Sample records for laboratory hcrl conducted

  1. Laboratory performance of sweat conductivity for the screening of cystic fibrosis.

    PubMed

    Greaves, Ronda F; Jolly, Lisa; Massie, John; Scott, Sue; Wiley, Veronica C; Metz, Michael P; Mackay, Richard J

    2018-03-28

    There are several complementary English-language guidelines for the performance of the sweat chloride test. These guidelines also incorporate information for the collection of conductivity samples. However, recommendations for the measurement and reporting of sweat conductivity are less clear than for sweat chloride. The aim of the study was to develop an understanding of the testing and reporting practices of sweat conductivity in Australasian laboratories. A survey specifically directed at conductivity testing was sent to the 12 laboratories registered with the Royal College of Pathologists of Australasia Quality Assurance Programs. Nine (75%) laboratories participated in the survey, seven of whom used Wescor Macroduct® for collecting sweat and the Wescor SWEAT·CHEK™ for conductivity testing, and the remaining two used the Wescor Nanoduct®. There was considerable variation in frequency and staffing for this test. Likewise, criteria about which patients it was inappropriate to test, definitions of adequate collection sweat rate, cutoffs and actions recommended on the basis of the result showed variations between laboratories. Variations in sweat conductivity testing and reporting reflect many of the same issues that were revealed in sweat chloride test audits and have the potential to lead to uncertainty about the result and the proper action in response to the result. We recommend that sweat testing guidelines should include clearer statements about the use of sweat conductivity.

  2. Laboratory-based electrical conductivity at Martian mantle conditions

    NASA Astrophysics Data System (ADS)

    Verhoeven, Olivier; Vacher, Pierre

    2016-12-01

    Information on temperature and composition of planetary mantles can be obtained from electrical conductivity profiles derived from induced magnetic field analysis. This requires a modeling of the conductivity for each mineral phase at conditions relevant to planetary interiors. Interpretation of iron-rich Martian mantle conductivity profile therefore requires a careful modeling of the conductivity of iron-bearing minerals. In this paper, we show that conduction mechanism called small polaron is the dominant conduction mechanism at temperature, water and iron content conditions relevant to Mars mantle. We then review the different measurements performed on mineral phases with various iron content. We show that, for all measurements of mineral conductivity reported so far, the effect of iron content on the activation energy governing the exponential decrease in the Arrhenius law can be modeled as the cubic square root of the iron content. We recast all laboratory results on a common generalized Arrhenius law for iron-bearing minerals, anchored on Earth's mantle values. We then use this modeling to compute a new synthetic profile of Martian mantle electrical conductivity. This new profile matches perfectly, in the depth range [100,1000] km, the electrical conductivity profile recently derived from the study of Mars Global Surveyor magnetic field measurements.

  3. Estimation on the self recovery behavior of low-conductivity layer in landfill final cover by laboratory conductivity tests.

    PubMed

    Kwon, O; Park, J

    2006-11-01

    This study examined the application of a Self Recovering Sustainable Layer (SRSL) as a landfill final cover. Low-conductivity layers in landfill covers are known to have problems associated with cracking as a result of the differential settlement or climatic changes. A SRSL is defined as a layer with chemical properties that reduces the increased hydraulic conductivity resulting from cracking by forming low-conductivity precipitates of chemicals contained in the layer. In this study, the formation of precipitates was confirmed using a batch test, spectroscopic analysis and mineralogical speciation tests. The possibility of secondary contamination due to the chemicals used for recovery was evaluated using a leaching test. A laboratory conductivity test was performed on a single layer composed of each chemical as well as on a 2-layer system. The recovery performance of the SRSL was estimated by developing artificial cracks in the specimens and observing the change in hydraulic conductivity as a function of time. In the laboratory conductivity test, the hydraulic conductivity of a 2-layer system as well as those of the individual layers that comprise the 2-layer system was estimated. In addition sodium ash was found to enhance the reduction in conductivity. A significant increase in conductivity was observed after the cracks developed but this was reduced with time, which indicated that the SRSL has a proper recovering performance. In conclusion, a SRSL can be used as a landfill final cover that could maintain low-conductivity even after the serious damages due to settlement.

  4. 21 CFR 58.130 - Conduct of a nonclinical laboratory study.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... specimen in a manner that precludes error in the recording and storage of data. (d) Records of gross... that specimen histopathologically. (e) All data generated during the conduct of a nonclinical laboratory study, except those that are generated by automated data collection systems, shall be recorded...

  5. 21 CFR 58.130 - Conduct of a nonclinical laboratory study.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... specimen in a manner that precludes error in the recording and storage of data. (d) Records of gross... that specimen histopathologically. (e) All data generated during the conduct of a nonclinical laboratory study, except those that are generated by automated data collection systems, shall be recorded...

  6. 21 CFR 58.130 - Conduct of a nonclinical laboratory study.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... specimen in a manner that precludes error in the recording and storage of data. (d) Records of gross... that specimen histopathologically. (e) All data generated during the conduct of a nonclinical laboratory study, except those that are generated by automated data collection systems, shall be recorded...

  7. IN-SERVICE HYDRAULIC CONDUCTIVITY OF GCLS IN LANDFILL COVERS - LABORATORY AND FIELD STUDIES

    EPA Science Inventory

    Laboratory experiments using multi-species inorganic solutions (containing calcium and sodium) were conducted on specimens of a new geosynthetic clay liner (GCL) containing sodium bentonite to determine how cation exchange and desiccation affected the hydraulic conductivity. Calc...

  8. 49 CFR 40.89 - What is validity testing, and are laboratories required to conduct it?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.89 What is validity testing, and are laboratories required to conduct it? (a) Specimen validity testing is... 49 Transportation 1 2013-10-01 2013-10-01 false What is validity testing, and are laboratories...

  9. 49 CFR 40.89 - What is validity testing, and are laboratories required to conduct it?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.89 What is validity testing, and are laboratories required to conduct it? (a) Specimen validity testing is... 49 Transportation 1 2011-10-01 2011-10-01 false What is validity testing, and are laboratories...

  10. 49 CFR 40.89 - What is validity testing, and are laboratories required to conduct it?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.89 What is validity testing, and are laboratories required to conduct it? (a) Specimen validity testing is... 49 Transportation 1 2010-10-01 2010-10-01 false What is validity testing, and are laboratories...

  11. 49 CFR 40.89 - What is validity testing, and are laboratories required to conduct it?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.89 What is validity testing, and are laboratories required to conduct it? (a) Specimen validity testing is... 49 Transportation 1 2012-10-01 2012-10-01 false What is validity testing, and are laboratories...

  12. 49 CFR 40.89 - What is validity testing, and are laboratories required to conduct it?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.89 What is validity testing, and are laboratories required to conduct it? (a) Specimen validity testing is... 49 Transportation 1 2014-10-01 2014-10-01 false What is validity testing, and are laboratories...

  13. CONDUCTIVITY PROFILE RATE OF CHANGE FROM FIELD AND LABORATORY DATA WITHIN BIODEGRADING PETROLEUM HYDROCARBON

    EPA Science Inventory

    We present the results of long term (500 days) measurements of the bulk conductivity in a field and laboratory experiment. Our objective was to determine the rate of change in bulk conductivity and whether this rate of change correlated with the petroleum hydrocarbon degradation...

  14. 49 CFR 40.91 - What validity tests must laboratories conduct on primary specimens?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.91 What... testing under § 40.89, you must conduct it in accordance with the requirements of this section. (a) You... responses characteristic of an adulterant obtained during initial or confirmatory drug tests (e.g., non...

  15. 49 CFR 40.91 - What validity tests must laboratories conduct on primary specimens?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.91 What... testing under § 40.89, you must conduct it in accordance with the requirements of this section. (a) You... responses characteristic of an adulterant obtained during initial or confirmatory drug tests (e.g., non...

  16. 49 CFR 40.91 - What validity tests must laboratories conduct on primary specimens?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.91 What... testing under § 40.89, you must conduct it in accordance with the requirements of this section. (a) You... responses characteristic of an adulterant obtained during initial or confirmatory drug tests (e.g., non...

  17. 49 CFR 40.91 - What validity tests must laboratories conduct on primary specimens?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.91 What... testing under § 40.89, you must conduct it in accordance with the requirements of this section. (a) You... responses characteristic of an adulterant obtained during initial or confirmatory drug tests (e.g., non...

  18. 49 CFR 40.91 - What validity tests must laboratories conduct on primary specimens?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.91 What... testing under § 40.89, you must conduct it in accordance with the requirements of this section. (a) You... responses characteristic of an adulterant obtained during initial or confirmatory drug tests (e.g., non...

  19. The design and development of a space laboratory to conduct magnetospheric and plasma research

    NASA Technical Reports Server (NTRS)

    Rosen, A.

    1974-01-01

    A design study was conducted concerning a proposed shuttle-borne space laboratory for research on magnetospheric and plasma physics. A worldwide survey found two broad research disciplines of interest: geophysical studies of the dynamics and structure of the magnetosphere (including wave characteristics, wave-particle interactions, magnetospheric modifications, beam-plasma interactions, and energetic particles and tracers) and plasma physics studies (plasma physics in space, wake and sheath studies, and propulsion and devices). The Plasma Physics and Environmental Perturbation Laboratory (PPEPL) designed to perform experiments in these areas will include two 50-m booms and two maneuverable subsatellites, a photometer array, standardized proton, electron, and plasma accelerators, a high-powered transmitter for frequencies above 100 kHz, a low-power transmitter for VLF and below, and complete diagnostic packages. Problem areas in the design of a space plasma physics laboratory are indicated.

  20. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy

    PubMed Central

    Held, Kathryn D.; Blakely, Eleanor A.; Story, Michael D.; Lowenstein, Derek I.

    2016-01-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities. PMID:27195609

  1. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    PubMed

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities.

  2. New Laboratory Technique to Determine Thermal Conductivity of Complex Regolith Simulants Under High Vacuum

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Christensen, P. R.

    2016-12-01

    Laboratory measurements have been necessary to interpret thermal data of planetary surfaces for decades. We present a novel radiometric laboratory method to determine temperature-dependent thermal conductivity of complex regolith simulants under high vacuum and across a wide range of temperatures. Here, we present our laboratory method, strategy, and initial results. This method relies on radiometric temperature measurements instead of contact measurements, eliminating the need to disturb the sample with thermal probes. We intend to determine the conductivity of grains that are up to 2 cm in diameter and to parameterize the effects of angularity, sorting, layering, composition, and cementation. These results will support the efforts of the OSIRIS-REx team in selecting a site on asteroid Bennu that is safe and meets grain size requirements for sampling. Our system consists of a cryostat vacuum chamber with an internal liquid nitrogen dewar. A granular sample is contained in a cylindrical cup that is 4 cm in diameter and 1 to 6 cm deep. The surface of the sample is exposed to vacuum and is surrounded by a black liquid nitrogen cold shroud. Once the system has equilibrated at 80 K, the base of the sample cup is rapidly heated to 450 K. An infrared camera observes the sample from above to monitor its temperature change over time. We have built a time-dependent finite element model of the experiment in COMSOL Multiphysics. Boundary temperature conditions and all known material properties (including surface emissivities) are included to replicate the experiment as closely as possible. The Optimization module in COMSOL is specifically designed for parameter estimation. Sample thermal conductivity is assumed to be a quadratic or cubic polynomial function of temperature. We thus use gradient-based optimization methods in COMSOL to vary the polynomial coefficients in an effort to reduce the least squares error between the measured and modeled sample surface temperature.

  3. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    NASA Astrophysics Data System (ADS)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was

  4. Low Temperature (<100K) Regolith Thermal Conductivity - Preliminary Laboratory Data

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Zhong, F.; Woods-Robinson, R.; Paige, D. A.

    2016-12-01

    The Diviner Lunar Radiometer, aboard the Lunar Reconnaissance Orbiter, has shown materials with in the polar cold traps of the Moon to have thermal inertias at least 1 order of magnitude than the rest of the lunar surface. This detection was unexpected, but has a potentially straight-forward explanation in solid state theory (see companion Woods-Robinson et. al. abstract). Thermal conductivity, λ, of a solid should be directly proportional to the specific heat capacity, cp, phonon mean-free path, l, and phonon velocity, v, as: λ(T)=cplvAs temperature decreases, cp also decreases, while l increases. Phonon velocity, v, is generally thought to be constant with temperature. Therefore, thermal conductivity, λ, as a function temperature, T, can be thought of as a battle between cp and l. In crystalline materials, the increase of l with decreasing T generally dominates. However, in polycrystalline materials, like are found on most planetary surfaces, the growth of l (which is fundimantally a measurement of likelihood of phonon scattering) is limited by phonon scattering off of individual grains and subgrain boundaries. In these cases, cpdominates, causing thermal conductivity to plummet at low (<100K for silicate materials) temperatures. Therefore, thermal conductivity as a function of temperature should be inherently related to crystallinity of a given material. In regolith, this solid state drop in material thermal conductivity of polycrystalline materials will act on top of a well understood, but difficult to predict, physical bottleneck of heat transfer at grain contact points. This leads to λ on the order of 10-3 Wm-1K-1 in lunar regolith. Preliminary models predict thermal conductivities on the order 10-5 to 10-4 Wm-1K-1are likely at temperatures below 50K for materials dominated by small crystals (amorphous materials such as glass). Here we report on preliminary laboratory measurements of regolith and regolith simulants down to 15K and 10-7 torr. These results

  5. A geophysical perspective on mantle water content and melting: Inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles

    NASA Astrophysics Data System (ADS)

    Khan, A.; Shankland, T. J.

    2012-02-01

    This paper applies electromagnetic sounding methods for Earth's mantle to constrain its thermal state, chemical composition, and "water" content. We consider long-period inductive response functions in the form of C-responses from four stations distributed across the Earth (Europe, North America, Asia and Australia) covering a period range from 3.9 to 95.2 days and sensitivity to ~ 1200 km depth. We invert C-responses directly for thermo-chemical state using a self-consistent thermodynamic method that computes phase equilibria as functions of pressure, temperature, and composition (in the Na2O-CaO-FeO-MgO-Al2O3-SiO2 model system). Computed mineral modes are combined with recent laboratory-based electrical conductivity models from independent experimental research groups (Yoshino (2010) and Karato (2011)) to compute bulk conductivity structure beneath each of the four stations from which C-responses are estimated. To reliably allocate water between the various mineral phases we include laboratory-measured water partition coefficients for major upper mantle and transition zone minerals. This scheme is interfaced with a sampling-based algorithm to solve the resulting non-linear inverse problem. This approach has two advantages: (1) It anchors temperatures, composition, electrical conductivities, and discontinuities that are in laboratory-based forward models, and (2) At the same time it permits the use of geophysical inverse methods to optimize conductivity profiles to match geophysical data. The results show lateral variations in upper mantle temperatures beneath the four stations that appear to persist throughout the upper mantle and parts of the transition zone. Calculated mantle temperatures at 410 and 660 km depth lie in the range 1250-1650 °C and 1500-1750 °C, respectively, and generally agree with the experimentally-determined temperatures at which the measured phase reactions olivine → β-spinel and γ-spinel → ferropericlase + perovskite occur. The

  6. Electrical conductivity of the oceanic asthenosphere and its interpretation based on laboratory measurements

    NASA Astrophysics Data System (ADS)

    Katsura, Tomoo; Baba, Kiyoshi; Yoshino, Takashi; Kogiso, Tetsu

    2017-10-01

    We review the currently available results of laboratory experiments, geochemistry and MT observations and attempt to explain the conductivity structures in the oceanic asthenosphere by constructing mineral-physics models for the depleted mid-oceanic ridge basalt (MORB) mantle (DMM) and volatile-enriched plume mantle (EM) along the normal and plume geotherms. The hopping and ionic conductivity of olivine has a large temperature dependence, whereas the proton conductivity has a smaller dependence. The contribution of proton conduction is small in DMM. Melt conductivity is enhanced by the H2O and CO2 components. The effects of incipient melts with high volatile components on bulk conductivity are significant. The low solidus temperatures of the hydrous carbonated peridotite produce incipient melts in the asthenosphere, which strongly increase conductivity around 100 km depth under older plates. DMM has a conductivity of 10- 1.2 - 1.5 S/m at 100-300 km depth, regardless of the plate age. Plume mantle should have much higher conductivity than normal mantle, due to its high volatile content and high temperatures. The MT observations of the oceanic asthenosphere show a relatively uniform conductivity at 200-300 km depth, consistent with the mineral-physics model. On the other hand, the MT observations show large lateral variations in shallow parts of the asthenosphere despite similar tectonic settings and close locations. Such variations are difficult to explain with the mineral-physics model. High conductivity layers (HCL), which are associated with anisotropy in the direction of the plate motion, have only been observed in the asthenosphere under infant or young plates, but they are not ubiquitous in the oceanic asthenosphere. Although the general features of HCL imply their high-temperature melting origin, the mineral-physics model cannot explain them quantitatively. Much lower conductivity under hotspots, compared with the model plume-mantle conductivity suggests the

  7. Extremely low frequency (ELF) stray magnetic fields of laboratory equipment: a possible co-exposure conducting experiments on cell cultures.

    PubMed

    Gresits, Iván; Necz, Péter Pál; Jánossy, Gábor; Thuróczy, György

    2015-09-01

    Measurements of extremely low frequency (ELF) magnetic fields were conducted in the environment of commercial laboratory equipment in order to evaluate the possible co-exposure during the experimental processes on cell cultures. Three types of device were evaluated: a cell culture CO2 incubator, a thermostatic water bath and a laboratory shaker table. These devices usually have electric motors, heating wires and electronic control systems, therefore may expose the cell cultures to undesirable ELF stray magnetic fields. Spatial distributions of magnetic field time domain signal waveform and frequency spectral analysis (FFT) were processed. Long- and short-term variation of stray magnetic field was also evaluated under normal use of investigated laboratory devices. The results show that the equipment under test may add a considerable ELF magnetic field to the ambient environmental magnetic field or to the intentional exposure to ELF, RF or other physical/chemical agents. The maximum stray magnetic fields were higher than 3 µT, 20 µT and 75 µT in the CO2 incubator, in water bath and on the laboratory shaker table, respectively, with high variation of spatial distribution and time domain. Our investigation emphasizes possible confounding factors conducting cell culture studies related to low-level ELF-EMF exposure due to the existing stray magnetic fields in the ambient environment of laboratory equipment.

  8. 9 CFR 55.8 - Official CWD tests and approval of laboratories to conduct official CWD tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Official CWD tests and approval of laboratories to conduct official CWD tests. 55.8 Section 55.8 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES CONTROL OF CHRONIC...

  9. 9 CFR 55.8 - Official CWD tests and approval of laboratories to conduct official CWD tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Official CWD tests and approval of laboratories to conduct official CWD tests. 55.8 Section 55.8 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES CONTROL OF CHRONIC...

  10. 9 CFR 55.8 - Official CWD tests and approval of laboratories to conduct official CWD tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Official CWD tests and approval of laboratories to conduct official CWD tests. 55.8 Section 55.8 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES CONTROL OF CHRONIC...

  11. 9 CFR 55.8 - Official CWD tests and approval of laboratories to conduct official CWD tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Official CWD tests and approval of laboratories to conduct official CWD tests. 55.8 Section 55.8 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES CONTROL OF CHRONIC...

  12. 9 CFR 55.8 - Official CWD tests and approval of laboratories to conduct official CWD tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Official CWD tests and approval of laboratories to conduct official CWD tests. 55.8 Section 55.8 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES CONTROL OF CHRONIC...

  13. Laboratory challenges conducting international clinical research in resource-limited settings.

    PubMed

    Fitzgibbon, Joseph E; Wallis, Carole L

    2014-01-01

    There are many challenges to performing clinical research in resource-limited settings. Here, we discuss several of the most common laboratory issues that must be addressed. These include issues relating to organization and personnel, laboratory facilities and equipment, standard operating procedures, external quality assurance, shipping, laboratory capacity, and data management. Although much progress has been made, innovative ways of addressing some of these issues are still very much needed.

  14. Portable conduction velocity experiments using earthworms for the college and high school neuroscience teaching laboratory

    PubMed Central

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities that can be easily measured by manipulating electrode placement and the tactile stimulus. Here, we present a portable and robust experimental setup that allows students to perform conduction velocity measurements within a 30-min to 1-h laboratory session. Our improvement over this well-known preparation is the combination of behaviorally relevant tactile stimuli (avoiding electrical stimulation) with the invention of minimal, low-cost, and portable equipment. We tested these experiments during workshops in both a high school and college classroom environment and found positive learning outcomes when we compared pre- and posttests taken by the students. PMID:24585472

  15. Electromagnetic Measurements Conducted by the Central Radio Propagation Laboratory During Operation Upshot-Knothole (Redacted)

    DTIC Science & Technology

    1954-03-31

    b . ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 31...March 1954 Final report Electromagnetic Measurements Conducted by the Central Radio Propagation Laboratory During Operation Upshot-Knothole B /216/E...Vubington 25, D. C. COD fw 5 U.S.C. § 552 ( b )( 6) O££ice (or AtOIIIie Fnergy, DCS/0 r r T l A . O!tp1rtment o£ the 1\\ir force \\ ·-’ . If

  16. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment.

    PubMed

    Good, J F; O'Sullivan, A D; Wicke, D; Cochrane, T A

    2012-01-01

    In order to evaluate the influence of substrate composition on stormwater treatment and hydraulic effectiveness, mesocosm-scale (180 L, 0.17 m(2)) laboratory rain gardens were established. Saturated (constant head) hydraulic conductivity was determined before and after contaminant (Cu, Zn, Pb and nutrients) removal experiments on three rain garden systems with various proportions of organic topsoil. The system with only topsoil had the lowest saturated hydraulic conductivity (160-164 mm/h) and poorest metal removal efficiency (Cu ≤ 69.0% and Zn ≤ 71.4%). Systems with sand and a sand-topsoil mix demonstrated good metal removal (Cu up to 83.3%, Zn up to 94.5%, Pb up to 97.3%) with adequate hydraulic conductivity (sand: 800-805 mm/h, sand-topsoil: 290-302 mm/h). Total metal amounts in the effluent were <50% of influent amounts for all experiments, with the exception of Cu removal in the topsoil-only system, which was negligible due to high dissolved fraction. Metal removal was greater when effluent pH was elevated (up to 7.38) provided by the calcareous sand in two of the systems, whereas the topsoil-only system lacked an alkaline source. Organic topsoil, a typical component in rain garden systems, influenced pH, resulting in poorer treatment due to higher dissolved metal fractions.

  17. Going GLP: Conducting Toxicology Studies in Compliance with Good Laboratory Practices.

    PubMed

    Carroll, Erica Eggers

    2016-01-01

    Good laboratory practice standards are US federal regulations enacted as part of the Federal Insecticide, Fungicide, and Rodenticide Act (40 CFR Part 160), the Toxic Substance Control Act (40 CFR Part 792), and the Good Laboratory Practice for Nonclinical Laboratory Studies (21 CFR Part 58) to support protection of public health in the areas of pesticides, chemicals, and drug investigations in response to allegations of inaccurate data acquisition. Essentially, good laboratory practices (GLPs) are a system of management controls for nonclinical research studies involving animals to ensure the uniformity, consistency, reliability, reproducibility, quality, and integrity of data collected as part of chemical (including pharmaceuticals) tests, from in vitro through acute to chronic toxicity tests. The GLPs were established in the United States in 1978 as a result of the Industrial Bio-Test Laboratory scandal which led to congressional hearings and actions to prevent fraudulent data reporting and collection. Although the establishment of infrastructure for GLPs compliance is labor-intensive and time-consuming, achievement and maintenance of GLP compliance ensures the accuracy of the data collected from each study, which is critical for defending results, advancing science, and protecting human and animal health. This article describes how and why those in the US Army Medical Department responsible for protecting the public health of US Army and other military personnel made the policy decision to have its toxicology laboratory achieve complete compliance with GLP standards, the first such among US Army laboratories. The challenges faced and how they were overcome are detailed.

  18. Laboratory derived constraints on electrical conductivity beneath Slave craton

    NASA Astrophysics Data System (ADS)

    Bagdassarov, Nikolai S.; Kopylova, Maya G.; Eichert, Sandrine

    2007-04-01

    The depth profile of the electrical conductivity, σ(d), beneath the Central Slave craton (Canada) has been reconstructed with the help of laboratory measurements carried out on peridotite xenoliths. σ(T) of xenoliths was determined in the piston-cylinder apparatus at 1 and 2 GPa and from 600 to 1150 °C. σ(T) of xenoliths follows the Arrhenius dependence with the activation energy, E, varying from 2.10 to 1.44 eV depending on temperature range and the Mg-number. The calculated xenolith geotherm and the suggested lithology beneath the Central Slave have been used to constrain σ(d) as follows: σ(d) in the crust varies between 0.5×10-5 and 10-3 S/m; the lithospheric σ(d) sharply decreases below the Moho at 39.4 km to 0.5×10-8 S/m, which corresponds to 460 °C, and then gradually increases with the depth d to 0.5×10-2 S/m. The modeled MT-response of the constrained σ(d) profile has been compared with MT-observations [Jones, A.G., Lezaeta, P., Ferguson, I.J., Chave, A.D., Evans, R.L., Garcia, X., Spratt J., 2003. The electrical structure of the Slave craton. Lithos, 71, 505-527]. The general trend of the calculated MT-response based on the σ(d) model mimics the MT-inversion of the field data from the Central Slave.

  19. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  20. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  1. Surface Conductive Glass.

    ERIC Educational Resources Information Center

    Tanaka, John; Suib, Steven L.

    1984-01-01

    Discusses the properties of surface-conducting glass and the chemical nature of surface-conducting stannic (tin) oxide. Also provides the procedures necessary for the preparation of surface-conducting stannic oxide films on glass substrates. The experiment is suitable for the advanced inorganic chemistry laboratory. (JN)

  2. Quality-assurance results for field pH and specific-conductance measurements, and for laboratory analysis, National Atmospheric Deposition Program and National Trends Network; January 1980-September 1984

    USGS Publications Warehouse

    Schroder, L.J.; Brooks, M.H.; Malo, B.A.; Willoughby, T.C.

    1986-01-01

    Five intersite comparison studies for the field determination of pH and specific conductance, using simulated-precipitation samples, were conducted by the U.S.G.S. for the National Atmospheric Deposition Program and National Trends Network. These comparisons were performed to estimate the precision of pH and specific conductance determinations made by sampling-site operators. Simulated-precipitation samples were prepared from nitric acid and deionized water. The estimated standard deviation for site-operator determination of pH was 0.25 for pH values ranging from 3.79 to 4.64; the estimated standard deviation for specific conductance was 4.6 microsiemens/cm at 25 C for specific-conductance values ranging from 10.4 to 59.0 microsiemens/cm at 25 C. Performance-audit samples with known analyte concentrations were prepared by the U.S.G.S.and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The differences between the National Atmospheric Deposition Program and national Trends Network-reported analyte concentrations and known analyte concentrations were calculated, and the bias and precision were determined. For 1983, concentrations of calcium, magnesium, sodium, and chloride were biased at the 99% confidence limit; concentrations of potassium and sulfate were unbiased at the 99% confidence limit. Four analytical laboratories routinely analyzing precipitation were evaluated in their analysis of identical natural- and simulated precipitation samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple-range test on data produced by these laboratories, from the analysis of identical simulated-precipitation samples. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Interlaboratory comparability results may be used to normalize natural-precipitation chemistry data obtained from two or more of these laboratories. (Author

  3. Conducting interactive experiments online.

    PubMed

    Arechar, Antonio A; Gächter, Simon; Molleman, Lucas

    2018-01-01

    Online labor markets provide new opportunities for behavioral research, but conducting economic experiments online raises important methodological challenges. This particularly holds for interactive designs. In this paper, we provide a methodological discussion of the similarities and differences between interactive experiments conducted in the laboratory and online. To this end, we conduct a repeated public goods experiment with and without punishment using samples from the laboratory and the online platform Amazon Mechanical Turk. We chose to replicate this experiment because it is long and logistically complex. It therefore provides a good case study for discussing the methodological and practical challenges of online interactive experimentation. We find that basic behavioral patterns of cooperation and punishment in the laboratory are replicable online. The most important challenge of online interactive experiments is participant dropout. We discuss measures for reducing dropout and show that, for our case study, dropouts are exogenous to the experiment. We conclude that data quality for interactive experiments via the Internet is adequate and reliable, making online interactive experimentation a potentially valuable complement to laboratory studies.

  4. FIELD CHECK MANUAL FOR LANGUAGE LABORATORIES, A SERIES OF TESTS WHICH A NON-TECHNICAL PERSON CAN CONDUCT TO VERIFY SPECIFICATIONS.

    ERIC Educational Resources Information Center

    GRITTNER, FRANK; PAVLAT, RUSSELL

    IN ORDER TO ASSIST NON-TECHNICAL PEOPLE IN SCHOOLS TO CONDUCT A FIELD CHECK OF LANGUAGE LABORATORY EQUIPMENT BEFORE THEY MAKE FINAL PAYMENTS, THIS MANUAL OFFERS CRITERIA, TESTS, AND METHODS OF SCORING THE QUALITY OF THE EQUIPMENT. CHECKLISTS ARE PROVIDED FOR EVALUATING CONSOLE FUNCTIONS, TAPE RECORDERS, AMPLIFIERS, SOUND QUALITY (INCLUDING…

  5. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry.

    PubMed

    Wassenaar, L I; Terzer-Wassmuth, S; Douence, C; Araguas-Araguas, L; Aggarwal, P K; Coplen, T B

    2018-03-15

    Water stable isotope ratios (δ 2 H and δ 18 O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test. Eight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies. For the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ 18 O and δ 2 H, respectively; ~27 % produced unacceptable results. Top performance for δ 18 O values was dominated by dual-inlet IRMS laboratories; top performance for δ 2 H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected. Analysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1-2 'known

  6. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry

    USGS Publications Warehouse

    Wassenaar, L. I.; Terzer-Wassmuth, S.; Douence, C.; Araguas-Araguas, L.; Aggarwal, P. K.; Coplen, Tyler B.

    2018-01-01

    RationaleWater stable isotope ratios (δ2H and δ18O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test.MethodsEight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies.ResultsFor the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ18O and δ2H, respectively; ~27 % produced unacceptable results. Top performance for δ18O values was dominated by dual-inlet IRMS laboratories; top performance for δ2H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected.ConclusionsAnalysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that

  7. Firefighter exercise protocols conducted in an environmental chamber: developing a laboratory-based simulated firefighting protocol.

    PubMed

    Ensari, Ipek; Motl, Robert W; Klaren, Rachel E; Fernhall, Bo; Smith, Denise L; Horn, Gavin P

    2017-05-01

    A standard exercise protocol that allows comparisons across various ergonomic studies would be of great value for researchers investigating the physical and physiological strains of firefighting and possible interventions for reducing the demands. We compared the pattern of cardiorespiratory changes from 21 firefighters during simulated firefighting activities using a newly developed firefighting activity station (FAS) and treadmill walking both performed within an identical laboratory setting. Data on cardiorespiratory parameters and core temperature were collected continuously using a portable metabolic unit and a wireless ingestible temperature probe. Repeated measures ANOVA indicated distinct patterns of change in cardiorespiratory parameters and heart rate between conditions. The pattern consisted of alternating periods of peaks and nadirs in the FAS that were qualitatively and quantitatively similar to live fire activities, whereas the same parameters increased logarithmically in the treadmill condition. Core temperature increased in a similarly for both conditions, although more rapidly in the FAS. Practitioner Summary: The firefighting activity station (FAS) yields a pattern of cardiorespiratory responses qualitatively and quantitatively similar to live fire activities, significantly different than treadmill walking. The FAS can be performed in a laboratory/clinic, providing a potentially standardised protocol for testing interventions to improve health and safety and conducting return to duty decisions.

  8. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  9. Practice-based research networks (PBRNs) are promising laboratories for conducting dissemination and implementation research.

    PubMed

    Heintzman, John; Gold, Rachel; Krist, Alexander; Crosson, Jay; Likumahuwa, Sonja; DeVoe, Jennifer E

    2014-01-01

    Dissemination and implementation science addresses the application of research findings in varied health care settings. Despite the potential benefit of dissemination and implementation work to primary care, ideal laboratories for this science have been elusive. Practice-based research networks (PBRNs) have a long history of conducting research in community clinical settings, demonstrating an approach that could be used to execute multiple research projects over time in broad and varied settings. PBRNs also are uniquely structured and increasingly involved in pragmatic trials, a research design central to dissemination and implementation science. We argue that PBRNs and dissemination and implementation scientists are ideally suited to work together and that the collaboration of these 2 groups will yield great value for the future of primary care and the delivery of evidence-based health care. © Copyright 2014 by the American Board of Family Medicine.

  10. Good Laboratory Practice. Part 3. Implementing Good Laboratory Practice in the Analytical Lab

    ERIC Educational Resources Information Center

    Wedlich, Richard C.; Pires, Amanda; Fazzino, Lisa; Fransen, Joseph M.

    2013-01-01

    Laboratories submitting experimental results to the Food and Drug Administration (FDA) or the Environmental Protection Agency (EPA) in support of Good Laboratory Practice (GLP) nonclinical laboratory studies must conduct such work in compliance with the GLP regulations. To consistently meet these requirements, lab managers employ a "divide…

  11. Laboratory Activities in Israel

    ERIC Educational Resources Information Center

    Mamlok-Naaman, Rachel; Barnea, Nitza

    2012-01-01

    Laboratory activities have long had a distinctive and central role in the science curriculum, and science educators have suggested that many benefits accrue from engaging students in science laboratory activities. Many research studies have been conducted to investigate the educational effectiveness of laboratory work in science education in…

  12. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    NASA Astrophysics Data System (ADS)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( < 10-5 SI). An increase of both phase peak and relaxation time was found with increasing grain size of the sorted Fe-sand. Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  13. A multiscale approach to determine hydraulic conductivity in thick claystone aquitards using field, laboratory, and numerical modeling methods

    NASA Astrophysics Data System (ADS)

    Smith, L. A.; Barbour, S. L.; Hendry, M. J.; Novakowski, K.; van der Kamp, G.

    2016-07-01

    Characterizing the hydraulic conductivity (K) of aquitards is difficult due to technical and logistical difficulties associated with field-based methods as well as the cost and challenge of collecting representative and competent core samples for laboratory analysis. The objective of this study was to produce a multiscale comparison of vertical and horizontal hydraulic conductivity (Kv and Kh, respectively) of a regionally extensive Cretaceous clay-rich aquitard in southern Saskatchewan. Ten vibrating wire pressure transducers were lowered into place at depths between 25 and 325 m, then the annular was space was filled with a cement-bentonite grout. The in situ Kh was estimated at the location of each transducer by simulating the early-time pore pressure measurements following setting of the grout using a 2-D axisymmetric, finite element, numerical model. Core samples were collected during drilling for conventional laboratory testing for Kv to compare with the transducer-determined in situ Kh. Results highlight the importance of scale and consideration of the presence of possible secondary features (e.g., fractures) in the aquitard. The proximity of the transducers to an active potash mine (˜1 km) where depressurization of an underlying aquifer resulted in drawdown through the aquitard provided a unique opportunity to model the current hydraulic head profile using both the Kh and Kv estimates. Results indicate that the transducer-determined Kh estimates would allow for the development of the current hydraulic head distribution, and that simulating the pore pressure recovery can be used to estimate moderately low in situ Kh (<10-11 m s-1).

  14. 27 CFR 22.107 - Pathological laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Pathological laboratories... Pathological laboratories. (a) Pathological laboratories, not operated by a hospital or sanitarium, may... sanitariums. If a pathological laboratory does not exclusively conduct analyses or tests for hospitals or...

  15. 27 CFR 22.107 - Pathological laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Pathological laboratories... Pathological laboratories. (a) Pathological laboratories, not operated by a hospital or sanitarium, may... sanitariums. If a pathological laboratory does not exclusively conduct analyses or tests for hospitals or...

  16. Bone Conduction Communication: Research Progress and Directions

    DTIC Science & Technology

    2017-08-16

    ARL-TR-8096 ● AUG 2017 US Army Research Laboratory Bone Conduction Communication: Research Progress and Directions by Maranda...this report when it is no longer needed. Do not return it to the originator. ARL-TR-8096 ● AUG 2017 US Army Research Laboratory...Bone Conduction Communication: Research Progress and Directions by Maranda McBride North Carolina Agricultural and Technical State University

  17. Using Pneumatics to Perform Laboratory Hydraulic Conductivity Tests on Gravel with Underdamped Responses

    NASA Astrophysics Data System (ADS)

    Judge, A. I.

    2011-12-01

    A permeameter has been designed and built to perform laboratory hydraulic conductivity tests on various kinds of gravel samples with hydraulic conductivity values ranging from 0.1 to 1 m/s. The tests are commenced by applying 200 Pa of pneumatic pressure to the free surface of the water column in a riser connected above a cylinder that holds large gravel specimens. This setup forms a permeameter specially designed for these tests which is placed in a barrel filled with water, which acts as a reservoir. The applied pressure depresses the free surface in the riser 2 cm until it is instantly released by opening a ball valve. The water then flows through the base of the cylinder and the specimen like a falling head test, but the water level oscillates about the static value. The water pressure and the applied air pressure in the riser are measured with vented pressure transducers at 100 Hz. The change in diameter lowers the damping frequency of the fluctuations of the water level in the riser, which allows for underdamped responses to be observed for all tests. The results of tests without this diameter change would otherwise be a series of critically damped responses with only one or two oscillations that dampen within seconds and cannot be evaluated with equations for the falling head test. The underdamped responses oscillate about the static value at about 1 Hz and are very sensitive to the hydraulic conductivity of all the soils tested. These fluctuations are also very sensitive to the inertia and friction in the permeameter that are calculated considering the geometry of the permeameter and verified experimentally. Several gravel specimens of various shapes and sizes are tested that show distinct differences in water level fluctuations. The friction of the system is determined by calibrating the model with the results of tests performed where the cylinder had no soil in it. The calculation of the inertia in the response of the water column for the typical testing

  18. 42 CFR 493.1780 - Standard: Inspection of CLIA-exempt laboratories or laboratories requesting or issued a...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... laboratories or laboratories requesting or issued a certificate of accreditation. (a) Validation inspection. CMS or a CMS agent may conduct a validation inspection of any accredited or CLIA-exempt laboratory at... requirements of this part. (c) Noncompliance determination. If a validation or complaint inspection results in...

  19. 42 CFR 493.1780 - Standard: Inspection of CLIA-exempt laboratories or laboratories requesting or issued a...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... laboratories or laboratories requesting or issued a certificate of accreditation. (a) Validation inspection. CMS or a CMS agent may conduct a validation inspection of any accredited or CLIA-exempt laboratory at... requirements of this part. (c) Noncompliance determination. If a validation or complaint inspection results in...

  20. 42 CFR 493.1780 - Standard: Inspection of CLIA-exempt laboratories or laboratories requesting or issued a...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... laboratories or laboratories requesting or issued a certificate of accreditation. (a) Validation inspection. CMS or a CMS agent may conduct a validation inspection of any accredited or CLIA-exempt laboratory at... requirements of this part. (c) Noncompliance determination. If a validation or complaint inspection results in...

  1. 42 CFR 493.1780 - Standard: Inspection of CLIA-exempt laboratories or laboratories requesting or issued a...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... laboratories or laboratories requesting or issued a certificate of accreditation. (a) Validation inspection. CMS or a CMS agent may conduct a validation inspection of any accredited or CLIA-exempt laboratory at... requirements of this part. (c) Noncompliance determination. If a validation or complaint inspection results in...

  2. 42 CFR 493.1780 - Standard: Inspection of CLIA-exempt laboratories or laboratories requesting or issued a...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... laboratories or laboratories requesting or issued a certificate of accreditation. (a) Validation inspection. CMS or a CMS agent may conduct a validation inspection of any accredited or CLIA-exempt laboratory at... requirements of this part. (c) Noncompliance determination. If a validation or complaint inspection results in...

  3. Interactive virtual optical laboratories

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  4. Institutional training programs for research personnel conducted by laboratory-animal veterinarians.

    PubMed

    Dyson, Melissa C; Rush, Howard G

    2012-01-01

    Research institutions are required by federal law and national standards to ensure that individuals involved in animal research are appropriately trained in techniques and procedures used on animals. Meeting these requirements necessitates the support of institutional authorities; policies for the documentation and enforcement of training; resources to support and provide training programs; and high-quality, effective educational material. Because of their expertise, laboratory-animal veterinarians play an essential role in the design, implementation, and provision of educational programs for faculty, staff, and students in biomedical research. At large research institutions, provision of a training program for animal care and use personnel can be challenging because of the animal-research enterprise's size and scope. At the University of Michigan (UM), approximately 3,500 individuals have direct contact with animals used in research. We describe a comprehensive educational program for animal care and use personnel designed and provided by laboratory-animal veterinarians at UM and discuss the challenges associated with its implementation.

  5. Students' Satisfaction toward the Services of the Chemical Laboratory

    ERIC Educational Resources Information Center

    Lukum, Astin; Paramata, Yoseph

    2015-01-01

    Chemistry Laboratory serves all of the students that were programmed chemistry laboratory works. The satisfaction of the students was studied that involving 50 students. The study was conducted to measure the students' satisfaction towards the services offered by the laboratory. Measurement of the students' satisfaction was conducted using…

  6. Conducting a surveillance problem analysis on poor feedback from Reference Laboratory, Liberia, February 2016.

    PubMed

    Frimpong, Joseph Asamoah; Amo-Addae, Maame Pokuah; Adewuyi, Peter Adebayo; Hall, Casey Daniel; Park, Meeyoung Mattie; Nagbe, Thomas Knue

    2017-01-01

    The laboratory plays a major role in surveillance, including confirming the start and end of an outbreak. Knowing the causative agent for an outbreak informs the development of response strategies and management plans for a public health event. However, issues and challenges may arise that limit the effectiveness or efficiency of laboratories in surveillance. This case study applies a systematic approach to analyse gaps in laboratory surveillance, thereby improving the ability to mitigate these gaps. Although this case study concentrates on factors resulting in poor feedback from the laboratory, practise of this general approach to problem analysis will confer skills required in analysing most public health issues. This case study was developed based on a report submitted by the district surveillance officer in Grand Bassa County, Liberia, as a resident of the Liberian Frontline Field Epidemiology Training Program in 2016. This case study will serve as a training tool to reinforce lectures on surveillance problem analysis using the fishbone approach. It is designed for public health training in a classroom setting and can be completed within 2 hours 30 minutes.

  7. Fractal analysis of the hydraulic conductivity on a sandy porous media reproduced in a laboratory facility.

    NASA Astrophysics Data System (ADS)

    de Bartolo, S.; Fallico, C.; Straface, S.; Troisi, S.; Veltri, M.

