Sample records for laboratory idaho falls

  1. Confirmatory radiological survey of the BORAX-V turbine building Idaho National Engineering Laboratory, Idaho Falls, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, G.H.; Coleman, R.L.; Jensen, M.K.

    1993-07-01

    An independent assessment of the remediation of the BORAX-V (Boiling Water Reactor Experiment) turbine building at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho, was accomplished by the Oak Ridge National Laboratory Pollutant Assessments Group (ORNL/PAG). The purpose of the assessment was to confirm the site`s compliance with applicable Department of Energy guidelines. The assessment included reviews of both the decontamination and decommissioning Plan and data provided from the pre- and post-remedial action surveys and an independent verification survey of the facility. The independent verification survey included determination of background exposure rates and soil concentrations, beta-gamma and gamma radiationmore » scans, smears for detection of removable contamination, and direct measurements for alpha and beta-gamma radiation activity on the basement and mezzanine floors and the building`s interior and exterior walls. Soil samples were taken, and beta-gamma and gamma radiation exposure rates were measured on areas adjacent to the building. Results of measurements on building surfaces at this facility were within established contamination guidelines except for elevated beta-gamma radiation levels located on three isolated areas of the basement floor. Following remediation of these areas, ORNL/PAG reviewed the remedial action contractor`s report and agreed that remediation was effective in removing the source of the elevated direct radiation. Results of all independent soil analyses for {sup 60}Co were below the detection limit. The highest {sup 137}Cs analysis result was 4.6 pCi/g; this value is below the INEL site-specific guideline of 10 pCi/g.« less

  2. 76 FR 13976 - Eastern Idaho Resource Advisory Committee; Caribou-Targhee National Forest, Idaho Falls, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ...-Targhee National Forest, Idaho Falls, ID AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY... National Forests' Eastern Idaho Resource Advisory Committee will meet Friday, March 25, 2011 in Idaho Falls...-Targhee National Forest Headquarters Office, 1405 Hollipark Drive, Idaho Falls, Idaho 83401. FOR FURTHER...

  3. 76 FR 13345 - Eastern Idaho Resource Advisory Committee; Caribou-Targhee National Forest, Idaho Falls, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ...-Targhee National Forest, Idaho Falls, ID AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY... National Forests' Eastern Idaho Resource Advisory Committee will meet Friday, March 25, 2011 in Idaho Falls...-Targhee National Forest Headquarters Office, 1405 Hollipark Drive, Idaho Falls, Idaho 83401. FOR FURTHER...

  4. 75 FR 24685 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402. FOR...

  5. 75 FR 11872 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... Site- Specific Advisory Board, Idaho National Laboratory to be held on March 16, 2010 75 FR 9590. In that notice, the meeting address was Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402...

  6. 128. COTTONWOOD CUT, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    128. COTTONWOOD CUT, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; NORTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 107. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; WEST VIEW OF LAKE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. 105. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    105. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; NORTHWEST VIEW OF LAKE AND HEADGATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. 122. MCMULLEN CREEK, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. MCMULLEN CREEK, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; INLET SIDE OF THE CREEK, ENTRANCE INTO THE HIGH LINE CANAL, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  10. 77 FR 49826 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... Public Meeting, Idaho Falls District Resource Advisory Council Meeting AGENCY: Bureau of Land Management... Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The Idaho Falls District RAC will meet in Idaho Falls, Idaho on September...

  11. 77 FR 17093 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Public Meeting, Idaho Falls District Resource Advisory Council AGENCY: Bureau of Land Management... Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The Idaho Falls District RAC will meet in Salmon, Idaho on April 24-25...

  12. 76 FR 28306 - Amendment of Class D and Class E Airspace; Idaho Falls, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ...-0023; Airspace Docket No. 11-ANM-2] Amendment of Class D and Class E Airspace; Idaho Falls, ID AGENCY... D and Class E airspace at Idaho Falls, ID, by changing the name of the airport to Idaho Falls... Performance (RNP) standard instrument approach procedures at Idaho Falls Regional Airport. This improves the...

  13. 76 FR 48883 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ...] Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting AGENCY: Bureau of Land... of the Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The Idaho Falls District RAC will meet in Challis, Idaho...

  14. 78 FR 19522 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... Public Meeting, Idaho Falls District Resource Advisory Council Meeting AGENCY: Bureau of Land Management... Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The Idaho Falls District RAC will meet in Challis, Idaho, April 23-24...

  15. 75 FR 27360 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Public Meeting, Idaho Falls District Resource Advisory Council Meeting AGENCY: Bureau of Land Management... Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The Idaho Falls District RAC will meet in Salmon, Idaho on June 22-23...

  16. 78 FR 38071 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Public Meeting, Idaho Falls District Resource Advisory Council Meeting AGENCY: Bureau of Land Management... Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The Idaho Falls District RAC will meet in Pocatello, Idaho, August 27-28...

  17. 78 FR 17716 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... Public Meeting, Idaho Falls District Resource Advisory Council Meeting AGENCY: Bureau of Land Management... Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The Idaho Falls District RAC will meet in Challis, Idaho, April 23-24...

  18. 76 FR 76179 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... Public Meeting, Idaho Falls District Resource Advisory Council Meeting AGENCY: Bureau of Land Management... Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The RAC will next meet in Idaho Falls, Idaho on January 24-25, 2012 for a...

  19. 77 FR 74203 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Public Meeting, Idaho Falls District Resource Advisory Council Meeting AGENCY: Bureau of Land Management... Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The RAC will next meet in Idaho Falls, Idaho on January 22-23, 2013 for a...

  20. 76 FR 3651 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...] Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting AGENCY: Bureau of Land... of the Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The RAC will next meet in Idaho Falls, Idaho, on February 15-16...

  1. 76 FR 28805 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ...] Notice of Public Meeting, Idaho Falls District Resource Advisory Council Meeting AGENCY: Bureau of Land... of the Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below. DATES: The Idaho Falls District RAC will meet in Pocatello, Idaho on June...

  2. Teton Dam flood of June 1976, Idaho Falls South quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Idaho Falls South quadrangle. (Woodard-USGS)

  3. Teton Dam flood of June 1976, Idaho Falls North quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Idaho Falls North quadrangle. (Woodard-USGS)

  4. Rodney Hunt supplies gates to Idaho Power's Swan Falls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-02-01

    Rodney Hunt Co. shipped two 30-foot by 28-foot fabricated steel roller gates to Idaho Power Co.'s Swan Falls Dam Project, where they will be installed as draft tube gates. Rodney Hunt said the gates, each weighing approximately 55 tons, are the largest roller gates the company has manufactured. The company supplied the gates under the terms of a contract worth more than $500,000. The gates were ordered as part of Idaho Power's rehabilitation of Swan Falls Dam, which will double the power plant's capacity to 25 MW. New units will begin producing power in 1993, and the project will bemore » completed in 1994. Elsewhere on the Snake River, Idaho Power intends to increase the capacity of its Twin Falls project to 52 MW from 10 MW. Construction is scheduled to start in June 1993.« less

  5. 76 FR 9266 - Proposed Amendment of Class D and Class E Airspace; Idaho Falls, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...-0023; Airspace Docket No. 11-ANM-2] Proposed Amendment of Class D and Class E Airspace; Idaho Falls, ID...: This action proposes to amend the Class D and Class E airspace areas at Idaho Falls, ID, by changing the name of the airport to Idaho Falls Regional Airport, and adjusting the geographic coordinates of...

  6. 76 FR 30388 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... (BLM) Twin Falls District Resource Advisory Council (RAC) will meet as indicated below. DATES: June 21-22, 2011. On June 21, 2011, the Twin Falls District RAC members will meet at the Idaho Commerce and...

  7. RadNet Air Data From Idaho Falls, ID

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Idaho Falls, ID from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. 76 FR 66917 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Office, 1955 Fremont Avenue, MS- 1203, Idaho Falls, Idaho 83415. Phone (208) 526-6518; Fax (208) 526... Treatment Project (AMWTP) Contract Idaho Cleanup Project (ICP) Contract Extension Idaho-EM Funding Status of...

  9. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Braun Williams

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  10. Preliminary geological interpretation and lithologic log of the exploratory geothermal test well (INEL-1), Idaho National Engineering Laboratory, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Doherty, David J.; McBroome, Lisa Ann; Kuntz, Mel A.

    1979-01-01

    A 10,365 ft (3,159 m) geothermal test well was drilled in the spring of 1979 at the Idaho National Engineering Laboratory, eastern Snake River Plain, Idaho: The majority of rock types encountered in the borehole are of volcanic origin. An upper section above 2,445 ft (745 m) consists of basaltic lava flows and interbedded .sediments of alluvial, lacustrine, and volcanic origin. A lower section below 2,445 ft (745 m) consists exclusively of rhyolitic welded ash-flow tuffs, air-fall ash deposits, nonwelded ash-flow ruffs, and volcaniclastic sediments. The lithology and thickness of the rhyolitic rocks suggest that they are part of an intracaldera fill.

  11. Chlorine-36 in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory; origin and implications

    USGS Publications Warehouse

    Beasley, T.M.; Cecil, L.D.; Sharma, P.; Kubik, P.W.; Fehn, U.; Mann, L.J.; Gove, H.E.

    1993-01-01

    Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. Our measurements of 36C1 in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3H and 36Cl concentrations in aquifer water and the advantages of 36C1 as a tracer of subsurface-water dynamics at the site are discussed.

  12. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, Diana Lee

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  13. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  14. 77 FR 43353 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... the Interior, Bureau of Land Management (BLM) Twin Falls District Resource Advisory Council (RAC) and...: On August 16, 2012, the Twin Falls District RAC subcommittee members for the proposed Monument and...

  15. 75 FR 60477 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... (BLM) Twin Falls District Resource Advisory Council (RAC) subcommittee for the Jarbidge Draft Resource...; and December 1, 2010. The Twin Falls District RAC subcommittee members will meet at the Loong Hing...

  16. 75 FR 48723 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... (BLM) Twin Falls District Resource Advisory Council (RAC) and subcommittees will meet as indicated below. DATES: On September 9, 2010, the Twin Falls District RAC subcommittee members will meet at the...

  17. 77 FR 37705 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... the Interior, Bureau of Land Management (BLM) Twin Falls District Resource Advisory Council (RAC) and...: On July 10, 2012, the Twin Falls District RAC subcommittee members for the proposed Monument and...

  18. 77 FR 15388 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... the Interior, Bureau of Land Management (BLM) Twin Falls District Resource Advisory Council (RAC) and...: On March 28, 2012, the Twin Falls District RAC subcommittee members for the proposed Monument and...

  19. 75 FR 80839 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... (BLM) Twin Falls District Resource Advisory Council (RAC) and subcommittee for the Jarbidge Resource... 12, 2011, the Twin Falls District RAC subcommittee members will meet at the Loong Hing Restaurant...

  20. 77 FR 75653 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... the Interior, Bureau of Land Management (BLM) Twin Falls District Resource Advisory Council (RAC) will meet as indicated below. DATES: On January 31, 2013, the Twin Falls District RAC members will meet at...

  1. 78 FR 56242 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... the Interior, Bureau of Land Management (BLM) Twin Falls District Resource Advisory Council (RAC) will meet as indicated below. DATES: On September 26, 2013, the Twin Falls District RAC members will meet at...

  2. 76 FR 79707 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... (BLM) Twin Falls District Resource Advisory Council (RAC) and subcommittee for the Jarbidge Resource Management Plan (RMP) will meet as indicated below. DATES: On January 25, 2012, the Twin Falls District RAC...

  3. 76 FR 16809 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... (BLM) Twin Falls District Resource Advisory Council (RAC) and subcommittee for the Jarbidge Resource Management Plan (RMP) will meet as indicated below. DATES: April 27, 2011. On April 27, 2011, the Twin Falls...

  4. 76 FR 26314 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... (BLM) Twin Falls District Resource Advisory Council (RAC) will meet as indicated below. DATES: May 16, 2011. On May 16, 2011, the Twin Falls District RAC members will meet at the Best Western Sawtooth Inn...

  5. 78 FR 19732 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... the Interior, Bureau of Land Management (BLM) Twin Falls District Resource Advisory Council (RAC) will meet as indicated below. DATES: On April 23 2013, the Twin Falls District RAC members will meet at the...

  6. 78 FR 32440 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... of Public Meetings, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of Land... the Interior, Bureau of Land Management (BLM) Twin Falls District Resource Advisory Council (RAC) will meet as indicated below. DATES: On June 20, 2013, the Twin Falls District RAC members will meet at the...

  7. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Idaho Falls, ID)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from the Museum of Idaho, in Idaho Falls.

  8. 75 FR 82004 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory...--Radioactive Waste Management. Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the...

  9. 78 FR 12747 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... Management System Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the attendance of...

  10. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  11. 75 FR 35832 - Notice of Public Tour and Meeting, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... of Public Tour and Meeting, Twin Falls District Resource Advisory Council, Idaho AGENCY: Bureau of... Land Management (BLM) Twin Falls District Resource Advisory Council (RAC) will attend a two-day tour and meeting as indicated below. DATES: July 20-21, 2010. The Twin Falls District RAC members will meet...

  12. 76 FR 68179 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... November 14, 2011, of the Environmental Management Site-Specific Advisory Board, Idaho National Laboratory...: Robert L. Pence, Federal Coordinator, Department of Energy, Idaho Operations Office, 1955 Fremont Avenue...

  13. Thickness of surficial sediment at and near the Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.R.; Liszewski, M.J.; Ackerman, D.J.

    1996-06-01

    Thickness of surficial sediment was determined from natural-gamma logs in 333 wells at and near the Idaho National Engineering Laboratory in eastern Idaho to provide reconnaissance data for future site-characterization studies. Surficial sediment, which is defined as the unconsolidated clay, silt, sand, and gravel that overlie the uppermost basalt flow at each well, ranges in thickness from 0 feet in seven wells drilled through basalt outcrops east of the Idaho Chemical Processing Plant to 313 feet in well Site 14 southeast of the Big Lost River sinks. Surficial sediment includes alluvial, lacustrine, eolian, and colluvial deposits that generally accumulated duringmore » the past 200 thousand years. Additional thickness data, not included in this report, are available from numerous auger holes and foundation borings at and near most facilities.« less

  14. 75 FR 56527 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Coeur d'Alene Resort, 115 South Second Street, Coeur d'Alene, Idaho...

  15. 78 FR 79479 - Notice of Public Meeting, Idaho Falls District Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ...In accordance with the Federal Land Policy and Management Act (FLPMA) and the Federal Advisory Committee Act of 1972 (FACA), the U.S. Department of the Interior, Bureau of Land Management (BLM) Idaho Falls District Resource Advisory Council (RAC), will meet as indicated below.

  16. Radionuclides in ground water at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Knobel, LeRoy L.; Mann, Larry J.

    1988-01-01

    Sampling for radionuclides in groundwater was conducted at the Idaho National Engineering Laboratory during September to November 5 1987. Water samples from 80 wells that obtain water from the Snake River Plain aquifer and 1 well that obtains water from a shallow, discontinuous perched-water body at the Radioactive Waste Management Complex were collected and analyzed for tritium, strontium-90, plutonium-238, plutonium-239, -240 (undivided), americium-241, cesium-137, cobalt-60, and potassium-40--a naturally occurring radionuclide. The groundwater samples were analyzed at the Idaho National Engineering Laboratory in Idaho. Tritium and strontium-90 concentrations ranged from below the reporting level to 80.6 +/-0.000005 and 193 +/-5x10 to the minus eight micrograms Ci/ml, respectively. Water from a disposal well at Test Area North--which has not been used to dispose of waste water since September 1972--contained 122 +/-9x10 to the minus eleven micrograms Ci/ml of plutonium-238, 500 +/-20x10 to the minus eleven of plutonium-239, -240 (undivided), 21 +/-4x10 to the minus eleven micrograms Ci/ml of americium-241, and 750 +/-20x10 to the minus eight micrograms Ci/ml cesium-137; the presence of these radionuclides was verified by resampling and reanalysis. The disposal well had 8.9 +/-0.0000009 micrograms Ci/ml of cobalt-60 on October 28, 1987, but cobalt-60 was not detected when the well was resampled on January 11, 1988. Potassium-40 concentrations were less than the reporting level in all wells. (USGS)

  17. Insects of the Idaho National Laboratory: A compilation and review

    Treesearch

    Nancy Hampton

    2005-01-01

    Large tracts of important sagebrush (Artemisia L.) habitat in southeastern Idaho, including thousands of acres at the Idaho National Laboratory (INL), continue to be lost and degraded through wildland fire and other disturbances. The roles of most insects in sagebrush ecosystems are not well understood, and the effects of habitat loss and alteration...

  18. 76 FR 28024 - Swan Falls Hydroelectric Project, Idaho Power Company; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 503-048-ID] Swan Falls Hydroelectric Project, Idaho Power Company; Notice of Teleconference a. Date and Time of Meeting: Tuesday, May 24, 2011 at 10 a.m. (Mountain Time). b. Place: By copy of this notice we are inviting all interested...

  19. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Laboratory to the Hagerman Area, Idaho, 2003

    USGS Publications Warehouse

    Rattray, Gordon W.; Wehnke, Amy J.; Hall, L. Flint; Campbell, Linford J.

    2005-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled water from 14 sites as part of an ongoing study to monitor the water quality of the eastern Snake River Plain aquifer between the southern boundary of the Idaho National Laboratory (INL) and the Burley-Twin Falls-Hagerman area. The State of Idaho, Department of Environmental Quality, Division of INL Oversight and Radiation Control cosampled with the U.S. Geological Survey and the Idaho Department of Water Resources and their analytical results are included in this report. The samples were collected from four domestic wells, two dairy wells, two springs, four irrigation wells, one observation well, and one stock well and analyzed for selected radiochemical and chemical constituents. Two quality-assurance samples, sequential replicates, also were collected and analyzed. None of the concentrations of radiochemical or organic-chemical constituents exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. However, the concentration of one inorganic-chemical constituent, nitrate (as nitrogen), in water from site MV-43 was 20 milligrams per liter which exceeded the maximum contaminant level for that constituent. Of the radiochemical and chemical concentrations analyzed for in the replicate-sample pairs, 267 of the 270 pairs (with 95 percent confidence) were statistically equivalent.

  20. 98. SHOESTRING, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. SHOESTRING, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST OF MURTAUGH, IDAHO; PROFILE VIEW, SOUTH. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  1. Workplace slip, trip and fall injuries and obesity.

    PubMed

    Koepp, Gabriel A; Snedden, Bradley J; Levine, James A

    2015-01-01

    The objective of this study was to examine the relationship between slip, trip and fall injuries and obesity in a population of workers at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. INL is an applied engineering facility dedicated to supporting the US Department of Energy's mission. An analysis was performed on injuries reported to the INL Medical Clinic to determine whether obesity was related to an increase in slip, trip and fall injuries. Records were analysed that spanned a 6-year period (2005-2010), and included 8581 employees (mean age, 47 ± 11 years and body mass index [BMI], 29 ± 5 kg/m(2); 34% obesity rate). Of the 189 people who reported slip, trip and fall injuries (mean age, 48 ± 11 years), 51% were obese (P < 0.001 compared with uninjured employees), and their mean BMI was 31 ± 6 kg/m(2) (P < 0.001). Obesity in this population was associated with a greater rate of slip, trip and fall injuries.

  2. 147. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    147. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, IDAHO; VIEW OF MAIN HEADGATES, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  3. 77 FR 65374 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... management in the areas of environmental restoration, waste management, and related activities. Tentative...

  4. 97. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST OF MURTAUGH, IDAHO; OVERALL WEST VIEW FROM CANAL SIDE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Todd Randall; Wright, Virginia Latta

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  6. 76 FR 39080 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  7. 141. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    141. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER, IDAHO; CLOSE-UP OF MAIN HEADGATES, RADIAL GATES INSIDE, SOUTHEAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. 99. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. POINT SPILL, TWIN FALLS MAIN CANAL, TWIN FALLS COUNTY NORTHWEST OF MURTAUGH, IDAHO; CLOSE-UP OF OUTLET SIDE OF GATES, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. U.S. Geological Survey geohydrologic studies and monitoring at the Idaho National Laboratory, southeastern Idaho

    USGS Publications Warehouse

    Bartholomay, Roy C.

    2017-09-14

    BackgroundThe U.S. Geological Survey (USGS) geohydrologic studies and monitoring at the Idaho National Laboratory (INL) is an ongoing, long-term program. This program, which began in 1949, includes hydrologic monitoring networks and investigative studies that describe the effects of waste disposal on water contained in the eastern Snake River Plain (ESRP) aquifer and the availability of water for long-term consumptive and industrial use. Interpretive reports documenting study findings are available to the U.S. Department of Energy (DOE) and its contractors; other Federal, State, and local agencies; private firms; and the public at https://id.water.usgs.gov/INL/Pubs/index.html. Information contained within these reports is crucial to the management and use of the aquifer by the INL and the State of Idaho. USGS geohydrologic studies and monitoring are done in cooperation with the DOE Idaho Operations Office.

  10. CHARACTER AND REGIONAL SIGNIFICANCE OF GREAT FALLS TECTONIC ZONE, EAST-CENTRAL IDAHO AND WEST-CENTRAL MONTANA.

    USGS Publications Warehouse

    O'Neill, J. Michael; Lopez, David A.

    1985-01-01

    The Great Falls tectonic zone, here named, is a belt of diverse northeast-trending geologic features that can be traced from the Idaho batholith in the Cordilleran miogeocline, across thrust-belt structures and basement rocks of west-central and southwestern Montana, through cratonic rocks of central Montana, and into southwestern-most Saskatchewan, Canada. Geologic mapping in east-central Idaho and west-central Montana has outlined a continuous zone of high-angle faults and shear zones. Recurrent fault movement in this zone and strong structural control over igneous intrusion suggest a fundamental tectonic feature that has influenced the tectonic development of the Idaho-Montana area from a least middle Proterozoic time to the present. Refs.

  11. Purgeable organic compounds at or near the Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, Idaho, 2015

    USGS Publications Warehouse

    Maimer, Neil V.; Bartholomay, Roy C.

    2016-05-25

    During 2015, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected groundwater samples from 31 wells at or near the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory for purgeable organic compounds (POCs). The samples were collected and analyzed for the purpose of evaluating whether purge water from wells located inside an areal polygon established downgradient of the INTEC must be treated as a Resource Conservation and Recovery Act listed waste.POC concentrations in water samples from 29 of 31 wells completed in the eastern Snake River Plain aquifer were greater than their detection limit, determined from detection and quantitation calculation software, for at least one to four POCs. Of the 29 wells with concentrations greater than their detection limits, only 20 had concentrations greater than the laboratory reporting limit as calculated with detection and quantitation calculation software. None of the concentrations exceeded any maximum contaminant levels established for public drinking water supplies. Most commonly detected compounds were 1,1,1-trichoroethane, 1,1-dichloroethene, and trichloroethene.

  12. After Action Report: Idaho National Laboratory Annual Exercise June 10, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Vernon Scott

    On June 10, 2015, Idaho National Laboratory (INL), in coordination with the State of Idaho, local jurisdictions, Department of Energy Idaho Operations Office (DOE-ID), and DOE Headquarters (DOE HQ), conducted the annual emergency exercise to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.” The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with other INL contractors, conducted operations and demonstrated appropriate response measures to mitigate an event and protect the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures.

  13. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth A.

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  14. Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K

    2002-07-01

    In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The Highmore » Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.« less

  15. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, J.S.

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  16. 75 FR 8645 - South Central Idaho Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Central Idaho Resource Advisory Council AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The South Central Idaho RAC will meet in Twin Falls, Idaho. The committee is meeting as authorized... Springs Hotel, 1357 Blue Lakes Blvd. North, Twin Falls, Idaho 83301. Written comments should be sent to...

  17. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  18. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Carl J.

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  19. 2014 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 23)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This 2014 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 23) provides water use information for production and potable water wells at the Idaho National Laboratory for Calendar Year 2014. It also provides detailed information for new, modified, and decommissioned wells and holes. One new well was drilled and completed in Calendar Year 2014. No modifications were performed on any wells. No wells were decommissioned in Calendar Year 2014. Detailed construction information and a location map for the new well is provided. This report is being submitted in accordance with the Water Rights Agreement between the Statemore » of Idaho and the United States, for the United States Department of Energy (dated 1990), the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003, and the Final Unified Decree issued August 26, 2014.« less

  20. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael F. Simpson

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  1. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  2. Mineralogy of selected sedimentary interbeds at or near the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Reed, Michael F.; Bartholomay, Roy C.

    1994-01-01

    The U.S. Geological Survey (USGS) Project Office at the Idaho National Engineering Laboratory (INEL), in cooperation with the U.S. Department of Energy and Idaho State University, analyzed 66 samples from sedimentary interbed cores during a 38-month period beginning in October 1990 to determine bulk and clay mineralogy. These cores had been collected from 19 sites in the Big Lost River Basin, 2 sites in the Birch Creek Basin, and 1 site in the Mud Lake Basin, and were archived at the USGS lithologic core library at the INEL. Mineralogy data indicate that the core samples from the Big Lost River Basin have larger mean and median percentages of quartz, total feldspar, and total clay minerals, but smaller mean and median percentages of calcite than the core samples from the Birch Creek Basin. Core samples from the Mud Lake Basin have abundant quartz, total feldspar, calcite, and total clay minerals.

  3. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and themore » results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).« less

  4. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and themore » results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).« less

  5. Potato-related research at USDA-ARS laboratories in Washington and Idaho

    USDA-ARS?s Scientific Manuscript database

    Potato-related research currently being conducted at three USDA-ARS laboratories in Idaho and Washington is reviewed. Objectives of research programs at the Temperate Tree Fruit & Vegetable Research Unit (Wapato, WA), the Irrigated Agriculture Research and Extension Center (Prosser, WA), and the Sm...

  6. 75 FR 28595 - City of Idaho Falls; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2842-041] City of Idaho Falls; Notice of Application for Amendment of License and Soliciting Comments, Motions To Intervene, and Protests May 14, 2010. a. Type of Application: Non-project use of project lands and waters. b. Project Number: 2842-041. c. Date Filed: August 3,...

  7. Chemistry Data for Geothermometry Mapping of Deep Hydrothermal Reservoirs in Southeastern Idaho

    DOE Data Explorer

    Earl Mattson

    2016-01-18

    This dataset includes chemistry of geothermal water samples of the Eastern Snake River Plain and surrounding area. The samples included in this dataset were collected during the springs and summers of 2014 and 2015. All chemical analysis of the samples were conducted in the Analytical Laboratory at the Center of Advanced Energy Studies in Idaho Falls, Idaho. This data set supersedes #425 submission and is the final submission for AOP 3.1.2.1 for INL. Isotopic data collected by Mark Conrad will be submitted in a separate file.

  8. 76 FR 18213 - Idaho Power; Notice of Availability of Land Management Plan Update for the Shoshone Falls Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2778-062] Idaho Power; Notice of Availability of Land Management Plan Update for the Shoshone Falls Project and Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the Commission and is available...

  9. 76 FR 18214 - Idaho Power; Notice of Availability of Land Management Plan Update for the Shoshone Falls Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2055-087] Idaho Power; Notice of Availability of Land Management Plan Update for the Shoshone Falls Project and Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the Commission and is available...

  10. 148. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    148. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER DAM; HEADGATES AT INLET, SOUTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  11. Map showing geologic terranes of the Hailey 1 degree x 2 degrees quadrangle and the western part of the Idaho Falls 1 degree x 2 degrees quadrangle, south-central Idaho

    USGS Publications Warehouse

    Worl, R.G.; Johnson, K.M.

    1995-01-01

    The paper version of Map Showing Geologic Terranes of the Hailey 1x2 Quadrangle and the western part of the Idaho Falls 1x2 Quadrangle, south-central Idaho was compiled by Ron Worl and Kate Johnson in 1995. The plate was compiled on a 1:250,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a geographic information system database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  12. Changes in groundwater quality and agriculture in forty years on the Twin Falls irrigation tract in southern Idaho

    USDA-ARS?s Scientific Manuscript database

    Better understanding agriculture’s effect on shallow groundwater quality is needed on the southern Idaho, Twin Falls irrigation tract. In 1999 and 2002-2007 we resampled 10 of the 15 tunnel drains monitored in a late-1960s study to determine the influence of time on NO3-N, dissolved reactive P (DRP)...

  13. Climate Change Vulnerability Assessment for Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure)more » revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.« less

  14. 149. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    149. TWIN FALLS MAIN CANAL DIVERSION, TWIN FALLS COUNTY, MILNER DAM; CLOSE-UP OF MAIN CANAL GATES, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  15. Development of property-transfer models for estimating the hydraulic properties of deep sediments at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Winfield, Kari A.

