluxes through the overlying debris material when the experiment is exposed to specified solar lamp radiation and laminar airflow within the temperature-controlled climate chamber. Experimental results can be used to determine the optimal set up for numerical models of heat and moisture flux through supraglacial debris and also indicate the performance limitations of such sensors that can be expected in field installations. Reznichenko, N., Davies, T., Shulmeister, J. and McSaveney, M. (2010) Effects of debris on ice-surface melting rates: an experimental study. Journal of Glaciology, Volume 56, Number 197, 384-394.

  16. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    PubMed

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed.

  17. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    PubMed

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed. PMID:18293611

  18. EM techniques for archaeological laboratory experiments: preliminary results

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; De Martino, Gregory; Giampaolo, Valeria; Raffaele, Luongo; Perciante, Felice; Rizzo, Enzo

    2015-04-01

    The electromagnetic techniques (EM) are based on the investigation of subsoil geophysical parameters and in the archaeological framework they involve in studying contrasts between the buried cultural structures and the surrounding materials. Unfortunately, the geophysical contrast between archaeological features and surrounding soils sometimes are difficult to define due to problems of sensitivity and resolution both related on the characteristic of the subsoil and the geophysical methods. For this reason an experimental activity has been performed in the Hydrogeosite laboratory addressed on the assessment of the capability of geophysical techniques to detect archeological remains placed in the humid/saturated subsoil. At Hydrogeosite Laboratory of CNR-IMAA, a large scale sand-box is located, consisting on a pool shape structures of 230m3 where archaeological remains have been installed . The remains are relative to a living environment and burial of Roman times (walls, tombs, roads, harbour, etc.) covered by sediments. In order to simulate lacustrine and wetland condition and to simulate extreme events (for example underwater landslide, fast natural erosion coast, etc.) the phreatic level was varied and various acquisitions for the different scenarios were performed. In order to analyze the EM behavior of the buried small archaeological framework, ground penetrating radar (GPR) and electrical resistivity tomographies were performed. With GPR, analysis in time domain and frequency domain were performed and coupled to information obtained through resistivity analysis with the support of numerical simulations used to compare the real data with those modeled. A dense grid was adopted for 400 and 900 MHz e-m acquisitions in both the directions, the maximum depth of investigation was limited and less than 3 meters. The same approach was used for ERT acquisition where different array are employed, in particular 3D configuration was used to carry out a 3D resistivity

  19. Blast Wave Driven Instabilities In Laboratory Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn; Drake, R.; Grosskopf, M.; Robey, H.; Hansen, J.; Miles, A.; Knauer, J.; Arnett, D.; Plewa, T.; Hearn, N.; Meakin, C.

    2008-05-01

    This presentation discusses experiments well scaled to the blast wave driven instabilities at the He/H interface during the explosion phase of SN1987A. This core-collapse supernova was detected about 50 kpc from Earth making it the first supernova observed so closely to earth in modern times. The progenitor star was a blue supergiant with a mass of 18-20 solar masses. A blast wave occurred following the supernova explosion because there was a sudden, finite release of energy. Blast waves consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 µm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses a three-dimensional interface with a wavelength of 71 µm in two orthogonal directions. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability. We have detected the interface structure under these conditions, using dual orthogonal radiography, and will show some of the resulting data. Recent advancements in our x-ray backlighting techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed. Current simulations do not show this phenomenon. This presentation will discuss the amount of mass in these spike extensions. Recent results from an experiment using more realistic initial conditions based on stellar evolution models will also be shown. This research was sponsored by the Stewardship Science Academic Alliance through DOE Research Grants DE-FG52-07NA28058, DE-FG52-04NA00064.

  20. From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion

    NASA Astrophysics Data System (ADS)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Boatella, C.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Brandt, N.; Caleno, M.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Ciani, G.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Fertin, D.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Giardini, D.; Gibert, F.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jeannin, O.; Jennrich, O.; Jetzer, P.; Johlander, B.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Perreca, A.; Plagnol, E.; Prat, P.; Racca, G. D.; Rais, B.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tombolato, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Zweifel, P.

    2011-05-01

    This paper presents a quantitative assessment of the performance of the upcoming LISA Pathfinder geodesic explorer mission. The findings are based on the results of extensive ground testing and simulation campaigns using flight hardware, flight control and operations algorithms. The results show that, for the central experiment of measuring the stray differential acceleration between the LISA test masses, LISA Pathfinder will be able to verify the overall acceleration noise to within a factor 2 of the LISA requirement at 1 mHz and within a factor 6 at 0.1 mHz. We also discuss the key elements of the physical model of disturbances, coming from LISA Pathfinder and ground measurement that will guarantee the LISA performance.

  1. DEMONSTRATION SOLIDIFICATION TESTS CONDUCTED ON RADIOACTIVELY CONTAMINATED ORGANIC LIQUIDS AT THE AECL WHITESHELL LABORATORIES

    SciTech Connect

    Ryz, R. A.; Brunkow, W. G.; Govers, R.; Campbell, D.; Krause, D.

    2002-02-25

    The AECL, Whiteshell Laboratory (WL) near Pinawa Manitoba, Canada, was established in the early 1960's to carry out AECL research and development activities for higher temperature versions of the CANDU{reg_sign} reactor. The initial focus of the research program was the Whiteshell Reactor-1 (WR-1) Organic Cooled Reactor (OCR) that began operation in 1965. The OCR program was discontinued in the early 1970's in favor of the successful heavy-water-cooled CANDU system. WR-1 continued to operate until 1985 in support of AECL nuclear research programs. A consequence of the Federal government's recent program review process was AECL's business decision to discontinue research programs and operations at the Whiteshell Laboratories and to consolidate its' activities at the Chalk River Laboratories. As a result, AECL received government concurrence in 1998 to proceed to plan actions to achieve closure of WL. The planning actions now in progress address the need to safely and effectively transition the WL site from an operational state, in support of AECL's business, to a shutdown and decommissioned state that meets the regulatory requirements for a licensed nuclear site. The decommissioning program that will be required at WL is unique within AECL and Canada since it will need to address the entire research site rather than individual facilities declared redundant. Accordingly, the site nuclear facilities are being systematically placed in a safe shutdown state and planning for the decommissioning work to place the facilities in a secure monitoring and surveillance state is in progress. One aspect of the shutdown activities is to deal with the legacy of radioactively contaminated organic liquid wastes. Use of a polymer powder to solidify these organic wastes was identified as one possibility for improved interim storage of this material pending final disposition.