    2009-04-01

    The complexity characterization of the porous media structure, in terms of the "pore" phase and the "solid" phase, can be carried out by means of the fractal geometry which is able to put in relationship the soil structural properties and the water content. It is particularly complicated to describe analytically the hydraulic conductivity for the irregularity of the porous media structure. However these can be described by many fractal models considering the soil structure as the distribution of particles dimensions, the distribution of the solid aggregates, the surface of the pore-solid interface and the fractal mass of the "pore" and "solid" phases. In this paper the fractal model of Yu and Cheng (2002) and Yu and Liu (2004), for a saturated bidispersed porous media, was considered. This model, using the Sierpinsky-type gasket scheme, doesn't contain empiric constants and furnishes a well accord with the experimental data. For this study an unconfined aquifer was reproduced by means of a tank with a volume of 10 Ã- 7 Ã- 3 m3, filled with a homogeneous sand (95% of SiO2), with a high percentage (86.4%) of grains between 0.063mm and 0.125mm and a medium-high permeability. From the hydraulic point of view, 17 boreholes, a pumping well and a drainage ring around its edge were placed. The permeability was measured utilizing three different methods, consisting respectively in pumping test, slug test and laboratory analysis of an undisturbed soil cores, each of that involving in the measurement a different support volume. The temporal series of the drawdown obtained by the pumping test were analyzed by the Neuman-type Curve method (1972), because the saturated part above the bottom of the facility represents an unconfined aquifer. The data analysis of the slug test were performed by the Bouwer & Rice (1976) method and the laboratory analysis were performed on undisturbed saturated soil samples utilizing a falling head permeameter. The obtained values either of the

  8. Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kim S.

    2008-01-01

    Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.

  9. 7 CFR 160.17 - Laboratory analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Laboratory analysis. 160.17 Section 160.17 Agriculture... STANDARDS FOR NAVAL STORES Methods of Analysis, Inspection, Sampling and Grading § 160.17 Laboratory analysis. The analysis and laboratory testing of naval stores shall be conducted, so far as is practicable...

  10. 7 CFR 160.17 - Laboratory analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Laboratory analysis. 160.17 Section 160.17 Agriculture... STANDARDS FOR NAVAL STORES Methods of Analysis, Inspection, Sampling and Grading § 160.17 Laboratory analysis. The analysis and laboratory testing of naval stores shall be conducted, so far as is practicable...

  11. MIT Lincoln Laboratory Annual Report 2010

    DTIC Science & Technology

    2010-01-01

    Research and Development Center (FFRDC) and a DoD Research and Development Laboratory. The Laboratory conducts research and development pertinent to...year, the Laboratory restruc- tured three divisions to focus research and development in areas that are increasingly important to the nation...the Director 3 Collaborations with MIT campus continue to grow, leveraging the strengths of researchers at both the Laboratory and campus. The

  12. Solvent use in private research laboratories in Japan: comparison with the use in public research laboratories and on production floors in industries.

    PubMed

    Hanada, Takaaki; Zaitsu, Ai; Kojima, Satoshi; Ukai, Hirohiko; Nagasawa, Yasuhiro; Takada, Shiro; Kawakami, Takuya; Ohashi, Fumiko; Ikeda, Masayuki

    2014-01-01

    Solvents used in production facility-affiliated private laboratories have been seldomly reported. This study was initiated to specify solvent use characteristics in private laboratories in comparison with the use in public research laboratories and on production floors. Elucidation of the applicability of conclusions from a public laboratory survey to private institutions is not only of scientific interest but also of practical importance. A survey on use of 47 legally stipulated organic solvents was conducted. The results were compiled for April 2011 to March 2013. Through sorting, data were available for 479 unit workplaces in private laboratories. Similar sorting for April 2012 to March 2013 was conducted for public research laboratories (e.g., national universities) and production floors (in private enterprises) to obtain 621 and 937 cases, respectively. Sampling of workroom air followed by capillary gas-chromatographic analyses for solvents was conducted in accordance with regulatory requirements. More than one solvent was usually detected in the air of private laboratories. With regard to solvent types, acetone, methyl alcohol, chloroform and hexane were prevalently used in private laboratories, and this was similar to the case of public laboratories. Prevalent use of ethyl acetate was unique to private laboratories. Toluene use was less common both in private and public laboratories. The prevalence of administrative control class 1 (i.e., an adequately controlled environment) was higher in laboratories (both private and public) than production floors. Solvent use patterns are similar in private and public laboratories, except that the use of mixtures of solvents is substantially more popular in private laboratories than in public laboratories.

  13. Teaching Laboratory Renovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Zuhairi, Ali Jassim; Al-Dahhan, Wedad; Hussein, Falah

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. The improvement of students’ understanding of concepts in science and its applications, practical scientific skills and understanding of how science and scientists work in laboratory experiences have been considered key aspects of education in science for over 100 years. Facility requirements for the necessary level of safety and security combined with specific requirementsmore » relevant to the course to be conducted dictate the structural design of a particular laboratory, and the design process must address both. This manuscript is the second in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. We summarize the process used to guide a major renovation of the chemistry instructional laboratory facilities at Al-Nahrain University and discuss lessons learned from the project.« less

  14. Laboratory safety handbook

    USGS Publications Warehouse

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  15. 46 CFR 160.176-7 - Independent laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Independent laboratories. 160.176-7 Section 160.176-7...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Lifejackets § 160.176-7 Independent laboratories. A list of independent laboratories which have been accepted by the Commandant for conducting or...

  16. 46 CFR 160.176-7 - Independent laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Independent laboratories. 160.176-7 Section 160.176-7...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Lifejackets § 160.176-7 Independent laboratories. A list of independent laboratories which have been accepted by the Commandant for conducting or...

  17. 46 CFR 160.151-9 - Independent laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Independent laboratory. 160.151-9 Section 160.151-9...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Liferafts (SOLAS) § 160.151-9 Independent laboratory. Tests and inspections that this subpart requires to be conducted by an independent laboratory must be...

  18. 46 CFR 160.151-9 - Independent laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Independent laboratory. 160.151-9 Section 160.151-9...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Liferafts (SOLAS) § 160.151-9 Independent laboratory. Tests and inspections that this subpart requires to be conducted by an independent laboratory must be...

  19. 46 CFR 160.171-5 - Independent laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Independent laboratory. 160.171-5 Section 160.171-5...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Immersion Suits § 160.171-5 Independent laboratory. The approval and production tests in this subpart must be conducted by an independent laboratory accepted by the...

  20. 46 CFR 163.003-7 - Independent laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Independent laboratory. 163.003-7 Section 163.003-7...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-7 Independent laboratory. The approval and production tests in this subpart must be conducted by or under the supervision of an independent laboratory...

  1. 46 CFR 160.010-10 - Independent laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Independent laboratory. 160.010-10 Section 160.010-10... laboratory. (a) The approval and production tests in this subpart must be conducted by an independent laboratory accepted by the Coast Guard under subpart 159.010 of this chapter. (b) [Reserved] ...

  2. 46 CFR 160.171-5 - Independent laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Independent laboratory. 160.171-5 Section 160.171-5...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Immersion Suits § 160.171-5 Independent laboratory. The approval and production tests in this subpart must be conducted by an independent laboratory accepted by the...

  3. 46 CFR 160.010-10 - Independent laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Independent laboratory. 160.010-10 Section 160.010-10... laboratory. (a) The approval and production tests in this subpart must be conducted by an independent laboratory accepted by the Coast Guard under subpart 159.010 of this chapter. (b) [Reserved] ...

  4. 46 CFR 163.003-7 - Independent laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Independent laboratory. 163.003-7 Section 163.003-7...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-7 Independent laboratory. The approval and production tests in this subpart must be conducted by or under the supervision of an independent laboratory...

  5. Burbank conducts PACE Session

    NASA Image and Video Library

    2011-12-01

    ISS030-E-007417 (1 Dec. 2011) --- In the International Space Station?s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Preliminary Advanced Colloids Experiment (PACE) at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). PACE is designed to investigate the capability of conducting high magnification colloid experiments with the LMM for determining the minimum size particles which can be resolved with it.

  6. Burbank conducts PACE Session

    NASA Image and Video Library

    2011-12-01

    ISS030-E-007418 (1 Dec. 2011) --- In the International Space Station’s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Preliminary Advanced Colloids Experiment (PACE) at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). PACE is designed to investigate the capability of conducting high magnification colloid experiments with the LMM for determining the minimum size particles which can be resolved with it.

  7. Burbank conducts PACE Session

    NASA Image and Video Library

    2011-12-01

    ISS030-E-007419 (1 Dec. 2011) --- In the International Space Station’s Destiny laboratory, NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Preliminary Advanced Colloids Experiment (PACE) at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF). PACE is designed to investigate the capability of conducting high magnification colloid experiments with the LMM for determining the minimum size particles which can be resolved with it.

  8. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  9. Conducting Educational Design Research

    ERIC Educational Resources Information Center

    McKenney, Susan; Reeves, Thomas

    2012-01-01

    Educational design research blends scientific investigation with systematic development and implementation of solutions to educational problems. Empirical investigation is conducted in real learning settings--not laboratories--to craft usable and effective solutions. At the same time, the research is carefully structured to produce theoretical…

  10. 46 CFR 163.002-7 - Independent laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Independent laboratory. 163.002-7 Section 163.002-7...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Hoist § 163.002-7 Independent laboratory. (a) The approval and production tests in this subpart must be conducted by, or under the supervision of, an independent laboratory...

  11. 46 CFR 163.002-7 - Independent laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Independent laboratory. 163.002-7 Section 163.002-7...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Hoist § 163.002-7 Independent laboratory. (a) The approval and production tests in this subpart must be conducted by, or under the supervision of, an independent laboratory...

  12. Geologic Controls of Hydraulic Conductivity in the Snake River Plain Aquifer At and Near the Idaho National Engineering and Environmental Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. R. Anderson; M. A. Kuntz; L. C. Davis

    1999-02-01

    The effective hydraulic conductivity of basalt and interbedded sediment that compose the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL) ranges from about 1.0x10 -2 to 3.2x10 4 feet per day (ft/d). This six-order-of-magnitude range of hydraulic conductivity was estimated from single-well aquifer tests in 114 wells, and is attributed mainly to the physical characteristics and distribution of basalt flows and dikes. Hydraulic conductivity is greatest in thin pahoehoe flows and near-vent volcanic deposits. Hydraulic conductivity is least in flows and deposits cut by dikes. Estimates of hydraulic conductivity at and near themore » INEEL are similar to those measured in similar volcanic settings in Hawaii. The largest variety of rock types and the greatest range of hydraulic conductivity are in volcanic rift zones, which are characterized by numerous aligned volcanic vents and fissures related to underlying dikes. Three broad categories of hydraulic conductivity corresponding to six general types of geologic controls can be inferred from the distribution of wells and vent corridors. Hydraulic conductivity of basalt flows probably is increased by localized fissures and coarse mixtures of interbedded sediment, scoria, and basalt rubble. Hydraulic conductivity of basalt flows is decreased locally by abundant alteration minerals of probable hydrothermal origin. Hydraulic conductivity varies as much as six orders of magnitude in a single vent corridor and varies from three to five orders of magnitude within distances of 500 to 1,000 feet. Abrupt changes in hydraulic conductivity over short distances suggest the presence of preferential pathways and local barriers that may greatly affect the movement of ground water and the dispersion of radioactive and chemical wastes downgradient from points of waste disposal.« less

  13. A comprehensive Laboratory Services Survey of State Public Health Laboratories.

    PubMed

    Inhorn, Stanley L; Wilcke, Burton W; Downes, Frances Pouch; Adjanor, Oluwatosin Omolade; Cada, Ronald; Ford, James R

    2006-01-01

    In November 2004, the Association of Public Health Laboratories (APHL) conducted a Comprehensive Laboratory Services Survey of State Public Health Laboratories (SPHLs) in order to establish the baseline data necessary for Healthy People 2010 Objective 23-13. This objective aims to measure the increase in the proportion of health agencies that provide or assure access to comprehensive laboratory services to support essential public health services. This assessment addressed only SPHLs and served as a baseline to periodically evaluate the level of improvement in the provision of laboratory services over the decade ending 2010. The 2004 survey used selected questions that were identified as key indicators of provision of comprehensive laboratory services. The survey was developed in consultation with the Centers for Disease Control and Prevention National Center for Health Statistics, based on newly developed data sources. Forty-seven states and one territory responded to the survey. The survey was based on the 11 core functions of SPHLs as previously defined by APHL. The range of performance among individual laboratories for the 11 core functions (subobjectives) reflects the challenging issues that have confronted SPHLs in the first half of this decade. APHL is now working on a coordinated effort with other stakeholders to create seamless state and national systems for the provision of laboratory services in support of public health programs. These services are necessary to help face the threats raised by the specter of terrorism, emerging infections, and natural disasters.

  14. Designing and Conducting a Purification Scheme as an Organic Chemistry Laboratory Practical

    ERIC Educational Resources Information Center

    Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.; Schaller, Chris P.

    2008-01-01

    An open-ended laboratory practical has been developed that challenges students to evaluate when different purification techniques are appropriate. In contrast to most lab practicals, the overall grade includes an evaluation of spectral analysis as well as writing skills. However, a significant portion of the grade lies in successful execution of a…

  15. Effluent Monitoring Procedures: Basic Laboratory Skills. Staff Guide for Conducting the Course.

    ERIC Educational Resources Information Center

    Engel, William T.; And Others

    This manual is designed for use by instructors who will have to teach others the basic laboratory skills needed to perform National Pollution Discharge Elimination System (NPDES) Analyses. It includes topics related to the presentation of training courses in which the NPDES analyses would be taught. These topics include: examples of course…

  16. Variable conductance heat pipe technology

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Edwards, D. K.; Anderson, W. T.

    1973-01-01

    Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.

  17. 40 CFR 792.130 - Conduct of a study.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Conduct of a study. 792.130 Section... ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Protocol for and Conduct of A Study § 792.130 Conduct of a study. (a) The study shall be conducted in accordance with the protocol. (b) The test systems...

  18. Exploring Fundamental Concepts in Aqueous Solution Conductivity: A General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Stevanov, Kelly; Barlag, Rebecca

    2010-01-01

    Using a conductivity sensor, a temperature sensor, and a datalogger, fundamental factors that affect conductivity are explored. These factors are (i) concentration, (ii) temperature, (iii) ion charge, and (iv) size and or mass of anion. In addition, the conductivities of a number of other solutions are measured. This lab has been designed to…

  19. 40 CFR 792.130 - Conduct of a study.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Conduct of a study. 792.130 Section 792... (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Protocol for and Conduct of A Study § 792.130 Conduct of a study. (a) The study shall be conducted in accordance with the protocol. (b) The test systems shall be...

  20. Crime Laboratory Proficiency Testing Research Program.

    ERIC Educational Resources Information Center

    Peterson, Joseph L.; And Others

    A three-year research effort was conducted to design a crime laboratory proficiency testing program encompassing the United States. The objectives were to: (1) determine the feasibility of preparation and distribution of different classes of physical evidence; (2) assess the accuracy of criminalistics laboratories in the processing of selected…

  1. Translating a National Laboratory Strategic Plan into action through SLMTA in a district hospital laboratory in Botswana.

    PubMed

    Ntshambiwa, Keoratile; Ntabe-Jagwer, Winnie; Kefilwe, Chandapiwa; Samuel, Fredrick; Moyo, Sikhulile

    2014-01-01

    The Ministry of Health (MOH) of Botswana adopted Strengthening Laboratory Management Toward Accreditation (SLMTA), a structured quality improvement programme, as a key tool for the implementation of quality management systems in its public health laboratories. Coupled with focused mentorship, this programme aimed to help MOH achieve the goals of the National Laboratory Strategic Plan to provide quality and timely clinical diagnoses. This article describes the impact of implementing SLMTA in Sekgoma Memorial Hospital Laboratory (SMHL) in Serowe, Botswana. SLMTA implementation in SMHL included trainings, improvement projects, site visits and focused mentorship. To measure progress, audits using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist were conducted at baseline and exit of the programme, with scores corresponding to a zero- to five-star scale. Turnaround times, customer satisfaction, and several other health service indicators were tracked. The laboratory scored 53% (zero stars) at the baseline audit and 80% (three stars) at exit. Nearly three years later, the laboratory scored 85% (four stars) in an official audit conducted by the African Society for Laboratory Medicine. Turnaround times became shorter after SLMTA implementation, with reductions ranging 19% to 52%; overall patient satisfaction increased from 56% to 73%; and clinician satisfaction increased from 41% to 72%. Improvements in inventory management led to decreases in discarded reagents, reducing losses from US $18 000 in 2011 to $40 in 2013. The SLMTA programme contributed to enhanced performance of the laboratory, which in turn yielded potential positive impacts for patient care at the hospital.

  2. National Exposure Research Laboratory

    EPA Pesticide Factsheets

    The Ecosystems Research Division of EPA’s National Exposure Research Laboratory, conducts research on organic and inorganic chemicals, greenhouse gas biogeochemical cycles, and land use perturbations that create stressor exposures and potentia risk

  3. Life Sciences Laboratories for the Shuttle/Spacelab

    NASA Technical Reports Server (NTRS)

    Schulte, L. O.; Kelly, H. B.; Secord, T. C.

    1976-01-01

    Space Shuttle and Spacelab missions will provide scientists with their first opportunity to participate directly in research in space for all scientific disciplines, particularly the Life Sciences. Preparations are already underway to ensure the success of these missions. The paper summarizes the results of the 1975 NASA-funded Life Sciences Laboratories definition study which defined several long-range life sciences research options and the laboratory designs necessary to accomplish high-priority life sciences research. The implications and impacts of Spacelab design and development on the life sciences missions are discussed. An approach is presented based upon the development of a general-purposs laboratory capability and an inventory of common operational research equipment for conducting life sciences research. Several life sciences laboratories and their capabilities are described to demonstrate the systems potentially available to the experimenter for conducting biological and medical research.

  4. Preservice laboratory education strengthening enhances sustainable laboratory workforce in Ethiopia

    PubMed Central

    2013-01-01

    Background There is a severe healthcare workforce shortage in sub Saharan Africa, which threatens achieving the Millennium Development Goals and attaining an AIDS-free generation. The strength of a healthcare system depends on the skills, competencies, values and availability of its workforce. A well-trained and competent laboratory technologist ensures accurate and reliable results for use in prevention, diagnosis, care and treatment of diseases. Methods An assessment of existing preservice education of five medical laboratory schools, followed by remedial intervention and monitoring was conducted. The remedial interventions included 1) standardizing curriculum and implementation; 2) training faculty staff on pedagogical methods and quality management systems; 3) providing teaching materials; and 4) procuring equipment for teaching laboratories to provide practical skills to complement didactic education. Results A total of 2,230 undergraduate students from the five universities benefitted from the standardized curriculum. University of Gondar accounted for 252 of 2,230 (11.3%) of the students, Addis Ababa University for 663 (29.7%), Jimma University for 649 (29.1%), Haramaya University for 429 (19.2%) and Hawassa University for 237 (10.6%) of the students. Together the universities graduated 388 and 312 laboratory technologists in 2010/2011 and 2011/2012 academic year, respectively. Practical hands-on training and experience with well-equipped laboratories enhanced and ensured skilled, confident and competent laboratory technologists upon graduation. Conclusions Strengthening preservice laboratory education is feasible in resource-limited settings, and emphasizing its merits (ample local capacity, country ownership and sustainability) provides a valuable source of competent laboratory technologists to relieve an overstretched healthcare system. PMID:24164781

  5. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1994-01-01

    Electrohydrodynamic sample distortion during continuous flow electrophoresis is an experiment to be conducted during the second International Microgravity Laboratory (IML-2) in July 1994. The specific objective of this experiment is the distortion caused by the difference in dielectric constant between the sample and surrounding buffer. Although the role of sample conductivity in electrohydrodynamic has been the subject of both flight and ground experiments, the separate role of dielectric constant, independent of sample conductivity, has not been measured. This paper describes some of the laboratory research and model development that will support the flight experiment on IML-2.

  6. Music: Instrumental Techniques, Conducting.

    ERIC Educational Resources Information Center

    Grozan, Carl

    A course in introduction to the conducting of music groups of voices or instruments is presented. The approach used is a laboratory approach in which pupils will develop skills in score reading, physical gestures, rehearsal techniques, transpositions, voice and instrument ranges. Course objectives include: (1) The pupil will identify all…

  7. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  8. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  9. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  10. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  11. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  12. Immobilized alpha-Galactosidase in the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Mulimani, V. H.; Dhananjay, K.

    2007-01-01

    This laboratory experiment was designed to demonstrate the application of immobilized galactosidase in food industry to hydrolyze raffinose family oligosaccharides in soymilk. This laboratory experiment was conducted for postgraduate students of biochemistry and developed for graduate and undergraduate students of biochemistry, biotechnology,…

  13. Biosafety and biosecurity in veterinary laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Melissa R.; Astuto-Gribble, Lisa M.; Brass, Van Hildren

    Here, with recent outbreaks of MERS-Cov, Anthrax, Nipah, and Highly Pathogenic Avian Influenza, much emphasis has been placed on rapid identification of infectious agents globally. As a result, laboratories are building capacity, conducting more advanced and sophisticated research, increasing laboratory staff, and establishing collections of dangerous pathogens in an attempt to reduce the impact of infectious disease outbreaks and characterize disease causing agents. With this expansion, the global laboratory community has started to focus on laboratory biosafety and biosecurity to prevent the accidental and/or intent ional release o f these agents. Laboratory biosafety and biosecurity systems are used around themore » world to help mit igate the risks posed by dangerous pathogens in the laboratory. Veterinary laboratories carry unique responsibilities to workers and communities to safely and securely handle disease causing microorganisms. Many microorganisms studied in veterinary laboratories not only infect animals, but also have the potential to infect humans. This paper will discuss the fundamentals of laboratory biosafety and biosecurity.« less

  14. [How do hospital clinical laboratories and laboratory testing companies cooperate and build reciprocal relations?].

    PubMed

    Kawano, Seiji

    2014-12-01

    As the 2nd Joint Symposium of the Japanese Society of Laboratory Medicine and the Japanese Association of Laboratory Pathologists, the symposium on clinical test out-sourcing and branch laboratories was held at the 60th General Meeting of the Japanese Society of Laboratory Medicine on November 2nd, 2013 in Kobe. For the symposium, we conducted a questionnaire survey on the usage of clinical test out-sourcing and the introduction of branch laboratories to clinical laboratories of Japanese university hospitals, both private and public, between July 25th and August 20th, 2013. Seventy-two hospitals responded to the questionnaire survey, consisting of 41 public medical school hospitals and 31 private ones. According to the survey, the selection of each clinical test for out-sourcing was mainly determined by the capacities of hospital clinical laboratories and their equipment, as well as the profitability of each test. The main concerns of clinical laboratory members of university hospitals involved the continuity of measurement principles, traceability, and standardization of reference values for each test. They strongly requested the interchangeability and computerization of test data between laboratory testing companies. A branch laboratory was introduced to six hospitals, all of which were private medical college hospitals, out of 72 university hospitals, and eight of the other hospitals were open to its introduction. The merits and demerits of introducing a branch laboratory were also discussed. (Review).

  15. A Multi-User Remote Academic Laboratory System

    ERIC Educational Resources Information Center

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  16. Remote Access to Wireless Communications Systems Laboratory--New Technology Approach

    ERIC Educational Resources Information Center

    Kafadarova, Nadezhda; Sotirov, Sotir; Milev, Mihail

    2012-01-01

    Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable students to use expensive laboratory equipment, which is not usually available to students. In…

  17. 40 CFR 160.130 - Conduct of a study.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Conduct of a study. 160.130 Section... LABORATORY PRACTICE STANDARDS Protocol for and Conduct of a Study § 160.130 Conduct of a study. (a) The study... conformity with the protocol. (c) Specimens shall be identified by test system, study, nature, and date of...

  18. 40 CFR 160.130 - Conduct of a study.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Conduct of a study. 160.130 Section... LABORATORY PRACTICE STANDARDS Protocol for and Conduct of a Study § 160.130 Conduct of a study. (a) The study... conformity with the protocol. (c) Specimens shall be identified by test system, study, nature, and date of...

  19. 10 CFR 430.25 - Laboratory Accreditation Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Procedures § 430.25 Laboratory Accreditation Program. The testing for general service fluorescent lamps... Appendix R to this subpart. The testing for medium base compact fluorescent lamps shall be performed in accordance with Appendix W of this subpart. This testing shall be conducted by test laboratories accredited...

  20. 10 CFR 430.25 - Laboratory Accreditation Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Procedures § 430.25 Laboratory Accreditation Program. The testing for general service fluorescent lamps... Appendix R to this subpart. The testing for medium base compact fluorescent lamps shall be performed in accordance with Appendix W of this subpart. This testing shall be conducted by test laboratories accredited...

  1. Survey of laboratory-acquired infections around the world in biosafety level 3 and 4 laboratories.

    PubMed

    Wurtz, N; Papa, A; Hukic, M; Di Caro, A; Leparc-Goffart, I; Leroy, E; Landini, M P; Sekeyova, Z; Dumler, J S; Bădescu, D; Busquets, N; Calistri, A; Parolin, C; Palù, G; Christova, I; Maurin, M; La Scola, B; Raoult, D

    2016-08-01

    Laboratory-acquired infections due to a variety of bacteria, viruses, parasites, and fungi have been described over the last century, and laboratory workers are at risk of exposure to these infectious agents. However, reporting laboratory-associated infections has been largely voluntary, and there is no way to determine the real number of people involved or to know the precise risks for workers. In this study, an international survey based on volunteering was conducted in biosafety level 3 and 4 laboratories to determine the number of laboratory-acquired infections and the possible underlying causes of these contaminations. The analysis of the survey reveals that laboratory-acquired infections have been infrequent and even rare in recent years, and human errors represent a very high percentage of the cases. Today, most risks from biological hazards can be reduced through the use of appropriate procedures and techniques, containment devices and facilities, and the training of personnel.

  2. PUBLICATIONS; GULF BREEZE LABORATORY

    EPA Science Inventory

    The bibliography, inclusive from 1967 through 1978, lists all publications authored by researchers employed by the Environmental Research Laboratory, Gulf Breeze, and its field station on St. Johns Island, SC, or by researchers conducting studies under funding or direction of the...

  3. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Picatinny Arsenal 3000 Area Laboratory Complex Energy Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Daryl R.; Goddard, James K.

    2010-05-01

    In response to a request by Picatinny Arsenal, the Pacific Northwest National Laboratory (PNNL) was asked by the Army to conduct an energy audit of the Arsenal’s 3000 Area Laboratory Complex. The objective of the audit was to identify life-cycle cost-effective measures that the Arsenal could implement to reduce energy costs. A “walk-through” audit of the facilities was conducted on December 7-8, 2009. Findings and recommendations are included in this document.

  5. Strengthening laboratory systems in resource-limited settings.

    PubMed

    Olmsted, Stuart S; Moore, Melinda; Meili, Robin C; Duber, Herbert C; Wasserman, Jeffrey; Sama, Preethi; Mundell, Ben; Hilborne, Lee H

    2010-09-01

    Considerable resources have been invested in recent years to improve laboratory systems in resource-limited settings. We reviewed published reports, interviewed major donor organizations, and conducted case studies of laboratory systems in 3 countries to assess how countries and donors have worked together to improve laboratory services. While infrastructure and the provision of services have seen improvement, important opportunities remain for further advancement. Implementation of national laboratory plans is inconsistent, human resources are limited, and quality laboratory services rarely extend to lower tier laboratories (eg, health clinics, district hospitals). Coordination within, between, and among governments and donor organizations is also frequently problematic. Laboratory standardization and quality control are improving but remain challenging, making accreditation a difficult goal. Host country governments and their external funding partners should coordinate their efforts effectively around a host country's own national laboratory plan to advance sustainable capacity development throughout a country's laboratory system.

  6. 7 CFR 97.157 - Professional conduct.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS... appearing before the Office shall conform to the standards of ethical and professional conduct, generally...

  7. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    PubMed

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  8. The Laboratory Efficiencies Initiative: Partnership for Building a Sustainable National Public Health Laboratory System

    PubMed Central

    Moulton, Anthony D.; Ned, Renée M.; Nicholson, Janet K.A.; Chu, May C.; Becker, Scott J.; Blank, Eric C.; Breckenridge, Karen J.; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners. PMID:23997300

  9. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a field and laboratory investigation of unconsolidated sediments contaminated by petroleum hydrocarbons and undergoing natural biodegradation are presented. Fundamental to geophysical investigations of hydrocarbon impacted sediments is the assessment of how microbi...

  10. Electrical conductivity of Icelandic deep geothermal reservoirs: insight from HT-HP laboratory experiments

    NASA Astrophysics Data System (ADS)

    Nono, Franck; Gibert, Benoit; Loggia, Didier; Parat, Fleurice; Azais, Pierre; Cichy, Sarah

    2016-04-01

    Although the Icelandic geothermal system has been intensively investigated over the years, targeting increasingly deeper reservoirs (i.e. under supercritical conditions) requires a good knowledge of the behaviour of physical properties of the host rock in order to better interpret large scale geophysical observations. In particular, the interpretation of deep electrical soundings remains controversial as only few studies have investigated the influence of altered minerals and pore fluid properties on electrical properties of rocks at high temperature and pressure. In this study, we investigate the electrical conductivity of drilled samples from different Icelandic geothermal fields at elevated temperature, confining pressure and pore pressure conditions (100°C < T < 600°C, confining pressure up to 100 MPa and pore pressure up to 35 MPa). The investigated rocks are composed of hyaloclastites, dolerites and basalts taken from depths of about 800 m for the hyaloclastites, to almost 2500 m for the dolerites. They display different porosity structures, from vuggy and intra-granular to micro-cracked porosities, and have been hydrothermally alterated in the chlorite to amphibolite facies. Electrical conductivity measurements are first determined at ambient conditions as a function of pore fluid conductivity in order to establish their relationships with lithology and pore space topology, prior to the high pressure and temperature measurements. Cementation factor varies from 1.5 for the dolerites to 2.83 for the basalt, reflecting changes in the shape of the conductive channels. The surface conductivities, measured at very low fluid conductivity, increases with the porosity and is correlated with the cation exchange capacity. At high pressure and temperature, we used the two guard-ring electrodes system. Measurements have been performed in dry and saturated conditions as a function of temperature and pore pressure. The supercritical conditions have been investigated and

  11. Service quality framework for clinical laboratories.

    PubMed

    Ramessur, Vinaysing; Hurreeram, Dinesh Kumar; Maistry, Kaylasson

    2015-01-01

    The purpose of this paper is to illustrate a service quality framework that enhances service delivery in clinical laboratories by gauging medical practitioner satisfaction and by providing avenues for continuous improvement. The case study method has been used for conducting the exploratory study, with focus on the Mauritian public clinical laboratory. A structured questionnaire based on the SERVQUAL service quality model was used for data collection, analysis and for the development of the service quality framework. The study confirms the pertinence of the following service quality dimensions within the context of clinical laboratories: tangibility, reliability, responsiveness, turnaround time, technology, test reports, communication and laboratory staff attitude and behaviour. The service quality framework developed, termed LabSERV, is vital for clinical laboratories in the search for improving service delivery to medical practitioners. This is a pioneering work carried out in the clinical laboratory sector in Mauritius. Medical practitioner expectations and perceptions have been simultaneously considered to generate a novel service quality framework for clinical laboratories.

  12. Perspectives from Former Executives of the DOD Corporate Research Laboratories

    DTIC Science & Technology

    2009-03-01

    Research Laboratory (NRL) in Washington, DC; and the Air Force Research Laboratory ( AFRL ) in Dayton, Ohio respectively. These individuals are: John Lyons...13 Vincent Russo and the Air Force Research Laboratory The Air Force Research Laboratory ( AFRL ) was activated in 1997. Prior to the creation of... AFRL , the Air Force conducted its research at four major

  13. Phoenix Wet Chemistry Laboratory Units

    NASA Image and Video Library

    2008-06-26

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer MECA instrument on board NASA Phoenix Mars Lander. This image was taken before Phoenix launch on August 4, 2007.

  14. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a l6-month field and l6-month meso-scale laboratory investigation of unconsolidated sandy environments contaminated by petroleum hydrocarbons that are undergoing natural biodegradation is presented. The purpose was to understand the processes responsible for causin...

  15. Science laboratory behavior strategies of students relative to performance in and attitude to laboratory work

    NASA Astrophysics Data System (ADS)

    Okebukola, Peter Akinsola

    The relationship between science laboratory behavior strategies of students and performance in and attitude to laboratory work was investigated in an observational study of 160 laboratory sessions involving 600 class five (eleventh grade) biology students. Zero-order correlations between the behavior strategies and outcome measures reveal a set of low to strong relationships. Transmitting information, listening and nonlesson related behaviors exhibited low correlations with practical skills and the attitude measure. The correlations between manipulating apparatus and observation with practical skills measures were found to be strong. Multiple correlation analysis revealed that the behaviors of students in the laboratories observed accounted for a large percentage of the variance in the scores on manipulative skills and a low percentage on interpretation of data, responsibility, initiative, and work habits. One significant canonical correlation emerged. The loadings on this canonical variate indicate that the practical skills measures, i.e., planning and design, manipulative skills and conduct of experiments, observation and recording of data, and attitude to laboratory work made primary contributions to the canonical relationship. Suggestions as to how students can be encouraged to go beyond cookbook-like laboratories and develop a more favorable attitude to laboratory work are made.

  16. Reliability on intra-laboratory and inter-laboratory data of hair mineral analysis comparing with blood analysis.

    PubMed

    Namkoong, Sun; Hong, Seung Phil; Kim, Myung Hwa; Park, Byung Cheol

    2013-02-01

    Nowadays, although its clinical value remains controversial institutions utilize hair mineral analysis. Arguments about the reliability of hair mineral analysis persist, and there have been evaluations of commercial laboratories performing hair mineral analysis. The objective of this study was to assess the reliability of intra-laboratory and inter-laboratory data at three commercial laboratories conducting hair mineral analysis, compared to serum mineral analysis. Two divided hair samples taken from near the scalp were submitted for analysis at the same time, to all laboratories, from one healthy volunteer. Each laboratory sent a report consisting of quantitative results and their interpretation of health implications. Differences among intra-laboratory and interlaboratory data were analyzed using SPSS version 12.0 (SPSS Inc., USA). All the laboratories used identical methods for quantitative analysis, and they generated consistent numerical results according to Friedman analysis of variance. However, the normal reference ranges of each laboratory varied. As such, each laboratory interpreted the patient's health differently. On intra-laboratory data, Wilcoxon analysis suggested they generated relatively coherent data, but laboratory B could not in one element, so its reliability was doubtful. In comparison with the blood test, laboratory C generated identical results, but not laboratory A and B. Hair mineral analysis has its limitations, considering the reliability of inter and intra laboratory analysis comparing with blood analysis. As such, clinicians should be cautious when applying hair mineral analysis as an ancillary tool. Each laboratory included in this study requires continuous refinement from now on for inducing standardized normal reference levels.

  17. Monitoring liquid and solid content in froth using conductivity

    Treesearch

    J.Y. Zhu; F. Tan; R. Gleisner

    2005-01-01

    This study reports the feasibility of monitoring liquid and fiber rejection during froth flotation of fiber suspensions through conductivity measurements of the rejected froth. The technique was demonstrated in laboratory flotation experiments using nylon and wood fiber suspensions in two laboratory flotation cells. We found that both the total wet rejection and the...

  18. Good Laboratory Practice. Part 1. An Introduction

    ERIC Educational Resources Information Center

    Wedlich, Richard C.; Libera, Agata E.; Pires, Amanda; Therrien, Matthew T.

    2013-01-01

    The Good Laboratory Practice (GLP) regulations were put into place in 1978. They establish a standard of practice to ensure that results from the nonclinical laboratory study reported to the U.S. Food and Drug Administration (FDA) are valid and that the study report accurately reflects the conduct of the study. While the GLP regulations promulgate…

  19. A comparison of traditional physical laboratory and computer-simulated laboratory experiences in relation to engineering undergraduate students' conceptual understandings of a communication systems topic

    NASA Astrophysics Data System (ADS)

    Javidi, Giti

    2005-07-01

    This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the

  20. Harmonization of good laboratory practice requirements and laboratory accreditation programs.

    PubMed

    Royal, P D

    1994-09-01

    Efforts to harmonize Good Laboratory Practice (GLP) requirements have been underway through the Organization for Economic Cooperation and Development (OECD) since 1981. In 1985, a GLP panel was established to facilitate the practical implementation of the OECD/GLP program. Through the OECD/GLP program, Memoranda of Understanding (MOU) agreements which foster requirements for reciprocal data and study acceptance and unified GLP standards have been developed among member countries. Three OECD Consensus Workshops and three inspectors training workshops have been held. In concert with these efforts, several OECD countries have developed GLP accreditation programs, managed by local health and environmental ministries. In addition, Canada and the United States are investigating Laboratory Accreditation programs for environmental monitoring assessment and GLP-regulated studies. In the European Community (EC), the need for quality standards specifying requirements for production and international trade has promoted International Standards Organization (ISO) certification for certain products. ISO-9000 standards identify requirements for certification of quality systems. These certification programs may affect the trade and market of laboratories conducting GLP studies. Two goals identified by these efforts are common to both programs: first, harmonization and recognition of requirements, and second, confidence in the rigor of program components used to assess the integrity of data produced and study activities. This confidence can be promoted, in part, through laboratory inspection and screening processes. However, the question remains, will data produced by sanctioned laboratories be mutually accepted on an international basis?(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Safety in the Chemical Laboratory. Epidemiology of Accidents in Academic Chemistry Laboratories, Part 2. Accident Intervention Study, Legal Aspects, and Observations.

    ERIC Educational Resources Information Center

    Hellmann, Margaret A.; And Others

    1986-01-01

    Reports on a chemistry laboratory accident intervention study conducted throughout the state of Colorado. Addresses the results of an initial survey of institutions of higher learning. Discusses some legal aspects concerning academic chemistry accidents. Provides some observations about academic chemistry laboratory accidents on the whole. (TW)

  2. Plant and animal accommodation for Space Station Laboratory

    NASA Technical Reports Server (NTRS)

    Olson, Richard L.; Gustan, Edith A.; Wiley, Lowell F.

    1986-01-01

    An extended study has been conducted with the goals of defining and analyzing relevant parameters and significant tradeoffs for the accommodation of nonhuman research aboard the NASA Space Station, as well as conducting tradeoff analyses for orbital reconfiguring or reoutfitting of the laboratory facility and developing laboratory designs and program plans. The two items exerting the greatest influence on nonhuman life sciences research were identified as the centrifuge and the specimen environmental control and life support system; both should be installed on the ground rather than in orbit.

  3. NATIONAL LABORATORIES: Better Performance Reporting Could Aid Oversight of Laboratory-Directed R&D Program

    DTIC Science & Technology

    2001-09-01

    Development ( LDRD ) program, which formalized a long-standing policy of allowing its multi-program national laboratories discretion to conduct self...initiated, independent research and development (R&D). DOE requires that LDRD work must focus on the advanced study of scientific or technical problems...

  4. Lessons Learned from 25 Years of Health Communication Research to Eliminate Health Disparities

    Cancer.gov

    Matthew Kreuter is the Kahn Family Professor and Associate Dean for Public Health at the Brown School of Washington University in St. Louis.  He is founder of the Health Communication Research Laboratory (HCRL), a leading center nationally that is now in its 22nd year of continuous funding. Dr. Kreuter’s research seeks to identify and apply communication-based strategies to eliminate health disparities.  In particular, his work focused on finding ways to increase the reach and effectiveness of health information to low-income and minority populations, and using information and technology to connect them to needed health services. Kreuter served for six years on the Institute of Medicine’s Board on Population Health and Public Health Practice, and in 2014 was named by Thompson Reuters as one of the most influential scientists in the world, ranking in the top 1 percent in his field based on the number of highly cited papers. He received his PhD and MPH in Health Behavior and Health Education from the School of Public Health at the University of North Carolina – Chapel Hill.  

  5. Energy efficiency in California laboratory-type facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, E.; Bell, G.; Sartor, D.

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in themore » overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.« less

  6. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  7. Laboratory Demonstrations for PDE and Metals Combustion at NASA MSFC's Advanced Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides status reporting on activities under order no. H-30549 for the period December 1 through December 31, 1999. Details the activities of the contract in the coordination of planned conduct of experiments at the MSFC Advanced Propulsion Laboratory in pulse detonation MHD power production and metals combustion.

  8. The Effect of Jigsaw Technique on the Students' Laboratory Material Recognition and Usage Skills in General Physics Laboratory-I Course

    ERIC Educational Resources Information Center

    Aydin, Abdullah; Biyikli, Filiz

    2017-01-01

    This research aims to compare the effects of Jigsaw technique from the cooperative learning methods and traditional learning method on laboratory material recognition and usage skills of students in General Physics Lab-I Course. This study was conducted with 63 students who took general physics laboratory-I course in the department of science…

  9. Polish Code of Ethics of a Medical Laboratory Specialist

    PubMed Central

    2014-01-01

    Along with the development of medicine, increasingly significant role has been played by the laboratory diagnostics. For over ten years the profession of the medical laboratory specialist has been regarded in Poland as the autonomous medical profession and has enjoyed a status of one of public trust. The process of education of medical laboratory specialists consists of a five-year degree in laboratory medicine, offered at Medical Universities, and of a five-year Vocational Specialization in one of the fields of laboratory medicine such as clinical biochemistry, medical microbiology, medical laboratory toxicology, medical laboratory cytomorphology and medical laboratory transfusiology. An important component of medical laboratory specialists’ identity is awareness of inherited ethos obtained from bygone generations of workers in this particular profession and the need to continue its further development. An expression of this awareness is among others Polish Code of Ethics of a Medical Laboratory Specialist (CEMLS) containing a set of values and a moral standpoint characteristic of this type of professional environment. Presenting the ethos of the medical laboratory specialist is a purpose of this article. Authors focus on the role CEMLS plays in areas of professional ethics and law. Next, they reconstruct the Polish model of ethos of medical diagnostic laboratory personnel. An overall picture consists of a presentation of the general moral principles concerning execution of this profession and rules of conduct in relations with the patient, own professional environment and the rest of the society. Polish model of ethical conduct, which is rooted in Hippocratic medical tradition, harmonizes with the ethos of medical laboratory specialists of other European countries and the world. PMID:27683468

  10. Polish Code of Ethics of a Medical Laboratory Specialist.

    PubMed

    Elżbieta, Puacz; Waldemar, Glusiec; Barbara, Madej-Czerwonka

    2014-09-01

    Along with the development of medicine, increasingly significant role has been played by the laboratory diagnostics. For over ten years the profession of the medical laboratory specialist has been regarded in Poland as the autonomous medical profession and has enjoyed a status of one of public trust. The process of education of medical laboratory specialists consists of a five-year degree in laboratory medicine, offered at Medical Universities, and of a five-year Vocational Specialization in one of the fields of laboratory medicine such as clinical biochemistry, medical microbiology, medical laboratory toxicology, medical laboratory cytomorphology and medical laboratory transfusiology. An important component of medical laboratory specialists' identity is awareness of inherited ethos obtained from bygone generations of workers in this particular profession and the need to continue its further development. An expression of this awareness is among others Polish Code of Ethics of a Medical Laboratory Specialist (CEMLS) containing a set of values and a moral standpoint characteristic of this type of professional environment. Presenting the ethos of the medical laboratory specialist is a purpose of this article. Authors focus on the role CEMLS plays in areas of professional ethics and law. Next, they reconstruct the Polish model of ethos of medical diagnostic laboratory personnel. An overall picture consists of a presentation of the general moral principles concerning execution of this profession and rules of conduct in relations with the patient, own professional environment and the rest of the society. Polish model of ethical conduct, which is rooted in Hippocratic medical tradition, harmonizes with the ethos of medical laboratory specialists of other European countries and the world.