    2005-01-01

    Because characterizing the unsaturated hydraulic properties of sediments over large areas or depths is costly and time consuming, development of models that predict these properties from more easily measured bulk-physical properties is desirable. At the Idaho National Engineering and Environmental Laboratory, the unsaturated zone is composed of thick basalt flow sequences interbedded with thinner sedimentary layers. Determining the unsaturated hydraulic properties of sedimentary layers is one step in understanding water flow and solute transport processes through this complex unsaturated system. Multiple linear regression was used to construct simple property-transfer models for estimating the water-retention curve and saturated hydraulic conductivity of deep sediments at the Idaho National Engineering and Environmental Laboratory. The regression models were developed from 109 core sample subsets with laboratory measurements of hydraulic and bulk-physical properties. The core samples were collected at depths of 9 to 175 meters at two facilities within the southwestern portion of the Idaho National Engineering and Environmental Laboratory-the Radioactive Waste Management Complex, and the Vadose Zone Research Park southwest of the Idaho Nuclear Technology and Engineering Center. Four regression models were developed using bulk-physical property measurements (bulk density, particle density, and particle size) as the potential explanatory variables. Three representations of the particle-size distribution were compared: (1) textural-class percentages (gravel, sand, silt, and clay), (2) geometric statistics (mean and standard deviation), and (3) graphical statistics (median and uniformity coefficient). The four response variables, estimated from linear combinations of the bulk-physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. For each core sample,values of each water-retention parameter were

  16. 78 FR 58294 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  17. 78 FR 30910 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  18. 77 FR 53192 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  19. Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Stoots; J O'Brien; T Cable

    The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising designmore » for both high power-to-weight fuel cell and electrolyzer applications.« less

  20. Idaho National Laboratory Quarterly Performance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INLmore » from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.« less

  1. Idaho National Laboratory Quarterly Occurrence Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions)more » identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).« less

  2. Subsurface information from eight wells drilled at the Idaho National Engineering Laboratory, southeastern Idaho

    USGS Publications Warehouse

    Goldstein, F.J.; Weight, W.D.

    1982-01-01

    The Idaho National Engineering Laboratory (INEL) covers about 890 square miles of the eastern Snake River Plain, in southeastern Idaho. The eastern Snake River Plain is a structural basin which has been filled with thin basaltic lava flows, rhyolitic deposits, and interbedded sediments. These rocks form an extensive ground-water reservoir known as the Snake River Plain aquifer. Six wells were drilled and two existing wells were deepened at the INEL from 1969 through 1974. Interpretation of data from the drilling program confirms that the subsurface is dominated by basalt flows interbedded with layers of sediment, cinders, and silicic volcanic rocks. Water levels in the wells show cyclic seasonal fluctuations of maximum water levels in winter and minimum water levels in mid-summer. Water levels in three wells near the Big Lost River respond to changes in recharge to the Snake River Plain aquifer from the Big Lost River. Measured water levels in multiple piezometers in one well indicate increasing pressure heads with depth. A marked decline in water levels in the wells since 1977 is attributed to a lack of recharge to the Snake River Plain aquifer.

  3. Digital geologic map of part of the Thompson Falls 1:100,000 quadrangle, Idaho

    USGS Publications Warehouse

    Lewis, Reed S.; Derkey, Pamela D.

    1999-01-01

    The geology of the Thompson Falls 1:100,000 quadrangle, Idaho was compiled by Reed S. Lewis in 1997 onto a 1:100,000-scale greenline mylar of the topographic base map for input into a geographic information system (GIS). The resulting digital geologic map GIS can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The map area is located in north Idaho. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the Arc/Info GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.

  4. Hydrologic conditions at the Idaho National Engineering Laboratory, Idaho, emphasis; 1974-1978

    USGS Publications Warehouse

    Barraclough, Jack T.; Lewis, Barney D.; Jensen, Rodger G.

    1981-01-01

    Aqueous chemical and radioactive wastes have been discharged to shallow ponds and to shallow or deep wells on the Idaho National Engineering Laboratory (INEL) since 1952 and has affected the quality of the ground water in the underlying Snake River Plain aquifer. Ongoing studies conducted from 1974 through 1978 have shown the perpetuation of a perched ground-water zone in the basalt underlying the waste disposal ponds at the INEL 's Test Reactor Area and of several waste plumes in the regional aquifer created by deep well disposal at the Idaho Chemical Processing Plant (ICPP). The perched zone contains tritium, chromium-51, cobalt-60, strontium-90, and several nonradioactive chemicals. Tritium has formed the largest waste plume south of the ICPP, and accounts for 95 percent of the total radioacticity disposed of through the ICPP disposal well. Waste plumes with similar configurations and flowpaths contain sodium, chloride, and nitrate. Strontium-90, iodine-129, and cesium-137 are also discharged through the well but they are sorbed from solution as they move through the aquifer or are discharged in very small quantities. Strontium-90 and iodine-129 have formed small waste plumes and cesium-137 is not detectable in ground-water samples. Radionuclide plume size and concentrations therein are controlled by aquifer flow conditions, the quantity discharged, radioactive decay, sorption, dilution by dispersion, and perhaps other chemical reactions. Chemical wastes are subject to the same processes except for radioactive decay. (USGS)

  5. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  6. 193. Photocopy of Photograph, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    193. Photocopy of Photograph, Twin Falls Canal Company, date unknown. MILNER DAM PROFILE, TWIN FALLS COUNTY, MILNER, IDAHO; BLUEPRINT. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 191. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    191. Photocopy of drawing, Twin Falls Canal Company, date unknown. SPILLWAY GATES, MILNER DAM, TWIN FALLS COUNTY, MILNER, IDAHO; BLUEPRINT. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. 127. COTTONWOOD CUT AREA, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    127. COTTONWOOD CUT AREA, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; NORTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. 75 FR 53964 - Idaho Power Company, Idaho; Notice of Availability of Final Environmental Impact Statement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 503-048] Idaho Power Company, Idaho; Notice of Availability of Final Environmental Impact Statement for the Swan Falls Project August 26, 2010. In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission or FERC'...

  10. 75 FR 12230 - Idaho Power Company, Idaho; Notice of Availability of Draft Environmental Impact Statement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 503-048] Idaho Power Company, Idaho; Notice of Availability of Draft Environmental Impact Statement for the Swan Falls Project March 5, 2010. In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission or FERC's)...

  11. Idaho Transportation Department 2009 customer satisfaction survey.

    DOT National Transportation Integrated Search

    2010-02-01

    In the summer and fall of 2009, the Idaho Transportation Department (ITD) commissioned a statewide customer satisfaction survey of Idaho residents in order to assess the overall level of satisfaction with several key areas of service provided by the ...

  12. 108. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    108. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; OVERALL VIEW SOUTH. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  13. 185. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    185. Photocopy of drawing, Twin Falls Canal Company, date unknown. MILNER DAM CROSS SECTION PLAN, TWIN FALLS COUNTY, MILNER, IDAHO; BLUEPRINT. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  14. 195. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    195. Photocopy of drawing, Twin Falls Canal Company, date unknown. PLAN OF CONSTRUCTION AREA PLANT, TWIN FALLS COUNTY, MILNER, IDAHO; BLUEPRINT. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  15. 137. TWIN FALLS SOUTH SIDE MAIN CANAL DIVERSION HEADGATES, TWIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    137. TWIN FALLS SOUTH SIDE MAIN CANAL DIVERSION HEADGATES, TWIN FALLS COUNTY, MILNER, IDAHO; OVERALL VIEW OF MAIN HEADGATES, DAM IN BACKGROUND. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  16. 190. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    190. Photocopy of drawing, Twin Falls Canal Company, date unknown. GENERAL PLAN OF MILNER DAM TUNNELS, TWIN FALLS COUNTY, MILNER, IDAHO; BLUEPRINT. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  17. 125. COTTONWOOD CUT AREA, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. COTTONWOOD CUT AREA, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; SOUTH VIEW OF CANAL. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  18. 100. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; SOUTH VIEW OF HEADGATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  19. The status of soil mapping for the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, G.L.; Lee, R.D.; Jeppesen, D.J.

    This report discusses the production of a revised version of the general soil map of the 2304-km{sup 2} (890-mi{sup 2}) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presentedmore » on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information.« less

  20. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), whichmore » identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements

  1. 189. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    189. Photocopy of drawing, Twin Falls Canal Company, date unknown. ROCK CREEK CROSSING, LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; BLUEPRINT. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  2. 182. Photocopy of Photograph, Twin Falls Canal Company. Photographer and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    182. Photocopy of Photograph, Twin Falls Canal Company. Photographer and date unknown. MILNER DAM TUNNELS, TWIN FALLS COUNTY, MILNER, IDAHO; APPROACH TO TUNNELS. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  3. 187. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    187. Photocopy of drawing, Twin Falls Canal Company, date unknown. TOPOGRAPHICAL MAP OF MILNER DAM LOCATION, TWIN FALLS COUNTY, MILNER, IDAHO; BLUEPRINT MAP. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  4. 121. MCMULLEN CREEK DRAW, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. MCMULLEN CREEK DRAW, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; OUTLET SIDE OF CREEK, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. 103. DRY CREEK SPILL, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. DRY CREEK SPILL, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; INLET SIDE TO DRY CREEK, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. 109. CEDAR DRAW SPILL, LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    109. CEDAR DRAW SPILL, LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF FILER, IDAHO; OVERALL VIEW LOOKING WEST. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 104. DRY CREEK OUTLET (SPILL), TWIN FALLS COUNTY, SOUTH OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    104. DRY CREEK OUTLET (SPILL), TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; OUTLET FOR MURTAUGH LAKE, SOUTHEAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. 129. COTTONWOOD CREEK SIPHON, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    129. COTTONWOOD CREEK SIPHON, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; OUTLET SIDE OF SIPHON UNDER CANAL. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. 95. CEDAR DRAW SPILL, LOW LINE CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. CEDAR DRAW SPILL, LOW LINE CANAL, TWIN FALLS COUNTY SOUTH OF FILER, IDAHO; OVERALL VIEW LOOKING EAST. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  10. 110. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; INLET SIDE WEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  11. 119. COTTONWOOD CREEK SIPHON, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    119. COTTONWOOD CREEK SIPHON, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; INLET SIDE OF COTTONWOOD CREEK, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  12. 90. CEDAR DRAW SPILL, HIGH LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. CEDAR DRAW SPILL, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH OF FILER, IDAHO; CLOSE-UP OF GATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  13. 112. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OUTLET SIDE, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  14. 93. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY SOUTH OF KIMBERLY, IDAHO; OVERALL NORTHEAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  15. 102. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. MURTAUGH LAKE HEADGATES, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; LAKE SIDE OF HEADGATES, NORTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  16. 124. MCMULLEN CREEK HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    124. MCMULLEN CREEK HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; OVERALL SOUTH VIEW OF DRAW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  17. 194. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    194. Photocopy of drawing, Twin Falls Canal Company, date unknown. PROFILE AND GATE PLAN, NORTH ISLAND CROSS SECTION OF DAM, TWIN FALLS COUNTY, MILNER, IDAHO; BLUEPRINT. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  18. 150. Photocopy of drawing (taken from Twin Falls Canal Company ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    150. Photocopy of drawing (taken from Twin Falls Canal Company Surveyor's Book #363, Page 42, entitled, 'Diversion Tunnels', located in Twin Falls Canal Company office, Twin Falls, Idaho). PLAN OF DIVERSION TUNNELS, MILNER DAM. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  19. 126. COTTONWOOD CREEK SIPHON, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    126. COTTONWOOD CREEK SIPHON, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; CLOSE-UP OF OUTLET SIDE OF SIPHON, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  20. 88. CEDAR DRAW SPILL, HIGH LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    88. CEDAR DRAW SPILL, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH OF FILER, IDAHO; WEST VIEW OF CANAL AND GATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  1. 120. COTTONWOOD CUT AREA, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. COTTONWOOD CUT AREA, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; OVERALL VIEW OF THE COTTONWOOD CREEK DRAW, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  2. 114. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OVERALL VIEW, WEST OF INLET SIDE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  3. 117. COTTONWOOD CREEK SPILL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. COTTONWOOD CREEK SPILL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; CLOSE-UP OF OUTLET SIDE OF SPILL, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  4. 111. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OVERALL VIEW OF SIPHON, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. 91. CEDAR DRAW SPILL, HIGH LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. CEDAR DRAW SPILL, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH OF FILER, IDAHO; NORTHEAST VIEW OF CANAL AND GATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. 106. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; CLOSE-UP OF GATES, NORTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 101. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; NORTHEAST VIEW OF DRY CREEK OUTLET. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. 118. COTTONWOOD CREEK SPILL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    118. COTTONWOOD CREEK SPILL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; WEST VIEW OF GATES ON HIGH LINE CANAL. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. 89. CEDAR DRAW SPILL, HIGH LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. CEDAR DRAW SPILL, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH OF FILER, IDAHO; OUTLET SIDE OF CANAL, SOUTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  10. 152. Photocopy of drawing (taken from Twin Falls Canal Company ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    152. Photocopy of drawing (taken from Twin Falls Canal Company Surveyor's Transit Book #363, Page 1). 1912 CONDITION REPORT OF MILNER DAM AREA, TWIN FALLS COUNTY, MILNER, IDAHO. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  11. 183. Photocopy of map (Twin Falls Canal Company). TOPOGRAPHICAL MAP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    183. Photocopy of map (Twin Falls Canal Company). TOPOGRAPHICAL MAP OF MILNER DAM SITE, TWIN FALLS COUNTY, MILNER, IDAHO; MAP, LEFT SIDE ONLY. CROSS REFERENCE: ID-15-192. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  12. 115. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; WEST VIEW OF SIPHON CROSSING ROCK CREEK. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  13. 96. CEDAR DRAW SPILL, LOW LINE CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    96. CEDAR DRAW SPILL, LOW LINE CANAL, TWIN FALLS COUNTY SOUTH OF FILER, IDAHO; OUTLET SIDE OF CEDAR DRAW, WEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  14. 94. CEDAR DRAW SPILL, LOW LINE CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. CEDAR DRAW SPILL, LOW LINE CANAL, TWIN FALLS COUNTY SOUTH OF FILER, IDAHO; CLOSE-UP OF GATES FROM THE CANAL SIDE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  15. 158. Photocopy of transit book (taken from Twin Falls Canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    158. Photocopy of transit book (taken from Twin Falls Canal Company Transit Book #404T, Page 3, #46, Division One). START OF MAIN CANAL SURVEY, TWIN FALLS COUNTY, MILNER, IDAHO. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  16. 178. Photocopy of Photograph, Twin Falls Canal Company. C. R. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    178. Photocopy of Photograph, Twin Falls Canal Company. C. R. Savage, Photographer, March, 1905. FIRST FULL WATER OVER MILNER DAM, TWIN FALLS COUNTY, MILNER, IDAHO; SOUTHWEST VIEW OF SPILLWAY GATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  17. 113. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; CLOSE-UP OF INLET SIDE OF SIPHON, NORTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  18. 116. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; CLOSE-UP OF OUTLET, DIVERSION SPILL IN BACKGROUND, WEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  19. 123. MCMULLEN CREEK, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. MCMULLEN CREEK, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; SOUTH VIEW OF THE CREEK EMPTYING INTO THE HIGH LINE CANAL. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  20. 92. CEDAR DRAW SPILL, HIGH LINE CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. CEDAR DRAW SPILL, HIGH LINE CANAL, TWIN FALLS COUNTY SOUTH OF FILER, IDAHO; CLOSE-UP OF OUTLET SIDE OF GATES, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  1. 157. Photocopy of drawing (taken from Twin Falls Canal Company ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    157. Photocopy of drawing (taken from Twin Falls Canal Company Field Book #360, Page 75, entitled, 'Clay-Seam Cut-Off.' Cross-Reference: ID-15-153). MILNER DAM SURVEY, TWIN FALLS COUNTY, MILNER, IDAHO. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  2. 151. Photocopy of drawing (taken from Twin Falls Canal Company ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    151. Photocopy of drawing (taken from Twin Falls Canal Company Surveyor's Transit Book #363, Page 20). SURVEY PRINT SHOWING POINT SPILLWAY AND FIELD NOTES, TWIN FALLS COUNTY NORTHWEST OF MURTAUGH, IDAHO. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  3. 153. Photocopy of drawing (taken from Twin Falls Canal Company ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    153. Photocopy of drawing (taken from Twin Falls Canal Company Field Book #360, Page 74, entitled, 'Clay-Seam Cut-Off.' Cross-Reference: ID-15-157). MILNER DAM SURVEY, TWIN FALLS COUNTY, MILNER, IDAHO. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  4. 155. Photocopy of transit book (taken from Twin Falls Canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    155. Photocopy of transit book (taken from Twin Falls Canal Company Surveyor's Transit Book #405T, Page 1, #46 Division One). STATEMENT RE: SURVEY ALIGNMENT 3/03, TWIN FALLS COUNTY, MILNER, IDAHO. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. 192. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    192. Photocopy of drawing, Twin Falls Canal Company, date unknown. TOPOGRAPHICAL MAP (DAM DRAWN IN), MILNER SITE, TWIN FALLS COUNTY, MILNER, IDAHO; RIGHT SIDE OF MAP (LEFT ON ID-15-183). - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. 177. Photocopy of Photograph, Twin Falls Canal Company, Bisbee Photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    177. Photocopy of Photograph, Twin Falls Canal Company, Bisbee Photo, September, 1912. Photographer unknown. COTTONWOOD FLUME, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; SOUTH VIEW FROM UPPER SIDE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  8. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  9. 154. Photocopy of transit book (taken from Twin Falls Canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    154. Photocopy of transit book (taken from Twin Falls Canal Company Surveyor's Transit Book #405T, Page 2, #46 Division One). STATEMENT OF SIGHT-SETTING FOR 1903 SURVEY TO ALIGN SOUTH SIDE CANAL, TWIN FALLS COUNTY, MILNER, IDAHO. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  10. Chlorofluorocarbons, sulfur hexafluoride, and dissolved permanent gases in ground water from selected sites in and near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994-97

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, Niel; Bartholomay, Roy C.; Wayland, Julian E.

    1998-01-01

    From July 1994 through May 1997, the U.S. Geological Survey in cooperation with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho N ationa1 Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11) and trichlorotrifluororoethane (CFC-113) were determined. The samples for halocarbon analysis were collected in 62-milliliter flame sealed borosilicate glass ampoules in the field. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

  11. Chemical, isotopic, and dissolved gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, W. E.; Parliman, D.J.

    1991-01-01

    The chemical, isotopic, and gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho, change systematically as the water moves northward from the Idaho-Nevada boundary toward the Snake River. Sodium, chloride, fluoride, alkalinity, dissolved helium, and carbon-13 increase as calcium and carbon-14 decrease. Water-rock reactions may result in dissolution of plagioclase or volcanic glass and calcite, followed by precipitation of zeolites and clays. On the basis of carbon-14 age dating, apparent water ages range from 2,000 to more than 26,000 years; most apparent ages range from about 4,000 to 10,000 years. The older waters, north of the Snake River, are isotopically depleted in deuterium and are enriched in chloride relative to waters to the south. Thermal waters flowing northward beneath the Snake River may join a westward flow of older thermal water slightly north of the river. The direction of flow in the hydrothermal system seems to parallel the surface drainage.

  12. Idaho National Laboratory Cultural Resource Management Annual Report FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton F. Marler; Julie Braun; Hollie Gilbert

    2007-04-01

    The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and nationalmore » history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.« less

  13. Idaho National Laboratory Cultural Resource Management Annual Report FY 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Braun; Hollie Gilbert; Dino Lowrey

    2008-03-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual reportmore » summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.« less

  14. High level waste tank closure project: ALARA applications at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Aitken, Steven B; Butler, Richard; Butterworth, Steven W; Quigley, Keith D

    2005-05-01

    Bechtel BWXT Idaho, Maintenance and Operating Contractor for the Department of Energy at the Idaho National Engineering and Environmental Laboratory, has emptied, cleaned, and sampled six of the eleven 1.135 x 10(6) L high level waste underground storage tanks at the Idaho Nuclear Technology and Engineering Center, well ahead of the State of Idaho Consent Order cleaning schedule. Cleaning of a seventh tank is expected to be complete by the end of calendar year 2004. The tanks, with associated vaults, valve boxes, and distribution systems, are being closed to meet Resource Conservation and Recovery Act regulations and Department of Energy orders. The use of remotely operated equipment placed in the tanks through existing tank riser access points, sampling methods and application of as-low-as-reasonably-achievable (ALARA) principles have proven effective in keeping personnel dose low during equipment removal, tank, vault, and valve box cleaning, and sampling activities, currently at 0.03 Sv.

  15. 2015 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2014–October 31, 2015. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019.

  16. Statistical summaries of streamflow data for selected gaging stations on and near the Idaho National Engineering Laboratory, Idaho, through September 1990

    USGS Publications Warehouse

    Stone, M.A.J.; Mann, Larry J.; Kjelstrom, L.C.

    1993-01-01

    Statistical summaries and graphs of streamflow data were prepared for 13 gaging stations with 5 or more years of continuous record on and near the Idaho National Engineering Laboratory. Statistical summaries of streamflow data for the Big and Little Lost Rivers and Birch Creek were analyzed as a requisite for a comprehensive evaluation of the potential for flooding of facilities at the Idaho National Engineering Laboratory. The type of statistical analyses performed depended on the length of streamflow record for a gaging station. Streamflow statistics generated for stations with 5 to 9 years of record were: (1) magnitudes of monthly and annual flows; (2) duration of daily mean flows; and (3) maximum, median, and minimum daily mean flows. Streamflow statistics generated for stations with 10 or more years of record were: (1) magnitudes of monthly and annual flows; (2) magnitudes and frequencies of daily low, high, instantaneous peak (flood frequency), and annual mean flows; (3) duration of daily mean flows; (4) exceedance probabilities of annual low, high, instantaneous peak, and mean annual flows; (5) maximum, median, and minimum daily mean flows; and (6) annual mean and mean annual flows.

  17. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  18. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  19. 75 FR 57266 - Idaho Power Company; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ...) is located on the Snake River in Gooding, Twin Falls and Elmore Counties, Idaho. The Lower Salmon Falls Project (P-2061) is located on the Snake River in Gooding and Twin Falls Counties, Idaho. Both.... Locations of the Application: A copy of the application is available for inspection and reproduction at the...

  20. Alternative Fuels Data Center: Idaho Transportation Data for Alternative

    Science.gov Websites

    the National Renewable Energy Laboratory Case Studies Video thumbnail for Idaho National Laboratory Operating Costs and Emissions May 16, 2014 Video thumbnail for Republic Services Reduces Waste with 87 CNG Videos on YouTube Video thumbnail for Idaho Surges Ahead with Electric Vehicle Charging Idaho Surges

  1. North Idaho E. coli Infections Linked to Raw Clover Sprouts > Idaho

    Science.gov Websites

    Stamps Nutrition Education Heating/Telephone Women, Infants and Children Nursing Home Cost Assistance WIC About WIC FAQs Contact Us Apply for WIC Vendor Health Partners Breastfeeding Staff Nutrition Education Livable Communities Idaho Physical Activity and Nutrition (IPAN) Fit and Fall Proof(tm) Nutrition Physical

  2. Field Methods and Quality-Assurance Plan for Quality-of-Water Activities, U.S. Geological Survey, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Knobel, LeRoy L.; Tucker, Betty J.; Rousseau, Joseph P.

    2008-01-01

    Water-quality activities conducted by the staff of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation's water resources. The activities are conducted in cooperation with the U.S. Department of Energy's (DOE) Idaho Operations Office. Results of the water-quality investigations are presented in various USGS publications or in refereed scientific journals. The results of the studies are highly regarded, and they are used with confidence by researchers, regulatory and managerial agencies, and interested civic groups. In its broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the 'state-of-the-art' technology, and quality assurance ensures that quality control is maintained within specified limits.

  3. Idaho National Laboratory Cultural Resource Management Office FY 2010 Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollie K. Gilbert; Clayton F. Marler; Christina L. Olson

    2011-09-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history.more » This report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2010. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders and to serve as a planning tool for future INL cultural resource management work.« less

  4. 1996 LMITCO environmental monitoring program report for the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and themore » environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends.« less

  5. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  6. Simulation of water-surface elevations for a hypothetical 100-year peak flow in Birch Creek at the Idaho National Engineering and Environmental Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenbrock, C.; Kjelstrom, L.C.

    1997-10-01

    Delineation of areas at the Idaho National Engineering and Environmental Laboratory that would be inundated by a 100-year peak flow in Birch Creek is needed by the US Department of Energy to fulfill flood-plain regulatory requirements. Birch Creek flows southward about 40 miles through an alluvium-filled valley onto the northern part of the Idaho National Engineering and Environmental laboratory site on the eastern Snake River Plain. The lower 10-mile reach of Birch Creek that ends in Birch Creek Playa near several Idaho National Engineering and Environmental Laboratory facilities is of particular concern. Twenty-six channel cross sections were surveyed to developmore » and apply a hydraulic model to simulate water-surface elevations for a hypothetical 100-year peak flow in Birch Creek. Model simulation of the 100-year peak flow (700 cubic feet per second) in reaches upstream from State Highway 22 indicated that flow was confined within channels even when all flow was routed to one channel. Where the highway crosses Birch Creek, about 315 cubic feet per second of water was estimated to move downstream--115 cubic feet per second through a culvert and 200 cubic feet per second over the highway. Simulated water-surface elevation at this crossing was 0.8 foot higher than the elevation of the highway. The remaining 385 cubic feet per second flowed southwestward in a trench along the north side of the highway. Flow also was simulated with the culvert removed. The exact location of flood boundaries on Birch Creek could not be determined because of the highly braided channel and the many anthropogenic features (such as the trench, highway, and diversion channels) in the study area that affect flood hydraulics and flow. Because flood boundaries could not be located exactly, only a generalized flood-prone map was developed.« less

  7. Biosafety Practices and Emergency Response at the Idaho National Laboratory and Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank F. Roberto; Dina M. Matz

    2008-03-01

    Strict federal regulations govern the possession, use, and transfer of pathogens and toxins with potential to cause harm to the public, either through accidental or deliberate means. Laboratories registered through either the Centers for Disease Control and Prevention (CDC), the U.S. Dept. of Agriculture (USDA), or both, must prepare biosafety, security, and incident response plans, conduct drills or exercises on an annual basis, and update plans accordingly. At the Idaho National Laboratory (INL), biosafety, laboratory, and emergency management staff have been working together for 2 years to satisfy federal and DOE/NNSA requirements. This has been done through the establishment ofmore » plans, training, tabletop and walk-through exercises and drills, and coordination with local and regional emergency response personnel. Responding to the release of infectious agents or toxins is challenging, but through familiarization with the nature of the hazardous biological substances or organisms, and integration with laboratory-wide emergency response procedures, credible scenarios are being used to evaluate our ability to protect workers, the public, and the environment from agents we must work with to provide for national biodefense.« less

  8. TRU waste absorbent addition project at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Colson, R Griff; Auman, Laurence E

    2003-08-01

    ABSTRACT In order to meet a commitment to ship 3,100 m3 of transuranic waste to the Waste Isolation Pilot Plant (WIPP), the Idaho National Engineering and Environmental Laboratory (INEEL) developed a process to add absorbent to TRU waste drums that did not meet WIPP waste acceptance criteria. The development, implementation, and safe completion of this project contributed to the INEEL's success in meeting the commitment three months early.

  9. Iodine-129 in the Snake River Plain aquifer at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Mann, L.J.; Chew, E.W.; Morton, J.S.; Randolph, R.B.

    1988-01-01

    From 1953 to 1983, an estimated 0.01 to 0.136 Ci (curies)/year of iodine-129 were contained in wastewater generated by the ICPP (Idaho Chemical Processing Plant) at the Idaho National Engineering Laboratory. The wastewater was directly discharged to the Snake River Plain aquifer through a deep disposal well until February 9, 1984, when the well was replaced by an unlined infiltration pond; a second pond was put into use on October 17, 1985. For 1984-86, the annual amount of iodine-129 in wastewater discharged to the ponds ranged from 0.0064 to 0.039 Ci. In August 1986, iodine-129 concentrations in water from 35 wells near the ICPP ranged from less than the reporting level to 3.6 +or-0.4 pCi/L (picocuries/L). By comparison, in April 1977 the water from 20 wells contained a maximum of 27 +or-1 pCi/L of iodine-129; in 1981, the maximum concentration in water from 32 wells was 41 +or-2 pCi/L. The average concentrations of iodine-129 in water from 18 wells that were sampled in 1977, 1981 and 1986 were 4.0, 6.7 and 1.3 pCi/L, respectively. The marked decrease in the iodine-129 concentration from 1981 to 1986 is the result of three factors: (1) The amount of iodine-129 disposed annually; (2) a change from the routine use of the disposal well to the infiltration ponds; and (3) a dilution of the iodine-129 in the aquifer by recharge from the Big Lost River. (USGS)

  10. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth A.

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  11. Selected quality assurance data for water samples collected by the US Geological Survey, Idaho National Engineering Laboratory, Idaho, 1980 to 1988

    USGS Publications Warehouse

    Wegner, S.J.