  2. Stable carbon and oxygen isotope fractionation processes during speleothem growth: systematic investigation in novel laboratory experiments

    NASA Astrophysics Data System (ADS)

    Scholz, D.; Hansen, M.; Dreybrodt, W.

    2012-04-01

    The most widely applied climate proxies in speleothems are stable carbon and oxygen isotopes (δ13C and δ18O). The interpretation of the stable isotope signals in terms of past temperature and/or precipitation variability is complex because both δ18O and δ13C depend on a complex interplay of various processes occurring in the atmosphere, the soil and karst above the cave and inside the cave. Quantitative reconstruction of climate parameters such as temperature and precipitation has, thus, remained impossible so far. Here we present several novel laboratory experiments aiming to understand the basic physical and chemical processes affecting the δ18O and δ13C signals during precipitation of calcium carbonate on the stalagmite surface. In particular, we aim to quantify the influence of kinetic isotope fractionation and verify recently published modelling studies (Dreybrodt, 2008; Scholz et al., 2009, Dreybrodt and Scholz, 2011). Several experiments are conducted: Degassing of CO2 from a thin film of water sparged with CO2 flowing down an inclined glass plate. pH and electric conductivity are systematically documented in order to monitor degassing of CO2. The results show that degassing of CO2 is fast, and the pCO2 of the solution is in equilibrium with the atmosphere after a short distance of flow. Carbon isotope exchange between atmospheric CO2 and dissolved bicarbonate. The results show that carbon isotope exchange may have a significant effect on the δ13C value of the dissolved bicarbonate and, thus, speleothem calcite, in particular for slow drip rates. Degassing of CO2 and calcite precipitation from a thin film of water supersaturated with respect to calcite flowing down an inclined calcium carbonate plate. Drip water is sampled after different lengths of flow path and, thus, different residence times on the plate, and pH, electrical conductivity and the stable isotope composition of the water are determined. Decreasing conductivity with increasing distance

  3. Laboratory-scale uranium RF plasma confinement experiments

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.

  4. [Shomatsu Yokoyama, a physiologist who refused to conduct experiments on living human bodies].

    PubMed

    Suenaga, Keiko

    2008-09-01

    This article introduces the life of Shomatsu Yokoyama (1913-1992), a physiologist and military doctor, to the reader. During the Sino-Japanese war, Yokoyama disobeyed orders given by his superior officer to conduct inhumane medical experiments on humans. Not only in Unit 731, but also in other units, many military doctors were involved in medical crimes against residents of the areas invaded by the Japanese Army. Inhumane living-body experiments and vivisections were widely conducted at that time. There were, however, a small number of researchers who did not follow the orders to perform human-body experiments. Highlighting the life of such a rare researcher for the purpose of ascertaining the reason for his noncompliance with the order will provide us with insights on medical ethics. When Yokoyama was a student, his teacher, Professor Rinya Kawamura, informed him that he had been requested by the army to conduct special experiments. The remuneration for conducting such experiments was over 10 times more than the research fund allocated to the professor. Kawamura declined the request on the grounds that accepting it was against humanity. Kawamura warned Yokoyama that he might face the same situation in the future and asked Yokoyama to mark his words. Yokoyama was called to Ko-1855 Unit in 1944 and ordered to carry out living-body experiments by his superior officer. He disregarded the order, remembering Kawamura's words. As a result, he was dispatched to the dangerous frontlines. This article explores why Yokoyama was able to disobey the order to conduct inhumane experiments while shedding light on his personal background and his relationship with Rinya Kawamura. This article chronicles the life of one medical researcher who followed the dictates of his conscience during and after the war.

  5. Effect of some amendments on leachate properties of a calcareous saline- sodic soil: A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, Najme; Mahmoodabadi, Majid

    2010-05-01

    Soil salinity and sodicity are escalating problems worldwide, especially in Iran since 90 percent of the country is located in arid and semi-arid. Reclamation of sodic soils involves replacement of exchangeable Na by Ca. While some researches have been undertaken in the controllable laboratory conditions using soil column with emphasis on soil properties, the properties of effluent as a measure of soil reclamation remain unstudied. In addition, little attention has been paid to the temporal variability of effluent quality. The objective of this study was to investigate the effect of different amendments consist of gypsum, manure, pistachio residue, and their combination for ameliorating a calcareous saline sodic soil. Temporal variability of effluent properties during reclamation period was studied, as well. A laboratory experiment was conducted to evaluate the effect of different amendments using soil columns. The amendment treatments were: control, manure, pistachio residue, gypsum powder (equivalent of gypsum requirement), manure+gypsum and pistachio residue+gypsum, which were applied once in the beginning of the experiment. The study was performed in 120 days period and totally four irrigation treatments were supplied to each column. After irrigations, the effluent samples were collected every day at the bottom of the soil columns and were analyzed. The results show that for all treatments, cations (e.g. Ca, Mg, Na and K) in the outflow decreased with time, exponentially. Manure treatment resulted in highest rate of Ca, Mg, Na leaching from soil solution, in spite of the control which had the lowest rate. In addition, pistachio residue had the most effect on K leaching. Manure treatment showed the most EC and SAR in the leachate, while gypsum application leads to the least rate of them. The findings of this research reveal different rates of cations leaching from soil profile, which is important in environmental issues. Keywords: Saline sodic soil, Reclamation

  6. Integrating Responsible Conduct of Research Education into Undergraduate Biochemistry and Molecular Biology Laboratory Curricula

    ERIC Educational Resources Information Center

    Hendrickson, Tamara L.