  11. The Columbia River Research Laboratory

    USGS Publications Warehouse

    Maule, Alec

    2005-01-01

    The U.S. Geological Survey's Columbia River Research Laboratory (CRRL) was established in 1978 at Cook, Washington, in the Columbia River Gorge east of Portland, Oregon. The CRRL, as part of the Western Fisheries Research Center, conducts research on fishery issues in the Columbia River Basin. Our mission is to: 'Serve the public by providing scientific information to support the stewardship of our Nation's fish and aquatic resources...by conducting objective, relevant research'.

  12. Promoting Good Clinical Laboratory Practices and Laboratory Accreditation to Support Clinical Trials in Sub-Saharan Africa

    PubMed Central

    Shott, Joseph P.; Saye, Renion; Diakité, Moussa L.; Sanogo, Sintry; Dembele, Moussa B.; Keita, Sekouba; Nagel, Mary C.; Ellis, Ruth D.; Aebig, Joan A.; Diallo, Dapa A.; Doumbo, Ogobara K.

    2012-01-01

    Laboratory capacity in the developing world frequently lacks quality management systems (QMS) such as good clinical laboratory practices, proper safety precautions, and adequate facilities; impacting the ability to conduct biomedical research where it is needed most. As the regulatory climate changes globally, higher quality laboratory support is needed to protect study volunteers and to accurately assess biological parameters. The University of Bamako and its partners have undertaken a comprehensive QMS plan to improve quality and productivity using the Clinical and Laboratory Standards Institute standards and guidelines. The clinical laboratory passed the College of American Pathologists inspection in April 2010, and received full accreditation in June 2010. Our efforts to implement high-quality standards have been valuable for evaluating safety and immunogenicity of malaria vaccine candidates in Mali. Other disease-specific research groups in resource-limited settings may benefit by incorporating similar training initiatives, QMS methods, and continual improvement practices to ensure best practices. PMID:22492138

  13. Thermal Conductivity within Nanoparticle Powder Beds

    NASA Astrophysics Data System (ADS)

    Wilson, Mark; Chandross, Michael

    Non-equilibrium molecular dynamics is utilized to compute thermal transport properties within nanoparticle powder beds. In the realm of additive manufacturing of metals, the electronic contribution to thermal conduction is critical. To this end, our simulations incorporate the two temperature model, coupling a continuum representation of the electronic thermal contribution and the atomic phonon system. The direct method is used for conductivity determination, wherein thermal gradients between two different temperature heat flux reservoirs are calculated. The approach is demonstrated on several example cases including 304L stainless steel. The results from size distribution variations of mono/poly-disperse systems are extrapolated to predict values at the micron length scale, along with bulk properties at infinite system sizes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Assessing the outcome of Strengthening Laboratory Management Towards Accreditation (SLMTA) on laboratory quality management system in city government of Addis Ababa, Ethiopia

    PubMed Central

    Sisay, Abay; Mindaye, Tedla; Tesfaye, Abrham; Abera, Eyob; Desale, Adino

    2015-01-01

    Introduction Strengthening Laboratory Management Toward Accreditation (SLMTA) is a competency-based management training programme designed to bring about immediate and measurable laboratory improvement. The aim of this study is to assess the outcome of SLMTA on laboratory quality management system in Addis Ababa, Ethiopia. Methods The study used an Institutional based cross sectional study design that employed a secondary and primary data collection approach on the participated institution of medical laboratory in SLMTA. The study was conducted in Addis Ababa city government and the data was collected from February ‘April 2014 and data was entered in to EPI-data version 3.1 and was analyzed by SPSS version 20. Results The assessment finding indicate that there was a significant improvement in average scores (141.4; range of 65-196, 95%CI =86.275-115.5, p = 0.000) at final with 3 laboratories become 3 star, 6 laboratories were at 2 star, 11 were 1 star. Laboratory facilities respondents which thought getting adequate and timely manner mentorship were found 2.5 times more likely to get good success in the final score(AOR= 2.501, 95% CI= 1.109-4.602) than which did not get it. Conclusion At the end of SLMTA implementation,3 laboratories score 3 star, 6 laboratories were at 2 star, 11 were at 1 star. The most important contributing factor for not scoring star in the final outcome of SLMTA were not conducting their customer satisfaction survey, poor staff motivation, and lack of regular equipment service maintenance. Mentorship, onsite and offsite coaching and training activities had shown a great improvement on laboratory quality management system in most laboratories. PMID:26175805

  15. Assessing the outcome of Strengthening Laboratory Management Towards Accreditation (SLMTA) on laboratory quality management system in city government of Addis Ababa, Ethiopia.

    PubMed

    Sisay, Abay; Mindaye, Tedla; Tesfaye, Abrham; Abera, Eyob; Desale, Adino

    2015-01-01

    Strengthening Laboratory Management Toward Accreditation (SLMTA) is a competency-based management training programme designed to bring about immediate and measurable laboratory improvement. The aim of this study is to assess the outcome of SLMTA on laboratory quality management system in Addis Ababa, Ethiopia. The study used an Institutional based cross sectional study design that employed a secondary and primary data collection approach on the participated institution of medical laboratory in SLMTA. The study was conducted in Addis Ababa city government and the data was collected from February 'April 2014 and data was entered in to EPI-data version 3.1 and was analyzed by SPSS version 20. The assessment finding indicate that there was a significant improvement in average scores (141.4; range of 65-196, 95%CI=86.275-115.5, p=0.000) at final with 3 laboratories become 3 star, 6 laboratories were at 2 star, 11 were 1 star. Laboratory facilities respondents which thought getting adequate and timely manner mentorship were found 2.5 times more likely to get good success in the final score(AOR=2.501, 95% CI=1.109-4.602) than which did not get it. At the end of SLMTA implementation,3 laboratories score 3 star, 6 laboratories were at 2 star, 11 were at 1 star. The most important contributing factor for not scoring star in the final outcome of SLMTA were not conducting their customer satisfaction survey, poor staff motivation, and lack of regular equipment service maintenance. Mentorship, onsite and offsite coaching and training activities had shown a great improvement on laboratory quality management system in most laboratories.

  16. Practical Aspects of Designing and Conducting Validation Studies Involving Multi-study Trials.

    PubMed

    Coecke, Sandra; Bernasconi, Camilla; Bowe, Gerard; Bostroem, Ann-Charlotte; Burton, Julien; Cole, Thomas; Fortaner, Salvador; Gouliarmou, Varvara; Gray, Andrew; Griesinger, Claudius; Louhimies, Susanna; Gyves, Emilio Mendoza-de; Joossens, Elisabeth; Prinz, Maurits-Jan; Milcamps, Anne; Parissis, Nicholaos; Wilk-Zasadna, Iwona; Barroso, João; Desprez, Bertrand; Langezaal, Ingrid; Liska, Roman; Morath, Siegfried; Reina, Vittorio; Zorzoli, Chiara; Zuang, Valérie

    This chapter focuses on practical aspects of conducting prospective in vitro validation studies, and in particular, by laboratories that are members of the European Union Network of Laboratories for the Validation of Alternative Methods (EU-NETVAL) that is coordinated by the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM). Prospective validation studies involving EU-NETVAL, comprising a multi-study trial involving several laboratories or "test facilities", typically consist of two main steps: (1) the design of the validation study by EURL ECVAM and (2) the execution of the multi-study trial by a number of qualified laboratories within EU-NETVAL, coordinated and supported by EURL ECVAM. The approach adopted in the conduct of these validation studies adheres to the principles described in the OECD Guidance Document on the Validation and International Acceptance of new or updated test methods for Hazard Assessment No. 34 (OECD 2005). The context and scope of conducting prospective in vitro validation studies is dealt with in Chap. 4 . Here we focus mainly on the processes followed to carry out a prospective validation of in vitro methods involving different laboratories with the ultimate aim of generating a dataset that can support a decision in relation to the possible development of an international test guideline (e.g. by the OECD) or the establishment of performance standards.

  17. Habits of Mind for the Science Laboratory: Establishing Proper Safety Habits in the Laboratory Will Help Minimize the Risk of Accidents

    ERIC Educational Resources Information Center

    Hayes, Lisa; Smith, Margaret; Eick, Charles

    2005-01-01

    Lab safety begins with the teacher. Teachers must make learning how to be safe an integral and important part of their professional development and work. Teachers who are unfamiliar with laboratory instruction should take whatever steps necessary to prepare for the unique challenges associated with safety in conducting laboratory investigations…

  18. A Wet Chemistry Laboratory Cell

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Do Graduate Teaching Assistants Benefit from Teaching Inquiry-Based Laboratories?

    ERIC Educational Resources Information Center

    French, Donald; Russell, Connie

    2002-01-01

    Introduces a study investigating graduate teaching assistants' (GTA) perceptions on their role in conducting laboratories and explores the benefits of inquiry-based laboratories for GTAs considering their experiences and knowledge. (Contains 22 references.) (YDS)

  20. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential

    DOEpatents

    HUbbell, Joel M.

    2014-08-19

    The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.

  1. Future Shop: A Model Career Placement & Transition Laboratory.

    ERIC Educational Resources Information Center

    Floyd, Deborah L.; And Others

    During 1988-89, the Collin County Community College District (CCCCD) conducted a project to develop, implement, and evaluate a model career laboratory called a "Future Shop." The laboratory was designed to let users explore diverse career options, job placement opportunities, and transfer resources. The Future Shop lab had three major components:…

  2. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berger, Spencer Granett

    This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the

  3. Guidelines on Good Clinical Laboratory Practice

    PubMed Central

    Ezzelle, J.; Rodriguez-Chavez, I. R.; Darden, J. M.; Stirewalt, M.; Kunwar, N.; Hitchcock, R.; Walter, T.; D’Souza, M. P.

    2008-01-01

    A set of Good Clinical Laboratory Practice (GCLP) standards that embraces both the research and clinical aspects of GLP were developed utilizing a variety of collected regulatory and guidance material. We describe eleven core elements that constitute the GCLP standards with the objective of filling a gap for laboratory guidance, based on IND sponsor requirements, for conducting laboratory testing using specimens from human clinical trials. These GCLP standards provide guidance on implementing GLP requirements that are critical for laboratory operations, such as performance of protocol-mandated safety assays, peripheral blood mononuclear cell processing and immunological or endpoint assays from biological interventions on IND-registered clinical trials. The expectation is that compliance with the GCLP standards, monitored annually by external audits, will allow research and development laboratories to maintain data integrity and to provide immunogenicity, safety, and product efficacy data that is repeatable, reliable, auditable and that can be easily reconstructed in a research setting. PMID:18037599

  4. MDMA effects consistent across laboratories

    PubMed Central

    Kirkpatrick, Matthew G.; Baggott, Matthew J.; Mendelson, John E.; Galloway, Gantt P.; Liechti, Matthias E.; Hysek, Cédric M.; de Wit, Harriet

    2014-01-01

    Rationale Several laboratories have conducted placebo-controlled drug challenge studies with MDMA, providing a unique source of data to examine the reliability of the acute effects of the drug across subject samples and settings. We examined the subjective and physiological responses to the drug across three different laboratories, and investigated the influence of prior MDMA use. Methods Overall, 220 healthy volunteers with varying levels of previous MDMA experience participated in laboratory-based studies in which they received placebo or oral MDMA (1.5 mg/kg or 125 mg fixed dose) under double blind conditions. Cardiovascular and subjective effects were assessed before and repeatedly after drug administration. The studies were conducted independently by investigators in Basel, San Francisco and Chicago. Results Despite methodological differences between the studies and differences in the subjects' drug use histories, MDMA produced very similar cardiovascular and subjective effects across the sites. The participants' prior use of MDMA was inversely related to feeling `Any Drug Effect' only at sites testing more experienced users. Conclusions These data indicate that the pharmacological effects of MDMA are robust and highly reproducible across settings. There was also modest evidence for tolerance to the effects of MDMA in regular users. PMID:24633447

  5. Development of a Portable Motor Learning Laboratory (PoMLab)

    PubMed Central

    Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves

  6. Development of a Portable Motor Learning Laboratory (PoMLab).

    PubMed

    Takiyama, Ken; Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves

  7. 1995 Laboratory-Directed Research and Development Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  8. Improving Consistency in Large Laboratory Courses: A Design for a Standardized Practical Exam

    ERIC Educational Resources Information Center

    Chen, Xinnian; Graesser, Donnasue; Sah, Megha

    2015-01-01

    Laboratory courses serve as important gateways to science, technology, engineering, and mathematics education. One of the challenges in assessing laboratory learning is to conduct meaningful and standardized practical exams, especially for large multisection laboratory courses. Laboratory practical exams in life sciences courses are frequently…

  9. A Model of Thermal Conductivity for Planetary Soils: 1. Theory for Unconsolidated Soils

    NASA Technical Reports Server (NTRS)

    Piqueux, S.; Christensen, P. R.

    2009-01-01

    We present a model of heat conduction for mono-sized spherical particulate media under stagnant gases based on the kinetic theory of gases, numerical modeling of Fourier s law of heat conduction, theoretical constraints on the gas thermal conductivity at various Knudsen regimes, and laboratory measurements. Incorporating the effect of the temperature allows for the derivation of the pore-filling gas conductivity and bulk thermal conductivity of samples using additional parameters (pressure, gas composition, grain size, and porosity). The radiative and solid-to-solid conductivities are also accounted for. Our thermal model reproduces the well-established bulk thermal conductivity dependency of a sample with the grain size and pressure and also confirms laboratory measurements finding that higher porosities generally lead to lower conductivities. It predicts the existence of the plateau conductivity at high pressure, where the bulk conductivity does not depend on the grain size. The good agreement between the model predictions and published laboratory measurements under a variety of pressures, temperatures, gas compositions, and grain sizes provides additional confidence in our results. On Venus, Earth, and Titan, the pressure and temperature combinations are too high to observe a soil thermal conductivity dependency on the grain size, but each planet has a unique thermal inertia due to their different surface temperatures. On Mars, the temperature and pressure combination is ideal to observe the soil thermal conductivity dependency on the average grain size. Thermal conductivity models that do not take the temperature and the pore-filling gas composition into account may yield significant errors.

  10. Pedagogical Evaluation of Remote Laboratories in eMerge Project

    ERIC Educational Resources Information Center

    Lang, Daniela; Mengelkamp, Christoph; Jaeger, Reinhold S.; Geoffroy, Didier; Billaud, Michel; Zimmer, Thomas

    2007-01-01

    This study investigates opportunities for conducting electrical engineering experiments via the Internet rather than in an actual laboratory. Eighty-four French students of electrical engineering (semester 1, 2004) at Bordeaux University 1 participated in practical courses. Half of the students performed experiments in a laboratory while the other…

  11. Electric Vehicle and Wireless Charging Laboratory

    DOT National Transportation Integrated Search

    2018-03-23

    Wireless charging tests of electric vehicles (EV) have been conducted at the EVTC Wireless Laboratory located at the Florida Solar Energy Center, Cocoa, FL. These tests were performed to document testing protocols, evaluate standards and evaluate ope...

  12. Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Knight, Rosemary; Müller-Petke, Mike; Auken, Esben; Barfod, Adrian A. S.; Ferré, Ty P. A.; Vilhelmsen, Troels N.; Johnson, Carole D.; Christiansen, Anders V.

    2017-11-01

    The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high-quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near-surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements.

  13. Application of 129I/127I Ratios in Groundwater Studies Conducted at Los Alamos National Laboratory, New Mexico

    NASA Astrophysics Data System (ADS)

    Longmire, P.; Dale, M.; Granzow, K.; Yanicak, S. M.

    2014-12-01

    Los Alamos National Laboratory (LANL) is an operating nuclear site that has released treated effluents from three plutonium-processing facilities since the mid 1940s. The radioisotope 129I (T1/2 = 15.7 Myrs) derived from235U and 239Pu processing at LANL is locally detected in groundwater above background concentrations. This isotope provides a unique tracer for groundwater investigations conducted at LANL that helps to identify source releases linked to groundwater-flow paths in aquifers subject to binary and ternary mixing of natural- and industrial-derived waters containing chromate and other chemicals. Bromide, chlorate, chloride, nitrate, perchlorate, sulfate, and tritium were associated with multiple outfalls at LANL and, therefore, do not provide unique chemical signatures identifying a specific point of release or source. Natural and anthropogenic ratios of 129I/127I measured in groundwater samples collected at LANL were quantified using accelerator mass spectrometry at Purdue Rare Isotope Measurement Laboratory, Purdue University. Anthropogenic ratios of 129I/127I range from 1,531 X 10-15 to 10,323 X 10-15 within perched-intermediate groundwater present in volcanoclastic and basalt aquifers (210 - 216 m depth). Anthropogenic ratios of 129I/127I range from 359 X 10-15 to 4,350 X 10-15 within the regional aquifer (280 m depth) consisting of volcanoclastic sediments of variable hydraulic properties. Local background ratios of 129I/127I have a narrow range of 171 X 10-15 to 378 X 10-15 in the regional aquifer. Dissolved iodide measured in groundwater at LANL is stable dominantly as iodate. Background concentrations of dissolved iodate (0.1 to 33.2 nM) are less variable compared to anthropogenic iodate (8.0 to 246 nM) in groundwater at the site. Variability in concentrations of anthropogenic iodate is controlled by heterogeneous source releases of iodate over time and non-uniform mixing of groundwater in the different aquifers.

  14. Laboratory Biosafety and Biosecurity Risk Assessment Technical Guidance Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astuto-Gribble, Lisa M; Caskey, Susan Adele

    2014-07-01

    The purpose of this document is threefold: 1) to describe the laboratory bio safety and biosecurity risk assessment process and its conceptual framework; 2) provide detailed guidance and suggested methodologies on how to conduct a risk assessment; and 3) present some practical risk assessment process strategies using realistic laboratory scenarios.

  15. Formaldehyde Exposures in a University Anatomy Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Kyle William

    Air sampling studies were conducted within a university anatomical laboratory during the embalmment of a cadaver in order to determine if dangerous concentrations of formaldehyde existed. Three air sampling studies were conducted in the anatomical laboratory on three separate days that a cadaver was being embalmed. Samples were collected and analyzed using the Occupational Safety and Health Administration (OSHA) Sampling and Analytical Methods: Method 52. Each air sampling study sampled for short term exposure limit (STEL) and time weighted mean (TWA) breathing zone formaldehyde concentrations as well as area TWA formaldehyde concentrations. A personal aldehyde monitor was also used in each air sampling study to sample for breathing zone formaldehyde concentrations. Measured TWA mean exposures to formaldehyde ranged from 0.15--1.3 parts per million (ppm), STEL formaldehyde exposures ranged from 0.019--0.64 ppm, and eight-hour TWAs ranged from 0.03 to 3.6 ppm. All 8-hour TWA formaldehyde concentrations sampled in the anatomy laboratory during an embalmment were less than the permissible exposure limit (PEL) required by OSHA.

  16. The SLMTA programme: Transforming the laboratory landscape in developing countries

    PubMed Central

    Maruta, Talkmore; Luman, Elizabeth T.; Nkengasong, John N.

    2014-01-01

    Background Efficient and reliable laboratory services are essential to effective and well-functioning health systems. Laboratory managers play a critical role in ensuring the quality and timeliness of these services. However, few laboratory management programmes focus on the competencies required for the daily operations of a laboratory in resource-limited settings. This report provides a detailed description of an innovative laboratory management training tool called Strengthening Laboratory Management Toward Accreditation (SLMTA) and highlights some challenges, achievements and lessons learned during the first five years of implementation (2009–2013) in developing countries. Programme SLMTA is a competency-based programme that uses a series of short courses and work-based learning projects to effect immediate and measurable laboratory improvement, while empowering laboratory managers to implement practical quality management systems to ensure better patient care. A SLMTA training programme spans from 12 to 18 months; after each workshop, participants implement improvement projects supported by regular supervisory visits or on-site mentoring. In order to assess strengths, weaknesses and progress made by the laboratory, audits are conducted using the World Health Organization’s Regional Office for Africa (WHO AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist, which is based on International Organization for Standardization (ISO) 15189 requirements. These internal audits are conducted at the beginning and end of the SLMTA training programme. Conclusion Within five years, SLMTA had been implemented in 617 laboratories in 47 countries, transforming the laboratory landscape in developing countries. To our knowledge, SLMTA is the first programme that makes an explicit connection between the performance of specific management behaviours and routines and ISO 15189 requirements. Because of this close relationship, SLMTA is

  17. [Current biosafety in clinical laboratories in Japan: report of questionnaires' data obtained from clinical laboratory personnel in Japan].

    PubMed

    Goto, Mieko; Yamashita, Tomonari; Misawa, Shigeki; Komori, Toshiaki; Okuzumi, Katsuko; Takahashi, Takashi

    2007-01-01

    To determine the status of biosafety in clinical laboratories in Japan, we conducted a survey using questionnaires on the biosafety of laboratory personnel in 2004. We obtained data from 431 hospitals (response: 59.5%). Respondents were 301 institutions (70%) having biological safety cabinets (BSCs). BSCs were held in 78% of microbiological laboratories, 7.9% of genetic laboratories, 2.7% of histopathological laboratories, and 1% or less at other laboratories. A clean bench in examination rooms for acid-fast bacilli was applied at 20 hospitals. We found 28 cases of possible laboratory-associated tuberculosis infection, 25 of which were associated with lack of BSC. Other risk factors were immature skills and insufficiently skilled eguipment operation. The frequency of rupture accidents during specimen centrifugation was 67% in dealing with blood and 9.7% in collecting acid-fast bacilli. Half or more accidents were related to inadequate sample tube materials. Technologists were shown to be working on blood collection in many hospitals (75%), and 1,534 events of self-inflicted needle puncture developed in the last 5 years. These results suggest that biosafety systems are woefully lacking or inadequate in clinical laboratories in Japan and must be established at the earliest possible opportunity.

  18. How do laboratory technicians perceive their role in the tuberculosis diagnostic process? A cross-sectional study among laboratory technicians in health centers of Central Java Province, Indonesia.

    PubMed

    Widjanarko, Bagoes; Widyastari, Dyah Anantalia; Martini, Martini; Ginandjar, Praba

    2016-01-01

    Detection of acid-fast bacilli in respiratory specimens serves as an initial pulmonary tuberculosis (TB) diagnosis. Laboratories are the essential and fundamental part of all health systems. This study aimed to describe how laboratory technicians perceived their own self and work. This included perceived self-efficacy, perceived role, perceived equipment availability, perceived procedures, perceived reward and job, and perceived benefit of health education, as well as level of knowledge and attitudes related to work performance of laboratory technicians. This was a cross-sectional quantitative study involving 120 laboratory technicians conducted in Central Java. Interviews and observation were conducted to measure performance and work-related variables. Among 120 laboratory technicians, 43.3% showed fairly good performance. They complied with 50%-75% of all procedures, including sputum collection, laboratory tools utilization, sputum smearing, staining, smear examination, grading of results, and universal precaution practice. Perceived role, perceived self-efficacy, and knowledge of laboratory procedures were significantly correlated to performance, besides education and years of working as a laboratory technician. Perceived equipment availability was also significantly correlated to performance after the education variable was controlled. Most of the laboratory technicians believed that they have an important role in TB patients' treatment and should display proper self-efficacy in performing laboratory activities. The result may serve as a basic consideration to develop a policy for enhancing motivation of laboratory technicians in order to improve the TB control program.

  19. How do laboratory technicians perceive their role in the tuberculosis diagnostic process? A cross-sectional study among laboratory technicians in health centers of Central Java Province, Indonesia

    PubMed Central

    Widjanarko, Bagoes; Widyastari, Dyah Anantalia; Martini, Martini; Ginandjar, Praba

    2016-01-01

    Purpose Detection of acid-fast bacilli in respiratory specimens serves as an initial pulmonary tuberculosis (TB) diagnosis. Laboratories are the essential and fundamental part of all health systems. This study aimed to describe how laboratory technicians perceived their own self and work. This included perceived self-efficacy, perceived role, perceived equipment availability, perceived procedures, perceived reward and job, and perceived benefit of health education, as well as level of knowledge and attitudes related to work performance of laboratory technicians. Methods This was a cross-sectional quantitative study involving 120 laboratory technicians conducted in Central Java. Interviews and observation were conducted to measure performance and work-related variables. Results Among 120 laboratory technicians, 43.3% showed fairly good performance. They complied with 50%–75% of all procedures, including sputum collection, laboratory tools utilization, sputum smearing, staining, smear examination, grading of results, and universal precaution practice. Perceived role, perceived self-efficacy, and knowledge of laboratory procedures were significantly correlated to performance, besides education and years of working as a laboratory technician. Perceived equipment availability was also significantly correlated to performance after the education variable was controlled. Conclusion Most of the laboratory technicians believed that they have an important role in TB patients’ treatment and should display proper self-efficacy in performing laboratory activities. The result may serve as a basic consideration to develop a policy for enhancing motivation of laboratory technicians in order to improve the TB control program. PMID:27660502

  20. Applications of a digital darkroom in the forensic laboratory

    NASA Astrophysics Data System (ADS)

    Bullard, Barry D.; Birge, Brian

    1997-02-01

    Through a joint agreement with the Indiana-Marion County Forensic Laboratory Services Agency, the Institute for Forensic Imaging conducted a pilot program to investigate crime lab applications of a digital darkroom. IFI installed and staffed a state-of-the-art digital darkroom in the photography laboratory of the Indianapolis-Marion County crime lab located at Indianapolis, Indiana. The darkroom consisted of several high resolution color digital cameras, image processing computer, dye sublimation continuous tone digital printers, and CD-ROM writer. This paper describes the use of the digital darkroom in several crime lab investigations conducted during the program.

  1. Integrating teaching and research in the field and laboratory settings

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kaseke, K. F.; Daryanto, S.; Ravi, S.

    2015-12-01

    Field observations and laboratory measurements are great ways to engage students and spark students' interests in science. Typically these observations are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research in the field and laboratory setting in both US and abroad and worked with students without strong science background to utilize simple laboratory equipment and various environmental sensors to conduct innovative projects. We worked with students in Namibia and two local high school students in Indianapolis to conduct leaf potential measurements, soil nutrient extraction, soil infiltration measurements and isotope measurements. The experience showed us the potential of integrating teaching and research in the field setting and working with people with minimum exposure to modern scientific instrumentation to carry out creative projects.

  2. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    ERIC Educational Resources Information Center

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  3. Life sciences laboratory breadboard simulations for shuttle

    NASA Technical Reports Server (NTRS)

    Taketa, S. T.; Simmonds, R. C.; Callahan, P. X.

    1975-01-01

    Breadboard simulations of life sciences laboratory concepts for conducting bioresearch in space were undertaken as part of the concept verification testing program. Breadboard simulations were conducted to test concepts of and scope problems associated with bioresearch support equipment and facility requirements and their operational integration for conducting manned research in earth orbital missions. It emphasized requirements, functions, and procedures for candidate research on crew members (simulated) and subhuman primates and on typical radioisotope studies in rats, a rooster, and plants.

  4. Implications of the introduction of laboratory demand management at primary care clinics in South Africa on laboratory expenditure

    PubMed Central

    Lekalakala, Ruth; Asmall, Shaidah; Cassim, Naseem

    2016-01-01

    Background Diagnostic health laboratory services are regarded as an integral part of the national health infrastructure across all countries. Clinical laboratory tests contribute substantially to health system goals of increasing quality of care and improving patient outcomes. Objectives This study aimed to analyse current laboratory expenditures at the primary healthcare (PHC) level in South Africa as processed by the National Health Laboratory Service and to determine the potential cost savings of introducing laboratory demand management. Methods A retrospective cross-sectional analysis of laboratory expenditures for the 2013/2014 financial year across 11 pilot National Health Insurance health districts was conducted. Laboratory expenditure tariff codes were cross-tabulated to the PHC essential laboratory tests list (ELL) to determine inappropriate testing. Data were analysed using a Microsoft Access database and Excel software. Results Approximately R35 million South African Rand (10%) of the estimated R339 million in expenditures was for tests that were not listed within the ELL. Approximately 47% of expenditure was for laboratory tests that were indicated in the algorithmic management of patients on antiretroviral treatment. The other main cost drivers for non-ELL testing included full blood count and urea, as well as electrolyte profiles usually requested to support management of patients on antiretroviral treatment. Conclusions Considerable annual savings of up to 10% in laboratory expenditure are possible at the PHC level by implementing laboratory demand management. In addition, to achieve these savings, a standardised PHC laboratory request form and some form of electronic gatekeeping system that must be supported by an educational component should be implemented. PMID:28879107

  5. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia.

    PubMed

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a total of 43 facilities which, were investigated through quantitative methods using structured questionnaires interviews. Focus group discussion with the designated supply chain managers and key informant interviews were conducted for the qualitative method. There exists a well-designed logistics system for laboratory commodities with trained pharmacy personnel, distributed standard LMIS formats and established inventory control procedures. However, majority of laboratory professionals were not trained in LMIS. Majority of the facilities (60.5%) were stocked out for at least one ART monitoring and TB laboratory reagents and the highest stock out rate was for chemistry reagents. Expired ART monitoring laboratory commodities were found in 25 (73.5%) of facilities. Fifty percent (50%) of the assessed hospitals and 54% of health centers were currently using stock/bin cards for all HIV/AIDS and TB laboratory commodities in main pharmacy store, among these only 25% and 20.8% of them were updated with accurate information matching with the physical count done at the time of visit for hospitals and health centers respectively. Even though there exists a well designed laboratory LMIS, keeping quality stock/bin cards and LMIS reports were very low. Key ART monitoring laboratory commodities were stock out at many facilities at the day of visit and during the past six months. Based on findings, training of laboratory personnel's managing laboratory commodities and keeping accurate inventory control procedures

  6. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia

    PubMed Central

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Introduction Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a total of 43 facilities which, were investigated through quantitative methods using structured questionnaires interviews. Focus group discussion with the designated supply chain managers and key informant interviews were conducted for the qualitative method. Results There exists a well-designed logistics system for laboratory commodities with trained pharmacy personnel, distributed standard LMIS formats and established inventory control procedures. However, majority of laboratory professionals were not trained in LMIS. Majority of the facilities (60.5%) were stocked out for at least one ART monitoring and TB laboratory reagents and the highest stock out rate was for chemistry reagents. Expired ART monitoring laboratory commodities were found in 25 (73.5%) of facilities. Fifty percent (50%) of the assessed hospitals and 54% of health centers were currently using stock/bin cards for all HIV/AIDS and TB laboratory commodities in main pharmacy store, among these only 25% and 20.8% of them were updated with accurate information matching with the physical count done at the time of visit for hospitals and health centers respectively. Conclusion Even though there exists a well designed laboratory LMIS, keeping quality stock/bin cards and LMIS reports were very low. Key ART monitoring laboratory commodities were stock out at many facilities at the day of visit and during the past six months. Based on findings, training of laboratory personnel's managing laboratory commodities and keeping

  7. Intelligent Intersection Traffic Control Laboratory Fact Sheet

    DOT National Transportation Integrated Search

    2006-07-27

    The Intelligent Intersection 11:affic Control Laboratory (IITCL) is an outdoor facility that supports the Federal Highway Administration's (FHWA) various research programs and research activities conducted by other U.S. Department of 11:ansportation ...

  8. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  9. Tiger Team Assessment of the Ames Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    This report documents the Tiger Assessment of the Ames Laboratory (Ames), located in Ames, Iowa. Ames is operated for the US Department of Energy (DOE) by Iowa State University. The assessment was conducted from February 10 to March 5, 1992, under the auspices of the Office of Special Projects, Office of the Assistant Secretary of Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing Environment, Safety, and Health (ES H) disciplines; management practices; and contractor and DOE self-assessments. Compliance with applicable Federal, State of Iowa, and local regulations; applicable DOE Orders; best management practices; and internal requirements atmore » Ames Laboratory were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and the site contractor's management of ES H/quality assurance program was conducted.« less

  10. Virtual Laboratories and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Hut, Piet

    2008-05-01

    Since we cannot put stars in a laboratory, astrophysicists had to wait till the invention of computers before becoming laboratory scientists. For half a century now, we have been conducting experiments in our virtual laboratories. However, we ourselves have remained behind the keyboard, with the screen of the monitor separating us from the world we are simulating. Recently, 3D on-line technology, developed first for games but now deployed in virtual worlds like Second Life, is beginning to make it possible for astrophysicists to enter their virtual labs themselves, in virtual form as avatars. This has several advantages, from new possibilities to explore the results of the simulations to a shared presence in a virtual lab with remote collaborators on different continents. I will report my experiences with the use of Qwaq Forums, a virtual world developed by a new company (see http://www.qwaq.com).

  11. 24th geotechnical laboratory testing short course

    DOT National Transportation Integrated Search

    2008-02-01

    This is a 3-day workshop/short course to teach practicing professionals techniques and procedures for conducting high quality geotechnical laboratory tests. Transportation facility design and construction begins with an investigation of the type, ext...

  12. Laboratory for Atmospheres: 2006 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    2007-01-01

    The 2006 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, are highlighted in this report.

  13. Laboratory for Atmospheres 2009 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Cote, Charles E.

    2010-01-01

    The 2009 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  14. Laboratory for Atmospheres 2005 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The 2005 Technical highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  15. Laboratory for Atmospheres 2010 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The 2010 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  16. Laboratory for Atmospheres 2007 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    2008-01-01

    The 2007 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report.

  17. Dental Laboratory Technology. Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Sappe', Hoyt; Smith, Debra S.

    This report provides results of Phase I of a project that researched the occupational area of dental laboratory technology, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train dental laboratory technicians. Section 1 contains general information:…

  18. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY - PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency's Office of Research and Development, the National Risk Management Research Laboratory (NRMRL) conducts research into ways to prevent and reduce pollution risks that threaten human health and the environment. The laboratory inve...

  19. 75 FR 70939 - Approval of SAYBOLT LP, as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Commercial Gauger and Laboratory AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: Notice of accreditation and approval of Saybolt LP, as a commercial gauger and laboratory... wishing to employ this entity to conduct laboratory analyses and gauger services should request and...

  20. Impact of external haematology proficiency testing programme on quality of laboratories.

    PubMed

    Saxena, Renu; Katoch, S C; Srinivas, Upendra; Rao, Seema; Anand, Hema

    2007-11-01

    A reliable and reproducible report from a laboratory needs internal quality control within the laboratory and participation in external proficiency testing programmes (EPTP). This study conducted at the Department of Haematology, All India Institute of Medical Sciences (AIIMS), New Delhi, which has been conducting an EPTP since 1992, was undertaken to assess the efficacy of this programme in improving the performance of participating laboratories in reporting test samples sent for Hb, total leucocyte count (TLC), reticulocyte count and assessment of peripheral blood smear (PBS). The samples were prepared in our laboratory according to the International Standards Organization (ISO) guidelines. The performance of individual laboratories was assessed using robust Z score, which is an indicator of acceptability of the test result. An improvement in the overall percentage of laboratories with acceptable reports was seen during the study period. It has increased from 38,40,40 per cent in 1992 to 85, 90,94.7 per cent in 2006 for Hb, TLC, reticulocyte count, respectively. However, the results for peripheral smear assessment improved only marginally. The external haematology proficiency testing programme run by our department for Hb, TLC, reticulocyte count, and peripheral blood smear assessment, has helped in improving the reporting standards of these parameters in Indian laboratories.

  1. [External quality assessment in clinical biochemistry laboratories: pilot study in 11 laboratories of Lomé (Togo)].

    PubMed

    Kouassi, Kafui; Fétéké, Lochina; Assignon, Selom; Dorkenoo, Ameyo; Napo-Koura, Gado

    2015-01-01

    This study aims to evaluate the performance of a few biochemistry analysis and make recommendations to the place of the stakeholders. It is a cross-sectional study conducted between the October 1(st), 2012 and the July 31, 2013 bearing on the results of 5 common examinations of clinical biochemistry, provided by 11 laboratories volunteers opening in the public and private sectors. These laboratories have analysed during the 3 cycles, 2 levels (medium and high) of serum concentration of urea, glucose, creatinine and serum aminotransferases. The performance of laboratories have been determined from the acceptable limits corresponding to the limits of total errors, defined by the French Society of Clinical Biology (SFBC). A system of internal quality control is implemented by all laboratories and 45% of them participated in international programs of external quality assessment (EQA). The rate of acceptable results for the entire study was of 69%. There was a significant difference (p<0.002) between the performance of the group of laboratories engaged in a quality approach and the group with default implementation of the quality approach. Also a significant difference was observed between the laboratories of the central level and those of the peripheral level of our health system (p<0.047). The performance of the results provided by the laboratories remains relatively unsatisfactory. It is important that the Ministry of Health put in place a national program of EQA with mandatory participation.

  2. Lumber drying and heat sterilization research at the U.S. Forest Products Laboratory

    Treesearch

    William T. Simpson

    2002-01-01

    The Forest Products Laboratory (FPL) has a long history of research and technology transfer in lumber drying. Many of the dry kiln schedules used in industry today were developed by the staff of the Laboratory, and for many years the Laboratory conducted a kiln drying short course for training dry kiln operators. The purpose of this report is to describe the Laboratory...

  3. [Quality Management System in Pathological Laboratory].

    PubMed

    Koyatsu, Junichi; Ueda, Yoshihiko

    2015-07-01

    Even compared to other clinical laboratories, the pathological laboratory conducts troublesome work, and many of the work processes are also manual. Therefore, the introduction of the systematic management of administration is necessary. It will be a shortcut to use existing standards such as ISO 15189 for this purpose. There is no standard specialized for the pathological laboratory, but it is considered to be important to a pathological laboratory in particular. 1. Safety nianagement of the personnel and environmental conditions. Comply with laws and regulations concerning the handling of hazardous materials. 2. Pre-examination processes. The laboratory shall have documented procedures for the proper collection and handling of primary samples. Developed and documented criteria for acceptance or rejection of samples are applied. 3. Examination processes. Selection, verification, and validation of the examination procedures. Devise a system that can constantly monitor the traceability of the sample. 4. Post-examination processes. Storage, retention, and disposal of clinical samples. 5. Release of results. When examination results fall within established alert or critical intervals, immediately notify the physicians. The important point is to recognize the needs of the client and be aware that pathological diagnoses are always "the final diagnoses".

  4. Mastracchio conducts CDRA troubleshooting in the US Lab

    NASA Image and Video Library

    2014-04-04

    Expedition 39 flight engineer Rick Mastracchio looks for a loose connection as he conducts troubleshooting operations on the Carbon Dioxide Removal Assembly (CDRA) in the Destiny U.S. Laboratory. Image was released by astronaut on Twitter. (IO Note: Camera data file contains incorrect time.)

  5. Implementation of a National Reference Laboratory for Buruli Ulcer Disease in Togo

    PubMed Central

    Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl–Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    Background In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Methodology Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions “Maritime” and “Central,” standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. Principal Findings The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. Conclusions High inter-laboratory concordance rates as well as case confirmation

  6. Implementation of a national reference laboratory for Buruli ulcer disease in Togo.

    PubMed

    Beissner, Marcus; Huber, Kristina Lydia; Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl-Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions "Maritime" and "Central," standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. High inter-laboratory concordance rates as well as case confirmation rates of 50% (microscopy), 71% (PCR at national level), and 78

  7. Investigating the Effect of Argument-Driven Inquiry in Laboratory Instruction

    ERIC Educational Resources Information Center

    Demircioglu, Tuba; Ucar, Sedat

    2015-01-01

    The aim of this study is to investigate the effect of argument-driven inquiry (ADI) based laboratory instruction on the academic achievement, argumentativeness, science process skills, and argumentation levels of pre-service science teachers in the General Physics Laboratory III class. The study was conducted with 79 pre-service science teachers.…

  8. Evaluation of hydraulic conductivities calculated from multi-port permeameter measurements

    USGS Publications Warehouse

    Wolf, Steven H.; Celia, Michael A.; Hess, Kathryn M.

    1991-01-01

    A multiport permeameter was developed for use in estimating hydraulic conductivity over intact sections of aquifer core using the core liner as the permeameter body. Six cores obtained from one borehole through the upper 9 m of a stratified glacial-outwash aquifer were used to evaluate the reliability of the permeameter. Radiographs of the cores were used to assess core integrity and to locate 5- to 10-cm sections of similar grain size for estimation of hydraulic conductivity. After extensive testing of the permeameter, hydraulic conductivities were determined for 83 sections of the six cores. Other measurement techniques included permeameter measurements on repacked sections of core, estimates based on grain-size analyses, and estimates based on borehole flowmeter measurements. Permeameter measurements of 33 sections of core that had been extruded, homogenized, and repacked did not differ significantly from the original measurements. Hydraulic conductivities estimated from grain-size distributions were slightly higher than those calculated from permeameter measurements; the significance of the difference depended on the estimating equation used. Hydraulic conductivities calculated from field measurements, using a borehole flowmeter in the borehole from which the cores were extracted, were significantly higher than those calculated from laboratory measurements and more closely agreed with independent estimates of hydraulic conductivity based on tracer movement near the borehole. This indicates that hydraulic conductivities based on laboratory measurements of core samples may underestimate actual field hydraulic conductivities in this type of stratified glacial-outwash aquifer.

  9. Current practice in laboratory diagnostics of autoimmune diseases in Croatia. 
Survey of the Working group for laboratory diagnostics of autoimmune diseases of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Kuna, Andrea Tešija; Đerek, Lovorka; Kozmar, Ana; Drvar, Vedrana

    2016-10-15

    With the trend of increasing incidence of autoimmune diseases, laboratories are faced with exponential growth of the requests for tests relating the diagnosis of these diseases. Unfortunately, the lack of laboratory personnel experienced in this specific discipline of laboratory diagnostic, as well as an unawareness of a method limitation often results in confusion for clinicians. The aim was to gain insight into number and type of Croatian laboratories that perform humoral diagnostics with the final goal to improve and harmonize laboratory diagnostics of autoimmune diseases in Croatia. In order to get insight into current laboratory practice two questionnaires, consisting of 42 questions in total, were created. Surveys were conducted using SurveyMonkey application and were sent to 88 medical biochemistry laboratories in Croatia for the first survey. Out of 33 laboratories that declared to perform diagnostic from the scope, 19 were selected for the second survey based on the tests they pleaded to perform. The survey comprised questions regarding autoantibody hallmarks of systemic autoimmune diseases while regarding organ-specific autoimmune diseases was limited to diseases of liver, gastrointestinal and nervous system. Response rate was high with 80 / 88 (91%) laboratories which answered the first questionnaire, and 19 / 19 (1.0) for the second questionnaire. Obtained results of surveys indicate high heterogeneity in the performance of autoantibody testing among laboratories in Croatia. Results indicate the need of creating recommendations and algorithms in order to harmonize the approach to laboratory diagnostics of autoimmune diseases in Croatia.