    1989-01-01

    Multiple water samples from 115 wells and 3 surface water sites were collected between 1980 and 1988 for the ongoing quality assurance program at the Idaho National Engineering Laboratory. The reported results from the six laboratories involved were analyzed for agreement using descriptive statistics. The constituents and properties included: tritium, plutonium-238, plutonium-239, -240 (undivided), strontium-90, americium-241, cesium-137, total dissolved chromium, selected dissolved trace metals, sodium, chloride, nitrate, selected purgeable organic compounds, and specific conductance. Agreement could not be calculated for purgeable organic compounds, trace metals, some nitrates and blank sample analyses because analytical uncertainties were not consistently reported. However, differences between results for most of these data were calculated. The blank samples were not analyzed for differences. The laboratory results analyzed using descriptive statistics showed a median agreement between all useable data pairs of 95%. (USGS)

  12. Idaho National Laboratory Cultural Resource Management Office FY 2011 Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Braun Williams; Brenda R. Pace; Hollie K. Gilbert

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history.more » This report is intended as a stand-alone document that summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2011. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders, serve as a planning tool for future INL cultural resource management work, and meet an agreed upon legal requirement.« less

  13. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, John S

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  14. Updated procedures for using drill cores and cuttings at the Lithologic Core Storage Library, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Davis, Linda C.; Bartholomay, Roy C.

    2018-01-30

    In 1990, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Laboratory (INL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from subsurface investigations conducted at the INL, and to provide a location for researchers to examine, sample, and test these materials.The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the corehole names, corehole locations, and depth intervals available.Most cores and cuttings stored at the facility were drilled at or near the INL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose most cores and cuttings, most of which are continuous from land surface to their total depth. The deepest continuously drilled core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers' responsibilities for access to the facility and for examination, sampling, and return of materials.

  15. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  16. The Idaho National Engineering Laboratory Site environmental report for calendar Year 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, D.L.; Mitchell, R.G.; Moore, R.

    1991-06-01

    The results of the various monitoring programs for 1990 indicate that most radioactivity from the Idaho National Engineering Laboratory (INEL) operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEL Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. The first section of the report summarizes Calendar Year 1990 and January 1 through April 1, 1991, INEL activities related to compliance with environmental regulations and laws. Themore » balance of the report describes the surveillance program, the collection of foodstuffs at the INEL boundary and distant offsite locations, and the collection of air and water samples at onsite locations and offsite boundary and distant locations. The report also compares and evaluates the sample results and discusses implications, if any. Nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) ground-water monitoring program are also summarized. 33 refs., 18 figs., 29 tabs.« less

  17. 76 FR 76684 - Idaho: Tentative Approval of State Underground Storage Tank Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    .... Skyline, Suite B, Idaho Falls, ID 83402 from 10 a.m. to 12 p.m. and 1 p.m. to 4 p.m.; and 6. IDEQ Lewiston... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 281 [EPA-R10-UST-2011-0896; FRL-9502-6] Idaho...). ACTION: Proposed rule. SUMMARY: The State of Idaho has applied for final approval of its Underground...

  18. Idaho National Laboratory Site Pollution Prevention Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Managementmore » System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is

  19. Chemical and radiochemical constituents in water from wells in the vicinity of the naval reactors facility, Idaho National Engineering and Environmental Laboratory, Idaho, 1997-98

    USGS Publications Warehouse

    Bartholomay, Roy C.; Knobel, LeRoy L.; Tucker, Betty J.; Twining, Brian V.

    2000-01-01

    The U.S. Geological Survey, in response to a request from the U.S. Department of Energy?s Phtsburgh Naval Reactors Ofilce, Idaho Branch Office, sampled water from 13 wells during 1997?98 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering and Environmental Laboratory, Idaho. Water samples were analyzed for naturally occurring constituents and man-made contaminants. A totalof91 samples were collected from the 13 monitoring wells. The routine samples contained detectable concentrations of total cations and dissolved anions, and nitrite plus nitrate as nitrogen. Most of the samples also had detectable concentrations of gross alpha- and gross beta-particle radioactivity and tritium. Fourteen qualityassurance samples also were collected and analyze~ seven were field-blank samples, and seven were replicate samples. Most of the field blank samples contained less than detectable concentrations of target constituents; however, some blank samples did contain detectable concentrations of calcium, magnesium, barium, copper, manganese, nickel, zinc, nitrite plus nitrate, total organic halogens, tritium, and selected volatile organic compounds.

  20. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Shakofsky, S.M.

    1995-01-01

    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semi-arid southeast region of Idaho. The soil samples were collected, using a hydraulically- driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is. by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.

  1. 77 FR 38276 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National... times prior to the meeting. ADDRESSES: Red Lion Hotel, 1555 Pocatello Creek Road, Pocatello, Idaho 83201...

  2. Geochemistry and stratigraphic correlation of basalt lavas beneath the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.

    1997-01-01

    Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.

  3. 26. DETAIL OF HEADGATE HOIST MACHINERY, TWIN FALLS MAIN CANAL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL OF HEADGATE HOIST MACHINERY, TWIN FALLS MAIN CANAL. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  4. 24. TWIN FALLS MAIN CANAL HEADWORKS, DOWNSTREAM LOOKING TOWARD THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. TWIN FALLS MAIN CANAL HEADWORKS, DOWNSTREAM LOOKING TOWARD THE EAST. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. 29. VIEW OF TWIN FALLS MAIN CANAL BRIDGE FROM UPSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. VIEW OF TWIN FALLS MAIN CANAL BRIDGE FROM UPSTREAM LOOKING DOWNSTREAM. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. 31. VIEW OF TWIN FALLS MAIN CANAL BRIDGE FROM DOWNSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF TWIN FALLS MAIN CANAL BRIDGE FROM DOWNSTREAM LOOKING UPSTREAM. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 30. VIEW OF TWIN FALLS MAIN CANAL FROM BRIDGE LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF TWIN FALLS MAIN CANAL FROM BRIDGE LOOKING WEST DOWNSTREAM. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe, Jeffrey .C; Boring, Ronald L.

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation andmore » control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.« less

  9. 22. TWIN FALLS MAIN CANAL HEADWORKS WITH MILNER DAM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. TWIN FALLS MAIN CANAL HEADWORKS WITH MILNER DAM IN DISTANCE; LOOKING EAST. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  10. 23. TWIN FALLS MAIN CANAL HEADWORKS WITH MILNER DAM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. TWIN FALLS MAIN CANAL HEADWORKS WITH MILNER DAM IN DISTANCE; LOOKING NORTHEAST. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  11. Effect of experimental technique on the determination of strontium distribution coefficients of a surficial sediment from the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Hemming, C.H.; Bunde, R.L.; Liszewski, M.J.; Rosentreter, J.J.; Welhan, J.

    1997-01-01

    The effect of experimental technique on strontium distribution coefficients (K(d)'s) was determined as part of an investigation of strontium geochemical transport properties of surficial sediment from the Idaho National Engineering Laboratory, Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experiments were conducted to quantify the effect of different experimental techniques on experimentally derived strontium K(d)'s at a fixed pH of 8.0. Combinations of three variables were investigated: method of sample agitation (rotating-mixer and shaker table), ratio of the mass-of-sediment to the volume-of-reaction-solution (1:2 and 1:20), and method of sediment preparation (crushed and non-crushed). Strontium K(d)'s ranged from 11 to 23 mlg-1 among all three experimental variables examined. Strontium K(d)'s were bimodally grouped around 12 and 21 mlg-1. Among the three experimental variables examined, the mass-to-volume ratio appeared to be the only one that could account for this bimodal distribution. The bimodal distribution of the derived strontium K(d)'s may occur because the two different mass-to-volume ratios represent different natural systems. The high mass-to-volume ratio of 1:2 models a natural system, such as an aquifer, in which there is an abundance of favorable sorption sites relative to the amount of strontium in solution. The low mass-to-volume ratio of 1:20 models a natural system, such as a stream, in which the relative amount of strontium in solution exceeds the favorable surface sorption site concentration. Except for low mass-to-volume ratios of non-crushed sediment using a rotating mixer, the method of agitation and sediment preparation appears to have little influence on derived strontium K(d)'s.The effect of experimental technique on strontium distribution coefficients (Kd's) was determined as part of an investigation of strontium geochemical

  12. Probable hydrologic effects of a hypothetical failure of Mackay Dam on the Big Lost River Valley from Mackay, Idaho to the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Druffel, Leroy; Stiltner, Gloria J.; Keefer, Thomas N.

    1979-01-01

    Mackay Dam is an irrigation reservoir on the Big Lost River, Idaho, approximately 7.2 kilometers northwest of Mackay, Idaho. Consequences of possible rupture of the dam have long concerned the residents of the river valley. The presence of reactors and of a management complex for nuclear wastes on the reservation of the Idaho National Engineering Laboratory (INEL), near the river , give additional cause for concern over the consequences of a rupture of Mackay Dam. The objective of this report is to calculate and route the flood wave resulting from the hypothetical failure of Mackay Dam downstream to the INEL. Both a full and a 50 percent partial breach of this dam are investigated. Two techniques are used to develop the dam-break model. The method of characteristics is used to propagate the shock wave after the dam fails. The linear implicit finite-difference solution is used to route the flood wave after the shock wave has dissipated. The time of travel of the flood wave, duration of flooding, and magnitude of the flood are determined for eight selected sites from Mackay Dam, Idaho, through the INEL diversion. At 4.2 kilometers above the INEL diversion, peak discharges of 1,550.2 and 1,275 cubic meters per second and peak flood elevations of 1,550.3 and 1,550.2 meters were calculated for the full and partial breach, respectively. Flood discharges and flood peaks were not compared for the area downstream of the diversion because of the lack of detailed flood plain geometry. (Kosco-USGS)

  13. 186. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    186. Photocopy of drawing, Twin Falls Canal Company, date unknown. DRY CREEK RESERVOIR, CASSIA COUNTY (NOW TWIN FALLS COUNTY); MAP. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  14. 181. Photocopy of Photograph, Twin Falls Canal Company. Photographer and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    181. Photocopy of Photograph, Twin Falls Canal Company. Photographer and date unknown. POINT SPILL, TWIN FALLS COUNTY; SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  15. 77 FR 39695 - Idaho Power Company; Notice of Availability of Draft Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 1975-102 and 2061-086] Idaho Power Company; Notice of Availability of Draft Environmental Assessment In accordance with the... Falls, and Elmore Counties, Idaho. Both projects occupy lands managed by the Bureau of Land Management...

  16. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    DOE PAGES

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; ...

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more » the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less

  17. Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.R.; Liszewski, M.J.

    1997-08-01

    The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile{sup 2} area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite dome. Stratigraphic units were identified and correlated using the data from numerous outcrops and 26 continuous cores and 328 natural-gamma logs available in December 1993. Basalt flows make up about 85% of the volume of deposits underlying the area.

  18. 27. VIEW OF TWIN FALLS MAIN CANAL HEADGATE WITH CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW OF TWIN FALLS MAIN CANAL HEADGATE WITH CANAL BRIDGE IN DISTANCE; LOOKING SOUTHWEST. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  19. 28. VIEW FROM IMMEDIATELY DOWNSTREAM OF TWIN FALLS MAIN CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW FROM IMMEDIATELY DOWNSTREAM OF TWIN FALLS MAIN CANAL HEADWORKS WITH CANAL BRIDGE IN DISTANCE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  20. 32. VIEW OF TWIN FALLS MAIN CANAL FROM VICINITY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW OF TWIN FALLS MAIN CANAL FROM VICINITY OF PROPOSED POWER CANAL, LOOKING UPSTREAM. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  1. 8. BRIDGEWORK PLANKING FROM EAST SIDE WITH TWIN FALLS MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. BRIDGEWORK PLANKING FROM EAST SIDE WITH TWIN FALLS MAIN CANAL HEADWORKS IN DISTANCE; LOOKING WEST. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  2. 2016 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cafferty, Kara Grace

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, Modification 1, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2015, through October 31, 2016.

  3. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  4. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  5. 188. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    188. Photocopy of drawing, Twin Falls Canal Company, date unknown. DETAILS OF GATE RAISING MECHANISM, NO COUNTY; BLUEPRINT. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. Idaho National Laboratory 2015-2023 Ten-Year Site Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Elizabeth Connell; Bill Buyers

    2013-09-01

    This Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of sustaining the INL infrastructure to meet the Department of Energy Office of Nuclear Energy (DOE-NE) mission: to promote nuclear power as a resource capable of making major contributions in meeting the nation’s energy supply, environmental and energy security needs. This TYSP provides the strategy for INL to accomplish its mission by: (1) linking R&D mission goals to core capabilities and infrastructure requirements; (2) establishing a ten-year end-state vision for INL facility complexes; (3) identifying and prioritizing infrastructure needs and capability gaps; (4)more » establishing maintenance and repair strategies that allow for sustainment of mission-critical (MC) facilities; and (5) applying sustainability principles to each decision and action. The TYSP serves as the infrastructure-planning baseline for INL; and, though budget formulation documents are informed by the TYSP, it is not itself a budget document.« less

  7. Evaluation of field sampling and preservation methods for strontium-90 in ground water at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Cecil, L.D.; Knobel, L.L.; Wegner, S.J.; Moore, L.L.

    1989-01-01

    Water from four wells completed in the Snake River Plain aquifer was sampled as part of the U.S. Geological Survey 's quality assurance program to evaluate the effect of filtration and preservation methods on strontium-90 concentrations in groundwater at the Idaho National Engineering Laboratory. Water from each well was filtered through either a 0.45-micrometer membrane or a 0.1-micrometer membrane filter; unfiltered samples also were collected. Two sets of filtered and two sets of unfiltered samples was preserved in the field with reagent-grade hydrochloric acid and the other set of samples was not acidified. For water from wells with strontium-90 concentrations at or above the reporting level, 94% or more of the strontium-90 is in true solution or in colloidal particles smaller than 0.1 micrometer. These results suggest that within-laboratory reproducibility for strontium-90 in groundwater at the INEL is not significantly affected by changes in filtration and preservation methods used for sample collections. (USGS)

  8. 197. Photocopy of drawing, Twin Falls, Canal Company, date unknown. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    197. Photocopy of drawing, Twin Falls, Canal Company, date unknown. GATE STEMS AND LIFTING DEVICES, NO COUNTY; BLUEPRINT SKETCHES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. Measurement of Sedimentary Interbed Hydraulic Properties and Their Hydrologic Influence near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory

    USGS Publications Warehouse

    Perkins, Kim S.

    2003-01-01

    Disposal of wastewater to unlined infiltration ponds near the Idaho Nuclear Technology and Engineering Center (INTEC), formerly known as the Idaho Chemical Processing Plant, at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the formation of perched water bodies in the unsaturated zone (Cecil and others, 1991). The unsaturated zone at INEEL comprises numerous basalt flows interbedded with thinner layers of coarse- to fine-grained sediments and perched ground-water zones exist at various depths associated with massive basalts, basalt-flow contacts, sedimentary interbeds, and sediment-basalt contacts. Perched ground water is believed to result from large infiltration events such as seasonal flow in the Big Lost River and wastewater discharge to infiltration ponds. Evidence from a large-scale tracer experiment conducted in 1999 near the Radioactive Waste Management Complex (RWMC), approximately 13 km from the INTEC, indicates that rapid lateral flow of perched water in the unsaturated zone may be an important factor in contaminant transport at the INEEL (Nimmo and others, 2002b). Because sedimentary interbeds, and possibly baked-zone alterations at sediment-basalt contacts (Cecil and other, 1991) play an important role in the generation of perched water it is important to assess the hydraulic properties of these units.

  10. 2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Areamore » Sewage Treatment plant.« less

  11. Field methods and quality-assurance plan for water-quality activities and water-level measurements, U.S. Geological Survey, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Bartholomay, Roy C.; Maimer, Neil V.; Wehnke, Amy J.

    2014-01-01

    Water-quality activities and water-level measurements by the personnel of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation’s water resources. The activities are carried out in cooperation with the U.S. Department of Energy (DOE) Idaho Operations Office. Results of the water-quality and hydraulic head investigations are presented in various USGS publications or in refereed scientific journals and the data are stored in the National Water Information System (NWIS) database. The results of the studies are used by researchers, regulatory and managerial agencies, and interested civic groups. In the broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the “state-of-the-art” technology, and quality assurance ensures that quality control is maintained within specified limits.

  12. 180. Photocopy of Photograph, Twin Falls Canal Company. E. Pettygro, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    180. Photocopy of Photograph, Twin Falls Canal Company. E. Pettygro, Photographer, date unknown. BLASTING TWIN FALLS CANAL, TWIN FALLS COUNTY; BLASTING COTTONWOOD AREA TO REPLACE FLUME BY RUNNING HIGH LINE THROUGH SOLID ROCK. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  13. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. V. Street

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection ofmore » public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.« less

  14. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, J.S.

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  15. 76 FR 10018 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... Idaho's 2015 Cleanup Vision Government Budget Cycle American Recovery and Reinvestment Act Idaho Cleanup.... The Deputy Designated Federal Officer is empowered to conduct the meeting in a fashion that will...

  16. 25. TWIN FALLS MAIN CANAL HEADWORKS FROM UPSTREAM LOOKING TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. TWIN FALLS MAIN CANAL HEADWORKS FROM UPSTREAM LOOKING TOWARD THE WEST (DAM-TENDER RICHARD CARL ADJUSTING THE GATES TO ALLOW 3400 CFS THROUGH). - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  17. 156. Photocopy of written record (taken from Twin Falls Canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    156. Photocopy of written record (taken from Twin Falls Canal Company, Low Line Book #1, pp.2,3). LOW LINE CONTRACTORS AND BORROW RECORD. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  18. Paleomagnetic correlation of surface and subsurface basaltic lava flows and flow groups in the southern part of the Idaho National Laboratory, Idaho, with paleomagnetic data tables for drill cores

    USGS Publications Warehouse

    Champion, Duane E.; Hodges, Mary K.V.; Davis, Linda C.; Lanphere, Marvin A.

    2011-01-01

    Paleomagnetic inclination and polarity studies have been conducted on thousands of subcore samples from 51 coreholes located at and near the Idaho National Laboratory. These studies are used to paleomagnetically characterize and correlate successive stratigraphic intervals in each corehole to similar depth intervals in adjacent coreholes. Paleomagnetic results from 83 surface paleomagnetic sites, within and near the INL, are used to correlate these buried lava flow groups to basaltic shield volcanoes still exposed on the surface of the eastern Snake River Plain. Sample handling and demagnetization protocols are described as well as the paleomagnetic data averaging process. Paleomagnetic inclination comparisons between coreholes located only kilometers apart show comparable stratigraphic successions of mean inclination values over tens of meters of depth. At greater distance between coreholes, comparable correlation of mean inclination values is less consistent because flow groups may be missing or additional flow groups may be present and found at different depth intervals. Two shallow intersecting cross-sections, A-A- and B-B- (oriented southwest-northeast and northwest-southeast, respectively), drawn through southwest Idaho National Laboratory coreholes show the corehole to corehole or surface to corehole correlations derived from the paleomagnetic inclination data. From stratigraphic top to bottom, key results included the (1) Quaking Aspen Butte flow group, which erupted from Quaking Aspen Butte southwest of the Idaho National Laboratory, flowed northeast, and has been found in the subsurface in corehole USGS 132; (2) Vent 5206 flow group, which erupted near the southwestern border of the Idaho National Laboratory, flowed north and east, and has been found in the subsurface in coreholes USGS 132, USGS 129, USGS 131, USGS 127, USGS 130, USGS 128, and STF-AQ-01; and (3) Mid Butte flow group, which erupted north of U.S. Highway 20, flowed northwest, and has been

  19. Compilation of Earthquakes from 1850-2007 within 200 miles of the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Seth Carpenter

    2010-07-01

    An updated earthquake compilation was created for the years 1850 through 2007 within 200 miles of the Idaho National Laboratory. To generate this compilation, earthquake catalogs were collected from several contributing sources and searched for redundant events using the search criteria established for this effort. For all sets of duplicate events, a preferred event was selected, largely based on epicenter-network proximity. All unique magnitude information for each event was added to the preferred event records and these records were used to create the compilation referred to as “INL1850-2007”.

  20. Effect of activities at the Idaho National Engineering and Environmental Laboratory on the water quality of the Snake River Plain aquifer in the Magic Valley study

    USGS Publications Warehouse

    Bartholomay, Roy C.

    1998-01-01

    Radiochemical and chemical constituents in wastewater generated at facilities of the Idaho National Engineering and Environmental Laboratory (INEEL) (figure 1) have been discharged to waste-disposal ponds and wells since the early 1950 s. Public concern has been expressed that some of these constituents could migrate through the Snake River Plain aquifer to the Snake River in the Twin Falls-Hagerman area Because of these concerns the U.S. Department of Energy (DOE) requested that the U.S. Geological Survey (USGS) conduct three studies to gain a greater understanding of the chemical quality of water in the aquifer. One study described a one-time sampling effort for radionuclides, trace elements, and organic compounds in the eastern part of the A&B Irrigation District in Minidoka County (Mann and Knobel, 1990). Another ongoing study involves sampling for tritium from 19 springs on the north side of the Snake River in the Twin Falls-Hagerman area (Mann, 1989; Mann and Low, 1994). A third study an ongoing annual sampling effort in the area between the southern boundary of the INEEL and Hagerman (figure 1) (hereafter referred to as the Magic Valley study area), is being conducted with the Idaho Department of Water Resources in cooperation with the DOE. Data for a variety of radiochemical and chemical constituents from this study have been published by Wegner and Campbell (1991); Bartholomay, Edwards, and Campbell (1992, 1993, 1994a, 1994b); and Bartholomay, Williams, and Campbell (1995, 1996, 1997b). Data discussed in this fact sheet were taken from these reports. An evaluation of data collected during the first four years of this study (Bartholomay Williams, and Campbell, 1997a) showed no pattern of water-quality change for radionuclide data as concentrations randomly increased or decreased. The inorganic constituent data showed no statistical change between sample rounds.

  1. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designedmore » to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.« less

  2. 1995 annual epidemiologic surveillance report for Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    The US Department of Energy's (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from the Idaho National Engineering and Environmental Laboratory (INEEL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at INEEL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, wheremore » quality control procedures and data analyses were carried out.« less

  3. 159. Photocopy of written record (taken from Twin Falls Canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    159. Photocopy of written record (taken from Twin Falls Canal Company Low Line Book #1, pp. 76,77). RECORD OF BORROW AT LOW LINE SIPHON. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  4. 160. Photocopy of drawing (taken from Twin Falls Canal Company ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    160. Photocopy of drawing (taken from Twin Falls Canal Company Field Book #361 #86, page 1). SCALE DRAWING, CANAL HEADGATES AND CANAL SURVEY, 'A' LINE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. 179. Photocopy of Photograph, Twin Falls Canal Company, Bisbee Photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    179. Photocopy of Photograph, Twin Falls Canal Company, Bisbee Photo, September, 1912. Photographer unknown. VIEW OF LOW LINE CANAL, TWIN FALLS COUNTY; VIEW OF LOW LINE CANAL IN PETE LINK'S FIELD. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. Idaho National Laboratory Quarterly Occurrence Analysis - 3rd Quarter FY-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (23 from the 3rd Qtr FY-16 and 50 from the prior three reporting quarters), as well as 45 other issue reports (including events found to be not reportable and Significant Category A and B conditions)more » identified at INL during the past 12 months (16 from this quarter and 29 from the prior three quarters).« less

  7. Idaho National Laboratory Quarterly Occurrence Analysis - 1st Quarter FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 74 reportable events (16 from the 1st Qtr FY-16 and 58 from the prior three reporting quarters), as well as 35 other issue reports (including events found to be not reportable and Significant Category A and B conditions)more » identified at INL during the past 12 months (15 from this quarter and 20 from the prior three quarters).« less

  8. Idaho National Laboratory Quarterly Occurrence Analysis 4th Quarter FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System, as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 84 reportable events (29 from the 4th quarter fiscal year 2016 and 55 from the prior three reporting quarters), as well as 39 other issue reports (including events found to be not reportable and Significant Category A and Bmore » conditions) identified at INL during the past 12 months (two from this quarter and 37 from the prior three quarters).« less

  9. Idaho National Laboratory Emergency Readiness Assurance Plan — Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Battelle Energy Alliance, LLC, the prime contractor for Idaho National Laboratory (INL), provides this Emergency Readiness Assurance Plan (ERAP) for Fiscal Year 2016 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for Fiscal Year 2017. Specifically, the ERAP assures the Department of Energy Idahomore » Operations Office that stated emergency capabilities at INL are sufficient to implement PLN 114, “INL Emergency Plan/RCRA Contingency Plan.”« less

  10. Idaho National Laboratory Emergency Readiness Assurance Plan — Fiscal Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Shane

    Battelle Energy Alliance, LLC, the prime contractor for Idaho National Laboratory (INL), provides this Emergency Readiness Assurance Plan (ERAP) for Fiscal Year 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for Fiscal Year 2015. Specifically, the ERAP assures the Department of Energy Idahomore » Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.”« less

  11. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 2002

    USGS Publications Warehouse

    Rattray, Gordon W.; Campbell, Linford J.

    2004-01-01

    The U.S. Geological Survey, Idaho Department of Water Resources, and the State of Idaho INEEL Oversight Program, in cooperation with the U.S. Department of Energy, sampled water from 17 sites as part of the sixth round of a long-term project to monitor water quality of the eastern Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were collected from eight irrigation wells, three domestic wells, one stock well, one dairy well, one commercial well, one observation well, and two springs and analyzed for selected radiochemical and chemical constituents. One quality-assurance sample, a sequential replicate, also was collected and analyzed. Many of the radionuclide and inorganic-constituent concentrations were greater than the reporting levels and most of the organic-constituent concentrations were less than the reporting levels. However, none of the reported radiochemical- or chemical-constituent concentrations exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. Statistical evaluation of the replicate sample pair indicated that, with 95 percent confidence, 132 of the 135 constituent concentrations of the replicate pair were equivalent.

  12. Evaluation of field sampling and preservation methods for strontium-90 in ground water at the Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cecil, L.D.; Knobel, L.L.; Wegner, S.J.

    1989-01-01

    Water from four wells completed in the Snake River Plain aquifer was sampled as part of the US Geological Survey's quality assurance program to evaluate the effect of filtration and preservation methods on strontium-90 concentrations in groundwater at the Idaho National Engineering Laboratory. Water from each well was filtered through either a 0.45-micrometer membrane or a 0.1-micrometer membrane filter; unfiltered samples also were collected. Two sets of filtered and two sets of unfiltered samples was preserved in the field with reagent-grade hydrochloric acid and the other set of samples was not acidified. For water from wells with strontium-90 concentrations atmore » or above the reporting level, 94% or more of the strontium-90 is in true solution or in colloidal particles smaller than 0.1 micrometer. These results suggest that within-laboratory reproducibility for strontium-90 in groundwater at the INEL is not significantly affected by changes in filtration and preservation methods used for sample collections. 13 refs., 2 figs., 6 tabs.« less

  13. Third strike for Idaho reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, M.

    Differing opinions concerning the modification of the Power Burst Facility (PBF) at Idaho Falls to turn the facility into a research and cancer treatment center are reported. Energy Secretary James Watkins convened an independent panel to examine once again the merits of converting the PBF, and the committee concluded that there is neither enough information currently available sufficiently encouraging to convert the PBF or to maintain it for this purpose. Idaho legislators have used their influence to include $13 million in the Department of Energy 1991 budget for design studies, limited reactor modifications, and maintenance. After the report of themore » committee, Secretary Watkins must decide to either ask congress to rescind the $13 million appropriated for 1991 or spend money to close down the reactor in 1992.« less

  14. Idaho Science, Technology, Engineering and Mathematics Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Brandon; Shoushtarian, Joannah; Ledoux, P

    2011-02-11

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  15. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema

    None

    2017-12-09

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  16. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1993

    USGS Publications Warehouse

    Bartholomay, Roy C.; Edwards, Daniel D.; Campbell, Linford J.

    1994-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concen- trations exceeded their respective laboratory reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Ethylbenzene concentrations exceeded the reporting level in one water sample.

  17. Epidemiologic surveillance. Annual report for Idaho National Engineering Laboratory 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    Epidemiologic surveillance at DOE facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Idaho National Engineering Laboratory are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 17-85 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and paymore » status; (2) the absences per person, diagnoses per absence, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.« less

  18. Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average

  19. Streamflow trends in the Spokane River and tributaries, Spokane Valley/Rathdrum Prairie, Idaho and Washington

    USGS Publications Warehouse

    Hortness, Jon E.; Covert, John J.