    2015-01-01

    Recently, a requirement for directed responsible conduct in research (RCR) education has become a priority in the United States and elsewhere. In the US, both the National Institutes of Health and the National Science Foundation require RCR education for all students who are financially supported by federal awards. The guidelines produced by these…

  7. LABORATORY AND FIELD RESULTS LINKING HIGH BULK CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Diesel contaminated layer (i.e. 32-45 cm) was the most geoelectrically conductive and showed the peak microbial activity. Below the saturated zone microbial enhanced mineral weathering increases the ionic concentration of pore fluids, leading to increased bulk electrical conducit...

  8. Investigating Attachment Behaviors of Cryptosporidium Parvum Oocysts Using Collision Efficiency in Laboratory Column Experiments

    NASA Astrophysics Data System (ADS)

    Park, Y.; Hou, L.; Atwill, R.; Packman, A. I.; Harter, T.

    2009-12-01

    Cryptosporidium is one of the most common enteric parasites of humans and domestic animals, and a number of outbreaks of Cryprosporidiosis, a diarrheal disease caused by Cryptosporidium have been reported worldwide. Natural porous media has been demonstrated to be an effective filter for removing Cryptosporidium parvum from contaminated water and the amount of Cryptosporidium filtered is known to be highly dependent on physical and chemical conditions of the porous media and the water. Cryptosporidium deposition in saturated porous media involves two main steps: approach and attachment. In contrast to the approach mechanisms, attachment processes have not been systematically described to predict a priori because theories that represent attachment behavior (colloid stability) such as DLVO are insufficient to explain experimental data. For this reason, attachment efficiency is calculated based on empirical data, typically experimental breakthrough curves in laboratory columns or field experiments. In this study, collision (attachment) efficiencies (α) of C. parvum oocyst were calculated to test the effect of chemical property changes on the association of oocysts with sand grains. The breakthrough curve data obtained from twelve column experiments and three models were employed to calculate single collector efficiency (η) and α. The first ten experiments were conducted by changing ionic strength and pH, and mixing with natural sediments under the same physical properties (same η). Our experiment results show that iron coating or clay/suspended solids mixture drastically enhanced oocyst deposition. The experiments also showed that increase in ionic strength and decrease in pH enhanced the attachment efficiency. However, the experiment with 100mM NaCl resulted in low attachment efficiency and the experiment with pH 8.5 showed similar attachment efficiency to the one at pH 7. Based on the results from two additional experiments with different flow velocities, it

  9. Aquifer recharge with reclaimed water in the Llobregat Delta. Laboratory batch experiments and field test site.

    NASA Astrophysics Data System (ADS)

    Tobella, J.

    2010-05-01

    on the conditions to develop at the test site during artificial recharge. The data collected during the laboratory experiments and in the test site will be used to build and calibrate a numerical model of the physical-chemical-biochemical processes developing in the batches and of multicomponent reactive transport in the unsaturated/saturated zone in the test site area. 3. Field test site The infiltration site of Sant Vicenç dels Horts has been selected to assessing the biogeochemical processes occurring during SAT. The system consists of two ponds that have been built as compensatory measure for the reduction in natural recharge caused by the construction of the High Speed Train Line. The first pond acts as a decantation pond while the second one acts as an infiltration basin (Figure 1). Recharge water comes from the tertiary treatment plant of the El Prat de Llobregat WWTP and the river (?). The CUADLL (Lower Llobregat Aquifer End-Users Community) is now managing the system operation. Tasks that are currently being carried out at this Test Site aims at (i) improving the local experience on MAR through infiltration ponds operational aspects and (ii) monitoring the changes in water quality during the recharge processes (unsaturated and saturated zone). Special attention is being paid to the fate of emerging organic pollutants (pharmaceuticals, surfactants, pesticides, etc.). The yielding of the monitoring will be compared with the results from the laboratory batch experiments on the behaviour of selected emerging organic pollutants. To this end, observation wells have been constructed, pressure / temperature / electrical conductivity transducers have been installed and the vadose zone under the infiltration pond has been instrumented (tensiometers, water content probes and suction cups). In addition double ring and infiltration tests have been performed in order to forecast the infiltration capacity of the basin.

  10. Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.

    1994-01-01

    As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.

  11. Planning and conducting an international seismic data exchange experiment at the center for seismic studies

    NASA Astrophysics Data System (ADS)

    Romney, C.; Huszar, L.; Frazier, G. A.; Campanella, A.; Tiberio, M. A.

    1986-01-01

    This report covers preparations for and the conduct of an international seismic data exchange experiment sponsored by the Group of Scientific Experts, U.N. Conference on Disarmament. Seismic data reports from 37 countries were transmitted over circuits of the WMO/GTS. The data were analyzed at centers in Washington, Moscow and Stockholm and epicenter lists were broadcast to participants. The experiment tested a number of aspects of a proposed nuclear test monitoring system.

  12. Phosphatidylcholine from "Healthful" Egg Yolk Varieties: An Organic Laboratory Experience

    NASA Astrophysics Data System (ADS)

    Hodges, Linda C.

    1995-12-01

    I have added an investigative element to a popular undergraduate experiment. the characterization of phosphatidylcholine (PC) from egg yolks. Varieties of eggs are commercially available which have been obtained from chickens fed a diet containing no animal fat. Presumably, less saturated fat in the diet of the chickens could be reflected in the fatty acid composition of various classes of biological lipids, including phospholipids, in the eggs from these chickens. PC is extracted using conventional methods, the extract is further purified by chromatography on silicic acid, and the column fractions are assayed for the presence and purity of PC by TLC. Fractions containing pure PC are pooled, concentrated, hydrolyzed, and esterified to obtain the fatty acid methyl esters (FAME) which are identified by GLC. Comparing FAMEs derived from PC of yolks of regular eggs to those obtained from the other special brands adds a novel twist to the students' work and generates greater student interest and involvement in both the interpretation of data than a simple isolation of a biological compound alone evokes.