  10. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe, Jeffrey .C; Boring, Ronald L.

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation andmore » control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.« less

  11. Thermal Cameras in School Laboratory Activities

    ERIC Educational Resources Information Center

    Haglund, Jesper; Jeppsson, Fredrik; Hedberg, David; Schönborn, Konrad J.

    2015-01-01

    Thermal cameras offer real-time visual access to otherwise invisible thermal phenomena, which are conceptually demanding for learners during traditional teaching. We present three studies of students' conduction of laboratory activities that employ thermal cameras to teach challenging thermal concepts in grades 4, 7 and 10-12. Visualization of…

  12. Biosafety Practices and Emergency Response at the Idaho National Laboratory and Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank F. Roberto; Dina M. Matz

    2008-03-01

    Strict federal regulations govern the possession, use, and transfer of pathogens and toxins with potential to cause harm to the public, either through accidental or deliberate means. Laboratories registered through either the Centers for Disease Control and Prevention (CDC), the U.S. Dept. of Agriculture (USDA), or both, must prepare biosafety, security, and incident response plans, conduct drills or exercises on an annual basis, and update plans accordingly. At the Idaho National Laboratory (INL), biosafety, laboratory, and emergency management staff have been working together for 2 years to satisfy federal and DOE/NNSA requirements. This has been done through the establishment ofmore » plans, training, tabletop and walk-through exercises and drills, and coordination with local and regional emergency response personnel. Responding to the release of infectious agents or toxins is challenging, but through familiarization with the nature of the hazardous biological substances or organisms, and integration with laboratory-wide emergency response procedures, credible scenarios are being used to evaluate our ability to protect workers, the public, and the environment from agents we must work with to provide for national biodefense.« less

  13. Cookstove Laboratory Research - Fiscal Year 2016 Report

    EPA Science Inventory

    This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, ...

  14. U.S. Ebola Treatment Center Clinical Laboratory Support.

    PubMed

    Jelden, Katelyn C; Iwen, Peter C; Herstein, Jocelyn J; Biddinger, Paul D; Kraft, Colleen S; Saiman, Lisa; Smith, Philip W; Hewlett, Angela L; Gibbs, Shawn G; Lowe, John J

    2016-04-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronically surveyed on clinical laboratory characteristics. Survey responses were returned from 47 ETCs (85%). Forty-one (87%) of the ETCs planned to provide some laboratory support (e.g., point-of-care [POC] testing) within the room of the isolated patient. Forty-four (94%) ETCs indicated that their hospital would also provide clinical laboratory support for patient care. Twenty-two (50%) of these ETC clinical laboratories had biosafety level 3 (BSL-3) containment. Of all respondents, 34 (72%) were supported by their jurisdictional public health laboratory (PHL), all of which had available BSL-3 laboratories. Overall, 40 of 44 (91%) ETCs reported BSL-3 laboratory support via their clinical laboratory and/or PHL. This survey provided a snapshot of the laboratory support for designated U.S. ETCs. ETCs have approached high-level isolation critical care with laboratory support in close proximity to the patient room and by distributing laboratory support among laboratory resources. Experts might review safety considerations for these laboratory testing/diagnostic activities that are novel in the context of biocontainment care. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. U.S. Ebola Treatment Center Clinical Laboratory Support

    PubMed Central

    Jelden, Katelyn C.; Iwen, Peter C.; Herstein, Jocelyn J.; Biddinger, Paul D.; Kraft, Colleen S.; Saiman, Lisa; Smith, Philip W.; Hewlett, Angela L.; Gibbs, Shawn G.

    2016-01-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronically surveyed on clinical laboratory characteristics. Survey responses were returned from 47 ETCs (85%). Forty-one (87%) of the ETCs planned to provide some laboratory support (e.g., point-of-care [POC] testing) within the room of the isolated patient. Forty-four (94%) ETCs indicated that their hospital would also provide clinical laboratory support for patient care. Twenty-two (50%) of these ETC clinical laboratories had biosafety level 3 (BSL-3) containment. Of all respondents, 34 (72%) were supported by their jurisdictional public health laboratory (PHL), all of which had available BSL-3 laboratories. Overall, 40 of 44 (91%) ETCs reported BSL-3 laboratory support via their clinical laboratory and/or PHL. This survey provided a snapshot of the laboratory support for designated U.S. ETCs. ETCs have approached high-level isolation critical care with laboratory support in close proximity to the patient room and by distributing laboratory support among laboratory resources. Experts might review safety considerations for these laboratory testing/diagnostic activities that are novel in the context of biocontainment care. PMID:26842705

  16. Revitalizing chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  17. NASA's Laboratory Astrophysics Workshop: Opening Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2002-01-01

    The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.

  18. Development and implications of technology in reform-based physics laboratories

    NASA Astrophysics Data System (ADS)

    Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung

    2012-12-01

    Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.

  19. The Laboratory. Guides for the Improvement of Instruction in Higher Education, No. 9.

    ERIC Educational Resources Information Center

    Alexander, Lawrence T.; And Others

    This guide for the improvement of instruction in higher education is designed to aid the educator in planning and conducting laboratory instruction. The examples used refer primarily to science laboratories. Topics discussed include: deciding whether or not to use the laboratory method (with a discussion of discovery learning or the processes of…

  20. User Guide: How to Use and Operate Virtual Reality Equipment in the Systems Assessment and Usability Laboratory (SAUL) for Conducting Demonstrations

    DTIC Science & Technology

    2017-08-01

    ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...September 2017 4. TITLE AND SUBTITLE User Guide: How to Use and Operate Virtual Reality Equipment in the Systems Assessment and Usability Laboratory

  1. 75 FR 30197 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... adopt the Naval Research Laboratory (NRL) Personnel Management Demonstration Project with modifications... Secretary of Defense (SECDEF) to conduct personnel management demonstration projects at DoD laboratories... execute a process and plan to employ the personnel management demonstration project authorities granted to...

  2. The Efficacy of Problem-Based Learning in an Instrumental Analyse Laboratory

    ERIC Educational Resources Information Center

    Seyhan, Hatice Güngör

    2016-01-01

    In the context of the study, an instrumental analysis laboratory course offering Problem-Based Learning (PBL) was designed as an alternative to traditional laboratory practices. The study was conducted with a total of 36 volunteer, prospective chemistry teachers consisting of fourth year undergraduates and graduates. While PBL activities were…

  3. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076505 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  4. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076510 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  5. Wiseman conducts BCAT-C1 experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-076507 (25 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test-C1, or BCAT-C1, experiment in the Kibo laboratory of the International Space Station. Results from this ongoing investigation of colloids ? mixtures of small particles distributed throughout a liquid ? will help materials scientists to develop new consumer products with unique properties and longer shelf lives.

  6. Thermal Conductivity of Polyimide/Carbon Nanofiller Blends

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Watson, K. A.; Ghose, S.; Working, D. C.; Connell, J. W.; Smith, J. G.; Sun, Y. P.; Lin, Y.

    2006-01-01

    Ultem(TM) was mixed with three different carbon-based nanofillers in efforts to increase the thermal conductivity of the polymer. After initial mixing, the nanocomposites were extruded or processed via the Laboratory Mixing Molder (LMM) process. High resolution scanning electron microscopy (HRSEM) revealed significant alignment of the nanofillers in the extruded samples. Thermal conductivity measurements were made both in the direction and perpendicular to the direction of alignment of nanofillers as well as for unaligned samples. It was found that the largest improvement in thermal conductivity was achieved in the case of aligned samples when the measurement was performed in the direction of alignment. Unaligned samples also showed a significant improvement in thermal conductivity and may be useful in applications when it is not possible to align the nanofiller. However the improvements in thermal conductivity did not approach those expected based on a rule of mixtures. This is likely due to poor phonon transfer through the matrix.

  7. A laboratory study to estimate pore geometric parameters of sandstones using complex conductivity and nuclear magnetic resonance for permeability prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterman, Gordon; Keating, Kristina; Binley, Andrew

    Here, we estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty-five sandstone cores collected from fifteen different formations,more » we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time (R 2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE50.23). We demonstrate that that permeability estimates from the joint-NMR-CC model (NRMSE50.13) compare favorably to estimates from the Katz and Thompson model (NRMSE50.074). Lastly, this model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.« less

  8. A laboratory study to estimate pore geometric parameters of sandstones using complex conductivity and nuclear magnetic resonance for permeability prediction

    DOE PAGES

    Osterman, Gordon; Keating, Kristina; Binley, Andrew; ...

    2016-03-18

    Here, we estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty-five sandstone cores collected from fifteen different formations,more » we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time (R 2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE50.23). We demonstrate that that permeability estimates from the joint-NMR-CC model (NRMSE50.13) compare favorably to estimates from the Katz and Thompson model (NRMSE50.074). Lastly, this model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.« less

  9. Implementation of Good Clinical Laboratory Practice (GCLP) guidelines within the External Quality Assurance Program Oversight Laboratory (EQAPOL).

    PubMed

    Todd, Christopher A; Sanchez, Ana M; Garcia, Ambrosia; Denny, Thomas N; Sarzotti-Kelsoe, Marcella

    2014-07-01

    The EQAPOL contract was awarded to Duke University to develop and manage global proficiency testing programs for flow cytometry-, ELISpot-, and Luminex bead-based assays (cytokine analytes), as well as create a genetically diverse panel of HIV-1 viral cultures to be made available to National Institutes of Health (NIH) researchers. As a part of this contract, EQAPOL was required to operate under Good Clinical Laboratory Practices (GCLP) that are traditionally used for laboratories conducting endpoint assays for human clinical trials. EQAPOL adapted these guidelines to the management of proficiency testing programs while simultaneously incorporating aspects of ISO/IEC 17043 which are specifically designed for external proficiency management. Over the first two years of the contract, the EQAPOL Oversight Laboratories received training, developed standard operating procedures and quality management practices, implemented strict quality control procedures for equipment, reagents, and documentation, and received audits from the EQAPOL Central Quality Assurance Unit. GCLP programs, such as EQAPOL, strengthen a laboratory's ability to perform critical assays and provide quality assessments of future potential vaccines. © 2013.

  10. Current practice in laboratory diagnostics of autoimmune diseases in Croatia. 
Survey of the Working group for laboratory diagnostics of autoimmune diseases of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Kuna, Andrea Tešija; Đerek, Lovorka; Kozmar, Ana; Drvar, Vedrana

    2016-01-01

    Introduction With the trend of increasing incidence of autoimmune diseases, laboratories are faced with exponential growth of the requests for tests relating the diagnosis of these diseases. Unfortunately, the lack of laboratory personnel experienced in this specific discipline of laboratory diagnostic, as well as an unawareness of a method limitation often results in confusion for clinicians. The aim was to gain insight into number and type of Croatian laboratories that perform humoral diagnostics with the final goal to improve and harmonize laboratory diagnostics of autoimmune diseases in Croatia. Materials and methods In order to get insight into current laboratory practice two questionnaires, consisting of 42 questions in total, were created. Surveys were conducted using SurveyMonkey application and were sent to 88 medical biochemistry laboratories in Croatia for the first survey. Out of 33 laboratories that declared to perform diagnostic from the scope, 19 were selected for the second survey based on the tests they pleaded to perform. The survey comprised questions regarding autoantibody hallmarks of systemic autoimmune diseases while regarding organ-specific autoimmune diseases was limited to diseases of liver, gastrointestinal and nervous system. Results Response rate was high with 80 / 88 (91%) laboratories which answered the first questionnaire, and 19 / 19 (1.0) for the second questionnaire. Obtained results of surveys indicate high heterogeneity in the performance of autoantibody testing among laboratories in Croatia. Conclusions Results indicate the need of creating recommendations and algorithms in order to harmonize the approach to laboratory diagnostics of autoimmune diseases in Croatia. PMID:27812306

  11. Laboratory for Atmospheres 2008 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Cote, Charles E.

    2009-01-01

    The 2008 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report. The Laboratory for Atmospheres (Code 613) is part of the Earth Sciences Division (Code 610), formerly the Earth Sun Exploration Division, under the Sciences and Exploration Directorate (Code 600) based at NASA s Goddard Space Flight Center in Greenbelt, Maryland. In line with NASA s Exploration Initiative, the Laboratory executes a comprehensive research and technology development program dedicated to advancing knowledge and understanding of the atmospheres of Earth and other planets. The research program is aimed at understanding the influence of solar variability on the Earth s climate; predicting the weather and climate of Earth; understanding the structure, dynamics, and radiative properties of precipitation, clouds, and aerosols; understanding atmospheric chemistry, especially the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and advancing our understanding of physical properties of Earth s atmosphere. The research program identifies problems and requirements for atmospheric observations via satellite missions. Laboratory scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology for remote sensing of the atmosphere. Laboratory members conduct field measurements for satellite data calibration and validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud-resolving models, and development of next-generation Earth system models. Interdisciplinary research is carried

  12. Meta-analysis of the effectiveness of computer-based laboratory versus traditional hands-on laboratory in college and pre-college science instructions

    NASA Astrophysics Data System (ADS)

    Onuoha, Cajetan O.

    The purpose of this research study was to determine the overall effectiveness of computer-based laboratory compared with the traditional hands-on laboratory for improving students' science academic achievement and attitudes towards science subjects at the college and pre-college levels of education in the United States. Meta-analysis was used to synthesis the findings from 38 primary research studies conducted and/or reported in the United States between 1996 and 2006 that compared the effectiveness of computer-based laboratory with the traditional hands-on laboratory on measures related to science academic achievements and attitudes towards science subjects. The 38 primary research studies, with total subjects of 3,824 generated a total of 67 weighted individual effect sizes that were used in this meta-analysis. The study found that computer-based laboratory had small positive effect sizes over the traditional hands-on laboratory (ES = +0.26) on measures related to students' science academic achievements and attitudes towards science subjects (ES = +0.22). It was also found that computer-based laboratory produced more significant effects on physical science subjects compared to biological sciences (ES = +0.34, +0.17).

  13. The Contribution of a Virtual Biology Laboratory to College Students' Learning

    ERIC Educational Resources Information Center

    Swan, Aubrie E.; O'Donnell, Angela M.

    2009-01-01

    The virtual laboratories developed by a life sciences department at a public university in the US were designed for use by college students enrolled in an introductory biology course. The results analyses conducted to examine their effectiveness indicated that self-selected users of the virtual laboratories outperformed non-users on laboratory…

  14. Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species.

    PubMed

    Johnson, D M; Woodruff, D R; McCulloh, K A; Meinzer, F C

    2009-07-01

    Adequate leaf hydraulic conductance (Kleaf) is critical for preventing transpiration-induced desiccation and subsequent stomatal closure that would restrict carbon gain. A few studies have reported midday depression of Kleaf (or petiole conductivity) and its subsequent recovery in situ, but the extent to which this phenomenon is universal is not known. The objectives of this study were to measure Kleaf, using a rehydration kinetics method, (1) in the laboratory (under controlled conditions) across a range of water potentials to construct vulnerability curves (VC) and (2) over the course of the day in the field along with leaf water potential and stomatal conductance (gs). Two broadleaf (one evergreen, Arbutus menziesii Pursh., and one deciduous, Quercus garryana Dougl.) and two coniferous species (Pinus ponderosa Dougl. and Pseudotsuga menziesii [Mirbel]) were chosen as representative of different plant types. In addition, Kleaf in the laboratory and leaf water potential in the field were measured for three tropical evergreen species (Protium panamense (Rose), Tachigalia versicolor Standley and L.O. Williams and Vochysia ferruginea Mart) to predict their daily changes in field Kleaf in situ. It was hypothesized that in the field, leaves would close their stomata at water potential thresholds at which Kleaf begins to decline sharply in laboratory-generated VC, thus preventing substantial losses of Kleaf. The temperate species showed a 15-66% decline in Kleaf by midday, before stomatal closure. Although there were substantial midday declines in Kleaf, recovery was nearly complete by late afternoon. Stomatal conductance began to decrease in Pseudotsuga, Pinus and Quercus once Kleaf began to decline; however, there was no detectable reduction in gs in Arbutus. Predicted Kleaf in the tropical species, based on laboratory-generated VC, decreased by 74% of maximum Kleaf in Tachigalia, but only 22-32% in Vochysia and Protium. The results presented here, from the previous

  15. Standardization of Laboratory Methods for the PERCH Study

    PubMed Central

    Karron, Ruth A.; Morpeth, Susan C.; Bhat, Niranjan; Levine, Orin S.; Baggett, Henry C.; Brooks, W. Abdullah; Feikin, Daniel R.; Hammitt, Laura L.; Howie, Stephen R. C.; Knoll, Maria Deloria; Kotloff, Karen L.; Madhi, Shabir A.; Scott, J. Anthony G.; Thea, Donald M.; Adrian, Peter V.; Ahmed, Dilruba; Alam, Muntasir; Anderson, Trevor P.; Antonio, Martin; Baillie, Vicky L.; Dione, Michel; Endtz, Hubert P.; Gitahi, Caroline; Karani, Angela; Kwenda, Geoffrey; Maiga, Abdoul Aziz; McClellan, Jessica; Mitchell, Joanne L.; Morailane, Palesa; Mugo, Daisy; Mwaba, John; Mwansa, James; Mwarumba, Salim; Nyongesa, Sammy; Panchalingam, Sandra; Rahman, Mustafizur; Sawatwong, Pongpun; Tamboura, Boubou; Toure, Aliou; Whistler, Toni; O’Brien, Katherine L.; Murdoch, David R.

    2017-01-01

    Abstract The Pneumonia Etiology Research for Child Health study was conducted across 7 diverse research sites and relied on standardized clinical and laboratory methods for the accurate and meaningful interpretation of pneumonia etiology data. Blood, respiratory specimens, and urine were collected from children aged 1–59 months hospitalized with severe or very severe pneumonia and community controls of the same age without severe pneumonia and were tested with an extensive array of laboratory diagnostic tests. A standardized testing algorithm and standard operating procedures were applied across all study sites. Site laboratories received uniform training, equipment, and reagents for core testing methods. Standardization was further assured by routine teleconferences, in-person meetings, site monitoring visits, and internal and external quality assurance testing. Targeted confirmatory testing and testing by specialized assays were done at a central reference laboratory. PMID:28575358

  16. Spectroscopic Instrumentation in Undergraduate Astronomy Laboratories

    NASA Astrophysics Data System (ADS)

    Ludovici, Dominic; Mutel, Robert Lucien; Lang, Cornelia C.

    2017-01-01

    We have designed and built two spectrographs for use in undergraduate astronomy laboratories at the University of Iowa. The first, a low cost (appx. $500) low resolution (R ~ 150 - 300) grating-prism (grism) spectrometer consists of five optical elements and is easily modified to other telescope optics. The grism spectrometer is designed to be used in a modified filter wheel. This type of spectrometer allows students to undertake projects requiring sensitive spectral measurements, such as determining the redshifts of quasars. The second instrument is a high resolution (R ~ 8000), moderate cost (appx. $5000) fiber fed echelle spectrometer. The echelle spectrometer will allow students to conduct Doppler measurements such as those used to study spectroscopic binaries. Both systems are designed to be used with robotic telescope systems. The availability of 3D printing enables both of these spectrographs to be constructed in hands-on instrumentation courses where students build and commission their own instruments. Additionally, these instruments enable introductory majors and non-majors laboratory students to gain experience conducting their own spectroscopic observations.

  17. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles andmore » book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).« less

  18. Laboratories | NREL

    Science.gov Websites

    | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced Thermal Laboratory Structural Testing Laboratory Surface Analysis Laboratory Systems Performance Laboratory T Thermal Storage Materials Laboratory Thermal Storage Process and Components Laboratory Thin-Film Deposition

  19. PRACTICAL SIMULATION OF COMPOSTING IN THE LABORATORY

    EPA Science Inventory

    A closed incubation system was developed for laboratory simulation of composting conditions at the interior of a large compost pile. A conductive heat flux control system (CHFC) was used to adjust the temperature of the internal wall to that of the compost center and compensate f...

  20. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2018-01-16

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  1. Laboratory based instruction in Pakistan: Comparative evaluation of three laboratory instruction methods in biological science at higher secondary school level

    NASA Astrophysics Data System (ADS)

    Cheema, Tabinda Shahid

    This study of laboratory based instruction at higher secondary school level was an attempt to gain some insight into the effectiveness of three laboratory instruction methods: cooperative group instruction method, individualised instruction method and lecture demonstration method on biology achievement and retention. A Randomised subjects, Pre-test Post-test Comparative Methods Design was applied. Three groups of students from a year 11 class in Pakistan conducted experiments using the different laboratory instruction methods. Pre-tests, achievement tests after the experiments and retention tests one month later were administered. Results showed no significant difference between the groups on total achievement and retention, nor was there any significant difference on knowledge and comprehension test scores or skills performance. Future research investigating a similar problem is suggested.

  2. Laboratory specimens and genetic privacy: evolution of legal theory.

    PubMed

    Lewis, Michelle Huckaby

    2013-03-01

    Although laboratory specimens are an important resource for biomedical research, controversy has arisen when research has been conducted without the knowledge or consent of the individuals who were the source of the specimens. This paper summarizes the most important litigation regarding the research use of laboratory specimens and traces the evolution of legal theory from property claims to claims related to genetic privacy interests. © 2013 American Society of Law, Medicine & Ethics, Inc.

  3. Inductive Measurement of Plasma Jet Electrical Conductivity

    NASA Technical Reports Server (NTRS)

    Turner, Matthew W.; Hawk, Clark W.; Litchford, Ron J.

    2005-01-01

    An inductive probing scheme, originally developed for shock tube studies, has been adapted to measure explosive plasma jet conductivities. In this method, the perturbation of an applied magnetic field by a plasma jet induces a voltage in a search coil, which, in turn, can be used to infer electrical conductivity through the inversion of a Fredholm integral equation of the first kind. A 1-inch diameter probe was designed and constructed, and calibration was accomplished by firing an aluminum slug through the probe using a light-gas gun. Exploratory laboratory experiments were carried out using plasma jets expelled from 15-gram high explosive shaped charges. Measured conductivities were in the range of 3 kS/m for unseeded octol charges and 20 kS/m for seeded octol charges containing 2% potassium carbonate by mass.

  4. Laboratory System Improvement Program: first in the nation--New Hampshire reassessment.

    PubMed

    Power, Jill J; Bean, Christine L; Cosser, Amanda; Vazquez, Alma

    2013-01-01

    The New Hampshire Public Health Laboratories (NH PHL) conducted an initial Laboratory System Improvement Program (L-SIP) assessment in March 2007 and a reassessment in May 2011. New Hampshire was a pilot state for the initial L-SIP assessment in 2007 and was the first laboratory system in the United States to conduct an L-SIP reassessment. The New Hampshire reassessment was also used as a pilot for revising the assessment tool. The NH PHL performed a high-level comparison benchmarking the work done between the two assessments. This comparison revealed areas of improvement and other areas that needed continued focus to align with model standards of the 10 Essential Public Health Services. This article outlines achievements, improvements, and outcomes made since 2007, as well as participants, activities, plans, resources, and other factors that contributed to the change in scores between assessments.

  5. How compliant are technicians with universal safety measures in medical laboratories in Croatia?--A pilot study.

    PubMed

    Dukic, Kristina; Zoric, Matea; Pozaic, Petra; Starcic, Jelena; Culjak, Marija; Saracevic, Andrea; Miler, Marijana

    2015-01-01

    This pilot study aimed to investigate the use of personal protective equipment (PPE) and compliance to the code of conduct (rules defined in institutional, governmental and professional guidelines) among laboratory technicians in Croatian medical laboratories. In addition, we explored the differences in compliance between participants of different age groups, laboratory ownership and accreditation status. An anonymous and voluntary survey with 15 questions was conducted among Croatian medical laboratory technicians (N=217). The questions were divided into two groups: demographic characteristics and the use of PPE. The questions of the second part were graded according to the Likert scale (1-4) and an overall score, shown as median and range (min-max), was calculated for each participant. Differences between the overall scores were tested for each group of participants. The majority of participants always wear protective clothes at work, 38.7% of them always wear gloves in daily routine, more than 30.0% consume food and almost half of them drink beverages at workplace. A significantly lower overall score was found for participants working in public compared to private laboratories (36 (16-40) vs. 40 (31-40), P<0.001). There were no statistically significant differences in overall scores for participants of different age groups (P=0.456) and laboratory accreditation status (P=0.081). A considerable percentage of laboratory technicians in Croatian medical laboratories do not comply with safety measures. Lack of compliance is observed in all personnel regardless laboratory accreditation and participants' age. However, those working in private laboratories adhere more to the code of conduct.

  6. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1993-03-01

    Argonne National Laboratory's Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies: Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid. These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  7. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  8. Delivery to the Wet Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of a picture acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera documents the delivery of soil to one of four Wet Chemistry Laboratory (WCL) cells on the 30th Martian day, or sol, of the mission. Approximately one cubic centimeter of this soil was then introduced into the cell and mixed with water for chemical analysis. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. 49 CFR Appendix B to Part 219 - Designation of Laboratory for Post-Accident Toxicological Testing

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Designation of Laboratory for Post-Accident.... 219, App. B Appendix B to Part 219—Designation of Laboratory for Post-Accident Toxicological Testing The following laboratory is currently designated to conduct post-accident toxicological analysis under...

  10. Entrance to the NACA's Flight Propulsion Research Laboratory

    NASA Image and Video Library

    1948-08-21

    The sign near the entrance of the National Advisory Committee for Aeronautics (NACA) Flight Propulsion Research Laboratory. The name was changed several weeks later to the Lewis Flight Propulsion Laboratory in honor of the NACA’s former Director of Aeronautical Research, George W. Lewis. The research laboratory has had five different names since its inception in 1941. The Cleveland laboratory was originally known as the NACA Aircraft Engine Research Laboratory. In 1947 it was renamed the NACA Flight Propulsion Research Laboratory to reflect the expansion of the research activities beyond just engines. Following the death of George Lewis, the name was changed to the NACA Lewis Flight Propulsion Laboratory in September 1948. On October 1, 1958, the lab was incorporated into the new NASA space agency, and it was renamed the NASA Lewis Research Center. Following John Glenn’s flight on the space shuttle, the name was changed again to the NASA Glenn Research Center on March 1, 1999. From his office in Washington DC, George Lewis managed the aeronautical research conducted at the NACA for over 20 years. His most important accomplishment, however, may have been an investigative tour of German research facilities in the fall of 1936. The visit resulted in the broadening of the scope of the NACA’s research and the physical expansion that included the new engine laboratory in Cleveland.

  11. Building Cross-Country Networks for Laboratory Capacity and Improvement.

    PubMed

    Schneidman, Miriam; Matu, Martin; Nkengasong, John; Githui, Willie; Kalyesubula-Kibuuka, Simeon; Silva, Kelly Araujo

    2018-03-01

    Laboratory networks are vital to well-functioning public health systems and disease control efforts. Cross-country laboratory networks play a critical role in supporting epidemiologic surveillance, accelerating disease outbreak response, and tracking drug resistance. The East Africa Public Health Laboratory Network was established to bolster diagnostic and disease surveillance capacity. The network supports the introduction of regional quality standards; facilitates the rollout and evaluation of new diagnostic tools; and serves as a platform for training, research, and knowledge sharing. Participating facilities benefitted from state-of-the art investments, capacity building, and mentorship; conducted multicountry research studies; and contributed to disease outbreak response. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Laboratory automation in clinical bacteriology: what system to choose?

    PubMed

    Croxatto, A; Prod'hom, G; Faverjon, F; Rochais, Y; Greub, G

    2016-03-01

    Automation was introduced many years ago in several diagnostic disciplines such as chemistry, haematology and molecular biology. The first laboratory automation system for clinical bacteriology was released in 2006, and it rapidly proved its value by increasing productivity, allowing a continuous increase in sample volumes despite limited budgets and personnel shortages. Today, two major manufacturers, BD Kiestra and Copan, are commercializing partial or complete laboratory automation systems for bacteriology. The laboratory automation systems are rapidly evolving to provide improved hardware and software solutions to optimize laboratory efficiency. However, the complex parameters of the laboratory and automation systems must be considered to determine the best system for each given laboratory. We address several topics on laboratory automation that may help clinical bacteriologists to understand the particularities and operative modalities of the different systems. We present (a) a comparison of the engineering and technical features of the various elements composing the two different automated systems currently available, (b) the system workflows of partial and complete laboratory automation, which define the basis for laboratory reorganization required to optimize system efficiency, (c) the concept of digital imaging and telebacteriology, (d) the connectivity of laboratory automation to the laboratory information system, (e) the general advantages and disadvantages as well as the expected impacts provided by laboratory automation and (f) the laboratory data required to conduct a workflow assessment to determine the best configuration of an automated system for the laboratory activities and specificities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Using Interorganizational Partnerships to Strengthen Public Health Laboratory Systems

    PubMed Central

    Kimsey, Paul; Buehring, Gertrude

    2013-01-01

    Due to the current economic environment, many local and state health departments are faced with budget reductions. Health department administrators and public health laboratory (PHL) directors need to assess strategies to ensure that their PHLs can provide the same level of service with decreased funds. Exploratory case studies of interorganizational partnerships among local PHLs in California were conducted to determine the impact on local PHL testing services and capacity. Our findings suggest that interorganizational forms of cooperation among local PHLs can help bolster laboratory capacity by capturing economies of scale, leveraging scarce resources, and ensuring access to affordable, timely, and quality laboratory testing services. Interorganizational partnerships will help local and state public health departments continue to maintain a strong and robust laboratory system that supports their role in communicable disease surveillance. PMID:23997305

  14. A laboratory model of planetary and stellar convection

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Toomre, J.; Deane, A. E.; Hurlburt, N. E.; Glatzmaier, G. A.; Fichtl, G. H.; Leslie, F.; Fowlis, W. W.; Gilman, P. A.

    1987-01-01

    Experiments on thermal convection in a rotating, differentially-heated spherical shell with a radial buoyancy force were conducted in an orbiting microgravity laboratory. A variety of convective structures, or planforms, were observed depending on the magnitude of the rotation and the nature of the imposed heating distribution. The results are in agreement with numerical simulations that can be conducted at modest parameter values, and suggest possible regimes of motion in rotating planets and stars.

  15. Portable Conduction Velocity Experiments Using Earthworms for the College and High School Neuroscience Teaching Laboratory

    ERIC Educational Resources Information Center

    Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey; Marzullo, Timothy C.

    2014-01-01

    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities…

  16. Antimicrobial susceptibility testing by Australian veterinary diagnostic laboratories.

    PubMed

    Hardefeldt, L Y; Marenda, M; Crabb, H; Stevenson, M A; Gilkerson, J R; Billman-Jacobe, H; Browning, G F

    2018-04-01

    The national strategy for tackling antimicrobial resistance highlights the need for antimicrobial stewardship in veterinary practice and for surveillance of antimicrobial susceptibility in veterinary pathogens. Diagnostic laboratories have an important role in facilitating both of these processes, but it is unclear whether data from veterinary diagnostic laboratories are similar enough to allow for compilation and if there is consistent promotion of appropriate antimicrobial use embedded in the approaches of different laboratories to susceptibility testing. A cross-sectional study of antimicrobial susceptibility testing and reporting procedures by Australian veterinary diagnostic laboratories was conducted in 2017 using an online questionnaire. All 18 veterinary diagnostic laboratories in Australia completed the questionnaire. Kirby-Bauer disc diffusion was the method predominantly used for antimicrobial susceptibility testing and was used to evaluate 86% of all isolates, although two different protocols were used across the 18 laboratories (CLSI 15/18, CDS 3/18). Minimum inhibitory concentrations were never reported by 61% of laboratories. Common isolates were consistently reported on across all species, except for gram-negative isolates in pigs, for which there was some variation in the approach to reporting. There was considerable diversity in the panels of antimicrobials used for susceptibility testing on common isolates and no consistency was apparent between laboratories for any bacterial species. We recommend that nationally agreed and consistent antimicrobial panels for routine susceptibility testing should be developed and a uniform set of guidelines should be adopted by veterinary diagnostic laboratories in Australia. © 2018 Australian Veterinary Association.

  17. Phoenix Conductivity Probe Inserted into Martian Soil

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 while the probe's needles were in the ground. The science team informally named this soil target 'Gandalf.'

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Assessment of biosafety precautions in Khartoum state diagnostic laboratories, Sudan

    PubMed Central

    Elduma, Adel Hussein

    2012-01-01

    Background This study was conducted to evaluate the biosafety precautions that applied by diagnostic laboratories in Khartoum state, 2009. Methods A total number of 190 laboratories were surveyed about their compliance with standard biosafety precautions. These laboratories included 51 (27%) laboratories from government, 75 (39%) from private sectors and 64 (34%) laboratories belong to organization providing health care services. Results The study found that 32 (16.8%) of laboratories appointed biosafety officers. Only, ten (5.2%) participated in training about response to fire emergency, and 28 (14.7%) reported the laboratory accident occurred during work. 45 (23.7%) laboratories had a written standard operation procedures (SOPs), and 35 (18.4%) had written procedures for the lean-up of spills. Moreover, biosafety cabinet was found in 11 (5.8%) laboratories, autoclave in 28 (14.7%) and incinerator in only two (1.1%) laboratories. Sharp disposable containers were found in 84 (44.2%). Fire alarm system was found in 2 (1.1%) laboratories, fire extinguisher in 39 (20.5%) laboratories, and fire emergency exit found in 14 (7.4%) laboratories. Furthermore, 19 (10%) laboratories had a hepatitis B virus vaccination programme, 5 (6.2%) applied BCG vaccine, and 2 (1.1%0) vaccinated the staff against influenza. Conclusion The study concluded that the standards biosafety precautions adopted by the diagnostic laboratories in Khartoum state was very low. Further, the laboratory personnel awareness towards biosafety principles implementation was very low too. PMID:22514753

  19. Assessment of biosafety precautions in Khartoum state diagnostic laboratories, Sudan.

    PubMed

    Elduma, Adel Hussein

    2012-01-01

    This study was conducted to evaluate the biosafety precautions that applied by diagnostic laboratories in Khartoum state, 2009. A total number of 190 laboratories were surveyed about their compliance with standard biosafety precautions. These laboratories included 51 (27%) laboratories from government, 75 (39%) from private sectors and 64 (34%) laboratories belong to organization providing health care services. The study found that 32 (16.8%) of laboratories appointed biosafety officers. Only, ten (5.2%) participated in training about response to fire emergency, and 28 (14.7%) reported the laboratory accident occurred during work. 45 (23.7%) laboratories had a written standard operation procedures (SOPs), and 35 (18.4%) had written procedures for the lean-up of spills. Moreover, biosafety cabinet was found in 11 (5.8%) laboratories, autoclave in 28 (14.7%) and incinerator in only two (1.1%) laboratories. Sharp disposable containers were found in 84 (44.2%). Fire alarm system was found in 2 (1.1%) laboratories, fire extinguisher in 39 (20.5%) laboratories, and fire emergency exit found in 14 (7.4%) laboratories. Furthermore, 19 (10%) laboratories had a hepatitis B virus vaccination programme, 5 (6.2%) applied BCG vaccine, and 2 (1.1%0) vaccinated the staff against influenza. The study concluded that the standards biosafety precautions adopted by the diagnostic laboratories in Khartoum state was very low. Further, the laboratory personnel awareness towards biosafety principles implementation was very low too.

  20. Project management: importance for diagnostic laboratories.

    PubMed

    Croxatto, A; Greub, G

    2017-07-01

    The need for diagnostic laboratories to improve both quality and productivity alongside personnel shortages incite laboratory managers to constantly optimize laboratory workflows, organization, and technology. These continuous modifications of the laboratories should be conducted using efficient project and change management approaches to maximize the opportunities for successful completion of the project. This review aims at presenting a general overview of project management with an emphasis on selected critical aspects. Conventional project management tools and models, such as HERMES, described in the literature, associated personal experience, and educational courses on management have been used to illustrate this review. This review presents general guidelines of project management and highlights their importance for microbiology diagnostic laboratories. As an example, some critical aspects of project management will be illustrated with a project of automation, as experienced at the laboratories of bacteriology and hygiene of the University Hospital of Lausanne. It is important to define clearly beforehand the objective of a project, its perimeter, its costs, and its time frame including precise duration estimates of each step. Then, a project management plan including explanations and descriptions on how to manage, execute, and control the project is necessary to continuously monitor the progression of a project to achieve its defined goals. Moreover, a thorough risk analysis with contingency and mitigation measures should be performed at each phase of a project to minimize the impact of project failures. The increasing complexities of modern laboratories mean clinical microbiologists must use several management tools including project and change management to improve the outcome of major projects and activities. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Conduction cooled compact laser for the chemcam instrument

    NASA Astrophysics Data System (ADS)

    Durand, E.; Derycke, C.; Simon-Boisson, C.; Muller, S.; Faure, B.; Saccoccio, M.; Maurice, M.

    2017-11-01

    A new conduction cooled compact laser for laser induced spectroscopy on the Mars Science Laboratory (MSL) to be launched in 2009 is presented. An oscillator combined to amplifiers generates 30mJ at 1μm with a good spatial quality. Development prototype of this laser has been built and characterized. Environmental testing of this prototype is also reported.

  2. Improving performance in the ED through laboratory information exchange systems.

    PubMed

    Raymond, Louis; Paré, Guy; Maillet, Éric; Ortiz de Guinea, Ana; Trudel, Marie-Claude; Marsan, Josianne

    2018-03-12

    The accessibility of laboratory test results is crucial to the performance of emergency departments and to the safety of patients. This study aims to develop a better understanding of which laboratory information exchange (LIE) systems emergency care physicians (ECPs) are using to consult their patients' laboratory test results and which benefits they derive from such use. A survey of 163 (36%) ECPs in Quebec was conducted in collaboration with the Quebec's Department of Health and Social Services. Descriptive statistics, chi-square tests, cluster analyses, and ANOVAs were conducted. The great majority of respondents indicated that they use several LIE systems including interoperable electronic health record (iEHR) systems, laboratory results viewers (LRVs), and emergency department information systems (EDIS) to consult their patients' laboratory results. Three distinct profiles of LIE users were observed. The extent of LIE usage was found to be primarily determined by the functional design differences between LIE systems available in the EDs. Our findings also indicate that the more widespread LIE usage, the higher the perceived benefits. More specifically, physicians who make extensive use of iEHR systems and LRVs obtain the widest range of benefits in terms of efficiency, quality, and safety of emergency care. Extensive use of LIE systems allows ECPs to better determine and monitor the health status of their patients, verify their diagnostic assumptions, and apply evidence-based practices in laboratory medicine. But for such benefits to be possible, ECPs must be provided with LIE systems that produce accurate, up-to-date, complete, and easy-to-interpret information.

  3. Optics research at the U.S. Naval Research Laboratory.

    PubMed

    Hoffman, Craig; Giallorenzi, T G; Slater, Leo B

    2015-11-01

    The Naval Research Laboratory (NRL) was established in Washington, DC in 1923 and is the corporate laboratory for the U.S. Navy and Marine Corps. Today NRL is a world-class research institution conducting a broad program of research and development (R&D), including many areas of optical science and technology. NRL is conducting cutting-edge R&D programs to explore new scientific areas to enable unprecedented Navy capabilities as well as improving current technologies to increase the effectiveness of Navy and other Department of Defense systems. This paper provides a broad overview of many of NRL's achievements in optics. Some of the remaining articles in this feature issue will discuss NRL's most recent research in individual areas, while other articles will present more detailed historical perspectives of NRL's research concerning particular scientific topics.

  4. Remote Sensing Laboratory - RSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip,more » maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.« less

  5. A comparison of two microscale laboratory reporting methods in a secondary chemistry classroom

    NASA Astrophysics Data System (ADS)

    Martinez, Lance Michael

    This study attempted to determine if there was a difference between the laboratory achievement of students who used a modified reporting method and those who used traditional laboratory reporting. The study also determined the relationships between laboratory performance scores and the independent variables score on the Group Assessment of Logical Thinking (GALT) test, chronological age in months, gender, and ethnicity for each of the treatment groups. The study was conducted using 113 high school students who were enrolled in first-year general chemistry classes at Pueblo South High School in Colorado. The research design used was the quasi-experimental Nonequivalent Control Group Design. The statistical treatment consisted of the Multiple Regression Analysis and the Analysis of Covariance. Based on the GALT, students in the two groups were generally in the concrete and transitional stages of the Piagetian cognitive levels. The findings of the study revealed that the traditional and the modified methods of laboratory reporting did not have any effect on the laboratory performance outcome of the subjects. However, the students who used the traditional method of reporting showed a higher laboratory performance score when evaluation was conducted using the New Standards rubric recommended by the state. Multiple Regression Analysis revealed that there was a significant relationship between the criterion variable student laboratory performance outcome of individuals who employed traditional laboratory reporting methods and the composite set of predictor variables. On the contrary, there was no significant relationship between the criterion variable student laboratory performance outcome of individuals who employed modified laboratory reporting methods and the composite set of predictor variables.

  6. Laboratory System Improvement Program: First in the Nation— New Hampshire Reassessment

    PubMed Central

    Bean, Christine L.; Cosser, Amanda; Vazquez, Alma

    2013-01-01

    The New Hampshire Public Health Laboratories (NH PHL) conducted an initial Laboratory System Improvement Program (L-SIP) assessment in March 2007 and a reassessment in May 2011. New Hampshire was a pilot state for the initial L-SIP assessment in 2007 and was the first laboratory system in the United States to conduct an L-SIP reassessment. The New Hampshire reassessment was also used as a pilot for revising the assessment tool. The NH PHL performed a high-level comparison benchmarking the work done between the two assessments. This comparison revealed areas of improvement and other areas that needed continued focus to align with model standards of the 10 Essential Public Health Services. This article outlines achievements, improvements, and outcomes made since 2007, as well as participants, activities, plans, resources, and other factors that contributed to the change in scores between assessments. PMID:23997303

  7. Cab technology integration laboratory demonstration with moving map technology

    DOT National Transportation Integrated Search

    2013-03-31

    A human performance study was conducted at the John A. Volpe National Transportation Systems Center (Volpe Center) using a locomotive research simulatorthe Cab Technology Integration Laboratory (CTIL)that was acquired by the Federal Railroad Ad...

  8. Integrating teaching and authentic research in the field and laboratory settings

    NASA Astrophysics Data System (ADS)

    Daryanto, S.; Wang, L.; Kaseke, K. F.; Ravi, S.

    2016-12-01

    Typically authentic research activities are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research activities both in the field and in the laboratory. We worked with students from both US and abroad without strong science background to utilize advanced environmental sensors and statistical tool to conduct innovative projects. The students include one from Namibia and two local high school students in Indianapolis (through Project SEED, Summer Experience for the Economically Disadvantaged). They conducted leaf potential measurements, isotope measurements and meta-analysis. The experience showed us the great potential of integrating teaching and research in both field and laboratory settings.