    2005-01-01

    A clear understanding of the aquifer and river dynamics within the Spokane Valley/Rathdrum Prairie is essential in making proper management decisions concerning ground-water and surface-water appropriations. Management of the Spokane Valley/Rathdrum Prairie aquifer is complicated because of interstate, multi-jurisdictional responsibilities, and by the interaction between ground water and surface water. Kendall?s tau trend analyses were completed on monthly mean (July through December) and annual 7-day low streamflow data for the period 1968?2002 from gaging stations located within the Spokane Valley/Rathdrum Prairie. The analyses detected trends of decreasing monthly mean streamflow at the following gaging stations: Spokane River near Post Falls, Idaho (August and September); Spokane River at Spokane, Washington (September); and Little Spokane River at Dartford, Washington (September and October); and decreasing annual 7-day low streamflows at the following gaging stations: Spokane River near Post Falls, Idaho and Spokane River at Spokane, Washington. Limited analyses of lake-level, precipitation, tributary inflow, temperature, and water-use data provided little insight as to the reason for the decreasing trends in streamflow. A net gain in streamflow occurs between the gaging stations Spokane River near Post Falls, Idaho and Spokane River at Spokane, Washington. Significant streamflow losses occur between the gaging stations Spokane River near Post Falls, Idaho and Spokane River at Greenacres, Washington; most, if not all, of the gains occur downstream from the Greenacres gaging station. Trends of decreasing net streamflow gains in the Spokane River between the near Post Falls and at Spokane gaging stations were detected for the months of September, October, and November.

  20. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. C. Bartholomay; L. M. Williams; L. J. Campbell

    1998-12-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from seven domestic wells, six irrigation wells, two springs, one dairy well, one observation well, and one stock well. Two quality-assurance samples also were collected andmore » analyzed. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.« less

  1. Hydrology of the solid waste burial ground as related to potential migration of radionuclides, Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.

    1976-01-01

    A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)

  2. Data Quality Objectives Supporting the Environmental Soil Monitoring Program for the Idaho National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Thomas Jay

    This document describes the process used to develop data quality objectives for the Idaho National Laboratory (INL) Environmental Soil Monitoring Program in accordance with U.S. Environmental Protection Agency guidance. This document also develops and presents the logic that was used to determine the specific number of soil monitoring locations at the INL Site, at locations bordering the INL Site, and at locations in the surrounding regional area. The monitoring location logic follows the guidance from the U.S. Department of Energy for environmental surveillance of its facilities.

  3. Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kim S.

    2008-01-01

    Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.

  4. Mercury accumulation in snow on the Idaho National Engineering and Environmental Laboratory and surrounding region, southeast Idaho, USA

    USGS Publications Warehouse

    Susong, D.D.; Abbott, M.L.; Krabbenhoft, D.P.

    2003-01-01

    Snow was sampled and analyzed for total mercury (THg) on the Idaho National Engineering and Environmental Laboratory (INEEL) and surrounding region prior to the start-up of a large (9-11 g/h) gaseous mercury emission source. The objective was to determine the effects of the source on local and regional atmospheric deposition of mercury. Snow samples collected from 48 points on a polar grid near the source had THg concentrations that ranged from 4.71 to 27.26 ng/L; snow collected from regional background sites had THg concentrations that ranged from 0.89 to 16.61 ng/L. Grid samples had higher concentrations than the regional background sites, which was unexpected because the source was not operating yet. Emission of Hg from soils is a possible source of Hg in snow on the INEEL. Evidence from Hg profiles in snow and from unfiltered/filtered split samples supports this hypothesis. Ongoing work on the INEEL is investigating Hg fluxes from soils and snow.

  5. Evaluation of Quality-Assurance/Quality-Control Data Collected by the U.S. Geological Survey from Wells and Springs between the Southern Boundary of the Idaho National Engineering and Environmental Laboratory and the Hagerman Area, Idaho, 1989 through 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, L.M.; Bartholomay, R.C.; Campbell, L.J.

    1998-10-01

    The U.S. Geological (USGS) and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, collected and analyzed water samples to monitor the water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area, Idaho. Concurrently, replicate samples and blank samples were collected and analyzed as part of the quality-assurance/quality-control program. Samples were analyzed from inorganic constituents, gross radioactivity and radionuclides, organic constituents, and stable isotopes. To evaluate the precision of field and laboratory methods, analytical results of the water-quality and replicate samplesmore » were compared statistically for equivalence on the basis of the precision associated with each result. Statistical comparisons of the data indicated that 95 percent of the results of the replicate pairs were equivalent. Blank-sample analytical results indicated th at the inorganic blank water and volatile organic compound blank water from the USGS National Water Quality Laboratory and the distilled water from the Idaho Department of Water Resources were suitable for blanks; blank water from other sources was not. Equipment-blank analytical results were evaluated to determine if a bias had been introduced and possible sources of bias. Most equipment blanks were analyzed for trace elements and volatile organic compounds; chloroform was found in one equipment blank. Two of the equipment blanks were prepared after collection and analyses of the water-quality samples to determine whether contamination had been introduced during the sampling process. Results of one blank indicated that a hose used to divert water away from pumps and electrical equipment had contaminated the samples with some volatile organic compounds. Results of the other equipment blank, from the apparatus used to filter dissolved organic carbon samples, indicated that the

  6. Statistical Stationarity of Sediment Interbed Thicknesses in a Basalt Aquifer, Idaho National Laboratory, Eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Stroup, Caleb N.; Welhan, John A.; Davis, Linda C.

    2008-01-01

    The statistical stationarity of distributions of sedimentary interbed thicknesses within the southwestern part of the Idaho National Laboratory (INL) was evaluated within the stratigraphic framework of Quaternary sediments and basalts at the INL site, eastern Snake River Plain, Idaho. The thicknesses of 122 sedimentary interbeds observed in 11 coreholes were documented from lithologic logs and independently inferred from natural-gamma logs. Lithologic information was grouped into composite time-stratigraphic units based on correlations with existing composite-unit stratigraphy near these holes. The assignment of lithologic units to an existing chronostratigraphy on the basis of nearby composite stratigraphic units may introduce error where correlations with nearby holes are ambiguous or the distance between holes is great, but we consider this the best technique for grouping stratigraphic information in this geologic environment at this time. Nonparametric tests of similarity were used to evaluate temporal and spatial stationarity in the distributions of sediment thickness. The following statistical tests were applied to the data: (1) the Kolmogorov-Smirnov (K-S) two-sample test to compare distribution shape, (2) the Mann-Whitney (M-W) test for similarity of two medians, (3) the Kruskal-Wallis (K-W) test for similarity of multiple medians, and (4) Levene's (L) test for the similarity of two variances. Results of these analyses corroborate previous work that concluded the thickness distributions of Quaternary sedimentary interbeds are locally stationary in space and time. The data set used in this study was relatively small, so the results presented should be considered preliminary, pending incorporation of data from more coreholes. Statistical tests also demonstrated that natural-gamma logs consistently fail to detect interbeds less than about 2-3 ft thick, although these interbeds are observable in lithologic logs. This should be taken into consideration when

  7. Experimental forests, ranges, and watersheds in the Northern Rocky Mountains: A compendium of outdoor laboratories in Utah, Idaho, and Montana

    Treesearch

    Wyman C. Schmidt; Judy L. Friede

    1996-01-01

    This is a compendium of experimental forests, ranges, watersheds, and other outdoor laboratories, formally established by the Forest Service and Agricultural Research Service of the U.S. Department of Agriculture, and the universities in Utah, Idaho, and Montana. The purposes, histories, natural resource bases, data bases, past and current studies, locations, and who...

  8. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plantmore » and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.« less

  9. Radiochemical and Chemical Constituents in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman Area, Idaho, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. C. Bartholomay; B. V. Twining; L. J. Campbell

    1999-06-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 18 sites as part of the fourth round of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area. The samples were analyzed for selected radiochemical and chemical constituents. The samples were collected from 2 domestic wells, 12 irrigation wells, 2 stock wells, 1 spring, and 1 public supply well. Two quality-assurance samples also were collected and analyzed. None of themore » reported radiochemical or chemical constituent concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than the respective reporting levels. Most of the organic-constituent concentrations were less than the reporting levels.« less

  10. Compliance program data management system for The Idaho National Engineering Laboratory/Environmental Protection Agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzler, C.L.; Poloski, J.P.; Bates, R.A.

    1988-01-01

    The Compliance Program Data Management System (DMS) developed at the Idaho National Engineering Laboratory (INEL) validates and maintains the integrity of data collected to support the Consent Order and Compliance Agreement (COCA) between the INEL and the Environmental Protection Agency (EPA). The system uses dBase III Plus programs and dBase III Plus in an interactive mode to enter, store, validate, manage, and retrieve analytical information provided on EPA Contract Laboratory Program (CLP) forms and CLP forms modified to accommodate 40 CFR 264 Appendix IX constituent analyses. Data analysis and presentation is performed utilizing SAS, a statistical analysis software program. Archivingmore » of data and results is performed at appropriate stages of data management. The DMS is useful for sampling and analysis programs where adherence to EPA CLP protocol, along with maintenance and retrieval of waste site investigation sampling results is desired or requested. 3 refs.« less

  11. Hydrologic conditions at the Idaho National Engineering Laboratory, 1982 to 1985

    USGS Publications Warehouse

    Pittman, J.R.; Fischer, P.R.; Jensen, R.G.

    1988-01-01

    Aqueous chemical and radioactive wastes discharged since 1952 to unlined ponds and wells at the INEL (Idaho National Engineering Laboratory) have affected water quality in perched groundwater zones and in the Snake River Plain Aquifer. Routine waste water disposal was changed from deep injection wells to ponds at the ICPP (Idaho Chemical Processing Plant) in 1984. During 1982-85, tritium concentrations increased in perched groundwater zones under disposal ponds, but cobalt-60 concentrations decreased. In 1985, perched groundwater under TRA disposal ponds contained up to 1,770 +or-30 pCi/mL (picocuries/milliliter) of tritium and 0.36+or-0.05 pCi/mL of cobalt-60. During 1982-85, tritium concentrations in water in the Snake River Plain aquifer decreased as much as 80 pCi/mL near the ICPP. In 1985, measurable tritium concentrations ranged from 0.9+or-0.3 to 93.4 +or-2.0 pCi/mL. Tritium was detected in groundwater near the southern boundary of the INEL, 9 miles south of the ICPP and TRA. Strontium-90 concentrations in groundwater, up to 63 +or-5 pCi/L (picocuries per liter) near the ICPP, generally were smaller than 1981 concentrations. Cesium-137 concentrations in groundwater near the ICPP ranged from 125 +or-14 to 237 +or-45 pCi/L. Maximum concentrations of plutonium-238 and plutonium-239 , -240 (undivided) were 1.31 +or-.0019 pCi/ml and 1.9 +or-0.00003 pCi/L. Sodium and chloride generally decreased during 1982-85. Nitrate concentrations increased near the TRA and NRF (Naval Reactors Facility) and decreased near the ICPP. (USGS)

  12. 77 FR 51564 - Notice of Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho, Twin Falls, ID AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Herrett Center for Arts and Science, College... associated funerary object may contact the Herrett Center for Arts and Science, College of Southern Idaho...

  13. Rare Earth Element and Trace Element Data Associated with Hydrothermal Spring Reservoir Rock, Idaho

    DOE Data Explorer

    Quillinan, Scott; Bagdonas, Davin

    2017-06-22

    These data represent rock samples collected in Idaho that correspond with naturally occurring hydrothermal samples that were collected and analyzed by INL (Idaho Falls, ID). Representative samples of type rocks were selected to best represent the various regions of Idaho in which naturally occurring hydrothermal waters occur. This includes the Snake River Plain (SRP), Basin and Range type structures east of the SRP, and large scale/deep seated orogenic uplift of the Sawtooth Mountains, ID. Analysis includes ICP-OES and ICP-MS methods for Major, Trace, and REE concentrations.

  14. Evaluation of a predictive ground-water solute-transport model at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Lewis, Barney D.; Goldstein, Flora J.

    1982-01-01

    Aqueous chemical and radioactive wastes discharged to shallow ponds and to shallow or deep wells on the Idaho National Engineering Laboratory (INEL) since 1952 have affected the quality of the ground water in the underlying Snake River Plain aquifer. The aqueous wastes have created large and laterally dispersed concentration plumes within the aquifer. The waste plumes with the largest areal distribution are those of chloride , tritium, and with high specific conductance values. The data from eight wells drilled near the southern INEL boundary during the summer of 1980 were used to evaluate the accuracy of a predictive modeling study completed in 1973, and to simulate 1980 positions of chloride and tritium plumes. Data interpretation from the drilling program indicates that the hydrogeologic characteristics of the subsurface rocks have marked effects on the regional ground-water flow regimen and, therefore, the movement of aqueous wastes. As expected, the waste plumes projected by the computer model for 1980, extended somewhat further downgradient than indicated by well data due to conservative worst-case assumptions in the model input and inacurate approximations of subsequent waste discharge and aquifer recharge conditions. (USGS)

  15. Aerial Flyover of New Research Facilities

    ScienceCinema

    None

    2018-02-14

    The Idaho National Laboratory is focused on continued development of its primary campus areas, including our Idaho Falls campus, to enable the INL to meet DOE expectations as the nations lead nuclear energy laboratory. This video identifies some of the existing Idaho Falls campus facilities and highlights planned and potential future development to support campus growth. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.

  16. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009–10

    USGS Publications Warehouse

    Twining, Brian V.; Fisher, Jason C.

    2012-01-01

    During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifer’s complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles

  17. 2014 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2013, through October 31, 2014. The report contains, as applicable, the following information; Site description; Facility and system description; Permit required monitoring data and loading rates; Status of compliance conditions and activities; and Discussion of the facility’s environmental impacts. The current permit expires on March 16, 2015. A permit renewal application was submitted to Idaho Department of Environmental Quality on September 15, 2014. Duringmore » the 2014 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. Seepage testing of the three lagoons was performed between August 26, 2014 and September 22, 2014. Seepage rates from Lagoons 1 and 2 were below the 0.25 inches/day requirement; however, Lagoon 3 was above the 0.25 inches/day. Lagoon 3 has been isolated and is being evaluated for future use or permanent removal from service.« less

  18. Substance Use, Safety and School Climate in Idaho, 1998.

    ERIC Educational Resources Information Center

    Coe, Michael T.

    This report details the results of the 1998 Idaho Substance Use and School Climate Survey, conducted by the Northwest Regional Educational Laboratory for the Idaho Department of Education. Sixth, eighth, tenth, and twelfth grade students were asked about the use of alcohol, tobacco, and illegal drugs, as well as about their perceptions of the…

  19. Livestock forage conditioning: bluebunch wheatgrass, Idaho fescue, and bottlebrush squirreltail.

    Treesearch

    Dave Ganskopp; Tony Svejcar; Marty Vavra

    2004-01-01

    Research on Anderson and Scherzinger's hypothesis that spring cattle grazing can positively affect subsequent nutritional characteristics of grasses have generated mixed results. Our objectives were: 1) to evaluate fall/winter nutritional indices of bluebunch wheatgrass (Agropyron spicatum [Pursh] Scribn. & Smith), Idaho fescue (...

  20. Pinto common bean cultivars Blackfoot, Nez Perce, and Twin Falls

    USDA-ARS?s Scientific Manuscript database

    Pinto common bean cultivars Blackfoot (Reg. No. -----,), Nez Perce (Reg. No. -----, PI), and Twin Falls (Reg. No. -----,) were developed at the University of Idaho-Kimberly Research and Extension Center in collaboration with researchers in Colorado, Nebraska, and Washington State. Twin Falls is a fu...

  1. Iodine-129 in the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho, 1990-91

    USGS Publications Warehouse

    Mann, L.J.; Beasley, T.M.

    1994-01-01

    From 1953 to 1990, an estimated 0.56 to 1.18 curies of iodine-129 were contained in wastewater generated by the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. The waste- water was discharged directly to the Snake River Plain aquifer through a deep disposal well prior to February 1984 and through unlined disposal ponds in 1984-90. The wastewater did not contain measurable concentrations of iodine-129 in 1989-90. Samples were collected from 51 wells that obtain water from the Snake River Plain aquifer and 1 well that obtains water from a perched ground-water zone. The samples were analyzed for iodine-129 using an accelerator mass spectrometer which is two to six orders of magnitude more sensitive than neutron- activation methods. Therefore, iodine-129 was detectable in samples from a larger number of wells distributed over a larger area than previously was possible. Ground-water flow velocities calculated using iodine-129 data are estimated to be at least 6 feet per day. These velocities compare favorably with those of 4 to 10 feet per day calculated from tritium data and tracer studies at wells down- gradient from the ICPP. In 1990-91, concentrations of iodine-129 in water samples from wells that obtain water from the Snake River Plain aquifer ranged from less than 0.0000006+0.0000002 to 3.82.+0.19 picocuries per liter (pCi/L). The mean concentration in water from 18 wells was 0.81+0.19 pCi/L as compared with 1.30+0.26 pCi/L in 1986. The decrease in the iodine-l29 concentrations from 1986 to 1990-91 chiefly was the result of a decrease in the amount of iodine-129 disposed of annually, and changes in disposal techniques.

  2. Digital Learning Compass: Distance Education State Almanac 2017. Idaho

    ERIC Educational Resources Information Center

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Idaho. The sample for this analysis is comprised of all active, degree-granting…

  3. 1995 Laboratory-Directed Research and Development Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  4. Idaho National Laboratory Quarterly Occurrence Analysis for the 1st Quarter FY2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 82 reportable events (13 from the 1st quarter (Qtr) of fiscal year (FY) 2017 and 68 from the prior three reporting quarters), as well as 31 other issue reports (including events found to be not reportable and Significantmore » Category A and B conditions) identified at INL during the past 12 months (seven from this quarter and 24 from the prior three quarters).« less

  5. Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses

    Science.gov Websites

    , and increases passenger safety during bad weather. The dual-fuel approach is being analyzed as a way Gas Biodiesel Fuel Properties Comparison Yellowstone-Teton Clean Energy Coalition Idaho National

  6. Batrachochytrium dendrobatidis infection dynamics in the Columbia spotted frog Rana luteiventris in north Idaho, USA.

    PubMed

    Russell, Danelle M; Goldberg, Caren S; Waits, Lisette P; Rosenblum, Erica Bree

    2010-11-01

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) is contributing to amphibian declines worldwide. Temperature plays an important role in both pathogen growth and host immune function, but little is known about seasonal dynamics of Bd infection in north temperate regions. Our objective was to increase understanding of Bd disease ecology by investigating patterns of Bd infection of Columbia spotted frogs Rana luteiventris across seasons, age classes, and sexes in north Idaho, USA. We collected skin swabs from 223 R. luteiventris in spring, summer, and fall 2009 at 7 ponds in the Palouse region and quantified Bd zoospores for each sample using quantitative PCR. Across seasons, Bd prevalence of adults was higher in summer than in spring or fall, suggesting that individuals may be clearing low-level infections over the summer. Among age classes, all but one late stage tadpole (Gosner stage 43-45) tested negative for Bd. Conversely, 100% of metamorphs tested positive for Bd and had the highest Bd loads of all age classes, suggesting they may be the most vulnerable age class. Adult R. luteiventris had high infection prevalence (> 60%) in all seasons, indicating that Bd infection is maintained within populations and that adults likely serve as disease reservoirs across seasons. Among adults, we also found weak evidence for females having higher infection prevalence than males. Further laboratory and field studies are needed to determine whether there are individual and population impacts from Bd on R. luteiventris and other amphibians in north Idaho.

  7. Idaho National Laboratory Vadose Zone Research Park Geohydrological Monitoring Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine Baker

    2006-01-01

    Vadose zone lithology, hydrological characterization of interbed sediments, and hydrological data from subsurface monitoring of Idaho Nuclear Technology and Engineering Center wastewater infiltration are presented. Three-dimensional subsurface lithology of the vadose zone beneath the Vadose Zone Research Park is represented in a 2 dimensional (2 D) diagram showing interpolated lithology between monitoring wells. Laboratory-measured values for saturated hydraulic conductivity and porosity are given for three major interbeds, denoted as the B BC interbed (20 to 35 m bls), the C D interbed (40 to 45 m bls), and the DE 1 2 interbed (55 to 65 m bls), along withmore » an overall physical description of the sediments and geologic depositional environments. Pre-operational pore water pressure conditions are presented to show the presence and location of perched water zones before pond discharge at the New Percolation Ponds. Subsurface infiltration conditions during initial high-volume discharge are presented to show water arrival times and arrival sequences. Steady-state conditions are then presented to show formation and locations of perched water zones and recharge sources after several months of discharge to the New Percolation Ponds.« less

  8. Tritium concentrations in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho

    USGS Publications Warehouse

    Mann, L.J.

    1989-01-01

    Concern has been expressed that some of the approximately 30,900 curies of tritium disposed to the Snake River Plain aquifer from 1952 to 1988 at the INEL (Idaho National Engineering Laboratory) have migrated to springs discharging to the Snake River in the Twin Falls-Hagerman area. To document tritium concentrations in springflow, 17 springs were sampled in November 1988 and 19 springs were sampled in March 1989. Tritium concentrations were less than the minimum detectable concentration of 0.5 pCi/mL (picocuries/mL) in November 1988 and less than the minimum detectable concentration of 0.2 pCi/mL in March 1989; the minimum detectable concentration was smaller in March 1989 owing to a longer counting time in the liquid scintillation system. The maximum contaminant level of tritium in drinking water as established by the U.S. Environmental Protection Agency is 20 pCi/mL. U.S. Environmental Protection Agency sample analyses indicate that the tritium concentration has decreased in the Snake River near Buhl since the 1970's. In 1974-79, tritium concentrations were less than 0.3 +/-0.2 pCi/mL in 3 of 20 samples; in 1983-88, 17 of 23 samples contained less than 0.3 +/-0.2 pCi/mL of tritium; the minimum detectable concentration is 0.2 pCi/mL. On the basis of decreasing tritium concentrations in the Snake River, their correlation to cessation of atmospheric weapons tests tritium concentrations in springflow less than the minimum detectable concentration, and the distribution of tritium in groundwater at the INEL, aqueous disposal of tritium at the INEL has had no measurable effect on tritium concentrations in springflow from the Snake River Plain aquifer and in the Snake River near Buhl. (USGS)

  9. Ground-water quality in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1983-01-01

    Water-quality data were collected from 92 wells in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho. Current data were compiled with pre-1980 data from 116 wells to define water-quality conditions in major aquifers. Factors affecting water quality are composition of aquifer materials, water temperature, and source of recharge. Mixing of water by interaquifer flow, from confined, hot water aquifers (40 degrees Celsius or greater) with water from cold water aquifers (less than 20 degrees Celsius) occurs along regional complex fault systems, and through partially cased boreholes. Cold water generally contains calcium, magnesium, and bicarbonate plus carbonate ions; hot water generally contains sodium, potassium, and bicarbonate plus carbonate ions. Warm water (between 20 degrees and 40 degrees Celsius) has an intermediate chemical composition resulting from mixing. Ground-water quality is acceptable for most uses, although it locally contains chemical constituents or physical properties that may restrict its use. Effects of thermal water used for irrigation on quality of shallow ground water are inconclusive. Long-term increase in concentrations of several constituents in parts of the study area may be due to effects of land- and water-use activities, such as infiltration of septic-tank effluent. (USGS)

  10. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1995-10-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, samples 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, seven domestic wells, two springs, one stock well, and one observation well. Two quality assurance samples also were collected and analyzed.more » None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that exceeded their minimum reporting levels.« less

  11. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of themore » radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level.« less

  12. Paleomagnetism of Basaltic Lava Flows in Coreholes ICPP 213, ICPP-214, ICPP-215, and USGS 128 Near the Vadose Zone Research Park, Idaho Nuclear Technology and Engineering Center, Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Champion, Duane E.; Herman, Theodore C.

    2003-01-01

    A paleomagnetic study was conducted on basalt from 41 lava flows represented in about 2,300 ft of core from coreholes ICPP-213, ICPP-214, ICPP-215, and USGS 128. These wells are in the area of the Idaho Nuclear Technology and Engineering Center (INTEC) Vadose Zone Research Park within the Idaho National Engineering and Environmental Laboratory (INEEL). Paleomagnetic measurements were made on 508 samples from the four coreholes, which are compared to each other, and to surface outcrop paleomagnetic data. In general, subhorizontal lines of correlation exist between sediment layers and between basalt layers in the area of the new percolation ponds. Some of the basalt flows and flow sequences are strongly correlative at different depth intervals and represent important stratigraphic unifying elements. Some units pinch out, or thicken or thin even over short separation distances of about 1,500 ft. A more distant correlation of more than 1 mile to corehole USGS 128 is possible for several of the basalt flows, but at greater depth. This is probably due to the broad subsidence of the eastern Snake River Plain centered along its topographic axis located to the south of INEEL. This study shows this most clearly in the oldest portions of the cored sections that have differentially subsided the greatest amount.

  13. Quality-assurance plan and field methods for quality-of-water activities, U.S. Geological Survey, Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, L.J.

    1996-10-01

    Water-quality activities at the Idaho National Engineering Laboratory (INEL) Project Office are part of the US Geological Survey`s (USGS) Water Resources Division (WRD) mission of appraising the quantity and quality of the Nation`s water resources. The purpose of the Quality Assurance Plan (QAP) for water-quality activities performed by the INEL Project Office is to maintain and improve the quality of technical products, and to provide a formal standardization, documentation, and review of the activities that lead to these products. The principles of this plan are as follows: (1) water-quality programs will be planned in a competent manner and activities willmore » be monitored for compliance with stated objectives and approaches; (2) field, laboratory, and office activities will be performed in a conscientious and professional manner in accordance with specified WRD practices and procedures by qualified and experienced employees who are well trained and supervised, if or when, WRD practices and procedures are inadequate, data will be collected in a manner that its quality will be documented; (3) all water-quality activities will be reviewed for completeness, reliability, credibility, and conformance to specified standards and guidelines; (4) a record of actions will be kept to document the activity and the assigned responsibility; (5) remedial action will be taken to correct activities that are deficient.« less

  14. Evaluation of well-purging effects on water-quality results for samples collected from the eastern Snake River Plain aquifer underlying the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Knobel, LeRoy L.

    2006-01-01

    This report presents qualitative and quantitative comparisons of water-quality data from the Idaho National Laboratory, Idaho, to determine if the change from purging three wellbore volumes to one wellbore volume has a discernible effect on the comparability of the data. Historical water-quality data for 30 wells were visually compared to water-quality data collected after purging only 1 wellbore volume from the same wells. Of the 322 qualitatively examined constituent plots, 97.5 percent met 1 or more of the criteria established for determining data comparability. A simple statistical equation to determine if water-quality data collected from 28 wells at the INL with long purge times (after pumping 1 and 3 wellbore volumes of water) were statistically the same at the 95-percent confidence level indicated that 97.9 percent of 379 constituent pairs were equivalent. Comparability of water-quality data determined from both the qualitative (97.5 percent comparable) and quantitative (97.9 percent comparable) evaluations after purging 1 and 3 wellbore volumes of water indicates that the change from purging 3 to 1 wellbore volumes had no discernible effect on comparability of water-quality data at the INL. However, the qualitative evaluation was limited because only October-November 2003 data were available for comparison to historical data. This report was prepared by the U.S. Geological Survey in cooperation with the U.S. Department of Energy.

  15. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less

  16. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged tomore » the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less

  17. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA

    USGS Publications Warehouse

    Gray, J.E.; Hines, M.E.

    2009-01-01

    Salmon Falls Creek Reservoir (SFCR) in southern Idaho has been under a mercury (Hg) advisory since 2001 as fish in this reservoir contain elevated concentrations of Hg. Concentrations of total Hg (HgT) and methyl-Hg (MeHg) were measured in reservoir water, bottom sediment, and porewater to examine processes of Hg methylation at the sediment/water interface in this reservoir. Rates of Hg methylation and MeHg demethylation were also measured in reservoir bottom sediment using isotopic tracer techniques to further evaluate methylation of Hg in SFCR. The highest concentrations for HgT and MeHg in sediment were generally found at the sediment/water interface, and HgT and MeHg concentrations declined with depth. Porewater extracted from bottom sediment contained highly elevated concentrations of HgT ranging from 11-230??ng/L and MeHg ranging from 0.68-8.5??ng/L. Mercury methylation was active at all sites studied. Methylation rate experiments carried out on sediment from the sediment/water interface show high rates of Hg methylation ranging from 2.3-17%/day, which is significantly higher than those reported in other Hg contaminant studies. Using porewater MeHg concentrations, we calculated an upward diffusive MeHg flux of 197??g/year for the entire reservoir. This sediment derived MeHg is delivered to the overlying SFCR water column, and eventually transferred to biota, such as fish. This study indicates that methylation of Hg is highly influenced by the hypolimnetic and eutrophic conditions in SFCR.