  13. A laboratory experiment assessing the effect of sea ice on wave dumping

    NASA Astrophysics Data System (ADS)

    Cavaliere, Claudio; Alberello, Alberto; Bennetts, Luke; Meylan, Mike; Babanin, Alexander; Malavasi, Stefano; Toffoli, Alessandro

    2014-05-01

    Wave-ice interaction is a critical factor in the dynamics of the marginal ice zone (MIZ), the region between open ocean and an expanse of ice floes of varying size and shape. This interaction works both ways: while waves cause the fractures of ice floes, the presence of ice floes affects waves through scattering and various dissipative processes. In order to assess the latter, a laboratory experiment has been carried out in the coastal directional basin at Plymouth University. Sea ice has been simulated with two deformable plates: 1mX1m plastic sheet with variable thickness of polypropylene, which holds the same density (~0.9 g/cm3) of ice, and PVC Forex, which hold the same mechanical property of ice. Experiments have been conducted using monochromatic as well as random wave fields with different steepness and wavelengths (both shorter and larger than the floe). The wave field has been monitored before and after the simulated ice floe with a number of wave probes deployed along the basin, including a 6-probe array to track directional properties. On the whole, results show a substantial scattering and dissipation of the wave field, which appears to be dependent on the amount of overwash on the ice floe.

  14. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, R. J.

    1986-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or floatation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacites with small quantities of gas which are recirculated over the sample is described. This system should be adaptable to reduced gravity space experiments requiring redox control. Experiments done conventionally and those done using this technique yield identical results done in a 1-g field.

  15. Laboratory experiments on Radiative Shocks relevant to Stellar Accretion

    NASA Astrophysics Data System (ADS)

    Chaulagain, Uddhab

    2015-08-01

    Radiative shocks are strong shocks which are characterized by a plasma at high temperatures emitting an important fraction of its energy as radiation. Radiative shocks are found in many astrophysical systems, including stellar accretion shocks, supernovae remnants, jet driven shocks, etc. In the case of stellar accretion, matter is funneled into accretion columns by the stellar magnetic field, and falls at several hundreds km/s from the circumstellar envelope onto the stellar photosphere. This generates a strong radiative shock with x-ray spectral signatures that are a key ingredient to quantify the mass accretion rate. The physical structure and dynamics of such plasmas is complex, and experimental benchmarks are needed to provide a deeper understanding of the physics at play.Recently, radiative shocks have also been produced experimentally using high energy lasers. We discuss the results of an experiment performed on the Prague Asterix Laser System (PALS) facility. Shocks are generated by focusing the PALS Infrared laser beam on millimetre-scale targets filled with xenon gas at low pressure. The shock that is generated then propagates in the gas with a sufficiently high velocity such that the shock is in a radiative flux dominated regime. We will present the first instantaneous imaging of a radiative shock at 21.2 nm which is characterized by the presence of both the radiative precursor and the post shock structure. These results are complemented with time-and-space resolved XUV plasma self-emission measurements using fast diodes. Interpretation of the data, supported by numerical simulations using the 2-D radiative-hydrodynamics code ARWEN, will be presented showing the importance of radiative processes from atomic to larger scales.

  16. Spectral probing of impact-generated vapor in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.; Eberhardy, Clara A.

    2015-03-01

    High-speed spectra of hypervelocity impacts at the NASA Ames Vertical Gun Range (AVGR) captured the rapidly evolving conditions of impact-generated vapor as a function of impact angle, viewpoint, and time (within the first 50 μs). Impact speeds possible at the AVGR (<7 km/s) are insufficient to induce significant vaporization in silicates, other than the high-temperature (but low-mass) jetting component created at first contact. Consequently, this study used powdered dolomite as a proxy for surveying the evolution and distribution of chemical constituents within much longer lasting vapor. Seven separate telescopes focused on different portions of the impact vapor plume and were connected through quartz fibers to two 0.35 cm monochromaters. Quarter-space experiments reduced the thermal background and opaque phases due to condensing particles and heated projectile fragments while different exposure times isolated components passing through different the fields of view, both above and below the surface within the growing transient cavity. At early times (<5 μs), atomic emission lines dominate the spectra. At later times, molecular emission lines dominate the composition of the vapor plume along a given direction. Layered targets and target mixtures isolated the source and reveal that much of the vaporization comes from the uppermost surface. Collisions by projectile fragments downrange also make significant contributions for impacts below 60° (from the horizontal). Further, impacts into mixtures of silicates with powdered dolomite reveal that frictional heating must play a role in vapor production. Such results have implications for processes controlling vaporization on planetary surfaces including volatile release, atmospheric evolution (formation and erosion), vapor generated by the Deep Impact collision, and the possible consequences of the Chicxulub impact.

  17. Redox-sensitivity and mobility of selected pharmaceutical compounds in a laboratory column experiment

    NASA Astrophysics Data System (ADS)

    Banzhaf, S.; Nödler, K.; Licha, T.; Krein, A.; Scheytt, T.

    2012-04-01

    Laboratory column experiments are suitable to investigate the sediment water interaction and to study the transport behaviour of solutes. Processes like retardation and degradation can be identified and quantified. The conducted experiment, which is closely connected to a field study in Luxembourg, investigated the transport behaviour of selected pharmaceutical compounds and their redox-dependent metabolism under water saturated conditions. Fine-grained natural sediment with a low hydraulic conductivity from a study site in Luxembourg was filled into the column. The water for the experiment was taken from a small stream at the same fieldsite. It was spiked with four pharmaceutical compounds (carbamazepine, diclofenac, ibuprofen, sulfamethoxazole) with concentrations between 170 and 300 ng/L for the different substances. The chosen pharmaceuticals were also detected in groundwater and surface water samples at the study site and used to qualify exchange/mixing of surface water and groundwater (BANZHAF et al., 2011). As some of the substances are known to exhibit redox-sensitive degradation, the redox-conditions were systematically varied throughout the experiment. This was realised by adding nitrate at the inflow of the column. During the experiment, which lasted for 2.5 months, four different nitrate concentrations (20-130 mg/L) were applied, beginning with the highest concentration. During the experiment water from the reservoir tank was sampled daily in order to detect a potential degradation of the pharmaceutical compounds before they enter the column. The effluent water was sampled every three hours to guarantee a maximum resolution for the analysis of the pharmaceuticals where necessary. In addition, major ions were analysed in the influent and effluent samples. Throughout the experiment physicochemical parameters (oxidation reduction potential (ORP), dissolved oxygen, electrical conductivity, and pH-value) were measured and logged at the outflow of the column

  18. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  19. Investigating the impact of vegetation on alluvial fans using laboratory experiments

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy; McLelland, Stuart; Tom, Coutlhard

    2016-04-01

    Riparian vegetation can significantly influence the geomorphology of fluvial systems, affecting channel geometry and flow dynamics. However, there is still limited understanding of the role vegetation plays in the development of alluvial fans, despite the large number of vegetated fans located in temperate and humid climates. An understanding of the feedback loops between water flow, sediment dynamics and vegetation is key to understanding the geomorphological response of alluvial fans. But it is difficult to investigate these relationships in the natural world due to the complexity of the geomorphic and biological processes and timescales involved, whereas the controlled conditions afforded by laboratory experiments provide the ideal opportunity to explore these relationships. To examine the effects of vegetation on channel form, flow dynamics and morphology during fan evolution, a series of experiments were conducted using the Total Environment Simulator (operated by the University of Hull). The experiments followed a 'similarity of processes' approach and so were not scaled to a specific field prototype. Live vegetation (Medicago Sativa) was used to simulate the influence of vegetation on the fan development. A range of experiments were conducted on 2x2m fan plots, the same initial conditions and constant water discharge and sediment feed rates were used, but the vegetation density and amount of geomorphic time (when the sediment and water were running and there was active fan development) between seeding / vegetation growth varied between runs. The fan morphology was recorded at regular intervals using a laser scanner (at 1mm resolution) and high resolution video recording and overhead photography were used to gain near-continuous data quantifying fan topography, flow patterns, channel migration and avulsion frequency. Image analysis also monitored the spatial extent of vegetation establishment. The use of these techniques allowed collection of high resolution

  20. Sediment-contact and survival of fingernail clams: Implications for conducting short-term laboratory tests

    USGS Publications Warehouse

    Naimo, T.J.; Cope, W.G.; Bartsch, M.R.

    2000-01-01

    Porewater toxicity tests have been used as indicators of whole sediment toxicity. However, many species commonly tested in porewater predominately reside in the water column and otherwise have little to no direct contact with sediment and associated porewater. We assessed the feasibility of porewater toxicity tests with fingernail clams Musculium transversum, a benthic macroinvertebrate that inhabits soft bottom sediments and feeds by filtering surface and porewater. Fingernail clams were exposed to water or sediment in a 96 h laboratory test with a 5 x 2 factorial experimental design. The five treatments included sediments from four sites in the Mississippi River and one sediment-free control (well water). In all treatments, clams were exposed to the sediments or water either directly (no enclosure) or indirectly (enclosure, suspended above the sediment surface). There were three replicates for each of the ten treatment combinations. Overall, survival of fingernail clams did not vary among the five treatments (p = 0.36). In treatments without enclosures, survival of clams in the sediment-free control was not significantly different (p = 0.34) from the sediment-containing treatments. Survival of clams in the sediment-free control averaged 85 - suggesting that direct sediment contact is not necessary for survival in short-term tests. In contrast, survival of clams in the sediment-containing treatments differed significantly (p = 0.03) between exposures with (mean, 77) and without (mean, 89) enclosures. Thus, fingernail clams may provide an alternative species for evaluating benthic macroinvertebrates in short-term laboratory porewater tests. However, more information on their physiological requirements and the development of sublethal endpoints is recommended before their use in tests of longer duration. (C) 2000 by John Wiley and Sons, Inc.

  1. Space Weathering Effects on Sulfates and Carbonates: Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Dukes, Catherine; Bu, Caixia; Rodriguez lopez, Gerard; McFadden, Lucy Ann; Li, Jian-Yang; Ruesch, Ottaviano

    2016-10-01

    Introduction: The solar wind plasma continuously streams from the Sun, interacting with the surfaces of airless bodies throughout the solar system. Sulfates and carbonates, identified by the UV-Vis spectral slope [1] and 3.4 / 4.0 μm absorption features [2] on the surface of Ceres, will be exposed to solar H, He at ~1keV/amu. We investigate the stability of anhydrous salts under 4 keV He+ irradiation as proxy for the solar wind.Experiment: Anhydrous MgSO4, Na2SO4, and Na2CO3 powders are pressed into pellets, with compositions confirmed by XRD. Pellet samples are placed in ultra-high vacuum (10-9 Torr) and the effects of 4keV He+ irradiation on surface composition and chemistry are monitored by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy, as a function of ion fluence. We measure ex situ diffuse optical reflectance prior and subsequent to irradiation through ranges 0.2-2.5µm (Lambda 1050) and 0.6-10µm (Thermo Nicolet 670).Results: Ion irradiation of MgSO4 damages the crystal structure, preferentially removing oxygen along with sulfur. XPS measurements imply the formation of MgO after 5x1017 He+cm-2 (~15,000 years at 2.7AU). During irradiation, we observe secondary ion ejection (Mg, MgO, O, OH, H, S, and SO) and neutral SO2. In addition, XPS sulfur spectra suggest the presence of a small amount of trapped SO2, confirming this decomposition product observed in the optical UV spectra at ~240 and 280nm [3,4] with dehydration, as well as in the IR at ~7.8μm [5] with irradiation. Our observations are consistent with the potential decomposition pathway for MgSO4 to SO2 provided by McCord et al. (2001) [6]. Spectral darkening and reddening in the UV-Vis region after irradiation are observed by ex situ optical spectroscopy. We suggest that space weathering by solar ions limits the stability of salts on Ceres and other airless bodies, which influences the optical reflectance.Acknowledgements: We thank the NASA SSW program for support

  2. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    PubMed

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities. PMID:27195609

  3. Annotated List of Laboratory Experiments in Chemistry from the Journal of Chemical Education. Second Edition, 1957-1984.

    ERIC Educational Resources Information Center

    Allen, C. B.; And Others

    This document is the second edition of the Annotated List of Laboratory Experiments in Chemistry first published in 1980. All entries in the Journal of Chemical Education describing laboratory experiments in chemistry or laboratory descriptions suitable for student experiments or projects, for the years 1957-1984 inclusive, have been listed and…

  4. Cool in the Kitchen: Radiation, Conduction, and the Newton "Hot Block" Experiment.

    ERIC Educational Resources Information Center

    Silverman, Mark P.; Silverman, Christopher R.

    2000-01-01

    Discusses the history of the development of Newton's Law of Cooling. Describes an experiment conducted in the kitchen that is designed to test the rate of cooling of a hot block of iron. Finds that Newton's law does not represent very well the mechanism of heat loss. (Contains over 10 references.) (WRM)

  5. 21 CFR 101.108 - Temporary exemptions for purposes of conducting authorized food labeling experiments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... authorized food labeling experiments. 101.108 Section 101.108 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Exemptions From Food Labeling Requirements § 101.108 Temporary exemptions for purposes of conducting authorized...

  6. 21 CFR 101.108 - Temporary exemptions for purposes of conducting authorized food labeling experiments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... authorized food labeling experiments. 101.108 Section 101.108 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Exemptions From Food Labeling Requirements § 101.108 Temporary exemptions for purposes of conducting authorized...

  7. Conducting Action Research in Kenyan Primary Schools: A Narrative of Lived Experiences

    ERIC Educational Resources Information Center

    Otienoh, Ruth

    2015-01-01

    This paper is a narrative of my personal experiences of conducting action research in Kenyan primary schools. It highlights the opportunities, successes, challenges and dilemmas I encountered during the process: from the school hunting period, to the carrying out of the actual research in two schools, with four teachers. This study reveals that…

  8. In-house experiments in large space structures at the Air Force Wright Aeronautical Laboratories Flight Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven

    1989-01-01

    The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.

  9. Evaluation of Geochemical Fracture Conductivity Alterations in Shale under Laboratory Conditions

    NASA Astrophysics Data System (ADS)

    Radonjic, M.; Olabode, A.

    2015-12-01

    In large scale subsurface injection of carbondioxide as obtainable in carbon sequestration programs and in environmentally friendly hydraulic fracturing processes (using supercritical CO2), rock-fluid interaction can affect reservoir and seal rocks properties which are essential in monitoring the progress of these operations. The mineralogical components of sedimentary rocks are geochemically active particularly under enormous earth stresses. While geomechanical properties such as rock stiffness, Poisson's ratio and fracture geometry largely govern fluid flow characteristics in deep fractured formations, the effect of mineralization can lead to flow impedance in the presence of favorable geochemical and thermodynamic conditions. Experimental works which employed the use of analytical tools such as ICP-OES, XRD, SEM/EDS, TOC and BET techniques in investigating diagenetic and micro-structural properties of crushed shale caprock/CO2-brine system concluded that net precipitation reaction processes can affect the distribution of petrophysical nanopores in the shale as a result of rock-fluid interactions. Simulation results previously reported, suggest that influx-induced mineral dissolution/precipitation reactions within clay-based sedimentary rocks can continuously close micro-fracture networks, though injection pressure and effective-stress transformation first rapidly expand these fractures. This experimental modelling research investigated the impact of in-situ geochemical precipitation on conductivity of fractures under geomechanical stress conditions. Conductivity is measured as differential-pressure drop equivalence, using a pressure pulse-decay liquid permeametry/core flooding system, as geochemically saturated-fluid is transported through composite cores with embedded micro-tubings that mimic fractures. The reactive fluid is generated from crushed shale rocks of known mineralogical composition when flooded with aqueous CO2 at elevated temperature and pressure

  10. Estimating the hydraulic conductivity of slowly permeable and swelling materials from single-ring experiments

    NASA Astrophysics Data System (ADS)

    GéRard-Marchant, P.; Angulo-Jaramillo, R.; Haverkamp, R.; Vauclin, M.; Groenevelt, P.; Elrick, D. E.

    1997-06-01

    The in situ determination of the field-saturated hydraulic conductivity of low-permeability porous materials is a major concern for both geotechnics and soil physics with regards to environmental protection or water resources management. Recent early-time single-ring infiltration experiments, involving sequential constant head and falling head conditions, allow its efficient estimation. Nevertheless, the theory on which the interpretation was based was still strictly valid to nondeformable soils and implicity relied on a particular form of the hydraulic conductivity-soil water pressure head relationship. This theory is now extended to deformable materials, without any restrictive hypothesis. A new concept, bulk sorptivity, which characterizes the solid phase movement, is introduced. Field experiments, conducted on two liners of swelling and slowly permeable materials, revealed that neglecting the soil deformation induces an underestimation of the actual coefficient of permeability of the soil.

  11. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    NASA Technical Reports Server (NTRS)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  12. Crossing over: The lived experiences of clinical laboratory science education teachers as they transition from traditional to online instruction

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ruth B.

    A phenomenological study was undertaken to understand and describe the nature and meaning of the live experiences of faculty transition from traditional to teaching online clinical laboratory science courses. In order to gain insight into the lived experiences of faculty, in-depth interviews were conducted with 10 faculty members. The task of the researcher was to allow the participants to speak for themselves, and reveal the meaning of the experiences, rather than to discover causal connections or patterns of correlation. The key criterion in choosing purposeful sampling procedure was to obtain the deepest understanding possible of the lived experiences of faculty transitioning to online teaching, which were likely to be a rich source of the data of interest. Analyses of the interview text were based on three essential considerations. The three essential considerations were (a) the traditional role of the faculty, (b) factors affecting the changing role of the faculty, and (c) the effects of web-based technology on teaching role.

  13. BASIC and the Density of Glass. A First-Year Laboratory/Computer Experiment.

    ERIC Educational Resources Information Center

    Harris, Arlo D.

    1986-01-01

    Describes a first-year chemistry laboratory experiment which uses a simple computer program written in BASIC, to analyze data collected by students about the density of a set of marbles. A listing of the program is provided, along with a sample printout of the experiment's results. (TW)

  14. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    ERIC Educational Resources Information Center

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  15. Virtualisation of Engineering Discipline Experiments for an Internet-Based Remote Laboratory

    ERIC Educational Resources Information Center

    Tiwari, Rajiv; Singh, Khilawan

    2011-01-01

    A comprehensive survey on the Internet based virtualisation of experiments is presented, covering several individual as well as collaborative efforts in various engineering disciplines. From this survey it could be concluded that there is a pressing need to develop full-fledged remote laboratory experiments for integrated directly into engineering…

  16. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  17. Size Exclusion Chromatography: An Experiment for High School and Community College Chemistry and Biotechnology Laboratory Programs

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Davis, Kathryn K.

    2008-01-01

    A simple multiday laboratory exercise suitable for use in a high school or community college chemistry course or a biotechnology advanced placement biology course is described. In this experiment students gain experience in the use of column chromatography as a tool for the separation and characterization of biomolecules, thus expanding their…

  18. The Equilibrium Constant for Bromothymol Blue: A General Chemistry Laboratory Experiment Using Spectroscopy

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Doyle, Robert; Gross, Erin; Mattson, Bruce

    2011-01-01

    A simple, inexpensive, and environmentally friendly undergraduate laboratory experiment is described in which students use visible spectroscopy to determine a numerical value for an equilibrium constant, K[subscript c]. The experiment correlates well with the lecture topic of equilibrium even though the subject of the study is an acid-base…

  19. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  20. Cross-Disciplinary Thermoregulation and Sweat Analysis Laboratory Experiences for Undergraduate Chemistry and Exercise Science Students

    ERIC Educational Resources Information Center

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A.

    2011-01-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two…

  1. An Undergraduate Biochemistry Laboratory Course with an Emphasis on a Research Experience

    ERIC Educational Resources Information Center

    Caspers, Mary Lou; Roberts-Kirchhoff, Elizabeth S.

    2003-01-01

    In their junior or senior year, biochemistry majors at the University of Detroit Mercy are required to take a two-credit biochemistry laboratory course. Five years ago, the format of this course was changed from structured experiments to a more project-based approach. Several structured experiments were included at the beginning of the course…

  2. Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 8. Microscale Simultaneous Photocatalysis

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Mena-Brito, Rodrigo; Fregoso-Infante, Arturo

    2005-01-01

    A microscale experiment in which the simultaneous oxidation of an organic compound and the reduction of a metal ion are photocatalytically performed in an aqueous slurry containing TiO[subscript 2] irradiated with UV light. This experiment can be performed in the laboratory session with simple chemicals and equipments.

  3. The Synthesis of 4,6,8-Trimethylazulene: An Organic Laboratory Experiment.

    ERIC Educational Resources Information Center

    Garst, Michael E.; And Others

    1983-01-01

    A two-stage synthesis of 4,6,8-trimethylazulene was developed for use in the undergraduate experiment, highlighting concepts not usually covered in the laboratory. The experiment requires purification procedures of chromatography and of sublimation and illustrates concepts of aromaticity, molecular orbital theory, and carbodium ion reactivity. (JN)

  4. Annotated List of Chemistry Laboratory Experiments with Computer Access. Final Report.

    ERIC Educational Resources Information Center

    Bunce, S. C.; And Others

    Project Chemlab was designed to prepare an "Annotated List of Laboratory Experiments in Chemistry from the Journal of Chemical Education (1957-1979)" and to develop a computer file and program to search for specific types of experiments. Provided in this document are listings (photoreduced copies of printouts) of over 1500 entries classified into…

  5. Designing an Acoustic Suspension Speaker System in the General Physics Laboratory: A Divergent experiment

    ERIC Educational Resources Information Center

    Horton, Philip B.

    1969-01-01

    Describes a student laboratory project involving the design of an "acoustic suspension speaker system. The characteristics of the loudspeaker used are measured as an extension of the inertia-balance experiment. The experiment may be extended to a study of Stelmholtz resonators, coupled oscillators, electromagnetic forces, thermodynamics and…

  6. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    ERIC Educational Resources Information Center

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  7. An Investigation of Students' Prior Experience with Laboratory Practicals and Report-Writing.

    ERIC Educational Resources Information Center

    Kaunda, L.; Ball, D.

    1998-01-01

    A study of 723 University of Cape Town (South Africa) physics students investigated their prior experience with laboratory procedures and technical report writing. Results suggest that, although students are generally aware of the importance of these elements of learning, school experience with teaching of scientific concepts and skills is often…

  8. Advanced Undergraduate-Laboratory Experiment on Electron Spin Resonance in Single-Crystal Ruby

    ERIC Educational Resources Information Center

    Collins, Lee A.; And Others

    1974-01-01

    An electron-spin-resonance experiment which has been successfully performed in an advanced undergraduate physics laboratory is described. A discussion of that part of the theory of magnetic resonance necessary for the understanding of the experiment is also provided in this article. (DT)

  9. Topics in Chemical Instrumentation: XCVIII. Experiments Involving Thermal Methods of Analysis for Undergraduate Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Galen W., Ed.

    1978-01-01

    Explains some experiments involving thermal methods of analysis for undergraduate chemistry laboratories. Some experiments are: (1) the determination of the density and degree of crystallinity of a polymer; and (2) the determination of the specific heat of a nonvolatile compound. (HM)

  10. What's New in the Launching of Start-Ups? Features and Implications of Laboratory Experiments

    ERIC Educational Resources Information Center

    Matricano, Diego

    2009-01-01

    This article responds to "Laboratory experiments as a tool in the empirical economic analysis of high-expectation start-ups" by Martin Curley and Piero Formica, published in the December 2008 issue of "Industry and Higher Education." The exploitation of knowledge and experience is increasingly important to companies operating in the globalized…

  11. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  12. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  13. How astronauts would conduct a seismic experiment on the planet Mars

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Lognonne, P.; Dehant, V.

    During the Summer 2001 Flashline Mars Arctic Research Station (M.A.R.S.) campaign in Devon Island, Nunavut, Canada, the crew of the second rotation conducted a geophysics experiment aiming at assessing the feasibility of an active seismology method to detect subsurface water on Mars. A crew of three deployed a line of 24 sensors. Reflected and refracted signals produced by mini-quakes generated by a sledge hammer were recorded by a seismograph. The experiment was conducted three times, once in a dry run and twice during simulated Extra-Vehicular Activities (EVA) on the edge of the Haughton crater, allowing a three dimensional characterization of the subsurface ground to a depth of several hundred meters. Data were recorded for later detailed processing. A third EVA attempt inside the crater had to be aborted because of the poor weather and terrain conditions. Despite this failed attempt, a large amount of results were collected. Several operational lessons were learned from conducting this experiment under simulated EVA conditions. This paper presents the experiment and the methodology used, reviews the experiment performance and summarizes the results obtained and the operational lessons learned.

  14. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    SciTech Connect

    Finsterle, S.; Moridis, G.J.; Pruess, K.; Persoff, P.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  15. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  16. Design and Manufacture of the Conduction Cooled Torus Coils for The Jefferson Laboratory 12-GeV Upgrade

    SciTech Connect

    Wiseman, M.; Elementi, L.; Elouadhiri, L.; Gabrielli, G.; Gardner, T. J.; Ghoshal, P. K.; Kashy, D.; Kiemschies, O.; Krave, S.; Makarov, A.; Robotham, B.; Szal, J.; Velev, G.

    2015-01-01

    The design of the 12-GeV torus required the construction of six superconducting coils with a unique geometry required for the experimental needs of Jefferson Laboratory Hall B. Each of these coils consists of 234 turns of copper-stabilized superconducting cable conduction cooled by 4.6 K helium gas. The finished coils are each roughly 2 × 4 × 0.05 m and supported in an aluminum coil case. Because of its geometry, new tooling and manufacturing methods had to be developed for each stage of construction. The tooling was designed and developed while producing a practice coil at Fermi National Laboratory. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils required by the project. Project status and future plans are also presented.

  17. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, Richard J.

    1987-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or flotation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacities with small quantities of gas which are recirculated over the sample. This system could be adaptable to reduced gravity space experiments requiring redox control.

  18. Constraints on Structure and Melting of Heterogeneous Plumes From Laboratory Experiments With Three Components

    NASA Astrophysics Data System (ADS)

    Harris, A. C.; Kincaid, C.; Kelley, K. A.

    2007-12-01

    Many studies of chemical geodynamics consider the fate of a single, compositionally distinct layer at the base of the mantle, but subducted oceanic lithosphere introduces two distinct lithologies (higher-density eclogite and lower-density harzburgite) into the mantle (a third lithology, intermediate-density lherzolitic peridotite). To address the dynamic complexities of interactions between these materials, we conducted three-dimensional laboratory experiments that use glucose syrup (Rayleigh number: 106\\)) to model the mantle and a two-layer subducted lithosphere. The viscosity and density of the syrup are controlled by its water content, which is varied to simulate the distinct physical properties of each of the three lithologies. Experiments were conducted in a 20cc tank, heated from below to create a basal thermal boundary layer (BTBL). The two-layer glucose slab was frozen and placed within the tank, where it sank into the BTBL. These experiments produced heterogeneous upwellings with temporal and spatial variations in both temperature and composition that are much more complex than predicted by classic plume theory. Temperature, composition, and distribution of material in the tank through space and time were recorded during each experiment. We scale these data to mantle-equivalent conditions and address the observational implication for melting such heterogeneous plumes, both within larger (200 - 600 km) plume heads and smaller (<100 km) trailing conduits. Results show length scales of chemical heterogeneity range from <10 km up to 300 km. Thermal heterogeneity was often correlated with composition, where the denser, eclogite analog had higher temperatures than the lighter, harzburgite analog. Distinct domains form within plumes and melting begins at different depths, dependent on the temperature and composition of each domain and the solidus of each composition (e.g. eclogite melts at lower temperatures than harzburgite). The combination of thermo

  19. Characterization of blocks impacts from acoustic emissions: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Shapiro, Nikolaï

    2014-05-01

    Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and glass and over rock blocks. The elastic energy emitted by a single bouncing bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We obtained simple scaling laws relating the impactor characteristics (size, height of fall, material,...) to the elastic energy and spectral content. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, accelerometers (1 Hz to 56 kHz) were used to record the signals in a wide frequency range. The experiments were also monitored optically using fast cameras. Eventually, we looked at what types of features in the signal are affected by individual impacts, rolling of beads or by the large scale geometry of the avalanche.

  20. Characterization of blocks impacts from elastic waves: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, M.; Mangeney, A.; Toussaint, R.; De Rosny, J.; Shapiro, N.

    2013-12-01

    Rockfalls, debris flows and rock avalanches constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what types of features in the signal are affected by individual shocks or by the large scale geometry of