  9. Gerst in U.S. Laboratory

    NASA Image and Video Library

    2014-06-17

    ISS040-E-012309 (16 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts two flame tests for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.

  10. Field and laboratory analyses of water from the Columbia aquifer in Eastern Maryland

    USGS Publications Warehouse

    Bachman, L.J.

    1984-01-01

    Field and laboratory analyses of pH, alkalinity, and specific conductance from water samples collected from the Columbia aquifer on the Delmarva Peninsula in eastern Maryland were compared to determine if laboratory analyses could be used for making regional water-quality interpretations. Kruskal-Wallis tests of field and laboratory data indicate that the difference between field and laboratory values is usually not enough to affect the outcome of the statistical tests. Thus, laboratory measurements of these constituents may be adequate for making certain regional water-quality interpretations, although they may result in errors if used for geochemical interpretations.

  11. An Integrated Laboratory Approach toward the Preparation of Conductive Poly(phenylene vinylene) Polymers

    ERIC Educational Resources Information Center

    Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.

    2014-01-01

    Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the…

  12. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W.

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple ofmore » years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.« less

  13. Perceptions and attitudes toward SLMTA amongst laboratory and hospital professionals in Ethiopia.

    PubMed

    Lulie, Adino D; Hiwotu, Tilahun M; Mulugeta, Achamyeleh; Kebede, Adisu; Asrat, Habtamu; Abebe, Abnet; Yenealem, Dereje; Abose, Ebise; Kassa, Wondwossen; Kebede, Amha; Linde, Mary K; Ayana, Gonfa

    2014-01-01

    Strengthening Laboratory Management Toward Accreditation (SLMTA) is a competency-based management training programme. Assessing health professionals' views of SLMTA provides feedback to inform program planning, implementation and evaluation of SLMTA's training, communication and mentorship components. To assess laboratory professionals' and hospital chief executive officers' (CEOs) perceptions and attitudes toward the SLMTA programme in Ethiopia. A cross-sectional descriptive survey was conducted in March 2013 using a structured questionnaire to collect qualitative data from 72 laboratory professionals and hospital CEOs from 17 health facilities, representing all regions and two city administrations in Ethiopia. Focus groups were conducted with laboratory professionals and hospital administration to gain insight into the strengths and challenges of the SLMTA programme so as to guide future planning and implementation. Ethiopian laboratory professionals at all levels had a supportive attitude toward the SLMTA programme. They believed that SLMTA substantially improved laboratory services and acted as a catalyst for total healthcare reform and improvement. They also noted that the SLMTA programme achieved marked progress in laboratory supply chain, sample referral, instrument maintenance and data management systems. In contrast, nearly half of the participating hospital CEOs, especially those associated with low-scoring laboratories, were sceptical about the SLMTA programme, believing that the benefits of SLMTA were outweighed by the level of human resources and time commitment required. They also voiced concerns about the cost and sustainability of SLMTA. This study highlights the need for stronger engagement and advocacy with hospital administration and the importance of addressing concerns about the cost and sustainability of the SLMTA programme.

  14. NASA Glenn's Acoustical Testing Laboratory Awarded Accreditation by the National Voluntary Laboratory Accreditation Program

    NASA Technical Reports Server (NTRS)

    Akers, James C.; Cooper, Beth A.

    2004-01-01

    NASA Glenn Research Center's Acoustical Testing Laboratory (ATL) provides a comprehensive array of acoustical testing services, including sound pressure level, sound intensity level, and sound-power-level testing per International Standards Organization (ISO)1 3744. Since its establishment in September 2000, the ATL has provided acoustic emission testing and noise control services for a variety of customers, particularly microgravity space flight hardware that must meet International Space Station acoustic emission requirements. The ATL consists of a 23- by 27- by 20-ft (height) convertible hemi/anechoic test chamber and a separate sound-attenuating test support enclosure. The ATL employs a personal-computer-based data acquisition system that provides up to 26 channels of simultaneous data acquisition with real-time analysis (ref. 4). Specialized diagnostic tools, including a scanning sound-intensity system, allow the ATL's technical staff to support its clients' aggressive low-noise design efforts to meet the space station's acoustic emission requirement. From its inception, the ATL has pursued the goal of developing a comprehensive ISO 17025-compliant quality program that would incorporate Glenn's existing ISO 9000 quality system policies as well as ATL-specific technical policies and procedures. In March 2003, the ATL quality program was awarded accreditation by the National Voluntary Laboratory Accreditation Program (NVLAP) for sound-power-level testing in accordance with ISO 3744. The NVLAP program is administered by the National Institutes of Standards and Technology (NIST) of the U.S. Department of Commerce and provides third-party accreditation for testing and calibration laboratories. There are currently 24 NVLAP-accredited acoustical testing laboratories in the United States. NVLAP accreditation covering one or more specific testing procedures conducted in accordance with established test standards is awarded upon successful completion of an intensive

  15. State of laboratory manual instruction in California community college introductory (non-majors) biology laboratory instruction

    NASA Astrophysics Data System (ADS)

    Priest, Michelle

    College students must complete a life science course prior to graduation for a bachelor's degree. Generally, the course has lecture and laboratory components. It is in the laboratory where there are exceptional opportunities for exploration, challenge and application of the material learned. Optimally, this would utilize the best of inquiry based approaches. Most community colleges are using a home-grown or self written laboratory manual for the direction of work in the laboratory period. Little was known about the motivation, development and adaptation of use. It was also not known about the future of the laboratory manuals in light of the recent learning reform in California Community Colleges, Student Learning Outcomes. Extensive interviews were conducted with laboratory manual authors to determine the motivation, process of development, who was involved and learning framework used in the creation of the manuals. It was further asked of manual authors their ideas about the future of the manual, the development of staff and faculty and finally, the role Student Learning Outcomes would play in the manual. Science faculty currently teaching the non-majors biology laboratories for at least two semesters were surveyed on-line about actual practice of the manual, assessment, manual flexibility, faculty training and incorporation of Student Learning Outcomes. Finally, an evaluation of the laboratory manual was done using an established Laboratory Task Analysis Instrument. Laboratory manuals were evaluated on a variety of categories to determine the level of inquiry instruction done by students in the laboratory section. The results were that the development of homegrown laboratory manuals was done by community colleges in the Los Angeles and Orange Counties in an effort to minimize the cost of the manual to the students, to utilize all the exercises in a particular lab and to effectively utilize the materials already owned by the department. Further, schools wanted to

  16. An international survey of current practice in the laboratory assessment of anticoagulant therapy with heparin.

    PubMed

    Favaloro, Emmanuel J; Bonar, Roslyn; Sioufi, John; Wheeler, Michael; Low, Joyce; Aboud, Margaret; Lloyd, John; Street, Alison; Marsden, Katherine

    2005-06-01

    We conducted a survey of laboratory practice for assessment of heparin anticoagulant therapy by participants of the Royal College of Pathologists of Australasia Quality Assurance Program (RCPA QAP). A questionnaire was sent to 646 laboratories enrolled in the Haematology component of the QAP, requesting details of tests used for monitoring heparin therapy. Seventy laboratories (10.8%) returned results that indicated that they performed laboratory monitoring of heparin therapy. Most laboratories (69/70 = 98.6%) use the activated partial thromboplastin time (APTT) to monitor unfractionated heparin, with eight (11.4%) also using the APTT for monitoring low molecular weight (LMW) heparin. Five (7.1%) laboratories use the thrombin time (TT) test to help monitor heparin therapy and 37 (52.9%) laboratories use an anti-Xa assay to monitor heparin (either LMW or unfractionated). Normal reference ranges (NRR) for APTT differed considerably between laboratories, even those using the same reagent. Therapeutic ranges (TR) also differed considerably between laboratories, for both APTT and the anti-Xa assay. Laboratory differences in NRR and TR using the same reagents could only be partly explained by the use of different instrumentation. There is a large variation in current laboratory practice relating to monitoring of heparin anticoagulant therapy. This finding is similar to that of a similar survey conducted by the RCPA QAP almost a decade ago. This study suggests that better standardisation is still required for laboratory monitoring of heparin therapy.

  17. 78 FR 59621 - Extension of the Current Fees for the Accredited Laboratory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... regulatory samples of raw or processed meat and poultry products, and through which a check sample program... Laboratory Program. Such accreditation allows laboratories to conduct analyses of official meat and poultry... employer. List of Subjects in 9 CFR Part 391 Fees and charges, Government employees, Meat inspection...

  18. Stirling Laboratory Research Engine: Preprototype configuration report

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.

  19. Full-participation of students with physical disabilities in science and engineering laboratories.

    PubMed

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  20. Garan conducts ISSAC installation in the US Lab

    NASA Image and Video Library

    2011-05-06

    ISS027-E-023657 (6 May 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, works with ISS Agricultural Camera (ISSAC) hardware in the Destiny laboratory of the International Space Station. ISSAC, a successor of the earlier AgCam, will operate in conjunction with EarthKAM, both instruments to conduct simultaneous but independent operations in the WORF rack in Destiny.

  1. Garan conducts ISSAC installation in the US Lab

    NASA Image and Video Library

    2011-05-06

    ISS027-E-023658 (6 May 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, works with ISS Agricultural Camera (ISSAC) hardware in the Destiny laboratory of the International Space Station. ISSAC, a successor of the earlier AgCam, will operate in conjunction with EarthKAM, both instruments to conduct simultaneous but independent operations in the WORF rack in Destiny.

  2. Garan conducts ISSAC installation in the US Lab

    NASA Image and Video Library

    2011-05-06

    ISS027-E-023644 (6 May 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, works with ISS Agricultural Camera (ISSAC) hardware in the Destiny laboratory of the International Space Station. ISSAC, a successor of the earlier AgCam, will operate in conjunction with EarthKAM, both instruments to conduct simultaneous but independent operations in the WORF rack in Destiny.

  3. Garan conducts ISSAC installation in the US Lab

    NASA Image and Video Library

    2011-05-06

    ISS027-E-023655 (6 May 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, works with ISS Agricultural Camera (ISSAC) hardware in the Destiny laboratory of the International Space Station. ISSAC, a successor of the earlier AgCam, will operate in conjunction with EarthKAM, both instruments to conduct simultaneous but independent operations in the WORF rack in Destiny.

  4. Laboratory for Extraterrestrial Physics

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study

  5. Laboratory security and emergency response guidance for laboratories working with select agents. Centers for Disease Control and Prevention.

    PubMed

    Richmond, Jonathan Y; Nesby-O'Dell, Shanna L

    2002-12-06

    In recent years, concern has increased regarding use of biologic materials as agents of terrorism, but these same agents are often necessary tools in clinical and research microbiology laboratories. Traditional biosafety guidelines for laboratories have emphasized use of optimal work practices, appropriate containment equipment, well-designed facilities, and administrative controls to minimize risk of worker injury and to ensure safeguards against laboratory contamination. The guidelines discussed in this report were first published in 1999 (U.S. Department of Health and Human Services/CDC and National Institutes of Health. Biosafety in microbiological and biomedical laboratories [BMBL]. Richmond JY, McKinney RW, eds. 4th ed. Washington, DC: US Department of Health and Human Services, 1999 [Appendix F]). In that report, physical security concerns were addressed, and efforts were focused on preventing unauthorized entry to laboratory areas and preventing unauthorized removal of dangerous biologic agents from the laboratory. Appendix F of BMBL is now being revised to include additional information regarding personnel risk assessments, and inventory controls. The guidelines contained in this report are intended for laboratories working with select agents under biosafety-level 2, 3, or 4 conditions as described in Sections II and III of BMBL. These recommendations include conducting facility risk assessments and developing comprehensive security plans to minimize the probability of misuse of select agents. Risk assessments should include systematic, site-specific reviews of 1) physical security; 2) security of data and electronic technology systems; 3) employee security; 4) access controls to laboratory and animal areas; 5) procedures for agent inventory and accountability; 6) shipping/transfer and receiving of select agents; 7) unintentional incident and injury policies; 8) emergency response plans; and 9) policies that address breaches in security. The security plan

  6. Bioconversion study conducted by JPL

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J.

    1978-01-01

    The Jet Propulsion Laboratory (JPL) of Caltech conducted a study of bioconversion as a means of identifying the role of biomass for meeting the national energy fuel and chemical requirements and the role and means for JPL-Caltech involvement in bioconversion. The bioconversion study included the following categories; biomass sources, chemicals from biomass, thermochemical conversion of biomass to fuels, biological conversion of biomass to fuels and chemicals, and basic bioconversion sciences. A detailed review is included of the bioconversion fields cited with specific conclusions and recommendations given for future research and development and overall biomass system engineering and economic studies.

  7. From grass to grace: How SLMTA revolutionised the Bamenda Regional Hospital Laboratory in Cameroon

    PubMed Central

    Batumani, Nakeli N.; Maruta, Talkmore; Awasom, Charles N.

    2014-01-01

    Background Public health laboratories form the foundation on which today’s clinical laboratory practice in Cameroon is built. The advent of the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme in 2009 empowered the Bamenda Regional Hospital Laboratory (BRHL) to improve its working culture, practices and management. Objectives To evaluate the results of SLMTA implementation at BRHL and discuss lessons learned. Method In 2010, the SLMTA programme was rolled out in Cameroon to improve laboratory quality management systems in five laboratories, including BRHL. Three workshops were conducted (the first centralised, the remaining two on-site at each laboratory) and improvement projects were implemented after each workshop with the assistance of mentors. Audits were used in order to evaluate performance and to identify areas for further improvement. Results BRHL had the lowest score (18%) amongst the cohort at the baseline audit and the highest (81%) at the official Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) audit conducted in August 2013 by the African Society for Laboratory Medicine. Improvements were observed in each of the 12 Quality System Essentials; improvement was especially noteworthy in the areas of facilities and safety, and purchasing and inventory. Staff investment and pride in the quality of laboratory services increased. Conclusion BRHL’s remarkable improvement was achieved with a combination of SLMTA training activities, intensive on-site mentorship and the collective focus of all laboratory staff. The experience at Bamenda Hospital illustrates what can be achieved when a laboratory successfully harnesses the energy of its staff and implements changes to improve the quality of services in a transformation taking them from grass to grace. PMID:29043186

  8. Working toward a sustainable laboratory quality improvement programme through country ownership: Mozambique's SLMTA story.

    PubMed

    Masamha, Jessina; Skaggs, Beth; Pinto, Isabel; Mandlaze, Ana Paula; Simbine, Carolina; Chongo, Patrina; de Sousa, Leonardo; Kidane, Solon; Yao, Katy; Luman, Elizabeth T; Samogudo, Eduardo

    2014-01-01

    Launched in 2009, the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme has emerged as an innovative approach for the improvement of laboratory quality. In order to ensure sustainability, Mozambique embedded the SLMTA programme within the existing Ministry of Health (MOH) laboratory structure. This article outlines the steps followed to establish a national framework for quality improvement and embedding the SLMTA programme within existing MOH laboratory systems. The MOH adopted SLMTA as the national laboratory quality improvement strategy, hired a dedicated coordinator and established a national laboratory quality technical working group comprising mostly personnel from key MOH departments. The working group developed an implementation framework for advocacy, training, mentorship, supervision and audits. Emphasis was placed on building local capacity for programme activities. After receiving training, a team of 25 implementers (18 from the MOH and seven from partner organisations) conducted baseline audits (using the Stepwise Laboratory Quality Improvement Process Towards Accreditation [SLIPTA] checklist), workshops and site visits in six reference and two central hospital laboratories. Exit audits were conducted in six of the eight laboratories and their results are presented. The six laboratories demonstrated substantial improvement in audit scores; median scores increased from 35% at baseline to 57% at exit. It has been recommended that the National Tuberculosis Reference Laboratory apply for international accreditation. Successful implementation of SLMTA requires partnership between programme implementers, whilst effectiveness and long-term viability depend on country leadership, ownership and commitment. Integration of SLMTA into the existing MOH laboratory system will ensure durability beyond initial investments. The Mozambican model holds great promise that country leadership, ownership and institutionalisation can set the stage for

  9. Testing activities at the National Battery Test Laboratory

    NASA Astrophysics Data System (ADS)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  10. Some Experiments with Biological Applications for the Elementary Laboratory

    ERIC Educational Resources Information Center

    Kammer, D. W.; Williams, J. A.

    1975-01-01

    Summarizes physics laboratory experiments with applications in the biological sciences. Includes the following topics: mechanics of the human arm, fluid flow in tubes, physics of learning, the electrocardiograph, nerve impulse conduction, and corrective lenses for eye defects. (Author/MLH)

  11. Ames Laboratory site environmental report, calendar year 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathison, L.K.

    1989-05-01

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies several buildings owned by the Department of Energy. A study is being conducted to identify environmental sampling methods which can characterize and separate the impact of Ames Laboratory's campus activities and that of ISU. This will enable the Laboratory to determine what possible impact it's operations may be having to the environment, if any. Two Pollution Abatement projects were begun in 1988. They were: removal ofmore » thorium contaminated soil resulting from a historical release of thorium at the Laboratory, to the Ames, Iowa Water Pollution Control (sewage) Plant and demolition of a small Blockhouse'' constructed of concrete block which had been used for low level radioactive waste handling. The contaminated soil has been removed and transported to Hanford, WA for disposal. A final site radiological survey for thorium is pending. In addition, contaminated debris was transported to Hanford, WA for disposal and a final site survey is pending. 7 refs., 4 figs., 1 tab.« less

  12. Prevalence of Estimated GFR Reporting Among US Clinical Laboratories

    PubMed Central

    Accetta, Nancy A.; Gladstone, Elisa H.; DiSogra, Charles; Wright, Elizabeth C.; Briggs, Michael; Narva, Andrew S.

    2008-01-01

    Background Routine laboratory reporting of estimated glomerular filtration rate (eGFR) may help clinicians detect kidney disease. The current national prevalence of eGFR reporting among clinical laboratories is unknown, thus the extent of the situation of laboratories not routinely reporting eGFR with serum creatinine (SCr) results is not quantified. Design Observational analysis. Setting National Kidney Disease Education Program survey of clinical laboratory conducted in 2006-7 by mail, Web, and telephone follow up. Participants A national random sample, 6,350 clinical laboratories, drawn from the Federal Clinical Laboratory Improvement Amendments database and stratified by six major laboratory types/groupings. Predictors Laboratory reports SCr results. Outcomes Reporting eGFR values along with SCr results. Measurements Percent of laboratories reporting eGFR along with reporting SCr, reporting protocol, eGFR formula used, and style of reporting cutoff values. Results Among laboratories reporting SCr, 38.4% report eGFR (physician offices, 25.8%; hospitals, 43.6%; independents, 38.9%; community clinics, 47.2%; health fair/insurance/public health, 45.5%; others, 43.2%). Physician office laboratories have a reporting prevalence lower than other laboratory types (p < 0.001). Among laboratories reporting eGFR, 66.7% do so routinely with all adult SCr determinations; 71.6% use the 4-variable Modification of Diet in Renal Disease Study equation; and 45.3% use the “>60 mL/min/1.73 m2” reporting convention. Independent laboratories are least likely to routinely report eGFR, (50.6%, p < .05) and most likely to report only when specifically requested (45.4%, p < 0.05). High-volume laboratories across all strata are more likely to report eGFR (p < 0.001). Limitations Self-reporting by laboratories, Federal database did not have names of laboratory directors/managers (intended respondents), assumed accuracy of Federal database for sample purposes. Conclusions Routine e

  13. Developing an online chemistry laboratory for non-chemistry majors

    NASA Astrophysics Data System (ADS)

    Poole, Jacqueline H.

    Distance education, also known as online learning, is student-centered/self-directed educational opportunities. This style of learning is expanding in scope and is increasingly being accepted throughout the academic curriculum as a result of its flexibility for the student as well as the cost-effectiveness for the institution. Nevertheless, the introduction of online science courses including chemistry and physics have lagged behind due to the challenge of re-creation of the hands-on laboratory learning experience. This dissertation looks at the effectiveness of the design of a series of chemistry laboratory experiments for possible online delivery that provide students with simulated hands-on experiences. One class of college Chemistry 101 students conducted chemistry experiments inside and outside of the physical laboratory using instructions on Blackboard and Late Nite Labs(TM). Learning outcomes measured by (a) pretests, (b) written laboratory reports, (c) posttest assessments, (d) student reactions as determined by a questionnaire, and (e) a focus group interview were utilized to compare both types of laboratory experiences. The research findings indicated learning outcomes achieved by students outside of the traditional physical laboratory were statistically greater than the equivalent face-to-face instruction in the traditional laboratory. Evidence from student reactions comparing both types of laboratory formats (online and traditional face-to-face) indicated student preference for the online laboratory format. The results are an initial contribution to the design of a complete sequence of experiments that can be performed independently by online students outside of the traditional face-to-face laboratory that will satisfy the laboratory requirement for the two-semester college Chemistry 101 laboratory course.

  14. How compliant are technicians with universal safety measures in medical laboratories in Croatia? – A pilot study

    PubMed Central

    Dukic, Kristina; Zoric, Matea; Pozaic, Petra; Starcic, Jelena; Culjak, Marija; Saracevic, Andrea; Miler, Marijana

    2015-01-01

    Introduction This pilot study aimed to investigate the use of personal protective equipment (PPE) and compliance to the code of conduct (rules defined in institutional, governmental and professional guidelines) among laboratory technicians in Croatian medical laboratories. In addition, we explored the differences in compliance between participants of different age groups, laboratory ownership and accreditation status. Materials and methods An anonymous and voluntary survey with 15 questions was conducted among Croatian medical laboratory technicians (N = 217). The questions were divided into two groups: demographic characteristics and the use of PPE. The questions of the second part were graded according to the Likert scale (1-4) and an overall score, shown as median and range (min-max), was calculated for each participant. Differences between the overall scores were tested for each group of participants. Results The majority of participants always wear protective clothes at work, 38.7% of them always wear gloves in daily routine, more than 30.0% consume food and almost half of them drink beverages at workplace. A significantly lower overall score was found for participants working in public compared to private laboratories (36 (16-40) vs. 40 (31-40), P < 0.001). There were no statistically significant differences in overall scores for participants of different age groups (P = 0.456) and laboratory accreditation status (P = 0.081). Conclusion A considerable percentage of laboratory technicians in Croatian medical laboratories do not comply with safety measures. Lack of compliance is observed in all personnel regardless laboratory accreditation and participants’ age. However, those working in private laboratories adhere more to the code of conduct. PMID:26526817

  15. Quantum Conductance in Metal Nanowires

    NASA Astrophysics Data System (ADS)

    Ugarte, Daniel

    2004-03-01

    Quantum Conductance in Metal Nanowires D. Ugarte Brazilian National Synchrotron Light Laboratory C.P. 6192, 13084-971 Campinas SP, Brazil. Electrical transport properties of metallic nanowires (NWs) have received great attention due to their quantum conductance behavior. Atomic scale wires can be generated by stretching metal contacts; during the elongation and just before rupture, the NW conductance shows flat plateaus and abrupt jumps of approximately a conductance quantum. In this experiments, both the NW atomic arrangement and conductance change simultaneously, making difficult to discriminate electronic and structural effects. In this work, the atomic structure of NWs was studied by time-resolved in situ experiments in a high resolution transmission electron microscope, while their electrical properties using an UHV mechanically controllable break junction (MCBJ). From the analysis of numerous HRTEM images and videos, we have deduced that metal (Au, Ag, Pt, etc.) junctions generated by tensile deformation are crystalline and free of defects. The neck structure is strongly dependent on the surface properties of the analyzed metal, this was verified by comparing different metal NWs (Au, Ag, Cu), which have similar atomic structure (FCC), but show very different faceting patterns. The correlation between the observed structural and transport properties of NW points out that the quantum conductance behavior is defined by preferred atomic arrangement at the narrowest constriction. In the case of magnetic (ex. Fe,Co,Ni) or quasi-magnetic (ex. Pd) wires, we have observed that one-atom-thick structures show a conductance of half the quantum as expected for a fully spin polarized current. This phenomenon seems to occur spontaneously for magnetic suspended atom-chains in zero magnetic field and at room temperature. These results open new opportunities for spin control in nanostructures. Funded by FAPESP, LNLS and CNPq.

  16. Complex conductivity of oil-contaminated clayey soils

    NASA Astrophysics Data System (ADS)

    Deng, Yaping; Shi, Xiaoqing; Revil, André; Wu, Jichun; Ghorbani, A.

    2018-06-01

    Spectral induced polarization (SIP) is considered as a promising tool in environmental investigations. However, few works have done regarding the electrical signature of oil contamination of clayey soils upon induced polarization. Laboratory column experiments plus one sandbox experiment are conducted in this study to investigate the performances of the SIP method in oil-contaminated soils. First, a total of 12 soils are investigated to reveal the influences of water and soil properties on the saturation dependence of the complex conductivity below 100 Hz. Results show that the magnitude of the complex conductivity consistently decreases with decreasing water saturation for all soils samples. The saturation n and quadrature conductivity p exponents tend to increase slightly with increasing water salinity when using a linear conductivity model. The saturation exponent increases marginally with the cation exchange capacity (CEC) and the specific surface area (Ssp) while the quadrature conductivity exponent exhibits a relatively stronger dependence on both CEC and Ssp. For the low CEC soil samples (normally ≤10 meq/100 g), the quadrature conductivity exponent p correlates well with the saturation exponent n using the relationship p = n-1. SIP method is further applied in a sandbox experiment to estimate the saturation distribution and total volume of the oil. Results demonstrate that the SIP method has a great potential for mapping the organic contaminant plume and quantifying the oil volume.

  17. MIT Lincoln Laboratory Annual Report 2009

    DTIC Science & Technology

    2009-01-01

    unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 MIt lincoln laboratory Massachusetts Institute...Climate-change monitoring that will be conducted by assessing the utility of using very-long-wave infrared radiation for space-based sensing and by... radiation to detect trace explosives on a person’s hair were investigated. An ultrasensitive THz receiver leverages mature technology at the near-infrared

  18. Laboratory-based Salmonella surveillance in Fiji, 2004-2005.

    PubMed

    Dunn, John; Pryor, Jan; Saketa, Salanieta; Delai, Wasale; Buadromo, Eka; Kishore, Kamal; Naidu, Shakila; Greene, Sharon; Varma, Jay; Chiller, Tom

    2005-09-01

    Although foodborne diseases are an important public health problem worldwide, the burden of foodborne illness is not well described in most Pacific Island Countries and Territories. Laboratory-based surveillance programs can detect trends and outbreaks, estimate burden of illness, and allow subtyping of enteric pathogens (e.g. Salmonella serotyping), which is critical for linking illness to food vehicles and animal reservoirs. To enhance public health capacity in Fiji for foodborne disease surveillance, we developed the Salmonella Surveillance Project (SSP), a collaboration to pilot laboratory-based surveillance for Salmonella. A network of national and international partners was formed including epidemiologists, microbiologists, and environmental health personnel. Ministry of Health personnel were trained in foodborne disease surveillance and outbreak investigation. Three clinical microbiology laboratories from different parts of the country functioned as sentinel sites, reporting all laboratory-confirmed Salmonella infections using a standardized case report form. Non-Typhi Salmonella isolates were collected for serotyping. In 2004-2005, 86 non-Typhi Salmonella and 275 S. Typhi laboratory-confirmed infections were reported. Salmonella enterica serotype I 3,10: r:- and Salmonella enterica serotype Weltevreden were the most commonly isolated non-Typhi serotypes. In Fiji, the SSP utilized international partnerships to facilitate training, and to enhance laboratory capacity and surveillance for salmonellosis. Incorporating laboratory-based foodborne disease reporting into national disease surveillance will enable public health officials to describe the burden of foodborne illness, identify outbreaks, conduct analytic epidemiology studies, and improve food safety.

  19. Laboratory Investigation of Space and Planetary Dust Grains

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.

  20. Characterization of rock thermal conductivity by high-resolution optical scanning

    USGS Publications Warehouse

    Popov, Y.A.; Pribnow, D.F.C.; Sass, J.H.; Williams, C.F.; Burkhardt, H.

    1999-01-01

    We compared thress laboratory methods for thermal conductivity measurements: divided-bar, line-source and optical scanning. These methods are widely used in geothermal and petrophysical studies, particularly as applied to research on cores from deep scientific boreholes. The relatively new optical scanning method has recently been perfected and applied to geophysical problems. A comparison among these methods for determining the thermal conductivity tensor for anisotropic rocks is based on a representative collection of 80 crystalline rock samples from the KTB continental deep borehole (Germany). Despite substantial thermal inhomogeneity of rock thermal conductivity (up to 40-50% variation) and high anisotropy (with ratios of principal values attaining 2 and more), the results of measurements agree very well among the different methods. The discrepancy for measurements along the foliation is negligible (<1%). The component of thermal conductivity normal to the foliation reveals somewhat larger differences (3-4%). Optical scanning allowed us to characterize the thermal inhomogeneity of rocks and to identify a three-dimensional anisotropy in thermal conductivity of some gneiss samples. The merits of optical scanning include minor random errors (1.6%), the ability to record the variation of thermal conductivity along the sample, the ability to sample deeply using a slow scanning rate, freedom from constraints for sample size and shape, and quality of mechanical treatment of the sample surface, a contactless mode of measurement, high speed of operation, and the ability to measure on a cylindrical sample surface. More traditional methods remain superior for characterizing bulk conductivity at elevated temperature.Three laboratory methods including divided-bar, line-source and optical scanning are widely applied in geothermal and petrophysical studies. In this study, these three methods were compared for determining the thermal conductivity tensor for anisotropic rocks

  1. Developing Medicare Competitive Bidding: A Study of Clinical Laboratories

    PubMed Central

    Hoerger, Thomas J.; Meadow, Ann

    1997-01-01

    Competitive bidding to derive Medicare fees promises several advantages over administered fee systems. The authors show how incentives for cost savings, quality, and access can be incorporated into bidding schemes, and they report on a study of the clinical laboratory industry conducted in preparation for a bidding demonstration. The laboratory industry is marked by variable concentration across geographic markets and, among firms themselves, by social and economic heterogeneity. The authors conclude that these conditions can be accommodated by available bidding design options and by careful selection of bidding markets. PMID:10180003

  2. A Conductive Gel for the Plotting of Equipotential Lines

    ERIC Educational Resources Information Center

    Elizalde-Torres, J.; González-Cardel, M.; Vega-Murguía, E. J.; Castillo-González, I.; Rodríguez-Nava, M.

    2015-01-01

    This paper presents the development of a conductive gel that can be used to measure the electrical potential differences on its surface, and has enough consistency to plot equipotential lines. It has a gelation time of less than 10 min, and is suitable for implementing learning experiences in a physics teaching laboratory in a 90 min session. To…

  3. Safety and health practice among laboratory staff in Malaysian education sector

    NASA Astrophysics Data System (ADS)

    Husna Che Hassan, Nurul; Rasdan Ismail, Ahmad; Kamilah Makhtar, Nor; Azwadi Sulaiman, Muhammad; Syuhadah Subki, Noor; Adilah Hamzah, Noor

    2017-10-01

    Safety is the most important issue in industrial sector such as construction and manufacturing. Recently, the increasing number of accident cases reported involving school environment shows the important of safety issues in education sector. Safety awareness among staff in this sector is crucial in order to find out the method to prevent the accident occurred in future. This study was conducted to analyze the knowledge of laboratory staff in term of safety and health practice in laboratory. Survey questionnaires were distributing among 255 of staff laboratory from ten District Education Offices in Kelantan. Descriptive analysis shows that the understanding of safety and health practice are low while doing some job activities in laboratory. Furthermore, some of the staff also did not implemented safety practice that may contribute to unplanned event occur in laboratory. Suggestion that the staff at laboratory need to undergo on Occupational Safety and Health training to maintain and create safe environment in workplaces.

  4. Detection of internally infested popcorn using electrically conductive roller mills

    USDA-ARS?s Scientific Manuscript database

    To detect popcorn kernels infested by the internal feeding stored-product insect pest Sitophilus zeamais, maize weevil, a laboratory roller mill was modified so that the electrical conductivity of the grain is measured while the kernels are milled between the rolls. When a kernel with a S. zeamais l...

  5. Williams conducts SWAB Sampling during Expedition 22

    NASA Image and Video Library

    2010-03-15

    ISS022-E-094369 (15 March 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  6. Williams conducts SWAB Sampling during Expedition 22

    NASA Image and Video Library

    2010-03-15

    ISS022-E-094374 (15 March 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  7. Los Alamos National Laboratory: A guide to records series supporting epidemiologic studies conducted for the Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-01-01

    The purpose of this guide is to describe each series of records that pertains to the epidemiologic studies conducted by the Epidemiology Section of the Occupational Medicine Group (ESH-2) at the Department of Energy`s (DOE) Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico. The records described in this guide relate to occupational studies performed by the Epidemiology Section, including those pertaining to workers at LANL, Mound Plant, Oak Ridge Reservation, Pantex Plant, Rocky Flats Plant, and Savannah River Site. Also included are descriptions of other health-related records generated or collected by the Epidemiology Section and a small setmore » of records collected by the Industrial Hygiene and Safety Group. This guide is not designed to describe the universe of records generated by LANL which may be used for epidemiologic studies of the LANL work force. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project, HAI`s role in the project, the history of LANL the history and functions of LANL`s Health Division and Epidemiology Section, and the various epidemiologic studies performed by the Epidemiology Section. It provides information on the methodology that HAI used to inventory and describe records housed in the offices of the LANL Epidemiology Section in Technical Area 59 and at the LANL Records Center. Other topics include the methodology used to produce the guide, the arrangement of the detailed record series descriptions, and information concerning access to records repositories.« less

  8. Pre-Employment Laboratory Education. Clothing/Fashion Design Guidebook.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Instructional Materials Center.

    This guidebook is designed for use in teaching students enrolled in preemployment laboratory education (PELE) clothing/fashion design programs. The first of two major sections includes an overview for teachers on planning, conducting, and evaluating a PELE clothing/fashion design program. Specific topics discussed in section 1 include (1)…

  9. Performance audits and laboratory comparisons for SCOS97-NARSTO measurements of speciated volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Fujita, Eric M.; Harshfield, Gregory; Sheetz, Laurence

    Performance audits and laboratory comparisons were conducted as part of the quality assurance program for the 1997 Southern California Ozone Study (SCOS97-NARSTO) to document potential measurement biases among laboratories measuring speciated nonmethane hydrocarbons (NMHC), carbonyl compounds, halogenated compounds, and biogenic hydrocarbons. The results show that measurements of volatile organic compounds (VOC) made during SCOS97-NARSTO are generally consistent with specified data quality objectives. The hydrocarbon comparison involved nine laboratories and consisted of two sets of collocated ambient samples. The coefficients of variation among laboratories for the sum of the 55 PAM target compounds and total NMHC ranged from ±5 to 15 percent for ambient samples from Los Angeles and Azusa. Abundant hydrocarbons are consistently identified by all laboratories, but discrepancies occur for olefins greater than C 4 and for hydrocarbons greater than C 8. Laboratory comparisons for halogenated compounds and biogenic hydrocarbons consisted of both concurrent ambient sampling by different laboratories and round-robin analysis of ambient samples. The coefficients of variation among participating laboratories were about 10-20 percent. Performance audits were conducted for measurement of carbonyl compounds involving sampling from a standard mixture of carbonyl compounds. The values reported by most of the laboratories were within 10-20 percent of those of the reference laboratory. Results of field measurement comparisons showed larger variations among the laboratories ranging from 20 to 40 percent for C 1-C 3 carbonyl compounds. The greater variations observed in the field measurement comparison may reflect potential sampling artifacts, which the performance audits did not address.

  10. Laboratory evaluation of the pointing stability of the ASPS Vernier System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The annular suspension and pointing system (ASPS) is an end-mount experiment pointing system designed for use in the space shuttle. The results of the ASPS Vernier System (AVS) pointing stability tests conducted in a laboratory environment are documented. A simulated zero-G suspension was used to support the test payload in the laboratory. The AVS and the suspension were modelled and incorporated into a simulation of the laboratory test. Error sources were identified and pointing stability sensitivities were determined via simulation. Statistical predictions of laboratory test performance were derived and compared to actual laboratory test results. The predicted mean pointing stability during simulated shuttle disturbances was 1.22 arc seconds; the actual mean laboratory test pointing stability was 1.36 arc seconds. The successful prediction of laboratory test results provides increased confidence in the analytical understanding of the AVS magnetic bearing technology and allows confident prediction of in-flight performance. Computer simulations of ASPS, operating in the shuttle disturbance environment, predict in-flight pointing stability errors less than 0.01 arc seconds.

  11. [Assessment of a supervision grid being used in the laboratories of cutaneous leishmaniasis in Morocco].

    PubMed

    El Mansouri, Bouchra; Amarir, Fatima; Hajli, Yamina; Fellah, Hajiba; Sebti, Faiza; Delouane, Bouchra; Sadak, Abderrahim; Adlaoui, El Bachir; Rhajaoui, Mohammed

    2017-01-01

    The aim of our study was to assess a standardized supervisory grid as a new supervision tool being used in the laboratories of leishmaniasis. We conducted a pilot trial to evaluate the ongoing performances of seven provincial laboratories, in four provinces in Morocco, over a period of two years, between 2006 and 2014. This study detailed the situation in provincial laboratories before and after the implementation of the supervisory grid. A total of twenty-one grids were analyzed. In 2006, the results clearly showed a poor performance of laboratories: need for training (41.6%), staff performing skin biopsy (25%), shortage of materials and reagents (65%), non-compliant document and local management (85%). Several corrective actions were conducted by the National Reference Laboratory (LNRL) of Leishmaniasis during the study period. In 2014, the LNRL recorded a net improvement of the performances of the laboratories. The need for training, the quality of the biopsy, the supply of tools and reagents were met and an effective coordination activity was established between the LNRL and the provincial laboratories. This trial shows the effectiveness of the grid as a high quality supervisory tool and as a cornerstone of making progress on fight programs against leishmaniases.

  12. Implementation of an automated test setup for measuring electrical conductance of concrete.

    DOT National Transportation Integrated Search

    2007-01-01

    This project was designed to provide the Virginia Department of Transportation (VDOT) with an automated laboratory setup for performing the rapid chloride permeability test (RCPT) to measure the electrical conductance of concrete in accordance with a...

  13. Status Report on Laboratory Testing and International Collaborations in Salt.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlman, Kristopher L.; Matteo, Edward N.; Hadgu, Teklu

    This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone levelfour milestone M4SF-17SN010303014. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS) and bedded salt investigations (KOSINA), while the last three sections discuss laboratory work conducted on brucite solubility in brine, dissolution of borosilicate glass into brine, andmore » partitioning of fission products into salt phases.« less

  14. Hydraulic Conductivity Measurements Barrow 2014

    DOE Data Explorer

    Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

    2015-02-22

    Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

  15. Micromachined probes for laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Chiang, Franklin Changta

    As we begin to find more applications for plasmas in our everyday lives, the ability to characterize and understand their inner workings becomes increasingly important. Much of our current understanding of plasma physics comes from investigations conducted in diffuse, outer space plasmas where experimenters have no control over the environment or experimental conditions and one measures interesting phenomena only by chance when the spacecraft or satellite passes through them. Ideally, experiments should be performed in a controlled environment, where plasma events can be deliberately and reliably created when wanted and probes placed precisely within the plasma. Unfortunately, often due to their size, probes used in outer space are unsuitable for use in high-density laboratory plasmas, and constructing probes that can be used in terrestrial plasmas is a considerable challenge. This dissertation presents the development, implementation, and experimental results of three micromachined probes capable of measuring voltage and electric field, ion energies, and changing magnetic fields (B-dot) in laboratory plasmas.

  16. The value-added laboratory: an opportunity to merge research and service objectives.

    PubMed

    McDonald, J M

    1997-01-01

    The changing health-care environment is creating a new opportunities for laboratory medicine professionals that correspond with the new health services research agendas. Proving cost-effectiveness and conducting outcomes assessment are becoming vital functions of laboratories in this era of managed care. Laboratorians must take advantage of the resulting opportunities to show how they add value and medical relevance to the health-care delivery system.

  17. Measuring meaningful learning in the undergraduate chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Galloway, Kelli R.

    The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from

  18. Commercialization of a DOE Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, Barry A.

    2008-01-15

    On April 1, 1998, Materials and Chemistry Laboratory, Inc. (MCLinc) began business as an employee-owned, commercial, applied research laboratory offering services to both government and commercial clients. The laboratory had previously been a support laboratory to DoE's gaseous diffusion plant in Oak Ridge (K-25). When uranium enrichment was halted at the site, the laboratory was expanded to as an environmental demonstration center and served from 1992 until 1997 as a DOE Environmental User Facility. In 1997, after the laboratory was declared surplus, it was made available to the employee group who operated the laboratory for DOE as a government-owned, contractor-operatedmore » facility. This paper describes briefly the process of establishing the business. Attributes that contributed to the success of MCLinc are described. Some attention is given to lessons learned and to changes that could facilitate future attempts to make similar transitions. Lessons learnt: as with any business venture, operation over time has revealed that some actions taken by the laboratory founders have contributed to its successful operation while others were not so successful. Observations are offered in hopes that lessons learned may suggest actions that will facilitate future attempts to make similar transitions. First, the decision to vest significant ownership of the business in the core group of professionals operating the business is key to its success. Employee-owners of the laboratory have consistently provided a high level of service to its customers while conducting business in a cost-efficient manner. Secondly, an early decision to provide business support services in-house rather than purchasing them from support contractors on site have proven cost-effective. Laboratory employees do multiple tasks and perform overhead tasks in addition to their chargeable technical responsibilities. Thirdly, assessment of technical capabilities in view of market needs and a decision to

  19. A Survey of the Practices, Procedures, and Techniques in Undergraduate Organic Chemistry Teaching Laboratories

    ERIC Educational Resources Information Center

    Martin, Christopher B.; Schmidt, Monica; Soniat, Michael

    2011-01-01

    A survey was conducted of four-year institutions that teach undergraduate organic chemistry laboratories in the United States. The data include results from over 130 schools, describes the current practices at these institutions, and discusses the statistical results such as the scale of the laboratories performed, the chemical techniques applied,…

  20. Survey of laboratory practices for diagnosis of fungal infection in seven Asian countries: An Asia Fungal Working Group (AFWG) initiative.