  18. Radionuclides, inorganic constitutents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-11-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. The samples were collected from 13 irrigation wells, 1 domestic well, 1 spring, 2 stock wells, and 1 public supply well. Quality assurance samples also were collected and analyzed. Nonemore » of the samples analyzed for radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. Most of the samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting levels. None of the samples contained reportable concentrations of purgeable organic compounds or pesticides. Total coliform bacteria was present in nine samples.« less

  19. IMPACTS OF GEOTHERMAL WATERS ON SELECTED STREAMS IN SOUTHERN IDAHO, 1984-1985

    EPA Science Inventory

    Four drainage areas were studies in Southern Idaho (17040212, 17040213) to determine the impact of geothermal discharges on area streams. Areas studied included Big Wood River near Ketchum, Mud Creek near Buhl, Salmon Falls Creek near Castleford, and the Snake River from Twin Fa...

  20. Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 103, 105, 108, 131, 135, NRF-15, and NRF-16, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Orr, Stephanie M.; Potter, Katherine E.; LeMaitre, Tynan

    2012-01-01

    This report, prepared in cooperation with the U.S. Department of Energy, summarizes construction, geophysical, and lithologic data collected from about 4,509 feet of core from seven boreholes deepened or drilled by the U.S. Geological Survey (USGS), Idaho National Laboratory (INL) Project Office, from 2006 to 2009 at the INL. USGS 103, 105, 108, and 131 were deepened and cored from 759 to 1,307 feet, 800 to 1,409 feet, 760 to 1,218 feet, and 808 to 1,239 feet, respectively. Boreholes USGS 135, NRF-15, and NRF-16 were drilled and continuously cored from land surface to 1,198, 759, and 425 feet, respectively. Cores were photographed and digitally logged by using commercially available software. Borehole descriptions summarize location, completion date, and amount and type of core recovered.

  1. Interactions among livestock grazing, vegetation type, and fire behavior in the Murphy wildland fire complex in Idaho and Nevada, July 2007

    USDA-ARS?s Scientific Manuscript database

    A series of wildland fires were ignited by lightning in sagebrush and grassland communities near the Idaho-Nevada border southwest of Twin Falls, Idaho in July 2007. The fires burned for over two weeks and encompassed more than 650,000 acres. A team of scientists, habitat specialists, and land manag...

  2. 76 FR 51053 - Notice of Public Meetings, Twin Falls District Resource Advisory Council, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... afternoon, the RAC will return to the Burley Fire Conference room to discuss Wilderness and Wild and Scenic... Fire Conference Room, located at 3630 Overland Ave., Burley, Idaho 83318. The meeting will begin at 8...

  3. Quality-assurance plan for water-resources activities of the U.S. Geological Survey in Idaho

    USGS Publications Warehouse

    Packard, F.A.

    1996-01-01

    To ensure continued confidence in its products, the Water Resources Division of the U.S. Geological Survey implemented a policy that all its scientific work be performed in accordance with a centrally managed quality-assurance program. This report establishes and documents a formal policy for current (1995) quality assurance within the Idaho District of the U.S. Geological Survey. Quality assurance is formalized by describing district organization and operational responsibilities, documenting the district quality-assurance policies, and describing district functions. The districts conducts its work through offices in Boise, Idaho Falls, Twin Falls, Sandpoint, and at the Idaho National Engineering Laboratory. Data-collection programs and interpretive studies are conducted by two operating units, and operational and technical assistance is provided by three support units: (1) Administrative Services advisors provide guidance on various personnel issues and budget functions, (2) computer and reports advisors provide guidance in their fields, and (3) discipline specialists provide technical advice and assistance to the district and to chiefs of various projects. The district's quality-assurance plan is based on an overall policy that provides a framework for defining the precision and accuracy of collected data. The plan is supported by a series of quality-assurance policy statements that describe responsibilities for specific operations in the district's program. The operations are program planning; project planning; project implementation; review and remediation; data collection; equipment calibration and maintenance; data processing and storage; data analysis, synthesis, and interpretation; report preparation and processing; and training. Activities of the district are systematically conducted under a hierarchy of supervision an management that is designed to ensure conformance with Water Resources Division goals quality assurance. The district quality

  4. Scientific Computing Strategic Plan for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Eric Todd

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less

  5. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This ismore » well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less

  6. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1992-03-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from seven irrigation wells, five domestic wells, two springs, one stock well, two dairy wells, one observation well, and one commercial well. Two quality assurance samples also weremore » collected and analyzed. The water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Toluene concentrations exceeded the reporting level in one water sample. Two samples contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water.« less

  7. Wildfire case study: Butte City Fire, southeastern Idaho, July 1, 1994

    Treesearch

    Bret W. Butler; Timothy D. Reynolds

    1997-01-01

    The Butte City Fire occurred on July 1, 1994, west of Idaho Falls, ID. Ignited from a burning flat tire, the blaze was driven by high winds that caused it to cover over 20,500 acres in just over 6.5 hours. Sagebrush (Artemisia tridentata ssp. wyomingensis) is the principal shrub species of this high desert rangeland...

  8. Temporary Restoration of Bull Trout Passage at Albeni Falls Dam, 2008 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellgraph, Brian J.

    2009-03-31

    The goal of this project is to provide temporary upstream passage of bull trout around Albeni Falls Dam on the Pend Oreille River, Idaho. Our specific objectives are to capture fish downstream of Albeni Falls Dam, tag them with combination acoustic and radio transmitters, release them upstream of Albeni Falls Dam, and determine if genetic information on tagged fish can be used to accurately establish where fish are located during the spawning season. In 2007, radio receiving stations were installed at several locations throughout the Pend Oreille River watershed to detect movements of adult bull trout; however, no bull troutmore » were tagged during that year. In 2008, four bull trout were captured downstream of Albeni Falls Dam, implanted with transmitters, and released upstream of the dam at Priest River, Idaho. The most-likely natal tributaries of bull trout assigned using genetic analyses were Grouse Creek (N = 2); a tributary of the Pack River, Lightning Creek (N = 1); and Rattle Creek (N = 1), a tributary of Lightning Creek. All four bull trout migrated upstream from the release site in Priest River, Idaho, were detected at monitoring stations near Dover, Idaho, and were presumed to reside in Lake Pend Oreille from spring until fall 2008. The transmitter of one bull trout with a genetic assignment to Grouse Creek was found in Grouse Creek in October 2008; however, the fish was not found. The bull trout assigned to Rattle Creek was detected in the Clark Fork River downstream from Cabinet Gorge Dam (approximately 13 km from the mouth of Lightning Creek) in September but was not detected entering Lightning Creek. The remaining two bull trout were not detected in 2008 after detection at the Dover receiving stations. This report details the progress by work element in the 2008 statement of work, including data analyses of fish movements, and expands on the information reported in the quarterly Pisces status reports.« less

  9. Rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium distribution coefficients of a surficial sediment at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.

    1998-01-01

    The rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium sorption were measured as part of an investigation to determine strontium chemical transport properties of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine the rate of strontium sorption and strontium distribution coefficients (K(d)s) between aqueous and solid phases. Rate experiments indicate that strontium in solution reached an apparent equilibrium with the sediment in 26 h. K(d)s were derived using the linear isotherm model at initial sodium concentrations from 100 to 5,000 mg/l and initial potassium concentrations from 2 to 150 mg/l. K(d)s ranged from 56 ?? 2 to 62 ?? 3 ml/g at initial aqueous concentrations of sodium and potassium equal to or less than 300 and 150 mg/l, respectively. K(d)s hinged from 4.7 ?? 0.2 to 19 ?? 1 ml/g with initial aqueous concentrations of sodium between 1,000 and 5,000 mg/l. These data indicate that sodium concentrations greater than 300 mg/l in wastewater increase the availability of strontium for transport beneath waste disposal ponds at the INEL by decreasing strontium sorption on the surficial sediment. Wastewater concentrations of sodium and potassium less than 300 and 150 mg/l, respectively, have little effect on the availability of strontium for transport.The rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium sorption were measured as part of an investigation to determine strontium chemical transport properties of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine the rate of strontium sorption and strontium distribution coefficients (Kds) between aqueous and solid phases. Rate experiments indicate that strontium in solution reached an apparent equilibrium with the sediment in 26

  10. Purgeable organic compounds in ground water at the Idaho National Engineering Laboratory, Idaho; 1988 and 1989

    USGS Publications Warehouse

    Mann, L.J.

    1990-01-01

    Groundwater samples from 38 wells at the Idaho National Engineering Laboratory were analyzed for 36 purgeable organic compounds in 1988-89. Thirty-six of the wells obtain water from the Snake River Plain aquifer and were equipped with dedicated or portable pumps. Water samples from one well that obtains water from the aquifer and one that obtains water from a perched groundwater zone were collected using a thief sampler. Analyses of water from 22 wells indicated the aquifer locally contained detectable concentrations of at least 1 of 19 purgeable organic compounds, mainly carbon tetrachloride, 1,1,1-trichloroethane, and trichloroethylene. Except for five wells, the maximum concentration of a specific compound in groundwater was 6.4 microgram/L or less; concentrations of most compounds were less than 0.2 microgram/L. Water from four wells at and near the Test Area North contained from 44 to 29, 000 micrograms/L of trichloroethylene. Water from a well that obtains water from a discontinuous perched groundwater zone at the Radioactive Waste Management Complex contained 1,400 micrograms/L of carbon tetrachloride, 940 micrograms/L of chloroform, 250 micrograms/L of 1,1,1- trichloroethane, and 1,100 micrograms/L trichloroethylene. Selected purgeable organic compounds, such as total xylene and methylene chloride, were detected in some groundwater samples and some blank samples consisting of boiled deionized water. Their presence in the blank samples suggest the compounds could have been inadvertently introduced into the groundwater sampled during or subsequent to collection. (USGS)

  11. Chemical and physical properties affecting strontium distribution coefficients of surficial-sediment samples at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Liszewski, M.J.; Rosentreter, J.J.; Miller, Karl E.; Bartholomay, R.C.

    2000-01-01

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (K(d)s) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experiments using synthesized aqueous solutions were used to determine K(d)s, which describe the distribution of a solute between the solution and solid phase, of 20 surficial-sediment samples from the INEEL. The K(d)s for the 20 surficial-sediment samples ranged from 36 to 275 ml/g. Many properties of both the synthesized aqueous solutions and sediments used in the experiments also were determined. Solution properties determined were initial and equilibrium concentrations of calcium, magnesium, and strontium, pH and specific conductance, and initial concentrations of potassium and sodium. Sediment properties determined were grain-size distribution, bulk mineralogy, whole-rock major-oxide and strontium and barium concentrations, and Brunauer-Emmett-Teller (BET) surface area. Solution and sediment properties were correlated with strontium K(d)s of the 20 surficial sediments using Pearson correlation coefficients. Solution properties with the strongest correlations with strontium K(d)s were equilibrium pH and equilibrium calcium concentration correlation coefficients, 0.6598 and -0.6518, respectively. Sediment properties with the strongest correlations with strontium K(d)s were manganese oxide (MnO), BET surface area, and the >4.75-mm-grain-size fraction correlation coefficients, 0.7054, 0.7022, and -0.6660, respectively. Effects of solution properties on strontium K(d)s were interpreted as being due to competition among similarly charged and sized cations in solution for strontium-sorption sites; effects of sediment properties on strontium K(d)s were interpreted as being surface-area related. Multivariate analyses of these solution and sediment properties resulted in r2 values of 0

  12. Organic solutes in ground water at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Leenheer, Jerry A.; Bagby, Jefferson C.

    1982-01-01

    In August 1980, the U.S. Geological Survey started a reconnaissance survey of organic solutes in drinking water sources, ground-water monitoring wells, perched water table monitoring wells, and in select waste streams at the Idaho National Engineering Laboratory (INEL). The survey was to be a two-phase program. In the first phase, 77 wells and 4 potential point sources were sampled for dissolved organic carbon (DOC). Four wells and several potential point sources of insecticides and herbicides were sampled for insecticides and herbicides. Fourteen wells and four potential organic sources were sampled for volatile and semivolatile organic compounds. The results of the DOC analyses indicate no high level (>20 mg/L DOC) organic contamination of ground water. The only detectable insecticide or herbicide was a DDT concentration of 10 parts per trillion (0.01 microgram per liter) in one observation well. The volatile and semivolatile analyses do not indicate the presence of hazardous organic contaminants in significant amounts (>10 micrograms per liter) in the samples taken. Due to the lack of any significant organic ground-water contamination in this reconnaissance survey, the second phase of the study, which was to follow up the first phase by additional sampling of any contaminated wells, was canceled.

  13. Stratigraphy of the unsaturated zone and uppermost part of the Snake River Plain aquifer at test area north, Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.R.; Bowers, B.

    1995-06-01

    A complex sequence of basalt flows and sedimentary interbeds underlies Test Area North (TAN) at the Idaho National Engineering Laboratory in eastern Idaho. Wells drilled to depths of at least 500 feet penetrate 10 basalt-flow groups and 5 to 10 sedimentary interbeds that range in age from about 940,000 to 1.4 million years. Each basalt-flow group consists of one or more basalt flows from a brief, single or compound eruption. All basalt flows of each group erupted from the same vent, and have similar ages, paleomagnetic properties, potassium contents, and natural-gamma emissions. Sedimentary interbeds consist of fluvial, lacustrine, and eolianmore » deposits of clay, silt, sand, and gravel that accumulated for hundreds to hundreds of thousands of years during periods of volcanic quiescence. Basalt and sediment are elevated by hundreds of feet with respect to rocks of equivalent age south and cast of the area, a relation that is attributed to past uplift at TAN. Basalt and sediment are unsaturated to a depth of about 200 feet below land surface. Rocks below this depth are saturated and make up the Snake River Plain aquifer. The effective base of the aquifer is at a depth of 885 feet below land surface. Detailed stratigraphic relations for the lowermost part of the aquifer in the depth interval from 500 to 885 feet were not determined because of insufficient data. The stratigraphy of basalt-flow groups and sedimentary interbeds in the upper 500 feet of the unsaturated zone and aquifer was determined from natural-gamma logs, lithologic logs, and well cores. Basalt cores were evaluated for potassium-argon ages, paleomagnetic properties, petrographic characteristics, and chemical composition. Stratigraphic control was provided by differences in ages, paleomagnetic properties, potassium content, and natural-gamma emissions of basalt-flow groups and sedimentary interbeds.« less

  14. Soil and Nutrient Losses from Small Sprinkler and Furrow Irrigated Watersheds in Southern Idaho

    USDA-ARS?s Scientific Manuscript database

    Sediment and associated nutrients flowing to the Snake River with furrow irrigation runoff and unused irrigation water have been a concern in the Twin Falls irrigation tract in southern Idaho. Converting furrow irrigated fields to sprinkler irrigation is one practice that has been promoted, and rece...

  15. First report of zebra chip disease and Candidatus Liberibacter solanacearum on potatoes in Idaho

    USDA-ARS?s Scientific Manuscript database

    In September of 2011, potato (Solanum tuberosum) tubers in a packing facility in (Idaho Falls???) were observed with internal discolorations suggestive of the zebra chip disease (ZC). Symptoms were observed in 1-2% of tubers of Russet Burbank and Russet Norkotah and included brown spots and streak...

  16. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1993-11-01

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from six irrigation wells, seven domestic wells, two springs, one stock well, one dairy well, and one observation well. Quality assurance samples also were collected and analyzed. Themore » water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the samples analyzed for radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All the samples analyzed for dissolved organic carbon had concentrations that exceeded their reporting level. Concentrations of 1,1,1 -trichloroethane exceeded the reporting level in two water samples. Two samples and a quality assurance replicate contained reportable concentrations of 2, 4-D. One sample contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water.« less

  17. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Zhang; J. E. O'Brien; R. C. O'Brien

    2012-07-01

    An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cellmore » and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.« less

  18. Water resources of the Salmon Falls Creek basin, Idaho-Nevada

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1969-01-01

    The northern part of the Salmon Falls Creek basin, referred to as the Salmon Falls tract, contains a large acreage of good agricultural land, but the surface-water supply is inadequate to develop the area fully. Attempts to develop ground water for irrigation have been successful only locally. Specific capacities of wells drilled for irrigation and for test purposes ranged from less than 0.5 to 70 gallons per minute per foot of drawdown. The surface-water supply averages 107,000 acre-feet annually, of which about 76,000 acre-feet is diverted for irrigation. The Idavada Volcanics, the most widespread and oldest water-bearing formation in the Salmon Falls tract, consists of massive, dense, thick flows and blankets of welded silicic tuff with associated fine- to coarse-grained ash, clay, silt, sand, and gravel. Fault zones and jointed rock yield large amounts of water to wells, but massive nonjointed units yield little water. Sand, tuff, and ash beds yield moderate quantities of water. Clay, sandy clay, sand, and pea gravel occur in topographic lows on the Idavada Volcanics. The finegrained sediments yield little water to wells, but the gravel yields moderate quantities. Vesicular porphyritic irregularly jointed olivine basalt flows, which overlie the Idavada Volcanics, underlie almost all the Salmon Falls tract. Lenticular fine-grained sedimentary beds as much as 15 feet thick separate some of the flows. Joints and contacts between flows yield small to moderate amounts of water to wells. Alluvial and windblown deposits blanket most of the tract. Where they occur below the water table, the alluvial deposits yield adequate supplies for stock and domestic wells. Perched water in the alluvium along Deep Creek supplies some stock and domestic wells during most years. Ground-water supplies adequate for domestic and stock use can be obtained everywhere in the tract, but extensive exploration has discovered only five local areas where pumping ground water for irrigation is

  19. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2012-15

    USGS Publications Warehouse

    Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.

    2017-04-10

    Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.

  20. 77 FR 10485 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Status EM/National Nuclear Security Administration Integration Ecological Surveys Ground Water Waste Area... and site management in the areas of environmental restoration, waste management, and related... Idaho Cleanup Project (ICP) Workforce Reductions Advanced Mixed Waste Cleanup Project (AMWTP) Workforce...

  1. Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 126a, 126b, 127, 128, 129, 130, 131, 132, 133, and 134, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Hodges, Mary K.V.; Orr, Stephanie

    2008-01-01

    This report summarizes construction, geophysical, and lithologic data collected from ten U.S. Geological Survey (USGS) boreholes completed between 1999 nd 2006 at the Idaho National Laboratory (INL): USGS 126a, 126b, 127, 128, 129, 130, 131, 132, 133, and 134. Nine boreholes were continuously cored; USGS 126b had 5 ft of core. Completion depths range from 472 to 1,238 ft. Geophysical data were collected for each borehole, and those data are summarized in this report. Cores were photographed and digitally logged using commercially available software. Digital core logs are in appendixes A through J. Borehole descriptions summarize location, completion date, and amount and type of core recovered. This report was prepared by the USGS in cooperation with the U.S. Department of Energy (DOE).

  2. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  3. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflowmore » zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices.« less

  4. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 2: Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-01

    The identification of seismic sources is often based on a combination of geologic and tectonic considerations and patterns of observed seismicity; hence, a historical earthquake catalogue is important. A historical catalogue of earthquakes of approximate magnitude (M) 2.5 and greater for the time period 1850 through 1992 was compiled for the INEL region. The primary data source used was the Decade of North American Geology (DNAG) catalogue for the time period from about 1800 through 1985 (Engdahl and Rinehart, 1988). A large number of felt earthquakes, especially prior to the 1970`s, which were below the threshold of completeness established inmore » the DNAG catalogue (Engdahl and Rinehart, 1991), were taken from the state catalogues compiled by Stover and colleagues at the National Earthquake Information Center (NEIC) and combined with the DNAG catalogue for the INEL region. The state catalogues were those of Idaho, Montana, Nevada, Utah, and Wyoming. NEIC`s Preliminary Determination of Epicenters (PDE) and the state catalogues compiled by the Oregon Department of Geology and Mineral Industries (DOGAMI), and the University of Nevada at Reno (UNR) were also used to supplement the pre-1986 time period. A few events reanalyzed by Jim Zollweg (Boise State University, written communication, 1994) were also modified in the catalogue. In the case of duplicate events, the DNAG entry was preferred over the Stover et al. entry for the period 1850 through 1985. A few events from Berg and Baker (1963) were also added to the catalogue. This information was and will be used in determining the seismic risk of buildings and facilities located at the Idaho National Engineering Laboratory.« less

  5. Geochemistry of groundwater in the eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, eastern Idaho

    USGS Publications Warehouse

    Rattray, Gordon W.

    2018-05-30

    Nuclear research activities at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) in eastern Idaho produced radiochemical and chemical wastes that were discharged to the subsurface, resulting in detectable concentrations of some waste constituents in the eastern Snake River Plain (ESRP) aquifer. These waste constituents may pose risks to the water quality of the aquifer. In order to understand these risks to water quality the U.S. Geological Survey, in cooperation with the DOE, conducted a study of groundwater geochemistry to improve the understanding of hydrologic and chemical processes in the ESRP aquifer at and near the INL and to understand how these processes affect waste constituents in the aquifer.Geochemistry data were used to identify sources of recharge, mixing of water, and directions of groundwater flow in the ESRP aquifer at the INL. The geochemistry data were analyzed from 167 sample sites at and near the INL. The sites included 150 groundwater, 13 surface-water, and 4 geothermal-water sites. The data were collected between 1952 and 2012, although most data collected at the INL were collected from 1989 to 1996. Water samples were analyzed for all or most of the following: field parameters, dissolved gases, major ions, dissolved metals, isotope ratios, and environmental tracers.Sources of recharge identified at the INL were regional groundwater, groundwater from the Little Lost River (LLR) and Birch Creek (BC) valleys, groundwater from the Lost River Range, geothermal water, and surface water from the Big Lost River (BLR), LLR, and BC. Recharge from the BLR that may have occurred during the last glacial epoch, or paleorecharge, may be present at several wells in the southwestern part of the INL. Mixing of water at the INL primarily included mixing of surface water with groundwater from the tributary valleys and mixing of geothermal water with regional groundwater. Additionally, a zone of mixing between tributary valley water and

  6. SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. Thismore » is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.« less

  8. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Coldmore » Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less

  9. Iodine-129 in the Snake River Plain Aquifer at and Near the Idaho National Laboratory, Idaho, 2003 and 2007

    USGS Publications Warehouse

    Bartholomay, Roy C.

    2009-01-01

    From 1953 to 1988, wastewater containing approximately 0.94 curies of iodine-129 (129I) was generated at the Idaho National Laboratory (INL) in southeastern Idaho. Almost all of this wastewater was discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC) on the INL site. Most of the wastewater was discharged directly into the eastern Snake River Plain aquifer through a deep disposal well until 1984; however, some wastewater also was discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. In 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, collected samples for 129I from 36 wells used to monitor the Snake River Plain aquifer, and from one well used to monitor a perched zone at the INTEC. Concentrations of 129I in the aquifer ranged from 0.0000066 +- 0.0000002 to 0.72 +- 0.051 picocuries per liter (pCi/L). Many wells within a 3-mile radius of the INTEC showed decreases of as much as one order of magnitude in concentration from samples collected during 1990-91, and all of the samples had concentrations less than the Environmental Protection Agency's Maximum Contaminant Level (MCL) of 1 pCi/L. The average concentration of 129I in 19 wells sampled during both collection periods decreased from 0.975 pCi/L in 1990-91 to 0.249 pCi/L in 2003. These decreases are attributed to the discontinuation of disposal of 129I in wastewater after 1988 and to dilution and dispersion in the aquifer. Although water from wells sampled in 2003 near the INTEC showed decreases in concentrations of 129I compared with data collected in 1990-91, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed slight increases. These slight increases may be related to variable discharge rates of wastewater that eventually moved to these well locations as a mass of water from a particular disposal period. In 2007, the USGS collected samples for

  10. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to themore » Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  11. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were dischargedmore » to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  12. Chemical Constituents in Groundwater from Multiple Zones in the Eastern Snake River Plain Aquifer at the Idaho National Laboratory, Idaho, 2005-08

    USGS Publications Warehouse

    Bartholomay, Roy C.; Twining, Brian V.

    2010-01-01

    From 2005 to 2008, the U.S. Geological Survey's Idaho National Laboratory (INL) Project office, in cooperation with the U.S. Department of Energy, collected water-quality samples from multiple water-bearing zones in the eastern Snake River Plain aquifer. Water samples were collected from six monitoring wells completed in about 350-700 feet of the upper part of the aquifer, and the samples were analyzed for major ions, selected trace elements, nutrients, selected radiochemical constituents, and selected stable isotopes. Each well was equipped with a multilevel monitoring system containing four to seven sampling ports that were each isolated by permanent packer systems. The sampling ports were installed in aquifer zones that were highly transmissive and that represented the water chemistry of the top four to five model layers of a steady-state and transient groundwater-flow model. The model's water chemistry and particle-tracking simulations are being used to better define movement of wastewater constituents in the aquifer. The results of the water chemistry analyses indicated that, in each of four separate wells, one zone of water differed markedly from the other zones in the well. In four wells, one zone to as many as five zones contained radiochemical constituents that originated from wastewater disposal at selected laboratory facilities. The multilevel sampling systems are defining the vertical distribution of wastewater constituents in the eastern Snake River Plain aquifer and the concentrations of wastewater constituents in deeper zones in wells Middle 2051, USGS 132, and USGS 103 support the concept of groundwater flow deepening in the southwestern part of the INL.

  13. U.S. hydropower resource assessment for Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based onmore » the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.« less

  14. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1992

    USGS Publications Warehouse

    Bartholomay, R.C.; Edwards, D.D.; Campbell, L.J.

    1994-01-01

    Dissolved concentrations of radon-222, a naturally occurring radioactive gas, are found in water in Idaho. The U.S. Geological Survey collected water samples for radon-222 analyses from 339 Idaho wells and springs during 1989-91. These water samples were collected as part of ongoing monitoring programs with the Idaho Department of Water Resources and the U.S. Department of Energy. Concentrations of dissolved radon-222 ranged from -58+30 to 5,715+66 picocuries per liter; the mean and median concentrations were 446+35 and 242+25 picocuries per liter, respectively.

  15. First report of Ascochyta blight of Spotted Locoweed (Astragalus lentiginosus) caused by Ascochyta sp. in Idaho

    USDA-ARS?s Scientific Manuscript database

    Characteristic Ascochyta blight lesions were observed on leaves and pods of spotted locoweed (Astragalus lentiginosus) growing at two sites in Twin Falls and Owyhee County, Idaho, USA in June 2005. Lesions appeared similar to those induced by Ascochyta spp. on other wild and cultivated legumes, i.e....

  16. Evaluation of Sampling Recommendations From the Influenza Virologic Surveillance Right Size Roadmap for Idaho.

    PubMed

    Rosenthal, Mariana; Anderson, Katey; Tengelsen, Leslie; Carter, Kris; Hahn, Christine; Ball, Christopher

    2017-08-24

    The Right Size Roadmap was developed by the Association of Public Health Laboratories and the Centers for Disease Control and Prevention to improve influenza virologic surveillance efficiency. Guidelines were provided to state health departments regarding representativeness and statistical estimates of specimen numbers needed for seasonal influenza situational awareness, rare or novel influenza virus detection, and rare or novel influenza virus investigation. The aim of this study was to compare Roadmap sampling recommendations with Idaho's influenza virologic surveillance to determine implementation feasibility. We calculated the proportion of medically attended influenza-like illness (MA-ILI) from Idaho's influenza-like illness surveillance among outpatients during October 2008 to May 2014, applied data to Roadmap-provided sample size calculators, and compared calculations with actual numbers of specimens tested for influenza by the Idaho Bureau of Laboratories (IBL). We assessed representativeness among patients' tested specimens to census estimates by age, sex, and health district residence. Among outpatients surveilled, Idaho's mean annual proportion of MA-ILI was 2.30% (20,834/905,818) during a 5-year period. Thus, according to Roadmap recommendations, Idaho needs to collect 128 specimens from MA-ILI patients/week for situational awareness, 1496 influenza-positive specimens/week for detection of a rare or novel influenza virus at 0.2% prevalence, and after detection, 478 specimens/week to confirm true prevalence is ≤2% of influenza-positive samples. The mean number of respiratory specimens Idaho tested for influenza/week, excluding the 2009-2010 influenza season, ranged from 6 to 24. Various influenza virus types and subtypes were collected and specimen submission sources were representative in terms of geographic distribution, patient age range and sex, and disease severity. Insufficient numbers of respiratory specimens are submitted to IBL for influenza

  17. Decontamination and deactivation of the power burst facility at the Idaho National Laboratory.

    PubMed

    Greene, Christy Jo

    2007-05-01

    Successful decontamination and deactivation of the Power Burst Facility located at the Idaho National Laboratory was accomplished through the use of extensive planning, job sequencing, engineering controls, continuous radiological support, and the use of a dedicated group of experienced workers. Activities included the removal and disposal of irradiated fuel, miscellaneous reactor components and debris stored in the canal, removal and disposition of a 15.6 curie Pu:Be start-up source, removal of an irradiated in-pile tube, and the removal of approximately 220,000 pounds of lead that was used as shielding primarily in Cubicle 13. The canal and reactor vessel were drained and water was transferred to an evaporation tank adjacent to the facility. The canal was decontaminated using underwater divers, and epoxy was affixed to the interior surfaces of the canal to contain loose contamination. The support structures and concrete or steel frame walls that form the confinement were left in place. The reactor core was left in place and a carbon steel shielding plate was placed over the reactor core to reduce radiation levels. All low-level waste and mixed low level waste generated as a result of the work activities was characterized and disposed.

  18. CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL AERIAL VIEW OF "EXCLUSION" MTR AREA WITH IDAHO CHEMICAL PROCESSING PLANT IN BACKGROUND AT CENTER TOP OF VIEW. CAMERA FACING EAST. EXCLUSION GATE HOUSE AT LEFT OF VIEW. BEYOND MTR BUILDING AND ITS WING, THE PROCESS WATER BUILDING AND WORKING RESERVOIR ARE LEFT-MOST. FAN HOUSE AND STACK ARE TO ITS RIGHT. PLUG STORAGE BUILDING IS RIGHT-MOST STRUCTURE. NOTE FAN LOFT ABOVE MTR BUILDING'S ONE-STORY WING. THIS WAS LATER CONVERTED FOR OFFICES. INL NEGATIVE NO. 3610. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Analysis of Idaho fire service education

    NASA Astrophysics Data System (ADS)

    Roberts, Walter O.

    1999-01-01

    Becoming a career fire fighter in the state of Idaho requires specialized knowledge and training. Fire science education at Idaho colleges and universities is available only to people who are affiliated with a fire department. Law enforcement curriculum, on the other hand, is available to any interested persons. A student in law enforcement can attend the Police Officers Standards and Training (POST) academy or participate in classes in one of Idaho's institutions for higher education. There are no fire academies in Idaho. Applicants wanting to become professional fire fighters in Idaho are required to compete with applicants from other states; many of whom have had prior fire education and training. Resident Idaho fire fighter applicants are at a disadvantage when applying for Idaho fire fighting positions. Because of this apparent need, I surveyed the Idaho fire chiefs, using a research instrument I developed in a graduate field research class. I wrote the research instrument to determine the educational needs of the Idaho fire service. The College of Southern Idaho (CSI) and the Idaho Fire Chiefs Association (IFCA) were the recipients of this survey. This report, Analysis of Idaho Fire Service Education, describes that research process from beginning to end.

  20. Evaluation of field sampling and preservation methods for strontium-90 in ground water at the Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cecil, L.D.; Knobel, L.L.; Wegner, S.J.

    1989-09-01

    From 1952 to 1988, about 140 curies of strontium-90 have been discharged in liquid waste to disposal ponds and wells at the INEL (Idaho National Engineering Laboratory). The US Geological Survey routinely samples ground water from the Snake River Plain aquifer and from discontinuous perched-water zones for selected radionuclides, major and minor ions, and chemical and physical characteristics. Water samples for strontium-90 analyses collected in the field are unfiltered and preserved to an approximate 2-percent solution with reagent-grade hydrochloric acid. Water from four wells completed in the Snake River Plain aquifer was sampled as part of the US Geological Survey'smore » quality-assurance program to evaluate the effect of filtration and preservation methods on strontium-90 concentrations in ground water at the INEL. The wells were selected for sampling on the basis of historical concentrations of strontium-90 in ground water. Water from each well was filtered through either a 0.45- or a 0.1-micrometer membrane filter; unfiltered samples also were collected. Two sets of filtered and two sets of unfiltered water samples were collected at each well. One set of water samples was preserved in the field to an approximate 2-percent solution with reagent-grade hydrochloric acid and the other set of samples was not acidified. 13 refs., 2 figs., 6 tabs.« less

  1. 40 CFR 81.313 - Idaho.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../15/90 Unclassifiable Lewiston 11/15/90 Unclassifiable Remainder of AQCR 62 (Idaho portion) 11/15/90... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Idaho. 81.313 Section 81.313... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.313 Idaho. Idaho...

  2. 40 CFR 81.313 - Idaho.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../15/90 Unclassifiable Lewiston 11/15/90 Unclassifiable Remainder of AQCR 62 (Idaho portion) 11/15/90... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Idaho. 81.313 Section 81.313... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.313 Idaho. Idaho...

  3. 40 CFR 81.313 - Idaho.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../15/90 Unclassifiable Lewiston 11/15/90 Unclassifiable Remainder of AQCR 62 (Idaho portion) 11/15/90... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Idaho. 81.313 Section 81.313... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.313 Idaho. Idaho...

  4. 40 CFR 81.313 - Idaho.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Unclassifiable Lewiston 11/15/90 Unclassifiable Remainder of AQCR 62 (Idaho portion) 11/15/90 Unclassifiable... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Idaho. 81.313 Section 81.313... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.313 Idaho. Idaho...

  5. 40 CFR 81.313 - Idaho.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../15/90 Unclassifiable Lewiston 11/15/90 Unclassifiable Remainder of AQCR 62 (Idaho portion) 11/15/90... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Idaho. 81.313 Section 81.313... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.313 Idaho. Idaho...

  6. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  7. Can MOND type hypotheses be tested in a free fall laboratory environment?

    NASA Astrophysics Data System (ADS)

    Das, Saurya; Patitsas, S. N.

    2013-05-01

    The extremely small accelerations of objects required for the onset of modified Newtonian dynamics, or modified Newtonian dynamics (MOND), makes testing the hypothesis in conventional terrestrial laboratories virtually impossible. This is due to the large background acceleration of Earth, which is transmitted to the acceleration of test objects within an apparatus. We show, however, that it may be possible to test MOND-type hypotheses with experiments using a conventional apparatus capable of tracking very small accelerations of its components but performed in locally inertial frames such as artificial satellites and other freely falling laboratories. For example, experiments involving an optical interferometer or a torsion balance in these laboratories would show nonlinear dynamics and displacement amplitudes larger than expected. These experiments may also be able to test potential violations of the strong equivalence principle by MOND and to distinguish between its two possible interpretations (modified inertia and modified gravity).

  8. 77 FR 38620 - Idaho Power Company; Notice of Application for Amendment of License And Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Falls Hydroelectric Project. f. Location: The project is located in south-central Idaho on the Snake... reproduction at the Commission's Public Reference Room, located at 888 First Street NE., Room 2A, Washington... inspection and reproduction at the address in item (h) above. m. Individuals desiring to be included on the...

  9. 77 FR 38618 - Idaho Power Company; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Falls Hydroelectric Project. f. Location: The project is located in south-central Idaho on the Snake... inspection and reproduction at the Commission's Public Reference Room, located at 888 First Street NE., Room... inspection and reproduction at the address in item (h) above. m. Individuals desiring to be included on the...

  10. Idaho Region IV Fourth-Grade Teachers' Perceptions about the Educational Influence of Idaho State Achievement Standards and the Idaho State Achievement Tests

    ERIC Educational Resources Information Center

    Wiggins, Annette Marie

    2010-01-01

    The purpose of this study was to explore Idaho Region IV fourth-grade teachers' perceptions regarding the educational influence of Idaho State Achievement Standards and the Idaho Standards Achievement Tests (ISAT) in language usage, reading, and math. Differences between subgroups based on teacher/school demographics, specifically, teachers'…

  11. Assessment of the Geothermal System Near Stanley, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent Armstrong; John Welhan; Mike McCurry

    2012-06-01

    The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possiblemore » local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGS’s effort for the National Geothermal Data System’s (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.« less

  12. Gravity survey in part of the Snake River Plain, Idaho - a preliminary report

    USGS Publications Warehouse

    Baldwin, Harry L.; Hill, David P.

    1960-01-01

    During the early summer of 1959, a total of 1,187 gravity stations were occupied on the western part of the Snake River plain in Idaho. An area of 2,000 square miles extending from Glenns Ferry, Idaho, to Caldwell, Idaho, was covered with a station density of one station per two square miles. An additional 1,200 square miles of surrounding area, mainly from Caldwell, Idaho, to the Oregon-Idaho state line, was covered with a density of one station per seven square miles. The mean reproducibility of the observed gravities of these stations was 0.05 milligal, with a maximum discrepancy of 0.2 milligal. Gravity data were reduced to simple Bouguer values using a combined free-air and Bouguer correction of 0.06 milligal per foot. The only anomalies found with closure in excess of 10 milligals are two elongated highs, orientated northwest-southeast, with the northwestern high offset to the northeast by 10 miles. The smaller of these highs extends from Meridian, Idaho, to Nyssa, Oregon, and the larger extends from Swan Falls, Idaho, to Glenns Ferry, Idaho. The maximum value recorded is a simple Bouguer value of -66.5 milligals with respect to the International Ellipsoid. Gradients on the sides of these highs are largest on the northeast sides, reaching six milligals per mile in places. Graticule interpretations of a profile across the southeastern high using a density contrast of 0.3 gm per cubic centimeter indicate an accumulation of lava reaching a thickness of at least 28,000 feet. The Snake River investigation was made for the purpose of searching out, defining, and interpreting gravity anomalies present on the western part of the Snake River lava plain in Idaho. In particular, it was desired to further define gradients associated with the gravity high shown by the regional work of Bonini and Lavin (1957). It was not planned to cover any specific area, but rather to let the observed anomalies determine the course of the field work. The study was undertaken as part of a

  13. 2016 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015–October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Permit required groundwater monitoring data • Status of compliance activities • Issues • Discussion of the facility’s environmental impacts. Duringmore » the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds. Sulfate and total dissolved solids concentrations decrease rapidly as the distance downgradient from the Cold Waste Ponds increases. Although concentrations of sulfate and total dissolved solids are significantly higher in well USGS-065 than in the other monitoring wells, both parameters remained below the Ground Water Quality Rule Secondary Constituent Standards in well USGS-065. The facility was in compliance with the Reuse Permit during the 2016 permit year.« less

  14. Chlorine-36 in Water, Snow, and Mid-Latitude Glacial Ice of North America: Meteoric and Weapons-Tests Production in the Vicinity of the Idaho National Engineering and Environmental Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. DeWayne; J. R. Green; S. Vogt, P. Sharma

    1999-01-01

    Measurements of chlorine-36 (36Cl) were made for 64 water, snow, and glacial-ice and -runoff samples to determine the meteoric and weapons-tests-produced concentrations and fluxes of this radionuclide at mid-latitudes in North America. The results will facilitate the use of 36Cl as a hydrogeologic tracer at the Idaho National Engineering and Environmental Laboratory (INEEL). This information was used to estimate meteoric and weapons-tests contributions of this nuclide to environmental inventories at and near the INEEL. The data presented in this report suggest a meteoric source 36Cl for environmental samples collected in southeastern Idaho and western Wyoming if the concentration is lessmore » than 1 x 10 7 atoms/L. Additionally, concentrations in water, snow, or glacial ice between 1 x 10 7 and 1 x 10 8 atoms/L may be indicative of a weapons-tests component from peak 36Cl production in the late 1950s. Chlorine-36 concentrations between 1 x 10 8 and 1 x 10 9 atoms/L may be representative of re-suspension of weapons-tests fallout airborne disposal of 36Cl from the INTEC, or evapotranspiration. It was concluded from the water, snow, and glacial data presented here that concentrations of 36Cl measured in environmental samples at the INEEL larger than 1 x 10 9 atoms/L can be attributed to waste-disposal practices.« less

  15. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  16. Review of the transport of selected radionuclides in the interim risk assessment for the Radioactive Waste Management Complex, Waste Area Group 7 Operable Unit 7-13/14, Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.

    2005-01-01

    The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.

  17. Tracer Studies to Characterize the Effects of Roadside Noise Barriers on Near-Road Pollutant Dispersion under Varying Atmospheric Stability Conditions

    EPA Science Inventory

    A roadway toxics dispersion study was conducted by the Field Research Division (FRD) of NOAA at the Idaho National Laboratory (INL) near Idaho Falls, ID to document the effects on concentrations of roadway emissions behind a roadside sound barrier in various conditions of atmosph...

  18. Geostatistical Modeling of Sediment Abundance in a Heterogeneous Basalt Aquifer at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Welhan, John A.; Farabaugh, Renee L.; Merrick, Melissa J.; Anderson, Steven R.

    2007-01-01

    The spatial distribution of sediment in the eastern Snake River Plain aquifer was evaluated and modeled to improve the parameterization of hydraulic conductivity (K) for a subregional-scale ground-water flow model being developed by the U.S. Geological Survey. The aquifer is hosted within a layered series of permeable basalts within which intercalated beds of fine-grained sediment constitute local confining units. These sediments have K values as much as six orders of magnitude lower than the most permeable basalt, and previous flow-model calibrations have shown that hydraulic conductivity is sensitive to the proportion of intercalated sediment. Stratigraphic data in the form of sediment thicknesses from 333 boreholes in and around the Idaho National Laboratory were evaluated as grouped subsets of lithologic units (composite units) corresponding to their relative time-stratigraphic position. The results indicate that median sediment abundances of the stratigraphic units below the water table are statistically invariant (stationary) in a spatial sense and provide evidence of stationarity across geologic time, as well. Based on these results, the borehole data were kriged as two-dimensional spatial data sets representing the sediment content of the layers that discretize the ground-water flow model in the uppermost 300 feet of the aquifer. Multiple indicator kriging (mIK) was used to model the geographic distribution of median sediment abundance within each layer by defining the local cumulative frequency distribution (CFD) of sediment via indicator variograms defined at multiple thresholds. The mIK approach is superior to ordinary kriging because it provides a statistically best estimate of sediment abundance (the local median) drawn from the distribution of local borehole data, independent of any assumption of normality. A methodology is proposed for delineating and constraining the assignment of hydraulic conductivity zones for parameter estimation, based on the

  19. Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment.more » By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.« less

  20. A layered approach to technology transfer of AVIRIS between Earth Search Sciences, Inc. and the Idaho National Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Ferguson, James S.; Ferguson, Joanne E.; Peel, John, III; Vance, Larry

    1995-01-01

    Since initial contact between Earth Search Sciences, Inc. (ESSI) and the Idaho National Engineering Laboratory (INEL) in February, 1994, at least seven proposals have been submitted in response to a variety of solicitations to commercialize and improve the AVIRIS instrument. These proposals, matching ESSI's unique position with respect to agreements with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) to utilize, miniaturize, and commercialize the AVIRIS instrument and platform, are combined with the applied engineering of the INEL. Teaming ESSI, NASA/JPL, and INEL with diverse industrial partners has strengthened the respective proposals. These efforts carefully structure the overall project plans to ensure the development, demonstration, and deployment of this concept to the national and international arenas. The objectives of these efforts include: (1) developing a miniaturized commercial, real-time, cost effective version of the AVIRIS instrument; (2) identifying multiple users for AVIRIS; (3) integrating the AVIRIS technology with other technologies; (4) gaining the confidence/acceptance of other government agencies and private industry in AVIRIS; and (5) increasing the technology base of U.S. industry.

  1. Methods to determine pumped irrigation-water withdrawals from the Snake River between Upper Salmon Falls and Swan Falls Dams, Idaho, using electrical power data, 1990-95

    USGS Publications Warehouse

    Maupin, Molly A.

    1999-01-01

    Pumped withdrawals compose most of the irrigation-water diversions from the Snake River between Upper Salmon Falls and Swan Falls Dams in southwestern Idaho. Pumps at 32 sites along the reach lift water as high as 745 feet to irrigate croplands on plateaus north and south of the river. The number of pump sites at which withdrawals are being continuously measured has been steadily decreasing, from 32 in 1990 to 7 in 1998. A cost-effective and accurate means of estimating annual irrigation-water withdrawals at pump sites that are no longer continuously measured was needed. Therefore, the U.S. Geological Survey began a study in 1998, as part of its Water-Use Program, to determine power-consumption coeffi- cients (PCCs) for each pump site so that withdrawals could be estimated by using electrical powerconsumption and total head data. PCC values for each pump site were determined by using withdrawal data that were measured by the U.S. Geological Survey during 1990–92 and 1994–95, energy data reported by Idaho Power Company during the same period, and total head data collected at each site during a field inventory in 1998. Individual average annual withdrawals for the 32 pump sites ranged from 1,120 to 44,480 acre-feet; average PCC values ranged from 103 to 1,248 kilowatthours per acre-foot. During the 1998 field season, power demand, total head, and withdrawal at 18 sites were measured to determine 1998 PCC values. Most of the 1998 PCC values were within 10 percent of the 5-year average, which demonstrates that withdrawals for a site that is no longer continuously measured can be calculated with reasonable accuracy by using the PCC value determined from this study and annual power-consumption data. K-factors, coefficients that describe the amount of energy necessary to lift water, were determined for each pump site by using values of PCC and total head and ranged from 1.11 to 1.89 kilowatthours per acre-foot per foot. Statistical methods were used to define the

  2. University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program

    NASA Astrophysics Data System (ADS)

    Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

    2006-12-01

    Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on

  3. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, C.; Givens, C.; Bhatt, R.

    2003-02-24

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less

  4. Quality of ground water in Idaho

    USGS Publications Warehouse

    Yee, Johnson J.; Souza, William R.

    1987-01-01

    The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

  5. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  6. Fall Protection Introduction, #33462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chochoms, Michael

    The proper use of fall prevention and fall protection controls can reduce the risk of deaths and injuries caused by falls. This course, Fall Protection Introduction (#33462), is designed as an introduction to various types of recognized fall prevention and fall protection systems at Los Alamos National Laboratory (LANL), including guardrail systems, safety net systems, fall restraint systems, and fall arrest systems. Special emphasis is given to the components, inspection, care, and storage of personal fall arrest systems (PFASs). This course also presents controls for falling object hazards and emergency planning considerations for persons who have fallen.

  7. Laboratory Impacts 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The laboratory impacts at Idaho National Lab consist of neutron radiography reactor doubles throughput; electric vehicle wireless charging; assessing chemical weapons in Panama; hot cell window replacement; developing better batteries and other impacts.

  8. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X, Zhang; J. E. O'Brien; R. C. O'Brien

    2012-07-01

    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupportedmore » and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.« less

  9. 36 CFR 294.22 - Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Idaho Roadless Areas. 294.22... Idaho Roadless Area Management § 294.22 Idaho Roadless Areas. (a) Designations. All National Forest System lands within the State of Idaho listed in § 294.29 are hereby designated as Idaho Roadless Areas...

  10. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less

  11. Historic American Landscapes Survey: Arco Naval Proving Ground (Idaho National Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Christina; Holmer, Marie; Gilbert, Hollie

    Based on historical evaluations in 1993 and 1997, historians determined that the then-remaining Arco NPG structures were significant to the nation’s history through their association with World War II . Through ensuing discussions with the SHPO, it was further determined that the infrastructure and associated landscape were also significant. According to provisions of INL’s Cultural Resource Management Plan (CRMP) as legitimized through a 2004 Programmatic Agreement between DOE-ID, the Idaho State Historic Preservation Office (SHPO), and Advisory Council on Historic Preservation (ACHP) historians identified the World War II structures as DOE “Signature Properties”. As defined by DOE-HQ, Signature Properties “denotemore » its [DOE’s] most historically important properties across the complex…and/or those properties that are viewed as having tourism potential.” The INL is a secure site and the INL land and structures are not accessible to the public and, therefore have no “tourism potential”. Although DOE-ID actively sought other uses for the vacant, unused buildings, none were identified and the buildings present safety and health concerns. A condition assessment found lead based paint, asbestos, rodent infestation/droppings, small animal carcasses, mold, and, in CF-633, areas of radiological contamination. In early 2013, DOE-ID notified the Idaho SHPO, ACHP, and, as required by the INL CRMP and PA, DOE-Headquarters Federal Preservation Officer, of their intent to demolish the vacant buildings (CF-606, CF-607, CF-613, CF-632, and CF-633). The proposed “end-state” of the buildings will be either grass and/or gravel pads. Through the NHPA Section 106 consultation process, measures to mitigate the adverse impacts of demolition were determined and agreed to through a Memorandum of Agreement (MOA) between DOE-ID, SHPO, and ACHP. The measures include the development and installation of interpretive signs to be placed at a publicly accessible

  12. 40 CFR 81.410 - Idaho.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Idaho. 81.410 Section 81.410... Visibility Is an Important Value § 81.410 Idaho. Area name Acreage Public Law establishing Federal land...,800 acres are in Idaho. 2 Selway Bitterroot Wilderness, 1,240,700 acres overall, of which 988,700...

  13. 75 FR 62137 - Notice of Intent To Collect Fees on Public Land in Fremont County, Idaho, Upper Snake Field...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... recreation fee business plan for Egin was completed and reviewed by the Idaho Falls District Resource... in accordance with the Egin Lakes Access Recreation Site Business Plan, consultation with the RAC... Medicine Lodge Resource Management Plan (1985), and the Egin Lakes Area was identified and analyzed for day...

  14. Numerical modeling of subsurface radioactive solute transport from waste seepage ponds at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Robertson, John B.

    1976-01-01

    Aqueous chemical and low-level radioactive effluents have been disposed to seepage ponds since 1952 at the Idaho National Engineering Laboratory. The solutions percolate toward the Snake River Plain aquifer (135 m below) through interlayered basalts and unconsolidated sediments and an extensive zone of ground water perched on a sedimentary layer about 40 m beneath the ponds. A three-segment numerical model was developed to simulate the system, including effects of convection, hydrodynamic dispersion, radioactive decay, and adsorption. Simulated hydraulics and solute migration patterns for all segments agree adequately with the available field data. The model can be used to project subsurface distributions of waste solutes under a variety of assumed conditions for the future. Although chloride and tritium reached the aquifer several years ago, the model analysis suggests that the more easily sorbed solutes, such as cesium-137 and strontium-90, would not reach the aquifer in detectable concentrations within 150 years for the conditions assumed. (Woodard-USGS)

  15. Idaho traffic collisions, 2004

    DOT National Transportation Integrated Search

    2004-01-01

    Idaho Traffic Collisions 2004 provides an annual description of motor vehicle collision characteristics for Idaho. : This document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibilit...

  16. Idaho traffic collisions, 2006

    DOT National Transportation Integrated Search

    2006-01-01

    Idaho Traffic Collisions 2006 provides an annual description of motor vehicle collision characteristics for Idaho. : This document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibilit...

  17. Idaho traffic collisions, 2002

    DOT National Transportation Integrated Search

    2002-01-01

    Idaho Traffic Collisions 2002 provides an annual description of motor vehicle collision characteristics for : Idaho. This document is used by state and local transportation, law enforcement, health, and other agencies : charged with the responsibilit...

  18. Idaho traffic collisions, 2003

    DOT National Transportation Integrated Search

    2003-01-01

    Idaho Traffic Collisions 2003 provides an annual description of motor vehicle collision characteristics for Idaho. : This document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibilit...

  19. Idaho traffic collisions, 2000

    DOT National Transportation Integrated Search

    2000-01-01

    Idaho Traffic Collisions 2000 provides an annual description of collision characteristics for Idaho. This : document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibility of coping wi...

  20. Idaho traffic collisions, 2005

    DOT National Transportation Integrated Search

    2005-01-01

    Idaho Traffic Collisions 2005 provides an annual description of motor vehicle collision characteristics for Idaho. This document is used by state and local transportation, law enforcement, health, and other agencies charged with the responsibility of...

  1. Teton Dam flood of June 1976, Firth quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Firth quadrangle. (Woodard-USGS)

  2. Teton Dam flood of June 1976, Rose quadrangle, Idaho

    USGS Publications Warehouse

    Bartells, John H.; Hubbard, Larry L.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rose quadrangle. (Woodard-USGS)

  3. Teton Dam flood of June 1976, Rexburg quadrangle, Idaho

    USGS Publications Warehouse

    Harenberg, W.A.; Bigelow, B.B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification on these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rexburg quadrangle. (Woodard-USGS)

  4. Teton Dam flood of June 1976, Parker quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil Albert; Ray, Herman A.

    1976-01-01

    The failure of Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls, Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Parker quadrangle. (Woodard-USGS)

  5. Teton Dam flood of June 1976, Woodville quadrangle, Idaho

    USGS Publications Warehouse

    Matthai, Howard F.; Ray, Herman A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Woodville quadrangle. (Woodard-USGS)

  6. Teton Dam flood of June 1976, Lewisville quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Lewisville quadrangle. (Woodard-USGS)

  7. Teton Dam flood of June 1976, Pingree quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Pingree quadrangle. (Woodard-USGS)

  8. Teton Dam flood of June 1976, Blackfoot quadrangle, Idaho

    USGS Publications Warehouse

    Bartells, J.H.; Hubbard, Larry L.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Blackfoot quadrangle. (Woodard-USGS)

  9. Teton Dam flood of June 1976, Moreland quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The aea covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moreland quadrangle. (Woodard-USGS)

  10. Teton Dam flood of June 1976, Rigby quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rigby quadrangle. (Woodard-USGS)

  11. Teton Dam flood of June 1976, Newdale quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.; Thomas, Cecil A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Newdale quadrangle. (Woodard-USGS)

  12. Teton Dam flood of June 1976, Moody quadrangle, Idaho

    USGS Publications Warehouse

    Harenberg, William A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moody quadrangle. (Woodard-USGS)

  13. Factors influencing nesting success of burrowing owls in southeastern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, R.S.; Johnson, D.R.

    1985-01-31

    A burrowing owl (Athene cunicularia) population nesting on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho utilized burrows excavated by badgers (Taxidea taxus) or natural cavities in lava flows as nesting sites. The size of the population was small (N = 13-14 pairs) in relation to the number of available nesting sites, suggesting that factors other than burrow availability limited this population. Rodents and Jerusalem crickets (Stenopelmatus fuscus) represented the primary prey utilized during the nesting season. This population demonstrated both a numerical (brood size) and functional (dietary) response to a decrease in the density of three species ofmore » rodents on the INEL during a drought in 1977. 11 references, 1 figure, 2 table.« less

  14. Idaho traffic collisions, 2001

    DOT National Transportation Integrated Search

    2001-01-01

    Idaho Traffic Collisions 2001 provides an annual description of collision characteristics for Idaho. This document is used by state and local transportation, law enforcement, health, and other agencies charged with the responsibility of coping with t...

  15. Drilling, construction, geophysical log data, and lithologic log for boreholes USGS 142 and USGS 142A, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Hodges, Mary K.V.; Schusler, Kyle; Mudge, Christopher

    2017-07-27

    Starting in 2014, the U.S. Geological Survey in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 142 and USGS 142A for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 142 initially was cored to collect rock and sediment core, then re-drilled to complete construction as a screened water-level monitoring well. Borehole USGS 142A was drilled and constructed as a monitoring well after construction problems with borehole USGS 142 prevented access to upper 100 feet (ft) of the aquifer. Boreholes USGS 142 and USGS 142A are separated by about 30 ft and have similar geology and hydrologic characteristics. Groundwater was first measured near 530 feet below land surface (ft BLS) at both borehole locations. Water levels measured through piezometers, separated by almost 1,200 ft, in borehole USGS 142 indicate upward hydraulic gradients at this location. Following construction and data collection, screened water-level access lines were placed in boreholes USGS 142 and USGS 142A to allow for recurring water level measurements.Borehole USGS 142 was cored continuously, starting at the first basalt contact (about 4.9 ft BLS) to a depth of 1,880 ft BLS. Excluding surface sediment, recovery of basalt, rhyolite, and sediment core at borehole USGS 142 was approximately 89 percent or 1,666 ft of total core recovered. Based on visual inspection of core and geophysical data, material examined from 4.9 to 1,880 ft BLS in borehole USGS 142 consists of approximately 45 basalt flows, 16 significant sediment and (or) sedimentary rock layers, and rhyolite welded tuff. Rhyolite was encountered at approximately 1,396 ft BLS. Sediment layers comprise a large percentage of the borehole between 739 and 1,396 ft BLS with grain sizes ranging from clay and silt to cobble size. Sedimentary rock layers had calcite cement. Basalt flows

  16. Idaho traffic crashes, 2007

    DOT National Transportation Integrated Search

    2007-01-01

    Idaho Traffic Crashes 2007 provides an annual description of motor vehicle crash characteristics for : crashes that have occurred within the State of Idaho. This document is used by state and local : transportation, law enforcement, health, and other...

  17. Availability and chemistry of ground water on the Bruneau Plateau and adjacent eastern plain in Twin Falls County, south-central Idaho

    USGS Publications Warehouse

    Moffatt, R.L.; Jones, M.L.

    1984-01-01

    The Bruneau plateau in south-central Idaho consists of about 889 ,600 acres of potentially irrigable land. About 112,200 of these acres have been developed for agriculture; 11,200 acres are irrigated with ground water, and the remaining acreage is irrigated with water from the Snake and Bruneau rivers and Salmon Falls Creek. On the basis of present usage, about 158,000 acre-feet of water per year are needed to develop an additional 63,000 acres. About 438,000 acre-feet per year are needed to irrigate existing and newly developed lands in dry years when streamflow in the Snake River at Milner Dam is inadequate to meet appropriated needs. Pumping lifts of about 400-600 feet and low well yields on the Bruneau plateau probably preclude large-scale irrigation development solely from local ground-water resources. However, supplemental sources of irrigation water are available from a perched-water aquifer, a thermal aquifer, and the regional aquifer adjacent to the plateau. About 100,000-115,000 acre-feet per year of water probably could be withdrawn from the perched and regional aquifers and conveyed to the plateau without serious impact on local ground-water resources. The amount of water that could be safely withdrawn from the thermal aquifer was not determined. (USGS)

  18. Idaho traffic crashes, 2009

    DOT National Transportation Integrated Search

    2009-01-01

    Idaho Traffic Crashes 2009 provides an annual description of motor vehicle crash characteristics for : crashes that have occurred on public roads within the State of Idaho. This document is used by state and : local transportation, law enforcement, h...

  19. Idaho traffic crashes, 2008

    DOT National Transportation Integrated Search

    2008-01-01

    Idaho Traffic Crashes 2008 provides an annual description of motor vehicle crash characteristics for : crashes that have occurred on public roads within the State of Idaho. This document is used by state and : local transportation, law enforcement, h...

  20. Characteristics and adaptive strategies linked with falls in stroke survivors from analysis of laboratory-induced falls

    PubMed Central

    Honeycutt, Claire F.; Nevisipour, Masood; Grabiner, Mark D.

    2016-01-01

    Falls are the most common and expensive medical complication in stroke survivors. There is remarkably little information about what factors lead to a fall in stroke survivors. With few exceptions, the falls literature in stroke has focused on relating metrics of static balance and impairment to fall outcomes in the acute care setting or in community. While informative, these studies provide little information about what specific impairments in a stroke-survivor’s response to dynamic balance challenges lead to a fall. We identified the key kinematic characteristics of stroke survivors’ stepping responses following a balance disturbance that are associated with a fall following dynamic balance challenges. Stroke survivors were exposed to posteriorly-directed translations of a treadmill belt that elicited a stepping response. Kinematics were compared between successful and failed recovery attempts (i.e. a fall). We found that the ability to arrest and reverse trunk flexion and the ability to perform an appropriate initial compensatory step were the most critical response contributors to a successful recovery. We also identified 2 compensatory strategies utilized by stroke survivors to avoid a fall. Despite significant post-stroke functional impairments, the biomechanical causes of trip-related falls by stroke survivors appear to be similar to those of unimpaired older adults and lower extremity amputees. However, compensatory strategies (pivot, hopping) were observed. PMID:27614614

  1. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the newmore » methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.« less

  2. Boise Basin Experimental Forest (Idaho)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2004-01-01

    The Boise Basin Experimental Forest was established in 1933 to study ponderosa pine. It consists of 3,537 ha with elevations ranging from 1,200 to 3,630 m. Boise Basin is divided into three units surrounding Idaho City in southern Idaho. Idaho City was a booming mining town in the 1870s and the surrounding forests supplied material to the community. Two units were...

  3. Stratigraphic sections of the Phosphoria formation in Idaho, 1947-48, Part III

    USGS Publications Warehouse

    O'Malley, F.W.; Davidson, D.F.; Hoppin, R.A.; Sheldon, R.P.

    1951-01-01

    .The U.S. Geological Survey has measured and sampled the Phosphoria formation at many localities in Idaho and other western states. These data will not be fully synthesized and analyzed for several years but segments of the data, accompanied by little or no interpretation, are published as preliminary reports as they are assembled. This report, which contains abstracts of many of the sections in southeastern Idaho (fig. 1), is one of this series and is the third report of data gathered in Idaho during 1947 and 1948. The field and laboratory procedures adopted in these investigations are described rather fully in a companion report (McKelvey and others, 1953). Many people have taken part in this investigation, which was organized and supervised by V. E. McKelvey. D. A. Bostwick, R. M. Campbell, R. A. Gulbrandsen, R. A. Harris, R. L. Parker, R. A. Smart, J. E. Smedley, R. H. Thurston, and R. G. Waring participated in the description of strata and collection of samples referred to in this report. D. B. Dimick, Jack George, W. S. Hunziker, J. E. Jones, H. A. Larsen, and T. K. Rigby assisted in the preparation of trenches and collection, crushing, and splitting of samples in the field. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt.

  4. Completion Summary for Well NRF-16 near the Naval Reactors Facility, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Fisher, Jason C.; Bartholomay, Roy C.

    2010-01-01

    In 2009, the U.S. Geological Survey in cooperation with the U.S. Department of Energy's Naval Reactors Laboratory Field Office, Idaho Branch Office cored and completed well NRF-16 for monitoring the eastern Snake River Plain (SRP) aquifer. The borehole was initially cored to a depth of 425 feet below land surface and water samples and geophysical data were collected and analyzed to determine if well NRF-16 would meet criteria requested by Naval Reactors Facility (NRF) for a new upgradient well. Final construction continued after initial water samples and geophysical data indicated that NRF-16 would produce chemical concentrations representative of upgradient aquifer water not influenced by NRF facility disposal, and that the well was capable of producing sustainable discharge for ongoing monitoring. The borehole was reamed and constructed as a Comprehensive Environmental Response Compensation and Liability Act monitoring well complete with screen and dedicated pump. Geophysical and borehole video logs were collected after coring and final completion of the monitoring well. Geophysical logs were examined in conjunction with the borehole core to identify primary flow paths for groundwater, which are believed to occur in the intervals of fractured and vesicular basalt and to describe borehole lithology in detail. Geophysical data also were examined to look for evidence of perched water and the extent of the annular seal after cement grouting the casing in place. Borehole videos were collected to confirm that no perched water was present and to examine the borehole before and after setting the screen in well NRF-16. Two consecutive single-well aquifer tests to define hydraulic characteristics for well NRF-16 were conducted in the eastern SRP aquifer. Transmissivity and hydraulic conductivity averaged from the aquifer tests were 4.8 x 103 ft2/d and 9.9 ft/d, respectively. The transmissivity for well NRF-16 was within the range of values determined from past aquifer

  5. Idaho Library Laws, 1996-1997. Full Edition.

    ERIC Educational Resources Information Center

    Idaho State Library, Boise.

    This new edition of the "Idaho Library Laws" contains changes through the 1996 legislative session and includes "Idaho Code" sections that legally affect city, school-community or district libraries, or the Idaho State Library. These sections include the basic library laws in "Idaho Code" Title 33, Chapters 25, 26,…

  6. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehlke, G.

    2003-03-17

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unitmore » scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will

  7. Geothermometry Mapping of Deep Hydrothermal Reservoirs in Southeastern Idaho: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattson, Earl D.; Conrad, Mark; Neupane, Ghanashayam

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources. Numerous hot springs with temperatures up to 75 ºC are scattered along the margins of the plain. Similarly, several hot-water producing wells and few hot springs are also present within the plain. The geothermal reservoirs in the area are likely to be hosted at depth in the felsic volcanic rocks underneath the thick sequences of basalts within the plainmore » and the Paleozoic rocks underneath both basalts and felsic volcanic rocks along the margins. The heat source to these geothermal resources is thought to be the mid-crustal sill complex which sustains high heat flow in the ESRP. Several thermal anomaly areas are believed to be associated with the local thermal perturbation because of the presence of favorable structural settings. However, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperatures are significant challenges for the evaluation of potential resource areas in the ESRP. To address this issue, this project, led by the Idaho National Laboratory (INL), aimed at applying advanced geothermometry tools including temperature-dependent mineral and isotopic equilibria with mixing models that account for processes such as boiling and dilution with shallow groundwater that could affect calculated temperatures of underlying deep thermal waters. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to the compositions of ESRP water

  8. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousins, Katherine

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  9. Idaho Library Laws, 1999-2000. Full Edition.

    ERIC Educational Resources Information Center

    Idaho State Library, Boise.

    This new edition of the Idaho Library Laws contains changes through the 1998 legislative session and includes Idaho Code sections that legally affect city, school-community or district libraries, or the Idaho State Library. These sections include the basic library laws in Idaho Code Title 33, Chapters 25, 26, and 27, additional sections of the law…

  10. Depth to water, 1991, in the Rathdrum Prairie, Idaho; Spokane River valley, Washington; Moscow-Lewiston-Grangeville area, Idaho; and selected intermontane valleys, east-central Idaho

    USGS Publications Warehouse

    Berenbrock, Charles E.; Bassick, M.D.; Rogers, T.L.; Garcia, S.P.

    1995-01-01

    This map report illustrates digitally generated depth-to-water zones for the Rathdrum Prairie in Idaho; part of the Spokane River Valley in eastern Washington; and the intermontane valleys of the upper Big Wood, Big Lost, Pahsimeroi, Little Lost, and Lemhi Rivers and Birch Creek in Idaho. Depth to water is 400 to 500 feet below land surface in the northern part of Rathdrum Prairie, 100 to 200 feet below land surface at the Idaho-Washington State line, and 0 to 250 feet below land surface in the Spokane area. Depth to water in the intermontane valleys in east-central Idaho is least (usually less than 50 feet) near streams and increases toward valley margins where mountain-front alluvial fans have formed. Depths to water shown in the Moscow-Lewiston-Grangeville area in Idaho are limited to point data at individual wells because most of the water levels measured were not representative of levels in the uppermost aquifer but of levels in deeper aquifers.

  11. Hispanics in Idaho: Concerns and Challenges. Idaho Human Rights Commission, Research Report.

    ERIC Educational Resources Information Center

    Mabbutt, Richard

    A study was done of the civil rights status of Hispanics in Idaho with respect to issues raised at a series of community hearings sponsored by the Idaho Human Rights Commission. Testimony included concerns about state and local hiring practices; the perceived need for bilingual state social service providers and educators; the need for outreach…

  12. Cultural Resource Protection Plan for the Remote-Handled Low-Level Waste Disposal Facility at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Brenda Ringe; Gilbert, Hollie Kae

    2015-05-01

    This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known culturalmore » resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.« less

  13. Teton Dam flood of June 1976, Deer Parks quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bennett, C. Michael; Records, Andrew W.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Deer Parks quadrangle. (Woodard-USGS)

  14. Teton Dam flood of June 1976, St. Anthony quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil A.; Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the St. Anthony quadrangle. (Woodard-USGS)

  15. Teton Dam flood of June 1976, Menan Buttes quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil A.; Ray, Herman A.; Harenberg, William A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Menan Buttes quadrangle. (Woodard-USGS)

  16. Idaho National Laboratory Directed Research and Development FY-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefitmore » each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  17. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  18. Iodine-129 in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho, 2010-12

    USGS Publications Warehouse

    Bartholomay, Roy C.

    2013-01-01

    From 1953 to 1988, approximately 0.941 curies of iodine-129 (129I) were contained in wastewater generated at the Idaho National Laboratory (INL) with almost all of this wastewater discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC). Most of the wastewater containing 129I was discharged directly into the eastern Snake River Plain (ESRP) aquifer through a deep disposal well until 1984; lesser quantities also were discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. During 2010–12, the U.S. Geological Survey in cooperation with the U.S. Department of Energy collected groundwater samples for 129I from 62 wells in the ESRP aquifer to track concentration trends and changes for the carcinogenic radionuclide that has a 15.7 million-year half-life. Concentrations of 129I in the aquifer ranged from 0.0000013±0.0000005 to 1.02±0.04 picocuries per liter (pCi/L), and generally decreased in wells near the INTEC, relative to previous sampling events. The average concentration of 129I in groundwater from 15 wells sampled during four different sample periods decreased from 1.15 pCi/L in 1990–91 to 0.173 pCi/L in 2011–12. All but two wells within a 3-mile radius of the INTEC showed decreases in concentration, and all but one sample had concentrations less than the U.S. Environmental Protection Agency maximum contaminant level of 1 pCi/L. These decreases are attributed to the discontinuation of disposal of 129I in wastewater and to dilution and dispersion in the aquifer. The decreases in 129I concentrations, in areas around INTEC where concentrations increased between 2003 and 2007, were attributed to less recharge near INTEC either from less flow in the Big Lost River or from less local snowmelt and anthropogenic sources. Although wells near INTEC sampled in 2011–12 showed decreases in 129I concentrations compared with previously collected data, some wells south and east of the Central Facilities Area

  19. Ecological Interfaces for Improving Mobile Robot Teleoperation

    DTIC Science & Technology

    2007-10-01

    reviewers’ comments. C. W. Nielsen is with the Idaho National Laboratory, Idaho Falls, ID 83415 USA (e-mail: curtis.nielsen@inl.gov). M . A. Goodrich is with...tele- operation. Section III presents the ecological interface paradigm and describes the 3-D interface. Section IV presents the sum- maries from new...in an empty laboratory environment that was filled with cardboard boxes and was more than 700 m from the operator. The display that the test subjects

  20. 77 FR 52310 - Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... DEPARTMENT OF AGRICULTURE Forest Service Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Central Idaho Resource Advisory Committee will meet in Salmon, Idaho and Challis, Idaho. The committee is authorized under the Secure Rural Schools and...

  1. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  2. 77 FR 45575 - Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Central Idaho Resource Advisory Committee will meet in Salmon, Idaho. The committee is authorized under... be held at the Public Lands Center, 1206 S. Challis Street, Salmon, Idaho 83467. All comments...

  3. Idaho Bicycle and Pedestrian Transportation

    DOT National Transportation Integrated Search

    1995-01-01

    The Idaho Bicycle and Pedestrian Transportation Plan of Idaho's long range transportation planning process sets the stage for changes in our transportation mix. The plan is about expanding options for personal transportation. Most importantly, it is ...

  4. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, G.; Rudisill, T.; Almond, P.

    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Sitemore » (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.« less

  5. Notes from the field: cryptosporidiosis associated with consumption of unpasteurized goat milk - Idaho, 2014.

    PubMed

    Rosenthal, Mariana; Pedersen, Randi; Leibsle, Scott; Hill, Vincent; Carter, Kris; Roellig, Dawn M

    2015-02-27

    On August 27, 2014, the Idaho Department of Health and Welfare's Division of Public Health (DPH) was notified of two cases of cryptosporidiosis in siblings aged <3 years. Idaho's Southwest District Health (SWDH) investigated and found that both children had consumed raw (unpasteurized) goat milk produced at a dairy licensed by the Idaho State Department of Agriculture (ISDA) and purchased at a retail store. Milk produced before August 18, the date of illness onset, was unavailable for testing from retail stores, the household, or the dairy. Samples of raw goat milk produced on August 18, 21, 25, and 28, taken from one opened container from the siblings' household, one unopened container from the retailer, and two unopened containers from the dairy, all tested positive for Cryptosporidium by real-time polymerase chain reaction (PCR) at a commercial laboratory. On August 30, ISDA placed a hold order on all raw milk sales from the producer. ISDA and SWDH issued press releases advising persons not to consume the raw milk; SWDH issued a medical alert, and Idaho's Central District Health Department issued an advisory to health care providers about the outbreak.

  6. 78 FR 68466 - BLM Director's Response to the Idaho Governor's Appeal of the BLM Idaho State Director's Governor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Bureau of Land Management (BLM) is publishing this notice to explain why the BLM Director is denying the...] BLM Director's Response to the Idaho Governor's Appeal of the BLM Idaho State Director's Governor's... (Finding) to the BLM Idaho State Director (State Director). The State Director determined the Governor's...

  7. 2003 Idaho National Engineering and Environmental Laboratory Annual Illness and Injury Surveillance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23

    Annual Illness and Injury Surveillance Program report for 2003 for Idaho National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  8. Using Student Test Scores to Award Merit Pay: A Look at the 2012 Pay-for-Performance Program for Idaho Schools

    ERIC Educational Resources Information Center

    Storie, Gary; Denner, Peter R.

    2015-01-01

    In the fall of 2012, Idaho implemented a plan to award bonus pay to schools whose students demonstrated academic growth based on the Betebenner (2008) method. This study examined the relationship of the amount of bonus paid to a school, the percentage of students from low income families associated with a school, and the location of the school…

  9. Spatial variability of sedimentary interbed properties near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Winfield, Kari A.

    2003-01-01

    The subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL) is complex, comprised primarily of thick, fractured basalt flows interbedded with thinner sedimentary intervals. The unsaturated zone can be as thick as 200 m in the southwestern part of the INEEL. The Vadose Zone Research Park (VZRP), located approximately 10 km southwest of the Idaho Nuclear Technology and Engineering Center (INTEC), was established in 2001 to study the subsurface of a relatively undisturbed part of the INEEL. Waste percolation ponds for the INTEC were relocated to the VZRP due to concerns that perched water within the vadose zone under the original infiltration ponds (located immediately south of the INTEC) could contribute to migration of contaminants to the Snake River Plain aquifer. Knowledge of the spatial distribution of texture and hydraulic properties is important for developing a better understanding of subsurface flow processes within the interbeds, for example, by identifying low permeability layers that could lead to the formation of perched ground-water zones. Because particle-size distributions are easier to measure than hydraulic properties, particle size serves as an analog for determining how the unsaturated hydraulic properties vary both vertically within particular interbeds and laterally within the VZRP. As part of the characterization program for the subsurface at the VZRP, unsaturated and saturated hydraulic properties were measured on 10 core samples from six boreholes. Bulk properties, including particle size, bulk density, particle density, and specific surface area, were determined on material from the same depth intervals as the core samples, with an additional 66 particle- size distributions measured on bulk samples from the same boreholes. From lithologic logs of the 32 boreholes at the VZRP, three relatively thick interbeds (in places up to 10 m thick) were identified at depths of 35, 45, and 55 m below land surface. The 35-m

  10. 30 CFR 912.700 - Idaho Federal program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.700 Idaho Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Idaho...

  11. 76 FR 31388 - Idaho Disaster #ID-00014

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12603 and 12604] Idaho Disaster ID-00014... declaration of a major disaster for Public Assistance Only for the State of Idaho (FEMA-- 1987--DR), dated 05..., Clearwater, Idaho, Nez Perce, Shoshone, Nez Perce Tribe. The Interest Rates are: Percent For Physical Damage...

  12. 75 FR 45682 - Idaho Disaster #ID-00010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12250 and 12251] Idaho Disaster ID-00010... declaration of a major disaster for Public Assistance Only for the State of Idaho (FEMA-1927- DR), dated 07/27... adversely affected by the disaster: Primary Counties: Adams, Gem, Idaho, Lewis, Payette, Valley, Washington...

  13. Materials accounting system for an IBM PC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearse, R.C.; Thomas, R.J.; Henslee, S.P.

    1986-01-01

    We have adapted the Los Alamos MASS accounting system for use on an IBM PC/AT at the Fuels Manufacturing Facility (FMF) at Argonne National Laboratory-West (ANL-WEST) in Idaho Falls, Idaho. Cost of hardware and proprietary software was less than $10,000 per station. The system consists of three stations between which accounting information is transferred using floppy disks accompanying special nuclear material shipments. The programs were implemented in dBASEIII and were compiled using the proprietary software CLIPPER. Modifications to the inventory can be posted in just a few minutes, and operator/computer interaction is nearly instantaneous. After the records are built bymore » the user, it takes 4 to 5 seconds to post the results to the database files. A version of this system was specially adapted and is currently in use at the FMF facility at Argonne National Laboratory in Idaho Falls. Initial satisfaction is adequate and software and hardware problems are minimal.« less

  14. Summary of the 1987 soil sampling effort at the Idaho National Engineering Laboratory Test Reactor Area Paint Shop Ditch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, T.R.; Knight, J.L.; Hertzler, C.L.

    1989-08-01

    Sampling of the Test Reactor Area (TRA) Paint Shop Ditch at the Idaho National Engineering Laboratory was initiated in compliance with the Interim Agreement between the Department of Energy (DOE) and the Environmental Protection Agency (EPA). Sampling of the TRA Paint Shop Ditch was done as part of the Action Plan to achieve and maintain compliance with the Resource Conservation and Recovery Act (RCRA) and applicable regulations. It is the purpose of this document to provide a summary of the July 6, 1987 sampling activities that occurred in ditch west of Building TRA-662, which housed the TRA Paint Shop inmore » 1987. This report will give a narrative description of the field activities, locations of collected samples, discuss the sampling procedures and the chemical analyses. Also included in the scope of this report is to bring together data and reports on the TRA Paint Shop Ditch for archival purposes. 6 refs., 10 figs., 8 tabs.« less

  15. Boise State's Idaho Eclipse Outreach Program

    NASA Astrophysics Data System (ADS)

    Davis, Karan; Jackson, Brian

    2017-10-01

    The 2017 total solar eclipse is an unprecedented opportunity for astronomical education throughout the continental United States. With the path of totality passing through 14 states, from Oregon to South Carolina, the United States is expecting visitors from all around the world. Due to the likelihood of clear skies, Idaho was a popular destination for eclipse-chasers. In spite of considerable enthusiasm and interest by the general population, the resources for STEM outreach in the rural Pacific Northwest are very limited. In order to help prepare Idaho for the eclipse, we put together a crowdfunding campaign through the university and raised over $10,000. Donors received eclipse shades as well as information about the eclipse specific to Idaho. Idaho expects 500,000 visitors, which could present a problem for the many small, rural towns scattered across the path of totality. In order to help prepare and equip the public for the solar eclipse, we conducted a series of site visits to towns in and near the path of totality throughout Idaho. To maximize the impact of this effort, the program included several partnerships with local educational and community organizations and a focus on the sizable refugee and low-income populations in Idaho, with considerable attendance at most events.

  16. Hearing Protection Evaluation for the Combat Arms Earplug at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Lovejoy

    2007-03-01

    The Idaho National Laboratory (INL) is managed by Battelle Energy Alliance, LLC (BEA) for the Department of Energy. The INL Protective Security Forces (Pro Force) are involved in training exercises that generate impulse noise by small arms fire. Force-on-force (FOF) training exercises that simulate real world scenarios require the Pro Force to engage the opposition force (OPFOR) while maintaining situational awareness through verbal communications. The Combat Arms earplug was studied to determine if it provides adequate hearing protection in accordance with the requirements of MIL-STD-1474C/D. The Combat Arms earplug uses a design that allows continuous noise through a critical orificemore » while effectively attenuating high-energy impulse noise. The earplug attenuates noise on a non linear scale, as the sound increases the attenuation increases. The INL studied the effectiveness of the Combat Arms earplug with a Bruel & Kjaer (B&K) head and torso simulator used with a selection of small arms to create impulse sound pressures. The Combat Arms earplugs were inserted into the B&K head and torso ears, and small arms were then discharged to generate the impulse noise. The INL analysis of the data indicates that the Combat Arms earplug does provide adequate protection, in accordance with MIL-STD-1474C/D, when used to protect against impulse noise generated by small arms fire using blank ammunition. Impulse noise generated by small arms fire ranged from 135–160 dB range unfiltered un-weighted. The Combat Arms earplug attenuated the sound pressure 10–25 dB depending on the impulse noise pressure. This assessment is consistent with the results of previously published studies on the Combat Arms earplug (see Section 5, “References”). Based upon these result, the INL intends to use the Combat Arms earplug for FOF training exercises.« less

  17. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-riskmore » informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.« less

  18. Assessment of Hazards Associated with the Bluegill Landslide, South-Central Idaho

    USGS Publications Warehouse

    Ellis, William L.; Schuster, Robert L.; Schulz, William H.

    2004-01-01

    The Bluegill landslide, located in south-central Idaho, is part of a larger landslide complex that forms an area the Salmon Falls Creek drainage named Sinking Canyon Recent movement of the Bluegill landslide, apparently beginning sometime in late 1998 or early 1999, has caused a 4.5 ha area of the canyon rim to drop as much as 8 m and move horizontally several meters into the canyon. Upward movement of the toe of the landslide in the bottom of canyon has created a dam that impounds a lake approximately 2 km in length. The landslide is on public administered by the U.S. Bureau of Land Management (BLM). As part of ongoing efforts to address possible public safety concerns, the BLM requested that the U.S. Geological Survey (USGS) conduct a preliminary hazard assessment of the landslide, examine possible mitigation options, and identify alternatives for further study and monitoring of the landslide. This report presents the findings of that assessment based on a field reconnaissance of the landslide on September 24, 2003, a review of data and information provided by BLM and researchers from Idaho State University, and information collected from other sources.

  19. Idaho National Laboratory Integrated Safety Management System FY 2013 Effectiveness Review and Declaration Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Farren

    2013-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for Fiscal Year (FY) 2014. Results of the FY 2013 annual effectiveness review demonstrate that the INL’s ISMS program is “Effective” and continually improving and shows signs of being significantly strengthened. Although there have been unacceptable serious events in themore » past, there has also been significant attention, dedication, and resources focused on improvement, lessons learned and future prevention. BEA’s strategy of focusing on these improvements includes extensive action and improvement plans that include PLN 4030, “INL Sustained Operational Improvement Plan, PLN 4058, “MFC Strategic Excellence Plan,” PLN 4141, “ATR Sustained Excellence Plan,” and PLN 4145, “Radiological Control Road to Excellence,” and the development of LWP 20000, “Conduct of Research.” As a result of these action plans, coupled with other assurance activities and metrics, significant improvement in operational performance, organizational competence, management oversight and a reduction in the number of operational events is being realized. In short, the realization of the fifth core function of ISMS (feedback and continuous improvement) and the associated benefits are apparent.« less

  20. Battelle Energy Alliance, LLC (BEA) 2016 Self-Assessment Report for Idaho National Laboratory (INL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Juan

    This report provides Battelle Energy Alliance’s (BEA) self-assessment of performance for the period of October 1, 2015, through September 30, 2016, as evaluated against the goals, performance objectives, and notable outcomes defined in the Fiscal Year (FY) 2016 Performance Evaluation and Measurement Plan (PEMP). BEA took into consideration and consolidated all input provided from internal and external sources (e.g., Contractor Assurance System [CAS], program and customer feedback, external and independent reviews, and Department of Energy [DOE] Idaho Operations Office [ID] quarterly PEMP reports and Quarterly Evaluation Reports). The overall performance of BEA during this rating period was self-assessed as “Excellent,”more » exceeding expectations of performance in Goal 1.0, “Efficient and Effective Mission Accomplishment”; Goal 2.0, “Efficient and Effective Stewardship and Operation of Research Facilities”; and Goal 3.0, “Sound and Competent Leadership and Stewardship of the Laboratory.” BEA met or exceeded expectations for Mission Support Goals 4.0 through 7.0 assessing a final multiplier of 1.0. Table 1 documents BEA’s assessment of performance to the goals and individual performance objectives. Table 2 documents completion of the notable outcomes. A more-detailed assessment of performance for each individual performance objective is documented in the closeout reports (see the PEMP reporting system). Table 3 includes an update to “Performance Challenges” as reported in the FY 2015 Self-Assessment Report.« less

  1. CTBTO Contractor Laboratory Test Sample Production Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bob Hague; Tracy Houghton; Nick Mann

    2013-08-01

    In October 2012 scientists from both Idaho National Laboratory (INL) and the CTBTO contact laboratory at Seibersdorf, Austria designed a system and capability test to determine if the INL could produce and deliver a short lived radio xenon standard in time for the standard to be measured at the CTBTO contact laboratory at Seibersdorf, Austria. The test included sample standard transportation duration and potential country entrance delays at customs. On October 23, 2012 scientists at the Idaho National Laboratory (INL) prepared and shipped a Seibersdorf contract laboratory supplied cylinder. The canister contained 1.0 scc of gas that consisted of 70%more » xenon and 30% nitrogen by volume. The t0 was October 24, 2012, 1200 ZULU. The xenon content was 0.70 +/ 0.01 scc at 0 degrees C. The 133mXe content was 4200 +/ 155 dpm per scc of stable xenon on t0 (1 sigma uncertainty). The 133Xe content was 19000 +/ 800 dpm per scc of stable xenon on t0 (1 sigma uncertainty).« less

  2. Space Station Crew Discusses Life in Space with Idaho Students

    NASA Image and Video Library

    2018-02-08

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei, Joe Acaba and Scott Tingle of NASA discussed life and research on the orbital laboratory during an in-flight educational event Feb. 8 with students from Boise State University in Idaho. Vande Hei and Acaba are in the final weeks of a five and a half month mission on the complex while Tingle will remain in orbit until early June.

  3. American Indians, hunting and fishing rates, risk, and the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.

    1999-05-01

    Hunting, fishing, and recreational rates of 276 American Indians attending a festival at Fort Hall, near the Idaho National Engineering and Environmental Laboratory (INEEL), were examined. Nearly half of the sample lived on the Fort Hall Reservation, and half were American Indians from elsewhere in the western United States. An additional 44 White people attending the festival were also interviewed. The hypothesis that there are differences in hunting, fishing, and recreational rates as a function of tribal affiliation, educational level, gender, and age was examined. Information on hunting and fishing rates are central for understanding potential exposure scenarios for Americanmore » Indians if the Department of Energy`s INEEL lands are ever opened to public access, and the data are important because of the existence of tribal treaties that govern the legal and cultural rights of the Shoshone-Bannock regarding INEEL lands. Variations in hunting, fishing, and photography rates were explained by tribal affiliation (except fishing), gender, age, and schooling. Hunting rates were significantly higher for Indians (both those living on Fort Hall and others) than Whites. Men engaged in significantly higher rates of outdoor activities than women (except for photography). Potential and current hunting and fishing on and adjacent to INEEL was more similar among the local Whites and Fort Hall Indians than between these two groups and other American Indians.« less

  4. 76 FR 17817 - North Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The North Central Idaho RAC will meet in Grangeville, Idaho. The committee is meeting as authorized... Supervisors Office, 104 Airport Road, Grangeville, Idaho. Written comments should be sent to Laura Smith at...

  5. Economic Cost of Crashes in Idaho

    DOT National Transportation Integrated Search

    2016-06-01

    The Idaho Transportation Departments Office of Highway Safety contracted with Cambridge Systematics (CS) for an assessment of the feasibility of calculating the Idaho-specific economic and comprehensive costs associated with vehicle crashes. Resea...

  6. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    INL Cultural Resource Management Office

    2010-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts weremore » documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.« less

  7. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenda R. Pace; Julie B. Braun

    2009-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitormore » the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.« less

  8. 75 FR 44984 - IDAHO: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] IDAHO: Filing... lands described below in the BLM Idaho State Office, Boise, Idaho, effective 9 a.m., on the dates specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho...

  9. 76 FR 42724 - Idaho: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] Idaho: Filing... lands described below in the BLM Idaho State Office, Boise, Idaho, effective 9 a.m., on the dates specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho...

  10. 75 FR 63852 - Idaho: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] Idaho: Filing... lands described below in the BLM Idaho State Office, Boise, Idaho, effective 9 a.m., on the dates specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho...

  11. 76 FR 4934 - Idaho: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] Idaho: Filing... lands described below in the BLM Idaho State Office, Boise, Idaho, effective 9 a.m., on the dates specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho...

  12. 76 FR 66322 - Idaho: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] Idaho: Filing... lands described below in the BLM Idaho State Office, Boise, Idaho, effective 9 a.m., on the dates specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho...

  13. 76 FR 80388 - IDAHO: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] IDAHO: Filing... lands described below in the BLM Idaho State Office, Boise, Idaho, effective 9 a.m., on the date specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho...

  14. 76 FR 25298 - Southwest Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... DEPARTMENT OF AGRICULTURE Forest Service Southwest Idaho Resource Advisory Committee AGENCY... Forests' Southwest Idaho Resource Advisory Committee will conduct a business meeting. The meeting is open... Operations Center, 108 Spring Street, Cascade, Idaho. SUPPLEMENTARY INFORMATION: Agenda topics will include...

  15. Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2012-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels.Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt.A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d.Water samples were analyzed for cations, anions, metals, nutrients, total organic

  16. Mineral resource appraisal of the Salmon National Forest, Idaho

    USGS Publications Warehouse

    Johnson, Rick; Close, Terry; McHugh, Ed

    1998-01-01

    The Salmon National Forest administers 1,776,994 net acres of mountainous terrain located in east-central Idaho. Most of the Forest is in Lemhi County; only a small portion falls within Idaho and Valley Counties. Approximately 426,114 acres of the Frank Church-River of No Return Wilderness extends into the western part of the Forest and mineral entry is severely restricted. Because of its location within the Salmon River drainage, the Forest also is subject to numerous issues surrounding restoration of anadromous fish runs. Mineral production from the Salmon National Forest began during 1866 when placer gold was discovered in Leesburg Basin. Hardrock mining quickly spread throughout the Forest and many deposits containing a wide range of commodities were discovered and developed. Although early records are sketchy, production is estimated to include 940,000 ounces gold, 654,000 ounces silver, 61.9 million pounds copper, 8.9 million pounds lead, 13.9 million pounds cobalt, 208,000 pounds zinc, and 37,000 tons fluorite mill feed. Mineral resources are large, diverse, and occur in many deposit types including exhalative, stockwork, disseminated, vein, replacement, sedimentary, skarn, breccia pipe, porphyry, and placer. The largest cobalt resource in the United States occurs in the Blackbird Mining District. Other resources include gold, silver, copper, lead, molybdenum, phosphate, manganese, iron, fluorite, uranium, thorium, rare earth oxides, and barite.

  17. 78 FR 21968 - Idaho: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] Idaho: Filing... lands described below in the BLM Idaho State Office, Boise, Idaho, effective 9:00 a.m., on the dates specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho...

  18. 77 FR 64351 - Idaho: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] Idaho: Filing... lands described below in the BLM Idaho State Office, Boise, Idaho, effective 9:00 a.m., on the dates specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho...

  19. 77 FR 77089 - Idaho: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] Idaho: Filing... lands described below in the BLM Idaho State Office, Boise, Idaho, effective 9:00 a.m., on the dates specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho...

  20. 75 FR 66788 - Idaho: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] Idaho: Filing... described below in the BLM Idaho State Office, Boise, Idaho, effective 9:00 a.m., on the date specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho 83709-1657...

  1. 75 FR 27813 - IDAHO: Filing of Plats of Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLID9570000.LL14200000.BJ0000] IDAHO: Filing... lands described below in the BLM Idaho State Office, Boise, Idaho, effective 9:00 a.m., on the dates specified. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, 1387 South Vinnell Way, Boise, Idaho...

  2. Concentrations of tritium and strontium-90 in water from selected wells at the Idaho National Engineering Laboratory after purging one, two, and three borehole volumes

    USGS Publications Warehouse

    Bartholomay, R.C.

    1993-01-01

    Water from 11 wells completed in the Snake River Plain aquifer at the Idaho National Engineering Laboratory was sampled as part of the U.S. Geological Survey's quality assurance program to determine the effect of purging different borehole volumes on tritium and strontium-90 concentrations. Wells were selected for sampling on the basis of the length of time it took to purge a borehole volume of water. Samples were collected after purging one, two, and three borehole volumes. The U.S. Department of Energy's Radiological and Environmental Sciences Laboratory provided analytical services. Statistics were used to determine the reproducibility of analytical results. The comparison between tritium and strontium-90 concentrations after purging one and three borehole volumes and two and three borehole volumes showed that all but two sample pairs with defined numbers were in statistical agreement. Results indicate that concentrations of tritium and strontium-90 are not affected measurably by the number of borehole volumes purged.

  3. Concentrations of tritium and strontium-90 in water from selected wells at the Idaho National Engineering Laboratory after purging one, two, and three borehole volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.

    1993-12-31

    Water from 11 wells completed in the Snake River Plain aquifer at the Idaho National Engineering Laboratory was sampled as Part of the US. Geological Survey`s quality assurance program to determine the effect of Purging different borehole volumes on tritium and strontium-90 concentrations. Wells were selected for sampling on the basis of the length of time it took to purge a borehole volume of water. Samples were collected after purging one, two, and three borehole volumes. The US Department of Energy`s Radiological and Environmental Sciences Laboratory provided analytical services. Statistics were used to determine the reproducibility of analytical results. Themore » comparison between tritium and strontium-90 concentrations after purging one and three borehole volumes and two and three borehole volumes showed that all but two sample pairs with defined numbers were in statistical agreement. Results indicate that concentrations of tritium and strontium-90 are not affected measurably by the number of borehole volumes purged.« less

  4. 76 FR 18153 - Southwest Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... DEPARTMENT OF AGRICULTURE Forest Service Southwest Idaho Resource Advisory Committee AGENCY... Forests' Southwest Idaho Resource Advisory Committee will conduct a business meeting. The meeting is open to the public. DATES: Thursday, April 21, 2011, beginning at 9 a.m. ADDRESSES: Idaho Counties Risk...

  5. 78 FR 24381 - Southwest Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... DEPARTMENT OF AGRICULTURE Forest Service Southwest Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Southwest Idaho Resource Advisory Committee (RAC) will meet in Boise, Idaho. The RAC is authorized under the Secure Rural Schools and Community...

  6. Feasibility of processing the experimental breeder reactor-II driver fuel from the Idaho National Laboratory through Savannah River Site's H-Canyon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoulas, V. E.

    Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium,more » and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.« less

  7. Geochemistry Sampling for Traditional and Multicomponent Equilibrium Geothermometry in Southeast Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, Cody; Wood, Thomas; Neupane, Ghanashyam

    2014-10-01

    The Eastern Snake River Plain (ESRP) is an area of high regional heat flux due the movement of the North American Plate over the Yellowstone Hotspot beginning ca.16 Ma. Temperature gradients between 45-60 °C/km (up to double the global average) have been calculated from deep wells that penetrate the upper aquifer system (Blackwell 1989). Despite the high geothermal potential, thermal signatures from hot springs and wells are effectively masked by the rapid flow of cold groundwater through the highly permeable basalts of the Eastern Snake River Plain aquifer (ESRPA) (up to 500+ m thick). This preliminary study is part ofmore » an effort to more accurately predict temperatures of the ESRP deep thermal reservoir while accounting for the effects of the prolific cold water aquifer system above. This study combines the use of traditional geothermometry, mixing models, and a multicomponent equilibrium geothermometry (MEG) tool to investigate the geothermal potential of the ESRP. In March, 2014, a collaborative team including members of the University of Idaho, the Idaho National Laboratory, and the Lawrence Berkeley National Laboratory collected 14 thermal water samples from and adjacent to the Eastern Snake River Plain. The preliminary results of chemical analyses and geothermometry applied to these samples are presented herein.« less

  8. 75 FR 32210 - United States v. Idaho Orthopaedic Society, Timothy Doerr, Jeffrey Hessing, Idaho Sports Medicine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ..., Jeffrey Hessing, Idaho Sports Medicine Institute, John Kloss, David Lamey, and Troy Watkins; Proposed... Sports Medicine Institute, John Kloss, David Lamey, and Troy Watkins, Civil Case No. 10-268. On May 28..., Jeffrey Hessing, Idaho Sports Medicine Institute, John Kloss, David Lamey, and Troy Watkins, Defendants...

  9. Evaluation of Sampling Recommendations From the Influenza Virologic Surveillance Right Size Roadmap for Idaho

    PubMed Central

    2017-01-01

    Background The Right Size Roadmap was developed by the Association of Public Health Laboratories and the Centers for Disease Control and Prevention to improve influenza virologic surveillance efficiency. Guidelines were provided to state health departments regarding representativeness and statistical estimates of specimen numbers needed for seasonal influenza situational awareness, rare or novel influenza virus detection, and rare or novel influenza virus investigation. Objective The aim of this study was to compare Roadmap sampling recommendations with Idaho’s influenza virologic surveillance to determine implementation feasibility. Methods We calculated the proportion of medically attended influenza-like illness (MA-ILI) from Idaho’s influenza-like illness surveillance among outpatients during October 2008 to May 2014, applied data to Roadmap-provided sample size calculators, and compared calculations with actual numbers of specimens tested for influenza by the Idaho Bureau of Laboratories (IBL). We assessed representativeness among patients’ tested specimens to census estimates by age, sex, and health district residence. Results Among outpatients surveilled, Idaho’s mean annual proportion of MA-ILI was 2.30% (20,834/905,818) during a 5-year period. Thus, according to Roadmap recommendations, Idaho needs to collect 128 specimens from MA-ILI patients/week for situational awareness, 1496 influenza-positive specimens/week for detection of a rare or novel influenza virus at 0.2% prevalence, and after detection, 478 specimens/week to confirm true prevalence is ≤2% of influenza-positive samples. The mean number of respiratory specimens Idaho tested for influenza/week, excluding the 2009-2010 influenza season, ranged from 6 to 24. Various influenza virus types and subtypes were collected and specimen submission sources were representative in terms of geographic distribution, patient age range and sex, and disease severity. Conclusions Insufficient numbers of

  10. Geologic Controls of Hydraulic Conductivity in the Snake River Plain Aquifer At and Near the Idaho National Engineering and Environmental Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. R. Anderson; M. A. Kuntz; L. C. Davis

    1999-02-01

    The effective hydraulic conductivity of basalt and interbedded sediment that compose the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL) ranges from about 1.0x10 -2 to 3.2x10 4 feet per day (ft/d). This six-order-of-magnitude range of hydraulic conductivity was estimated from single-well aquifer tests in 114 wells, and is attributed mainly to the physical characteristics and distribution of basalt flows and dikes. Hydraulic conductivity is greatest in thin pahoehoe flows and near-vent volcanic deposits. Hydraulic conductivity is least in flows and deposits cut by dikes. Estimates of hydraulic conductivity at and near themore » INEEL are similar to those measured in similar volcanic settings in Hawaii. The largest variety of rock types and the greatest range of hydraulic conductivity are in volcanic rift zones, which are characterized by numerous aligned volcanic vents and fissures related to underlying dikes. Three broad categories of hydraulic conductivity corresponding to six general types of geologic controls can be inferred from the distribution of wells and vent corridors. Hydraulic conductivity of basalt flows probably is increased by localized fissures and coarse mixtures of interbedded sediment, scoria, and basalt rubble. Hydraulic conductivity of basalt flows is decreased locally by abundant alteration minerals of probable hydrothermal origin. Hydraulic conductivity varies as much as six orders of magnitude in a single vent corridor and varies from three to five orders of magnitude within distances of 500 to 1,000 feet. Abrupt changes in hydraulic conductivity over short distances suggest the presence of preferential pathways and local barriers that may greatly affect the movement of ground water and the dispersion of radioactive and chemical wastes downgradient from points of waste disposal.« less

  11. Treatment of Perfluorinated Alkyl Substances in Wash Water ...

    EPA Pesticide Factsheets

    Report The U.S. Environmental Protection Agency’s (EPA) National Homeland Security Research Center partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. This report summarizes the results from testing conducted to evaluate the treatment of large volumes of water containing perfluorinated alkyl substances (PFAS). This summary of conclusions and observations about the performance and implementation of adsorptive treatment of AFFF contaminated water, based on the testing performed at the INL WSTB.

  12. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenda R. Pace

    2009-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recordedmore » cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources« less

  13. Idaho National Laboratory Integrated Safety Management System FY 2016 Effectiveness Review and Declaration Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Farren J.

    Idaho National Laboratory’s (INL’s) Integrated Safety Management System (ISMS) effectiveness review of fiscal year (FY) 2016 shows that INL has integrated management programs and safety elements throughout the oversight and operational activities performed at INL. The significant maturity of Contractor Assurance System (CAS) processes, as demonstrated across INL’s management systems and periodic reporting through the Management Review Meeting process, over the past two years has provided INL with current real-time understanding and knowledge pertaining to the health of the institution. INL’s sustained excellence of the Integrated Safety and effective implementation of the Worker Safety and Health Program is also evidencedmore » by other external validations and key indicators. In particular, external validations include VPP, ISO 14001, DOELAP accreditation, and key Laboratory level indicators such as ORPS (number, event frequency and severity); injury/illness indicators such as Days Away, Restricted and Transfer (DART) case rate, back & shoulder metric and open reporting indicators, demonstrate a continuous positive trend and therefore improved operational performance over the last few years. These indicators are also reflective of the Laboratory’s overall organizational and safety culture improvement. Notably, there has also been a step change in ESH&Q Leadership actions that have been recognized both locally and complex-wide. Notwithstanding, Laboratory management continues to monitor and take action on lower level negative trends in numerous areas including: Conduct of Operations, Work Control, Work Site Analysis, Risk Assessment, LO/TO, Fire Protection, and Life Safety Systems, to mention a few. While the number of severe injury cases has decreased, as evidenced by the reduction in the DART case rate, the two hand injuries and the fire truck/ambulance accident were of particular concern. Aggressive actions continue in order to understand the causes

  14. Idaho still attractive to industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stremel, K.

    1984-01-01

    Idaho continues to attract operators willing to gamble millions in the hope of establishing the first commercial production in the state. Low well density compounds the complexity of Idaho's geology. Projections are that at least three wildcats will be drilled in the Bear Lake County this year. Plans are to continue infill seismic work on the Overthrust acreage, where significant amount of reconnaissance lines has been shot.

  15. Weed hosts Globodera pallida from Idaho

    USDA-ARS?s Scientific Manuscript database

    The potato cyst nematode, Globodera pallida (PCN), a restricted pest in the USA, was first reported in Bingham and Bonneville counties of Idaho in 2006. The US government and Idaho State Department of Agriculture hope to eradicate it from infested fields. Eradicating PCN will require depriving the n...

  16. The Idaho cobalt belt

    USGS Publications Warehouse

    Bookstrom, Arthur A.

    2013-01-01

    The Idaho cobalt belt (ICB) is a northwest-trending belt of cobalt (Co) +/- copper (Cu)-bearing deposits and prospects in the Salmon River Mountains of east-central Idaho, U.S.A. The ICB is about 55 km long and 10 km long in its central part, which contains multiple strata-bound ore zones in the Blackbird mine area. The Black Pine and Iron Creek Co-Cu prospects are southeast of Blackbird, and the Tinkers Pride, Bonanza Copper, Elk Creek, and Salmon Canyon Copper prospects are northwest of Blackbird.

  17. 77 FR 48950 - South Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... DEPARTMENT OF AGRICULTURE Forest Service South Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The South Central Idaho Resource Advisory Committee will meet in Jerome, Idaho. The committee is authorized under the Secure Rural Schools and...

  18. 76 FR 50452 - South Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... DEPARTMENT OF AGRICULTURE South Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The South Central Idaho Resource Advisory Committee will meet in Jerome, Idaho. The committee is authorized under the Secure Rural Schools and Community Self...

  19. 78 FR 23741 - North Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... DEPARTMENT OF AGRICULTURE Forest Service North Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The North Central Idaho Resource Advisorsy Committee (RAC) will be meet in Grangeville, Idaho. The RAC is authorized under the Secure Rural Schools and...

  20. 77 FR 51967 - North Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... DEPARTMENT OF AGRICULTURE Forest Service North Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The North Central Idaho RAC will be meeting via... held at the Nez Perce National Forest Supervisors Office, 104 Airport Road, Grangeville, Idaho. Written...

  1. 75 FR 4523 - North Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... DEPARTMENT OF AGRICULTURE Forest Service North Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The North Central Idaho RAC will meet in Grangeville, Idaho. The committee is meeting as authorized under the Secure Rural Schools and Community Self...

  2. 77 FR 43236 - North Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... DEPARTMENT OF AGRICULTURE Forest Service North Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The North Central Idaho RAC will meet in Grangeville, Idaho. The committee is meeting as authorized under the Secure Rural Schools and Community Self...

  3. 75 FR 64691 - North Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... DEPARTMENT OF AGRICULTURE Forest Service North Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The North Central Idaho RAC will meet in Potlatch, Idaho. The committee is meeting as authorized under the Secure Rural Schools and Community Self...

  4. 76 FR 1594 - North Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... DEPARTMENT OF AGRICULTURE Forest Service North Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meetings. SUMMARY: The North Central Idaho RAC will meet in Grangeville, Idaho. The committee is meeting as authorized under the Secure Rural Schools and Community Self...

  5. 76 FR 12933 - North Central Idaho Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... DEPARTMENT OF AGRICULTURE Forest Service North Central Idaho Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meetings. SUMMARY: The North Central Idaho RAC will meet in Grangeville, Idaho. The committee is meeting as authorized under the Secure Rural Schools and Community Self...

  6. Idaho Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wildfires in Northwestern United States     ... (MISR) image of smoke plumes from devastating wildfires in the northwestern United States. This view of the Clearwater and ... at JPL August 5, 2000 - Smoke plumes from wildfires in Idaho. project:  MISR category:  ...

  7. 75 FR 30427 - Notice of Intent to Repatriate Cultural Items: University of Idaho, Alfred W. Bowers Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... vulgare shell, one-end rounded cork, and one bone whistle. This site is located within the area ceded by... Silver, Idaho State Archaeological Society). In addition to being a funerary object, the bone whistle has been described as possibly sacred. Bone whistles are used in special ceremonies, and may have been...

  8. Shipment of spent nuclear fuel from U.S. Navy ships and submarines to the Idaho National Engineering Laboratory (INEL). Hearing before the Subcommittee on Nuclear Deterrence, Arms Control and Defense Intelligence of the Committee on Armed Services, United States Senate, One Hundred Third Congress, First Session, July 28, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The purpose of the hearing was to review the impact of the U.S. District Court of Idaho ruling prohibiting receipt of spent nuclear fuel by the Department of Energy (DOE). The court`s ruling enjoined the DOE from receiving spent nuclear fuel, including nuclear fuel from naval surface ships and submarines, at the Idaho National Engineering Laboratory until such time as the DOE completes an environmental impact statement on the transportation, shipment, processing, and storage of spent fuel. Statements of government officials are included. The text of the Court ruling is also included.

  9. Idaho Transportation Department 2011 customer satisfaction survey.

    DOT National Transportation Integrated Search

    2011-10-01

    In the spring and summer of 2011, the Idaho Transportation Department (ITD) commissioned a statewide customer satisfaction survey of Idaho residents to assess their perception of ITDs performance in several key areas of customer service. The areas...

  10. Status of the Prototype Pulsed Photonuclear Assessment (PPA) Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prototype Photonuclear Inspection Technoloby - An

    Prototype Photonuclear Inspection Technology – An Integrated Systems Approach* James L. Jonesa, Daren R. Normana, Kevin J. Haskella, James W. Sterbentza, Woo Y. Yoona, Scott M. Watsona, James T. Johnsona, John M. Zabriskiea, Calvin E. Mossb, Frank Harmonc a – Idaho National Laboratory, P.O. Box 1625-2802, Idaho Falls, Idaho 83415-2802 b – Los Alamos National Laboratory, P.O. Box 1663, MS B228, Los Alamos, New Mexico, 87585 c – Idaho State University, 1500 Alvin Ricken Dr., Pocatello, Idaho 83201 Active interrogation technologies are being pursued in order to address many of today’s challenging inspection requirements related to both nuclear and non-nuclearmore » material detection. The Idaho National Laboratory, along with the Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, continue to develop electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo containers. This paper presents an overview and status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system and its ability to detect shielded nuclear material by focusing on the integration of three major detection system components: delayed neutron measurement, delayed gamma-ray measurements, and a transmission, gray-scale mapping for shield material detection. Areas of future development and advancement within each detection component will be presented. *Supported in part by the Department of Homeland Security under DOE-ID Contract Number DE-AC07-99ID13727. POC: James L. Jones, 208-526-1730« less

  11. Geologic factors pertinent to the proposed A. J. Wiley Hydroelectric Project No. 2845, Bliss, Idaho

    USGS Publications Warehouse

    Malde, Harold E.

    1981-01-01

    The A.J. Wiley Hydroelectric Project is a proposal by the Idaho Power Company to develop hydroelectricity near Bliss, Idaho, by building a dam on the Snake River (fig. 1). The proposed dam would impound a narrow reservoir as deep as 85 feet in a free-flowing reach of the river that extends from the upper reach of water impounded by the Bliss Dam to the foot of the Lower Salmon Falls Dam, nearly 8 miles farther upstream. The proposed dam would be built in three sections: a spillway section and a powerhouse (intake) section to be constructed of concrete in the right-handed part, and an embankment section to be constructed as a zoned-fill of selected earth materials in the left-hand part. (Right and left are to be understood in the sense of looking downstream.) In August, 1979, the Idaho Power Company was granted a 3-year permit (Project No. 2845) by the Federal Energy Regulatory Commission (FERC) to make site investigations and environmental studies in the project area. A year later, on August 26, 1980, the company applied to FERC for a license to construct the project. On October 8, 1980, as explained in a letter by William W. Lindsay, Director of the Office of Electric Power Regulation, the company was given 90 days to correct certain deficiencies in the application. Because several of the deficiencies identified by Mr. Lindsay pertain to geologic aspects of the project, his letter is attached to this report as Appendix A. Hereafter in this report, the deficiencies listed by Mr. Lindsay are identified by the numerical entries in his letter. The Idaho Power Company is referred to as the applicant.

  12. Looking southwest from Idaho Avenue showing east side and north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southwest from Idaho Avenue showing east side and north end with entrance - University of Idaho, University Classroom Building, Line Street between University Avenue & Idaho Avenue, Moscow, Latah County, ID

  13. Perspective view toward southwest from Idaho Avenue showing east side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view toward southwest from Idaho Avenue showing east side and north end - University of Idaho, University Classroom Building, Line Street between University Avenue & Idaho Avenue, Moscow, Latah County, ID

  14. Idaho Transportation Department 2016 Customer Communication Survey

    DOT National Transportation Integrated Search

    2017-06-23

    In 2016, the Idaho Transportation Department contracted with the University of Idaho's Social Science Research Unit to conduct a survey on the general public's engagement and communication with the department. The goal of conducting this survey was t...

  15. Near-Field Propagation of Sub-Nanosecond Electric Pulses into Amorphous Masses

    DTIC Science & Technology

    2012-02-01

    the Idaho National Engineering Laboratory, Idaho Falls, ID, as a Senior Research Engineer, involved with fission reactor diagnostic measurements. He...temperature probe tip was just submerged in the cell buffer, less than 1 mm deep. For other positions, the maximum temperatures decreased to 34 ± 1 ◦C...422, Apr. 2008. [21] R. P. Joshi, J. Song, K. H. Schoenbach, and V. Sridhara, “Aspects of lipid membrane bio -responses to subnanosecond, ultrahigh

  16. State of Idaho Port of Entry Study

    DOT National Transportation Integrated Search

    2016-05-01

    The purpose of this study was to evaluate Idaho's Ports of Entry (POE) Program to identify its strengths and weaknesses, and provide recommendations for future program development and operations. As part of the study, current Idaho POE business proce...

  17. Design and implementation of the protective cap/biobarrier experiment at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limbach, W.E.; Ratzlaff, T.D.; Anderson, J.E.

    1994-12-31

    The Protective Cap/Biobarrier Experiment (PCBE), initiated in 1993 at the Idaho National Engineering Laboratory (INEL), is a strip-split plot experiment with three replications designed to rigorously test a 2.0-m loessal soil cap against a cap recommended by the US Environmental Protection Agency and two caps with biological intrusion barriers. Past research at INEL indicates that it should be possible to exclude water from buried wastes using natural materials and natural processes in arid environments rather than expensive materials (geotextiles) and highly engineered caps. The PCBE will also test the effects of two vegetal covers and three irrigation levels on capmore » performance. Drainage pans, located at the bottom of each plot, will monitor cap failure. Soil water profiles will be monitored biweekly by neutron probe and continuously by time domain reflectometry. The performance of each cap design will be monitored under a variety of conditions through 1998. From 1994 to 1996, the authors will assess plant establishment, rooting depths, patterns of moisture extraction and their interactions among caps, vegetal covers, and irrigation levels. In 1996, they will introduce ants and burrowing mammals to test the structural integrity of each cap design. In 1998, the authors will apply sufficient water to determine the failure limit for each cap design. The PCBE should provide reliable knowledge of the performances of the four cap designs under a variety of conditions and aid in making hazardous-waste management decisions at INEL and at disposal sites in similar environments.« less

  18. Looking southeast from intersection of Idaho Avenue and Line Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast from intersection of Idaho Avenue and Line Street showing north end and west front - University of Idaho, University Classroom Building, Line Street between University Avenue & Idaho Avenue, Moscow, Latah County, ID

  19. Completion summary for boreholes TAN-2271 and TAN‑2272 at Test Area North, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2016-06-30

    In 2015, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, drilled and constructed boreholes TAN-2271 and TAN-2272 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole TAN-2271 initially was cored to collect continuous geologic data, and then re-drilled to complete construction as a monitor well. Borehole TAN-2272 was partially cored between 210 and 282 feet (ft) below land surface (BLS) then drilled and constructed as a monitor well. Boreholes TAN-2271 and TAN-2272 are separated by about 63 ft and have similar geologic layers and hydrologic characteristics based on geologic, geophysical, and aquifer test data collected. The final construction for boreholes TAN-2271 and TAN-2272 required 10-inch (in.) diameter carbon-steel well casing and 9.9-in. diameter open-hole completion below the casing to total depths of 282 and 287 ft BLS, respectively. Depth to water is measured near 228 ft BLS in both boreholes. Following construction and data collection, temporary submersible pumps and water-level access lines were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels.Borehole TAN-2271 was cored continuously, starting at the first basalt contact (about 33 ft BLS) to a depth of 284 ft BLS. Excluding surface sediment, recovery of basalt and sediment core at borehole TAN-2271 was better than 98 percent. Based on visual inspection of core and geophysical data, material examined from 33 to 211ft BLS primarily consists of two massive basalt flows that are about 78 and 50 ft in thickness and three sediment layers near 122, 197, and 201 ft BLS. Between 211 and 284 ft BLS, geophysical data and core material suggest a high occurrence of fractured and vesicular basalt. For the section of aquifer tested, there are two primary fractured aquifer intervals: the first between 235 and

  20. 75 FR 74000 - Idaho Panhandle Resource Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... DEPARTMENT OF AGRICULTURE Forest Service Idaho Panhandle Resource Advisory Committee Meeting...-Determination Act of 2000 (Pub. L. 110-343) the Idaho Panhandle Resource Advisory Committee will meet Friday, December 3, 2010, at 9 a.m. in Coeur d'Alene, Idaho for a business meeting. The business meeting is open to...