    PubMed

    Chindamporn, Ariya; Chakrabarti, Arunaloke; Li, Ruoyu; Sun, Pei-Lun; Tan, Ban-Hock; Chua, Mitzi; Wahyuningsih, Retno; Patel, Atul; Liu, Zhengyin; Chen, Yee-Chun; Chayakulkeeree, Methee

    2018-06-01

    An online survey of mycology laboratories in seven Asian countries was conducted to assess the status, competence, and services available. Country representatives from the Asia Fungal Working Group (AFWG) contacted as many laboratories performing mycology diagnosis as possible in their respective countries, requesting that the laboratory heads complete the online survey. In total, 241 laboratories responded, including 71 in China, 104 in India, 11 in Indonesia, 26 in the Philippines, four in Singapore, 18 in Taiwan, and seven in Thailand. Overall, 129/241 (53.5%) surveyed mycology laboratories operate as separate designated mycology laboratories, 75/241 (31.1%) conduct regular formal staff training, 103/241 (42.7%) are accredited, and 88/157 (56.1%) participate in external quality assurance scheme (EQAS) programs. Microscopy and culture methods are available in nearly all laboratories, although few perform DNA sequencing (37/219; 16.9%) or use matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) (27/219; 12.3%) for isolate identification. Antifungal susceptibility testing is performed in 142/241 (58.9%) laboratories, mainly for yeasts. The most commonly performed nonculture diagnostic is cryptococcal antigen testing (66 laboratories), followed by galactomannan testing (55), polymerase chain reaction (PCR) diagnosis (37), and beta-D-glucan testing (24). Therapeutic drug monitoring is conducted in 21 laboratories. There is almost no access to advanced diagnostic tests, like galactomannan, β-D-glucan, and PCR, in the surveyed laboratories in Indonesia, the Philippines, and Thailand. These results highlight the need for development of quality laboratories, accreditation and training of manpower in existing laboratories, and access to advanced non-culture-based diagnostic tests to facilitate the diagnosis of fungal infections in Asia.

  1. High Frequency Active Auroral Research Program (HAARP) Imager

    DTIC Science & Technology

    1993-09-30

    T-3 HCTL!; *WR-EN HCTL@ F- 3 HC7L! ; * HACK H(TL-@ F-4 HCTL!; ]NIiT-HOST 00 HB! F8 HCrL!; DSP-RESET INIT-HOST HCTL@ DUP F-6 HCTh! T-6 HCTU! DSP-IRQB...CONSTANTPS2 PI_HI P2-11 OR 3_-1O OR TG..LO OR CONSTANT PS3 P1I.,O P2_.i OR P3..LO OR TG_.LO OR CONSTANT PS4 PlLO P21-1I OR P3_H1 OR TGIIl OR CONSTANTPS5 P1_LO...CONSTANT PSTATEI PS2 SER-IDLE OR CONSTANT PSTATE2 PS3 SERIDLE OR CONSTANT PSTATE3 PS4 SERIDLE OR CONSTANT PSTATE4 PS5 SERIDLE OR CONSTANT PSTATES PS6

  2. Experience of quality management system in a clinical laboratory in Nigeria

    PubMed Central

    Sylvester-Ikondu, Ugochukwu; Onwuamah, Chika K.; Salu, Olumuyiwa B.; Ige, Fehintola A.; Meshack, Emily; Aniedobe, Maureen; Amoo, Olufemi S.; Okwuraiwe, Azuka P.; Okhiku, Florence; Okoli, Chika L.; Fasela, Emmanuel O.; Odewale, Ebenezer. O.; Aleshinloye, Roseline O.; Olatunji, Micheal; Idigbe, Emmanuel O.

    2012-01-01

    Issues Quality-management systems (QMS) are uncommon in clinical laboratories in Nigeria, and until recently, none of the nation’s 5 349 clinical laboratories have been able to attain the certifications necessary to begin the process of attaining international accreditation. Nigeria’s Human Virology Laboratory (HVL), however, began implementation of a QMS in 2006, and in 2008 it was determined that the laboratory conformed to the requirements of ISO 9001:2000 (now 2008), making it the first diagnostic laboratory to be certified in Nigeria. The HVL has now applied for the World Health Organization (WHO) accreditation preparedness scheme. The experience of the QMS implementation process and the lessons learned therein are shared here. Description In 2005, two personnel from the HVL spent time studying quality systems in a certified clinical laboratory in Dakar, Senegal. Following this peer-to-peer technical assistance, several training sessions were undertaken by HVL staff, a baseline assessment was conducted, and processes were established. The HVL has monitored its quality indicators and conducted internal and external audits; these analyses (from 2007 to 2009) are presented herein. Lessons learned Although there was improvement in the pre-analytical and analytical indicators analysed and although data-entry errors decreased in the post-analytical process, the delay in returning laboratory test results increased significantly. There were several factors identified as causes for this delay and all of these have now been addressed except for an identified need for automation of some high-volume assays (currently being negotiated). Internal and external audits showed a trend of increasing non-conformities which could be the result of personnel simply becoming lax over time. Application for laboratory accreditation, however, could provide the renewed vigour needed to correct these non-conformities. Recommendation This experience shows that sustainability of the QMS

  3. Improving consistency in large laboratory courses: a design for a standardized practical exam.

    PubMed

    Chen, Xinnian; Graesser, Donnasue; Sah, Megha

    2015-06-01

    Laboratory courses serve as important gateways to science, technology, engineering, and mathematics education. One of the challenges in assessing laboratory learning is to conduct meaningful and standardized practical exams, especially for large multisection laboratory courses. Laboratory practical exams in life sciences courses are frequently administered by asking students to move from station to station to answer questions, apply knowledge gained during laboratory experiments, interpret data, and identify various tissues and organs using various microscopic and gross specimens. This approach puts a stringent time limit on all questions regardless of the level of difficulty and also invariably increases the potential risk of cheating. To avoid potential cheating in laboratory courses with multiple sections, the setup for practical exams is often changed in some way between sections. In laboratory courses with multiple instructors or teaching assistants, practical exams may be handled inconsistently among different laboratory sections, due to differences in background knowledge, perceptions of the laboratory goals, or prior teaching experience. In this article, we describe a design for a laboratory practical exam that aims to align the assessment questions with well-defined laboratory learning objectives and improve the consistency among all laboratory sections. Copyright © 2015 The American Physiological Society.

  4. An Alternative to the Physiological Psychology Laboratory: Identification of an Unknown Drug Through Behavioral Testing.

    ERIC Educational Resources Information Center

    Schumacher, Susan J.

    1982-01-01

    A laboratory project introduced physiological psychology students to research by requiring them to identify an unknown drug given to laboratory animals. Students read material about drugs and animal drug studies, designed behavioral tests, constructed the testing apparatus, conducted the tests, and wrote progress reports. (SR)

  5. Laboratory Simulations of Martian and Venusian Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1999-01-01

    The objective of this work was to conduct research in the Planetary Aeolian Facility (PAF) at NASA-Ames Research Center as a laboratory for the planetary science community and to carry-out experiments on the physics and geology of particles moved by winds, and for the development of instruments and spacecraft components for planetary missions.

  6. A survey of coagulation laboratory practices and satisfaction ratings of member laboratories of the Thailand National External Quality Assessment Scheme for blood coagulation.

    PubMed

    Chuntarut, A; Tientadakul, P; Wongkrajang, P

    2016-06-01

    The Thailand National External Quality Assessment Scheme (NEQAS) for blood coagulation was established in 2005. The objective of this study was to collect data of coagulation laboratory practices and satisfaction of NEQAS member. Two hundred seventy-six questionnaires were sent to laboratories that are members of NEQAS to obtain data relating to coagulation laboratory practice and satisfaction in 2014. Data from this survey were compared with data from the survey conducted in 2005 to evaluate levels of improvement. Of 276 questionnaires sent, 212 (76.8%) were returned. Improvements were characterized by the number of laboratories that (i) decreased use of 3.8% sodium citrate as anticoagulant; (ii) implemented use of at least two control levels for internal quality control; and (iii) implemented reporting of reference values with results, as well as establishing their own reference range and using geometric mean as the denominator for international normalized ratio calculation. For overall satisfaction, 179 of 206 (86.9%) participant laboratories reported being satisfied or very satisfied. Improvements in coagulation laboratory practices in Thailand were observed in every step of the total testing process. However, additional improvements are still needed, such as determination and use of a local reference range. © 2016 John Wiley & Sons Ltd.

  7. Comparisons of Mixed-Phase Icing Cloud Simulations with Experiments Conducted at the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter

    2017-01-01

    This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.

  8. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    NASA Astrophysics Data System (ADS)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  9. An innovative educational approach to professional development of medical laboratory scientists in Botswana.

    PubMed

    Magowe, Mabel Km; Ledikwe, Jenny H; Kasvosve, Ishmael; Martin, Robert; Thankane, Kabo; Semo, Bazghina-Werq

    2014-01-01

    To address the shortage of laboratory scientists in Botswana, an innovative, one-year academic bridging program was initiated at the University of Botswana, to advance diploma-holding laboratory technicians towards becoming laboratory scientists holding Bachelor's degrees. An evaluation was conducted, which described the outcomes of the program and the lessons learned from this novel approach to meeting human resource needs. This was a cross-sectional, mixed-methods evaluation. Qualitative interviews were conducted with graduates of the Bachelor of Science (BSc) Medical Laboratory Sciences (MLS) bridging program, along with the graduates' current supervisors, and key informants who were involved in program development or implementation. The quantitative data collected included a written questionnaire, completed by program graduates, with a retrospective pre-test/post-test survey of graduates' confidence, in terms of key laboratory competencies. The BSc MLS bridging program produced thirty-three laboratory scientists over 3 years. There was a significant increase in confidence among graduates, for specified competencies, after the program (P<0.05). Graduates reported acquiring new skills and, often, accepting new responsibilities at their former workplace, particularly in relationship to leadership and management. Five graduates enrolled in advanced degree programs. Most graduates assumed increased responsibility. However, only two graduates were promoted after completing the training program. The lessons learned include: the importance of stakeholder involvement, the need for data to identify local needs, financial sustainability, catering for the needs of adult learners, and ensuring a technically challenging work environment, conducive to the application of skills learned during training. A strong public health and clinical laboratory system is essential for the rapid detection and control of emerging health threats, and for patient care. However, there is a need

  10. Phoenix Conductivity Probe with Shadow and Toothmark

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. The imprint left by the insertion is visible below the probe, and a shadow showing the probe's four needles is cast on a rock to the left.

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Size-dependent reactivity of magnetite nanoparticles: a field-laboratory comparison

    USGS Publications Warehouse

    Swindle, Andrew L.; Elwood Madden, Andrew S.; Cozzarelli, Isabelle M.; Benamara, Mourad

    2014-01-01

    Logistic challenges make direct comparisons between laboratory- and field-based investigations into the size-dependent reactivity of nanomaterials difficult. This investigation sought to compare the size-dependent reactivity of nanoparticles in a field setting to a laboratory analog using the specific example of magnetite dissolution. Synthetic magnetite nanoparticles of three size intervals, ∼6 nm, ∼44 nm, and ∼90 nm were emplaced in the subsurface of the USGS research site at the Norman Landfill for up to 30 days using custom-made subsurface nanoparticle holders. Laboratory analog dissolution experiments were conducted using synthetic groundwater. Reaction products were analyzed via TEM and SEM and compared to initial particle characterizations. Field results indicated that an organic coating developed on the particle surfaces largely inhibiting reactivity. Limited dissolution occurred, with the amount of dissolution decreasing as particle size decreased. Conversely, the laboratory analogs without organics revealed greater dissolution of the smaller particles. These results showed that the presence of dissolved organics led to a nearly complete reversal in the size-dependent reactivity trends displayed between the field and laboratory experiments indicating that size-dependent trends observed in laboratory investigations may not be relevant in organic-rich natural systems.

  12. Artist's Concept of NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  13. Nano-G research laboratory for a spacecraft

    NASA Technical Reports Server (NTRS)

    Vonbun, Friedrich O. (Inventor); Garriott, Owen K. (Inventor)

    1991-01-01

    An acceleration free research laboratory is provided that is confined within a satellite but free of any physical engagement with the walls of the satellite, wherein the laboratory has adequate power, heating, cooling, and communications services to conduct basic research and development. An inner part containing the laboratory is positioned at the center-of-mass of a satellite within the satellite's outer shell. The satellite is then positioned such that its main axes are in a position parallel to its flight velocity vector or in the direction of the residual acceleration vector. When the satellite is in its desired orbit, the inner part is set free so as to follow that orbit without contacting the inside walls of the outer shell. Sensing means detect the position of the inner part with respect to the outer shell, and activate control rockets to move the outer shell; thereby, the inner part is repositioned such that it is correctly positioned at the center-of-mass of the satellite. As a consequence, all disturbing forces, such as drag forces, act on the outer shell, and the inner part containing the laboratory is shielded and is affected only by gravitational forces. Power is supplied to the inner part and to the laboratory by a balanced microwave/laser link which creates the kind of environment necessary for basic research to study critical phenomena such as the Lambda transition in helium and crystal growth, and to perform special metals and alloys research, etc.

  14. Laboratory Capacity for Antimicrobial Susceptibility Surveillance of Neisseria gonorrhoeae-District of Columbia, 2007-2012.

    PubMed

    Garrett, Tiana A; Davies-Cole, John; Furness, Bruce

    2015-08-01

    In the District of Columbia (DC), Neisseria gonorrhoeae (gonorrhea) infections accounted for more than 25% of 9321 incident sexually transmitted infections reported in 2011; untreated infections can lead to reproductive complications and a higher risk for HIV transmission. In DC, limited capacity to measure the prevalence of antibiotic-resistant N. gonorrhoeae is available; culture-based antibiotic susceptibility testing (AST) is needed to monitor antimicrobial resistance. We examined the capacity of laboratories that report to the DC Department of Health to perform AST for ongoing surveillance of antibiotic-resistant N. gonorrhoeae and to identify suspected treatment failures. We created a survey about diagnostic methods for gonorrhea testing and identified 33 laboratories that reported gonorrhea results to Department of Health in 2007 to 2012. Laboratories were assessed for use of bacterial culture or nucleic acid amplification testing (NAAT) for gonorrhea testing, prevalence of AST on gonorrhea-positive cultures, and types of antibiotics tested during AST. We estimated the prevalence of laboratory practices on the basis of self-report by staff. Nineteen (58%) laboratories completed the survey, representing 92% of the gonorrhea reporting. Seventeen (89%) of 19 laboratories conducted testing by culture; only 6 (35%) performed AST; 79% performed NAAT. Barriers to AST included longer completion times and limited number of provider requests for AST. Commercial laboratories (32%) were more likely to conduct both culture and NAAT, compared with health care facilities (11%). We report a low prevalence of laboratories performing AST because of multiple barriers. State-specific strategies addressing these barriers are needed to improve detection of antibiotic-resistant gonorrhea stains circulating among the population.

  15. TECHNIQUES TO DETERMINE A COMPANY'S ABILITY TO CONDUCT A QUALITY STACK TEST

    EPA Science Inventory

    Techniques to determine a testing company's ability to conduct a quality stack test for compliance or process engineering purposes are presented. The document has four sections. The first identifies characteristics commonly associated with laboratories that have a history of perf...

  16. Tracer Studies In A Laboratory Beach Subjected To Waves

    EPA Science Inventory

    This work investigated the washout of dissolved nutrients from beaches due to waves by conducting tracer studies in a laboratory beach facility. The effects of waves were studied in the case where the beach was subjected to the tide, and that in which no tidal action was present...

  17. Initial Public Health Laboratory Response After Hurricane Maria - Puerto Rico, 2017.

    PubMed

    Concepción-Acevedo, Jeniffer; Patel, Anita; Luna-Pinto, Carolina; Peña, Rafael González; Cuevas Ruiz, Rosa Ivette; Arbolay, Héctor Rivera; Toro, Mayra; Deseda, Carmen; De Jesus, Victor R; Ribot, Efrain; Gonzalez, Jennifer-Quiñones; Rao, Gouthami; De Leon Salazar, Alfonsina; Ansbro, Marisela; White, Brunilís B; Hardy, Margaret C; Georgi, Joaudimir Castro; Stinnett, Rita; Mercante, Alexandra M; Lowe, David; Martin, Haley; Starks, Angela; Metchock, Beverly; Johnston, Stephanie; Dalton, Tracy; Joglar, Olga; Stafford, Cortney; Youngblood, Monica; Klein, Katherine; Lindstrom, Stephen; Berman, LaShondra; Galloway, Renee; Schafer, Ilana J; Walke, Henry; Stoddard, Robyn; Connelly, Robin; McCaffery, Elaine; Rowlinson, Marie-Claire; Soroka, Stephen; Tranquillo, Darin T; Gaynor, Anne; Mangal, Chris; Wroblewski, Kelly; Muehlenbachs, Atis; Salerno, Reynolds M; Lozier, Matthew; Sunshine, Brittany; Shapiro, Craig; Rose, Dale; Funk, Renee; Pillai, Satish K; O'Neill, Eduardo

    2018-03-23

    Hurricane Maria made landfall in Puerto Rico on September 20, 2017, causing major damage to infrastructure and severely limiting access to potable water, electric power, transportation, and communications. Public services that were affected included operations of the Puerto Rico Department of Health (PRDOH), which provides critical laboratory testing and surveillance for diseases and other health hazards. PRDOH requested assistance from CDC for the restoration of laboratory infrastructure, surveillance capacity, and diagnostic testing for selected priority diseases, including influenza, rabies, leptospirosis, salmonellosis, and tuberculosis. PRDOH, CDC, and the Association of Public Health Laboratories (APHL) collaborated to conduct rapid needs assessments and, with assistance from the CDC Foundation, implement a temporary transport system for shipping samples from Puerto Rico to the continental United States for surveillance and diagnostic and confirmatory testing. This report describes the initial laboratory emergency response and engagement efforts among federal, state, and nongovernmental partners to reestablish public health laboratory services severely affected by Hurricane Maria. The implementation of a sample transport system allowed Puerto Rico to reinitiate priority infectious disease surveillance and laboratory testing for patient and public health interventions, while awaiting the rebuilding and reinstatement of PRDOH laboratory services.

  18. Health and safety in clinical laboratories in developing countries: safety considerations.

    PubMed

    Ejilemele, A A; Ojule, A C

    2004-01-01

    Clinical laboratories are potentially hazardous work areas. Health and safety in clinical laboratories is becoming an increasingly important subject as a result of the emergence of highly infectious diseases such as hepatitis and HIV. This is even more so in developing countries where health and safety have traditionally been regarded as low priority issues, considering the more important health problems confronting the health authorities in these countries. We conducted a literature search using the medical subheadings titles on the INTERNET over a period of twenty years and summarized our findings. This article identifies hazards in the laboratories and highlights measures to make the laboratory a safer work place. It also emphasizes the mandatory obligations of employers and employees towards the attainment of acceptable safety standards in clinical laboratories in Third World countries in the face of the current HIV/AIDS epidemic in many of these developing countries especially in the sub-Saharan Africa while accommodating the increasing work load in these laboratories. Both the employer and the employee have major roles to play in the maintenance of a safe working environment. This can be achieved if measures discussed are incorporated into everyday laboratory practice.

  19. Developing Guided Inquiry-Based Student Lab Worksheet for Laboratory Knowledge Course

    NASA Astrophysics Data System (ADS)

    Rahmi, Y. L.; Novriyanti, E.; Ardi, A.; Rifandi, R.

    2018-04-01

    The course of laboratory knowledge is an introductory course for biology students to follow various lectures practicing in the biology laboratory. Learning activities of laboratory knowledge course at this time in the Biology Department, Universitas Negeri Padang has not been completed by supporting learning media such as student lab worksheet. Guided inquiry learning model is one of the learning models that can be integrated into laboratory activity. The study aimed to produce student lab worksheet based on guided inquiry for laboratory knowledge course and to determine the validity of lab worksheet. The research was conducted using research and developmet (R&D) model. The instruments used in data collection in this research were questionnaire for student needed analysis and questionnaire to measure the student lab worksheet validity. The data obtained was quantitative from several validators. The validators consist of three lecturers. The percentage of a student lab worksheet validity was 94.18 which can be categorized was very good.

  20. Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species

    Treesearch

    Daniel M. Johnson; David R. Woodruff; Katherien A. McCulloh; Frederick C. Meinzer

    2009-01-01

    The objectives of this study were to measure Kleaf, using a rehydration kinetics method, (1) in the laboratory (under controlled conditions) across a range of water potentials to construct vulnerability curves (VC) and (2) over the course of the day in the field along with leaf water potential and stomatal conductance. The results presented here...

  1. The role of total laboratory automation in a consolidated laboratory network.

    PubMed

    Seaberg, R S; Stallone, R O; Statland, B E

    2000-05-01

    In an effort to reduce overall laboratory costs and improve overall laboratory efficiencies at all of its network hospitals, the North Shore-Long Island Health System recently established a Consolidated Laboratory Network with a Core Laboratory at its center. We established and implemented a centralized Core Laboratory designed around the Roche/Hitachi CLAS Total Laboratory Automation system to perform the general and esoteric laboratory testing throughout the system in a timely and cost-effective fashion. All remaining STAT testing will be performed within the Rapid Response Laboratories (RRLs) at each of the system's hospitals. Results for this laboratory consolidation and implementation effort demonstrated a decrease in labor costs and improved turnaround time (TAT) at the core laboratory. Anticipated system savings are approximately $2.7 million. TATs averaged 1.3 h within the Core Laboratory and less than 30 min in the RRLs. When properly implemented, automation systems can reduce overall laboratory expenses, enhance patient services, and address the overall concerns facing the laboratory today: job satisfaction, decreased length of stay, and safety. The financial savings realized are primarily a result of labor reductions.

  2. 222-S Laboratory Quality Assurance Plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meznarich, H.K.

    1995-07-31

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A qualitymore » assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document.« less

  3. [Proposal for graduate school education in the future: from the viewpoint of the Department of clinical Laboratory in a university hospital].

    PubMed

    Ishii, Junichi

    2009-08-01

    Fujita Health University Hospital, located in Toyoake, is a large teaching hospital with 1,505 beds. The Department of Clinical Laboratory in our hospital, in which 136 medical technologists work, is one of the largest clinical laboratories in Japan. Medical technologists in our hospital are required not only to perform accurate laboratory examinations, but also to contribute to the medical care team. In addition, they must educate students and trainee medical technologists. Furthermore, they conduct research to develop and evaluate new laboratory methods. Thus, we hope that education in graduate schools of medical technology (Master's course), along with promoting the specialty of laboratory techniques, will develop students' clinical skills to examine patients and research skills to conduct studies.

  4. Reliability of laboratory measurement of human food intake.

    PubMed

    Laessle, R; Geiermann, L

    2012-02-01

    The universal eating monitor (UEM) of Kissileff for laboratory measurement of food intake was modified and used with a newly developed special software to compute cumulative intake data. To explore the measurement precision of the UEM an investigation of test-retest-reliability of food intake parameters was conducted. The intake characteristics of 125 males and females were measured repeatedly in the laboratory with a measurement interval of 1 week. Pudding of preferred flavour served as test meal. Test-retest-reliability of intake characteristics ranged from .49 (change of eating rate) to .89 (initial eating rate). All test-retest correlations were highly significant. Sex, BMI and eating habits according to TFEQ-factors had no significant effects on reliability of intake characteristics. The test-retest-reliability of the laboratory intake measures is as good as those of personality questionnaires, where it should be better than .80. Reliability coefficients are valid independent of sex, BMI or trait characteristics of eating behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Laboratory Directed Research and Development LDRD-FY-2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  6. Integrating Responsible Conduct of Research Education into Undergraduate Biochemistry and Molecular Biology Laboratory Curricula

    ERIC Educational Resources Information Center

    Hendrickson, Tamara L.

    2015-01-01

    Recently, a requirement for directed responsible conduct in research (RCR) education has become a priority in the United States and elsewhere. In the US, both the National Institutes of Health and the National Science Foundation require RCR education for all students who are financially supported by federal awards. The guidelines produced by these…

  7. What's to Be Done About Laboratory Quality? Process Indicators, Laboratory Stewardship, the Outcomes Problem, Risk Assessment, and Economic Value: Responding to Contemporary Global Challenges.

    PubMed

    Meier, Frederick A; Badrick, Tony C; Sikaris, Kenneth A

    2018-02-17

    For 50 years, structure, process, and outcomes measures have assessed health care quality. For clinical laboratories, structural quality has generally been assessed by inspection. For assessing process, quality indicators (QIs), statistical monitors of steps in the clinical laboratory total testing, have proliferated across the globe. Connections between structural and process laboratory measures and patient outcomes, however, have rarely been demonstrated. To inform further development of clinical laboratory quality systems, we conducted a selective but worldwide review of publications on clinical laboratory quality assessment. Some QIs, like seven generic College of American Pathologists Q-Tracks monitors, have demonstrated significant process improvement; other measures have uncovered critical opportunities to improve test selection and result management. The College of Pathologists of Australasia Key Indicator Monitoring and Management System has deployed risk calculations, introduced from failure mode effects analysis, as surrogate measures for outcomes. Showing economic value from clinical laboratory testing quality is a challenge. Clinical laboratories should converge on fewer (7-14) rather than more (21-35) process monitors; monitors should cover all steps of the testing process under laboratory control and include especially high-risk specimen-quality QIs. Clinical laboratory stewardship, the combination of education interventions among clinician test orderers and report consumers with revision of test order formats and result reporting schemes, improves test ordering, but improving result reception is more difficult. Risk calculation reorders the importance of quality monitors by balancing three probabilities: defect frequency, weight of potential harm, and detection difficulty. The triple approach of (1) a more focused suite of generic consensus quality indicators, (2) more active clinical laboratory testing stewardship, and (3) integration of formal

  8. The Correlated Lecture Laboratory Series in Diagnostic Radiological Physics.

    ERIC Educational Resources Information Center

    Lamel, David A.; And Others

    This series in diagnostic radiological physics has been designed to provide the physics background requisite for the proper conduct of medical diagnostic x-ray examinations. The basic goal of the series is to bridge physics theory and radiological practice, achieved by combining pertinent lecture material with laboratory exercises that illustrate…

  9. Pre-Employment Laboratory Education. Home Furnishings/Interior Design Guidebook.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Instructional Materials Center.

    This guidebook is designed for use in teaching students enrolled in pre-employment laboratory education (PELE) home furnishing/interior design programs. The first of two major sections includes an overview for teachers on planning, conducting, and evaluating a home furnishings/interior design program. Specific topics discussed in section 1 include…

  10. Variances and uncertainties of the sample laboratory-to-laboratory variance (S(L)2) and standard deviation (S(L)) associated with an interlaboratory study.

    PubMed

    McClure, Foster D; Lee, Jung K

    2012-01-01

    The validation process for an analytical method usually employs an interlaboratory study conducted as a balanced completely randomized model involving a specified number of randomly chosen laboratories, each analyzing a specified number of randomly allocated replicates. For such studies, formulas to obtain approximate unbiased estimates of the variance and uncertainty of the sample laboratory-to-laboratory (lab-to-lab) STD (S(L)) have been developed primarily to account for the uncertainty of S(L) when there is a need to develop an uncertainty budget that includes the uncertainty of S(L). For the sake of completeness on this topic, formulas to estimate the variance and uncertainty of the sample lab-to-lab variance (S(L)2) were also developed. In some cases, it was necessary to derive the formulas based on an approximate distribution for S(L)2.

  11. The instruments in the first psychological laboratory in Mexico: antecedents, influence, and methods.

    PubMed

    Escobar, Rogelio

    2014-11-01

    Enrique O. Aragón established the first psychological laboratory in Mexico in 1916. This laboratory was inspired by Wundt's laboratory and by those created afterward in Germany and the United States. It was equipped with state-of-the art instruments imported from Germany in 1902 from Ernst Zimmermann who supplied instruments for Wundt's laboratory. Although previous authors have described the social events leading to the creation of the laboratory, there are limited descriptions of the instruments, their use, and their influence. With the aid of archival resources, the initial location of the laboratory was determined. The analysis of instruments revealed a previously overlooked relation with a previous laboratory of experimental physiology. The influence of the laboratory was traced by describing the careers of 4 students, 3 of them women, who worked with the instruments during the first 2 decades of the 20th century, each becoming accomplished scholars. In addition, this article, by identifying and analyzing the instruments shown in photographs of the psychological laboratory and in 1 motion film, provides information of the class demonstrations and the experiments conducted in this laboratory.

  12. Analytical Chemistry Laboratory. Progress report for FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients --more » Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.« less

  13. Ergonomics in an oral pathology laboratory: Back to basics in microscopy

    PubMed Central

    Sundaragiri, Krishna Sireesha; Shrivastava, Shikha; Sankhla, Bharat; Bhargava, Akshay

    2014-01-01

    Ergonomics is simply a science focused on “study of work” to reduce fatigue and discomfort through product design. A comprehensive ergonomics program for the pathology laboratory has become necessary to prevent the occurrence of work related musculoskeletal disorders (MSDs) and accidents. Most of the literature on ergonomics involve various web links or occasional studies on the effect of laboratory work and associated MSDs. A Google search was carried out corresponding to the terms “ergonomics”, “pathology laboratory”, “microscope”. All the relevant literature from web sources was sorted out and categorized. In this review, we intend to identify basic anthropometric factors, biomechanical risk factors, laboratory design considerations and specific microscopy-related considerations. The ultimate aim of ergonomics is to provide a safe environment for laboratory personnel to conduct their work and to allow maximum flexibility for safe research use. PMID:25364157

  14. Shield evaluation and performance testing at the USMB`s Strategic Structures Testing Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barczak, T.M.; Gearhart, D.F.

    1996-12-31

    Historically, shield performance testing is conducted by the support manufacturers at European facilities. The U.S. Bureau of Mines (USBM) has conducted extensive research in shield Mechanics and is now opening its Strategic Structures Testing (SST) Laboratory to the mining industry for shield performance testing. The SST Laboratory provides unique shield testing capabilities using the Mine Roof Simulator (MRS) load frame. The MRS provides realistic and cost-effective shield evaluation by combining both vertical and horizontal loading into a single load cycle; whereas, several load cycles would be required to obtain this loading in a static frame. In addition to these advantages,more » the USBM acts as an independent research organization to provide an unbiased assessment of shield performance. This paper describes the USBM`s shield testing program that is designed specifically to simulate in-service mining conditions using the unique the capabilities of the SST Laboratory.« less

  15. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.

  16. Revealing all: misleading self-disclosure rates in laboratory-based online research.

    PubMed

    Callaghan, Diana E; Graff, Martin G; Davies, Joanne

    2013-09-01

    Laboratory-based experiments in online self-disclosure research may be inadvertently compromising the accuracy of research findings by influencing some of the factors known to affect self-disclosure behavior. Disclosure-orientated interviews conducted with 42 participants in the laboratory and in nonlaboratory settings revealed significantly greater breadth of self-disclosure in laboratory interviews, with message length and intimacy of content also strongly related. These findings suggest that a contrived online setting with a researcher presence may stimulate motivation for greater self-disclosure than would occur naturally in an online environment of an individual's choice. The implications of these findings are that researchers should consider the importance of experimental context and motivation in self-disclosure research.

  17. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study.

    PubMed

    Birnie, Kate; Hay, Alastair D; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O'Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C; Sterne, Jonathan A C

    2017-01-01

    To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the "index test"), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service laboratories should consider adopting procedures used in

  18. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study

    PubMed Central

    Birnie, Kate; Hay, Alastair D.; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O’Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C.; Sterne, Jonathan A. C.

    2017-01-01

    Objectives To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. Population and methods We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the “index test”), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. Results 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. Conclusions The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service

  19. Technical Capabilities of the National Vehicle and Fuel Emissions Laboratory (NVFEL)

    EPA Pesticide Factsheets

    National Vehicle and Fuel Emissions Laboratory (NVFEL) is a state-of-the-art test facility that conducts a wide range of emissions testing and analysis for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs.

  20. 75 FR 55109 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ...Section 342(b) of the National Defense Authorization Act (NDAA) for Fiscal Year (FY) 1995, Public Law 103-337, (10 U.S.C. 2358 note), as amended by section 1109 of NDAA for FY 2000, Public Law 106- 65, and section 1114 of NDAA for FY 2001, Public Law 106-398, authorizes the Secretary of Defense to conduct personnel demonstration projects at DoD laboratories designated as Science and Technology Reinvention Laboratories (STRLs). The above-cited legislation authorizes DoD to conduct demonstration projects to determine whether a specified change in personnel management policies or procedures would result in improved Federal personnel management. Section 1105 of the NDAA for FY 2010, Public Law 111-84, 123 Stat. 2486, October 28, 2009, designates additional DoD laboratories as STRLs for the purpose of designing and implementing personnel management demonstration projects for conversion of employees from the personnel system which applied on October 28, 2009. The TARDEC is listed in subsection 1105(a) of NDAA for FY 2010 as one of the newly designated STRLs.

  1. 76 FR 12507 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ...Section 342(b) of the National Defense Authorization Act (NDAA) for Fiscal Year (FY) 1995, Public Law (Pub. L.) 103-337, (10 U.S.C. 2358 note), as amended by section 1109 of NDAA for FY 2000, Public Law 106-65, and section 1114 of NDAA for FY 2001, Public Law 106-398, authorizes the Secretary of Defense to conduct personnel demonstration projects at DoD laboratories designated as Science and Technology Reinvention Laboratories (STRLs). The above-cited legislation authorizes DoD to conduct demonstration projects to determine whether a specified change in personnel management policies or procedures would result in improved Federal personnel management. Section 1105 of the NDAA for FY 2010, Public Law 111-84, 123 Stat. 2486, October 28, 2009, designates additional DoD laboratories as STRLs for the purpose of designing and implementing personnel management demonstration projects for conversion of employees from the personnel system which applied on October 28, 2009. The TARDEC is listed in subsection 1105(a) of NDAA for FY 2010 as one of the newly designated STRLs.

  2. Sediment laboratory quality-assurance project: studies of methods and materials

    USGS Publications Warehouse

    Gordon, J.D.; Newland, C.A.; Gray, J.R.

    2001-01-01

    In August 1996 the U.S. Geological Survey initiated the Sediment Laboratory Quality-Assurance project. The Sediment Laboratory Quality Assurance project is part of the National Sediment Laboratory Quality-Assurance program. This paper addresses the fmdings of the sand/fme separation analysis completed for the single-blind reference sediment-sample project and differences in reported results between two different analytical procedures. From the results it is evident that an incomplete separation of fme- and sand-size material commonly occurs resulting in the classification of some of the fme-size material as sand-size material. Electron microscopy analysis supported the hypothesis that the negative bias for fme-size material and the positive bias for sand-size material is largely due to aggregation of some of the fine-size material into sand-size particles and adherence of fine-size material to the sand-size grains. Electron microscopy analysis showed that preserved river water, which was low in dissolved solids, specific conductance, and neutral pH, showed less aggregation and adhesion than preserved river water that was higher in dissolved solids and specific conductance with a basic pH. Bacteria were also found growing in the matrix, which may enhance fme-size material aggregation through their adhesive properties. Differences between sediment-analysis methods were also investigated as pan of this study. Suspended-sediment concentration results obtained from one participating laboratory that used a total-suspended solids (TSS) method had greater variability and larger negative biases than results obtained when this laboratory used a suspended-sediment concentration method. When TSS methods were used to analyze the reference samples, the median suspended sediment concentration percent difference was -18.04 percent. When the laboratory used a suspended-sediment concentration method, the median suspended-sediment concentration percent difference was -2

  3. Analysis of on-line clinical laboratory manuals and practical recommendations.

    PubMed

    Beckwith, Bruce; Schwartz, Robert; Pantanowitz, Liron

    2004-04-01

    On-line clinical laboratory manuals are a valuable resource for medical professionals. To our knowledge, no recommendations currently exist for their content or design. To analyze publicly accessible on-line clinical laboratory manuals and to propose guidelines for their content. We conducted an Internet search for clinical laboratory manuals written in English with individual test listings. Four individual test listings in each manual were evaluated for 16 data elements, including sample requirements, test methodology, units of measure, reference range, and critical values. Web sites were also evaluated for supplementary information and search functions. We identified 48 on-line laboratory manuals, including 24 academic or community hospital laboratories and 24 commercial or reference laboratories. All manuals had search engines and/or test indices. No single manual contained all 16 data elements evaluated. An average of 8.9 (56%) elements were present (range, 4-14). Basic sample requirements (specimen and volume needed) were the elements most commonly present (98% of manuals). The frequency of the remaining data elements varied from 10% to 90%. On-line clinical laboratory manuals originate from both hospital and commercial laboratories. While most manuals were user-friendly and contained adequate specimen-collection information, other important elements, such as reference ranges, were frequently absent. To ensure that clinical laboratory manuals are of maximal utility, we propose the following 13 data elements be included in individual test listings: test name, synonyms, test description, test methodology, sample requirements, volume requirements, collection guidelines, transport guidelines, units of measure, reference range, critical values, test availability, and date of latest revision.

  4. Contents of microscopic fungi in dusts coming from cereal analysis laboratories.

    PubMed

    Szwajkowska-Michalek, Lidia; Stuper, Kinga; Lakomy, Piotr; Matysiak, Anna; Perkowski, Juliusz

    2010-01-01

    Microscopic fungi - components of bioaerosol found in the workplace environment of individuals employed in the agricultural sector - constitute a considerable hazard for their health. This study includes quantitative and qualitative analyses of mycobionta contained in 20 samples of dusts collected from laboratories conducting analyses of cereals. A total of 27 species of viable microscopic fungi were isolated. The most frequently isolated genera Penicillium and Aspergillus, accounting for 27 percent and 26 percent of analyzed isolates. The content of fungal biomass was determined quantitatively using a fungal marker, ergosterol (ERG). Concentrations of this metabolite for all samples ranged from 0.48 mg/kg-212.36 mg/kg. Based on the analyses, it may be stated that the concentration of microfungi in settled dust from laboratories conducting analyses of cereals was varied, and in several cases markedly exceeded admissible concentration levels.

  5. An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less

  6. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates : summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965-78

    USGS Publications Warehouse

    Johnson, W. Waynon; Finley, Mack T.

    1980-01-01

    Acute toxicity is a major subject of research at Columbia National Fisheries Research Laboratory for evaluating the impact of toxic chemicals on fishery resources. The Laboratory has played a leading role in developing research technology for toxicity testing and data interpretation. In 1965-78, more than 400 chemicals were tested against a variety of invertebrates and fish species representative of both cold- and warm-water climates.The use of acute toxicity tests for assessing the potential hazard of chemical contaminants to aquatic organisms is well documented (Boyd 1957; Henderson et al. 1960; Sanders and Cope 1966; Macek and McAllister 1970). Static acute toxicity tests provide rapid and (within limits) reproducible concentration-response curves for estimating toxic effects of chemicals on aquatic organisms. These tests provide a database for determining relative toxicity of a large number of chemicals to a variety of species and for estimating acute effects of chemical spills on natural aquatic systems; they also assist in determining priority and design of additional toxicity studies.Acute toxicity tests usually provide estimates of the exposure concentration causing 50% mortality (LC50) to test organisms during a specified period of time. For certain invertebrates, the effective concentration is based on immobilization, or some other identifiable endpoint, rather than on lethality. The application of the LC50 has gained acceptance among toxicologists and is generally the most highly rated test for assessing potential adverse effects of chemical contaminants to aquatic life (Brungs and Mount 1978; American Institute for Biological Sciences 1978a).The literature contains numerous papers dealing with the acute toxicity of chemicals to freshwater organisms. However, there is a tremendous need for a concise compendium of toxicity data covering a large variety of chemicals and test species. This Handbook is a compilation of a large volume of acute toxicity data

  7. The total laboratory solution: a new laboratory E-business model based on a vertical laboratory meta-network.

    PubMed

    Friedman, B A

    2001-08-01

    Major forces are now reshaping all businesses on a global basis, including the healthcare and clinical laboratory industries. One of the major forces at work is information technology (IT), which now provides the opportunity to create a new economic and business model for the clinical laboratory industry based on the creation of an integrated vertical meta-network, referred to here as the "total laboratory solution" (TLS). Participants at the most basic level of such a network would include a hospital-based laboratory, a reference laboratory, a laboratory information system/application service provider/laboratory portal vendor, an in vitro diagnostic manufacturer, and a pharmaceutical/biotechnology manufacturer. It is suggested that each of these participants would add value to the network primarily in its area of core competency. Subvariants of such a network have evolved over recent years, but a TLS comprising all or most of these participants does not exist at this time. Although the TLS, enabled by IT and closely akin to the various e-businesses that are now taking shape, offers many advantages from a theoretical perspective over the current laboratory business model, its success will depend largely on (a) market forces, (b) how the collaborative networks are organized and managed, and (c) whether the network can offer healthcare organizations higher quality testing services at lower cost. If the concept is successful, new demands will be placed on hospital-based laboratory professionals to shift the range of professional services that they offer toward clinical consulting, integration of laboratory information from multiple sources, and laboratory information management. These information management and integration tasks can only increase in complexity in the future as new genomic and proteomics testing modalities are developed and come on-line in clinical laboratories.

  8. Teaching Embryology without Lectures and without Traditional Laboratories--An Adventure in Innovation.

    ERIC Educational Resources Information Center

    Heady, Judith E.

    1993-01-01

    Describes problems with teaching embryology in the traditional manner. Presents a new approach where students prepare presentations, questions, and discussion topics. During laboratory periods, students conducted their own long-term research projects. (PR)

  9. Designing Online Resources in Preparation for Authentic Laboratory Experiences

    PubMed Central

    Boulay, Rachel; Parisky, Alex; Leong, Peter

    2013-01-01

    Professional development for science teachers can be benefited through active learning in science laboratories. However, how online training materials can be used to complement traditional laboratory training is less understood. This paper explores the design of online training modules to teach molecular biology and user perception of those modules that were part of an intensive molecular biology “boot camp” targeting high school biology teachers in the State of Hawaii. The John A. Burns School of Medicine at the University of Hawaii had an opportunity to design and develop professional development that prepares science teachers with an introduction of skills, techniques, and applications for their students to conduct medical research in a laboratory setting. A group of 29 experienced teachers shared their opinions of the online materials and reported on how they used the online materials in their learning process or teaching. PMID:24319698

  10. Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.

    PubMed

    Khrustalyov, Yu V; Vaulina, O S

    2012-04-01

    Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.

  11. Reducing environmental risk associated with laboratory decommissioning and property transfer.

    PubMed

    Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G

    2000-12-01

    The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness.

  12. Reducing environmental risk associated with laboratory decommissioning and property transfer.

    PubMed Central

    Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G

    2000-01-01

    The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness. PMID:11121365

  13. Asymmetric Aldol Additions: A Guided-Inquiry Laboratory Activity on Catalysis

    ERIC Educational Resources Information Center

    King, Jorge H. Torres; Wang, Hong; Yezierski, Ellen J.

    2018-01-01

    Despite the importance of asymmetric catalysis in both the pharmaceutical and commodity chemicals industries, asymmetric catalysis is under-represented in undergraduate chemistry laboratory curricula. A novel guided-inquiry experiment based on the asymmetric aldol addition was developed. Students conduct lab work to compare the effectiveness of…

  14. Mobile robotics research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, W.D.

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  15. Errors in clinical laboratories or errors in laboratory medicine?

    PubMed

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  16. Microgravity Science Laboratory (MSL-1)

    NASA Technical Reports Server (NTRS)

    Robinson, M. B. (Compiler)

    1998-01-01

    The MSL-1 payload first flew on the Space Shuttle Columbia (STS-83) April 4-8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS-94) July 1-17, 1997. The MSL-1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  17. Particle emissions from laboratory activities involving carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lo, Li-Ming; Tsai, Candace S.-J.; Heitbrink, William A.; Dunn, Kevin H.; Topmiller, Jennifer; Ellenbecker, Michael

    2017-08-01

    This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.

  18. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2015-06-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Improving patient safety via automated laboratory-based adverse event grading.

    PubMed

    Niland, Joyce C; Stiller, Tracey; Neat, Jennifer; Londrc, Adina; Johnson, Dina; Pannoni, Susan

    2012-01-01

    The identification and grading of adverse events (AEs) during the conduct of clinical trials is a labor-intensive and error-prone process. This paper describes and evaluates a software tool developed by City of Hope to automate complex algorithms to assess laboratory results and identify and grade AEs. We compared AEs identified by the automated system with those previously assessed manually, to evaluate missed/misgraded AEs. We also conducted a prospective paired time assessment of automated versus manual AE assessment. We found a substantial improvement in accuracy/completeness with the automated grading tool, which identified an additional 17% of severe grade 3-4 AEs that had been missed/misgraded manually. The automated system also provided an average time saving of 5.5 min per treatment course. With 400 ongoing treatment trials at City of Hope and an average of 1800 laboratory results requiring assessment per study, the implications of these findings for patient safety are enormous.

  20. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    ERIC Educational Resources Information Center

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-01-01

    One of the goals of science education is to provide students with the ability to construct arguments--reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research…

  1. The capacity of diagnostic laboratories in Kenya for detecting infectious diseases.

    PubMed

    Slotved, H-C; Yatich, Kennedy K; Sam, Shem Otoi; Ndhine, Edwardina Otieno

    2017-01-01

    The aim of this study is to present data of the diagnostic capacity of Kenyan laboratories to diagnose a number of human pathogens. The study is based on the data obtained from a biosecurity survey conducted in Kenya in 2014/2015 and data from the Statistical Abstract of Kenya for 2015. The biosecurity survey has previously been published; however, the survey also included information on laboratory capacity to handle a number of pathogens, which have not been published. Data were retrieved from the survey on 86 laboratory facilities. The data include information from relevant categories such as training laboratories, human diagnostic laboratories, veterinary diagnostic laboratories, and research laboratories. The disease incidence in Kenya ranges widely from malaria and diarrhea with an incidence rate of around 10.000 per year to diseases such as cholera and yellow fever with an incidence rate of 1 per year or less for all age groups. The data showed that diseases with the highest number of diagnostic facilities were mainly malaria-, HIV-, tuberculosis-, and diarrhea-related infectious diseases. The study generally shows that the laboratory facilities have the capacity of detecting the infectious diseases with the highest incidence rates. Furthermore, it seems that the number of facilities able to detect a particular disease is related to the incidence rate of the disease.

  2. A pier-scour database: 2,427 field and laboratory measurements of pier scour

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.

    2014-01-01

    The U.S. Geological Survey conducted a literature review to identify potential sources of published pier-scour data, and selected data were compiled into a digital spreadsheet called the 2014 USGS Pier-Scour Database (PSDb-2014) consisting of 569 laboratory and 1,858 field measurements. These data encompass a wide range of laboratory and field conditions and represent field data from 23 States within the United States and from 6 other countries. The digital spreadsheet is available on the Internet and offers a valuable resource to engineers and researchers seeking to understand pier-scour relations in the laboratory and field.

  3. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  4. Roles of laboratories and laboratory systems in effective tuberculosis programmes.

    PubMed

    Ridderhof, John C; van Deun, Armand; Kam, Kai Man; Narayanan, P R; Aziz, Mohamed Abdul

    2007-05-01

    Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB.

  5. THE EPA NATIONAL EXPOSURE RESEARCH LABORATORY CHILDREN'S PESTICIDE EXPOSURE MEASUREMENT PROGRAM

    EPA Science Inventory

    The U.S. EPA's National Exposure Research Laboratory (NERL) conducts research in support of the Food Quality Protection Act (FQPA) of 1996. FQPA requires that children's risks to pesticide exposures be considered during the tolerance-setting process. The Act requires exposure...

  6. Guidance for Human Subjects Research in the National Exposure Research Laboratory

    EPA Science Inventory

    This document provides guidance to investigators and managers associated with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD)’s National Exposure Research Laboratory (NERL) on the ethical conduct, regulatory review, and approval of all huma...

  7. THE EPA NATIONAL EXPOSURE RESEARCH LABORATORY CHILDREN'S PESTICIDE EXPOSURE MEASUREMENT PROGRAM

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) is performing research in support of the Food Quality Protection Act (FQPA) of 1996. This act requires that pesticide exposure assessments to be conducted for all potential sources, rou...

  8. Electrical Conductivity Distributions in Discrete Fluid-Filled Fractures

    NASA Astrophysics Data System (ADS)

    James, S. C.; Ahmmed, B.; Knox, H. A.; Johnson, T.; Dunbar, J. A.

    2017-12-01

    It is commonly asserted that hydraulic fracturing enhances permeability by generating new fractures in the reservoir. Furthermore, it is assumed that in the fractured system predominant flow occurs in these newly formed and pre-existing fractures. Among the phenomenology that remains enigmatic are fluid distributions inside fractures. Therefore, determining fluid distribution and their associated temporal and spatial evolution in fractures is critical for safe and efficient hydraulic fracturing. Previous studies have used both forward modeling and inversion of electrical data to show that a geologic system consisting of fluid filled fractures has a conductivity distribution, where fractures act as electrically conductive bodies when the fluids are more conductive than the host material. We will use electrical inversion for estimating electrical conductivity distribution within multiple fractures from synthetic and measured data. Specifically, we will use data and well geometries from an experiment performed at Blue Canyon Dome in Socorro, NM, which was used as a study site for subsurface technology, engineering, and research (SubTER) funded by DOE. This project used a central borehole for energetically stimulating the system and four monitoring boreholes, emplaced in the cardinal directions. The electrical data taken during this project used 16 temporary electrodes deployed in the stimulation borehole and 64 permanent electrodes in the monitoring wells (16 each). We present results derived using E4D from scenarios with two discrete fractures, thereby discovering the electric potential response of both spatially and temporarily variant fluid distribution and the resolution of fluid and fracture boundaries. These two fractures have dimensions of 3m × 0.01m × 7m and are separated by 1m. These results can be used to develop stimulation and flow tests at the meso-scale that will be important for model validation. Sandia National Laboratories is a multi

  9. Updating the immunology curriculum in clinical laboratory science.

    PubMed

    Stevens, C D

    2000-01-01

    To determine essential content areas of immunology/serology courses at the clinical laboratory technician (CLT) and clinical laboratory scientist (CLS) levels. A questionnaire was designed which listed all major topics in immunology and serology. Participants were asked to place a check beside each topic covered. For an additional list of serological and immunological laboratory testing, participants were asked to indicate if each test was performed in either the didactic or clinical setting, or not performed at all. A national survey of 593 NAACLS approved CLT and CLS programs was conducted by mail under the auspices of ASCLS. Responses were obtained from 158 programs. Respondents from all across the United States included 60 CLT programs, 48 hospital-based CLS programs, 45 university-based CLS programs, and 5 university-based combined CLT and CLS programs. The survey was designed to enumerate major topics included in immunology and serology courses by a majority of participants at two distinct educational levels, CLT and CLS. Laboratory testing routinely performed in student laboratories as well as in the clinical setting was also determined for these two levels of practitioners. Certain key topics were common to most immunology and serology courses. There were some notable differences in the depth of courses at the CLT and CLS levels. Laboratory testing associated with these courses also differed at the two levels. Testing requiring more detailed interpretation, such as antinuclear antibody patterns (ANAs), was mainly performed by CLS students only. There are certain key topics as well as specific laboratory tests that should be included in immunology/serology courses at each of the two different educational levels to best prepare students for the workplace. Educators can use this information as a guide to plan a curriculum for such courses.

  10. Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI).

    PubMed

    Janetzki, Sylvia; Panageas, Katherine S; Ben-Porat, Leah; Boyer, Jean; Britten, Cedrik M; Clay, Timothy M; Kalos, Michael; Maecker, Holden T; Romero, Pedro; Yuan, Jianda; Kast, W Martin; Hoos, Axel

    2008-03-01

    The Cancer Vaccine Consortium of the Sabin Vaccine Institute (CVC/SVI) is conducting an ongoing large-scale immune monitoring harmonization program through its members and affiliated associations. This effort was brought to life as an external validation program by conducting an international Elispot proficiency panel with 36 laboratories in 2005, and was followed by a second panel with 29 participating laboratories in 2006 allowing for application of learnings from the first panel. Critical protocol choices, as well as standardization and validation practices among laboratories were assessed through detailed surveys. Although panel participants had to follow general guidelines in order to allow comparison of results, each laboratory was able to use its own protocols, materials and reagents. The second panel recorded an overall significantly improved performance, as measured by the ability to detect all predefined responses correctly. Protocol choices and laboratory practices, which can have a dramatic effect on the overall assay outcome, were identified and lead to the following recommendations: (A) Establish a laboratory SOP for Elispot testing procedures including (A1) a counting method for apoptotic cells for determining adequate cell dilution for plating, and (A2) overnight rest of cells prior to plating and incubation, (B) Use only pre-tested serum optimized for low background: high signal ratio, (C) Establish a laboratory SOP for plate reading including (C1) human auditing during the reading process and (C2) adequate adjustments for technical artifacts, and (D) Only allow trained personnel, which is certified per laboratory SOPs to conduct assays. Recommendations described under (A) were found to make a statistically significant difference in assay performance, while the remaining recommendations are based on practical experiences confirmed by the panel results, which could not be statistically tested. These results provide initial harmonization guidelines

  11. Offgassing Characterization of the Columbus Laboratory Module

    NASA Technical Reports Server (NTRS)

    Rampini, riccardo; Lobascio, Cesare; Perry, Jay L.; Hinderer, Stephan

    2005-01-01

    Trace gaseous contamination in the cabin environment is a major concern for manned spacecraft, especially those designed for long duration missions, such as the International Space Station (ISS). During the design phase, predicting the European-built Columbus laboratory module s contribution to the ISS s overall trace contaminant load relied on "trace gas budgeting" based on material level and assembled article tests data. In support of the Qualification Review, a final offgassing test has been performed on the complete Columbus module to gain cumulative system offgassing data. Comparison between the results of the predicted offgassing load based on the budgeted material/assembled article-level offgassing rates and the module-level offgassing test is presented. The Columbus module offgassing test results are also compared to results from similar tests conducted for Node 1, U.S. Laboratory, and Airlock modules.

  12. Implementation science: the laboratory as a command centre.

    PubMed

    Boeras, Debrah I; Nkengasong, John N; Peeling, Rosanna W

    2017-03-01

    Recent advances in point-of-care technologies to ensure universal access to affordable quality-assured diagnostics have the potential to transform patient management, surveillance programmes, and control of infectious diseases. Decentralization of testing can put tremendous stresses on fragile health systems if the laboratory is not involved in the planning, introduction, and scale-up strategies. The impact of investments in novel technologies can only be realized if these tests are evaluated, adopted, and scaled up within the healthcare system with appropriate planning and understanding of the local contexts in which these technologies will be used. In this digital age, the laboratory needs to take on the role of the Command Centre for technology introduction and implementation. Implementation science is needed to understand the political, cultural, economic, and behavioural context for technology introduction. The new paradigm should include: building a comprehensive system of laboratories and point-of-care testing sites to provide quality-assured diagnostic services with good laboratory-clinic interface to build trust in test results and linkage to care; building and coordinating a comprehensive national surveillance and communication system for disease control and global health emergencies; conducting research to monitor the impact of new tools and interventions on improving patient care.

  13. Semiconductor laser joint study program with Rome Laboratory

    NASA Astrophysics Data System (ADS)

    Schaff, William J.; Okeefe, Sean S.; Eastman, Lester F.

    1994-09-01

    A program to jointly study vertical-cavity surface emitting lasers (VCSEL) for high speed vertical optical interconnects (VOI) has been conducted under an ES&E between Rome Laboratory and Cornell University. Lasers were designed, grown, and fabricated at Cornell University. A VCSEL measurement laboratory has been designed, built, and utilized at Rome Laboratory. High quality VCSEL material was grown and characterized by fabricating conventional lateral cavity lasers that emitted at the design wavelength of 1.04 microns. The VCSEL's emit at 1.06 microns. Threshold currents of 16 mA at 4.8 volts were obtained for 30 microns diameter devices. Output powers of 5 mW were measured. This is 500 times higher power than from the light emitting diodes employed previously for vertical optical interconnects. A new form of compositional grading using a cosinusoidal function has been developed and is very successful for reducing diode series resistance for high speed interconnection applications. A flip-chip diamond package compatible with high speed operation of 16 VCSEL elements has been designed and characterized. A flip-chip device binding effort at Rome Laboratory was also designed and initiated. This report presents details of the one-year effort, including process recipes and results.

  14. Large-scale laboratory observations of wave forces on a highway bridge superstructure.

    DOT National Transportation Integrated Search

    2011-10-01

    The experimental setup and data are presented for a laboratory experiment conducted to examine realistic wave forcing on a highway bridge : superstructure. The experiments measure wave conditions along with the resulting forces, pressures, and struct...

  15. Establishment of National Laboratory Standards in Public and Private Hospital Laboratories

    PubMed Central

    ANJARANI, Soghra; SAFADEL, Nooshafarin; DAHIM, Parisa; AMINI, Rana; MAHDAVI, Saeed; MIRAB SAMIEE, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12th benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors. PMID:23514840

  16. From Cookbook to Research: Redesigning an Advanced Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Boyd-Kimball, Debra; Miller, Keith R.

    2018-01-01

    Laboratory courses are often designed using step-by-step protocols which encourage students to conduct experiments without thinking about what they are doing or why they are doing it. Such course design limits the growth of our students as scientists and can make it more difficult for a student to transition to the expectations of a research…

  17. LABORATORY AND FIELD RESULTS LINKING HIGH BULK CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Diesel contaminated layer (i.e. 32-45 cm) was the most geoelectrically conductive and showed the peak microbial activity. Below the saturated zone microbial enhanced mineral weathering increases the ionic concentration of pore fluids, leading to increased bulk electrical conducit...

  18. Aerosol in selected laboratories at Faculty of Mechanical Engineering, Opole University of Technology

    NASA Astrophysics Data System (ADS)

    Olszowski, Tomasz

    2017-10-01

    The paper contains the results of a study into mass concentration of the dispersed aerosol fraction with the aerodynamic diameter of up to 2.5 and 10 micrometers. The study was conducted during classes with students participating in them in two laboratories located at Faculty of Mechanical Engineering, Opole University of Technology as well as outdoor outside the building. It was demonstrated that the values of the mass concentration of PM2.5 and PM10 measured in the laboratories differ considerably from the levels measured in the ambient air in the outdoor areas surrounding the faculty building. It was concluded that the diversity of PM2.5/PM10 ratio was greater in the laboratories. Direct correlation was not established between the concentrations of the particular PM fractions in the two investigated environments. It was demonstrated that there is a statistically significant relation between the concentration of PM2.5 and PM10 and the number of people present in the laboratory. The conducted cluster analysis led to the detection of the existence of dominant structures determining air quality parameters. For the analyzed case, endogenic factors are responsible for the aerosanitary condition. The study demonstrated that the evaluation of air quality needs to be performed individually for the specific rooms.

  19. Does the Lack of Hands-On Experience in a Remotely Delivered Laboratory Course Affect Student Learning?

    ERIC Educational Resources Information Center

    Abdel-Salam, Tarek; Kauffman, Paul J.; Crossman, Gary

    2006-01-01

    Educators question whether performing a laboratory experiment as an observer (non-hands-on), such as conducted in a distance education context, can be as effective a learning tool as personally performing the experiment in a laboratory environment. The present paper investigates this issue by comparing the performance of distance education…

  20. Writing Material in Chemical Physics Research: The Laboratory Notebook as Locus of Technical and Textual Integration

    ERIC Educational Resources Information Center

    Wickman, Chad

    2010-01-01

    This article, drawing on ethnographic study in a chemical physics research facility, explores how notebooks are used and produced in the conduct of laboratory science. Data include written field notes of laboratory activity; visual documentation of "in situ" writing processes; analysis of inscriptions, texts, and material artifacts produced in the…

  1. Mozambique's journey toward accreditation of the National Tuberculosis Reference Laboratory.

    PubMed

    Viegas, Sofia O; Azam, Khalide; Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P; Chongo, Patrina; Masamha, Jessina; Cirillo, Daniela M; Jani, Ilesh V; Gudo, Eduardo S

    2017-01-01

    Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL's process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan.

  2. Diagnostic trends in Clostridium difficile detection in Finnish microbiology laboratories.

    PubMed

    Könönen, Eija; Rasinperä, Marja; Virolainen, Anni; Mentula, Silja; Lyytikäinen, Outi

    2009-12-01

    Due to increased interest directed to Clostridium difficile-associated infections, a questionnaire survey of laboratory diagnostics of toxin-producing C. difficile was conducted in Finland in June 2006. Different aspects pertaining to C. difficile diagnosis, such as requests and criteria used for testing, methods used for its detection, yearly changes in diagnostics since 1996, and the total number of investigations positive for C. difficile in 2005, were asked in the questionnaire, which was sent to 32 clinical microbiology laboratories, including all hospital-affiliated and the relevant private clinical microbiology laboratories in Finland. The situation was updated by phone and email correspondence in September 2008. In June 2006, 28 (88%) laboratories responded to the questionnaire survey; 24 of them reported routinely testing requested stool specimens for C. difficile. Main laboratory methods included toxin detection (21/24; 88%) and/or anaerobic culture (19/24; 79%). In June 2006, 18 (86%) of the 21 laboratories detecting toxins directly from feces, from the isolate, or both used methods for both toxin A (TcdA) and B (TcdB), whereas only one laboratory did so in 1996. By September 2008, all of the 23 laboratories performing diagnostics for C. difficile used methods for both TcdA and TcdB. In 2006, the number of specimens processed per 100,000 population varied remarkably between different hospital districts. In conclusion, culturing C. difficile is common and there has been a favorable shift in toxin detection practice in Finnish clinical microbiology laboratories. However, the variability in diagnostic activity reported in 2006 creates a challenge for national monitoring of the epidemiology of C. difficile and related diseases.

  3. Potato-related research at USDA-ARS laboratories in Washington and Idaho

    USDA-ARS?s Scientific Manuscript database

    Potato-related research currently being conducted at three USDA-ARS laboratories in Idaho and Washington is reviewed. Objectives of research programs at the Temperate Tree Fruit & Vegetable Research Unit (Wapato, WA), the Irrigated Agriculture Research and Extension Center (Prosser, WA), and the Sm...

  4. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monahan, S.P.; McLaughlin, T.P.

    1997-05-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, wasmore » also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.« less

  5. The performance assessment of undergraduate students in physics laboratory by using guided inquiry

    NASA Astrophysics Data System (ADS)

    Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.

    2018-03-01

    The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.

  6. The Language Laboratory.

    ERIC Educational Resources Information Center

    Hughes, John P.

    Concepts pertaining to the language laboratory are clarified for the layman unfamiliar with recent educational developments in foreign language instruction. These include discussion of: (1) language laboratory components and functions, (2) techniques used in the laboratory, (3) new linguistic methods, (4) laboratory exercises, (5) traditional…

  7. Impact of a in situ laboratory on physician expectancy.

    PubMed

    Brulé, Romain; Sarazin, Marianne; Tayeb, Nicole; Roubille, Martine; Szymanowicz, Anton

    2018-01-01

    Biological examinations are essential for clinicians' medical care. The aim of this study is to assess clinicians' expectations in healthcare facilities and their perception of medical biology in different types of organization. We performed a prospective transversal study by electronic questionnaire conducted among 242 practitioners in four healthcare facilities. The aspects explored were as follows: quality, reliability, rendering time of examination results and biology platform support. Analyses were conducted after rectification of the sample by weight. Sixty one clinicians responded (25.2% [19.7-30.7]). The rendering time of examination is the main criterion mentioned with a requirement of less than one hour in case of emergency (81.5% [71.8-91.2] of the answers) to less than 72 hours for specialized examinations (81.5% [71.8-91.2] of the answers). Better collaboration with biologists is expected by clinicians (54.7% [50.9-58.5]). Satisfaction with the biology platform support and rendering time of emergency cases results was significantly (p <0.005) lower in facilities without an on-site laboratory. In conclusion, although medical biology performance is generally satisfactory within medical facilities, it remains nonetheless affected when the laboratory is not on site. The rendering time of examination, depending on the biology platform support functions and the proximity of the laboratory, remains the main criterion. Clinician-biologist collaboration, which increases of the medico-economic efficiency of patient's healthcare, appears as an essential criterion in a structural conception of medical biology.

  8. Vascular conductance is reduced after menthol or cold application.

    PubMed

    Olive, Jennifer L; Hollis, Brandon; Mattson, Elizabeth; Topp, Robert

    2010-09-01

    To compare the effects of commercially sold menthol (3.5%) ointment and cold application on blood flow in the forearm. : Prospective counterbalanced design. University research laboratory. Twelve (6 men and 6 women) college-aged students. Each participant had blood flow measured in the brachial artery for 5 minutes before and 10 minutes after menthol ointment or cold application to the forearm. Blood velocity, arterial diameter size, and blood pressure were recorded during testing procedures. Vascular conductance was calculated based on these measures and used to describe limb blood flow. We observed a significant reduction (35%; P = 0.004) in vascular conductance within 60 seconds of menthol and cold application to the forearm. Vascular conductance remained significantly reduced for 10 minutes by approximately 19% after both menthol and cold application [F(2.313, 43.594) = 10.328, P < 0.0001]. There was no significant difference between conditions [F(1, 19) = 0.000, P = 0.945]. The application of a 3.5% menthol ointment significantly reduces conductance in the brachial artery within 60 seconds of application, and this effect is maintained for at least 10 minutes after application. The overall decline in conductance is similar between menthol ointment and cold application.

  9. Entrainment in Laboratory Simulations of Cumulus Cloud Flows

    NASA Astrophysics Data System (ADS)

    Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.

    2010-12-01

    A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.

  10. Roles of laboratories and laboratory systems in effective tuberculosis programmes

    PubMed Central

    van Deun, Armand; Kam, Kai Man; Narayanan, PR; Aziz, Mohamed Abdul

    2007-01-01

    Abstract Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories’ functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB. PMID:17639219

  11. Electrically conductive concrete : a laboratory study.

    DOT National Transportation Integrated Search

    1987-01-01

    In the cathodic protection of existing reinforced concrete bridge decks, there is a need for a simple secondary-anode system to facilitate the distribution of direct current over the structure being protected. It is believed that a durable, electrica...

  12. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddal, Risa; Jones, Rebecca; Bersell, Bridget

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps.more » Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.« less

  13. Lawrence Livermore National Laboratory Environmental Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Henry E.; Armstrong, Dave; Blake, Rick G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  14. Lawrence Livermore National Laboratory Environmental Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  15. Evaluation of seating and restraint systems and anthropomorphic dummies conducted during fiscal year 1976.

    DOT National Transportation Integrated Search

    1978-02-01

    The results of test programs conducted by the Protection and Survival Laboratory to investigate the performance of prototype or operational seating and restraint systems relative to their ability to provide protection against crash injury and to inve...

  16. Evaluation of seating and restraint systems and anthropomorphic dummies conducted during fiscal year 1977.

    DOT National Transportation Integrated Search

    1978-06-01

    The results of test programs conducted by the Protection and Survival Laboratory to investigate the performance of prototype or operational seating and restraint systems relative to their ability to provide protection against crash injury and to inve...

  17. Characteristics of manipulative in mathematics laboratory

    NASA Astrophysics Data System (ADS)

    Istiandaru, A.; Istihapsari, V.; Prahmana, R. C. I.; Setyawan, F.; Hendroanto, A.

    2017-12-01

    A manipulative is a teaching aid designed such that students could understand mathematical concepts by manipulating it. This article aims to provide an insight to the characteristics of manipulatives produced in the mathematics laboratory of Universitas Ahmad Dahlan, Indonesia. A case study was conducted to observe the existing manipulatives produced during the latest three years and classified the manipulatives based on the characteristics found. There are four kinds of manipulatives: constructivism manipulative, virtual manipulative, informative manipulative, and game-based manipulative. Each kinds of manipulative has different characteristics and impact towards the mathematics learning.

  18. Emergency department evaluation after conducted energy weapon use: review of the literature for the clinician.

    PubMed

    Vilke, Gary M; Bozeman, William P; Chan, Theodore C

    2011-05-01

    Conductive energy weapons (CEWs) are used daily by law enforcement, and patients are often brought to an emergency department (ED) for medical clearance. To review the medical literature on the topic of CEWs and to offer evidence-based recommendations to Emergency Physicians for evaluation and treatment of patients who have received a CEW exposure. A MEDLINE literature search from 1988 to 2010 was performed and limited to human studies published from January 1988 to January 20, 2010 for English language articles with the following keywords: TASER, conductive energy device(s), electronic weapon(s), conductive energy weapon(s), non-lethal weapon(s), conducted energy device(s), conducted energy weapon(s), conductive electronic device(s), and electronic control device(s). Studies identified then underwent a structured review from which results could be evaluated. There were 140 articles on CEWs screened, and 20 appropriate articles were rigorously reviewed and recommendations given. These studies did not report any evidence of dangerous laboratory abnormalities, physiologic changes, or immediate or delayed cardiac ischemia or dysrhythmias after exposure to CEW electrical discharges of up to 15 s. The current medical literature does not support routine performance of laboratory studies, electrocardiograms, or prolonged ED observation or hospitalization for ongoing cardiac monitoring after CEW exposure in an otherwise asymptomatic awake and alert patient. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Circular dichroism spectroscopy: Enhancing a traditional undergraduate biochemistry laboratory experience.

    PubMed

    Lewis, Russell L; Seal, Erin L; Lorts, Aimee R; Stewart, Amanda L

    2017-11-01

    The undergraduate biochemistry laboratory curriculum is designed to provide students with experience in protein isolation and purification protocols as well as various data analysis techniques, which enhance the biochemistry lecture course and give students a broad range of tools upon which to build in graduate level laboratories or once they begin their careers. One of the most common biochemistry protein purification experiments is the isolation and characterization of cytochrome c. Students across the country purify cytochrome c, lysozyme, or some other well-known protein to learn these common purification techniques. What this series of experiments lacks is the use of sophisticated instrumentation that is rarely available to undergraduate students. To give students a broader background in biochemical spectroscopy techniques, a new circular dichroism (CD) laboratory experiment was introduced into the biochemistry laboratory curriculum. This CD experiment provides students with a means of conceptualizing the secondary structure of their purified protein, and assessments indicate that students' understanding of the technique increased significantly. Students conducted this experiment with ease and in a short time frame, so this laboratory is conducive to merging with other data analysis techniques within a single laboratory period. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):515-520, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  20. Survey of safety practices among hospital laboratories in Oromia Regional State, Ethiopia.

    PubMed

    Sewunet, Tsegaye; Kebede, Wakjira; Wondafrash, Beyene; Workalemau, Bereket; Abebe, Gemeda

    2014-10-01

    Unsafe working practices, working environments, disposable waste products, and chemicals in clinical laboratories contribute to infectious and non-infectious hazards. Staffs, the community, and patients are less safe. Furthermore, such practices compromise the quality of laboratory services. We conducted a study to describe safety practices in public hospital laboratories of Oromia Regional State, Ethiopia. Randomly selected ten public hospital laboratories in Oromia Regional State were studied from Oct 2011- Feb 2012. Self-administered structured questionnaire and observation checklists were used for data collection. The respondents were heads of the laboratories, senior technicians, and safety officers. The questionnaire addressed biosafety label, microbial hazards, chemical hazards, physical/mechanical hazards, personal protective equipment, first aid kits and waste disposal system. The data was analyzed using descriptive analysis with SPSS version16 statistical software. All of the respondents reported none of the hospital laboratories were labeled with the appropriate safety label and safety symbols. These respondents also reported they may contain organisms grouped under risk group IV in the absence of microbiological safety cabinets. Overall, the respondents reported that there were poor safety regulations or standards in their laboratories. There were higher risks of microbial, chemical and physical/mechanical hazards. Laboratory safety in public hospitals of Oromia Regional State is below the standard. The laboratory workers are at high risk of combined physical, chemical and microbial hazards. Prompt recognition of the problem and immediate action is mandatory to ensure safe working environment in health laboratories.

  1. Regiochemistry of Poly(3-Hexylthiophene): Synthesis and Investigation of a Conducting Polymer

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Hermanson, David L.; Kohl, Stuart G.; Melby, Jacob H.; Thoma, Laura M.; Carpenter, Nancy E.; Filho, Demetrio A. da Silva; Bredas, Jean-Luc

    2010-01-01

    A series of experiments for undergraduate laboratory courses (e.g., organic, polymer, inorganic) have been developed. These experiments focus on understanding the regiochemistry of the conducting polymer poly(3-hexylthiophene) (P3HT). The substitution patterns in P3HTs control their conformational features, which, in turn, dictates the [pi]…

  2. Conducting Slug Tests in Mini-Piezometers.

    PubMed

    Fritz, Bradley G; Mackley, Rob D; Arntzen, Evan V

    2016-03-01

    Slug tests performed using mini-piezometers with internal diameters as small as 0.43 cm can provide a cost effective tool for hydraulic characterization. We evaluated the hydraulic properties of the apparatus in a laboratory environment and compared those results with field tests of mini-piezometers installed into locations with varying hydraulic properties. Based on our evaluation, slug tests conducted in mini-piezometers using the fabrication and installation approach described here are effective within formations where the hydraulic conductivity is less than 1 × 10(-3) cm/s. While these constraints limit the potential application of this method, the benefits to this approach are that the installation, measurement, and analysis is cost effective, and the installation can be completed in areas where other (larger diameter) methods might not be possible. Additionally, this methodology could be applied to existing mini-piezometers previously installed for other purposes. Such analysis of existing installations could be beneficial in interpreting previously collected data (e.g., water-quality data or hydraulic head data). © 2015, National Ground Water Association.

  3. HUMAN HEALTH RESEARCH IMPLEMENTATION PLAN, NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY

    EPA Science Inventory

    The National Health and Environmental Effects Research Laboratory (NHEERL), as part of the Environmental Protection Agency's (EPA's) Office of Research and Development (ORD), is responsible for conducting research to improve the risk assessment of chemicals for potential effects ...

  4. Skylab mobile laboratory

    NASA Technical Reports Server (NTRS)

    Primeaux, G. R.; Larue, M. A.

    1975-01-01

    The Skylab mobile laboratory was designed to provide the capability to obtain necessary data on the Skylab crewmen 30 days before lift-off, within 1 hour after recovery, and until preflight physiological baselines were reattained. The mobile laboratory complex consisted of six laboratories that supported cardiovascular, metabolic, nutrition and endocrinology, operational medicine, blood, and microbiology experiments; a utility package; and two shipping containers. The objectives and equipment requirements of the Skylab mobile laboratory and the data acquisition systems are discussed along with processes such as permanently mounting equipment in the individual laboratories and methods of testing and transporting the units. The operational performance, in terms of amounts of data collected, and the concept of mobile laboratories for medical and scientific experiments are evaluated. The Skylab mobile laboratory succeeded in facilitating the data collection and sample preservation associated with the three Skylab manned flights.

  5. Process Waste Assessment for the Diana Laser Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-12-01

    This Process Waste Assessment was conducted to evaluate the Diana Laser Laboratory, located in the Combustion Research Facility. It documents the hazardous chemical waste streams generated by the laser process and establishes a baseline for future waste minimization efforts. This Process Waste Assessment will be reevaluated in approximately 18 to 24 months, after enough time has passed to implement recommendations and to compare results with the baseline established in this assessment.

  6. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to sharemore » its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.« less

  7. Teaching laboratory neuroscience at bowdoin: the laboratory instructor perspective.

    PubMed

    Hauptman, Stephen; Curtis, Nancy

    2009-01-01

    Bowdoin College is a small liberal arts college that offers a comprehensive Neuroscience major. The laboratory experience is an integral part of the major, and many students progress through three stages. A core course offers a survey of concepts and techniques. Four upper-level courses function to give students more intensive laboratory research experience in neurophysiology, molecular neurobiology, social behavior, and learning and memory. Finally, many majors choose to work in the individual research labs of the Neuroscience faculty. We, as laboratory instructors, are vital to the process, and are actively involved in all aspects of the lab-based courses. We provide student instruction in state of the art techniques in neuroscience research. By sharing laboratory teaching responsibilities with course professors, we help to prepare students for careers in laboratory neuroscience and also support and facilitate faculty research programs.

  8. [AT THE CROSSROADS: THE ROLE OF LABORATORY MEDICINE IN THE PATIENT CARE PROCESS].

    PubMed

    Geffen, Yuval; Zaidise, Itzhak

    2017-06-01

    In recent decades, the laboratory medicine profession has undergone significant changes due to both technological developments and economic constraints. Technological innovations support automation, provide faster and more accurate equipment, and allow increased efficiency through the use of commercial test kits. These changes, combined with budgetary constraints, have led to mergers and centralization of medical laboratories to optimize work and cut costs. While this centralization may be a business necessity, it leads to a disconnection between the laboratory and the clinical context. In addition, laboratory tests are treated as a commodity, which places emphasis on price only, rather than quality. In this article, we review the developments and changes that medical laboratories and the laboratory medicine profession have undergone in recent decades. We focus on technological and structural challenges affecting the functioning of medical laboratories and the relations between laboratory workers and medical teams. We then introduce vocational education changes required for the laboratory medicine profession. We propose defining the role of medical laboratory directors in terms of their basic training as medical doctors or doctors of science. We suggest that laboratory employees should become a reliable source of information regarding selection of appropriate test methods, processing data and presenting the results to the medical staff. Laboratory workers must deepen their clinical knowledge and become an integral part of the patient care process, along with medical and nursing staff. Special training programs for medical laboratory workers and directors must be developed in order to match the complex activities currently being conducted in laboratories.

  9. Low-Cost Timer to Measure the Terminal Velocity of a Magnet Falling through a Conducting Pipe

    ERIC Educational Resources Information Center

    Pathare, Shirish R.; Huli, Saurabhee; Lahane, Rohan; Sawant, Sumedh

    2014-01-01

    Dropping a magnet into a conductive pipe (made up of copper or brass or aluminum) is a very popular demonstration in many physics classrooms and laboratories. In this paper we present an inexpensive timer that can be used to measure the terminal velocity of the magnet falling through a conducting pipe. The timer assembly consists of Hall effect…

  10. Biocontainment laboratory risk assessment: perspectives and considerations.

    PubMed

    Patterson, Amy; Fennington, Kelly; Bayha, Ryan; Wax, Diane; Hirschberg, Rona; Boyd, Nancy; Kurilla, Michael

    2014-07-01

    The ability to respond to public health emergencies involving infectious diseases as well as our ability to adequately prepare for as yet unknown or unrecognized emerging infectious diseases requires suitable facilities within which scientific investigations can take place. To ensure the safe conduct of such investigations so that laboratory workers and the general public are protected from potential consequences of accidental or intentional release of high consequence pathogens, special containment facilities have been designed and constructed. Evaluation of the adequacy of containment for these types of investigations requires a risk assessment (RA) as part of the overall construction project for these types of laboratories. A discussion of the RA process along with considerations that impact the design of such studies and the overall results is presented. Published 2014. This article is a US Government work and is in the public domain in the USA.

  11. Sandia National Laboratories analysis code data base

    NASA Astrophysics Data System (ADS)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  12. Imploding Soda Cans: From Demonstration to Guided-Inquiry Laboratory Activity

    ERIC Educational Resources Information Center

    Eichler, Jack F.

    2009-01-01

    A guided-inquiry exercise conducted in both the lecture and laboratory components of a college introductory chemistry course for non-science majors is described. The exercise gave students the opportunity to independently determine the relationship between the temperature of water in an aluminum soda can and the intensity of implosion upon placing…

  13. Fish passage research: S.O. Conte Anadromous Fish Research Laboratory

    USGS Publications Warehouse

    Garebedian, Steve

    2008-01-01

    The Leetown Science Center’s S.O. Conte Anadromous Fish Research Laboratory conducts basic and applied scientific studies of fish passage and migration to define underlying principles and relationships of fish behavior and hydraulics, and to develop integrated, predictive research that can be applied to a wide range of fish passage problems.

  14. 2011 Annual Ecological Survey: Pacific Northwest National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, James M.; Chamness, Michele A.

    The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) oversees and manages the DOE contract for the Pacific Northwest National Laboratory (PNNL), a DOE Office of Science multi-program laboratory located in Richland, Washington. PNSO is responsible for ensuring that all activities conducted on the PNNL site comply with applicable laws, policies, and DOE Orders. The DOE Pacific Northwest Site Office Cultural and Biological Resources Management Plan (DOE/PNSO 2008) addresses the requirement for annual surveys and monitoring for species of concern and to identify and map invasive species. In addition to the requirement for an annual survey, proposed projectmore » activities must be reviewed to assess any potential environmental consequences of conducting the project. The assessment process requires a thorough understanding of the resources present, the potential impacts of a proposed action to those resources, and the ultimate consequences of those actions. The PNNL site is situated on the southeastern corner of the DOE Hanford Site, located at the north end of the city of Richland in south-central Washington. The site is bordered on the east by the Columbia River, on the west by Stevens Drive, and on the north by the Hanford Site 300 Area (Figure 1). The environmental setting of the PNNL site is described in Larson and Downs (2009). There are currently two facilities on the PNNL site: the William R. Wiley Environmental Molecular Sciences Laboratory and the Physical Sciences Facility. This report describes the annual survey of biological resources found on the undeveloped upland portions of the PNNL site. The annual survey is comprised of a series of individual field surveys conducted on various days in late May and throughout June 2011. A brief description of the methods PNNL ecologists used to conduct the baseline surveys and a summary of the results of the surveys are presented. Appendix A provides a list of plant and animal species identified

  15. Could accreditation bodies facilitate the implementation of medical guidelines in laboratories?

    PubMed

    Aakre, Kristin M; Oosterhuis, Wytze P; Misra, Shivani; Langlois, Michel R; Joseph, Watine; Twomey, Patrick J; Barth, Julian H

    2017-05-01

    Several studies have shown that recommendations related to how laboratory testing should be performed and results interpreted are limited in medical guidelines and that the uptake and implementation of the recommendations that are available need improvement. The EFLM/UEMS Working Group on Guidelines conducted a survey amongst the national societies for clinical chemistry in Europe regarding development of laboratory-related guidelines. The results showed that most countries have guidelines that are specifically related to laboratory testing; however, not all countries have a formal procedure for accepting such guidelines and few countries have guideline committees. Based on this, the EFLM/UEMS Working Group on Guidelines conclude that there is still room for improvement regarding these processes in Europe and raise the question if the accreditation bodies could be a facilitator for an improvement.

  16. Phosphorus Concentrations in Stream-Water and Reference Samples - An Assessment of Laboratory Comparability

    USGS Publications Warehouse

    McHale, Michael R.; McChesney, Dennis

    2007-01-01

    In 2003, a study was conducted to evaluate the accuracy and precision of 10 laboratories that analyze water-quality samples for phosphorus concentrations in the Catskill Mountain region of New York State. Many environmental studies in this region rely on data from these different laboratories for water-quality analyses, and the data may be used in watershed modeling and management decisions. Therefore, it is important to determine whether the data reported by these laboratories are of comparable accuracy and precision. Each laboratory was sent 12 samples for triplicate analysis for total phosphorus, total dissolved phosphorus, and soluble reactive phosphorus. Eight of these laboratories reported results that met comparability criteria for all samples; the remaining two laboratories met comparability criteria for only about half of the analyses. Neither the analytical method used nor the sample concentration ranges appeared to affect the comparability of results. The laboratories whose results were comparable gave consistently comparable results throughout the concentration range analyzed, and the differences among methods did not diminish comparability. All laboratories had high data precision as indicated by sample triplicate results. In addition, the laboratories consistently reported total phosphorus values greater than total dissolved phosphorus values, and total dissolved phosphorus values greater than soluble reactive phosphorus values, as would be expected. The results of this study emphasize the importance of regular laboratory participation in sample-exchange programs.

  17. A Hot-Wire Method Based Thermal Conductivity Measurement Apparatus for Teaching Purposes

    ERIC Educational Resources Information Center

    Alvarado, S.; Marin, E.; Juarez, A. G.; Calderon, A.; Ivanov, R.

    2012-01-01

    The implementation of an automated system based on the hot-wire technique is described for the measurement of the thermal conductivity of liquids using equipment easily available in modern physics laboratories at high schools and universities (basically a precision current source and a voltage meter, a data acquisition card, a personal computer…

  18. Laboratory Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  19. Basic Laboratory Skills for Water and Wastewater Analysis. Report No. 125.

    ERIC Educational Resources Information Center

    Clark, Douglas W.

    Designed for individuals wanting to acquire an introductory knowledge of basic skills necessary to function in a water or wastewater laboratory, this handbook emphasizes current use of routine equipment and proper procedures. Explanations and illustrations focus on underlying techniques and principles rather than processes for conducting specific…

  20. 75 FR 75485 - Current List of Laboratories Which Meet Minimum Standards To Engage in Urine Drug Testing for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... Current List of Laboratories Which Meet Minimum Standards To Engage in Urine Drug Testing for Federal... Guidelines for Federal Workplace Drug Testing Programs (Mandatory Guidelines). The Mandatory Guidelines were... Laboratories and Instrumented Initial Testing Facilities (IITF) must meet in order to conduct drug and specimen...

  1. Laboratory diagnostics of chronic kidney disease in Croatia: state of the art

    PubMed Central

    Honović, Lorena; Matica, Jasminka; Knežević, Branka; Vojak, Sanela Šimić

    2015-01-01

    Introduction Early identification and management of chronic kidney disease (CKD) is highly cost-effective and can reduce the risk of kidney failure progression and cardiovascular disease. In 2014, the Joint Croatian Working Group (JCWG) for laboratory diagnostic of CKD on the behalf of Croatian society of medical biochemistry and laboratory medicine (CSMBLM) and Croatian chamber of medical biochemists (CCMB) conducted a survey across Croatian medical-biochemistry laboratories to assess the current practice in this area of laboratory medicine. The aim of this study was to present the data collected through the survey and to give insight about laboratory diagnostics of chronic kidney disease in Croatia. Materials and methods An invitation to participate in the survey was sent to all Croatian medical-biochemistry laboratories (N = 196). The questionnaire was designed in a form of questions and statements, with possible multiple answers, comprising 24 questions. Results The response rate was 80/196 (40.8%). 39 answers were from primary medical-biochemistry laboratories. 31/78 (0.40) laboratories measure creatinine with non-standardized method (uncompensated Jaffe method). 58/78 (0.74) of laboratories that measure creatinine do not report eGFR values. Similar number of laboratories (58/80, 0.73) do not measure urine albumin or protein. Conclusions There is a large heterogeneity among Croatian laboratories regarding measuring methods, reporting units and reference intervals (cut-off values), both for creatinine and urine albumin or protein. The two key prerequisites for CKD screening, automatic reporting of eGFR and albuminuria or proteinuria assessment, are not implemented nationwide. There is a need for harmonization in laboratory diagnostics of CKD in Croatia. PMID:25672470

  2. Virtual Laboratory "vs." Traditional Laboratory: Which Is More Effective for Teaching Electrochemistry?

    ERIC Educational Resources Information Center

    Hawkins, Ian; Phelps, Amy J.

    2013-01-01

    The use of virtual laboratories has become an increasing issue regarding science laboratories due to the increasing cost of hands-on laboratories, and the increase in distance education. Recent studies have looked at the use of virtual tools for laboratory to be used as supplements to the regular hands-on laboratories but many virtual tools have…

  3. Developing a customised approach for strengthening tuberculosis laboratory quality management systems toward accreditation

    PubMed Central

    Trollip, Andre; Erni, Donatelle; Kao, Kekeletso

    2017-01-01

    Background Quality-assured tuberculosis laboratory services are critical to achieve global and national goals for tuberculosis prevention and care. Implementation of a quality management system (QMS) in laboratories leads to improved quality of diagnostic tests and better patient care. The Strengthening Laboratory Management Toward Accreditation (SLMTA) programme has led to measurable improvements in the QMS of clinical laboratories. However, progress in tuberculosis laboratories has been slower, which may be attributed to the need for a structured tuberculosis-specific approach to implementing QMS. We describe the development and early implementation of the Strengthening Tuberculosis Laboratory Management Toward Accreditation (TB SLMTA) programme. Development The TB SLMTA curriculum was developed by customizing the SLMTA curriculum to include specific tools, job aids and supplementary materials specific to the tuberculosis laboratory. The TB SLMTA Harmonized Checklist was developed from the World Health Organisation Regional Office for Africa Stepwise Laboratory Quality Improvement Process Towards Accreditation checklist, and incorporated tuberculosis-specific requirements from the Global Laboratory Initiative Stepwise Process Towards Tuberculosis Laboratory Accreditation online tool. Implementation Four regional training-of-trainers workshops have been conducted since 2013. The TB SLMTA programme has been rolled out in 37 tuberculosis laboratories in 10 countries using the Workshop approach in 32 laboratories in five countries and the Facility-based approach in five tuberculosis laboratories in five countries. Conclusion Lessons learnt from early implementation of TB SLMTA suggest that a structured training and mentoring programme can build a foundation towards further quality improvement in tuberculosis laboratories. Structured mentoring, and institutionalisation of QMS into country programmes, is needed to support tuberculosis laboratories to achieve

  4. Statistical analyses of the background distribution of groundwater solutes, Los Alamos National Laboratory, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longmire, Patrick A.; Goff, Fraser; Counce, D. A.

    2004-01-01

    Background or baseline water chemistry data and information are required to distingu ish between contaminated and non-contaminated waters for environmental investigations conducted at Los Alamos National Laboratory (referred to as the Laboratory). The term 'background' refers to natural waters discharged by springs or penetrated by wells that have not been contaminated by LANL or other municipal or industrial activities, and that are representative of groundwater discharging from their respective aquifer material. These investigations are conducted as part of the Environmental Restoration (ER) Project, Groundwater Protection Program (GWPP), Laboratory Surveillance Program, the Hydrogeologic Workplan, and the Site-Wide Environmental Impact Statement (SWEIS).more » This poster provides a comprehensive, validated database of inorganic, organic, stable isotope, and radionuclide analyses of up to 136 groundwater samples collected from 15 baseline springs and wells located in and around Los Alamos National Laboratory, New Mexico. The region considered in this investigation extends from the western edge of the Jemez Mountains eastward to the Rio Grande and from Frijoles Canyon northward to Garcia Canyon. Figure 1 shows the fifteen stations sampled for this investigation. The sampling stations and associated aquifer types are summarized in Table 1.« less

  5. Thirty-Two Years of Forest Service Research at the Southern Forest Fire Laboratory in Macon, GA

    Treesearch

    USDA Forest Service

    1991-01-01

    When completed in 1959, the Southern Forest Fire Laboratory was the world?s first devoted entirely to the study of forest fires, Since then the scientists at the Laboratory have: 1) performed basic and applied research on critical fire problems of national interest, 2) conducted special regional research on fire problems peculiar to the 13 Southern States, and 3)...

  6. Laboratory activity to effectively teach introductory geomicrobiology concepts to non-geology majors.

    PubMed

    Marvasi, Massimiliano; Davila-Vazquez, Yarely C; Martinez, Lilliam Casillas

    2013-01-01

    We have designed a three-week experiment that can complement any microbiology course, to teach main geomicrobiology concepts for non-geology majors. One of the most difficult concepts for non-geology majors to comprehend is how bacteria serve as a platform for different mineralization reactions. In our three-week laboratory practice, students learn the main principles and conditions required for an induced bacterial mineralization. Upon completion of the laboratory experience, students will: 1) learn how microbial-induced mineralization (such as calcium carbonate formation) is affected by differential media and growth conditions; 2) understand how bacterial physiology affects any induced in situ or in vitro mineralization; 3) comprehend how growing conditions and bacterial physiologies interrelate, resulting in differential crystal formation. The teaching-learning process was assessed using a pre-/posttest with an increase from 26% to 76% in the number of positive answers from the students. We also measured the students' proficiency while conducting specific technical tasks, revealing no major difficulties while conducting the experiments. A final questionnaire was provided with satisfactory evaluations from the students regarding the organization and content of the practices. 84-86% of the students agreed that the exercises improved their knowledge in geomicrobiology and would like to attend similar laboratories in the future. Such response is the best indicator that the laboratory practice can be implemented in any undergraduate/graduate microbiology course to effectively teach basic geomicrobiology concepts to non-geology majors.

  7. Tree Topping Ceremony at NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications. This photo depicts construction workers taking part in a tree topping ceremony as the the final height of the laboratory is framed. The ceremony is an old German custom of paying homage to the trees that gave their lives in preparation of the building site.

  8. Calgary Laboratory Services

    PubMed Central

    2015-01-01

    Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million) and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context. PMID:28725754

  9. Geomechanical Behaviors of Laboratory-Formed Non-Cementing Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Seol, Y.

    2015-12-01

    Natural hydrate-bearing sediments (HBS) have been known to exist with non-cementing pore habits, i.e., pore-filling, load-bearing, or patchy type. However, few laboratory studies have been conducted to characterize geomechanical behaviors of non-cementing CH4-HBS, which are of great importance in engineering the process of drilling and gas production in natural hydrate reservoir. In this study, we conducted multi-stage drained triaxial tests on laboratory synthesized CH4-HBS samples, which were formed in sand-clay mixtures (5%wt kaolinite) to have non-cementing habits. Three different effective confining stresses, σ3' = 0.69, 1.38, and 2.76 MPa, were applied on the HBS with the hydrate saturation, Sh, in the range of 0 to ~ 40%. The result confirms that the strength and stiffness of HBS increases with effective confining stress and hydrate saturation. It is also demonstrated that when compared to the cementing HBS, the non-cementing HBS has lower strength and cohesion, owing to less inter-particle adhesion effects from non-cementing hydrate.

  10. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  11. Cookstove Laboratory Research - Fiscal Year 2016 Report ...

    EPA Pesticide Factsheets

    This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, (3) laboratory assessments of cookstove systems, (4) journal publications, and (5) cookstove events. The U.S. Environmental Protection Agency’s (EPA’s) cookstove laboratory research program was first developed to assist the EPA-led Partnership for Clean Indoor Air and is now part of the U.S. Government’s commitment to the Global Alliance for Clean Cookstoves (the Alliance). Goals of the program are to: (1) support the development of testing protocols and standards for cookstoves through ISO (International Organization for Standardization) TC (Technical Committee) 285: Clean Cookstoves and Clean Cooking Solutions, (2) support the development of international Regional Testing and Knowledge Centers (many sponsored by the Alliance) for scientifically evaluating and certifying cookstoves to international standards, and (3) provide an independent source of data to Alliance partners. This work supports EPA’s mission to protect human health and the environment. Household air pollution, mainly from solid-fuel cookstoves in the developing world, is estimated to cause approximately 4 million premature deaths per year, and emissions of black carbon and other pollutants from cookstoves aff

  12. Complex conductivity of organic-rich shales

    NASA Astrophysics Data System (ADS)

    Woodruff, W. F.; Revil, A.; Torres-Verdin, C.

    2013-12-01

    We can accurately determine the intrinsic anisotropy and material properties in the laboratory, providing empirical evidence of transverse isotropy and the polarization of the organic and metallic fractions in saturated and unsaturated shales. We develop two distinct approaches to obtain the complex conductivity tensor from spectral induced polarization (SIP) measurements. Experimental results indicate clear anisotropy, and characterize the effects of thermal maturation, TOC, and pyrite, aiding in the calibration and interpretation of geophysical data. SIP is a non-intrusive measurement, sensitive to the surface conductance of mineral grains, frequency-dependent polarization of the electrical double layer, and bulk conductivity of the pore water. The in-phase and quadrature components depend upon parameters of principal importance in unconventional shale formation evaluation (e.g., the distribution of pore throat sizes, formation factor, permeability, salinity and cation exchange capacity (CEC), fluid saturation and wettability). In addition to the contribution of the electrical double layer of non-conducting minerals to surface conductivity, we have observed a clear relaxation associated with kerogen pyrolysis, pyrite distribution, and evidence that the CEC of the kerogen fraction may also contribute, depending on thermal maturation history. We utilize a recent model for anisotropic complex conductivity, and rigorous experimental protocols to quantify the role of kerogen and pyrolysis on surface and quadrature conductivity in mudrocks. The complex conductivity tensor σ* describes the directional dependence of electrical conduction in a porous medium, and accounts for both conduction and polarization. The complex-valued tensor components are given as σ*ij , where σ'ij represents in-phase and σ"ij denotes quadrature conductivities. The directional dependence of the complex conductivity tensor is relegated to the textural properties of the material. The

  13. 49 CFR 40.111 - When and how must a laboratory disclose statistical summaries and other information it maintains?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.111 When and how must a laboratory disclose statistical summaries and other... a report indicating that not enough testing was conducted to warrant a summary. You may transmit the...

  14. 49 CFR 40.111 - When and how must a laboratory disclose statistical summaries and other information it maintains?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.111 When and how must a laboratory disclose statistical summaries and other... a report indicating that not enough testing was conducted to warrant a summary. You may transmit the...

  15. 49 CFR 40.111 - When and how must a laboratory disclose statistical summaries and other information it maintains?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.111 When and how must a laboratory disclose statistical summaries and other... a report indicating that not enough testing was conducted to warrant a summary. You may transmit the...

  16. 49 CFR 40.111 - When and how must a laboratory disclose statistical summaries and other information it maintains?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Drug Testing Laboratories § 40.111 When and how must a laboratory disclose statistical summaries and other... a report indicating that not enough testing was conducted to warrant a summary. You may transmit the...

  17. Errors in laboratory medicine: practical lessons to improve patient safety.

    PubMed

    Howanitz, Peter J

    2005-10-01

    Patient safety is influenced by the frequency and seriousness of errors that occur in the health care system. Error rates in laboratory practices are collected routinely for a variety of performance measures in all clinical pathology laboratories in the United States, but a list of critical performance measures has not yet been recommended. The most extensive databases describing error rates in pathology were developed and are maintained by the College of American Pathologists (CAP). These databases include the CAP's Q-Probes and Q-Tracks programs, which provide information on error rates from more than 130 interlaboratory studies. To define critical performance measures in laboratory medicine, describe error rates of these measures, and provide suggestions to decrease these errors, thereby ultimately improving patient safety. A review of experiences from Q-Probes and Q-Tracks studies supplemented with other studies cited in the literature. Q-Probes studies are carried out as time-limited studies lasting 1 to 4 months and have been conducted since 1989. In contrast, Q-Tracks investigations are ongoing studies performed on a yearly basis and have been conducted only since 1998. Participants from institutions throughout the world simultaneously conducted these studies according to specified scientific designs. The CAP has collected and summarized data for participants about these performance measures, including the significance of errors, the magnitude of error rates, tactics for error reduction, and willingness to implement each of these performance measures. A list of recommended performance measures, the frequency of errors when these performance measures were studied, and suggestions to improve patient safety by reducing these errors. Error rates for preanalytic and postanalytic performance measures were higher than for analytic measures. Eight performance measures were identified, including customer satisfaction, test turnaround times, patient identification

  18. The development and assessment of constructivist-based curriculum changes in a university general biology laboratory course

    NASA Astrophysics Data System (ADS)

    Herron, Sherry Shelton

    1999-11-01

    This study describes the processes involved in transforming the curriculum of the second semester general biology laboratory course for science majors, BSC 111L, at the University of Southern Mississippi from one based on the behaviorist model of teaching and learning to one based on the constructivist model. The study encompasses pilot and research phases. During the pilot phase conducted fall semester of 1997, the researcher presented to graduate teaching assistants an overview of the need for curriculum reform and some of the theoretical underpinnings for the movement. The researcher worked with all of the general biology teaching assistants to determine factors they considered supportive of the effort, identified specific goals and exercises, and developed a mission statement. The researcher then worked with two of the teaching assistants to write the new curriculum materials and pilot them in a designated laboratory section each week. During the research phase, the researcher facilitated the use of constructivist teaching methods and interviewed the teaching assistants during weekly group meetings. The researcher videotaped and observed the laboratories at various times throughout spring semester of 1998. Student responses to survey questions about the laboratories were collected during the observation sessions. Data derived from self-assessments on teaching beliefs completed by the teaching assistants, interview transcripts, videotaped laboratory sessions, and student surveys were used to assess the effectiveness of the new curriculum and the intervention program. It was observed that despite being given the same instructions, curriculum, and materials, each teaching assistant conducted his laboratory section in a unique way and rarely conducted the complete laboratory in the intended manner. It was also observed that one TA in particular needed more training in interpersonal skill development and content than was provided during the weekly intervention

  19. Practitioners' Ideas on Laboratory Skills Competencies Needed for Physical Science Teachers

    ERIC Educational Resources Information Center

    James, Robert K.; Schaaf, Joel

    1975-01-01

    In order to determine the competencies needed for teaching secondary physical science a survey of a sample of physical science teachers in Kansas secondary schools was conducted. The major competencies reported could be classified under the following general headings: equipment purchase and operation, maintenance of laboratory safety, and…

  20. Laboratory and field investigations of wave attenuation by live marsh vegetation

    USDA-ARS?s Scientific Manuscript database

    Wave attenuation by live marsh vegetation was investigated experimentally in this study. Laboratory experiments were conducted in a 20.6 m long, 0.69 m wide and 1.22 m deep wave flume under regular and random waves. The vegetation species used are Spartina alterniflora and Juncus roemerianus, which ...

  1. A User Assessment of Workspaces in Selected Music Education Computer Laboratories.

    ERIC Educational Resources Information Center

    Badolato, Michael Jeremy

    A study of 120 students selected from the user populations of four music education computer laboratories was conducted to determine the applicability of current ergonomic and environmental design guidelines in satisfying the needs of users of educational computing workspaces. Eleven categories of workspace factors were organized into a…

  2. Laboratory Governance: Issues for the Study Group on Regional Laboratories.

    ERIC Educational Resources Information Center

    Schultz, Thomas; Dominic, Joseph

    Background information and an analysis of issues involved in the governance of new regional educational laboratories are presented. The new laboratories are to be established through a 1984 competition administered by the National Institute of Education (NIE). The analysis is designed to assist the Study Group on Regional Laboratories to advise…

  3. Economic Education Laboratory: Initiating a Meaningful Economic Learning through Laboratory

    ERIC Educational Resources Information Center

    Noviani, Leny; Soetjipto, Budi Eko; Sabandi, Muhammad

    2015-01-01

    Laboratory is considered as one of the resources in supporting the learning process. The laboratory can be used as facilities to deepen the concepts, learning methods and enriching students' knowledge and skills. Learning process by utilizing the laboratory facilities can help lecturers and students in grasping the concept easily, constructing the…

  4. Clinical trials of boron neutron capture therapy [in humans] [at Beth Israel Deaconess Medical Center][at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Christine

    2001-05-29

    Assessment of research records of Boron Neutron Capture Therapy was conducted at Brookhaven National Laboratory and Beth Israel Deaconess Medical Center using the Code of Federal Regulations, FDA Regulations and Good Clinical Practice Guidelines. Clinical data were collected from subjects' research charts, and differences in conduct of studies at both centers were examined. Records maintained at Brookhaven National Laboratory were not in compliance with regulatory standards. Beth Israel's records followed federal regulations. Deficiencies discovered at both sites are discussed in the reports.

  5. EFFICACY OF COMMERCIAL PRODUCTS IN ENHANCING OIL BIODEGRADATION IN CLOSED LABORATORY REACTORS

    EPA Science Inventory

    A laboratory screening protocol was designed and conducted to test the efficacy of eight commercial bacterial cultures and two non-bacterial products in enhancing the biodegradation of weathered Alaska North Slope crude oil in closed flasks. Three lines of evidence were used to ...

  6. POLLUTION PREVENTION FOR CLEANER AIR: EPA'S AIR AND ENERGY ENGINEERING RESEARCH LABORATORY

    EPA Science Inventory

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribu...

  7. Williams in the U.S. Laboratory during Expedition 13

    NASA Image and Video Library

    2006-08-17

    ISS013-E-67445 (17 Aug. 2006) --- Astronaut Jeffrey N. Williams, Expedition 13 NASA space station science officer and flight engineer, conducts an educational teleconference with the Boys and Girls Clubs of Middle Tennessee in Nashville, via Ku- and S-band in the Destiny laboratory of the International Space Station, with audio and video relayed to the Mission Control Center at Johnson Space Center.

  8. Mozambique’s journey toward accreditation of the National Tuberculosis Reference Laboratory

    PubMed Central

    Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P.; Chongo, Patrina; Masamha, Jessina

    2017-01-01

    Background Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. Methods The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL’s process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Results Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. Conclusions From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan. PMID:28879162

  9. Piloting laboratory quality system management in six health facilities in Nigeria.

    PubMed

    Mbah, Henry; Ojo, Emmanuel; Ameh, James; Musuluma, Humphrey; Negedu-Momoh, Olubunmi Ruth; Jegede, Feyisayo; Ojo, Olufunmilayo; Uwakwe, Nkem; Ochei, Kingsley; Dada, Michael; Udah, Donald; Chiegil, Robert; Torpey, Kwasi

    2014-01-01

    Achieving accreditation in laboratories is a challenge in Nigeria like in most African countries. Nigeria adopted the World Health Organization Regional Office for Africa Stepwise Laboratory (Quality) Improvement Process Towards Accreditation (WHO/AFRO- SLIPTA) in 2010. We report on FHI360 effort and progress in piloting WHO-AFRO recognition and accreditation preparedness in six health facility laboratories in five different states of Nigeria. Laboratory assessments were conducted at baseline, follow up and exit using the WHO/AFRO- SLIPTA checklist. From the total percentage score obtained, the quality status of laboratories were classified using a zero to five star rating, based on the WHO/AFRO quality improvement stepwise approach. Major interventions include advocacy, capacity building, mentorship and quality improvement projects. At baseline audit, two of the laboratories attained 1- star while the remaining four were at 0- star. At follow up audit one lab was at 1- star, two at 3-star and three at 4-star. At exit audit, four labs were at 4- star, one at 3-star and one at 2-star rating. One laboratory dropped a 'star' at exit audit, while others consistently improved. The two weakest elements at baseline; internal audit (4%) and occurrence/incidence management (15%) improved significantly, with an exit score of 76% and 81% respectively. The elements facility and safety was the major strength across board throughout the audit exercise. This effort resulted in measurable and positive impact on the laboratories. We recommend further improvement towards a formal international accreditation status and scale up of WHO/AFRO- SLIPTA implementation in Nigeria.

  10. Creep Laboratory manual

    NASA Astrophysics Data System (ADS)

    Osgerby, S.; Loveday, M. S.

    1992-06-01

    A manual for the NPL Creep Laboratory, a collective name given to two testing laboratories, the Uniaxial Creep Laboratory and the Advanced High Temperature Mechanical Testing Laboratory, is presented. The first laboratory is devoted to uniaxial creep testing and houses approximately 50 high sensitivity creep machines including 10 constant stress cam lever machines. The second laboratory houses a low cycle fatigue testing machine of 100 kN capacity driven by a servo-electric actuator, five machines for uniaxial tensile creep testing of engineering ceramics at temperatures up to 1600C, and an electronic creep machine. Details of the operational procedures for carrying out uniaxial creep testing are given. Calibration procedures to be followed in order to comply with the specifications laid down by British standards, and to provide traceability back to the primary standards are described.

  11. US Naval Research Laboratory's Current Space Photovoltaic Experiemtns

    NASA Astrophysics Data System (ADS)

    Jenkins, Phillip; Walters, Robert; Messenger, Scott; Krasowski, Michael

    2008-09-01

    The US Naval Research Laboratory (NRL) has a rich history conducting space photovoltaic (PV) experiments starting with Vanguard I, the first solar powered satellite in 1958. Today, NRL in collaboration with the NASA Glenn Research Center, is engaged in three flight experiments demonstrating a wide range of PV technologies in both LEO and HEO orbits. The Forward Technology Solar Cell Experiment (FTSCE)[1], part of the 5th Materials on the International Space Station Experiment (MISSE-5), flew for 13 months on the International Space Station in 2005-2006. The FTSCE provided in-situ I-V monitoring of advanced III-V multi-junction cells and laboratory prototypes of thin film and other next generation technologies. Two experiments under development will provide more opportunities to demonstrate advanced solar cells and characterization electronics that are easily integrated on a wide variety of spacecraft bus architectures.

  12. Preliminary study: Formaldehyde exposure in laboratories of Sharjah university in UAE

    PubMed Central

    Ahmed, Hafiz Omer

    2011-01-01

    Objectives Laboratory technicians, students, and instructors are at high risk, because they deal with chemicals including formaldehyde. Thus, this preliminary study was conducted to measure the concentration of formaldehyde in the laboratories of the University of Sharjah in UAE. Materials and Methods: Thirty-two air samples were collected and analyzed for formaldehyde using National Institute for Occupational Safety and Health (NIOSH) method 3500. In this method, formaldehyde reacts with chromotropic acid in the presence of sulfuric acid to form a colored solution. The absorbance of the colored solution is read in spectrophotometer at wavelength 580 nm and is proportional to the quantity of the formaldehyde in the solution. Results: For the anatomy laboratory and in the presence of the covered cadaver, the mean concentration of formaldehyde was found to be 0.100 ppm with a range of 0.095–0.105 ppm. Whereas for the other laboratories, the highest mean concentration of formaldehyde was 0.024 ppm in the general microbiology laboratory and the lowest mean concentration of formaldehyde was 0.001 ppm in the environmental health laboratory. The 8-hour (time-weighted average) concentration of formaldehyde was found to be ranging between 0.0003 ppm in environmental health laboratory and 0.026 ppm in the anatomy laboratory. Conclusions: The highest level of concentration of formaldehyde in the presence of the covered cadaver in anatomy laboratory exceeded the recommended ceiling standard established by USA-NIOSH which is 0.1 ppm, but below the ceiling standard established by American Conference of Governmental Industrial Hygienists which is 0.3 ppm. Thus, it is recommended that formaldehyde levels should be measured periodically specially during the dissection in the anatomy laboratory, and local exhaust ventilation system should be installed and personal protective equipment such as safety glass and gloves should be available and be used to prevent direct skin or eye

  13. An In Situ Radiological Survey of Three Canyons at the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.J. Maurer

    1999-06-01

    An in situ radiological survey of Mortandad, Ten Site, and DP Canyons at the Los Alamos National Laboratory was conducted during August 19-30, 1996. The purpose of this survey was to measure the quantities of radionuclides that remain in the canyons from past laboratory operations. A total of 65 in situ measurements were conducted using high-resolution gamma radiation detectors at 1 meter above the ground. The measurements were obtained in the streambeds of the canyons beginning near the water-release points at the laboratories and extending to the ends of the canyons. Three man-made gamma-emitting radionuclides were detected in the canyons:more » americium-241 ({sup 241}Am), cesium-137 ({sup 137}Cs), and cobalt-60 ({sup 60}Co). Estimated contamination levels ranged from 13.3-290.4 picocuries per gram (pCi/g)for {sup 241}Am, 4.4-327.8 pCi/g for {sup 137}Cs, and 0.4-2.6 pCi/g for {sup 60}Co.« less

  14. Valid methods: the quality assurance of test method development, validation, approval, and transfer for veterinary testing laboratories.

    PubMed

    Wiegers, Ann L

    2003-07-01

    Third-party accreditation is a valuable tool to demonstrate a laboratory's competence to conduct testing. Accreditation, internationally and in the United States, has been discussed previously. However, accreditation is only I part of establishing data credibility. A validated test method is the first component of a valid measurement system. Validation is defined as confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled. The international and national standard ISO/IEC 17025 recognizes the importance of validated methods and requires that laboratory-developed methods or methods adopted by the laboratory be appropriate for the intended use. Validated methods are therefore required and their use agreed to by the client (i.e., end users of the test results such as veterinarians, animal health programs, and owners). ISO/IEC 17025 also requires that the introduction of methods developed by the laboratory for its own use be a planned activity conducted by qualified personnel with adequate resources. This article discusses considerations and recommendations for the conduct of veterinary diagnostic test method development, validation, evaluation, approval, and transfer to the user laboratory in the ISO/IEC 17025 environment. These recommendations are based on those of nationally and internationally accepted standards and guidelines, as well as those of reputable and experienced technical bodies. They are also based on the author's experience in the evaluation of method development and transfer projects, validation data, and the implementation of quality management systems in the area of method development.

  15. Laboratory for Atmospheres: Philosophy, Organization, Major Activities, and 2001 Highlights

    NASA Technical Reports Server (NTRS)

    Hoegy, Walter R.; Cote, Charles, E.

    2002-01-01

    How can we improve our ability to predict the weather? How is the Earth's climate changing? What can the atmospheres of other planets teach us about our own? The Laboratory for Atmospheres is helping to answer these and other scientific questions. The Laboratory conducts a broad theoretical and experimental research program studying all aspects of the atmospheres of the Earth and other planets, including their structural, dynamical, radiative, and chemical properties. Vigorous research is central to NASA's exploration of the frontiers of knowledge. NASA scientists play a key role in conceiving new space missions, providing mission requirements., and carrying out research to explore the behavior of planetary systems, including, notably, the Earth's. Our Laboratory's scientists also supply outside scientists with technical assistance and scientific data to further investigations not immediately addressed by NASA itself. The Laboratory for Atmospheres is a vital participant in NASA's research program. The Laboratory is part of the Earth Sciences Directorate based at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The Directorate itself comprises the Global Change Data Center; the Earth and Space Data Computing Division; three laboratories: the Laboratory for Atmospheres, the Laboratory for Terrestrial Physics, and the Laboratory for Hydrospheric Processes; and the Goddard Institute for Space Studies (GISS) in New York, New York. In this report, you will find a statement of our philosophy and a description of our role in NASA's mission. You'll also find a broad description of our research and a summary of our scientists' major accomplishments in 2001. The report also presents useful information on human resources, scientific interactions, and outreach activities with the outside community. For your convenience, we have published a version of this report on the Internet. Our Web site includes links to additional information about the Laboratory's Offices and

  16. Measurements of Regolith Simulant Thermal Conductivity Under Asteroid and Mars Surface Conditions

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Christensen, P. R.

    2017-12-01

    Laboratory measurements have been necessary to interpret thermal data of planetary surfaces for decades. We present a novel radiometric laboratory method to determine temperature-dependent thermal conductivity of complex regolith simulants under rough to high vacuum and across a wide range of temperatures. This method relies on radiometric temperature measurements instead of contact measurements, eliminating the need to disturb the sample with thermal probes. We intend to determine the conductivity of grains that are up to 2 cm in diameter and to parameterize the effects of angularity, sorting, layering, composition, and eventually cementation. We present the experimental data and model results for a suite of samples that were selected to isolate and address regolith physical parameters that affect bulk conductivity. Spherical glass beads of various sizes were used to measure the effect of size frequency distribution. Spherical beads of polypropylene and well-rounded quartz sand have respectively lower and higher solid phase thermal conductivities than the glass beads and thus provide the opportunity to test the sensitivity of bulk conductivity to differences in solid phase conductivity. Gas pressure in our asteroid experimental chambers is held at 10^-6 torr, which is sufficient to negate gas thermal conduction in even our coarsest of samples. On Mars, the atmospheric pressure is such that the mean free path of the gas molecules is comparable to the pore size for many regolith particulates. Thus, subtle variations in pore size and/or atmospheric pressure can produce large changes in bulk regolith conductivity. For each sample measured in our martian environmental chamber, we repeat thermal measurement runs at multiple pressures to observe this behavior. Finally, we present conductivity measurements of angular basaltic simulant that is physically analogous to sand and gravel that may be present on Bennu. This simulant was used for OSIRIS-REx TAGSAM Sample Return

  17. Comprehensive overview of FPL field testing conducted in the tropics (1945-2005)

    Treesearch

    Grant T. Kirker; Stan L. Lebow; Mark E. Mankowski

    2016-01-01

    Tropical exposure often represents a more severe environment for treated wood and wood based products. Accelerated tropical decay rates are typically attributed to higher mean rainfall and temperatures. The Forest Products Laboratory (FPL) in Madison, WI has been conducting tropical field tests in a variety of locations since the early 1940’s. This paper summarizes FPL...

  18. Physical and Psychosocial Aspects of the Learning Environment in the Science Laboratory and Their Relationship to Teacher Satisfaction

    ERIC Educational Resources Information Center

    Che Ahmad, Che Nidzam; Osman, Kamisah; Halim, Lilia

    2013-01-01

    This paper is a report of a survey conducted to determine teachers' perception of the science laboratory learning environment and the relationship between different aspects of this environment and satisfaction from teaching and learning. Teachers' perceptions of psychosocial aspects were measured by use of the Science Laboratory Environment…

  19. Testing Conducted for Lithium-Ion Cell and Battery Verification

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  20. Research on air sprays and unique foam application methods. Phase II report. Laboratory investigation of foam systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-06-01

    The objective of this study is to assess the effectiveness of air sprays and foam systems for dust control on longwall double-drum shearer faces. Laboratory testing has been conducted using foam systems and promising results have been obtained. Upon Bureau approval, underground testing will be scheduled to assess the effectiveness of foam systems under actual operating conditions. Laboratory testing of air sprays is being conducted at present. This report presents the results of the laboratory testing of foam systems. Specifically, the results obtained on the evaluation of selected foaming agents are presented, the feasibility investigation of flushing foam through themore » shearer-drum are demonstrated, and conceptual layout of the foam system on the shearer is discussed. The laboratory investigation of the selected foaming agents reveal that the Onyx Microfoam, Onyx Maprosyl and DeTer Microfoam foaming agents have higher expansion ratios compared to the others tested. Flushing foam through the shearer drum is entirely feasible and could be a viable technique for dust suppression on longwall faces.« less

  1. Designing easy DNA extraction: Teaching creativity through laboratory practice.

    PubMed

    Susantini, Endang; Lisdiana, Lisa; Isnawati; Tanzih Al Haq, Aushia; Trimulyono, Guntur

    2017-05-01

    Subject material concerning Deoxyribose Nucleic Acid (DNA) structure in the format of creativity-driven laboratory practice offers meaningful learning experience to the students. Therefore, a laboratory practice in which utilizes simple procedures and easy-safe-affordable household materials should be promoted to students to develop their creativity. This study aimed to examine whether designing and conducting DNA extraction with household materials could foster students' creative thinking. We also described how this laboratory practice affected students' knowledge and views. A total of 47 students participated in this study. These students were grouped and asked to utilize available household materials and modify procedures using hands-on worksheet. Result showed that this approach encouraged creative thinking as well as improved subject-related knowledge. Students also demonstrated positive views about content knowledge, social skills, and creative thinking skills. This study implies that extracting DNA with household materials is able to develop content knowledge, social skills, and creative thinking of the students. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):216-225, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  2. Safety in laboratories: Indian scenario.

    PubMed

    Mustafa, Ajaz; Farooq, A Jan; Qadri, Gj; S A, Tabish

    2008-07-01

    Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. Seventy three percent of laboratories had safety education program regarding hazards. In 91% of laboratories staff is using protective clothing while working in laboratories. Hazardous material regulations are followed in 78% of laboratories. Regular health check ups are carried among laboratory staff in 43.4% of laboratories.Safety manual is available in 56.5% of laboratories. 73.9% of laboratories are equipped with fire extinguishers. Fume cupboards are provided in 34.7% of laboratories and they are regularly checked in 87.5% of these laboratories. In 78.26% of laboratories suitable measures are taken to minimize formation of aerosols.In 95.6% of laboratories waste is disposed off as per bio-medical waste management handling rules. Laboratory of one private medical college was accredited with NABL and safety parameters were better in that laboratory. Installing safety engineered devices apparently contributes to significant decrease in injuries in laboratories; laboratory safety has to be a part of overall quality assurance programme in hospitals. Accreditation has to be made necessary for all laboratories.

  3. Second United States Microgravity Laboratory: One Year Report. Volume 1

    NASA Technical Reports Server (NTRS)

    Vlasse, M (Editor); McCauley, D. (Editor); Walker, C. (Editor)

    1998-01-01

    This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML-2). The USML-2 mission consisted of a pressurized Spacelab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

  4. Space Station Freedom: a unique laboratory for gravitational biology research

    NASA Technical Reports Server (NTRS)

    Phillips, R. W.; Cowing, K. L.

    1993-01-01

    The advent of Space Station Freedom (SSF) will provide a permanent laboratory in space with unparalleled opportunities to perform biological research. As with any spacecraft there will also be limitations. It is our intent to describe this space laboratory and present a picture of how scientists will conduct research in this unique environment we call space. SSF is an international venture which will continue to serve as a model for other peaceful international efforts. It is hoped that as the human race moves out from this planet back to the moon and then on to Mars that SSF can serve as a successful example of how things can and should be done.

  5. Laboratory for Atmospheres: Philosophy, Organization, Major Activities, and 1999 Highlights

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Laboratory for Atmospheres is helping to answer questions related to climate, and climate change and other scientific questions about our planet and its neighbors. The Laboratory conducts a broad theoretical and experimental research program studying all aspects of the atmospheres of the Earth and other planets, including their structural, dynamical, radiative, and chemical properties. In this report,there is a statement of the labs philosophy and a description of it's role in NASA's mission. A broad description of the research and a summary of the scientists' major accomplishments in 1999 is also included. The report also presents useful information on human resources, scientific interactions, and outreach activities with the outside community.

  6. Second United States Microgravity Laboratory: One Year Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Vlasse, M. (Editor); McCauley, D. (Editor); Walker, C. (Editor)

    1998-01-01

    This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML-2). The USML-2 mission consisted of a pressurized Spacelab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.

  7. DESIGN OF A SURFACTANT REMEDIATION FIELD DEMONSTRATION BASED ON LABORATORY AND MODELINE STUDIES

    EPA Science Inventory

    Surfactant-enhanced subsurface remediation is being evaluated as an innovative technology for expediting ground-water remediation. This paper reports on laboratory and modeling studies conducted in preparation for a pilot-scale field test of surfactant-enhanced subsurface remedia...

  8. Research Update: The USDA-ARS-Conservation and Production Research Laboratory, Bushland, Texas

    USDA-ARS?s Scientific Manuscript database

    This presentation/manuscript provide a brief summary of beef cattle feeding-related research conducted at the USDA-ARS-Conservation and Production Research Laboratory, Bushland, Texas, over the past four years. It summarizes data that has been published in scientific journals, in symposia and confer...

  9. EVALUATION OF MIXING ENERGY IN LABORATORY FLASKS USED FOR DISPERSANT EFFECTIVENESS TESTING

    EPA Science Inventory

    The evaluation of dispersant effectiveness used for oil spills is commonly done using tests conducted in laboratory flasks. The success of a test relies on replication of the conditions at sea. We used a hot wire anemometer to characterize the turbulence characteristics in the s...

  10. Citrus scion breeding at the USDA/ARS U.S. Horticultural Research Laboratory

    USDA-ARS?s Scientific Manuscript database

    Citrus breeding has been conducted by the USDA since 1893 when Walter Swingle made the first crosses at the USDA Subtropical Laboratory in Eustis, Florida. The initial objectives included improved disease-resistance, cold hardiness, and easy peeling fruit, which are still important breeding objecti...

  11. LABORATORY EVALUATION OF METHODS TO SEPARATE FINE GRAINED SEDIMENT FROM STORM WATER

    EPA Science Inventory

    A literature survey had been conducted by the St. Anthony Falls Hydraulic laboratory to assess various methods for separation of sediment from storm water at construction sites. Two methods have shown some promise in this application, and a research program was initiated with the...

  12. Phenomenological Modeling and Laboratory Simulation of Long-Term Aging of Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Elwardany, Michael Dawoud

    The accurate characterization of asphalt mixture properties as a function of pavement service life is becoming more important as more powerful pavement design and performance prediction methods are implemented. Oxidative aging is a major distress mechanism of asphalt pavements. Aging increases the stiffness and brittleness of the material, which leads to a high cracking potential. Thus, an improved understanding of the aging phenomenon and its effect on asphalt binder chemical and rheological properties will allow for the prediction of mixture properties as a function of pavement service life. Many researchers have conducted laboratory binder thin-film aging studies; however, this approach does not allow for studying the physicochemical effects of mineral fillers on age hardening rates in asphalt mixtures. Moreover, aging phenomenon in the field is governed by kinetics of binder oxidation, oxygen diffusion through mastic phase, and oxygen percolation throughout the air voids structure. In this study, laboratory aging trials were conducted on mixtures prepared using component materials of several field projects throughout the USA and Canada. Laboratory aged materials were compared against field cores sampled at different ages. Results suggested that oven aging of loose mixture at 95°C is the most promising laboratory long-term aging method. Additionally, an empirical model was developed in order to account for the effect of mineral fillers on age hardening rates in asphalt mixtures. Kinetics modeling was used to predict field aging levels throughout pavement thickness and to determine the required laboratory aging duration to match field aging. Kinetics model outputs are calibrated using measured data from the field to account for the effects of oxygen diffusion and percolation. Finally, the calibrated model was validated using independent set of field sections. This work is expected to provide basis for improved asphalt mixture and pavement design procedures in

  13. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  14. Emergency Procedure Training for Reactor Operators at the High Flux Beam Reactor for Brookhaven National Laboratory.

    ERIC Educational Resources Information Center

    Reyer, Ronald

    A project was conducted to analyze, design, develop, implement, and evaluate an instructional unit intended to improve the diagnostic skills of operating personnel in responding to abnormal and emergency conditions at the High Flux Beam Reactor at Brookhaven National Laboratory. Research was conducted on the occurrence of emergencies at similar…

  15. Laboratory and Field Evaluations of Two Bacillus thuringiensis Formulations, Novodor and Raven, for Control of Cottonwood Leaf Beetle (Coleoptera: Chrysomelidae)

    Treesearch

    David R. Coyle; Joel D. McMillin; Steven C. Krause; Elwood R. Hart

    2000-01-01

    Laboratory and field experiments were conducted to determine the efficacy of two Bacillus thuringiensis Berliner formulations, Novodor and Raven, for controlling cottonwood leaf beetle, Chrysomela scripta F. (Coleoptera: Chrysomelidae). In laboratory bioassays, larvae or adults were added to petri dishes containing ...

  16. Dynamics of fungal colonization in a new medical mycology laboratory.

    PubMed

    Sautour, M; Fournel, I; Dalle, F; Calinon, C; L'Ollivier, C; Goyer, M; Cachia, C; Aho, S; Sixt, N; Vagner, O; Cuisenier, B; Bonnin, A

    2012-03-01

    Study of the spatio-temporal fungal colonization in a new medical mycology laboratory. A 17-month survey of airborne fungal contamination was conducted in a new medical mycology laboratory at a tertiary care university hospital. This survey was implemented at three different periods: before the new premises were occupied (period A), during the move into the new laboratory (period B) and after resumption of the mycological activities in these new premises (period C). During period A, the airborne fungal load ranged from 2.3 to 6 cfu/m(3). The most frequently recovered airborne fungi were Penicillium spp. (75 to 100%). During period B, a dramatic increase in Penicillium chrysogenum conidia was observed in the air of the new laboratory (40 to 160 cfu/m(3)). During period C, the fungal load ranged from 4.5 to 8.4 cfu/m(3). Penicillium was the most common genus identified in rooms of the laboratory where no filamentous fungi were handled, while Aspergillus was clearly the predominant genus (78%) in the room dedicated to the culture of filamentous fungi. We suggest that the specific fungal ecology in air of the room dedicated to the culture of filamentous fungi is due to the handling of a large number of medical strains of A. fumigatus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  17. FRESHWATER FINDINGS, 1979-1982: RESEARCH PUBLICATIONS OF THE ENVIRONMENTAL RESEARCH LABORATORY, DULUTH, MINNESOTA

    EPA Science Inventory

    This report contains citations of publications for the years 1979-1982 on research conducted or supported by the Environmental Research Laboratory-Duluth. All published material has been organized into two major categories: (1) Journal Articles, Book Chapters, Proceedings, etc., ...

  18. Laboratory Equipment Criteria.

    ERIC Educational Resources Information Center

    State Univ. Construction Fund, Albany, NY.

    Requirements for planning, designing, constructing and installing laboratory furniture are given in conjunction with establishing facility criteria for housing laboratory equipment. Furniture and equipment described include--(1) center tables, (2) reagent racks, (3) laboratory benches and their mechanical fixtures, (4) sink and work counters, (5)…

  19. Regionalization of laboratory care: a viable option for the 21st century.

    PubMed

    Steiner, J W; Root, J M

    1990-06-01

    The conversion of the hospital laboratory to a cost center under pressure of prospective payment and fixed reimbursement is increasingly forcing hospitals to consider alternative modes for delivery of laboratory care. Changes in the health care environment, amended statutes and regulations, and, particularly, dramatic developments in laboratory equipment, methodologies, and data processing technology make it advisable and feasible to contemplate the creation of regional laboratory consortia. A fundamental step in this direction is the "commercialization" of the hospital laboratory through a change in focus from being an in-house support program to becoming a regional resource. By the same token, the hospital laboratory can become an effective competitor of independent laboratories and be reconverted to a profit center. Creation of hospital laboratory consortia in a splintered, competitive environment requires a committed entrepreneurial effort and convincing evidence of potential benefits. The sequence of steps needed to achieve regional laboratory integration include concerting the goals and objectives of the interested parties, creating an appropriate committee structure, conducting a feasibility assessment, identifying alternative organizational and operational options, selecting a favorite option viewed by all parties as a win/win proposition, developing a business plan, and determining an implementation action plan. The major disadvantages of regionalization of laboratories are employee displacement, potential leveling of quality standards, and reduced hospital control. The major advantages include elimination of duplicate capital, personnel, and service costs, improved efficiency through test batching, reduced unit costs, increased technical capability through staff, instrument, and systems sharing, disengagement from hospital-imposed limitations, strengthened ability to penetrate the marketplace, freeing of hospital space for more direct patient care

  20. 42 CFR 493.1355 - Condition: Laboratories performing PPM procedures; laboratory director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing PPM procedures; laboratory director. 493.1355 Section 493.1355 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS...