Sample records for laboratory inl project

  1. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and themore » results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).« less

  2. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and themore » results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).« less

  3. Virtual tour: INL's space battery facility

    ScienceCinema

    Johnson, Steve

    2018-05-07

    This virtual tour shows how INL fuels and tests nuclear power systems for deep space missions. To learn more about INL's contribution to the Mars Science Laboratory, visit http://www.inl.gov/marsrover.

  4. INL High Performance Building Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennifer D. Morton

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflectmore » an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental

  5. INL Control System Situational Awareness Technology Final Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Rueff; Bryce Wheeler; Todd Vollmer

    The Situational Awareness project is a comprehensive undertaking of Idaho National Laboratory (INL) in an effort to produce technologies capable of defending the country’s energy sector infrastructure from cyber attack. INL has addressed this challenge through research and development of an interoperable suite of tools that safeguard critical energy sector infrastructure. The technologies in this project include the Sophia Tool, Mesh Mapper (MM) Tool, Intelligent Cyber Sensor (ICS) Tool, and Data Fusion Tool (DFT). Each is designed to function effectively on its own, or they can be integrated in a variety of customized configurations based on the end user’s riskmore » profile and security needs.« less

  6. INL@Work Hope Lee microbiologist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hope

    2010-01-01

    INL environmental microbiologist Hope Lee is working to develop and apply tools that clean contaminants out of ground water. You can learn more about INL's environmental projects at http://www.facebook.com/idahonationallaboratory.

  7. INL@Work Hope Lee microbiologist

    ScienceCinema

    Lee, Hope

    2018-02-07

    INL environmental microbiologist Hope Lee is working to develop and apply tools that clean contaminants out of ground water. You can learn more about INL's environmental projects at http://www.facebook.com/idahonationallaboratory.

  8. INL@Work Radiological Search & Response Training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnage, Jennifer

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  9. INL@Work Radiological Search & Response Training

    ScienceCinema

    Turnage, Jennifer

    2017-12-13

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  10. INL Archeology Tour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Brett

    Check out this tour of the Idaho National Laboratory's archeological sites. The lab sits on 890-square miles of land and contains numerous archeological artifacts. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  11. INL Archeology Tour

    ScienceCinema

    None

    2017-12-09

    Check out this tour of the Idaho National Laboratory's archeological sites. The lab sits on 890-square miles of land and contains numerous archeological artifacts. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  12. INL@Work Cyber Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaffin, May

    May Chaffin is one of many Idaho National Laboratory researchers who are helping secure the nation's critical infrastructure from cyber attacks.Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  13. Batelle Energy Alliance, LLC (BEA) 2014 Annual report for Idaho National Laboratory (INL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Juan; Allen, Todd

    2014-10-01

    This Fiscal Year (FY) 2014 annual report provides the Department of Energy (DOE) with BEA’s self-assessment of performance managing and operating the INL for the period ending September 30, 2014. After considering all of the information related to INL performance during the rating period against the Goals, Objectives and Notable Outcomes in the FY 2014 Performance Evaluation and Measurement Plan (PEMP), BEA believes it earned an overall grade closest to an A. The paragraphs below highlight how INL excelled in delivering innovative and impactful research across the three mission areas; how INL has successfully positioned itself for future growth andmore » sustainment; and how, through strong leadership, INL has set and implemented a strategic direction to ensure we meet and exceed the expectations of DOE and other customers. Attachments 1 through 5 provide additional detail on FY 2014 mission accomplishments, outline corporate contributions for success, highlight national and international awards and recognitions at the organization and individual levels, and describe the performance issues and challenges faced in FY 2014. • Attachment 1, “Self-Assessed PEMP Ratings” • Attachment 2, “INL Mission Accomplishments” • Attachment 3, “Battelle Energy Alliance, LLC Contributions to INL Success” • Attachment 4, “FY 2014 Awards, Recognition, Professional Roles and Certifications” • Attachment 5, “Performance Issues and Challenges.”« less

  14. Strategy for the Identification of an INL Comprehensive Utility Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Reisenauer

    2011-05-01

    This report documents the strategy developed to identify a comprehensive utility corridor (CUC) on the Idaho National Laboratory (INL) Site. The strategy established the process for which the Campus Development Office will evaluate land management issues. It is a process that uses geographical information system geospatial technology to layer critical INL mission information in a way that thorough evaluations can be conducted and strategies developed. The objective of the CUC Project was to develop a process that could be implemented to identify potential utility corridor options for consideration. The process had to take into account all the missions occurring onmore » the INL and other land-related issues. The process for developing a CUC strategy consists of the following four basic elements using geographical information system capabilities: 1. Development of an INL base layer map; this base layer map geospatially references all stationary geographical features on INL and sitewide information. 2. Development of current and future mission land-use need maps; this involved working with each directorate to identify current mission land use needs and future land use needs that project 30 years into the future. 3. Development of restricted and potential constraint maps; this included geospatially mapping areas such as wells, contaminated areas, firing ranges, cultural areas, ecological areas, hunting areas, easement, and grazing areas. 4. Development of state highway and power line rights of way map; this included geospatially mapping rights-of-way along existing state highways and power lines running through the INL that support INL operations. It was determined after completing and evaluating the geospatial information that the area with the least impact to INL missions was around the perimeter of the INL Site. Option 1, in this document, identifies this perimeter; however, it does not mean the entire perimeter is viable. Many places along the perimeter corridor

  15. INL's Data Center

    ScienceCinema

    Idaho National Laboratory - Brent Stacey, John Grossenbacher, Shane Johnson

    2017-12-09

    ICE STORM is a super computer procured by INL from a well-knowncomputer vendor, SGI. ICE STORM is rated as No. 64 on the list of ICE STORM is a super computer procured by INL from a well-knowncomputer vendor, SGI. ICE STORM is rated as No. 64 on the lis

  16. INL and NREL Demonstrate Power Grid Simulation at a Distance | News | NREL

    Science.gov Websites

    RTDSs can form a virtual laboratory that allows multiple laboratories to cooperate on energy integration Laboratory (NREL) and Idaho National Laboratory (INL) have successfully demonstrated the capability to within the DOE national laboratory complex. The two national laboratories were able to connect their

  17. INL Cultural Resource Monitoring Report for FY 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Brenda Ringe; Olson, Christina Liegh; Gilbert, Hollie Kae

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year (FY) 2015. Throughout the year, 67 total monitoring visits were completed, with several especially sensitive resources visited on more than one occasion. Overall, FY 2015 monitoring included surveillance of the following 49 individual cultural resource localities: three locations with human remains, one of which is also a cave; nine additional caves; twenty prehistoric archaeological sites; five historic archaeological sites; two historic trails; Experimental Breeder Reactor I (EBR-I), a National Historic Landmark; Aircraft Nuclear Propulsion (ANP) objects located atmore » EBR-I; and eight Arco Naval Proving Ground (NPG) property types. Several INL work processes and projects were also monitored to confirm compliance with original INL CRM recommendations and assess the effects of ongoing work. On two occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. Finally, the current location housing INL Archives and Special Collections was evaluated once. Most of the cultural resources monitored in FY 2015 exhibited no adverse impacts, resulting in Type 1 impact assessments. However, Type 2 impacts were noted 13 times. In one case, a portion of a historic trail was graded without prior review or coordination with the INL CRM Office, resulting in impacts to the surface of the trail and one archaeological site. Evidence of unauthorized artifact collection/ looting was also documented at three archaeological sites located along INL powerlines. Federal agents concluded a FY 2012 investigation by filing civil charges and levying fine under the Archaeological Resource Protection Act against one INL employee for

  18. PROCESS WATER BUILDING, TRA605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE NO. 3323. Unknown Photographer, 9/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. ETR ELECTRICAL BUILDING, TRA648, INTERIOR. SWITCHGEAR. INL NEGATIVE NO. 563794. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR ELECTRICAL BUILDING, TRA-648, INTERIOR. SWITCHGEAR. INL NEGATIVE NO. 56-3794. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. ETR ELECTRICAL BUILDING, TRA648. BATTERY ROOM. INL NEGATIVE NO. 563785. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR ELECTRICAL BUILDING, TRA-648. BATTERY ROOM. INL NEGATIVE NO. 56-3785. Jack L. Anderson, Photographer, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12124. Unknown Photographer, 9/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP601) LOOKING NORTHWEST. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-51-1390. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. DETAILS OF REMOTE ANALYTICAL FACILITY (CPP627). INL DRAWING NUMBER 200062700098105071. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAILS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105071. ALTERNATE ID NUMBER 4272-14-108. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP601) LOOKING EAST. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP-601) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1547. Unknown Photographer, 2/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. FAST CHOPPER BUILDING, TRA665, INTERIOR. UPPER LEVEL. CONCRETE WALLS. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FAST CHOPPER BUILDING, TRA-665, INTERIOR. UPPER LEVEL. CONCRETE WALLS. INL NEGATIVE NO. HD42-2. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. INL Seismic Monitoring Annual Report: January 1, 2006 - December 31, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. J. Payne; N. S. Carpenter; J. M. Hodges

    During 2006, the Idaho National Laboratory (INL) recorded 1998 independent triggers from earthquakes both within the region and from around the world. Fifteen small to moderate size earthquakes ranging in magnitude from 3.0 to 4.5 occurred within and outside the 161-km (100-mile) radius of INL. There were 357 earthquakes with magnitudes up to 4.5 that occurred within the 161-km radius of the INL. The majority of earthquakes occurred in the Basin and Range Province surrounding the eastern Snake River Plain (ESRP). The largest of these earthquakes had a body-wave magnitude (mb) 4.5 and occurred on February 5, 2006. It wasmore » located northeast of Spencer, Idaho near the east-west trending Centennial fault along the Idaho-Montana border. The earthquake did not trigger SMAs located within INL buildings. Three earthquakes occurred within the ESRP, two of which occurred within the INL boundaries. One earthquake of coda magnitude (Mc) 1.7 occurred on October 18, 2006 and was located southeast of Pocatello, Idaho. The two earthquakes within the INL boundaries included the local magnitude (ML) 2.0 on July 31, 2006 located near the southern termination of the Lemhi fault and the Mc 0.4 on August 6, 2006 located near the center of INL. The ML 2.0 earthquake was well recorded by most of the INL seismic stations and had a focal depth of 8.98 km. First motions were used to compute a focal mechanism, which indicated normal faulting along one of two possible fault planes that may strike N76ºW and dip 70±3ºSW or strike N55ºW and dip 20±13ºNE. Slip along a normal fault that strikes N76ºW and dips 70±3ºSW is consistent with slip along a possible segment of the NW-trending Lemhi normal fault.« less

  7. SOUTH ELEVATION OF HOT PILOT PLANT (CPP640) LOOKING NORTH. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF HOT PILOT PLANT (CPP-640) LOOKING NORTH. INL PHOTO NUMBER HD-22-3-1. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627). INL PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627). INL PHOTO NUMBER NRTS-54-12573. R.G. Larsen, Photographer, 10/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. SOUTH ELEVATION OF MAIN PROCESSING BUILDING (CPP601) LOOKING NORTH. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTH. INL PHOTO NUMBER HD-22-5-3. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. INL Director Discusses Lessons Learned from TMI, Fukushima

    ScienceCinema

    Grossenbacher, John

    2017-12-22

    Idaho National Laboratory's Director John Grossenbacher explains how the U.S. nuclear industry has boosted its safety procedures as a result of the Three Mile Island (TMI) accident in 1979 and how the industry plans to use current events at Japan's Fukushima nuclear plants to further enhance safety. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  11. MISCELLANEOUS ARCHITECTURAL DETAILS OF REMOTE ANALYTICAL FACILITY (CPP627). INL DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS ARCHITECTURAL DETAILS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105631. ALTERNATE ID NUMBER 4272-814-134. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. BUILDING PLANS OF FUEL STORAGE BUILDING (CPP603). INL DRAWING NUMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING PLANS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103029. ALTERNATE ID NUMBER 542-31-B-21. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. NORTH AND SOUTH SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP627). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH AND SOUTH SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105068. ALTERNATE ID NUMBER 4272-14-105. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. EAST AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP627). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105067. ALTERNATE ID NUMBER 4272-14-104. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS SECTIONS AND DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103032. ALTERNATE ID NUMBER 542-31-B-24. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. SOUTH ELEVATION AND DETAILS OF MAIN PROCESSING BUILDING (CPP601). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION AND DETAILS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103082. ALTERNATE ID NUMBER 542-12-B-76. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. ARCHITECTURAL WALL SECTIONS OF HOT PILOT PLANT (CPP640). INL DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL WALL SECTIONS OF HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111682. ALTERNATE ID NUMBER 8952-CPP-640-A-5. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. EAST AND WEST ELEVATIONS OF MAIN PROCESSING BUILDING (CPP601). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST AND WEST ELEVATIONS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103081. ALTERNATE ID NUMBER 542-11-B-75. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATIONS AND SECTIONS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-063-61-299-103031. ALTERNATE ID NUMBER 542-31-B-23. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. MISCELLANEOUS ARCHITECTURAL DETAILS OF HOT PILOT PLANT (CPP640). INL DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS ARCHITECTURAL DETAILS OF HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-640-00-279-111684. ALTERNATE ID NUMBER 8952-CPP-640-A-7. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP603). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SIDING AND ROOF DETAILS OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-61-299-103033. ALTERNATE ID NUMBER 542-31-B-25. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. BUILDING DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP601). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103080. ALTERNATE ID NUMBER 542-11-B-74. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. STRUCTURAL DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP601). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STRUCTURAL DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103079. ALTERNATE ID NUMBER 542-11-B-73. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. Idaho National Laboratory Directed Research and Development FY-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefitmore » each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  5. Operating experience review of an INL gas monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  6. Operating Experience Review of the INL HTE Gas Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. C. Cadwallader; K. G. DeWall

    2010-06-01

    This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  7. Airborne Dust Cloud Measurements at the INL National Security Test Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael L. Abbott; Norm Stanley; Larry Radke

    2007-09-01

    On July 11, 2007, a surface, high-explosive test (<20,000 lb TNT-equivalent) was carried out at the National Security Test Range (NSTR) on the Idaho National Laboratory (INL) Site. Aircraft-mounted rapid response (1-sec) particulate monitors were used to measure airborne PM-10 concentrations directly in the dust cloud and to develop a PM-10 emission factor that could be used for subsequent tests at the NSTR. The blast produced a mushroom-like dust cloud that rose approximately 2,500–3,000 ft above ground level, which quickly dissipated (within 5 miles of the source). In general, the cloud was smaller and less persistence than expected, or thatmore » might occur in other areas, likely due to the coarse sand and subsurface conditions that characterize the immediate NSTR area. Maximum short time-averaged (1-sec) PM-10 concentrations at the center of the cloud immediately after the event reached 421 µg m-3 but were rapidly reduced (by atmospheric dispersion and fallout) to near background levels (~10 µg m-3) after about 15 minutes. This occurred well within the INL Site boundary, about 8 km (5 miles) from the NSTR source. These findings demonstrate that maximum concentrations in ambient air beyond the INL Site boundary (closest is 11.2 km from NSTR) from these types of tests would be well within the 150 µg m-3 24-hour National Ambient Air Quality Standards for PM-10. Aircraft measurements and geostatistical techniques were used to successfully quantify the initial volume (1.64E+9 m3 or 1.64 km3) and mass (250 kg) of the PM-10 dust cloud, and a PM-10 emission factor (20 kg m-3 crater soil volume) was developed for this specific type of event at NSTR. The 250 kg of PM-10 mass estimated from this experiment is almost seven-times higher than the 36 kg estimated for the environmental assessment (DOE-ID 2007) using available Environmental Protection Agency (EPA 1995) emission factors. This experiment demonstrated that advanced aircraft-mounted instruments operated by

  8. Developing Government Renewable Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewablemore » projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.« less

  9. Climate Change Vulnerability Assessment for Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure)more » revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.« less

  10. INL@Work Firefighter

    ScienceCinema

    Baron, Wendy

    2018-01-15

    Did you know INL has its own firefighting team? Its members help protect our remote 890-square-mile site from range fires and other incidents. Meet firefighter Wendy Baron, who was recently named Idaho's firefighter of the year.

  11. INL@Work Firefighter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, Wendy

    2011-01-01

    Did you know INL has its own firefighting team? Its members help protect our remote 890-square-mile site from range fires and other incidents. Meet firefighter Wendy Baron, who was recently named Idaho's firefighter of the year.

  12. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema

    Grossenbacher, John

    2018-01-15

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  13. INL Seismic Monitoring Annual Report: January 1, 2013 to December 31, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette Jackson; Bockholt, Blaine Matthew; Hodges, Jed M

    During 2013, the Idaho National Laboratory (INL) recorded 14,011 independent triggers and 7,355 triggers were manmade blasts and distant, regional, and local earthquakes. Within the region, the INL Seismic Monitoring program located 2,085 earthquakes and 150 man-made blasts. Near and within the 161-km radius of INL, 38 of these earthquakes had small to moderate size magnitudes that ranged from 3.0 to 4.2. Residents near 19 of the M>3.0 earthquakes reported ground shaking affects of these earthquakes to the U.S. Geological Survey. Also, five new seismic stations with broadband seismometers and accelerometers were installed near INL facility areas. These new stationsmore » were installed to collect earthquake data that can be used in future INL probabilistic seismic hazard analyses to reduce uncertainties of ground motion models. In 2013, 1,013 earthquakes were located within the 161-km radius of INL and three occurred within the eastern Snake River Plain (ESRP). The earthquakes included three swarms and a mainshock-aftershock sequence. The earthquakes were located northwest of the INL in the Basin and Range regions of Idaho and Montana and southeast of the ESRP in the Basin and Range region along the Idaho-Wyoming border. A swarm of >180 earthquakes occurred at Driggs, Idaho; the largest events had local magnitudes (ML) of 2.8 and 3.1 and were felt by residents. A less intense swarm of 64 earthquakes was located west of Jackson, Wyoming along the Idaho-Wyoming border. The largest event was a MW 3.8 that was felt by local residents. Southeast of Pocatello, Idaho an earthquake of ML 4.2 was followed by 18 aftershocks that included a ML 3.6. Both earthquakes were felt by residents near to the epicenters. Three earthquakes occurred within the ESRP and three other earthquakes were located at the northwest edge of the ESRP. The coda magnitude (Mc) 1.3 earthquake was located in the center of ESRP north of the Great Rift and at a depth of 45 km. To the west, an earthquake

  14. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wold, Scott

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  15. Criticality Safety Basics for INL FMHs and CSOs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticalitymore » safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional

  16. INL Autonomous Navigation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  17. INL Control System Situational Awareness Technology Annual Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Rueff; Bryce Wheeler; Todd Vollmer

    The overall goal of this project is to develop an interoperable set of tools to provide a comprehensive, consistent implementation of cyber security and overall situational awareness of control and sensor network implementations. The operation and interoperability of these tools will fill voids in current technological offerings and address issues that remain an impediment to the security of control systems. This report provides an FY 2012 update on the Sophia, Mesh Mapper, Intelligent Cyber Sensor, and Data Fusion projects with respect to the year-two tasks and annual reporting requirements of the INL Control System Situational Awareness Technology report (July 2010).

  18. Laboratory Directed Research and Development FY-15 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  19. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francfort, Jim; Bennett, Brion; Carlson, Richard

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles andmore » charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of

  20. INL Generic Robot Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Generic Robot Architecture is a generic, extensible software framework that can be applied across a variety of different robot geometries, sensor suites and low-level proprietary control application programming interfaces (e.g. mobility, aria, aware, player, etc.).

  1. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.J. Orchard; L.A. Harvego; T.L. Carlson

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answersmore » to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not

  2. Applying DOE's Graded Approach for assessing radiation impacts to non-human biota at the INL.

    PubMed

    Morris, Randall C

    2006-01-01

    In July 2002, The US Department of Energy (DOE) released a new technical standard entitled A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota. DOE facilities are annually required to demonstrate that routine radioactive releases from their sites are protective of non-human receptors and sites are encouraged to use the Graded Approach for this purpose. Use of the Graded Approach requires completion of several preliminary steps, to evaluate the degree to which the site environmental monitoring program is appropriate for evaluating impacts to non-human biota. We completed these necessary activities at the Idaho National Laboratory (INL) using the following four tasks: (1) develop conceptual models and evaluate exposure pathways; (2) define INL evaluation areas; (3) evaluate sampling locations and media; (4) evaluate data gaps. All of the information developed in the four steps was incorporated, data sources were identified, departures from the Graded Approach were justified, and a step-by-step procedure for biota dose assessment at the INL was specified. Finally, we completed a site-wide biota dose assessment using the 2002 environmental surveillance data and an offsite assessment using soil and surface water data collected since 1996. These assessments demonstrated the environmental concentrations of radionuclides measured on and near the INL do not present significant risks to populations of non-human biota.

  3. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossenbacher, John

    2011-04-14

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  4. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    ScienceCinema

    Grossenbacher, John

    2018-02-06

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  5. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sondrup, A. Jeffrey; Rood, Arthur S.

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) formore » every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the

  6. INL Results for Phases I and III of the OECD/NEA MHTGR-350 Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom; Javier Ortensi; Sonat Sen

    2013-09-01

    The Idaho National Laboratory (INL) Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Methods Core Simulation group led the construction of the Organization for Economic Cooperation and Development (OECD) Modular High Temperature Reactor (MHTGR) 350 MW benchmark for comparing and evaluating prismatic VHTR analysis codes. The benchmark is sponsored by the OECD's Nuclear Energy Agency (NEA), and the project will yield a set of reference steady-state, transient, and lattice depletion problems that can be used by the Department of Energy (DOE), the Nuclear Regulatory Commission (NRC), and vendors to assess their code suits. The Methods group is responsible formore » defining the benchmark specifications, leading the data collection and comparison activities, and chairing the annual technical workshops. This report summarizes the latest INL results for Phase I (steady state) and Phase III (lattice depletion) of the benchmark. The INSTANT, Pronghorn and RattleSnake codes were used for the standalone core neutronics modeling of Exercise 1, and the results obtained from these codes are compared in Section 4. Exercise 2 of Phase I requires the standalone steady-state thermal fluids modeling of the MHTGR-350 design, and the results for the systems code RELAP5-3D are discussed in Section 5. The coupled neutronics and thermal fluids steady-state solution for Exercise 3 are reported in Section 6, utilizing the newly developed Parallel and Highly Innovative Simulation for INL Code System (PHISICS)/RELAP5-3D code suit. Finally, the lattice depletion models and results obtained for Phase III are compared in Section 7. The MHTGR-350 benchmark proved to be a challenging simulation set of problems to model accurately, and even with the simplifications introduced in the benchmark specification this activity is an important step in the code-to-code verification of modern prismatic VHTR codes. A final OECD/NEA comparison report will compare the Phase I and III

  7. Julie D. Baker - Associate Laboratory Director | NREL

    Science.gov Websites

    her most recent role at INL, Baker has served in a variety of operations, engineering, science and role as special assistant to INL's laboratory director. During that time, Baker engaged in the full

  8. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2018-05-11

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  9. PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing.

    PubMed

    Faralla, Cristina; Bastounis, Effie E; Ortega, Fabian E; Light, Samuel H; Rizzuto, Gabrielle; Nocadello, Salvatorre; Anderson, Wayne F; Robbins, Jennifer R; Theriot, Julie A; Bakardjiev, Anna I

    2018-05-30

    During pregnancy, the placenta protects the fetus against the maternal immune response, as well as bacterial and viral pathogens. Bacterial pathogens that have evolved specific mechanisms of breaching this barrier, such as Listeria monocytogenes, present a unique opportunity for learning how the placenta carries out its protective function. We previously identified the L. monocytogenes protein Internalin P (InlP) as a secreted virulence factor critical for placental infection. Here, we show that InlP, but not the highly similar L. monocytogenes internalin Lmo2027, binds to human afadin (encoded by AF-6), a protein associated with cell-cell junctions. A crystal structure of InlP reveals several unique features, including an extended leucine-rich repeat (LRR) domain with a distinctive Ca2+-binding site. Despite afadin's involvement in the formation of cell-cell junctions, MDCK epithelial cells expressing InlP displayed a decrease in the magnitude of the traction stresses they could exert on deformable substrates, similar to the decrease in traction exhibited by AF-6 knock-out MDCK cells. L. monocytogenes ΔinlP mutants were deficient in their ability to form actin-rich protrusions from the basal face of polarized epithelial monolayers, a necessary step in the crossing of such monolayers (transcytosis). A similar phenotype was observed for bacteria expressing an internal in-frame deletion in inlP (inlP ΔLRR5) that specifically disrupts its interaction with afadin. However, afadin deletion in the host cells did not rescue the transcytosis defect. We conclude that secreted InlP targets cytosolic afadin to specifically promote L. monocytogenes transcytosis across the basal face of epithelial monolayers, which may contribute to the crossing of the basement membrane during placental infection.

  11. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several

  12. Laboratory-Directed Research and Development 2016 Summary Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear

  13. CTBTO Contractor Laboratory Test Sample Production Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bob Hague; Tracy Houghton; Nick Mann

    2013-08-01

    In October 2012 scientists from both Idaho National Laboratory (INL) and the CTBTO contact laboratory at Seibersdorf, Austria designed a system and capability test to determine if the INL could produce and deliver a short lived radio xenon standard in time for the standard to be measured at the CTBTO contact laboratory at Seibersdorf, Austria. The test included sample standard transportation duration and potential country entrance delays at customs. On October 23, 2012 scientists at the Idaho National Laboratory (INL) prepared and shipped a Seibersdorf contract laboratory supplied cylinder. The canister contained 1.0 scc of gas that consisted of 70%more » xenon and 30% nitrogen by volume. The t0 was October 24, 2012, 1200 ZULU. The xenon content was 0.70 +/ 0.01 scc at 0 degrees C. The 133mXe content was 4200 +/ 155 dpm per scc of stable xenon on t0 (1 sigma uncertainty). The 133Xe content was 19000 +/ 800 dpm per scc of stable xenon on t0 (1 sigma uncertainty).« less

  14. Viability of Existing INL Facilities for Dry Storage Cask Handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randy Bohachek; Charles Park; Bruce Wallace

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hotmore » Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.« less

  15. Viability of Existing INL Facilities for Dry Storage Cask Handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hotmore » Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.« less

  16. Final Report - Assessment of Testing Options for the NTR at the INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Steven D; McLing, Travis L; McCurry, Michael

    One of the main technologies that can be developed to dramatically enhance the human exploration of space is the nuclear thermal rocket (NTR). Several studies over the past thirty years have shown that the NTR can reduce the cost of a lunar outpost, reduce the risk of a human mission to Mars, enable fast transits for most missions throughout the solar system, and reduce the cost and time for robotic probes to deep space. Three separate committees of the National Research Council of the National Academy of Sciences have recommended that NASA develop the NTR. One of the primary issuesmore » in development of the NTR is the ability to verify a flight ready unit. Three main methods can be used to validate safe operation of a NTR: 1) Full power, full duration test in an above ground facility that scrubs the rocket exhaust clean of any fission products; 2) Full power , full duration test using the Subsurface Active Filtering of Exhaust (SAFE) technique to capture the exhaust in subsurface strata; 3) Test of the reactor fuel at temperature and power density in a driver reactor with subsequent first test of the fully integrated NTR in space. The first method, the above ground facility, has been studied in the past. The second method, SAFE, has been examined for application at the Nevada Test Site. The third method relies on the fact that the Nuclear Furnace series of tests in 1971 showed that the radioactive exhaust coming from graphite based fuel for the NTR could be completely scrubbed of fission products and the clean hydrogen flared into the atmosphere. Under funding from the MSFC, the Center for Space Nuclear Research (CSNR) at the Idaho National laboratory (INL) has completed a reexamination of Methods 2 and 3 for implementation at the INL site. In short, the effort performed the following: 1) Assess the geology of the INL site and determine a location suitable SAFE testing; 2) Perform calculations of gas transport throughout the geology; 3) Produce a cost estimate

  17. INL DPAH STAAR 2015 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterman, Dean Richard

    2015-09-15

    Research conducted at the INL has demonstrated the synergistic extraction of americium using solvents comprised of bis(o,o-(trifluoromethyl)phenyl) dithiophosphinic acid (DPAH “1”) and trioctylphosphine oxide (TOPO), butyl bis(2,4,4-trimethylpentyl) phosphinate (BuCy272), or dibutyl butylphosphonate (DBBP). One potential drawback of this separations scheme is that soft metals such as silver, cadmium, or palladium and fission products such as zirconium are well extracted by these solvents. Several potential scrubbing reagents were examined. Of the scrubbing reagents studied, cysteine and methione exhibited some ability to scrub soft metals from the loaded solvent. More conventional scrub reagents such as ammonium fluoride or oxalic acid were notmore » effective. Reagents like Bimet and CDTA were not soluble at the acidities used in these studies. Unfortunately, these results indicate that the identification of effective scrubbing reagents for use in a flowsheet based upon the INL DPAH is going to be very difficult.« less

  18. MTR WING, TRA604. A LABORATORY ROOM WITH ITS CABINETS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING, TRA-604. A LABORATORY ROOM WITH ITS CABINETS AND SERVICE STRIP DOWN CENTER OF ROOM. CARD IN LEFT CORNER OF VIEW WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3817. Unknown Photographer, 11/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Laboratory Directed Research and Development FY-10 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  20. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mindy Kirkpatrick

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMapmore » software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.« less

  1. Project management: importance for diagnostic laboratories.

    PubMed

    Croxatto, A; Greub, G

    2017-07-01

    The need for diagnostic laboratories to improve both quality and productivity alongside personnel shortages incite laboratory managers to constantly optimize laboratory workflows, organization, and technology. These continuous modifications of the laboratories should be conducted using efficient project and change management approaches to maximize the opportunities for successful completion of the project. This review aims at presenting a general overview of project management with an emphasis on selected critical aspects. Conventional project management tools and models, such as HERMES, described in the literature, associated personal experience, and educational courses on management have been used to illustrate this review. This review presents general guidelines of project management and highlights their importance for microbiology diagnostic laboratories. As an example, some critical aspects of project management will be illustrated with a project of automation, as experienced at the laboratories of bacteriology and hygiene of the University Hospital of Lausanne. It is important to define clearly beforehand the objective of a project, its perimeter, its costs, and its time frame including precise duration estimates of each step. Then, a project management plan including explanations and descriptions on how to manage, execute, and control the project is necessary to continuously monitor the progression of a project to achieve its defined goals. Moreover, a thorough risk analysis with contingency and mitigation measures should be performed at each phase of a project to minimize the impact of project failures. The increasing complexities of modern laboratories mean clinical microbiologists must use several management tools including project and change management to improve the outcome of major projects and activities. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less

  3. INL Multi-Robot Control Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  4. FY 2014 LDRD Annual Report Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomchak, Dena

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  5. Idaho National Laboratory 2015-2023 Ten-Year Site Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Elizabeth Connell; Bill Buyers

    2013-09-01

    This Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of sustaining the INL infrastructure to meet the Department of Energy Office of Nuclear Energy (DOE-NE) mission: to promote nuclear power as a resource capable of making major contributions in meeting the nation’s energy supply, environmental and energy security needs. This TYSP provides the strategy for INL to accomplish its mission by: (1) linking R&D mission goals to core capabilities and infrastructure requirements; (2) establishing a ten-year end-state vision for INL facility complexes; (3) identifying and prioritizing infrastructure needs and capability gaps; (4)more » establishing maintenance and repair strategies that allow for sustainment of mission-critical (MC) facilities; and (5) applying sustainability principles to each decision and action. The TYSP serves as the infrastructure-planning baseline for INL; and, though budget formulation documents are informed by the TYSP, it is not itself a budget document.« less

  6. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenda R. Pace; Julie B. Braun

    2009-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitormore » the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.« less

  7. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth A.

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  8. After Action Report: Idaho National Laboratory Annual Exercise June 10, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Vernon Scott

    On June 10, 2015, Idaho National Laboratory (INL), in coordination with the State of Idaho, local jurisdictions, Department of Energy Idaho Operations Office (DOE-ID), and DOE Headquarters (DOE HQ), conducted the annual emergency exercise to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.” The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with other INL contractors, conducted operations and demonstrated appropriate response measures to mitigate an event and protect the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures.

  9. Idaho National Laboratory Emergency Readiness Assurance Plan — Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Battelle Energy Alliance, LLC, the prime contractor for Idaho National Laboratory (INL), provides this Emergency Readiness Assurance Plan (ERAP) for Fiscal Year 2016 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for Fiscal Year 2017. Specifically, the ERAP assures the Department of Energy Idahomore » Operations Office that stated emergency capabilities at INL are sufficient to implement PLN 114, “INL Emergency Plan/RCRA Contingency Plan.”« less

  10. Idaho National Laboratory Emergency Readiness Assurance Plan — Fiscal Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Shane

    Battelle Energy Alliance, LLC, the prime contractor for Idaho National Laboratory (INL), provides this Emergency Readiness Assurance Plan (ERAP) for Fiscal Year 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for Fiscal Year 2015. Specifically, the ERAP assures the Department of Energy Idahomore » Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.”« less

  11. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role ofmore » expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments

  12. MTR WING, TRA604. ONE OF THE LABORATORY UNITS ALONG THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING, TRA-604. ONE OF THE LABORATORY UNITS ALONG THE SOUTH SIDE WALL. NOTE SINK, CABINET, TABLE, AND HOOD UNITS. DUCT ABOVE RECEIVES CONTAMINATED AIR AND SENDS IT TO FAN HOUSE AND STACK. NOTE PARTITION WALL BEHIND WORK UNITS. THE HEALTH PHYSICS LAB WAS SIMILARLY EQUIPPED. WINDOW AT LEFT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 4225. Unknown Photographer, 2/13/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. The ATLAS project: The effects of a constructionist digital laboratory project on undergraduate laboratory performance.

    PubMed

    Shoepe, Todd C; Cavedon, Dana K; Derian, Joseph M; Levy, Celine S; Morales, Amy

    2015-01-01

    Anatomical education is a dynamic field where developments in the implementation of constructive, situated-learning show promise in improving student achievement. The purpose of this study was to examine the effectiveness of an individualized, technology heavy project in promoting student performance in a combined anatomy and physiology laboratory course. Mixed-methods research was used to compare two cohorts of anatomy laboratories separated by the adoption of a new laboratory atlas project, which were defined as preceding (PRE) and following the adoption of the Anatomical Teaching and Learning Assessment Study (ATLAS; POST). The ATLAS project required the creation of a student-generated, photographic atlas via acquisition of specimen images taken with tablet technology and digital microscope cameras throughout the semester. Images were transferred to laptops, digitally labeled and photo edited weekly, and compiled into a digital book using Internet publishing freeware for final project submission. An analysis of covariance confirmed that student final examination scores were improved (P < 0.05) following the implementation of the laboratory atlas project (PRE, n = 75; POST, n = 90; means ± SE; 74.9 ± 0.9 versus 78.1 ± 0.8, respectively) after controlling for cumulative student grade point average. Analysis of questionnaires collected (n = 68) from the post group suggested students identified with atlas objectives, appreciated the comprehensive value in final examination preparation, and the constructionism involved, but recommended alterations in assignment logistics and the format of the final version. Constructionist, comprehensive term-projects utilizing student-preferred technologies could be used to improve performance toward student learning outcomes. © 2014 American Association of Anatomists.

  14. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenda R. Pace

    2009-01-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recordedmore » cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources« less

  15. Physics Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Physics Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is an extension of the Chemistry-Materials Laboratory Project Book (see note) and is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or…

  16. Use of SUSA in Uncertainty and Sensitivity Analysis for INL VHTR Coupled Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom

    2010-06-01

    The need for a defendable and systematic Uncertainty and Sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008.The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This interim milestone report provides an overview of the current status of themore » implementation and testing of SUSA at the INL VHTR Project Office.« less

  17. Idaho National Laboratory Cultural Resource Management Office FY 2010 Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollie K. Gilbert; Clayton F. Marler; Christina L. Olson

    2011-09-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history.more » This report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2010. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders and to serve as a planning tool for future INL cultural resource management work.« less

  18. Wound healing potential of a dimeric InlB variant analyzed by in vitro experiments on re-epithelialization of human skin models.

    PubMed

    Kolditz, F; Krausze, J; Heinz, D W; Niemann, H H; Müller-Goymann, C C

    2014-02-01

    A constitutively dimeric truncated variant of internalin B (InlB321-CD), acting as stimulator of the receptor tyrosine kinase MET, was tested for dermal wound-healing potential. Due to a lack of the endogenous MET agonist HGF/SF in chronic wounds, HGF/SF substitution by an InlB321-CD-loaded hydrogel might be beneficial in chronic wound therapy. In this study, InlB321-CD in solution and incorporated in a hydrogel was tested for mitogenic effects on immortalized human dermal keratinocytes (HaCaT) with an MTT assay. Cell migration was investigated with a scratch assay on primary keratinocytes (PHK) and on HaCaT. For the latter, scratching needed to be mitomycin C-controlled. InlB321-CD effects on a model of human skin were analyzed histologically with respect to viability. InlB321-CD led to dose-dependent proliferative effects on HaCaT cells whereas the equimolar dose of monomeric InlB321 did not. Upon hydrogel incorporation of InlB321-CD its mitogenic activity for HaCaT cells was maintained thus confirming the hydrogel as a promising drug delivery system. Motogenic effects were shown on both HaCaT and PHK cells. InlB321-CD neither possesses cytotoxic effects on the viability of a human skin model nor alters its organotypic cell morphology. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Data Quality Objectives Supporting the Environmental Soil Monitoring Program for the Idaho National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Thomas Jay

    This document describes the process used to develop data quality objectives for the Idaho National Laboratory (INL) Environmental Soil Monitoring Program in accordance with U.S. Environmental Protection Agency guidance. This document also develops and presents the logic that was used to determine the specific number of soil monitoring locations at the INL Site, at locations bordering the INL Site, and at locations in the surrounding regional area. The monitoring location logic follows the guidance from the U.S. Department of Energy for environmental surveillance of its facilities.

  20. SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  1. Idaho National Laboratory Cultural Resource Management Office FY 2011 Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Braun Williams; Brenda R. Pace; Hollie K. Gilbert

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500 year span of human land use in the region. As a federal agency, the Department of Energy, Idaho Operations Office (DOE-ID) has legal responsibility for the management and protection of the resources and has contracted these responsibilities to Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts the challenge of preserving INL cultural resources in a manner reflecting their importance in local, regional, and national history.more » This report is intended as a stand-alone document that summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2011. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be informative to both internal and external stakeholders, serve as a planning tool for future INL cultural resource management work, and meet an agreed upon legal requirement.« less

  2. Laboratory Directed Research and Development LDRD-FY-2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  3. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    DOE PAGES

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; ...

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more » the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less

  4. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  5. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    INL Cultural Resource Management Office

    2010-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts weremore » documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.« less

  6. Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 103, 105, 108, 131, 135, NRF-15, and NRF-16, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Orr, Stephanie M.; Potter, Katherine E.; LeMaitre, Tynan

    2012-01-01

    This report, prepared in cooperation with the U.S. Department of Energy, summarizes construction, geophysical, and lithologic data collected from about 4,509 feet of core from seven boreholes deepened or drilled by the U.S. Geological Survey (USGS), Idaho National Laboratory (INL) Project Office, from 2006 to 2009 at the INL. USGS 103, 105, 108, and 131 were deepened and cored from 759 to 1,307 feet, 800 to 1,409 feet, 760 to 1,218 feet, and 808 to 1,239 feet, respectively. Boreholes USGS 135, NRF-15, and NRF-16 were drilled and continuously cored from land surface to 1,198, 759, and 425 feet, respectively. Cores were photographed and digitally logged by using commercially available software. Borehole descriptions summarize location, completion date, and amount and type of core recovered.

  7. Idaho National Laboratory Cultural Resource Management Annual Report FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton F. Marler; Julie Braun; Hollie Gilbert

    2007-04-01

    The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and nationalmore » history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.« less

  8. Idaho National Laboratory Cultural Resource Management Annual Report FY 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Braun; Hollie Gilbert; Dino Lowrey

    2008-03-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual reportmore » summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.« less

  9. Idaho National Laboratory Site Pollution Prevention Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Managementmore » System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is

  10. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands

    PubMed Central

    Marino, Michael; Banerjee, Manidipa; Jonquières, Renaud; Cossart, Pascale; Ghosh, Partho

    2002-01-01

    InlB, a surface-localized protein of Listeria monocytogenes, induces phagocytosis in non-phagocytic mammalian cells by activating Met, a receptor tyrosine kinase. InlB also binds glycosaminoglycans and the protein gC1q-R, two additional host ligands implicated in invasion. We present the structure of InlB, revealing a highly elongated molecule with leucine-rich repeats that bind Met at one end, and GW domains that dissociably bind the bacterial surface at the other. Surprisingly, the GW domains are seen to resemble SH3 domains. Despite this, GW domains are unlikely to act as functional mimics of SH3 domains since their potential proline-binding sites are blocked or destroyed. However, we do show that the GW domains, in addition to binding glycosaminoglycans, bind gC1q-R specifically, and that this binding requires release of InlB from the bacterial surface. Dissociable attachment to the bacterial surface via the GW domains may be responsible for restricting Met activation to a small, localized area of the host cell and for coupling InlB-induced host membrane dynamics with bacterial proximity during invasion. PMID:12411480

  11. SUNLAB - The Project of a Polish Underground Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisiel, J.; Dorda, J.; Konefall, A.

    2010-11-24

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedz S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector - GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  12. SUNLAB-The Project of a Polish Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Kisiel, J.; Budzanowski, M.; Chorowski, M.; Cygan, S.; Dorda, J.; Hanzel, S.; Harańczyk, M.; Horoszczak, L.; Januszewska, K.; Jaroń, L.; Konefalł, A.; Kozak, K.; Lankof, L.; Mania, S.; Markiewicz, A.; Markowski, P.; Mazur, J.; Mertuszka, P.; Mietelski, J. W.; Poliński, J.; Puchalska, M.; Pytel, W.; Raczyński, M.; Sadecki, Z.; Sadowski, A.; Ślizowski, J.; Sulej, R.; Szarska, M.; Szeglowski, T.; Tomankiewicz, E.; Urbańczyk, K.; Zalewska, A.

    2010-11-01

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedź S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector-GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  13. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes.

    PubMed

    Braun, L; Ghebrehiwet, B; Cossart, P

    2000-04-03

    InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.

  14. Influence of Technological Treatments on the Functionality of Bifidobacterium lactis INL1, a Breast Milk-Derived Probiotic.

    PubMed

    Zacarías, María Florencia; Souza, Tassia Costa; Zaburlín, Natalia; Carmona Cara, Denise; Reinheimer, Jorge; Nicoli, Jacques; Vinderola, Gabriel

    2017-10-01

    The aim of this study is to evaluate the influence of the technological processing on the functionality of the human breast milk probiotic strain Bifidobacterium lactis INL1. In vitro antagonistic activity of B. lactis INL1 was detected for Gram-positive and Gram-negative pathogens. B. lactis INL1 was administered to mice as fresh (F), frozen (Z), spray-dried (S), or lyophilized (L) culture. Immune parameters (IgA, IL-10, and IFN-γ) were determined and histological analysis was performed to assess functionality and protection capacity against Salmonella. In BALB/c mice, F and S cultures induced an increase in the number of IgA-producing cells in the small intestine and IL-10 levels were increased for L culture in the large intestine. In Swiss mice, B. lactis INL1 increased secretory-IgA levels in the small intestine before and after Salmonella infection, both as F or dehydrated culture. Also, an attenuation of damage in the intestinal epithelium and less inflammatory infiltrates were observed in animals that received F and S cultures, whereas in liver only F showed some effect. The anti-inflammatory effect was confirmed in both tissues by myeloperoxidase activity and by IFN-γ levels in the intestinal content. B. lactis INL1 showed inhibitory activity against pathogens and confirmed its probiotic potential in animal models. Technological processing of the probiotic strain affected its functionality. This work provides evidence about the influence of technology on the functionality of probiotics, which may help probiotics and functional food manufacturers to take processing into consideration when assessing the functionality of new strains. © 2017 Institute of Food Technologists®.

  15. Sandia, California Tritium Research Laboratory transition and reutilization project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, T.B.

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  16. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Carl J.

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  17. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe, Jeffrey .C; Boring, Ronald L.

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation andmore » control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.« less

  18. Aerial Flyover of New Research Facilities

    ScienceCinema

    None

    2018-02-14

    The Idaho National Laboratory is focused on continued development of its primary campus areas, including our Idaho Falls campus, to enable the INL to meet DOE expectations as the nations lead nuclear energy laboratory. This video identifies some of the existing Idaho Falls campus facilities and highlights planned and potential future development to support campus growth. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.

  19. Idaho National Laboratory Quarterly Performance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INLmore » from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.« less

  20. Idaho National Laboratory Quarterly Occurrence Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions)more » identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).« less

  1. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the newmore » methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.« less

  2. Myoglobin Structure and Function: A Multiweek Biochemistry Laboratory Project

    ERIC Educational Resources Information Center

    Silverstein, Todd P.; Kirk, Sarah R.; Meyer, Scott C.; Holman, Karen L. McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure,…

  3. Experiential learning in control systems laboratories and engineering project management

    NASA Astrophysics Data System (ADS)

    Reck, Rebecca Marie

    2015, a panel of 40 control systems faculty members, from a variety of institutions, completed a multi-round Delphi survey in order to bring them toward consensus on the common aspects of their laboratories. The following winter, 45 additional faculty members and practitioners from the control systems community completed a follow-up survey to gather feedback on the results of the Delphi survey. During the Delphi study, the panelists identified 15 laboratory objectives, 26 concepts, and 15 components that were common in their laboratories. Then in both the Delphi survey and follow-up survey each participant rated the importance of each of these items. While the average ratings differed slightly between the two groups, the order of each set of items was compared with two different tests and the order was found to be similar. Some of the common and important learning objectives include connecting theory to what is implemented and observed in the laboratory, designing controllers, and modeling and simulating systems. The most common component in both groups was Math-Works software. Some of the common concepts include block diagrams, stability, and PID control. Defining common aspects of undergraduate control systems laboratories enables common development, detailed comparisons, and simplified adaptation of equipment and experiments between campuses and programs. Throughout an undergraduate program in engineering, there are multiple opportunities for hands-on laboratory experiences that are related to course content. However, a similarly immersive experience for project management graduate students is harder to incorporate for all students in a course at once. This study explores an experiential learning opportunity for graduate students in engineering management or project management programs. The project management students enroll in a project management course. Undergraduate students interested in working on a project with a real customer enroll in a different projects

  4. Host Serine/Threonine Kinases mTOR and Protein Kinase C-α Promote InlB-Mediated Entry of Listeria monocytogenes

    PubMed Central

    Bhalla, Manmeet; Law, Daria; Dowd, Georgina C.

    2017-01-01

    ABSTRACT The bacterial pathogen Listeria monocytogenes causes foodborne illnesses resulting in gastroenteritis, meningitis, or abortion. Listeria induces its internalization into some human cells through interaction of the bacterial surface protein InlB with the host receptor tyrosine kinase Met. InlB-dependent entry requires localized polymerization of the host actin cytoskeleton. The signal transduction pathways that act downstream of Met to regulate actin filament assembly or other processes during Listeria uptake remain incompletely characterized. Here, we demonstrate important roles for the human serine/threonine kinases mTOR and protein kinase C-α (PKC-α) in InlB-dependent entry. Experiments involving RNA interference (RNAi) indicated that two multiprotein complexes containing mTOR, mTORC1 and mTORC2, are each needed for efficient internalization of Listeria into cells of the human cell line HeLa. InlB stimulated Met-dependent phosphorylation of mTORC1 or mTORC2 substrates, demonstrating activation of both mTOR-containing complexes. RNAi studies indicated that the mTORC1 effectors 4E-BP1 and hypoxia-inducible factor 1α (HIF-1α) and the mTORC2 substrate PKC-α each control Listeria uptake. Genetic or pharmacological inhibition of PKC-α reduced the internalization of Listeria and the accumulation of actin filaments that normally accompanies InlB-mediated entry. Collectively, our results identify mTOR and PKC-α to be host factors exploited by Listeria to promote infection. PKC-α controls Listeria entry, at least in part, by regulating the actin cytoskeleton downstream of the Met receptor. PMID:28461391

  5. Myoglobin structure and function: A multiweek biochemistry laboratory project.

    PubMed

    Silverstein, Todd P; Kirk, Sarah R; Meyer, Scott C; Holman, Karen L McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure, students work with computer modeling and visualization of myoglobin and its homologues, after which they spectroscopically characterize its thermal denaturation. Students also study protein function (ligand binding equilibrium) and are instructed on topics in data analysis (calibration curves, nonlinear vs. linear regression). This upper division biochemistry laboratory project is a challenging and rewarding one that not only exposes students to a wide variety of important biochemical laboratory techniques but also ties those techniques together to work with a single readily available and easily characterized protein, myoglobin. © 2015 International Union of Biochemistry and Molecular Biology.

  6. U.S. Geological Survey geohydrologic studies and monitoring at the Idaho National Laboratory, southeastern Idaho

    USGS Publications Warehouse

    Bartholomay, Roy C.

    2017-09-14

    BackgroundThe U.S. Geological Survey (USGS) geohydrologic studies and monitoring at the Idaho National Laboratory (INL) is an ongoing, long-term program. This program, which began in 1949, includes hydrologic monitoring networks and investigative studies that describe the effects of waste disposal on water contained in the eastern Snake River Plain (ESRP) aquifer and the availability of water for long-term consumptive and industrial use. Interpretive reports documenting study findings are available to the U.S. Department of Energy (DOE) and its contractors; other Federal, State, and local agencies; private firms; and the public at https://id.water.usgs.gov/INL/Pubs/index.html. Information contained within these reports is crucial to the management and use of the aquifer by the INL and the State of Idaho. USGS geohydrologic studies and monitoring are done in cooperation with the DOE Idaho Operations Office.

  7. TRITIUM LABORATORY, TRA666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRITIUM LABORATORY, TRA-666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT CENTER OF VIEW. SIGN ABOVE DOOR SAYS "HYDRAULIC TEST FACILITY CONTROL ROOM." SIGN IN WINDOW SAYS "EATING AREA." "EVACUATION AND EMERGENCY INFORMATION" IS POSTED ON CABINET AT LEFT OF VIEW. INL NEGATIVE NO. HD30-2-3. Mike Crane, Photographer, 6/2001 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Egg Yolk Lecithin: A Biochemical Laboratory Project

    ERIC Educational Resources Information Center

    White, Bernard J.; And Others

    1974-01-01

    Describes an undergraduate laboratory project involving lecithin which integrates two general aspects of lipid methodology: chromatographic techniques and use of enzymes specificity to obtain structural information. (Author/SLH)

  9. Insects of the Idaho National Laboratory: A compilation and review

    Treesearch

    Nancy Hampton

    2005-01-01

    Large tracts of important sagebrush (Artemisia L.) habitat in southeastern Idaho, including thousands of acres at the Idaho National Laboratory (INL), continue to be lost and degraded through wildland fire and other disturbances. The roles of most insects in sagebrush ecosystems are not well understood, and the effects of habitat loss and alteration...

  10. MTR MAIN FLOOR. NEUTRON TUNNEL (SPANNED BY STILELIKE STEPS) PROJECTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR MAIN FLOOR. NEUTRON TUNNEL (SPANNED BY STILE-LIKE STEPS) PROJECTS FROM THE SOUTHEAST CORNER OF THE MTR TOWARD SOUTHEAST CORNER OF BUILDING, WHERE SHIELDING BLOCKS BEGIN TO SURROUND THE TUNNEL AS IT NEARS DETECTING INSTRUMENTS NEAR THE BUILDING WALL. GEAR RELATED TO CRYSTAL NEUTRON SPECTROMETER IS IN FOREGROUND SURROUNDED BY SHIELDING. DATA CONSOLES ARE AT MID-LEVEL OF EAST FACE. OTHER WORK PROCEEDS ON TOP OF AND ELSEWHERE AROUND REACTOR. NOTE TOOLS HANGING AGAINST SOUTHEAST CORNER, USED TO CHANGE FUEL ELEMENTS AND OTHER REACTOR ITEMS DURING REFUELING CYCLES. INL NEGATIVE NO. 10439. Unknown Photographer, 4/20/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Nondestructive Evaluation of the VSC-17 Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Al Carlson; Cecilia Hoffman

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to storemore » fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution.« less

  12. 75 FR 30197 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... adopt the Naval Research Laboratory (NRL) Personnel Management Demonstration Project with modifications... Secretary of Defense (SECDEF) to conduct personnel management demonstration projects at DoD laboratories... execute a process and plan to employ the personnel management demonstration project authorities granted to...

  13. APPLICATION OF BAYESIAN AND GEOSTATISTICAL MODELING TO THE ENVIRONMENTAL MONITORING OF CS-137 AT THE IDAHO NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kara G. Eby

    2010-08-01

    At the Idaho National Laboratory (INL) Cs-137 concentrations above the U.S. Environmental Protection Agency risk-based threshold of 0.23 pCi/g may increase the risk of human mortality due to cancer. As a leader in nuclear research, the INL has been conducting nuclear activities for decades. Elevated anthropogenic radionuclide levels including Cs-137 are a result of atmospheric weapons testing, the Chernobyl accident, and nuclear activities occurring at the INL site. Therefore environmental monitoring and long-term surveillance of Cs-137 is required to evaluate risk. However, due to the large land area involved, frequent and comprehensive monitoring is limited. Developing a spatial model thatmore » predicts Cs-137 concentrations at unsampled locations will enhance the spatial characterization of Cs-137 in surface soils, provide guidance for an efficient monitoring program, and pinpoint areas requiring mitigation strategies. The predictive model presented herein is based on applied geostatistics using a Bayesian analysis of environmental characteristics across the INL site, which provides kriging spatial maps of both Cs-137 estimates and prediction errors. Comparisons are presented of two different kriging methods, showing that the use of secondary information (i.e., environmental characteristics) can provide improved prediction performance in some areas of the INL site.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmer, Rick; Fox, Don; Reese, Stephen

    The Idaho National Laboratory (INL) and the United Kingdom (UK) National Nuclear Laboratory (NNL) have been collaborating for several years on materials and methods for the fogged/misted introduction of fixatives into radiologically contaminated facilities. The objective of the project is to deliver a process for reducing airborne radiological and/or mercury contamination and affixing loose contamination in place, thereby reducing contamination risk to employees and decreasing D&D cost and schedule. The developed process provides a reliable, unmanned method of introducing a coating that captures and fixes contamination in place within facilities. The INL coating, termed FX2, has undergone extensive non-radiological testing,more » including determination that it is non-flammable, affixes contamination and flows well through unusual geometries (testing at Florida International University). A series of non-active fogging trials for activity knock/tie-down application have been completed at NNL Workington on behalf of Idaho National Laboratory (INL). These trials performed by the NNL employed commercially available agricultural fogging equipment and the INL’s knock/tie-down latex formulation (FX-2). This testing successfully demonstrated the ability of the fogging devices to successfully spray the FX-2 formulation within various scenarios, and prepared the project for a radioactive trial. The INL has also developed a mercury vapor reducing form of the coating termed FX-Hg, which has shown great promise in laboratory studies.« less

  15. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-riskmore » informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.« less

  16. The science of laboratory and project management in regulated bioanalysis.

    PubMed

    Unger, Steve; Lloyd, Thomas; Tan, Melvin; Hou, Jingguo; Wells, Edward

    2014-05-01

    Pharmaceutical drug development is a complex and lengthy process, requiring excellent project and laboratory management skills. Bioanalysis anchors drug safety and efficacy with systemic and site of action exposures. Development of scientific talent and a willingness to innovate or adopt new technology is essential. Taking unnecessary risks, however, should be avoided. Scientists must strategically assess all risks and find means to minimize or negate them. Laboratory Managers must keep abreast of ever-changing technology. Investments in instrumentation and laboratory design are critical catalysts to efficiency and safety. Matrix management requires regular communication between Project Managers and Laboratory Managers. When properly executed, it aligns the best resources at the right times for a successful outcome. Attention to detail is a critical aspect that separates excellent laboratories. Each assay is unique and requires attention in its development, validation and execution. Methods, training and facilities are the foundation of a bioanalytical laboratory.

  17. Project Laboratory for First-Year Students

    ERIC Educational Resources Information Center

    Planinsic, Gorazd

    2007-01-01

    This paper reports the modification of an existing experimental subject into a project laboratory for first-year physics students studying in the first cycle of university level and at a higher professional level. The subject is aimed at developing important science-related competences and skills through concrete steps under circumstances that are…

  18. Geochemistry of groundwater in the eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, eastern Idaho

    USGS Publications Warehouse

    Rattray, Gordon W.

    2018-05-30

    Nuclear research activities at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) in eastern Idaho produced radiochemical and chemical wastes that were discharged to the subsurface, resulting in detectable concentrations of some waste constituents in the eastern Snake River Plain (ESRP) aquifer. These waste constituents may pose risks to the water quality of the aquifer. In order to understand these risks to water quality the U.S. Geological Survey, in cooperation with the DOE, conducted a study of groundwater geochemistry to improve the understanding of hydrologic and chemical processes in the ESRP aquifer at and near the INL and to understand how these processes affect waste constituents in the aquifer.Geochemistry data were used to identify sources of recharge, mixing of water, and directions of groundwater flow in the ESRP aquifer at the INL. The geochemistry data were analyzed from 167 sample sites at and near the INL. The sites included 150 groundwater, 13 surface-water, and 4 geothermal-water sites. The data were collected between 1952 and 2012, although most data collected at the INL were collected from 1989 to 1996. Water samples were analyzed for all or most of the following: field parameters, dissolved gases, major ions, dissolved metals, isotope ratios, and environmental tracers.Sources of recharge identified at the INL were regional groundwater, groundwater from the Little Lost River (LLR) and Birch Creek (BC) valleys, groundwater from the Lost River Range, geothermal water, and surface water from the Big Lost River (BLR), LLR, and BC. Recharge from the BLR that may have occurred during the last glacial epoch, or paleorecharge, may be present at several wells in the southwestern part of the INL. Mixing of water at the INL primarily included mixing of surface water with groundwater from the tributary valleys and mixing of geothermal water with regional groundwater. Additionally, a zone of mixing between tributary valley water and

  19. USGS Blind Sample Project: monitoring and evaluating laboratory analytical quality

    USGS Publications Warehouse

    Ludtke, Amy S.; Woodworth, Mark T.

    1997-01-01

    The U.S. Geological Survey (USGS) collects and disseminates information about the Nation's water resources. Surface- and ground-water samples are collected and sent to USGS laboratories for chemical analyses. The laboratories identify and quantify the constituents in the water samples. Random and systematic errors occur during sample handling, chemical analysis, and data processing. Although all errors cannot be eliminated from measurements, the magnitude of their uncertainty can be estimated and tracked over time. Since 1981, the USGS has operated an independent, external, quality-assurance project called the Blind Sample Project (BSP). The purpose of the BSP is to monitor and evaluate the quality of laboratory analytical results through the use of double-blind quality-control (QC) samples. The information provided by the BSP assists the laboratories in detecting and correcting problems in the analytical procedures. The information also can aid laboratory users in estimating the extent that laboratory errors contribute to the overall errors in their environmental data.

  20. Idaho National Laboratory Quarterly Occurrence Analysis - 3rd Quarter FY-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (23 from the 3rd Qtr FY-16 and 50 from the prior three reporting quarters), as well as 45 other issue reports (including events found to be not reportable and Significant Category A and B conditions)more » identified at INL during the past 12 months (16 from this quarter and 29 from the prior three quarters).« less

  1. Idaho National Laboratory Quarterly Occurrence Analysis - 1st Quarter FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 74 reportable events (16 from the 1st Qtr FY-16 and 58 from the prior three reporting quarters), as well as 35 other issue reports (including events found to be not reportable and Significant Category A and B conditions)more » identified at INL during the past 12 months (15 from this quarter and 20 from the prior three quarters).« less

  2. Idaho National Laboratory Quarterly Occurrence Analysis 4th Quarter FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System, as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 84 reportable events (29 from the 4th quarter fiscal year 2016 and 55 from the prior three reporting quarters), as well as 39 other issue reports (including events found to be not reportable and Significant Category A and Bmore » conditions) identified at INL during the past 12 months (two from this quarter and 37 from the prior three quarters).« less

  3. Laboratory Projects: Should Students Do Them or Design Them?

    ERIC Educational Resources Information Center

    Middelberg, Anton P. J.

    1995-01-01

    Describes changes initiated in the Level-Three laboratory course of the chemical engineering curriculum at the University of Adelaide that were useful in fostering higher-level skills and reducing the reliance on reports handed down from previous years. Highlights report writing and data analysis workshops and the laboratory project design…

  4. Hearing Protection Evaluation for the Combat Arms Earplug at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Lovejoy

    2007-03-01

    The Idaho National Laboratory (INL) is managed by Battelle Energy Alliance, LLC (BEA) for the Department of Energy. The INL Protective Security Forces (Pro Force) are involved in training exercises that generate impulse noise by small arms fire. Force-on-force (FOF) training exercises that simulate real world scenarios require the Pro Force to engage the opposition force (OPFOR) while maintaining situational awareness through verbal communications. The Combat Arms earplug was studied to determine if it provides adequate hearing protection in accordance with the requirements of MIL-STD-1474C/D. The Combat Arms earplug uses a design that allows continuous noise through a critical orificemore » while effectively attenuating high-energy impulse noise. The earplug attenuates noise on a non linear scale, as the sound increases the attenuation increases. The INL studied the effectiveness of the Combat Arms earplug with a Bruel & Kjaer (B&K) head and torso simulator used with a selection of small arms to create impulse sound pressures. The Combat Arms earplugs were inserted into the B&K head and torso ears, and small arms were then discharged to generate the impulse noise. The INL analysis of the data indicates that the Combat Arms earplug does provide adequate protection, in accordance with MIL-STD-1474C/D, when used to protect against impulse noise generated by small arms fire using blank ammunition. Impulse noise generated by small arms fire ranged from 135–160 dB range unfiltered un-weighted. The Combat Arms earplug attenuated the sound pressure 10–25 dB depending on the impulse noise pressure. This assessment is consistent with the results of previously published studies on the Combat Arms earplug (see Section 5, “References”). Based upon these result, the INL intends to use the Combat Arms earplug for FOF training exercises.« less

  5. The Dynamics of Project-Based Learning Extension Courses: The "Laboratory of Social Projects" Case Study

    ERIC Educational Resources Information Center

    Arantes do Amaral, Joao Alberto

    2017-01-01

    In this case study we discuss the dynamics that drive a free-of-charge project-based learning extension course. We discuss the lessons learned in the course, "Laboratory of Social Projects." The course aimed to teach project management skills to the participants. It was conducted from August to November of 2015, at Federal University of…

  6. A Semester-Long Project-Oriented Biochemistry Laboratory Based on "Helicobacter pylori" Urease

    ERIC Educational Resources Information Center

    Farnham, Kate R.; Dube, Danielle H.

    2015-01-01

    Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically…

  7. National Storage Laboratory: a collaborative research project

    NASA Astrophysics Data System (ADS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  8. 75 FR 53075 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Demonstration Project, Department of the Air Force, Air Force Research Laboratory (AFRL); Notice #0;#0;Federal... Project, Department of the Air Force, Air Force Research Laboratory (AFRL) AGENCY: Office of the Deputy... amendment changed the amount of time required to be assessed under CCS from 180 to 90 calendar days and was...

  9. Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Hollie Kae; Holmer, Marie Pilkington; Olson, Christina Liegh

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year (FY) 2016. Overall monitoring included surveillance of the following 23 individual cultural resource localities: two locations with human remains, one of which is also a cave; seven additional caves; six prehistoric archaeological sites; four historic archaeological sites; one historic trail; Experimental Breeder Reactor I (EBR-I), a National Historic Landmark; Aircraft Nuclear Propulsion (ANP) objects located at EBR-I; and one Arco Naval Proving Ground (NPG) property, CF-633 and related objects and structures. Several INL work processes and projects weremore » also monitored to confirm compliance with original INL CRM recommendations and assess the effects of ongoing work. On one occasion, ground disturbing activities within the boundaries of the Critical Infrastructure Test Range Complex (CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. Additionally, the CRM office was notified during two Trespass Investigations conducted by INL Security. Most of the cultural resources monitored in FY 2016 exhibited no adverse impacts, resulting in Type 1 impact assessments. However, Type 2 impacts were noted five times. Three previously reported Type 2 impacts were once again documented at the EBR-I National Historic Landmark, including spalling and deterioration of bricks due to inadequate drainage, minimal maintenance, and rodent infestation. The ANP engines and locomotive on display at the EBR-I Visitors Center also exhibited impacts related to long term exposure. Finally, most of the Arco NPG properties monitored at Central Facilities Area exhibited problems with lack of timely and appropriate maintenance as well as inadequate drainage. No new Type 3 or Type 4 impacts that adversely affected significant cultural resources and threatened

  10. SHynergie: Development of a virtual project laboratory for monitoring hydraulic stimulations

    NASA Astrophysics Data System (ADS)

    Renner, Jörg; Friederich, Wolfgang; Meschke, Günther; Müller, Thomas; Steeb, Holger

    2016-04-01

    Hydraulic stimulations are the primary means of developing subsurface reservoirs regarding the extent of fluid transport in them. The associated creation or conditioning of a system of hydraulic conduits involves a range of hydraulic and mechanical processes but also chemical reactions, such as dissolution and precipitation, may affect the stimulation result on time scales as short as hours. In the light of the extent and complexity of these processes, the steering potential for the operator of a stimulation critically depends on the ability to integrate the maximum amount of site-specific information with profound process understanding and a large spectrum of experience. We report on the development of a virtual project laboratory for monitoring hydraulic stimulations within the project SHynergie (http://www.ruhr-uni-bochum.de/shynergie/). The concept of the laboratory envisioned product that constitutes a preparing and accompanying rather than post-processing instrument ultimately accessible to persons responsible for a project over a web-repository. The virtual laboratory consists of a data base, a toolbox, and a model-building environment. Entries in the data base are of two categories. On the one hand, selected mineral and rock properties are provided from the literature. On the other hand, project-specific entries of any format can be made that are assigned attributes regarding their use in a stimulation problem at hand. The toolbox is interactive and allows the user to perform calculations of effective properties and simulations of different types (e.g., wave propagation in a reservoir, hydraulic test). The model component is also hybrid. The laboratory provides a library of models reflecting a range of scenarios but also allows the user to develop a site-specific model constituting the basis for simulations. The laboratory offers the option to use its components following the typical workflow of a stimulation project. The toolbox incorporates simulation

  11. Overview of DOE Oil and Gas Field Laboratory Projects

    NASA Astrophysics Data System (ADS)

    Bromhal, G.; Ciferno, J.; Covatch, G.; Folio, E.; Melchert, E.; Ogunsola, O.; Renk, J., III; Vagnetti, R.

    2017-12-01

    America's abundant unconventional oil and natural gas (UOG) resources are critical components of our nation's energy portfolio. These resources need to be prudently developed to derive maximum benefits. In spite of the long history of hydraulic fracturing, the optimal number of fracturing stages during multi-stage fracture stimulation in horizontal wells is not known. In addition, there is the dire need of a comprehensive understanding of ways to improve the recovery of shale gas with little or no impacts on the environment. Research that seeks to expand our view of effective and environmentally sustainable ways to develop our nation's oil and natural gas resources can be done in the laboratory or at a computer; but, some experiments must be performed in a field setting. The Department of Energy (DOE) Field Lab Observatory projects are designed to address those research questions that must be studied in the field. The Department of Energy (DOE) is developing a suite of "field laboratory" test sites to carry out collaborative research that will help find ways of improving the recovery of energy resources as much as possible, with as little environmental impact as possible, from "unconventional" formations, such as shale and other low permeability rock formations. Currently there are three field laboratories in various stages of development and operation. Work is on-going at two of the sites: The Hydraulic Fracturing Test Site (HFTS) in the Permian Basin and the Marcellus Shale Energy and Environmental Lab (MSEEL) project in the Marcellus Shale Play. Agreement on the third site, the Utica Shale Energy and Environmental Lab (USEEL) project in the Utica Shale Play, was just recently finalized. Other field site opportunities may be forthcoming. This presentation will give an overview of the three field laboratory projects.

  12. Idaho National Laboratory Quarterly Occurrence Analysis for the 1st Quarter FY2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 82 reportable events (13 from the 1st quarter (Qtr) of fiscal year (FY) 2017 and 68 from the prior three reporting quarters), as well as 31 other issue reports (including events found to be not reportable and Significantmore » Category A and B conditions) identified at INL during the past 12 months (seven from this quarter and 24 from the prior three quarters).« less

  13. Examination of food chain-derived Listeria monocytogenes strains of different serotypes reveals considerable diversity in inlA genotypes, mutability, and adaptation to cold temperatures.

    PubMed

    Kovacevic, Jovana; Arguedas-Villa, Carolina; Wozniak, Anna; Tasara, Taurai; Allen, Kevin J

    2013-03-01

    Listeria monocytogenes strains belonging to serotypes 1/2a and 4b are frequently linked to listeriosis. While inlA mutations leading to premature stop codons (PMSCs) and attenuated virulence are common in 1/2a, they are rare in serotype 4b. We observed PMSCs in 35% of L. monocytogenes isolates (n = 54) recovered from the British Columbia food supply, including serotypes 1/2a (30%), 1/2c (100%), and 3a (100%), and a 3-codon deletion (amino acid positions 738 to 740) seen in 57% of 4b isolates from fish-processing facilities. Caco-2 invasion assays showed that two isolates with the deletion were significantly more invasive than EGD-SmR (P < 0.0001) and were either as (FF19-1) or more (FE13-1) invasive than a clinical control strain (08-5578) (P = 0.006). To examine whether serotype 1/2a was more likely to acquire mutations than other serotypes, strains were plated on agar with rifampin, revealing 4b isolates to be significantly more mutable than 1/2a, 1/2c, and 3a serotypes (P = 0.0002). We also examined the ability of 33 strains to adapt to cold temperature following a downshift from 37°C to 4°C. Overall, three distinct cold-adapting groups (CAG) were observed: 46% were fast (<70 h), 39% were intermediate (70 to 200 h), and 15% were slow (>200 h) adaptors. Intermediate CAG strains (70%) more frequently possessed inlA PMSCs than did fast (20%) and slow (10%) CAGs; in contrast, 87% of fast adaptors lacked inlA PMSCs. In conclusion, we report food chain-derived 1/2a and 4b serotypes with a 3-codon deletion possessing invasive behavior and the novel association of inlA genotypes encoding a full-length InlA with fast cold-adaptation phenotypes.

  14. Dental Laboratory Technology. Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Sappe', Hoyt; Smith, Debra S.

    This report provides results of Phase I of a project that researched the occupational area of dental laboratory technology, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train dental laboratory technicians. Section 1 contains general information:…

  15. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2012-15

    USGS Publications Warehouse

    Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.

    2017-04-10

    Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.

  16. Chemistry-Materials Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Chemistry-Materials Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or substituting material related to class interests; as a guide book for…

  17. Project development laboratories energy fuels and oils based on NRU “MPEI”

    NASA Astrophysics Data System (ADS)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Khomenkov, A. M.; Paramonova, A. O.; Khtoo Naing, Aung

    2017-11-01

    In the process of improving the efficiency of power plants a hot topic is the use of high-quality fuels and lubricants. In the process of transportation, preparation for use, storage and maintenance of the properties of fuels and lubricants may deteriorate, which entails a reduction in the efficiency of power plants. One of the ways to prevent the deterioration of the properties is a timely analysis of the relevant laboratories. In this day, the existence of laboratories of energy fuels and energy laboratory oil at thermal power stations is satisfactory character. However, the training of qualified personnel to work in these laboratories is a serious problem, as the lack of opportunities in these laboratories a complete list of required tests. The solution to this problem is to explore the possibility of application of methods of analysis of the properties of fuels and lubricants in the stage of training and re-training of qualified personnel. In this regard, on the basis of MPEI developed laboratory projects of solid, liquid and gaseous fuels, power and energy oils and lubricants. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties. Assess the financial component of the implementation of the developed projects based on the use of modern equipment used for tests. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties.

  18. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, G.; Rudisill, T.; Almond, P.

    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Sitemore » (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.« less

  19. KAHVE Laboratory RF circulator and transmission line project

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Hakan; ćaǧlar, Aslıhan; ćiçek, Cihan; Özbey, Aydın; Sunar, Ezgi; Türemen, Görkem; Yıldız, Hüseyin; Yüncü, Alperen; Özcan, Erkcan; Ünel, Gökhan; Yaman, Fatih

    2018-02-01

    An 800 MHz RF circulator and transmission line project has recently started at the newly commissioned Kandilli Detector, Accelerator and Instrumentation (KAHVE) Laboratory at the Boğaziçi University. The aims are to design, build and construct an RF circulator and transmission line in Turkey for high power and high frequency applications. The project consists of 8 transmission line elements: 800 MHz RF generator with 60 kW power (klystron), klystron to waveguide converter, waveguides, E and H bends, 3-port circulator and waveguide to coaxial converter to transmit RF power to a pillbox RF cavity. Design studies and details of the ongoing project will be presented.

  20. CO2 Separation Using Thermally Optimized Membranes: A Comprehensive Project Report (2000 - 2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Klaehn; C.J. Orme; E.S. Peterson

    2008-03-01

    This is a complete (Fiscal Years 2000–2006) collection of the Idaho National Laboratory’s (INL) research and development contributions to the project, “CO2 Separation Using Thermally Optimized Membranes.” The INL scientific contribution to the project has varied due to the fluctuations in funding from year to year. The focus of the project was polybenzimidazole (PBI) membranes and developing PBI compounds (both substitution and blends) that provide good film formation and gas separation membranes. The underlying problem with PBI is its poor solubility in common solvents. Typically, PBI is dissolved in “aggressive” solvents, like N,N-dimethylacetamide (DMAc) and N methylpyrrolidone (NMP). The INLmore » FY-03 research was directed toward making soluble N-substituted PBI polymers, where INL was very successful. Many different types of modified PBI polymers were synthesized; however, film formation proved to be a big problem with both unsubstituted and N-substituted PBIs. Therefore, INL researchers directed their attention to using plasticizers or additives to make the membranes more stable and workable. During the course of these studies, other high-performance polymers (like polyamides and polyimides) were found to be better materials, which could be used either by themselves or blends with PBI. These alternative high-performance polymers provided the best pathway forward for soluble high-temperature polymers with good stable film formation properties. At present, the VTEC polyimides (product of RBI, Inc.) are the best film formers that exhibit high-temperature resistance. INL’s gas testing results show VTEC polyimides have very good gas selectivities for both H2/CO2 and CO2/CH4. Overall, these high-performance polymers pointed towards new research areas where INL has gained a greater understanding of polymer film formation and gas separation. These studies are making possible a direct approach to stable polymer-based high-temperature gas separation

  1. CO2 Separation Using Thermally Optimized Membranes: A Comprehensive Project Report (2000 - 2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2008-03-04

    This is a complete (Fiscal Years 2000–2006) collection of the Idaho National Laboratory’s (INL) research and development contributions to the project, “CO2 Separation Using Thermally Optimized Membranes.” The INL scientific contribution to the project has varied due to the fluctuations in funding from year to year. The focus of the project was polybenzimidazole (PBI) membranes and developing PBI compounds (both substitution and blends) that provide good film formation and gas separation membranes. The underlying problem with PBI is its poor solubility in common solvents. Typically, PBI is dissolved in “aggressive” solvents, like N,N-dimethylacetamide (DMAc) and N methylpyrrolidone (NMP). The INLmore » FY-03 research was directed toward making soluble N-substituted PBI polymers, where INL was very successful. Many different types of modified PBI polymers were synthesized; however, film formation proved to be a big problem with both unsubstituted and N-substituted PBIs. Therefore, INL researchers directed their attention to using plasticizers or additives to make the membranes more stable and workable. During the course of these studies, other high-performance polymers (like polyamides and polyimides) were found to be better materials, which could be used either by themselves or blends with PBI. These alternative high-performance polymers provided the best pathway forward for soluble high-temperature polymers with good stable film formation properties. At present, the VTEC polyimides (product of RBI, Inc.) are the best film formers that exhibit high-temperature resistance. INL’s gas testing results show VTEC polyimides have very good gas selectivities for both H2/CO2 and CO2/CH4. Overall, these high-performance polymers pointed towards new research areas where INL has gained a greater understanding of polymer film formation and gas separation. These studies are making possible a direct approach to stable polymer-based high-temperature gas separation

  2. Report for Task 8.4: Development of Control Room Layout Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Robert

    Idaho National Laboratory (INL) has contracted Institutt for Energiteknikk (IFE) to support in the development of an end state vision for the US Nuclear industry and in particular for a utility that is currently moving forward with a control room modernization project. This support includes the development of an Overview display and technical support in conducting an operational study. Development of operational scenarios to be conducted using a full scope simulator at the INL HSSL. Additionally IFE will use the CREATE modelling tool to provide 3-D views of the potential and possible end state view after the completion of digitalmore » upgrade project.« less

  3. FY-12 INL KR CAPTURE ACTIVITIES SUPPORTING THE OFF-GAS SIGMA TEAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D Law

    2012-08-01

    Tasks performed this year by INL Kr capture off-gas team members can be segregated into three separate task sub-sections which include: 1) The development and testing of a new engineered form sorbent, 2) An initial NDA gamma scan effort performed on the drum containing the Legacy Kr-85 sample materials, and 3) Collaborative research efforts with PNNL involving the testing of the Ni-DOBDC MOF and an initial attempt to make powdered chalcogel material into an engineered form using our binding process. This document describes the routes to success for the three task sub-sections.

  4. U.S. Geological Survey Standard Reference Sample Project: Performance Evaluation of Analytical Laboratories

    USGS Publications Warehouse

    Long, H. Keith; Daddow, Richard L.; Farrar, Jerry W.

    1998-01-01

    Since 1962, the U.S. Geological Survey (USGS) has operated the Standard Reference Sample Project to evaluate the performance of USGS, cooperator, and contractor analytical laboratories that analyze chemical constituents of environmental samples. The laboratories are evaluated by using performance evaluation samples, called Standard Reference Samples (SRSs). SRSs are submitted to laboratories semi-annually for round-robin laboratory performance comparison purposes. Currently, approximately 100 laboratories are evaluated for their analytical performance on six SRSs for inorganic and nutrient constituents. As part of the SRS Project, a surplus of homogeneous, stable SRSs is maintained for purchase by USGS offices and participating laboratories for use in continuing quality-assurance and quality-control activities. Statistical evaluation of the laboratories results provides information to compare the analytical performance of the laboratories and to determine possible analytical deficiences and problems. SRS results also provide information on the bias and variability of different analytical methods used in the SRS analyses.

  5. Childhood as a Resource and Laboratory for the Self-Project

    ERIC Educational Resources Information Center

    Buhler-Niederberger, Doris; Konig, Alexandra

    2011-01-01

    The biographies of individuals in today's societies are characterized by the need to exert effort and make decisions in planning one's life course. A "self-project" has to be worked out both retrospectively and prospectively; childhood becomes important as a resource and a laboratory for the self-project. This empirical study analyses how the…

  6. Implementation of a Project-Based Molecular Biology Laboratory Emphasizing Protein Structure-Function Relationships in a Large Introductory Biology Laboratory Course

    ERIC Educational Resources Information Center

    Treacy, Daniel J.; Sankaran, Saumya M.; Gordon-Messer, Susannah; Saly, Danielle; Miller, Rebecca; Isaac, R. Stefan; Kosinski-Collins, Melissa S.

    2011-01-01

    In introductory laboratory courses, many universities are turning from traditional laboratories with predictable outcomes to inquiry-inspired, project-based laboratory curricula. In these labs, students are allowed to design at least some portion of their own experiment and interpret new, undiscovered data. We have redesigned the introductory…

  7. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  8. Chemical Constituents in Groundwater from Multiple Zones in the Eastern Snake River Plain Aquifer at the Idaho National Laboratory, Idaho, 2005-08

    USGS Publications Warehouse

    Bartholomay, Roy C.; Twining, Brian V.

    2010-01-01

    From 2005 to 2008, the U.S. Geological Survey's Idaho National Laboratory (INL) Project office, in cooperation with the U.S. Department of Energy, collected water-quality samples from multiple water-bearing zones in the eastern Snake River Plain aquifer. Water samples were collected from six monitoring wells completed in about 350-700 feet of the upper part of the aquifer, and the samples were analyzed for major ions, selected trace elements, nutrients, selected radiochemical constituents, and selected stable isotopes. Each well was equipped with a multilevel monitoring system containing four to seven sampling ports that were each isolated by permanent packer systems. The sampling ports were installed in aquifer zones that were highly transmissive and that represented the water chemistry of the top four to five model layers of a steady-state and transient groundwater-flow model. The model's water chemistry and particle-tracking simulations are being used to better define movement of wastewater constituents in the aquifer. The results of the water chemistry analyses indicated that, in each of four separate wells, one zone of water differed markedly from the other zones in the well. In four wells, one zone to as many as five zones contained radiochemical constituents that originated from wastewater disposal at selected laboratory facilities. The multilevel sampling systems are defining the vertical distribution of wastewater constituents in the eastern Snake River Plain aquifer and the concentrations of wastewater constituents in deeper zones in wells Middle 2051, USGS 132, and USGS 103 support the concept of groundwater flow deepening in the southwestern part of the INL.

  9. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    ERIC Educational Resources Information Center

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  10. Sediment laboratory quality-assurance project: studies of methods and materials

    USGS Publications Warehouse

    Gordon, J.D.; Newland, C.A.; Gray, J.R.

    2001-01-01

    In August 1996 the U.S. Geological Survey initiated the Sediment Laboratory Quality-Assurance project. The Sediment Laboratory Quality Assurance project is part of the National Sediment Laboratory Quality-Assurance program. This paper addresses the fmdings of the sand/fme separation analysis completed for the single-blind reference sediment-sample project and differences in reported results between two different analytical procedures. From the results it is evident that an incomplete separation of fme- and sand-size material commonly occurs resulting in the classification of some of the fme-size material as sand-size material. Electron microscopy analysis supported the hypothesis that the negative bias for fme-size material and the positive bias for sand-size material is largely due to aggregation of some of the fine-size material into sand-size particles and adherence of fine-size material to the sand-size grains. Electron microscopy analysis showed that preserved river water, which was low in dissolved solids, specific conductance, and neutral pH, showed less aggregation and adhesion than preserved river water that was higher in dissolved solids and specific conductance with a basic pH. Bacteria were also found growing in the matrix, which may enhance fme-size material aggregation through their adhesive properties. Differences between sediment-analysis methods were also investigated as pan of this study. Suspended-sediment concentration results obtained from one participating laboratory that used a total-suspended solids (TSS) method had greater variability and larger negative biases than results obtained when this laboratory used a suspended-sediment concentration method. When TSS methods were used to analyze the reference samples, the median suspended sediment concentration percent difference was -18.04 percent. When the laboratory used a suspended-sediment concentration method, the median suspended-sediment concentration percent difference was -2

  11. Joint tests at INL and CEA of a transient hot wire needle probe for in-pile thermal conductivity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, J.E.; Knudson, D.L.; Villard, J.F.

    2015-07-01

    Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physicalmore » property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were fabricated

  12. Multiweek Cell Culture Project for Use in Upper-Level Biology Laboratories

    ERIC Educational Resources Information Center

    Marion, Rebecca E.; Gardner, Grant E.; Parks, Lisa D.

    2012-01-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF,…

  13. Motivational project-based laboratory for a common first year electrical engineering course

    NASA Astrophysics Data System (ADS)

    Nedic, Zorica; Nafalski, Andrew; Machotka, Jan

    2010-08-01

    Over the past few years many universities worldwide have introduced a common first year for all engineering disciplines. This is despite the opinion of many academics that large classes have negative effects on the learning outcomes of first year students. The University of South Australia is also faced with low motivation amongst engineering students studying non-major courses. In 2006, a project-based laboratory was successfully introduced for first year students enrolled in electrical disciplines, which increased student satisfaction, reduced the attrition rate and improved students' success rate. This paper presents the experiences with the project-based laboratory's implementation in three different projects in the common first year course, Electrical and Energy Systems, where each project aims to increase the motivation of students in one of three disciplines: electrical, mechanical or civil engineering.

  14. Biosafety Practices and Emergency Response at the Idaho National Laboratory and Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank F. Roberto; Dina M. Matz

    2008-03-01

    Strict federal regulations govern the possession, use, and transfer of pathogens and toxins with potential to cause harm to the public, either through accidental or deliberate means. Laboratories registered through either the Centers for Disease Control and Prevention (CDC), the U.S. Dept. of Agriculture (USDA), or both, must prepare biosafety, security, and incident response plans, conduct drills or exercises on an annual basis, and update plans accordingly. At the Idaho National Laboratory (INL), biosafety, laboratory, and emergency management staff have been working together for 2 years to satisfy federal and DOE/NNSA requirements. This has been done through the establishment ofmore » plans, training, tabletop and walk-through exercises and drills, and coordination with local and regional emergency response personnel. Responding to the release of infectious agents or toxins is challenging, but through familiarization with the nature of the hazardous biological substances or organisms, and integration with laboratory-wide emergency response procedures, credible scenarios are being used to evaluate our ability to protect workers, the public, and the environment from agents we must work with to provide for national biodefense.« less

  15. Epithelial Keratins Modulate cMet Expression and Signaling and Promote InlB-Mediated Listeria monocytogenes Infection of HeLa Cells.

    PubMed

    Cruz, Rui; Pereira-Castro, Isabel; Almeida, Maria T; Moreira, Alexandra; Cabanes, Didier; Sousa, Sandra

    2018-01-01

    The host cytoskeleton is a major target for bacterial pathogens during infection. In particular, pathogens usurp the actin cytoskeleton function to strongly adhere to the host cell surface, to induce plasma membrane remodeling allowing invasion and to spread from cell to cell and disseminate to the whole organism. Keratins are cytoskeletal proteins that are the major components of intermediate filaments in epithelial cells however, their role in bacterial infection has been disregarded. Here we investigate the role of the major epithelial keratins, keratins 8 and 18 (K8 and K18), in the cellular infection by Listeria monocytogenes . We found that K8 and K18 are required for successful InlB/cMet-dependent L. monocytogenes infection, but are dispensable for InlA/E-cadherin-mediated invasion. Both K8 and K18 accumulate at InlB-mediated internalization sites following actin recruitment and modulate actin dynamics at those sites. We also reveal the key role of K8 and K18 in HGF-induced signaling which occurs downstream the activation of cMet. Strikingly, we show here that K18, and at a less extent K8, controls the expression of cMet and other surface receptors such TfR and integrin β1, by promoting the stability of their corresponding transcripts. Together, our results reveal novel functions for major epithelial keratins in the modulation of actin dynamics at the bacterial entry sites and in the control of surface receptors mRNA stability and expression.

  16. Idaho National Laboratory Integrated Safety Management System FY 2016 Effectiveness Review and Declaration Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Farren J.

    Idaho National Laboratory’s (INL’s) Integrated Safety Management System (ISMS) effectiveness review of fiscal year (FY) 2016 shows that INL has integrated management programs and safety elements throughout the oversight and operational activities performed at INL. The significant maturity of Contractor Assurance System (CAS) processes, as demonstrated across INL’s management systems and periodic reporting through the Management Review Meeting process, over the past two years has provided INL with current real-time understanding and knowledge pertaining to the health of the institution. INL’s sustained excellence of the Integrated Safety and effective implementation of the Worker Safety and Health Program is also evidencedmore » by other external validations and key indicators. In particular, external validations include VPP, ISO 14001, DOELAP accreditation, and key Laboratory level indicators such as ORPS (number, event frequency and severity); injury/illness indicators such as Days Away, Restricted and Transfer (DART) case rate, back & shoulder metric and open reporting indicators, demonstrate a continuous positive trend and therefore improved operational performance over the last few years. These indicators are also reflective of the Laboratory’s overall organizational and safety culture improvement. Notably, there has also been a step change in ESH&Q Leadership actions that have been recognized both locally and complex-wide. Notwithstanding, Laboratory management continues to monitor and take action on lower level negative trends in numerous areas including: Conduct of Operations, Work Control, Work Site Analysis, Risk Assessment, LO/TO, Fire Protection, and Life Safety Systems, to mention a few. While the number of severe injury cases has decreased, as evidenced by the reduction in the DART case rate, the two hand injuries and the fire truck/ambulance accident were of particular concern. Aggressive actions continue in order to understand the causes

  17. Wind Farm Recommendation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Reisenauer

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), batsmore » (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm

  18. Making a Natural Product Chemistry Course Meaningful with a Mini Project Laboratory

    ERIC Educational Resources Information Center

    Hakim, Aliefman; Liliasari; Kadarohman, Asep; Syah, Yana Maolana

    2016-01-01

    This paper discusses laboratory activities that can improve the meaningfulness of natural product chemistry course. These laboratory activities can be useful for students from many different disciplines including chemistry, pharmacy, and medicine. Students at the third-year undergraduate level of chemistry education undertake the project to…

  19. Using Independent Research Projects to Foster Learning in the Comparative Vertebrate Anatomy Laboratory

    ERIC Educational Resources Information Center

    Ghedotti, Michael J.; Fielitz, Christopher; Leonard, Daniel J.

    2005-01-01

    This paper presents a teaching methodology involving an independent research project component for use in undergraduate Comparative Vertebrate Anatomy laboratory courses. The proposed project introduces cooperative, active learning in a research context to comparative vertebrate anatomy. This project involves pairs or groups of three students…

  20. 75 FR 55109 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ...Section 342(b) of the National Defense Authorization Act (NDAA) for Fiscal Year (FY) 1995, Public Law 103-337, (10 U.S.C. 2358 note), as amended by section 1109 of NDAA for FY 2000, Public Law 106- 65, and section 1114 of NDAA for FY 2001, Public Law 106-398, authorizes the Secretary of Defense to conduct personnel demonstration projects at DoD laboratories designated as Science and Technology Reinvention Laboratories (STRLs). The above-cited legislation authorizes DoD to conduct demonstration projects to determine whether a specified change in personnel management policies or procedures would result in improved Federal personnel management. Section 1105 of the NDAA for FY 2010, Public Law 111-84, 123 Stat. 2486, October 28, 2009, designates additional DoD laboratories as STRLs for the purpose of designing and implementing personnel management demonstration projects for conversion of employees from the personnel system which applied on October 28, 2009. The TARDEC is listed in subsection 1105(a) of NDAA for FY 2010 as one of the newly designated STRLs.

  1. 76 FR 12507 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ...Section 342(b) of the National Defense Authorization Act (NDAA) for Fiscal Year (FY) 1995, Public Law (Pub. L.) 103-337, (10 U.S.C. 2358 note), as amended by section 1109 of NDAA for FY 2000, Public Law 106-65, and section 1114 of NDAA for FY 2001, Public Law 106-398, authorizes the Secretary of Defense to conduct personnel demonstration projects at DoD laboratories designated as Science and Technology Reinvention Laboratories (STRLs). The above-cited legislation authorizes DoD to conduct demonstration projects to determine whether a specified change in personnel management policies or procedures would result in improved Federal personnel management. Section 1105 of the NDAA for FY 2010, Public Law 111-84, 123 Stat. 2486, October 28, 2009, designates additional DoD laboratories as STRLs for the purpose of designing and implementing personnel management demonstration projects for conversion of employees from the personnel system which applied on October 28, 2009. The TARDEC is listed in subsection 1105(a) of NDAA for FY 2010 as one of the newly designated STRLs.

  2. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth A.

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  3. Lessons Learned about Plug-in Electric Vehicle Charging Infrastructure from The EV Project and ChargePoint America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smart, John Galloway; Salisbury, Shawn Douglas

    2015-07-01

    This report summarizes key findings in two national plug-in electric vehicle charging infrastructure demonstrations: The EV Project and ChargePoint America. It will be published to the INL/AVTA website for the general public.

  4. A Project To Make the Laboratory More Accessible to Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Lunsford, Suzanne K.; Bargerhuff, Mary Ellen

    2006-03-01

    This article describes project CLASS (Creating Laboratory Access for Science Students) an innovative NSF-funded project originating at Wright State University in Dayton, Ohio. Project CLASS enables students to participate in chemistry labs regardless of physical or learning disabilities in grades 7 12. This nationally recognized project prepares educators to accommodate and develop adaptive lab equipment to meet the needs of students with physical and learning disabilities while maintaining the integrity of the science curriculum.

  5. Use of a Laboratory Field Project in an Introductory Crop Science Course.

    ERIC Educational Resources Information Center

    Lane, Robert A.

    1986-01-01

    Assesses the benefits resulting from a laboratory field project and report for agricultural students in an introductory crop science course. Student responses to evaluation statements indicated that the project helped them identify crops, understand cultural and management practices, and recognize environmental influences that affect crop…

  6. Reducing Risk for the Next Generation Nuclear Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project.more » Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.« less

  7. A Project-Based Laboratory for Learning Embedded System Design with Industry Support

    ERIC Educational Resources Information Center

    Lee, Chyi-Shyong; Su, Juing-Huei; Lin, Kuo-En; Chang, Jia-Hao; Lin, Gu-Hong

    2010-01-01

    A project-based laboratory for learning embedded system design with support from industry is presented in this paper. The aim of this laboratory is to motivate students to learn the building blocks of embedded systems and practical control algorithms by constructing a line-following robot using the quadratic interpolation technique to predict the…

  8. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  9. Students' Perceptions of a Project-Based Organic Chemistry Laboratory Environment: A Phenomenographic Approach

    ERIC Educational Resources Information Center

    Burrows, Nikita L.; Nowak, Montana K.; Mooring, Suazette R.

    2017-01-01

    Students can perceive the laboratory environment in a variety of ways that can affect what they take away from the laboratory course. This qualitative study characterizes undergraduate students' perspectives of a project-based Organic Chemistry laboratory using the theoretical framework of phenomenography. Eighteen participants were interviewed in…

  10. Workplace Charging Behavior of Nissan Leafs in The EV Project at Six Work Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David; Smart, John

    2014-11-01

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at six workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  11. A Transition from a Traditional to a Project-Like Physical Chemistry Laboratory via a Heterogeneous Catalysis Study.

    ERIC Educational Resources Information Center

    Goldwasser, M. R.; Leal, O.

    1979-01-01

    Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)

  12. Idaho National Laboratory Cultural Resource Monitoring Report for 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Julie B.

    2013-10-01

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during 2013. Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is also a cave; fourteen additional caves; seven prehistoric archaeological sites ; four historic archaeological sites; one historic trail; one nuclear resource (Experimental Breeder Reactor-I, a designated National Historic Landmark); and nine historic structures located at the Central Facilities Area. Of the monitored resources, thirty-three were routinely monitored, and five were monitored to assess project compliance with cultural resourcemore » recommendations along with the effects of ongoing project activities. On six occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. In addition, two resources were visited more than once as part of the routine monitoring schedule or to monitor for additional damage. Throughout the year, most of the cultural resources monitored had no visual adverse changes resulting in Type 1determinations. However, Type 2 impacts were noted at eight sites, indicating that although impacts were noted or that a project was operating outside of culturally cleared limitations, cultural resources retained integrity and noted impacts did not threaten National Register eligibility. No new Type 3 or any Type 4 impacts that adversely impacted cultural resources and threatened National Register eligibility were observed at cultural resources monitored in 2013.« less

  13. The influence of precipitation, vegetation and soil properties on the ecohydrology of sagebrush steppe rangelands on the INL site

    USGS Publications Warehouse

    Germino, Matthew J.

    2013-01-01

    The INL Site and other landscapes having sagebrush steppe vegetation are experiencing a simultaneous change in climate and floristics that result from increases in exotic species. Determining the separate and combined/interactive effects of climate and vegetation change is important for assessing future changes on the landscape and for hydrologic processes. This research uses the 72 experimental plots established and initially maintained for many years as the “Protective Cap Biobarrier Experiment” by Dr. Jay Anderson and the Stoller ESER program, and the experiment is also now referred to as the “INL Site Ecohydrology Study.” We are evaluating long-term impacts of different plant communities commonly found throughout Idaho subject to different precipitation regimes and to different soil depths. Treatments of amount and timing of precipitation (irrigation), soil depth, and either native/perennial or exotic grass vegetation allow researchers to investigate how vegetation, precipitation and soil interact to influence soil hydrology and ecosystem biogeochemistry. This information will be used to improve a variety of models, as well as provide data for these models.

  14. An Analysis of Laboratory Activities in Two Modern Science Curricula: Project Physics and PSSC.

    ERIC Educational Resources Information Center

    Lunetta, Vincent N.; Tamir, Pinchas

    In evaluating whether the laboratory guides for Project Physics and for PSSC are consistent with the goals of their designers in demonstrating the interplay between experiment and theory in the development of physics, a system was developed for analyzing physics laboratory investigations, and the laboratory activities in the "PSSC Physics…

  15. A Semester-Long Project-Oriented Biochemistry Laboratory Based on Helicobacter pylori Urease

    PubMed Central

    Farnham, Kate R.; Dube, Danielle H.

    2015-01-01

    Here we present the development of a thirteen-week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme – Helicobacter pylori (Hp) urease – the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. PMID:26173574

  16. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. L. Davis; D. L. Knudson; J. L. Rempe

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status ofmore » INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.« less

  17. Incremental development and prototyping in current laboratory software development projects: Preliminary analysis

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann

    1988-01-01

    Several Laboratory software development projects that followed nonstandard development processes, which were hybrids of incremental development and prototyping, are being studied. Factors in the project environment leading to the decision to use a nonstandard development process and affecting its success are analyzed. A simple characterization of project environment based on this analysis is proposed, together with software development approaches which have been found effective for each category. These approaches include both documentation and review requirements.

  18. Updated procedures for using drill cores and cuttings at the Lithologic Core Storage Library, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Davis, Linda C.; Bartholomay, Roy C.

    2018-01-30

    In 1990, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Laboratory (INL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from subsurface investigations conducted at the INL, and to provide a location for researchers to examine, sample, and test these materials.The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the corehole names, corehole locations, and depth intervals available.Most cores and cuttings stored at the facility were drilled at or near the INL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose most cores and cuttings, most of which are continuous from land surface to their total depth. The deepest continuously drilled core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers' responsibilities for access to the facility and for examination, sampling, and return of materials.

  19. The Alcohol Dehydrogenase Kinetics Laboratory: Enhanced Data Analysis and Student-Designed Mini-Projects

    ERIC Educational Resources Information Center

    Silverstein, Todd P.

    2016-01-01

    A highly instructive, wide-ranging laboratory project in which students study the effects of various parameters on the enzymatic activity of alcohol dehydrogenase has been adapted for the upper-division biochemistry and physical biochemistry laboratory. Our two main goals were to provide enhanced data analysis, featuring nonlinear regression, and…

  20. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students.

    PubMed

    Beach, Dale L; Alvarez, Consuelo J

    2015-12-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic "parts," students construct a "reporter plasmid" expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a "sensor plasmid," the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p < 0.05) for all learning outcomes. Ninety percent of students indicated that the Synthetic Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses.

  1. 75 FR 55199 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ...Section 342(b) of the National Defense Authorization Act (NDAA) for Fiscal Year (FY) 1995, Public Law (Pub. L.) 103-337 (10 U.S.C. 2358 note), as amended by section 1109 of NDAA for FY 2000, Public Law 106-65, and section 1114 of NDAA for FY 2001, Public Law 106-398, authorizes the Secretary of Defense to conduct personnel demonstration projects at DoD laboratories designated as Science and Technology Reinvention Laboratories (STRLs) to determine whether a specified change in personnel management policies or procedures would result in improved Federal personnel management. Section 1105 of the NDAA for FY 2010, Public Law 111-84, 123 Stat. 2486, October 28, 2009, designates additional DoD laboratories as STRLs for the purpose of designing and implementing personnel management demonstration projects for conversion of employees from the personnel system which applied on October 28, 2009. The ARDEC is listed in subsection 1105(a) of NDAA for FY 2010 as one of the newly designated STRLs.

  2. A semester-long project-oriented biochemistry laboratory based on Helicobacter pylori urease.

    PubMed

    Farnham, Kate R; Dube, Danielle H

    2015-01-01

    Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme--Helicobacter pylori (Hp) urease--the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. © 2015 The International Union of Biochemistry and Molecular Biology.

  3. Fixation of Radiological Contamination; International Collaborative Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rick Demmer

    2013-03-01

    A cooperative international project was conducted by the Idaho National Laboratory (INL) and the United Kingdom’s National Nuclear Laboratory (NNL) to integrate a capture coating with a high performance atomizing process. The initial results were promising, and lead to further trials. The somewhat longer testing and optimization process has resulted in a product that could be demonstrated in the field to reduce airborne radiological dust and contamination.

  4. Application of Frequency of Detection Methods in Design and Optimization of the INL Site Ambient Air Monitoring Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rood, Arthur S.; Sondrup, A. Jeffrey

    This report presents an evaluation of a hypothetical INL Site monitoring network and the existing INL air monitoring network using frequency of detection methods. The hypothetical network was designed to address the requirement in 40 CFR Part 61, Subpart H (2006) that “emissions of radionuclides to ambient air from U.S. DOE facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent exceeding 10 mrem/year.” To meet the requirement for monitoring only, “radionuclide releases that would result in an effective dose of 10% of the standard shall bemore » readily detectable and distinguishable from background.” Thus, the hypothetical network consists of air samplers placed at residence locations that surround INL and at other locations where onsite livestock grazing takes place. Two exposure scenarios were used in this evaluation: a resident scenario and a shepherd/rancher scenario. The resident was assumed to be continuously present at their residence while the shepherd/rancher was assumed to be present 24-hours at a fixed location on the grazing allotment. Important radionuclides were identified from annual INL radionuclide National Emission Standards for Hazardous Pollutants reports. Important radionuclides were defined as those that potentially contribute 1% or greater to the annual total dose at the radionuclide National Emission Standards for Hazardous Pollutants maximally exposed individual location and include H-3, Am-241, Pu-238, Pu 239, Cs-137, Sr-90, and I-131. For this evaluation, the network performance objective was set at achieving a frequency of detection greater than or equal to 95%. Results indicated that the hypothetical network for the resident scenario met all performance objectives for H-3 and I-131 and most performance objectives for Cs-137 and Sr-90. However, all actinides failed to meet the performance objectives for most sources. The shepherd/rancher scenario

  5. Quality Indicators in Laboratory Medicine: the status of the progress of IFCC Working Group "Laboratory Errors and Patient Safety" project.

    PubMed

    Sciacovelli, Laura; Lippi, Giuseppe; Sumarac, Zorica; West, Jamie; Garcia Del Pino Castro, Isabel; Furtado Vieira, Keila; Ivanov, Agnes; Plebani, Mario

    2017-03-01

    The knowledge of error rates is essential in all clinical laboratories as it enables them to accurately identify their risk level, and compare it with those of other laboratories in order to evaluate their performance in relation to the State-of-the-Art (i.e. benchmarking) and define priorities for improvement actions. Although no activity is risk free, it is widely accepted that the risk of error is minimized by the use of Quality Indicators (QIs) managed as a part of laboratory improvement strategy and proven to be suitable monitoring and improvement tools. The purpose of QIs is to keep the error risk at a level that minimizes the likelihood of patients. However, identifying a suitable State-of-the-Art is challenging, because it calls for the knowledge of error rates measured in a variety of laboratories throughout world that differ in their organization and management, context, and the population they serve. Moreover, it also depends on the choice of the events to keep under control and the individual procedure for measurement. Although many laboratory professionals believe that the systemic use of QIs in Laboratory Medicine may be effective in decreasing errors occurring throughout the total testing process (TTP), to improve patient safety as well as to satisfy the requirements of International Standard ISO 15189, they find it difficult to maintain standardized and systematic data collection, and to promote continued high level of interest, commitment and dedication in the entire staff. Although many laboratories worldwide express a willingness to participate to the Model of QIs (MQI) project of IFCC Working Group "Laboratory Errors and Patient Safety", few systematically enter/record their own results and/or use a number of QIs designed to cover all phases of the TTP. Many laboratories justify their inadequate participation in data collection of QIs by claiming that the number of QIs included in the MQI is excessive. However, an analysis of results suggests

  6. EDITORIAL: Student undergraduate laboratory and project work

    NASA Astrophysics Data System (ADS)

    Schumacher, Dieter

    2007-05-01

    that new experiments which illustrate both fundamental physics and modern technology can be realized even with a small budget. Traditional labwork courses often provide a catalogue of well known experiments. The students must first learn the theoretical background. They then assemble the setup from specified equipment, collect the data and perform the default data processing. However, there is no way to learn to swim without water. In order to achieve a constructivist access to learning, 'project labs' are needed. In a project labwork course a small group of students works as a team on a mini research project. The students have to specify the question of research, develop a suitable experimental setup, conduct the experiment and find a suitable way to evaluate the data. Finally they must present their results e.g. in the framework of a public poster session. Three contributions refer to this approach, however they focus on different aspects: 'Project laboratory for first-year students' by Gorazd Planinšič, 'RealTime Physics: active learning laboratories' by David Sokoloff et al and 'Labs outside labs: miniprojects at a spring camp for future physics teachers' by Leos Dvorák. Is it possible to prepare the students specifically for project labwork? This question is answered by the contribution 'A new labwork course for physics students: devices, methods and research projects' by Knut Neumann and Manuela Welzel. The two main parts of the labwork course cover first experimental devices (e.g. multimeters, oscilloscopes, different sensors, operational amplifiers, step motors, AD/DA-converters). Then subjects such as data processing, consideration of measurement uncertainties, keeping records or using tools like LABVIEW etc are focused on. Another concrete proposal for a new curriculum is provided by James Sharp et al, in 'Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using MATLAB'. One can well imagine that project labs

  7. An Approach to Developing the Laboratory Through Senior Design Projects.

    ERIC Educational Resources Information Center

    Faghri, Amir

    1987-01-01

    Describes a program in which senior engineering students are given the opportunity to design, make, and test apparatus intended for an upper-level teaching laboratory. Discusses such projects as a vapor compressor test stand with refrigerant mass flow measurement, a double-walled concentric annular heat pipe, and a vacuum filling station. (TW)

  8. REACTOR SERVICE BUILDING, TRA635. CROWDED MOCKUP AREA. CAMERA FACES EAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR SERVICE BUILDING, TRA-635. CROWDED MOCK-UP AREA. CAMERA FACES EAST. PHOTOGRAPHER'S NOTE SAYS "PICTURE REQUESTED BY IDO IN SUPPORT OF FY '58 BUILDING PROJECTS." INL NEGATIVE NO. 56-3025. R.G. Larsen, Photographer, 9/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. MTR, SOUTH FACE OF REACTOR. SPECIAL SUPPLEMENTAL SHIELDING WAS REQUIRED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR, SOUTH FACE OF REACTOR. SPECIAL SUPPLEMENTAL SHIELDING WAS REQUIRED OUTSIDE OF MTR FOR EXPERIMENTS. THE AIRCRAFT NUCLEAR PROPULSION PROJECT DOMINATED THE USE OF THIS PART OF THE MTR. INL NEGATIVE NO. 7225. Unknown Photographer, 11/28/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students†

    PubMed Central

    Beach, Dale L.; Alvarez, Consuelo J.

    2015-01-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic “parts,” students construct a “reporter plasmid” expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a “sensor plasmid,” the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p < 0.05) for all learning outcomes. Ninety percent of students indicated that the Synthetic Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses. PMID:26753032

  11. Post-wildfire wind erosion in and around the Idaho National Laboratory Site

    USGS Publications Warehouse

    Germino, Matthew J.

    2012-01-01

    Wind erosion following large wildfires on and around the INL Site is a recurrent threat to human health and safety, DOE operations and trafficability, and ecological and hydrological condition of the INL Site and down-wind landscapes. Causes and consequences of wind erosion are mainly known from warm deserts (e.g., Southwest U.S.), dunefields, and croplands, and some but not all findings are transferable to the cold desert environments such as where the INL Site lies.

  12. Environmental testing philosophy for a Sandia National Laboratories small satellite project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cap, J.S.; Rackley, N.G.

    1996-03-01

    Sandia National Laboratories is the system integrator on a small satellite project. Following the intent of the NASA GEVS document, an integrated test philosophy was formulated to certify the satellite for flight. The purpose of this paper is to present that philosophy.

  13. Hydraulic and Clean-in-Place Evaluations for a 12.5-cm Annular Centrifugal Contactor at INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; David H. Meikrantz; Nick R. Mann

    2008-09-01

    Hydraulic and Clean-in-Place Evaluations for a 12.5 cm Annular Centrifugal Contactor at the INL Troy G. Garn, Dave H. Meikrantz, Nick R. Mann, Jack D. Law, Terry A. Todd Idaho National Laboratory Commercially available, Annular Centrifugal Contactors (ACC) are currently being evaluated for processing dissolved nuclear fuel solutions to selectively partition integrated elements using solvent extraction technologies. These evaluations include hydraulic and clean-in-place (CIP) testing of a commercially available 12.5 cm unit. Data from these evaluations is used to support design of future nuclear fuel reprocessing facilities. Hydraulic testing provides contactor throughput performance data on two-phase systems for a widemore » range of operating conditions. Hydraulic testing results on a simple two-phase oil and water system followed by a 30 % Tributyl phosphate in N-dodecane / nitric acid pair are reported. Maximum total throughputs for this size contactor ranged from 20 to 32 liters per minute without significant other phase carryover. A relatively new contactor design enhancement providing Clean-in-Place capability for ACCs was also investigated. Spray nozzles installed into the central rotor shaft allow the rotor internals to be cleaned, offline. Testing of the solids capture of a diatomaceous earth/water slurry feed followed by CIP testing was performed. Solids capture efficiencies of >95% were observed for all tests and short cold water cleaning pulses proved successful at removing solids from the rotor.« less

  14. How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Smart

    2014-05-01

    This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

  15. MTR WING A, TRA604. SOUTH SIDE. CAMERA FACING NORTH. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING A, TRA-604. SOUTH SIDE. CAMERA FACING NORTH. THIS VIEW TYPIFIES TENDENCY FOR EXPANSIONS TO TAKE THE FORM OF PROJECTIONS AND INFILL USING AVAILABLE YARD SPACES. INL NEGATIVE NO. HD47-44-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Stoots; J O'Brien; T Cable

    The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising designmore » for both high power-to-weight fuel cell and electrolyzer applications.« less

  17. Curiosity: the Mars Science Laboratory Project

    NASA Technical Reports Server (NTRS)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  18. Undergraduate Introductory Quantitative Chemistry Laboratory Course: Interdisciplinary Group Projects in Phytoremediation

    ERIC Educational Resources Information Center

    Van Engelen, Debra L.; Suljak, Steven W.; Hall, J. Patrick; Holmes, Bert E.

    2007-01-01

    The laboratory course around the phytoremediation is designed to develop both individual skills and promote cooperative learning while starting students work on projects in a specific area of environmental chemistry and analysis. Many research-active undergraduate institutions have developed courses, which are interdisciplinary in nature that…

  19. The Mouse Genomes Project: a repository of inbred laboratory mouse strain genomes.

    PubMed

    Adams, David J; Doran, Anthony G; Lilue, Jingtao; Keane, Thomas M

    2015-10-01

    The Mouse Genomes Project was initiated in 2009 with the goal of using next-generation sequencing technologies to catalogue molecular variation in the common laboratory mouse strains, and a selected set of wild-derived inbred strains. The initial sequencing and survey of sequence variation in 17 inbred strains was completed in 2011 and included comprehensive catalogue of single nucleotide polymorphisms, short insertion/deletions, larger structural variants including their fine scale architecture and landscape of transposable element variation, and genomic sites subject to post-transcriptional alteration of RNA. From this beginning, the resource has expanded significantly to include 36 fully sequenced inbred laboratory mouse strains, a refined and updated data processing pipeline, and new variation querying and data visualisation tools which are available on the project's website ( http://www.sanger.ac.uk/resources/mouse/genomes/ ). The focus of the project is now the completion of de novo assembled chromosome sequences and strain-specific gene structures for the core strains. We discuss how the assembled chromosomes will power comparative analysis, data access tools and future directions of mouse genetics.

  20. Concrete Shield Performance of the VSC-17 Spent Nuclear Fuel Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl L. Morton; Philip L. Winston; Toshiari Saegusa

    2006-04-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC-17) spent nuclear fuel storage cask as a candidate to study cask performance, because it had been used to store fuel as part of a dry cask storage demonstrationmore » project for more than 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. Preliminary cask evaluations performed in 2003 indicated that the cask has no visual degradation. However, a 4-5 mrem/hr step-change in the radiation levels about halfway up the cask and a localized hot spot beneath an upper air vent indicate that there may be variability in the density of the concrete or localized cracking. In 2005, INL and CRIEPI scientists performed additional surveys on the VSC-17 cask. This document summarizes the methods used on the VSC-17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution.« less

  1. Cultural Resource Investigations for the Resumption of Transient Testing of Nuclear Fuels and Material at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Brenda R.; Williams, Julie B.

    2013-11-01

    The U. S. Department of Energy (DOE) has a need to test nuclear fuels under conditions that subject them to short bursts of intense, high-power radiation called ‘transient testing’ in order to gain important information necessary for licensing new nuclear fuels for use in U.S. nuclear power plants, for developing information to help improve current nuclear power plant performance and sustainability, for improving the affordability of new generation reactors, for developing recyclable nuclear fuels, and for developing fuels that inhibit any repurposing into nuclear weapons. To meet this mission need, DOE is considering alternatives for re-use and modification of existingmore » nuclear reactor facilities to support a renewed transient testing program. One alternative under consideration involves restarting the Transient Reactor Test (TREAT) reactor located at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL) site in southeastern Idaho. This report summarizes cultural resource investigations conducted by the INL Cultural Resource Management Office in 2013 to support environmental review of activities associated with restarting the TREAT reactor at the INL. These investigations were completed in order to identify and assess the significance of cultural resources within areas of potential effect associated with the proposed action and determine if the TREAT alternative would affect significant cultural resources or historic properties that are eligible for nomination to the National Register of Historic Places. No archaeological resources were identified in the direct area of potential effects for the project, but four of the buildings proposed for modifications are evaluated as historic properties, potentially eligible for nomination to the National Register of Historic Places. This includes the TREAT reactor (building #), control building (building #), guardhouse (building #), and warehouse (building #). The proposed re-use of these

  2. Quality Indicators in Laboratory Medicine: from theory to practice. Preliminary data from the IFCC Working Group Project "Laboratory Errors and Patient Safety".

    PubMed

    Sciacovelli, Laura; O'Kane, Maurice; Skaik, Younis Abdelwahab; Caciagli, Patrizio; Pellegrini, Cristina; Da Rin, Giorgio; Ivanov, Agnes; Ghys, Timothy; Plebani, Mario

    2011-05-01

    The adoption of Quality Indicators (QIs) has prompted the development of tools to measure and evaluate the quality and effectiveness of laboratory testing, first in the hospital setting and subsequently in ambulatory and other care settings. While Laboratory Medicine has an important role in the delivery of high-quality care, no consensus exists as yet on the use of QIs focussing on all steps of the laboratory total testing process (TTP), and further research in this area is required. In order to reduce errors in laboratory testing, the IFCC Working Group on "Laboratory Errors and Patient Safety" (WG-LEPS) developed a series of Quality Indicators, specifically designed for clinical laboratories. In the first phase of the project, specific QIs for key processes of the TTP were identified, including all the pre-, intra- and post-analytic steps. The overall aim of the project is to create a common reporting system for clinical laboratories based on standardized data collection, and to define state-of-the-art and Quality Specifications (QSs) for each QI independent of: a) the size of organization and type of activities; b) the complexity of processes undertaken; and c) different degree of knowledge and ability of the staff. The aim of the present paper is to report the results collected from participating laboratories from February 2008 to December 2009 and to identify preliminary QSs. The results demonstrate that a Model of Quality Indicators managed as an External Quality Assurance Program can serve as a tool to monitor and control the pre-, intra- and post-analytical activities. It might also allow clinical laboratories to identify risks that lead to errors resulting in patient harm: identification and design of practices that eliminate medical errors; the sharing of information and education of clinical and laboratory teams on practices that reduce or prevent errors; the monitoring and evaluation of improvement activities.

  3. Feasibility of processing the experimental breeder reactor-II driver fuel from the Idaho National Laboratory through Savannah River Site's H-Canyon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoulas, V. E.

    Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium,more » and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.« less

  4. What kind of charging infrastructure do Nissan Leaf drivers in The EV Project use?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Shawn

    2014-09-01

    This document will describe the charging behavior of Nissan Leaf battery electric vehicles that were enrolled in the EV Project. It will include aggregated data from several thousand vehicles regarding time-of-day, power level, and location of charging and driving events. This document is a white paper that will be published on the INL AVTA website.

  5. Radiological Monitoring Equipment For Real-Time Quantification Of Area Contamination In Soils And Facility Decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. V. Carpenter; Jay A. Roach; John R Giles

    2005-09-01

    The environmental restoration industry offers several sys¬tems that perform scan-type characterization of radiologically contaminated areas. The Idaho National Laboratory (INL) has developed and deployed a suite of field systems that rapidly scan, characterize, and analyse radiological contamination in surface soils. The base system consists of a detector, such as sodium iodide (NaI) spectrometers, a global positioning system (GPS), and an integrated user-friendly computer interface. This mobile concept was initially developed to provide precertifica¬tion analyses of soils contaminated with uranium, thorium, and radium at the Fernald Closure Project, near Cincinnati, Ohio. INL has expanded the functionality of this basic system tomore » create a suite of integrated field-deployable analytical systems. Using its engineering and radiation measurement expertise, aided by computer hardware and software support, INL has streamlined the data acquisition and analysis process to provide real-time information presented on wireless screens and in the form of coverage maps immediately available to field technicians. In addition, custom software offers a user-friendly interface with user-selectable alarm levels and automated data quality monitoring functions that validate the data. This system is deployed from various platforms, depending on the nature of the survey. The deployment platforms include a small all-terrain vehicle used to survey large, relatively flat areas, a hand-pushed unit for areas where manoeuvrability is important, an excavator-mounted system used to scan pits and trenches where personnel access is restricted, and backpack- mounted systems to survey rocky shoreline features and other physical settings that preclude vehicle-based deployment. Variants of the base system include sealed proportional counters for measuring actinides (i.e., plutonium-238 and americium-241) in building demolitions, soil areas, roadbeds, and process line routes at the

  6. 94-1 Research and development project lead laboratory support. Status report, January 1--March 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinehart, M.

    1996-09-01

    This document reports status and technical progress for Los Alamos National Laboratories 94-1 Research and Development projects. An introduction to the project structure and an executive summary are included. Projects described include Electrolytic Decontamination, Combustibles, Detox, Sand, Slag, and Crucible, Surveillance, and Core Technology.

  7. Idaho National Laboratory Human Capitol Development Program Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rynes, Amanda R.

    2014-09-01

    The Next Generation Safeguards Initiative HCD Subprogram has successfully employed unique nuclear capabilities and employee expertise through INL to achieve multiple initiatives in FY14. These opportunities range from internship programs to university and training courses. One of the central facets of this work has been the international safeguards pre inspector training course. Another significant milestone is the INL led university engagement effort which resulted in courses being offered at ISU and University of Utah.

  8. The Analysis of Seawater: A Laboratory-Centered Learning Project in General Chemistry.

    ERIC Educational Resources Information Center

    Selco, Jodye I.; Roberts, Julian L., Jr.; Wacks, Daniel B.

    2003-01-01

    Describes a sea-water analysis project that introduces qualitative and quantitative analysis methods and laboratory methods such as gravimetric analysis, potentiometric titration, ion-selective electrodes, and the use of calibration curves. Uses a problem-based cooperative teaching approach. (Contains 24 references.) (YDS)

  9. Compilation of Earthquakes from 1850-2007 within 200 miles of the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Seth Carpenter

    2010-07-01

    An updated earthquake compilation was created for the years 1850 through 2007 within 200 miles of the Idaho National Laboratory. To generate this compilation, earthquake catalogs were collected from several contributing sources and searched for redundant events using the search criteria established for this effort. For all sets of duplicate events, a preferred event was selected, largely based on epicenter-network proximity. All unique magnitude information for each event was added to the preferred event records and these records were used to create the compilation referred to as “INL1850-2007”.

  10. 75 FR 52139 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... of proposal to design and implement a personnel management demonstration project. SUMMARY: Section..., 2009, designates additional DoD laboratories as STRLs for the purpose of designing and implementing... experiences, SSC Atlantic and SSC Pacific have the benefit of being in earlier personnel systems designed to...

  11. Reactions and Assessments: Educational Laboratory Theatre Project, 1966-70. Final Report.

    ERIC Educational Resources Information Center

    Hoetker, James; And Others

    The general plan of the 4-year (1966-1970) Educational Laboratory Theatre Project was to have theatre companies in Rhode Island, New Orleans, and Los Angeles give five matinee performances per week for high school students and three evening performances for adults in order to (1) make extensive use of professional theatre as an integral part of…

  12. Unsteady-State Heat Transfer Involving a Phase Change: An Example of a 'Project-Oriented' Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Sundberg, Donald C.; Someshwar, Arun V.

    1989-01-01

    Describes the structure of an in-depth laboratory project chemical engineering. Provides modeling work to guide experimentation and experimental work on heat transfer analysis. Discusses the experimental results and evaluation of the project. (YP)

  13. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Smart; Stephen Schey

    2012-04-01

    PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.« less

  14. From genes to proteins to behavior: a laboratory project that enhances student understanding in cell and molecular biology.

    PubMed

    Aronson, Benjamin D; Silveira, Linda A

    2009-01-01

    In the laboratory, students can actively explore concepts and experience the nature of scientific research. We have devised a 5-wk laboratory project in our introductory college biology course whose aim was to improve understanding in five major concepts that are central to basic cellular, molecular biology, and genetics while teaching molecular biology techniques. The project was focused on the production of adenine in Saccharomyces cerevisiae and investigated the nature of mutant red colonies of this yeast. Students created red mutants from a wild-type strain, amplified the two genes capable of giving rise to the red phenotype, and then analyzed the nucleotide sequences. A quiz assessing student understanding in the five areas was given at the start and the end of the course. Analysis of the quiz showed significant improvement in each of the areas. These areas were taught in the laboratory and the classroom; therefore, students were surveyed to determine whether the laboratory played a role in their improved understanding of the five areas. Student survey data demonstrated that the laboratory did have an important role in their learning of the concepts. This project simulated steps in a research project and could be adapted for an advanced course in genetics.

  15. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program provesmore » its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.« less

  16. Environmental Technology (Laboratory Analysis and Environmental Sampling) Curriculum Development Project. Final Report.

    ERIC Educational Resources Information Center

    Hinojosa, Oscar V.; Guillen, Alfonso

    A project assessed the need and developed a curriculum for environmental technology (laboratory analysis and environmental sampling) in the emerging high technology centered around environmental safety and health in Texas. Initial data were collected through interviews by telephone and in person and through onsite visits. Additional data was…

  17. BEV Charging Behavior Observed in The EV Project for 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Brion D.

    2014-01-01

    This fact sheet will be issued quarterly to report on the number of Nissan Leafs vehicle usage, charging locations, and charging completeness as part of the EV Project. It will be posted on the INL/AVTA and ECOtality websites and will be accessible by the general public. The raw data that is used to create the report is considered proprietary/OUO and NDA protected, but the information in this report is NOT proprietary nor NDA protected.

  18. Clinical Laboratory Sciences Discipline Advisory Group Final Report. Kentucky Allied Health Project.

    ERIC Educational Resources Information Center

    Kentucky Council on Public Higher Education, Frankfort.

    Education in the clinical laboratory sciences in Kentucky and articulation within the field are examined, based on the Kentucky Allied Health Project (KAHP), which designed an articulated statewide system to promote entry and exit of personnel at a variety of educational levels. The KAHP model promotes articulation in learning, planning, and…

  19. Exploring Protein Structure and Dynamics through a Project-Oriented Biochemistry Laboratory Module

    ERIC Educational Resources Information Center

    Lipchock, James M.; Ginther, Patrick S.; Douglas, Bonnie B.; Bird, Kelly E.; Loria, J. Patrick

    2017-01-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant…

  20. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David W. Nigg; Devin A. Steuhm

    2011-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelitymore » computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore

  1. ICD Complex Operations and Maintenance Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, P. L.

    2007-06-25

    This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.

  2. SOLAR ROTATION: A Laboratory Exercise from Project CLEA and the GONG Project

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Sudol, J. J.; Snyder, G. A.

    2002-12-01

    Digital images from the GONG Project provide a nearly continuous record of sunspots that are ideal for determining the rate of rotation of the Sun. A new laboratory exercise from Project CLEA provides students with the capability to access an archive of 368 images of the Sun obtained at GONG solar telescopes between January 1, 2002 and April 30, 2002, during a period near solar maximum when large numbers of spots were daily visible on the sun. The resolution of each image is about 2.5 arcsec per pixel (or about 0.25 degree in longitude and latitude at the center of the solar disk). Because these images have such exquisite spatial and temporal resolution, they are the best images to date from which students can determine the solar rotation rate. CLEA software for this exercise allows students to select images by date and time, to overlay a coordinate grid on the image, and to record the latitudes and longitudes of sunspots. This data can be tabulated and analyzed with the software to determine solar rotation rates. The expected precision in the solar rotation rates is +/- 3 hours. Students will also have the ability to combine their chosen images into a digital movie showing the solar rotation. The exercise includes a student workbook and a technical manual, as well as a CD-rom of the data and the software. This exercise was produced with funding from the National Science Foundation and Gettysburg College and with the support of the GONG Project at the National Solar Observatory.

  3. In-core flux sensor evaluations at the ATR critical facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy Unruh; Benjamin Chase; Joy Rempe

    2014-09-01

    Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by themore » Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.« less

  4. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    PubMed

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  5. Development of a Laboratory Project to Determine Human ABO Genotypes--Limitations Lead to Further Student Explorations

    ERIC Educational Resources Information Center

    Salerno, Theresa A.

    2009-01-01

    A multiplex allele-specific PCR analysis was developed to identify six "common" genotypes: AA, AO, BB, BO, OO, and AB. This project included a pre-laboratory exercise that provided active learning experiences and developed critical thinking skills. This laboratory resulted in many successful analyses, which were verified by student knowledge of…

  6. A Hybrid Integrated Laboratory and Inquiry-Based Research Experience: Replacing Traditional Laboratory Instruction with a Sustainable Student-Led Research Project

    ERIC Educational Resources Information Center

    Hartings, Matthew R.; Fox, Douglas M.; Miller, Abigail E.; Muratore, Kathryn E.

    2015-01-01

    The Department of Chemistry at American University has replaced its junior- and senior-level laboratory curriculum with two, two-semester long, student-led research projects as part of the department's American Chemical Society-accredited program. In the first semester of each sequence, a faculty instructor leads the students through a set of…

  7. Diagnostic and Prognostic Models for Generator Step-Up Transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek Agarwal; Nancy J. Lybeck; Binh T. Pham

    In 2014, the online monitoring (OLM) of active components project under the Light Water Reactor Sustainability program at Idaho National Laboratory (INL) focused on diagnostic and prognostic capabilities for generator step-up transformers. INL worked with subject matter experts from the Electric Power Research Institute (EPRI) to augment and revise the GSU fault signatures previously implemented in the Electric Power Research Institute’s (EPRI’s) Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. Two prognostic models were identified and implemented for GSUs in the FW-PHM Suite software. INL and EPRI demonstrated the use of prognostic capabilities for GSUs. The complete set of faultmore » signatures developed for GSUs in the Asset Fault Signature Database of the FW-PHM Suite for GSUs is presented in this report. Two prognostic models are described for paper insulation: the Chendong model for degree of polymerization, and an IEEE model that uses a loading profile to calculates life consumption based on hot spot winding temperatures. Both models are life consumption models, which are examples of type II prognostic models. Use of the models in the FW-PHM Suite was successfully demonstrated at the 2014 August Utility Working Group Meeting, Idaho Falls, Idaho, to representatives from different utilities, EPRI, and the Halden Research Project.« less

  8. Characterisation of InlA truncation in Listeria monocytogenes isolates from farm animals and human cases in the province of Quebec

    PubMed Central

    Fravalo, Philippe; Cherifi, Tamazight; Neira Feliciano, Kersti Dina; Letellier, Ann; Fairbrother, Julie-Hélène; Bekal, Sadjia

    2017-01-01

    The introduction of Listeria monocytogenes into the food production chain is a concern, with numerous grouped cases of listeriosis associated with milk-derived or pork-derived products have been documented. Management of this zoonotic pathogen considers all strains as an equal risk. Recently, a new perspective for characterisation of strain virulence was introduced with the discovery of the unaltered sequence of InlA as a determinant of strain virulence; this has also been reported as an infrequent finding among so-called environmental strains, that is, strains isolated from food or from surfaces in food industries. The aim of this study was to differentiate L monocytogenes strains isolated from animal cases versus those from human cases and to differentiate clinical strains from environmental ones using a Caenorhabditis elegans virulence testing model. In Quebec in 2013/2014, the surveillance of L monocytogenes clinical isolates registered a total of 20 strains of animal origin and 16 pulsed-field gel electrophoresis types isolated from human cases. The mixed PCR multiplex agglutination protocol used for geno-serotyping clearly discriminated genogroup IVB strains from bovine and human origins. The presence of a premature stop codon single nucleotide polymorphism in the inlA gene sequence in clinical strains and the identical behaviour of particular strains in the C elegans model are discussed in this paper from the perspective of industrial management of L monocytogenes risk. PMID:28761668

  9. Spatio-temporal assessment of soil erosion risk in different agricultural zones of the Inle Lake region, southern Shan State, Myanmar.

    PubMed

    Htwe, Thin Nwe; Brinkmann, Katja; Buerkert, Andreas

    2015-10-01

    Myanmar is one of Southeast Asia's climatically most diverse countries, where sheet, rill, and gully erosion affect crop yields and subsequently livelihood strategies of many people. In the unique wetland ecosystem of Inle Lake, soil erosion in surrounding uplands lead to sedimentation and pollution of the water body. The current study uses the Revised Universal Soil Loss Equation (RUSLE) to identify soil erosion risks of the Inle Lake region in space and time and to assess the relationship between soil erosion and degradation for different agricultural zones and cropping systems. Altogether, 85% of soil losses occurred on barren land along the steep slopes. The hotspot of soil erosion risk is situated in the western uplands characterized by unsustainable land use practices combined with a steep topography. The estimated average soil losses amounted to 19.9, 10.1, and 26.2 t ha(-1) yr(-1) in 1989, 2000, and 2009, respectively. These fluctuations were mainly the results of changes in precipitation and land cover (deforestation (-19%) and expansion of annual cropland (+35%) from 1989 to 2009). Most farmers in the study area have not yet adopted effective soil protection measures to mitigate the effects of soil erosion such as land degradation and water pollution of the lake reservoir. This urgently needs to be addressed by policy makers and extension services.

  10. Using Focused Laboratory Management and Quality Improvement Projects to Enhance Resident Training and Foster Scholarship

    PubMed Central

    Ford, Bradley A.; Klutts, J. Stacey; Jensen, Chris S.; Briggs, Angela S.; Robinson, Robert A.; Bruch, Leslie A.; Karandikar, Nitin J.

    2017-01-01

    Training in patient safety, quality, and management is widely recognized as an important element of graduate medical education. These concepts have been intertwined in pathology graduate medical education for many years, although training programs face challenges in creating explicit learning opportunities in these fields. Tangibly involving pathology residents in management and quality improvement projects has the potential to teach and reinforce key concepts and further fulfill Accreditation Council for Graduate Medical Education goals for pursuing projects related to patient safety and quality improvement. In this report, we present our experience at a pathology residency program (University of Iowa) in engaging pathology residents in projects related to practical issues of laboratory management, process improvement, and informatics. In this program, at least 1 management/quality improvement project, typically performed during a clinical chemistry/management rotation, was required and ideally resulted in a journal publication. The residency program also initiated a monthly management/informatics series for pathology externs, residents, and fellows that covers a wide range of topics. Since 2010, all pathology residents at the University of Iowa have completed at least 1 management/quality improvement project. Many of the projects involved aspects of laboratory test utilization, with some projects focused on other areas such as human resources, informatics, or process improvement. Since 2012, 31 peer-reviewed journal articles involving effort from 26 residents have been published. Multiple projects resulted in changes in ongoing practice, particularly within the hospital electronic health record. Focused management/quality improvement projects involving pathology residents can result in both meaningful quality improvement and scholarly output. PMID:28913416

  11. Using Focused Laboratory Management and Quality Improvement Projects to Enhance Resident Training and Foster Scholarship.

    PubMed

    Krasowski, Matthew D; Ford, Bradley A; Klutts, J Stacey; Jensen, Chris S; Briggs, Angela S; Robinson, Robert A; Bruch, Leslie A; Karandikar, Nitin J

    2017-01-01

    Training in patient safety, quality, and management is widely recognized as an important element of graduate medical education. These concepts have been intertwined in pathology graduate medical education for many years, although training programs face challenges in creating explicit learning opportunities in these fields. Tangibly involving pathology residents in management and quality improvement projects has the potential to teach and reinforce key concepts and further fulfill Accreditation Council for Graduate Medical Education goals for pursuing projects related to patient safety and quality improvement. In this report, we present our experience at a pathology residency program (University of Iowa) in engaging pathology residents in projects related to practical issues of laboratory management, process improvement, and informatics. In this program, at least 1 management/quality improvement project, typically performed during a clinical chemistry/management rotation, was required and ideally resulted in a journal publication. The residency program also initiated a monthly management/informatics series for pathology externs, residents, and fellows that covers a wide range of topics. Since 2010, all pathology residents at the University of Iowa have completed at least 1 management/quality improvement project. Many of the projects involved aspects of laboratory test utilization, with some projects focused on other areas such as human resources, informatics, or process improvement. Since 2012, 31 peer-reviewed journal articles involving effort from 26 residents have been published. Multiple projects resulted in changes in ongoing practice, particularly within the hospital electronic health record. Focused management/quality improvement projects involving pathology residents can result in both meaningful quality improvement and scholarly output.

  12. Alkaloid-Derived Thioureas in Asymmetric Organocatalysis: A Cooperative Learning Activity in a Project-Based Laboratory Course

    ERIC Educational Resources Information Center

    Monge, David

    2015-01-01

    An experiment carried out by advanced undergraduate students in a project-based laboratory course is described. Taking into account the positive effects of working in teams, which has been key for successful research in industry and academia, a cooperative learning experience in the laboratory was developed. Students working in teams of four…

  13. Field Methods and Quality-Assurance Plan for Quality-of-Water Activities, U.S. Geological Survey, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Knobel, LeRoy L.; Tucker, Betty J.; Rousseau, Joseph P.

    2008-01-01

    Water-quality activities conducted by the staff of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation's water resources. The activities are conducted in cooperation with the U.S. Department of Energy's (DOE) Idaho Operations Office. Results of the water-quality investigations are presented in various USGS publications or in refereed scientific journals. The results of the studies are highly regarded, and they are used with confidence by researchers, regulatory and managerial agencies, and interested civic groups. In its broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the 'state-of-the-art' technology, and quality assurance ensures that quality control is maintained within specified limits.

  14. CERTS Microgrid Laboratory Test Bed - PIER Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert

    2008-07-25

    The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on highmore » fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.« less

  15. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, Troy; McGregor, Douglas; Ugorowski, Phil

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chambermore » and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A

  16. What Kind of Charging Infrastructure Do Chevrolet Volt Drivers in The EV Project Use and When Do They Use It?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Shawn

    2014-09-01

    This document will present information describing the charging behavior of Chevrolet Volts that were enrolled in the EV Project. It will included aggregated data from more than 1,800 vehicles regarding locations, power levels, and time-of-day of charging events performed by those vehicles. This document will be published to the INL AVTA website.

  17. Multiweek cell culture project for use in upper-level biology laboratories.

    PubMed

    Marion, Rebecca E; Gardner, Grant E; Parks, Lisa D

    2012-06-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF, caffeine, epinephrine, heavy metals, and FBS. Students researched primary literature to determine their experimental variables, made their own solutions, and treated their cells over a period of 2 wk. Before this, a sterile technique laboratory was developed to teach students how to work with the cells and minimize contamination. Students designed their experiments, mixed their solutions, seeded their cells, and treated them with their control and experimental media. Students had the choice of manipulating a number of variables, including incubation times, exposure to treatment media, and temperature. At the end of the experiment, students observed the effects of their treatment, harvested and dyed their cells, counted relative cell numbers in control and treatment flasks, and determined the ratio of living to dead cells using a hemocytometer. At the conclusion of the experiment, students presented their findings in a poster presentation. This laboratory can be expanded or adapted to include additional cell lines and treatments. The ability to design and implement their own experiments has been shown to increase student engagement in the biology-related laboratory activities as well as develop the critical thinking skills needed for independent research.

  18. The Astronomy Collections: From the Project to the Laboratory

    NASA Astrophysics Data System (ADS)

    Bobis, L.

    2015-04-01

    Within some astronomical libraries, just as it is with other libraries, there are collections we might refer to as being in "the border zone." The materials most representative of this are those that relate to an institution's heritage and history. The challenges of these patrimonial collections are scientific, legal, economic, and political. These collections establish the scientific status of their respective libraries because they extend beyond meeting the needs of astronomers: the material is important in defining the history of the field. The influence of these libraries derives from these heritage materials. From this point of view, the library is a worksite and a laboratory for librarians, project managers, and researchers.

  19. Introduction of Special Physics Topics (Geophysics) Through the Use of Physics Laboratory Projects

    ERIC Educational Resources Information Center

    Parker, R. H.; Whittles, A. B. L.

    1970-01-01

    Describes the objectives and content of a physics laboratory program for freshman students at the British Columbia Institute of Technology. The first part of the program consists of basic physics experiments, while the second part emphasizes student work on projects in geophysics that have direct technical applications. (LC)

  20. CNR LARA project, Italy: Airborne laboratory for environmental research

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  1. Sandia National Laboratories site-wide hydrogeologic characterization project calendar year 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowson, D.; Gibson, J.D.; Haase, C.S.

    1993-10-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Actmore » (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.« less

  2. Complementary Spectroscopic Assays for Investigating Protein-Ligand Binding Activity: A Project for the Advanced Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mascotti, David P.; Waner, Mark J.

    2010-01-01

    A protein-ligand binding, guided-inquiry laboratory project with potential application across the advanced undergraduate curriculum is described. At the heart of the project are fluorescence and spectrophotometric assays utilizing biotin-4-fluorescein and streptavidin. The use of the same stock solutions for an assay that may be examined by two…

  3. From Organelle to Protein Gel: A 6-Wk Laboratory Project on Flagellar Proteins

    ERIC Educational Resources Information Center

    Mitchell, Beth Ferro; Graziano, Mary R.

    2006-01-01

    Research suggests that undergraduate students learn more from lab experiences that involve longer-term projects. We have developed a one-semester laboratory sequence aimed at sophomore-level undergraduates. In designing this curriculum, we focused on several educational objectives: 1) giving students a feel for the scientific research process, 2)…

  4. MATERIALS TESTING REACTOR (MTR) BUILDING, TRA603. CONTEXTUAL VIEW OF MTR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MATERIALS TESTING REACTOR (MTR) BUILDING, TRA-603. CONTEXTUAL VIEW OF MTR BUILDING SHOWING NORTH SIDES OF THE HIGH-BAY REACTOR BUILDING, ITS SECOND/THIRD FLOOR BALCONY LEVEL, AND THE ATTACHED ONE-STORY OFFICE/LABORATORY BUILDING, TRA-604. CAMERA FACING SOUTHEAST. VERTICAL CONCRETE-SHROUDED BEAMS SUPPORT PRECAST CONCRETE PANELS. CONCRETE PROJECTION FORMED AS A BUNKER AT LEFT OF VIEW IS TRA-657, PLUG STORAGE BUILDING. INL NEGATIVE NO. HD46-42-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. ENGINEERING TEST REACTOR (ETR) BUILDING, TRA642. CONTEXTUAL VIEW, CAMERA FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ENGINEERING TEST REACTOR (ETR) BUILDING, TRA-642. CONTEXTUAL VIEW, CAMERA FACING EAST. VERTICAL METAL SIDING. ROOF IS SLIGHTLY ELEVATED AT CENTER LINE FOR DRAINAGE. WEST SIDE OF ETR COMPRESSOR BUILDING, TRA-643, PROJECTS TOWARD LEFT AT FAR END OF ETR BUILDING. INL NEGATIVE NO. HD46-37-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. MTR BUILDING, TRA603. SOUTHEAST CORNER, EAST SIDE FACING TOWARD RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BUILDING, TRA-603. SOUTHEAST CORNER, EAST SIDE FACING TOWARD RIGHT OF VIEW. CAMERA FACING NORTHWEST. LIGHT-COLORED PROJECTION AT LEFT IS ENGINEERING SERVICES BUILDING, TRA-635. SMALL CONCRETE BLOCK BUILDING AT CENTER OF VIEW IS FAST CHOPPER DETECTOR HOUSE, TRA-665. INL NEGATIVE NO. HD46-43-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  8. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    NASA Astrophysics Data System (ADS)

    Bacri, C. O.; Petitbon, V.; Pierre, S.; Cacao Group

    2010-02-01

    CACAO, Chimie des Actinides et Cibles radioActives à Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  9. Development of the Design Laboratory.

    ERIC Educational Resources Information Center

    Silla, Harry

    1986-01-01

    Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)

  10. 3-D Reconstructions of Subsurface Pleistocene Basalt Flows from Paleomagnetic Inclination Data and 40Ar/39Ar Ages in the Southern Part of the Idaho National Laboratory (INL), Idaho (USA)

    NASA Astrophysics Data System (ADS)

    Hodges, M. K.; Champion, D. E.; Turrin, B. D.; Swisher, C. C.

    2012-12-01

    The U. S. Geological Survey, in cooperation with the U.S. Department of Energy, is mapping the distribution of basalt flows and sedimentary interbeds at the Idaho National Laboratory in three dimensions to provide data for refining numerical models of groundwater flow and contaminant transport in the eastern Snake River Plain aquifer. Paleomagnetic inclination and polarity data from basalt samples from 47 coreholes are being used to create a three-dimensional (3-D) model of the subsurface of the southern part of the INL. Surface and sub-surface basalt flows can be identified in individual cores and traced in three dimensions on the surface and in the subsurface for distances of more than 20 km using a combination of paleomagnetic, stratigraphic, and 40Ar/39Ar data. Eastern Snake River Plain olivine tholeiite basalts have K2O contents of 0.2 to 1.0 weight per cent. In spite of the low-K content, high-precision 40Ar/39Ar ages were obtained by applying a protocol that employs short irradiation times (minimizing interferences from Ca derived 36Ar), frequent measurement of various size atmospheric Ar pipettes to monitor and correct for temporal variation, and signal size dependent nonlinearity in spectrometer mass bias, resulting in age dates with resolution generally between 2 to 10% of the age. 3-D models of subsurface basalt flows are being used to: (1) Estimate eruption volumes; (2) locate the approximate vent areas and extent of sub-surface flows; and (3) Help locate high and low transmissivity zones. Results indicate that large basalt eruptions (>3 km3) occurred at and near the Central Facilities Area between 637 ka and 360 ka; at and near the Radioactive Waste Management Complex before 540 ka; and north of the Naval Reactors Facility at about 580 ka. Since about 360 ka, large basalt flows have erupted along the Arco-Big Southern Butte Volcanic Rift Zone and the Axial Volcanic Zone, and flowed northerly towards the Central Facilities Area. Basalt eruptions shifted

  11. 3-D reconstructions of subsurface Pleistocene basalt flows from paleomagnetic inclination data and 40Ar/39Ar ages in the southern part of the Idaho National Laboratory (INL), Idaho (USA)

    USGS Publications Warehouse

    Hodges, Mary K. V.; Champion, Duane E.; Turrin, B.D.; Swisher, C. C.

    2012-01-01

    The U. S. Geological Survey, in cooperation with the U.S. Department of Energy, is mapping the distribution of basalt flows and sedimentary interbeds at the Idaho National Laboratory in three dimensions to provide data for refining numerical models of groundwater flow and contaminant transport in the eastern Snake River Plain aquifer. Paleomagnetic inclination and polarity data from basalt samples from 47 coreholes are being used to create a three-dimensional (3-D) model of the subsurface of the southern part of the INL. Surface and sub-surface basalt flows can be identified in individual cores and traced in three dimensions on the surface and in the subsurface for distances of more than 20 km using a combination of paleomagnetic, stratigraphic, and 40Ar/39Ar data. Eastern Snake River Plain olivine tholeiite basalts have K2O contents of 0.2 to 1.0 weight per cent. In spite of the low-K content, high-precision 40Ar/39Ar ages were obtained by applying a protocol that employs short irradiation times (minimizing interferences from Ca derived 36Ar), frequent measurement of various size atmospheric Ar pipettes to monitor and correct for temporal variation, and signal size dependent nonlinearity in spectrometer mass bias, resulting in age dates with resolution generally between 2 to 10% of the age. 3-D models of subsurface basalt flows are being used to: (1) Estimate eruption volumes; (2) locate the approximate vent areas and extent of sub-surface flows; and (3) Help locate high and low transmissivity zones. Results indicate that large basalt eruptions (>3 km3) occurred at and near the Central Facilities Area between 637 ka and 360 ka; at and near the Radioactive Waste Management Complex before 540 ka; and north of the Naval Reactors Facility at about 580 ka. Since about 360 ka, large basalt flows have erupted along the Arco-Big Southern Butte Volcanic Rift Zone and the Axial Volcanic Zone, and flowed northerly towards the Central Facilities Area. Basalt eruptions shifted

  12. Synthesis of Two Local Anesthetics from Toluene: An Organic Multistep Synthesis in a Project-Oriented Laboratory Course

    ERIC Educational Resources Information Center

    Demare, Patricia; Regla, Ignacio

    2012-01-01

    This article describes one of the projects in the advanced undergraduate organic chemistry laboratory course concerning the synthesis of two local anesthetic drugs, prilocaine and benzocaine, with a common three-step sequence starting from toluene. Students undertake, in a several-week independent project, the multistep synthesis of a…

  13. Laboratory performance in the Sediment Laboratory Quality-Assurance Project, 1996-98

    USGS Publications Warehouse

    Gordon, John D.; Newland, Carla A.; Gagliardi, Shane T.

    2000-01-01

    Analytical results from all sediment quality-control samples are compiled and statistically summarized by the USGS, Branch of Quality Systems, both on an intra- and interlaboratory basis. When evaluating these data, the reader needs to keep in mind that every measurement has an error component associated with it. It is premature to use the data from the first five SLQA studies to judge any of the laboratories as performing in an unacceptable manner. There were, however, some notable differences in the results for the 12 laboratories that participated in the five SLQA studies. For example, the overall median percent difference for suspended-sediment concentration on an individual laboratory basis ranged from –18.04 to –0.33 percent. Five of the 12 laboratories had an overall median percent difference for suspended-sediment concentration of –2.02 to –0.33 percent. There was less variability in the median difference for the measured fine-size material mass. The overall median percent difference for fine-size material mass ranged from –10.11 to –4.27 percent. Except for one laboratory, the median difference for fine-size material mass was within a fairly narrow range of –6.76 to –4.27 percent. The median percent difference for sand-size material mass differed among laboratories more than any other physical sediment property measured in the study. The overall median percent difference for the sand-size material mass ranged from –1.49 percent to 26.39 percent. Five of the nine laboratories that do sand/fine separations had overall median percent differences that ranged from –1.49 to 2.98 percent for sand-size material mass. Careful review of the data reveals that certain laboratories consistently produced data within statistical control limits for some or all of the physical sediment properties measured in this study, whereas other laboratories occasionally produced data that exceeded the control limits.

  14. A Study of the Clinical Laboratory Occupations. The UCLA Allied Health Professions Project.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Div. of Vocational Education.

    The objectives of this study which was conducted as part of the UCLA Allied Health Professions Project were: (1) to determine the percent of medical laboratory workers who perform a comprehensive list of tasks and procedures; (2) to evaluate this performance in terms of certification and specialty area; and (3) on the basis of these data, to make…

  15. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Pernice

    2010-09-01

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  16. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  17. New Ideas for an Old Enzyme: A Short, Question-Based Laboratory Project for the Purification and Identification of an Unknown LDH Isozyme

    ERIC Educational Resources Information Center

    Coleman, Aaron B.

    2010-01-01

    Enzyme purification projects are an excellent way to introduce many aspects of protein biochemistry, but can be difficult to carry out under the constraints of a typical undergraduate laboratory course. We have designed a short laboratory project for the purification and identification of an "unknown" lactate dehydrogenase (LDH) isozyme that can…

  18. Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nancy J. Lybeck; Vivek Agarwal; Binh T. Pham

    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, andmore » Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013.« less

  19. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  20. ETR BUILDING, TRA642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR BUILDING, TRA-642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ETR BUILDING (HIGH ROOF LINE); ELECTRICAL BUILDING (ONE-STORY, MADE OF PUMICE BLOCKS), TRA-648; AND HEAT EXCHANGER BUILDING (WITH BUILDING NUMBERS), TRA-644. NOTE PROJECTION OF ELECTRICAL BUILDING AT LEFT EDGE OF VIEW. CAMERA FACES NORTH. INL NEGATIVE NO. HD46-37-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Evaluation of Upland Disposal of Oakland Harbor, California, Sediment. Volume 2: Inner and Outer Harbor Sediments

    DTIC Science & Technology

    1993-08-01

    the drop size and terminal velocities of natural rain- fall, factors which are critical in erosion and infiltration studies ( Westerdahl and Skogerboe... Westerdahl and Skogerboe 1982; Lee and Skogerboe 1984; Skogerboe et al. 1987). The WES Rainfall Simulator/ Lysimeter System proved to be an effective...Waters (Phase IIIA of -42-Foot Project); Volume 2: Appendixes," iNL-83-2, Vol 2, Battelle/Marine Science Laboratory, Sequim, WA. Westerdahl , H. E., and

  2. Environmental Regulation of Plant Gene Expression: An Rt-qPCR Laboratory Project for an Upper-Level Undergraduate Biochemistry or Molecular Biology Course

    ERIC Educational Resources Information Center

    Eickelberg, Garrett J.; Fisher, Alison J.

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the "FLOWERING LOCUS C" gene, a key regulator of floral timing in "Arabidopsis thaliana" plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate…

  3. Teaching Protein Purification and Characterization Techniques: A Student-Initiated, Project-Oriented Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    MacDonald, Gina

    2008-01-01

    This report describes a biochemistry laboratory that is completely project-oriented. Upper-level biology and chemistry majors work in teams to purify a protein of their choice. After the student groups have completed literature searches, ordered reagents, and made buffers they continue to learn basic protein purification and biochemical techniques…

  4. Enhancements to High Temperature In-Pile Thermocouple Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.C. Crepeau; J.L. Rempe; J.E. Daw

    2008-03-31

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped molybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of themore » art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing

  5. Enhancements to High Temperature In-Pile Thermocouple Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. C. Crepeau; J. L. Rempe; J. E. Daw

    2008-03-01

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped lybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of themore » art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 °C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing

  6. Medical Actinium Therapeutic Treatment

    ScienceCinema

    None

    2018-02-13

    Learn how INL researchers are increasing world supplies of Bismuth 213 to help with cancer treatments. For more information about INL research projects, visit http://www.facebook.com/idahonationallaboratory.

  7. An efficient field and laboratory workflow for plant phylotranscriptomic projects1

    PubMed Central

    Yang, Ya; Moore, Michael J.; Brockington, Samuel F.; Timoneda, Alfonso; Feng, Tao; Marx, Hannah E.; Walker, Joseph F.; Smith, Stephen A.

    2017-01-01

    Premise of the study: We describe a field and laboratory workflow developed for plant phylotranscriptomic projects that involves cryogenic tissue collection in the field, RNA extraction and quality control, and library preparation. We also make recommendations for sample curation. Methods and Results: A total of 216 frozen tissue samples of Caryophyllales and other angiosperm taxa were collected from the field or botanical gardens. RNA was extracted, stranded mRNA libraries were prepared, and libraries were sequenced on Illumina HiSeq platforms. These included difficult mucilaginous tissues such as those of Cactaceae and Droseraceae. Conclusions: Our workflow is not only cost effective (ca. $270 per sample, as of August 2016, from tissue to reads) and time efficient (less than 50 h for 10–12 samples including all laboratory work and sample curation), but also has proven robust for extraction of difficult samples such as tissues containing high levels of secondary compounds. PMID:28337391

  8. Technology Transfer Annual Report Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Wendy Lee

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partnersmore » for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual propertymore » is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In a multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily

  10. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer, Idaho National Laboratory, Idaho, Emphasis 1999-2001

    USGS Publications Warehouse

    Davis, Linda C.

    2006-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from wells in the USGS ground-water monitoring networks during 1999-2001. Water in the Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. Water levels in wells rose in the northern and west-central parts of the INL by 1 to 3 feet, and declined in the southwestern parts of the INL by up to 4 feet during 1999-2001. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 1999-2001. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge. Tritium concentrations in water samples decreased as much as 8.3 picocuries per milliliter (pCi/mL) during 1999-2001, ranging from 0.43?0.14 to 13.6?0.6 pCi/mL in October 2001. Tritium concentrations in five wells near the Idaho Nuclear Technology and Engineering Center (INTEC) increased a few picocuries per milliliter from October 2000 to October 2001. Strontium-90 concentrations decreased or remained

  11. 2017 GTO Project review Laboratory Evaluation of EGS Shear Stimulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.

    The objectives and purpose of this research has been to produce laboratory-based experimental and numerical analyses to provide a physics-based understanding of shear stimulation phenomena (hydroshearing) and its evolution during stimulation. Water was flowed along fractures in hot and stressed fractured rock, to promote slip. The controlled laboratory experiments provide a high resolution/high quality data resource for evaluation of analysis methods developed by DOE to assess EGS “behavior” during this stimulation process. Segments of the experimental program will provide data sets for model input parameters, i.e., material properties, and other segments of the experimental program will represent small scale physicalmore » models of an EGS system, which may be modeled. The coupled lab/analysis project has been a study of the response of a fracture in hot, water-saturated fractured rock to shear stress experiencing fluid flow. Under this condition, the fracture experiences a combination of potential pore pressure changes and fracture surface cooling, resulting in slip along the fracture. The laboratory work provides a means to assess the role of “hydroshearing” on permeability enhancement in reservoir stimulation. Using the laboratory experiments and results to define boundary and input/output conditions of pore pressure, thermal stress, fracture shear deformation and fluid flow, and models were developed and simulations completed by the University of Oklahoma team. The analysis methods are ones used on field scale problems. The sophisticated numerical models developed contain parameters present in the field. The analysis results provide insight into the role of fracture slip on permeability enhancement-“hydroshear” is to be obtained. The work will provide valuable input data to evaluate stimulation models, thus helping design effective EGS.« less

  12. Battelle Energy Alliance, LLC (BEA) 2016 Self-Assessment Report for Idaho National Laboratory (INL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Juan

    This report provides Battelle Energy Alliance’s (BEA) self-assessment of performance for the period of October 1, 2015, through September 30, 2016, as evaluated against the goals, performance objectives, and notable outcomes defined in the Fiscal Year (FY) 2016 Performance Evaluation and Measurement Plan (PEMP). BEA took into consideration and consolidated all input provided from internal and external sources (e.g., Contractor Assurance System [CAS], program and customer feedback, external and independent reviews, and Department of Energy [DOE] Idaho Operations Office [ID] quarterly PEMP reports and Quarterly Evaluation Reports). The overall performance of BEA during this rating period was self-assessed as “Excellent,”more » exceeding expectations of performance in Goal 1.0, “Efficient and Effective Mission Accomplishment”; Goal 2.0, “Efficient and Effective Stewardship and Operation of Research Facilities”; and Goal 3.0, “Sound and Competent Leadership and Stewardship of the Laboratory.” BEA met or exceeded expectations for Mission Support Goals 4.0 through 7.0 assessing a final multiplier of 1.0. Table 1 documents BEA’s assessment of performance to the goals and individual performance objectives. Table 2 documents completion of the notable outcomes. A more-detailed assessment of performance for each individual performance objective is documented in the closeout reports (see the PEMP reporting system). Table 3 includes an update to “Performance Challenges” as reported in the FY 2015 Self-Assessment Report.« less

  13. NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, Troy; Reichenberger, Michael; Stevenson, Sarah

    2016-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core fission chambers and thermocouple. As discussed within this report,more » the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year two of this three year project. Highlights from research accomplishments include: • Continuation of a joint collaboration between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. • An updated parallel wire HT MPFD design was developed. • Program support for HT MPFD deployments was given to Accident Tolerant Fuels (ATF) and Advanced Gas-cooled Reactor (AGR) irradiation test programs. • Quality approved materials for HT MPFD construction were procured by irradiation test programs for upcoming deployments. • KSU improved and performed electrical contact and fissile material plating.

  14. The Astronautics Laboratory of the Air Force Systems Command electric propulsion projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanks, T.M.; Andrews, J.C.

    1989-01-01

    Ongoing projects at the Astronautics Laboratory (AL) of the USAF Systems Command are described. Particular attention is given to experiments with arcjets, magnetoplasmadynamic thrusters, ion engines, and the Electric Insertion Transfer Experiment (ELITE). ELITE involves the integration of high-power ammonia arcjets, low-power xenon ion thrusters, advanced photovoltaic solar arrays, and an autononomous flight control system. It is believed that electric propulsion will become a dominant element in the military and industrial use of space. 6 refs.

  15. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema

    McGraw, Jennifer

    2017-12-27

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Wayne; Borders, Tammie

    INL successfully developed a proof of concept for "Software Defined Anything" by emulating the laboratory's business applications that run on Virtual Machines. The work INL conducted demonstrates to industry on how this methodology can be used to improve security, automate and repeat processes, and improve consistency.

  17. Project-Based Learning in Undergraduate Environmental Chemistry Laboratory: Using EPA Methods to Guide Student Method Development for Pesticide Quantitation

    ERIC Educational Resources Information Center

    Davis, Eric J.; Pauls, Steve; Dick, Jonathan

    2017-01-01

    Presented is a project-based learning (PBL) laboratory approach for an upper-division environmental chemistry or quantitative analysis course. In this work, a combined laboratory class of 11 environmental chemistry students developed a method based on published EPA methods for the extraction of dichlorodiphenyltrichloroethane (DDT) and its…

  18. Evaluation of an LED Retrofit Project at Princeton University’s Carl Icahn Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Robert G.; Murphy, Arthur L.; Perrin, Tess E.

    The LED lighting retrofit at the Carl Icahn Laboratory of the Lewis-Sigler Institute for Integrative Genomics was the first building-wide interior LED project at Princeton University, following the University’s experiences from several years of exterior and small-scale interior LED implementation projects. The project addressed three luminaire types – recessed 2x2 troffers, cove and other luminaires using linear T8 fluorescent lamps, and CFL downlights - which combined accounted for over 564,000 kWh of annual energy, over 90% of the lighting energy used in the facility. The Princeton Facilities Engineering staff used a thorough process of evaluating product alternatives before selecting anmore » acceptable LED retrofit solution for each luminaire type. Overall, 815 2x2 luminaires, 550 linear fluorescent luminaires, and 240 downlights were converted to LED as part of this project. Based solely on the reductions in wattage in converting from the incumbent fluorescent lamps to LED retrofit kits, the annual energy savings from the project was over 190,000 kWh, a savings of 37%. An additional 125,000 kWh of energy savings is expected from the implementation of occupancy and task-tuning control solutions, which will bring the total savings for the project to 62%.« less

  19. Evaluation of an LED Retrofit Project at Princeton University's Carl Icahn Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Robert; Murphy, Arthur; Perrin, Tess

    At Princeton University’s Carl Icahn Laboratory, DOE’s Commercial Buildings Integration Program documented the implementation of LED retrofit products for recessed troffers, linear cove lighting, and downlights – as part of Princeton’s first building-wide interior LED project. The conversion to LED enables more extensive use of lighting controls to tailor the lighting to the task and limit the operating hours based on occupancy, and the estimated energy savings including controls is 62% compared to the incumbent system.

  20. TRU waste absorbent addition project at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Colson, R Griff; Auman, Laurence E

    2003-08-01

    ABSTRACT In order to meet a commitment to ship 3,100 m3 of transuranic waste to the Waste Isolation Pilot Plant (WIPP), the Idaho National Engineering and Environmental Laboratory (INEEL) developed a process to add absorbent to TRU waste drums that did not meet WIPP waste acceptance criteria. The development, implementation, and safe completion of this project contributed to the INEEL's success in meeting the commitment three months early.

  1. Research and Development Project Selection Methods at the Air Force Wright Aeronautical Laboratories.

    DTIC Science & Technology

    1985-09-01

    personal and telephone interviews. Ten individuals from each of the four AFWAL Laboratories were interrviewed. The results illustrated that few of the...680). Aaker and Tyebee. 1978. The authors constructed a model that dealt with the selection of interdependent R&D projects. The model covers three...of this research effort. Scope * The data collection method used in this study consisted of a combination of personal and telephone interviews. The

  2. Report on the Project for Establishment of the Standardized Korean Laboratory Terminology Database, 2015.

    PubMed

    Jung, Bo Kyeung; Kim, Jeeyong; Cho, Chi Hyun; Kim, Ju Yeon; Nam, Myung Hyun; Shin, Bong Kyung; Rho, Eun Youn; Kim, Sollip; Sung, Heungsup; Kim, Shinyoung; Ki, Chang Seok; Park, Min Jung; Lee, Kap No; Yoon, Soo Young

    2017-04-01

    The National Health Information Standards Committee was established in 2004 in Korea. The practical subcommittee for laboratory test terminology was placed in charge of standardizing laboratory medicine terminology in Korean. We aimed to establish a standardized Korean laboratory terminology database, Korea-Logical Observation Identifier Names and Codes (K-LOINC) based on former products sponsored by this committee. The primary product was revised based on the opinions of specialists. Next, we mapped the electronic data interchange (EDI) codes that were revised in 2014, to the corresponding K-LOINC. We established a database of synonyms, including the laboratory codes of three reference laboratories and four tertiary hospitals in Korea. Furthermore, we supplemented the clinical microbiology section of K-LOINC using an alternative mapping strategy. We investigated other systems that utilize laboratory codes in order to investigate the compatibility of K-LOINC with statistical standards for a number of tests. A total of 48,990 laboratory codes were adopted (21,539 new and 16,330 revised). All of the LOINC synonyms were translated into Korean, and 39,347 Korean synonyms were added. Moreover, 21,773 synonyms were added from reference laboratories and tertiary hospitals. Alternative strategies were established for mapping within the microbiology domain. When we applied these to a smaller hospital, the mapping rate was successfully increased. Finally, we confirmed K-LOINC compatibility with other statistical standards, including a newly proposed EDI code system. This project successfully established an up-to-date standardized Korean laboratory terminology database, as well as an updated EDI mapping to facilitate the introduction of standard terminology into institutions. © 2017 The Korean Academy of Medical Sciences.

  3. Final Technical Report of project: "Contactless Real-Time Monitoring of Paper Mechanical Behavior During Papermaking"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanuel Lafond; Paul Ridgway; Ted Jackson

    combine a commercial Mach-Zehnder interferometer to a spinning mirror synchronized to the web speed, in order to make almost stationary measurements. The method was demonstrated at up to 10 m/s. Both teams developed their own version of a web simulator that was driving a web of paper at 10 m/s or higher. The Department of Energy and members of the Agenda 2020 started to make a push for merging the two projects. This made sense because their topics were really identical but this was not well received by Prof. Brodeur. Finally IPST decided to reassign the direction of the IPST-INL-GT project in the spring of 1999 to Prof. Chuck Habeger so that the two teams could work together. Also at this time, Honeywell-Measurex dropped as a member of the team. It was replaced by ABB Industrial Systems whose engineers had extensive previous experience of working with ultrasonic sensors on paperboard. INL also finished its work on the project as its competencies were partly redundant with LBNL. From the summer of 1999, the IPST-GT and LBNL teams were working together and helped each other often by collaborating and visiting either laboratory when was necessary. Around the beginning of 2000, began an effort at IPST to create an off-line laser-ultrasonics instrument that could perform automated measurements of paper and paperboard's bending stiffness. It was widely known that the mechanical bending tests of paper used for years by the paper industry were very inaccurate and exhibited poor reproducibility; therefore the team needed a new instrument of reference to validate its future on-line results. In 1999-2000, the focus of the on-line instrument was on a pre-industrial demonstration on a pilot coater while reducing the damage to the web caused by the generation laser, below the threshold where it could be visible by the naked eye. During the spring of 2000 Paul Ridgway traveled to IPST and brought with him a redesigned system still using the same Mach-Zehnder interferometer as before

  4. Purification and Characterization of Taq Polymerase: A 9-Week Biochemistry Laboratory Project for Undergraduate Students

    ERIC Educational Resources Information Center

    Bellin, Robert M.; Bruno, Mary K.; Farrow, Melissa A.

    2010-01-01

    We have developed a 9-week undergraduate laboratory series focused on the purification and characterization of "Thermus aquaticus" DNA polymerase (Taq). Our aim was to provide undergraduate biochemistry students with a full-semester continuing project simulating a research-like experience, while having each week's procedure focus on a single…

  5. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    ERIC Educational Resources Information Center

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  6. NASA's In-Space Manufacturing Project: A Roadmap for a Multimaterial Fabrication Laboratory in Space

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for NASA to partner with private industry for development and demonstration of the technologies needed to support exploration initiatives. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing (ISM) project, its past and current activities (2014-2017), and how technologies under development will ultimately culminate in a multimaterial fabrication laboratory ("ISM FabLab") to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit, through a resupply launch or a return to earth, may instead result in a loss of mission while in transit to Mars. To have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The presentation provides a broad overview of ISM projects activities culminating with the Fabrication Laboratory for ISS. In 2017, the in-space manufacturing project issued a broad agency announcement for this capability. Requirements of the Fabrication Laboratory as stated in the solicitation will be discussed. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the current ISM FabLab will be tested on ISS, future systems are eventually intended for use in a deep space habitat or transit vehicle. The work of commercial companies funded under NASA's Small Business

  7. Special Education Teacher Computer Literacy Training. Project STEEL. A Special Project To Develop and Implement a Computer-Based Special Teacher Education and Evaluation Laboratory. Volume II. Final Report.

    ERIC Educational Resources Information Center

    Frick, Theodore W.; And Others

    The document is part of the final report on Project STEEL (Special Teacher Education and Evaluation Laboratory) intended to extend the utilization of technology in the training of preservice special education teachers. This volume focuses on the second of four project objectives, the development of a special education teacher computer literacy…

  8. Powering Mars Rovers

    ScienceCinema

    Stewert, Robin

    2018-01-15

    INL scientists are doing their best to help solve our energy problems here on Earth. But did you know the lab is playing a key role in the exploration of other worlds, too? Meet INL Engineer Robin Stewart helps build and test generators that power NASA missions to Pluto and Mars. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory.

  9. Systems Engineering Provides Successful High Temperature Steam Electrolysis Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles V. Park; Emmanuel Ohene Opare, Jr.

    2011-06-01

    This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability tomore » perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.« less

  10. Solar Nanoantennas

    ScienceCinema

    None

    2018-05-16

    Bang Goes the Theory: See how this BBC TV show described INL research to one day make electricity from ambient heat. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.

  11. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    ERIC Educational Resources Information Center

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  12. Combining Experiments and Simulations of Extraction Kinetics and Thermodynamics in Advanced Separation Processes for Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Mikael

    This 3-year project was a collaboration between University of California Irvine (UC Irvine), Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL), Argonne National Laboratory (ANL) and with an international collaborator at ForschungZentrum Jülich (FZJ). The project was led from UC Irvine under the direction of Profs. Mikael Nilsson and Hung Nguyen. The leads at PNNL, INL, ANL and FZJ were Dr. Liem Dang, Dr. Peter Zalupski, Dr. Nathaniel Hoyt and Dr. Giuseppe Modolo, respectively. Involved in this project at UC Irvine were three full time PhD graduate students, Tro Babikian, Ted Yoo, and Quynh Vo, and one MS student,more » Alba Font Bosch. The overall objective of this project was to study how the kinetics and thermodynamics of metal ion extraction can be described by molecular dynamic (MD) simulations and how the simulations can be validated by experimental data. Furthermore, the project includes the applied separation by testing the extraction systems in a single stage annular centrifugal contactor and coupling the experimental data with computational fluid dynamic (CFD) simulations. Specific objectives of the proposed research were: Study and establish a rigorous connection between MD simulations based on polarizable force fields and extraction thermodynamic and kinetic data. Compare and validate CFD simulations of extraction processes for An/Ln separation using different sizes (and types) of annular centrifugal contactors. Provide a theoretical/simulation and experimental base for scale-up of batch-wise extraction to continuous contactors. We approached objective 1 and 2 in parallel. For objective 1 we started by studying a well established extraction system with a relatively simple extraction mechanism, namely tributyl phosphate. What we found was that well optimized simulations can inform experiments and new information on TBP behavior was presented in this project, as well be discussed below. The second objective proved a larger

  13. Idaho National Laboratory Integrated Safety Management System FY 2013 Effectiveness Review and Declaration Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Farren

    2013-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for Fiscal Year (FY) 2014. Results of the FY 2013 annual effectiveness review demonstrate that the INL’s ISMS program is “Effective” and continually improving and shows signs of being significantly strengthened. Although there have been unacceptable serious events in themore » past, there has also been significant attention, dedication, and resources focused on improvement, lessons learned and future prevention. BEA’s strategy of focusing on these improvements includes extensive action and improvement plans that include PLN 4030, “INL Sustained Operational Improvement Plan, PLN 4058, “MFC Strategic Excellence Plan,” PLN 4141, “ATR Sustained Excellence Plan,” and PLN 4145, “Radiological Control Road to Excellence,” and the development of LWP 20000, “Conduct of Research.” As a result of these action plans, coupled with other assurance activities and metrics, significant improvement in operational performance, organizational competence, management oversight and a reduction in the number of operational events is being realized. In short, the realization of the fifth core function of ISMS (feedback and continuous improvement) and the associated benefits are apparent.« less

  14. PROCESS WATER BUILDING, TRA605. CONTROL PANEL SUPPLIES STATUS INDICATORS. CARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. CONTROL PANEL SUPPLIES STATUS INDICATORS. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 4219. Unknown Photographer, 2/13/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. An Update of Hydrologic Conditions and Distribution of Selected Constituents in Water, Snake River Plain Aquifer and Perched-Water Zones, Idaho National Laboratory, Idaho, Emphasis 2002-05

    USGS Publications Warehouse

    Davis, Linda C.

    2008-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer and perched-water zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched-water zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched-water wells in the USGS ground-water monitoring networks during 2002-05. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged primarily from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2001 to March-May 2005, water levels in wells declined throughout the INL area. The declines ranged from about 3 to 8 feet in the southwestern part of the INL, about 10 to 15 feet in the west central part of the INL, and about 6 to 11 feet in the northern part of the INL. Water levels in perched water wells declined also, with the water level dropping below the bottom of the pump in many wells during 2002-05. For radionuclides, concentrations that equal 3s, wheres s is the sample standard deviation, represent a measurement at the minimum detectable concentration, or 'reporting level'. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2002-05. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal

  16. Summary Report on Solid-oxide Electrolysis Cell Testing and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.E. O'Brien; X. Zhang; R.C. O'Brien

    2012-01-01

    Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cellmore » development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.« less

  17. Technology Deployment Annual Report 2014 December

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arterburn, George K.

    This report is a summary of key Technology Deployment activities and achievements for 2014, including intellectual property, granted copyrights, royalties, license agreements, CRADAs, WFOs and Technology-Based Economic Development. Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventionsmore » and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In our multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational instiutitons throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelle R. Blacker

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectualmore » property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled

  19. Field methods and quality-assurance plan for water-quality activities and water-level measurements, U.S. Geological Survey, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Bartholomay, Roy C.; Maimer, Neil V.; Wehnke, Amy J.

    2014-01-01

    Water-quality activities and water-level measurements by the personnel of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation’s water resources. The activities are carried out in cooperation with the U.S. Department of Energy (DOE) Idaho Operations Office. Results of the water-quality and hydraulic head investigations are presented in various USGS publications or in refereed scientific journals and the data are stored in the National Water Information System (NWIS) database. The results of the studies are used by researchers, regulatory and managerial agencies, and interested civic groups. In the broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the “state-of-the-art” technology, and quality assurance ensures that quality control is maintained within specified limits.

  20. WATER PUMP HOUSE, TRA619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3998. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Water-quality characteristics and trends for selected sites at and near the Idaho National Laboratory, Idaho, 1949-2009

    USGS Publications Warehouse

    Bartholomay, Roy C.; Davis, Linda C.; Fisher, Jason C.; Tucker, Betty J.; Raben, Flint A.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, analyzed water-quality data collected from 67 aquifer wells and 7 surface-water sites at the Idaho National Laboratory (INL) from 1949 through 2009. The data analyzed included major cations, anions, nutrients, trace elements, and total organic carbon. The analyses were performed to examine water-quality trends that might inform future management decisions about the number of wells to sample at the INL and the type of constituents to monitor. Water-quality trends were determined using (1) the nonparametric Kendall's tau correlation coefficient, p-value, Theil-Sen slope estimator, and summary statistics for uncensored data; and (2) the Kaplan-Meier method for calculating summary statistics, Kendall's tau correlation coefficient, p-value, and Akritas-Theil-Sen slope estimator for robust linear regression for censored data. Statistical analyses for chloride concentrations indicate that groundwater influenced by Big Lost River seepage has decreasing chloride trends or, in some cases, has variable chloride concentration changes that correlate with above-average and below-average periods of recharge. Analyses of trends for chloride in water samples from four sites located along the Big Lost River indicate a decreasing trend or no trend for chloride, and chloride concentrations generally are much lower at these four sites than those in the aquifer. Above-average and below-average periods of recharge also affect concentration trends for sodium, sulfate, nitrate, and a few trace elements in several wells. Analyses of trends for constituents in water from several of the wells that is mostly regionally derived groundwater generally indicate increasing trends for chloride, sodium, sulfate, and nitrate concentrations. These increases are attributed to agricultural or other anthropogenic influences on the aquifer upgradient of the INL. Statistical trends of chemical constituents from several wells near

  2. Treatment of Perfluorinated Alkyl Substances in Wash Water ...

    EPA Pesticide Factsheets

    Report The U.S. Environmental Protection Agency’s (EPA) National Homeland Security Research Center partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. This report summarizes the results from testing conducted to evaluate the treatment of large volumes of water containing perfluorinated alkyl substances (PFAS). This summary of conclusions and observations about the performance and implementation of adsorptive treatment of AFFF contaminated water, based on the testing performed at the INL WSTB.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watrous, Matthew George; Adamic, Mary Louise; Olson, John Eric

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world’s best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made inmore » optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world-leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS--all with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has

  4. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    ERIC Educational Resources Information Center

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  5. University Engagement at INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrell, Sean Robert; Rynes, Amanda Renee

    2014-07-01

    There are currently over 900 facilities in over 170 countries which fall under International Atomic Energy Agency (IAEA) safeguards. As additional nations look to purse civilian nuclear programs or to expand infrastructure already in place, the number of reactors and accompanying facilities as well as the quantity of material has greatly increased. Due to the breadth of the threat and the burden placed on the IAEA as nuclear applications expand, it has become increasingly important that safeguards professionals have a strong understanding of both the technical and political aspects of nonproliferation starting early in their career. To begin overcoming thismore » challenge, Idaho National Laboratory, has partnered with local universities to deliver a graduate level nuclear engineering course that covers both aspects of the field with a focus on safeguards applications. To date over 60 students across multiple disciplines have participated in this course with many deciding to transition into a nonproliferation area of focus in both their academic and professional careers.« less

  6. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  7. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    PubMed

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature. Copyright © 2013 Wiley Periodicals, Inc.

  8. A Project-Based Biochemistry Laboratory Promoting the Understanding and Uses of Fluorescence Spectroscopy in the Study of Biomolecular Structures and Interactions

    ERIC Educational Resources Information Center

    Briese, Nicholas; Jakubowsk, Henry V.

    2007-01-01

    A laboratory project for a first semester biochemistry course is described, which integrates the traditional classroom study of the structure and function of biomolecules with the laboratory study of these molecules using fluorescence spectroscopy. Students are assigned a specific question addressing the stability/function of lipids, proteins, or…

  9. HOT CELL BUILDING, TRA632. CONTEXTUAL VIEW ALONG WALLEYE AVENUE, CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. CONTEXTUAL VIEW ALONG WALLEYE AVENUE, CAMERA FACING EASTERLY. HOT CELL BUILDING IS AT CENTER LEFT OF VIEW; THE LOW-BAY PROJECTION WITH LADDER IS THE TEST TRAIN ASSEMBLY FACILITY, ADDED IN 1968. MTR BUILDING IS IN LEFT OF VIEW. HIGH-BAY BUILDING AT RIGHT IS THE ENGINEERING TEST REACTOR BUILDING, TRA-642. INL NEGATIVE NO. HD46-32-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Laboratory Class Project: Using a Cichlid Fish Display Tank to Teach Students about Complex Behavioral Systems.

    PubMed

    Nolan, Brian C

    2010-01-01

    Laboratory activities serve several important functions in undergraduate science education. For neuroscience majors, an important and sometimes underemphasized tool is the use of behavioral observations to help inform us about the consequences of changes that are occurring on a neuronal level. To help address this concern, the following laboratory exercise is presented. The current project tested the prediction that the most dominant fish in a tank of cichlids will have gained the most benefits of its position resulting in the greatest growth and hence, become the largest fish. More specifically: (1) is there evidence that a social hierarchy exists among the fish in our tank based on the number of aggressive acts among the four largest fish; (2) if so, does the apparent rank correspond to the size of the fish as predicted by previous studies? Focal sampling and behavior sampling of aggressive acts between fish were utilized in the data collection. Collectively, the data suggest a social dominance hierarchy may be in place with the following rank order from highest to lowest: Fish A > Fish B > Fish D > Fish C. While the largest (Fish A) seems to be at the top, Fish C ended up being ranked lower than Fish D despite the fact that Fish C is larger. Overall, the project was considered a success by the instructor and students. The students offered several suggestions that could improve future versions of this type of project, in particular concerning the process of constructing a poster about the project. The implications of the data and student learning outcomes are discussed.

  11. Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.

    PubMed

    Lipchock, James M; Ginther, Patrick S; Douglas, Bonnie B; Bird, Kelly E; Patrick Loria, J

    2017-09-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant human enzyme, protein tyrosine phosphatase 1B (PTP1B). Over the course of the semester students guide their own mutant of PTP1B from conception to characterization in a cost-effective manner and gain exposure to fundamental techniques in biochemistry, including site-directed DNA mutagenesis, bacterial recombinant protein expression, affinity column purification, protein quantitation, SDS-PAGE, and enzyme kinetics. This project-based approach allows an instructor to simulate a research setting and prepare students for productive research beyond the classroom. Potential modifications to expand or contract this module are also provided. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):403-410, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  12. Enabling fast charging – Introduction and overview

    DOE PAGES

    Michelbacher, Christopher; Ahmed, Shabbir; Bloom, Ira; ...

    2017-10-23

    Argonne National Laboratory (Argonne), Idaho National Laboratory (INL), and the National Renewable Energy Laboratory (NREL), with guidance from VTO, initiated this study to understand the technical, cost, infrastructure, and implementation barriers associated with high rate charging up to 350 kW.

  13. SIPCAn (Separation, Isolation, Purification, Characterization, and Analysis): A One-Term, Integrated Project for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly A.; Arena, Anthony F.

    2011-01-01

    SIPCAn, an acronym for separation, isolation, purification, characterization, and analysis, is presented as a one-term, integrated project for the first-term undergraduate organic laboratory course. Students are assigned two mixtures of unknown organic compounds--a mixture of two liquid compounds and a mixture of two solid compounds--at the…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven Craig

    While low burn-up fuel [that characterized as having a burn-up of less than 45 gigawatt days per metric ton uranium (GWD/MTU)] has been stored for nearly three decades, the storage of high burn-up used fuels is more recent. The DOE has funded a High Burn-Up (HBU) Confirmatory Data Project to confirm the behavior of used high burn-up fuel under prototypic conditions. The Electric Power Research Institute (EPRI) is leading a project team to develop and implement the Test Plan to collect this data from a UNF dry storage system containing high burn-up fuel. As part of that project, 25 “sister”more » fuel rods have been selected, removed from assemblies, and placed in a fuel container ready for shipment to a national laboratory. This report documents that status of readiness to receive the fuel if that fuel were to be sent to Idaho National Laboratory (INL).« less

  15. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2006-08

    USGS Publications Warehouse

    Davis, Linda C.

    2010-01-01

    Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April

  16. Laboratory-based respiratory virus surveillance pilot project on select cruise ships in Alaska, 2013-15.

    PubMed

    Rogers, Kimberly B; Roohi, Shahrokh; Uyeki, Timothy M; Montgomery, David; Parker, Jayme; Fowler, Nisha H; Xu, Xiyan; Ingram, Deandra J; Fearey, Donna; Williams, Steve M; Tarling, Grant; Brown, Clive M; Cohen, Nicole J

    2017-09-01

    Influenza outbreaks can occur among passengers and crews during the Alaska summertime cruise season. Ill travellers represent a potential source for introduction of novel or antigenically drifted influenza virus strains to the United States. From May to September 2013-2015, the Alaska Division of Public Health, the Centers for Disease Control and Prevention (CDC), and two cruise lines implemented a laboratory-based public health surveillance project to detect influenza and other respiratory viruses among ill crew members and passengers on select cruise ships in Alaska. Cruise ship medical staff collected 2-3 nasopharyngeal swab specimens per week from passengers and crew members presenting to the ship infirmary with acute respiratory illness (ARI). Specimens were tested for respiratory viruses at the Alaska State Virology Laboratory (ASVL); a subset of specimens positive for influenza virus were sent to CDC for further antigenic characterization. Of 410 nasopharyngeal specimens, 83% tested positive for at least one respiratory virus; 71% tested positive for influenza A or B virus. Antigenic characterization of pilot project specimens identified strains matching predominant circulating seasonal influenza virus strains, which were included in the northern or southern hemisphere influenza vaccines during those years. Results were relatively consistent across age groups, recent travel history, and influenza vaccination status. Onset dates of illness relative to date of boarding differed between northbound (occurring later in the voyage) and southbound (occurring within the first days of the voyage) cruises. The high yield of positive results indicated that influenza was common among passengers and crews sampled with ARI. This finding reinforces the need to bolster influenza prevention and control activities on cruise ships. Laboratory-based influenza surveillance on cruise ships may augment inland influenza surveillance and inform control activities. However, these

  17. Monitoring laboratory data across manufacturers and laboratories--A prerequisite to make "Big Data" work.

    PubMed

    Goossens, Kenneth; Van Uytfanghe, Katleen; Twomey, Patrick J; Thienpont, Linda M

    2015-05-20

    "The Percentiler" project provides quasi real-time access to patient medians across laboratories and manufacturers. This data can serve as "clearinghouse" for electronic health record applications, e.g., use of laboratory data for global health-care research. Participants send their daily outpatient medians to the Percentiler application. After 6 to 8weeks, the laboratory receives its login information, which gives access to the user interface. Data is assessed by peer group, i.e., 10 or more laboratories using the same test system. Participation is free of charge. Participation is global with, to date, >120 laboratories and >250 instruments. Up to now, several reports have been produced that address i) the general features of the project, ii) peer group observations; iii) synergisms between "The Percentiler" and dedicated external quality assessment surveys. Reasons for long-term instability and bias (calibration- or lot-effects) have been observed for the individual laboratory and manufacturers. "The Percentiler" project has the potential to build a continuous, global evidence base on in vitro diagnostic test comparability and stability. As such, it may be beneficial for all stakeholders and, in particular, the patient. The medical laboratory is empowered for contributing to the development, implementation, and management of global health-care policies. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. DEMINERALIZER BUILDING, TRA608. INSTALLATION OF SAMPLING AND OTHER INSTRUMENTS COMPLETES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DEMINERALIZER BUILDING, TRA-608. INSTALLATION OF SAMPLING AND OTHER INSTRUMENTS COMPLETES DEMINERALIZER UNITS ALONG NORTH WALL. CAMERA FACES EAST. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3996A. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Arroyo Mocho Boulder Removal Project: Lawrence Livermore National Laboratory Hetch Hetchy Pump Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, L; Kato, T; Van Hattem, M

    2007-06-28

    The purpose of this biological assessment is to review the proposed Arroyo Mocho Boulder Removal Project in sufficient detail to determine to what extent the proposed action may affect any of the threatened, endangered, proposed, or sensitive species and designated or proposed critical habitats listed below. In addition, the following information is provided to comply with statutory requirements to use the best scientific and commercial information available when assessing the risks posed to listed and/or proposed species and designated and/or proposed critical habitat by proposed federal actions. This biological assessment is prepared in accordance with legal requirements set forth undermore » regulations implementing Section 7 of the Endangered Species Act (50 CFR 402; 16 U.S.C 1536 (c)). It is our desire for the Arroyo Mocho Boulder Removal Project to receive incidental take coverage for listed species and critical habitat within the greater project area by means of amending the previous formal Section 7 consultation (1-1-04-F-0086) conducted a few hundred meters downstream by Lawrence Livermore National Laboratory (LLNL) in 2002. All conservation measures, terms and conditions, and reporting requirements from the previous Biological Opinion (1-1-04-F-0086) have been adopted for this Biological Assessment and/or amendment.« less

  20. Idaho National Laboratory LDRD Annual Report FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.

  1. Physics Teachers Workshop

    ScienceCinema

    Huggins, DaNel; Calhoun, John; Palmer, Alyson; Thorpe, Steve; Vanderveen, Anne

    2017-12-09

    INL is looking for the nation's top high school physics teachers to attend our July workshop in Idaho Falls. Participants get to learn from nuclear researchers, tour facilities including a research reactor and interact with peers from across the country. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory

  2. Physics Teachers Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huggins, DaNel; Calhoun, John; Palmer, Alyson

    INL is looking for the nation's top high school physics teachers to attend our July workshop in Idaho Falls. Participants get to learn from nuclear researchers, tour facilities including a research reactor and interact with peers from across the country. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory

  3. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Benson; J. Cole; J. Jackson

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groupsmore » conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.« less

  4. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, andmore » the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.« less

  5. Further investigation of surface velocity measurements for material characterization in laser shockwave experiments

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Lacy, Jeffrey M.; Scott, Clark L.; Benefiel, Bradley C.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin

    2018-04-01

    As part of the U.S. High Performance Research Reactor program, a laser shock test system is being developed by the Idaho National Laboratory (INL) to characterize interface strength in innovative plate fuel for research reactors around the world. The INL has been working with National Research Council Canada (NRC) on this project for the last five years. One of the concerns is the difficulty of calibrating and standardizing the laser shock technique. A recent analytical study and testing support the use of the Hugoniot Elastic Limit (HEL) in materials as a robust and simple benchmark to compare stresses generated by different laser shock systems. Using a non-contact laser velocimeter based on a solid Fabry-Perot etalon, the systems at NRC and INL show that the back-surface velocity reached at the HEL is consistent, and independent of the laser power used. In this work, the laser velocimeter of the NRC system is tested against a fast rotating wheel to verify accuracy and determine best operating conditions. A round robin test between the two laser shock systems on plates of different aluminum alloys is presented that shows the consistent characterization of the aluminum alloys based on the HEL velocities as well as determines the bias between the systems. The effects of setup parameters on other characteristics of the back-surface velocity trace and corresponding stress wave are also discussed.

  6. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing ofmore » facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)« less

  7. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), whichmore » identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements

  8. Procedures of Exercise Physiology Laboratories

    NASA Technical Reports Server (NTRS)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  9. SWEIS Yearbook-2012 Comparison of 2012 Data to Projections of the 2008 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Hallie B.; Wright, Marjorie Alys

    2014-01-16

    Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projections—Radiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for allmore » waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.« less

  10. NASA's Atmospheric Effects of Aviation Project: Results of the August 1999 Aerosol Measurement Intercomparison Workshop, Laboratory Phase

    NASA Technical Reports Server (NTRS)

    Cofer, W. Randy, III; Anderson, Bruce E.; Connors, V. S.; Wey, C. C.; Sanders, T.; Twohy, C.; Brock, C. A.; Winstead, E. L.; Pui, D.; Chen, Da-Ren

    2001-01-01

    During August 1-14, 1999, NASA's Atmospheric Effects of Aviation Project (AEAP) convened a workshop at the NASA Langley Research Center to try to determine why such a wide variation in aerosol emissions indices and chemical and physical properties have been reported by various independent AEAP-supported research teams trying to characterize the exhaust emissions of subsonic commercial aircraft. This workshop was divided into two phases, a laboratory phase and a field phase. The laboratory phase consisted of supplying known particle number densities (concentrations) and particle size distributions to a common manifold for the participating research teams to sample and analyze. The field phase was conducted on an aircraft run-up pad. Participating teams actually sampled aircraft exhaust generated by a Langley T-38 Talon aircraft at 1 and 9 m behind the engine at engine powers ranging from 48 to 100 percent. Results from the laboratory phase of this intercomparison workshop are reported in this paper.

  11. Chemical constituents in groundwater from multiple zones in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009-13

    USGS Publications Warehouse

    Bartholomay, Roy C.; Hopkins, Candice B.; Maimer, Neil V.

    2015-01-01

    Tritium concentrations in relation to basaltic flow units indicate the presence of wastewater influence in multiple basalt flow groups; however, tritium is most abundant in the South Late Matuyama flow group in the southern boundary wells. The concentrations of wastewater constituents in deep zones in wells Middle 2051, USGS 132, USGS 105, and USGS 103 support the concept of groundwater flow deepening in the southwestern corner of the INL, as indicated by the INL groundwater-flow model.

  12. WATER PUMP HOUSE, TRA619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619, AND TWO WATER STORAGE RESERVOIRS. INDUSTRIAL WINDOWS AND COPING STRIPS AT TOP OF WALLS AND ENTRY VESTIBULE. BOLLARDS PROTECT UNDERGROUND FACILITIES. SWITCHYARD AT RIGHT EDGE OF VIEW. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3816. Unknown Photographer, 11/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Practical Laboratory Planning.

    ERIC Educational Resources Information Center

    Ferguson, W. R.

    This book is intended as a guide for people who are planning chemistry and physics research laboratories. It deals with the importance of effective communication between client and architect, the value of preliminary planning, and the role of the project officer. It also discusses the size and layout of individual laboratories, the design of…

  14. AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND EXCAVATION FOR LABORATORY ON LEFT. INL PHOTO NUMBER NRTS-51-1759. Unknown Photographer, 3/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. Space Nuclear Program INL's role in energizing exploration

    ScienceCinema

    Idaho National Laboratory

    2017-12-09

    Idaho National Laboratory is helping make space exploration possible with the development of radioisotope power systems, which can work in areas too harsh and too isolated in space where the suns rays cannot be used for energy.

  16. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Carl Baily; Tom Hill

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less

  17. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less

  18. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. Themore » test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.« less

  19. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    NASA Astrophysics Data System (ADS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  20. DHS National Technical Nuclear Forensics Program FY 10 Summary Report: Graduate Mentoring Assistance Program (GMAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martha R. Finck Ph.D.

    2011-10-01

    This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to the graduate student's formation as a member of the nuclear forensics community. The summary report details the student/mentor experience and future plans after the first summer practicum. This program provides practical training to DHS graduate fellows in the DOE laboratory complex. It involves coordinating students, their thesis advisors, and their laboratory project mentors in establishing a meaningful program of research which contributes to themore » graduate student's formation as a member of the nuclear forensics community. This final written report includes information concerning the overall mentoring experience, including benefits (to the lab, the mentors, and the students), challenges, student research contributions, and lab mentor interactions with students home universities. Idaho National Laboratory hosted two DHS Nuclear Forensics graduate Fellows (nuclear engineering) in summer 2011. Two more Fellows (radiochemistry) are expected to conduct research at the INL under this program starting in 2012. An undergraduate Fellow (nuclear engineering) who worked in summer 2011 at the laboratory is keenly interested in applying for the NF Graduate Fellowship this winter with the aim of returning to INL. In summary, this program appears to have great potential for success in supporting graduate level students who pursue careers in nuclear forensics. This relatively specialized field may not have been an obvious choice for some who have already shown talent in the traditional areas of chemistry or nuclear engineering. The active recruiting for this scholarship program for candidates at universities across the U.S. brings needed visibility to this field. Not only does this program offer critical practical

  1. A Fruit of Yucca Mountain: The Remote Waste Package Closure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Skinner; Greg Housley; Colleen Shelton-Davis

    2011-11-01

    Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary,more » mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.« less

  2. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    no author on report

    2014-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) tomore » submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Deborah L.

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) tomore » submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.« less

  4. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  5. Post-irradiation-examination of irradiated fuel outside the hot cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran

    Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.

  6. 137Cs activities and 135Cs/137Cs isotopic ratios from soils at Idaho National Laboratory: a case study for contaminant source attribution in the vicinity of nuclear facilities.

    PubMed

    Snow, Mathew S; Snyder, Darin C; Clark, Sue B; Kelley, Morgan; Delmore, James E

    2015-03-03

    Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. (137)Cs distribution patterns, (135)Cs/(137)Cs isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDA identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that (135)Cs/(137)Cs ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest).

  7. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W.

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple ofmore » years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.« less

  8. I-NERI Annual Technical Progress Report 2007-004-K Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Frank

    The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests

  9. Customer satisfaction assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DN Anderson; ML Sours

    2000-03-23

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists ofmore » nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input--answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data.« less

  10. Managing laboratory automation in a changing pharmaceutical industry

    PubMed Central

    Rutherford, Michael L.

    1995-01-01

    The health care reform movement in the USA and increased requirements by regulatory agencies continue to have a major impact on the pharmaceutical industry and the laboratory. Laboratory management is expected to improve effciency by providing more analytical results at a lower cost, increasing customer service, reducing cycle time, while ensuring accurate results and more effective use of their staff. To achieve these expectations, many laboratories are using robotics and automated work stations. Establishing automated systems presents many challenges for laboratory management, including project and hardware selection, budget justification, implementation, validation, training, and support. To address these management challenges, the rationale for project selection and implementation, the obstacles encountered, project outcome, and learning points for several automated systems recently implemented in the Quality Control Laboratories at Eli Lilly are presented. PMID:18925014

  11. Evaluation of well-purging effects on water-quality results for samples collected from the eastern Snake River Plain aquifer underlying the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Knobel, LeRoy L.

    2006-01-01

    This report presents qualitative and quantitative comparisons of water-quality data from the Idaho National Laboratory, Idaho, to determine if the change from purging three wellbore volumes to one wellbore volume has a discernible effect on the comparability of the data. Historical water-quality data for 30 wells were visually compared to water-quality data collected after purging only 1 wellbore volume from the same wells. Of the 322 qualitatively examined constituent plots, 97.5 percent met 1 or more of the criteria established for determining data comparability. A simple statistical equation to determine if water-quality data collected from 28 wells at the INL with long purge times (after pumping 1 and 3 wellbore volumes of water) were statistically the same at the 95-percent confidence level indicated that 97.9 percent of 379 constituent pairs were equivalent. Comparability of water-quality data determined from both the qualitative (97.5 percent comparable) and quantitative (97.9 percent comparable) evaluations after purging 1 and 3 wellbore volumes of water indicates that the change from purging 3 to 1 wellbore volumes had no discernible effect on comparability of water-quality data at the INL. However, the qualitative evaluation was limited because only October-November 2003 data were available for comparison to historical data. This report was prepared by the U.S. Geological Survey in cooperation with the U.S. Department of Energy.

  12. DEMINERALIZER BUILDING,TRA608. CAMERA FACES EAST ALONG SOUTH WALL. INSTRUMENT PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DEMINERALIZER BUILDING,TRA-608. CAMERA FACES EAST ALONG SOUTH WALL. INSTRUMENT PANEL BOARD IS IN RIGHT HALF OF VIEW, WITH FOUR PUMPS BEYOND. SMALLER PUMPS FILL DEMINERALIZED WATER TANK ON SOUTH SIDE OF BUILDING. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON ORIGINAL NEGATIVE. INL NEGATIVE NO. 3997A. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, William Jonathan; Braase, Lori Ann

    Fuel recovery from severe accidents requires careful planning and execution. The Idaho National Laboratory played a key role in the Three Mile Island (TMI) fuel and core recovery. This involved technology development to locate and handle the damaged fuel; characterization of fuel and debris; analysis of fuel interaction with structural components and materials; development of fuel drying technology for long-term storage. However, one of the critical activities from the TMI project was the extensive effort document all the activities and archive the reports and photos. A historical review of the TMI project at the INL leads to the identification ofmore » current applications and considerations for facility designs, fuel handling, robotic applications, material characterization, etc.« less

  14. Mars Science Laboratory Rover Taking Shape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The rover is about 9 feet wide and 10 feet long.

    Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin.

    JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.

  15. How Do Structure and Charge Affect Metal-Complex Binding to DNA? An Upper-Division Integrated Laboratory Project Using Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Kulczynska, Agnieszka; Johnson, Reed; Frost, Tony; Margerum, Lawrence D.

    2011-01-01

    An advanced undergraduate laboratory project is described that integrates inorganic, analytical, physical, and biochemical techniques to reveal differences in binding between cationic metal complexes and anionic DNA (herring testes). Students were guided to formulate testable hypotheses based on the title question and a list of different metal…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Scott V.

    On August 1, 2014, Idaho National Laboratory (INL), in coordination with the State of Idaho, local jurisdictions, Department of Energy (DOE) Idaho Operations Office, and DOE Headquarters (DOE-HQ), conducted the annual emergency exercise to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.” The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with other INL contractors, conducted operations and demonstrated appropriate response measures to mitigate an event and protect the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures. Report data were collected frommore » multiple sources, which included documentation generated during exercise response, player critiques conducted immediately after terminating the exercise, personnel observation sheets, and evaluation critiques. Evaluation of this exercise served as a management assessment of the performance of the INL Emergency Management Program (IAS141618).« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Thomas Jay

    This report documents the Data Quality Objectives (DQOs) developed for the Idaho National Laboratory (INL) Site ambient air surveillance program. The development of the DQOs was based on the seven-step process recommended “for systematic planning to generate performance and acceptance criteria for collecting environmental data” (EPA 2006). The process helped to determine the type, quantity, and quality of data needed to meet current regulatory requirements and to follow U.S. Department of Energy guidance for environmental surveillance air monitoring design. It also considered the current air monitoring program that has existed at INL Site since the 1950s. The development of themore » DQOs involved the application of the atmospheric dispersion model CALPUFF to identify likely contamination dispersion patterns at and around the INL Site using site-specific meteorological data. Model simulations were used to quantitatively assess the probable frequency of detection of airborne radionuclides released by INL Site facilities using existing and proposed air monitors.« less

  18. Pedagogical Evaluation of Remote Laboratories in eMerge Project

    ERIC Educational Resources Information Center

    Lang, Daniela; Mengelkamp, Christoph; Jaeger, Reinhold S.; Geoffroy, Didier; Billaud, Michel; Zimmer, Thomas

    2007-01-01

    This study investigates opportunities for conducting electrical engineering experiments via the Internet rather than in an actual laboratory. Eighty-four French students of electrical engineering (semester 1, 2004) at Bordeaux University 1 participated in practical courses. Half of the students performed experiments in a laboratory while the other…

  19. Steady-State and Transient Groundwater Flow and Advective Transport, Eastern Snake River Plain Aquifer, Idaho National Laboratory and Vicinity, Idaho

    NASA Astrophysics Data System (ADS)

    Fisher, J. C.; Ackerman, D. J.; Rousseau, J. P.; Rattray, G. W.

    2009-12-01

    Three-dimensional steady-state and transient models of groundwater flow and advective transport through the fractured basalts and interbedded sediments of the Eastern Snake River Plain (ESRP) aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The model domain covers an area of 1,940 square miles that includes most of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. Numerical models simulated 1980 steady-state conditions and transient flow for 1980-95. In the transient model, streamflow infiltration was the major stress. The models were calibrated using the parameter-estimation program incorporated in MODFLOW-2000. The steady-state model reasonably simulated the observed water-table altitude and gradients. Simulation of transient conditions reproduced changes in the flow system resulting from episodic infiltration from the Big Lost River. Analysis of simulations shows that flow is (1) dominantly horizontal through interflow zones in basalt, vertical anisotropy resulting from contrasts in hydraulic conductivity of different types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. Particle-tracking simulations were used to evaluate how simulated groundwater flow paths and travel times differ between the steady-state and transient flow models, and how well model-derived groundwater flow directions and velocities compare to independently-derived estimates. Particle tracking also was used to simulate the growth of tritium plumes originating at two INL facilities over a 16 year period under steady-state and transient flow conditions (1953-68). The shape, dimensions, and areal extent of these plumes were compared to a map of the plumes for 1968 from tritium releases beginning in 1952

  20. Building Skills with Reiterative Lab Projects.

    ERIC Educational Resources Information Center

    Marine, Susan Sonchik

    2003-01-01

    Introduces chemistry laboratories in which students have the opportunity to conduct laboratory projects in multiple sessions that promote planning, thinking, technical performance, and responsibility. Defines the process of experimentation and its applications to science laboratories and describes successful project applications. (YDS)

  1. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Laboratory to the Hagerman Area, Idaho, 2003

    USGS Publications Warehouse

    Rattray, Gordon W.; Wehnke, Amy J.; Hall, L. Flint; Campbell, Linford J.

    2005-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled water from 14 sites as part of an ongoing study to monitor the water quality of the eastern Snake River Plain aquifer between the southern boundary of the Idaho National Laboratory (INL) and the Burley-Twin Falls-Hagerman area. The State of Idaho, Department of Environmental Quality, Division of INL Oversight and Radiation Control cosampled with the U.S. Geological Survey and the Idaho Department of Water Resources and their analytical results are included in this report. The samples were collected from four domestic wells, two dairy wells, two springs, four irrigation wells, one observation well, and one stock well and analyzed for selected radiochemical and chemical constituents. Two quality-assurance samples, sequential replicates, also were collected and analyzed. None of the concentrations of radiochemical or organic-chemical constituents exceeded the maximum contaminant levels for drinking water established by the U.S. Environmental Protection Agency. However, the concentration of one inorganic-chemical constituent, nitrate (as nitrogen), in water from site MV-43 was 20 milligrams per liter which exceeded the maximum contaminant level for that constituent. Of the radiochemical and chemical concentrations analyzed for in the replicate-sample pairs, 267 of the 270 pairs (with 95 percent confidence) were statistically equivalent.

  2. CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP601) ON THE RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP-601) ON THE RIGHT AND LABORATORY (CPP-602) ON THE LEFT. INL PHOTO NUMBER NRTS-51-3373. Unknown Photographer, 9/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frerichs, Kimberly Irene

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2014 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough tomore » encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL’s GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries, but are a consequence of INL’s activities). This inventory found that INL generated 73,521 metric tons (MT) of CO2 equivalent (CO2e ) emissions during FY14. The following conclusions were made from looking at the results of the individual contributors to INL’s FY14 GHG inventory: • Electricity (including the associated transmission and distribution losses) is the largest contributor to INL’s GHG inventory, with over 50% of the CO2e emissions • Other sources with high

  4. The Los Alamos universe: Using multimedia to promote laboratory capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kindel, J.

    2000-03-01

    This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists ofmore » three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.« less

  5. Oppenheimer's Box of Chocolates: Remediation of the Manhattan Project Landfill at Los Alamos National Laboratory - 12283

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Donald L.; Ramsey, Susan S.; Finn, Kevin P.

    2012-07-01

    Material Disposal Area B (MDA B) is the oldest radioactive waste disposal facility at Los Alamos National Laboratory. Operated from 1944-48, MDA B was the disposal facility for the Manhattan Project. Recognized as one of the most challenging environmental remediation projects at Los Alamos, the excavation of MDA B received $110 million from the American Recovery and Reinvestment Act of 2009 to accelerate this complex remediation work. Several factors combined to create significant challenges to remediating the landfill known in the 1940's as the 'contaminated dump'. The secrecy surrounding the Manhattan Project meant that no records were kept of radiologicalmore » materials and chemicals disposed or of the landfill design. An extensive review of historical documents and interviews with early laboratory personnel resulted in a list of hundreds of hazardous chemicals that could have been buried in MDA B. Also, historical reports of MDA B spontaneously combusting on three occasions -with 50-foot flames and pink smoke spewing across the mesa during the last incident in 1948-indicated that hazardous materials were likely present in MDA B. To complicate matters further, though MDA B was located on an isolated mesa in the 1940's, the landfill has since been surrounded by a Los Alamos commercial district. The local newspaper, hardware store and a number of other businesses are located directly across the street from MDA B. This close proximity to the public and the potential for hazardous materials in MDA B necessitated conducting remediation work within protective enclosures. Potential chemical hazards and radiological inventory were better defined using a minimally intrusive sampling method called direct push technology (DPT) prior to excavation. Even with extensive sampling and planning the project team encountered many surprises and challenges during the project. The one area where planning did not fail to meet reality was safety. There were no serious worker

  6. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In fundingmore » provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.« less

  7. Laboratory Directed Research and Development FY2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammeraad, J E; Jackson, K J; Sketchley, J A

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal yearmore » 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  8. Developing a lean culture in the laboratory.

    PubMed

    Napoles, Leyda; Quintana, Maria

    2006-07-25

    The Director of Pathology at Jackson Memorial Hospital was interested in improving the operational efficiencies of the department in order to enhance the department's level of service in conjunction with the expansion of the overall health system. The decision was made to implement proven Lean practices in the laboratory under the direction of a major consulting firm. This article details the scope of the initial project as well as the operating principles of Lean manufacturing practices as applied to the clinical laboratory. The goals of the project were to improve turnaround times of laboratory results, reduce inventory and supply costs, improve staff productivity, maximize workflow, and eliminate waste. Extensive data gathering and analysis guided the work process by highlighting the areas of highest opportunity. This systematic approach resulted in recommendations for the workflow and physical layout of the laboratory. It also included the introduction of "standard workflow" and "visual controls" as critical items that streamlined operational efficiencies. The authors provide actual photographs and schematics of the reorganization and improvements to the physical layout of the laboratory. In conclusion, this project resulted in decreased turnaround times and increased productivity, as well as significant savings in the overall laboratory operations.

  9. Customer Satisfaction Assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale N.; Sours, Mardell L.

    2000-03-20

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. We present the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of 2 major sections, Strategic Value and Project Performance. The Strategic Value section of the questionnaire consists of 5 questions that can be answered with a 5 point Likert scale response. These questions are designed to determine if a project is directly contributing to critical future national needs. The Project Performance section of the questionnaire consistsmore » of 9 questions that can be answered with a 5 point Likert scale response. These questions determine PNNL performance in meeting customer expectations. Many approaches could be used to analyze customer survey data. We present a statistical model that can accurately capture the random behavior of customer survey data. The properties of this statistical model can be used to establish a "gold standard'' or performance expectation for the laboratory, and then assess progress. The gold standard is defined from input from laboratory management --- answers to 4 simple questions, in terms of the information obtained from the CSAP customer survey, define the standard: *What should the average Strategic Value be for the laboratory project portfolio? *What Strategic Value interval should include most of the projects in the laboratory portfolio? *What should average Project Performance be for projects with a Strategic Value of about 2? *What should average Project Performance be for projects with a Strategic Value of about 4? We discuss how to analyze CSAP customer survey data with this model. Our discussion will include "lessons learned" and issues that can invalidate this type of assessment.« less

  10. An Environmentally Focused General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mihok, Morgan; Keiser, Joseph T.; Bortiatynski, Jacqueline M.; Mallouk, Thomas E.

    2006-01-01

    The environmentally focused general chemistry laboratory provides a format for teaching the concepts of the mainstream laboratory within an environmental context. The capstone integrated exercise emerged as the overwhelming favorite part of this laboratory and the experiment gave students an opportunity to do a self-directed project, using the…

  11. Borehole deviation and correction factor data for selected wells in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.

    2016-11-29

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, has maintained a water-level monitoring program at the Idaho National Laboratory (INL) since 1949. The purpose of the program is to systematically measure and report water-level data to assess the eastern Snake River Plain aquifer and long term changes in groundwater recharge, discharge, movement, and storage. Water-level data are commonly used to generate potentiometric maps and used to infer increases and (or) decreases in the regional groundwater system. Well deviation is one component of water-level data that is often overlooked and is the result of the well construction and the well not being plumb. Depending on measured slant angle, where well deviation generally increases linearly with increasing slant angle, well deviation can suggest artificial anomalies in the water table. To remove the effects of well deviation, the USGS INL Project Office applies a correction factor to water-level data when a well deviation survey indicates a change in the reference elevation of greater than or equal to 0.2 ft.Borehole well deviation survey data were considered for 177 wells completed within the eastern Snake River Plain aquifer, but not all wells had deviation survey data available. As of 2016, USGS INL Project Office database includes: 57 wells with gyroscopic survey data; 100 wells with magnetic deviation survey data; 11 wells with erroneous gyroscopic data that were excluded; and, 68 wells with no deviation survey data available. Of the 57 wells with gyroscopic deviation surveys, correction factors for 16 wells ranged from 0.20 to 6.07 ft and inclination angles (SANG) ranged from 1.6 to 16.0 degrees. Of the 100 wells with magnetic deviation surveys, a correction factor for 21 wells ranged from 0.20 to 5.78 ft and SANG ranged from 1.0 to 13.8 degrees, not including the wells that did not meet the correction factor criteria of greater than or equal to 0.20 ft.Forty-seven wells had

  12. Idaho National Laboratory Test Area North: Application of Endpoints to Guide Adaptive Remediation at a Complex Site: INL Test Area North: Application of Endpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M. Hope; Truex, Mike; Freshley, Mark

    Complex sites are defined as those with difficult subsurface access, deep and/or thick zones of contamination, large areal extent, subsurface heterogeneities that limit the effectiveness of remediation, or where long-term remedies are needed to address contamination (e.g., because of long-term sources or large extent). The Test Area North at the Idaho National Laboratory, developed for nuclear fuel operations and heavy metal manufacturing, is used as a case study. Liquid wastes and sludge from experimental facilities were disposed in an injection well, which contaminated the subsurface aquifer located deep within fractured basalt. The wastes included organic, inorganic, and low-level radioactive constituents,more » with the focus of this case study on trichloroethylene. The site is used as an example of a systems-based framework that provides a structured approach to regulatory processes established for remediation under existing regulations. The framework is intended to facilitate remedy decisions and implementation at complex sites where restoration may be uncertain, require long timeframes, or involve use of adaptive management approaches. The framework facilitates site, regulator, and stakeholder interactions during the remedial planning and implementation process by using a conceptual model description as a technical foundation for decisions, identifying endpoints, which are interim remediation targets or intermediate decision points on the path to an ultimate end, and maintaining protectiveness during the remediation process. At the Test Area North, using a structured approach to implementing concepts in the endpoint framework, a three-component remedy is largely functioning as intended and is projected to meet remedial action objectives by 2095 as required. The remedy approach is being adjusted as new data become available. The framework provides a structured process for evaluating and adjusting the remediation approach, allowing site owners, regulators

  13. FY2017 Pilot Project Plan for the Nuclear Energy Knowledge and Validation Center Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju

    To prepare for technical development of computational code validation under the Nuclear Energy Knowledge and Validation Center (NEKVAC) initiative, several meetings were held by a group of experts of the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory (ORNL) to develop requirements of, and formulate a structure for, a transient fuel database through leveraging existing resources. It was concluded in discussions of these meetings that a pilot project is needed to address the most fundamental issues that can generate immediate stimulus to near-future validation developments as well as long-lasting benefits to NEKVAC operation. The present project is proposedmore » based on the consensus of these discussions. Analysis of common scenarios in code validation indicates that the incapability of acquiring satisfactory validation data is often a showstopper that must first be tackled before any confident validation developments can be carried out. Validation data are usually found scattered in different places most likely with interrelationships among the data not well documented, incomplete with information for some parameters missing, nonexistent, or unrealistic to experimentally generate. Furthermore, with very different technical backgrounds, the modeler, the experimentalist, and the knowledgebase developer that must be involved in validation data development often cannot communicate effectively without a data package template that is representative of the data structure for the information domain of interest to the desired code validation. This pilot project is proposed to use the legendary TREAT Experiments Database to provide core elements for creating an ideal validation data package. Data gaps and missing data interrelationships will be identified from these core elements. All the identified missing elements will then be filled in with experimental data if available from other existing sources or with dummy data if nonexistent. The resulting

  14. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Wester

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals thatmore » were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.« less

  15. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougan, A; Dreicer, M; Essner, J

    2009-11-16

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship;more » (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.« less

  16. ATR Spent Fuel Options Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Michael James; Bean, Thomas E.; Brower, Jeffrey O.

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage,more » and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center’s (INTEC’s) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and

  17. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Brian; May, Doug; Howlett, Don

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and developmentmore » associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to

  18. The Gran Sasso Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Coccia, Eugenio

    2012-12-01

    Thirty years have passed since, thanks to Antonino Zichichi, the project for the largest underground laboratory in the world was conceived and brought to the attention of Italian authorities. The Gran Sasso National Laboratories of INFN have become a scientific reality of worldwide pre-eminence, in an expanding area of research where elementary particle physics, astrophysics and cosmology overlap. I briefly present here the main scientific challenges of underground laboratories and the activity and future perspectives of the INFN Gran Sasso Laboratory.

  19. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  20. Technology base research project for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1988-07-01

    The progress made by the technology base research (TBR) project for electrochemical energy storage during calendar year 1987 was summarized. The primary objective of the TBR Project, which is sponsored by the Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance and economic requirements for electric vehicles and stationary energy storage applications. The ultimate goal is to transfer the most promising electrochemical technologies to the private sector or to another DOE project (e.g., Sandia National Laboratories' Exploratory Technology Development and Testing Project) for further development and scale-up. Besides LBL, which has overall responsibility for the TBR Project, Los Alamos National Laboratory (LANL), Brookhaven National Laboratory (BNL) and Argonne National Laboratory (ANL) participate in the TBR Project by providing key research support in several of the project elements. The TBR Project consists of three major project elements: exploratory research; applied science research; and air systems research. The objectives and the specific battery and electrochemical systems addressed by each project element are discussed in the following sections, which also include technical summaries that relate to the individual projects. Financial information that relates to the various projects and a description of the management activities for the TBR Project are described in the Executive Summary.

  1. Challenges in small screening laboratories: implementing an on-demand laboratory information management system.

    PubMed

    Lemmon, Vance P; Jia, Yuanyuan; Shi, Yan; Holbrook, S Douglas; Bixby, John L; Buchser, William

    2011-11-01

    The Miami Project to Cure Paralysis, part of the University of Miami Miller School of Medicine, includes a laboratory devoted to High Content Analysis (HCA) of neurons. The goal of the laboratory is to uncover signaling pathways, genes, compounds, or drugs that can be used to promote nerve growth. HCA permits the quantification of neuronal morphology, including the lengths and numbers of axons. HCA of various libraries on primary neurons requires a team-based approach, a variety of process steps and complex manipulations of cells and libraries to obtain meaningful results. HCA itself produces vast amounts of information including images, well-based data and cell-based phenotypic measures. Documenting and integrating the experimental workflows, library data and extensive experimental results is challenging. For academic laboratories generating large data sets from experiments involving thousands of perturbagens, a Laboratory Information Management System (LIMS) is the data tracking solution of choice. With both productivity and efficiency as driving rationales, the Miami Project has equipped its HCA laboratory with an On Demand or Software As A Service (SaaS) LIMS to ensure the quality of its experiments and workflows. The article discusses how the system was selected and integrated into the laboratory. The advantages of a SaaS based LIMS over a client-server based system are described. © 2011 Bentham Science Publishers

  2. Laboratory Manual, Electrical Engineering 25.

    ERIC Educational Resources Information Center

    Syracuse Univ., NY. Dept. of Electrical Engineering.

    Developed as part of a series of materials in the electrical engineering sequence developed under contract with the United States Office of Education, this laboratory manual provides nine laboratory projects suitable for a second course in electrical engineering. Dealing with resonant circuits, electrostatic fields, magnetic devices, and…

  3. FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING REMOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL LABORATORY, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-008-105065. ALTERNATE ID NUMBER 4272-14-102. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. MTR WING A, TRA604, INTERIOR. MAIN FLOOR. DETAIL VIEW INSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING A, TRA-604, INTERIOR. MAIN FLOOR. DETAIL VIEW INSIDE LABORATORY 114. CAMERA FACING NORTH. DISPOSAL OF RADIOACTIVE MATERIALS IS UNDERWAY. INL NEGATIVE NO. HD46-12-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. Commissioning a materials research laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAVAGE,GERALD A.

    2000-03-28

    This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented inmore » a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.« less

  6. 137 Cs Activities and 135 Cs/ 137 Cs Isotopic Ratios from Soils at Idaho National Laboratory: A Case Study for Contaminant Source Attribution in the Vicinity of Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Mathew S.; Snyder, Darin C.; Clark, Sue B.

    2015-03-03

    Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. 137Cs distribution patterns, 135Cs/ 137Cs isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDAmore » identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that 135Cs/ 137Cs ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest).« less

  7. Towards European urinalysis guidelines. Introduction of a project under European Confederation of Laboratory Medicine.

    PubMed

    Kouri, T T; Gant, V A; Fogazzi, G B; Hofmann, W; Hallander, H O; Guder, W G

    2000-07-01

    Improved standardized performance is needed because urinalysis continues to be one of the most frequently requested laboratory tests. Since 1997, the European Confederation of Laboratory Medicine (ECLM) has been supporting an interdisciplinary project aiming to produce European urinalysis guidelines. More than seventy clinical chemists, microbiologists and ward-based clinicians, as well as representatives of manufacturers are taking part. These guidelines aim to improve the quality and consistency of chemical urinalysis, particle counting and bacterial culture by suggesting optimal investigative processes that could be applied in Europe. The approach is based on medical needs for urinalysis. The importance of the pre-analytical stage for total quality is stressed by detailed illustrative advice for specimen collection. Attention is also given to emerging automated technology. For cost containment reasons, both optimum (ideal) procedures and minimum analytical approaches are suggested. Since urinalysis mostly lacks genuine reference methods (primary reference measurement procedures; Level 4), a novel classification of the methods is proposed: comparison measurement procedures (Level 3), quantitative routine procedures (Level 2), and ordinal scale examinations (Level 1). Stepwise strategies are suggested to save costs, applying different rules for general and specific patient populations. New analytical quality specifications have been created. After a consultation period, the final written text will be published in full as a separate document.

  8. The Boulby Geoscience Project Underground Research Laboratory: Initial Results of a Rock Mechanics Laboratory Testing Programme

    NASA Astrophysics Data System (ADS)

    Brain, M. J.; Petley, D. N.; Rosser, N.; Lim, M.; Sapsford, M.; Barlow, J.; Norman, E.; Williams, A.; Pybus, D.

    2009-12-01

    The Boulby Mine, which is situated on the northeast coast of England, is a major source of potash, primarily for use as a fertiliser, with a secondary product of rock salt (halite), used in highway deicing. The deposits are part of the Zechstein formation and are found at depths of between c.1100 and 1135 m below sea level. The evaporite sequence also contains a range of further lithologies, including anhydrite, dolomite and a mixed evaporate deposit. From a scientific perspective the dry, uncontaminated nature of the deposits, the range of lithologies present and the high stress conditions at the mine provide a unique opportunity to observe rock deformation in situ in varying geological and stress environments. To this end the Boulby Geoscience Project was established to examine the feasibility of developing an underground research laboratory at the mine. Information regarding the mechanical properties of the strata at the Boulby Mine is required to develop our understanding of the strength and deformation behaviour of the rock over differing timescales in response to variations in the magnitude and duration of applied stresses. As such data are currently limited, we have developed a laboratory testing programme that examines the behaviour of the deposits during the application of differential compressive stresses. We present the initial results of this testing programme here. Experiments have been carried out using a high pressure Virtual Infinite Strain (VIS) triaxial apparatus (250 kN maximum axial load; 64 MPa maximum cell pressure) manufactured by GDS Instruments. Conventional compression tests under uniaxial and triaxial conditions have been undertaken to determine the effects of axial stress application rate, axial strain rate and confining pressure on behaviour and failure mechanisms. The experimental programme also includes advanced testing into time-dependent creep behaviour under constant deviatoric stress; the effects of variations in temperature and

  9. Sandia National Laboratories: Strategic Partnership Projects, Non-Federal

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New Sandia Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements Alt text Potential

  10. Improving laboratory data entry quality using Six Sigma.

    PubMed

    Elbireer, Ali; Le Chasseur, Julie; Jackson, Brooks

    2013-01-01

    The Uganda Makerere University provides clinical laboratory support to over 70 clients in Uganda. With increased volume, manual data entry errors have steadily increased, prompting laboratory managers to employ the Six Sigma method to evaluate and reduce their problems. The purpose of this paper is to describe how laboratory data entry quality was improved by using Six Sigma. The Six Sigma Quality Improvement (QI) project team followed a sequence of steps, starting with defining project goals, measuring data entry errors to assess current performance, analyzing data and determining data-entry error root causes. Finally the team implemented changes and control measures to address the root causes and to maintain improvements. Establishing the Six Sigma project required considerable resources and maintaining the gains requires additional personnel time and dedicated resources. After initiating the Six Sigma project, there was a 60.5 percent reduction in data entry errors from 423 errors a month (i.e. 4.34 Six Sigma) in the first month, down to an average 166 errors/month (i.e. 4.65 Six Sigma) over 12 months. The team estimated the average cost of identifying and fixing a data entry error to be $16.25 per error. Thus, reducing errors by an average of 257 errors per month over one year has saved the laboratory an estimated $50,115 a year. The Six Sigma QI project provides a replicable framework for Ugandan laboratory staff and other resource-limited organizations to promote quality environment. Laboratory staff can deliver excellent care at a lower cost, by applying QI principles. This innovative QI method of reducing data entry errors in medical laboratories may improve the clinical workflow processes and make cost savings across the health care continuum.

  11. Eight year experience in open ended instrumentation laboratory

    NASA Astrophysics Data System (ADS)

    Marques, Manuel B.; Rosa, Carla C.; Marques, Paulo V. S.

    2015-10-01

    When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.

  12. FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601) BASEMENT SHOWING PROCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601) BASEMENT SHOWING PROCESS CORRIDOR AND EIGHTEEN CELLS. TO LEFT IS LABORATORY BUILDING (CPP-602). INL DRAWING NUMBER 200-0601-00-706-051981. ALTERNATE ID NUMBER CPP-E-1981. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  14. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  15. Case study: improving efficiency in a large hospital laboratory.

    PubMed

    Bartel, Marilynn

    2004-01-01

    Saint Francis Health System (SFHS) consists of three hospitals and one clinic: Saint Francis Hospital (SFH); Broken Arrow Medical Center; Laureate Psychiatric Hospital; and Warren Clinic. SFHS has 670 physicians on staff and serves medical (oncology, orthopedic, neurology, and renal), surgical, cardiac, women and infant, pediatric, transplant, and trauma patients in Tulsa County, Oklahoma, which has a population of 660,000. SFH incorporates 706 staffed beds, including 126 pediatric beds and 119 critical care beds. Each year, the health system averages 38,000 admissions, 70,000 emergency department visits, 25,000 surgeries, and 3,500 births. Saint Francis Laboratory is located within the main hospital facility (SFH) and functions as a core lab for the health system. The lab also coordinates lab services with Saint Francis Heart Hospital, a physician-system joint venture. The Optimal Equipment Configuration (OEC) Project was designed by the Clinical Laboratory Services division of Premier, a group purchasing organization, with the goal of determining whether laboratories could improve efficiency and decrease unit cost by using a single-source vendor. Participants included seven business partners (Abbott, Bayer, Beckman/Coulter, Dade/Behring, J&J/ Ortho, Olympus, and Roche) and 21 laboratory sites (a small, mid-sized, and large site for each vendor). SFH laboratory staff embraced Premier's concept and viewed the OEC project as an opportunity to "energize" laboratory operations. SFH partnered with Abbott, their primary equipment vendor, for the project. Using resources and tools made available through the project, the laboratory was re-engineered to simplify workflow, increase productivity, and decrease costs by adding automation and changing to centralized specimen processing. Abbott and SFH shared a common vision for the project and enhanced their partnership through increased communication and problem solving. Abbott's area representatives provided for third

  16. Quality improvement project in cervical cancer screening: practical measures for monitoring laboratory performance.

    PubMed

    Tarkkanen, Jussi; Geagea, Antoine; Nieminen, Pekka; Anttila, Ahti

    2003-01-01

    We conducted a quality improvement project in a cervical cancer screening programme in Helsinki in order to see if detection of precancerous lesions could be influenced by external (participation rate) and internal (laboratory praxis) quality measures. In order to increase the participation rate, a second personal invitation to Pap-test was mailed to nonparticipants of the first call. In order to improve the quality of screening, the cytotechnicians monitored their performance longitudinally by recording the number of slides reviewed per day, the pick-up rate of abnormal smears, the report of the consulting cytopathologist, and the number of histologically verified lesions detected from the cases that they had screened. Regular sessions were held to compare the histological findings with the cytological findings of all cases referred for colposcopy. No pressure was applied on the cytotechnicians to ensure that they felt comfortable with their daily workload. A total of 110 000 smears were screened for cervical cancer at the Helsinki City Hospital during 1996-99. Initially, the overall participation rate increased from 62% to 71%. The number of histologically confirmed precancerous lesions (CIN 1-3) more than doubled and their detection rate increased from 0.32% to 0.72%. Continuous education and feedback from daily work performance were important, yet rather inexpensive means in increasing laboratory performance. Additional measures are needed to further increase the participation rate. Impact of the quality measures on cancer incidence needs to be assessed later on.

  17. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R.; Gard, E.; Sketchley, J.

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas),more » and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.« less

  18. American History Laboratory Project. Final Report.

    ERIC Educational Resources Information Center

    Taylor, William R.

    The results of an experimental project in American history which introduced to students the methods of historical investigation in specific historical areas through small group research rather than through the college survey course are described in this report. Discussed are (1) the course organization, consisting of two semester units in which…

  19. University Research in Support of TREAT Modeling and Simulation, FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHart, Mark David

    Idaho National Laboratory is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under the Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. In support of this research, INL is working with four universities to explore advanced solution methods that will complement or augment capabilities in MAMMOTH. This report consists of a collection of year end summaries of research from the universities performed inmore » support of TREAT modeling and simulation. This research was led by Prof. Sedat Goluoglu at the University of Florida, Profs. Jim Morel and Jean Ragusa at Texas A&M University, Profs. Benoit Forget and Kord Smith at Massachusetts Institute of Technology, Prof. Leslie Kerby of Idaho State University and Prof. Barry Ganapol of University of Arizona. A significant number of students were supported at various levels though the projects and, for some, also as interns at INL.« less

  20. Rapid, Sensitive, Enzyme-Immunodotting Assay for Detecting Cow Milk Adulteration in Sheep Milk: A Modern Laboratory Project

    NASA Astrophysics Data System (ADS)

    Inda, Luis A.; Razquín, Pedro; Lampreave, Fermín; Alava, María A.; Calvo, Miguel

    1998-12-01

    Specificity, sensitivity, and experimental simplicity make the immunoenzymatic assay suitable for a variety of laboratories dedicated to diverse activities such as research, quality control in food analysis, or clinical biochemistry. In these assays, the antibody that specifically recognizes the antigen is covalently attached to an enzyme. Once the antigen-antibody immunocomplex is formed, the enzymatic reaction gives a colored product that allows the detection of the initial antigen. The aim of this work was the design of a new laboratory project appropriate for use in courses of biochemistry, immunochemistry, or analytical chemistry. The assay described here detects the presence of cow milk in milk of other species. The main application is the detection of cow milk in sheep milk and cheese. Specific proteins, immunoglobulins (IgG) of the fraudulent bovine milk, are specifically recognized and retained by antibodies immobilized on a membrane. The binding of a second antibody covalently attached to horseradish peroxidase (HRP) allows the development of a visible signal. Thus, students can rapidly detect milk adulterations using a specific, sensitive, and safe experimental approach. The experiment allows students to apply their theoretical knowledge, resulting in a stimulating experience of solving a real problem during a 4-hour laboratory period.

  1. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Jeffrey S.

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. Tomore » make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.« less

  2. Moonshot Laboratories' Lava Relief Google Mapping Project

    NASA Astrophysics Data System (ADS)

    Brennan, B.; Tomita, M.

    2016-12-01

    The Moonshot Laboratories were conceived at the University Laboratory School (ULS) on Oahu, Hawaii as way to develop creative problem solvers able to resourcefully apply 21st century technologies to respond to the problems and needs of their communities. One example of this was involved students from ULS using modern mapping and imaging technologies to assist peers who had been displaced from their own school in Pahoe on the Big Island of Hawaii. During 2015, lava flows from the eruption of Kilauea Volcano were slowly encroaching into the district of Puna in 2015. The lava flow was cutting the main town of Pahoa in half, leaving no safe routes of passage into or out of the town. One elementary school in the path of the flow was closed entirely and a new one was erected north of the flow for students living on that side. Pahoa High School students and teachers living to the north were been forced to leave their school and transfer to Kea'au High School. These students were separated from friends, family and the community they grew up in and were being thrust into a foreign environment that until then had been their local rival. Using Google Mapping technologies, Moonshot Laboratories students created a dynamic map to introduce the incoming Pahoa students to their new school in Kea'au. Elements included a stylized My Maps basemap, YouTube video descriptions of the building, videos recorded by Google Glass showing first person experiences, and immersive images of classrooms were created using 360 cameras. During the first day of orientation at Kea'au for the 200 Pahoa students, each of them were given a tablet to view the map as they toured and got to know their new campus. The methods and technologies, and more importantly innovative thinking, used to create this map have enormous potential for how to educate all students about the world around us, and the issues facing it. http://www.moonshotincubator.com/

  3. Global Geospace Science/Polar Plasma Laboratory: POLAR

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.

  4. FY2007 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W W; Sketchley, J A; Kotta, P R

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted frommore » the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.« less

  5. OBLIQUE PHOTO OF NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE PHOTO OF NORTH AND WEST ELEVATIONS OF REMOTE ANALYTICAL FACILITY (CPP-627) LOOKING SOUTHEAST. LABORATORY AND OFFICE BUILDING (CPP-602) APPEAR ON LEFT IN PHOTO. INL PHOTO NUMBER HD-22-2-2. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. Teaching Laboratory Renovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Zuhairi, Ali Jassim; Al-Dahhan, Wedad; Hussein, Falah

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. The improvement of students’ understanding of concepts in science and its applications, practical scientific skills and understanding of how science and scientists work in laboratory experiences have been considered key aspects of education in science for over 100 years. Facility requirements for the necessary level of safety and security combined with specific requirementsmore » relevant to the course to be conducted dictate the structural design of a particular laboratory, and the design process must address both. This manuscript is the second in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. We summarize the process used to guide a major renovation of the chemistry instructional laboratory facilities at Al-Nahrain University and discuss lessons learned from the project.« less

  7. Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP)

    EPA Pesticide Factsheets

    The Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP) provides guidance for the planning, implementation and assessment phases of projects that require laboratory analysis of radionuclides.

  8. Earth Resources Laboratory research and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The accomplishments of the Earth Resources Laboratory's research and technology program are reported. Sensors and data systems, the AGRISTARS project, applied research and data analysis, joint research projects, test and evaluation studies, and space station support activities are addressed.

  9. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David W. Nigg, Principal Investigator; Kevin A. Steuhm, Project Manager

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to properly verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Updatemore » Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the next anticipated ATR Core Internals Changeout (CIC) in the 2014-2015 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its third full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL under various licensing arrangements. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as

  10. Elementary and Advanced Computer Projects for the Physics Classroom and Laboratory

    DTIC Science & Technology

    1992-12-01

    are SPF/PC, MS Word, n3, Symphony, Mathematics, and FORTRAN. The authors’ programs assist data analysis in particular laboratory experiments and make...assist data analysis in particular laboratory experiments and make use of the Monte Carlo and other numerical techniques in computer simulation and...the language of science and engineering in industry and government laboratories (alth..4h C is becoming a powerful competitor ). RM/FORTRAN (cost $400

  11. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  12. CSI flight experiment projects of the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  13. Statistical Stationarity of Sediment Interbed Thicknesses in a Basalt Aquifer, Idaho National Laboratory, Eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Stroup, Caleb N.; Welhan, John A.; Davis, Linda C.

    2008-01-01

    The statistical stationarity of distributions of sedimentary interbed thicknesses within the southwestern part of the Idaho National Laboratory (INL) was evaluated within the stratigraphic framework of Quaternary sediments and basalts at the INL site, eastern Snake River Plain, Idaho. The thicknesses of 122 sedimentary interbeds observed in 11 coreholes were documented from lithologic logs and independently inferred from natural-gamma logs. Lithologic information was grouped into composite time-stratigraphic units based on correlations with existing composite-unit stratigraphy near these holes. The assignment of lithologic units to an existing chronostratigraphy on the basis of nearby composite stratigraphic units may introduce error where correlations with nearby holes are ambiguous or the distance between holes is great, but we consider this the best technique for grouping stratigraphic information in this geologic environment at this time. Nonparametric tests of similarity were used to evaluate temporal and spatial stationarity in the distributions of sediment thickness. The following statistical tests were applied to the data: (1) the Kolmogorov-Smirnov (K-S) two-sample test to compare distribution shape, (2) the Mann-Whitney (M-W) test for similarity of two medians, (3) the Kruskal-Wallis (K-W) test for similarity of multiple medians, and (4) Levene's (L) test for the similarity of two variances. Results of these analyses corroborate previous work that concluded the thickness distributions of Quaternary sedimentary interbeds are locally stationary in space and time. The data set used in this study was relatively small, so the results presented should be considered preliminary, pending incorporation of data from more coreholes. Statistical tests also demonstrated that natural-gamma logs consistently fail to detect interbeds less than about 2-3 ft thick, although these interbeds are observable in lithologic logs. This should be taken into consideration when

  14. WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKER STACKS GRAPHITE BLOCKS AGAINST INNER SOUTH WALL OF REACTOR. INL NEGATIVE NO. 3925. Unknown Photographer, 12/14/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Vibro-acoustic Imaging at the Breazeale Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James Arthur; Jewell, James Keith; Lee, James Edwin

    2016-09-01

    The INL is developing Vibro-acoustic imaging technology to characterize microstructure in fuels and materials in spent fuel pools and within reactor vessels. A vibro-acoustic development laboratory has been established at the INL. The progress in developing the vibro-acoustic technology at the INL is the focus of this report. A successful technology demonstration was performed in a working TRIGA research reactor. Vibro-acoustic imaging was performed in the reactor pool of the Breazeale reactor in late September of 2015. A confocal transducer driven at a nominal 3 MHz was used to collect the 60 kHz differential beat frequency induced in a spentmore » TRIGA fuel rod and empty gamma tube located in the main reactor water pool. Data was collected and analyzed with the INLDAS data acquisition software using a short time Fourier transform.« less

  16. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  17. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. Lunar Receiving Laboratory Project History

    NASA Technical Reports Server (NTRS)

    Mangus, Susan; Larsen, William

    2004-01-01

    As early as 1959, the Working Group on Lunar Exploration within NASA advocated that 'one of the prime objectives of the first lunar landing mission should be the collection of samples for return to Earth, where they could be subjected to detailed study and analysis.' Within NASA, neither this group nor any other scientists working with the Agency were concerned about back contamination issues. Outside of NASA, back contamination concerns had been raised as early as 1960. Although NASA did not seem to pay any attention to the concerns at that time, the scientific community continued to be interested in the topic. In 1962 and again in 1963, as the Apollo Program loomed large, further discussions were held. These early discussions of back contamination did not make their way into NASA's administration, however, and when Manned Spacecraft Center personnel began to articulate early concepts for the Lunar Receiving Laboratory (LRL), the back contamination issue was not considered. Once this concern became a major focus, however, the LRL's development became increasingly complex. This is the history of that development.

  19. Advanced Instrumentation, Information, and Control Systems Technologies Pathway: FY 2016 External Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Kenneth David; Hallbert, Bruce Perry

    2016-11-01

    This report describes an External Review conducted by the LWRS Program Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway to solicit feedback on the topics and results of the ongoing II&C research program. This review was held in conjunction with the Nuclear Energy Institute (NEI) Digital I&C Working Group meeting that was held at Idaho National Laboratory (INL) on August 9-10, 2016. Given the opportunity to visit INL and see the pathway research projects, NEI agreed that the Working Group would serve as the External Review panel for the purpose of obtaining expert input on the value and timingmore » of the research projects. This consisted of demonstrations in the Human Systems Simulation Laboratory followed by presentations on the II&C research program in general as well as the five technology development areas. Following the meeting, the presentations were sent to each of the attendees so they could review them in more detail and refer to them in completing the feedback form. Follow-up activities were conducted with the attendees following the meeting to obtain the completed feedback forms. A total of 13 forms were returned. The feedback forms were reviewed by the pathway to compile the data and comments received, which are documented in the report. In all, the feedback provided by the External Review participants is taken to be a strong endorsement of the types of projects being conducted by the pathway, the value they hold for the nuclear plants, and the general timing of need. The feedback aligns well with the priorities, levels of efforts allocated for the research projects, and project schedules. The feedback also represents realistic observations on the practicality of some aspects of implementing these technologies. In some cases, the participants provided thoughtful challenges to certain assumptions in the formulation of the technologies or in deployment plans. These deserve further review and revision of plans if

  20. Long-term pavement performance project laboratory materials testing and handling guide

    DOT National Transportation Integrated Search

    2007-09-01

    The Long Term Pavement Performance (LTPP) Laboratory Material Testing Guide was originally prepared for laboratory material handling and testing of material specimens and samples of asphalt materials, portland cement concrete, aggregates, and soils u...

  1. Laboratory Directed Research and Development Annual Report FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  2. Laboratory Directed Research and Development Annual Report FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  3. pGLO Mutagenesis: A Laboratory Procedure in Molecular Biology for Biology Students

    ERIC Educational Resources Information Center

    Bassiri, Eby A.

    2011-01-01

    A five-session laboratory project was designed to familiarize or increase the laboratory proficiency of biology students and others with techniques and instruments commonly used in molecular biology research laboratories and industries. In this project, the EZ-Tn5 transposon is used to generate and screen a large number of cells transformed with…

  4. Correlation between basalt flows and radiochemical and chemical constituents in selected wells in the southwestern part of the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Bartholomay, Roy C.; Hodges, Mary K. V.; Champion, Duane E.

    2017-12-21

    Wastewater discharged to wells and ponds and wastes buried in shallow pits and trenches at facilities at the Idaho National Laboratory (INL) have contributed contaminants to the eastern Snake River Plain (ESRP) aquifer in the southwestern part of the INL. This report describes the correlation between subsurface stratigraphy in the southwestern part of the INL with information on the presence or absence of wastewater constituents to better understand how flow pathways in the aquifer control the movement of wastewater discharged at INL facilities. Paleomagnetic inclination was used to identify subsurface basalt flows based on similar inclination measurements, polarity, and stratigraphic position. Tritium concentrations, along with other chemical information for wells where tritium concentrations were lacking, were used as an indicator of which wells were influenced by wastewater disposal.The basalt lava flows in the upper 150 feet of the ESRP aquifer where wastewater was discharged at the Idaho Nuclear Technology and Engineering Center (INTEC) consisted of the Central Facilities Area (CFA) Buried Vent flow and the AEC Butte flow. At the Advanced Test Reactor (ATR) Complex, where wastewater would presumably pond on the surface of the water table, the CFA Buried Vent flow probably occurs as the primary stratigraphic unit present; however, AEC Butte flow also could be present at some of the locations. At the Radioactive Waste Management Complex (RWMC), where contamination from buried wastes would presumably move down through the unsaturated zone and pond on the surface of the water table, the CFA Buried Vent; Late Basal Brunhes; or Early Basal Brunhes basalt flows are the flow unit at or near the water table in different cores.In the wells closer to where wastewater disposal occurred at INTEC and the ATR-Complex, almost all the wells show wastewater influence in the upper part of the ESRP aquifer and wastewater is present in both the CFA Buried Vent flow and AEC Butte

  5. Interagency Federal Laboratory Review Final Report

    DTIC Science & Technology

    1995-05-15

    technology. DOE labs have made unique contributions to national security since the days of the Manhattan Project , in designing, developing, and...Weapons Responsibility Most of DOE’s large multi-program laboratories had their origin in the Manhattan Project , to develop nuclear weapons during and

  6. GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE OF REACTOR. INL NEGATIVE NO. 4000. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR STEEL FRAME STRUCTURE. INL NEGATIVE NO. 1330. Unknown Photographer, 1/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Process and equipment development for hot isostatic pressing treatability study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP withinmore » INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.« less

  9. Robotic laboratory for distance education

    NASA Astrophysics Data System (ADS)

    Luciano, Sarah C.; Kost, Alan R.

    2016-09-01

    This project involves the construction of a remote-controlled laboratory experiment that can be accessed by online students. The project addresses a need to provide a laboratory experience for students who are taking online courses to be able to provide an in-class experience. The chosen task for the remote user is an optical engineering experiment, specifically aligning a spatial filter. We instrument the physical laboratory set up in Tucson, AZ at the University of Arizona. The hardware in the spatial filter experiment is augmented by motors and cameras to allow the user to remotely control the hardware. The user interacts with a software on their computer, which communicates with a server via Internet connection to the host computer in the Optics Laboratory at the University of Arizona. Our final overall system is comprised of several subsystems. These are the optical experiment set-up, which is a spatial filter experiment; the mechanical subsystem, which interfaces the motors with the micrometers to move the optical hardware; the electrical subsystem, which allows for the electrical communications from the remote computer to the host computer to the hardware; and finally the software subsystem, which is the means by which messages are communicated throughout the system. The goal of the project is to convey as much of an in-lab experience as possible by allowing the user to directly manipulate hardware and receive visual feedback in real-time. Thus, the remote user is able to learn important concepts from this particular experiment and is able to connect theory to the physical world by actually seeing the outcome of a procedure. The latter is a learning experience that is often lost with distance learning and is one that this project hopes to provide.

  10. MET-activating Residues in the B-repeat of the Listeria monocytogenes Invasion Protein InlB*

    PubMed Central

    Bleymüller, Willem M.; Lämmermann, Nina; Ebbes, Maria; Maynard, Daniel; Geerds, Christina; Niemann, Hartmut H.

    2016-01-01

    The facultative intracellular pathogen Listeria monocytogenes causes listeriosis, a rare but life-threatening disease. Host cell entry begins with activation of the human receptor tyrosine kinase MET through the bacterial invasion protein InlB, which contains an internalin domain, a B-repeat, and three GW domains. The internalin domain is known to bind MET, but no interaction partner is known for the B-repeat. Adding the B-repeat to the internalin domain potentiates MET activation and is required to stimulate Madin-Darby canine kidney (MDCK) cell scatter. Therefore, it has been hypothesized that the B-repeat may bind a co-receptor on host cells. To test this hypothesis, we mutated residues that might be important for binding an interaction partner. We identified two adjacent residues in strand β2 of the β-grasp fold whose mutation abrogated induction of MDCK cell scatter. Biophysical analysis indicated that these mutations do not alter protein structure. We then tested these mutants in human HT-29 cells that, in contrast to the MDCK cells, were responsive to the internalin domain alone. These assays revealed a dominant negative effect, reducing the activity of a construct of the internalin domain and mutated B-repeat below that of the individual internalin domain. Phosphorylation assays of MET and its downstream targets AKT and ERK confirmed the dominant negative effect. Attempts to identify a host cell receptor for the B-repeat were not successful. We conclude that there is limited support for a co-receptor hypothesis and instead suggest that the B-repeat contributes to MET activation through low affinity homodimerization. PMID:27789707

  11. REACTOR SERVICES BUILDING, TRA635, INTERIOR. ALSO KNOWN AS MATERIAL RECEIVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR SERVICES BUILDING, TRA-635, INTERIOR. ALSO KNOWN AS MATERIAL RECEIVING AREA AND LABORATORY. CAMERA ON FIRST FLOOR FACING NORTH TOWARD MTR BUILDING. MOCK-UP AREA WAS TO THE RIGHT OF VIEW. INL NEGATIVE NO. HD46-10-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. CONSTRUCTION PROGRESS PHOTO SHOWING MAIN PROCESSING BUILDING (CPP601) LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTH. INL PHOTO NUMBER NRTS-51-1387. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP603) LOOKING NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING FUEL STORAGE BUILDING (CPP-603) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-895. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING WEST STORAGE BASIN AT FUEL STORAGE BUILDING (CPP-603). INL PHOTO NUMBER NRTS-51-689. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Laboratory Safety in the Biology Lab.

    ERIC Educational Resources Information Center

    Ritch, Donna; Rank, Jane

    2001-01-01

    Reports on a research project to determine if students possess and comprehend basic safety knowledge. Shows a significant increase in the amount of safety knowledge gained when students are exposed to various topics in laboratory safety and are held accountable for learning the information as required in a laboratory safety course. (Author/MM)

  17. The Master level optics laboratory at the Institute of Optics

    NASA Astrophysics Data System (ADS)

    Adamson, Per

    2017-08-01

    The master level optics laboratory is a biannual, intensive laboratory course in the fields of geometrical, physical and modern optics. This course is intended for the master level student though Ph.D. advisors which often recommend it to their advisees. The students are required to complete five standard laboratory experiments and an independent project during a semester. The goals of the laboratory experiments are for the students to get hands-on experience setting up optical laboratory equipment, collecting and analyzing data, as well as to communicate key results. The experimental methods, analysis, and results of the standard experiments are submitted in a journal style report, while an oral presentation is given for the independent project.

  18. Marketing and Distribution: What About Training Plans in the DE Project Laboratory?

    ERIC Educational Resources Information Center

    Snyder, Ruth

    1977-01-01

    Managing a distributive education (DE) laboratory is a challenge. The laboratory is the simulated training station, with the instructor taking on the role of employer, managing student activities and learning. One tool to be utilized in managing a DE laboratory is a training plan. This article discusses the need for student training plans and the…

  19. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  20. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    NASA Technical Reports Server (NTRS)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  1. CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING (CPP-601) LOOKING SOUTH. INL PHOTO NUMBER NRTS-50-693. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP603) LOOKING EAST SHOWING ASBESTOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW FUEL STORAGE BUILDING (CPP-603) LOOKING EAST SHOWING ASBESTOS SIDING. INL PHOTO NUMBER NRTS-51-1543. Unknown Photographer, 2/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING INITIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING INITIAL EXCAVATION. INL PHOTO NUMBER NRTS-54-10703. Unknown Photographer, 5/21/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. Artificial Intelligence Project

    DTIC Science & Technology

    1990-01-01

    Artifcial Intelligence Project at The University of Texas at Austin, University of Texas at Austin, Artificial Intelligence Laboratory AITR84-01. Novak...Texas at Austin, Artificial Intelligence Laboratory A187-52, April 1987. Novak, G. "GLISP: A Lisp-Based Programming System with Data Abstraction...of Texas at Austin, Artificial Intelligence Laboratory AITR85-14.) Rim, Hae-Chang, and Simmons, R. F. "Extracting Data Base Knowledge from Medical

  5. Measurement of unsaturated hydraulic properties and evaluation of property-transfer models for deep sedimentary interbeds, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kimberlie; Johnson, Brittany D.; Mirus, Benjamin B.

    2014-01-01

    During 2013–14, the USGS, in cooperation with the U.S. Department of Energy, focused on further characterization of the sedimentary interbeds below the future site of the proposed Remote Handled Low-Level Waste (RHLLW) facility, which is intended for the long-term storage of low-level radioactive waste. Twelve core samples from the sedimentary interbeds from a borehole near the proposed facility were collected for laboratory analysis of hydraulic properties, which also allowed further testing of the property-transfer modeling approach. For each core sample, the steady-state centrifuge method was used to measure relations between matric potential, saturation, and conductivity. These laboratory measurements were compared to water-retention and unsaturated hydraulic conductivity parameters estimated using the established property-transfer models. For each core sample obtained, the agreement between measured and estimated hydraulic parameters was evaluated quantitatively using the Pearson correlation coefficient (r). The highest correlation is for saturated hydraulic conductivity (Ksat) with an r value of 0.922. The saturated water content (qsat) also exhibits a strong linear correlation with an r value of 0.892. The curve shape parameter (λ) has a value of 0.731, whereas the curve scaling parameter (yo) has the lowest r value of 0.528. The r values demonstrate that model predictions correspond well to the laboratory measured properties for most parameters, which supports the value of extending this approach for quantifying unsaturated hydraulic properties at various sites throughout INL.

  6. Laboratory twinning to build capacity for rabies diagnosis.

    PubMed

    Fooks, Anthony R; Drew, Trevor W; Tu, Changchun

    2016-03-05

    In 2009, the UK's OIE Reference Laboratory for rabies, based at the APHA in Weybridge, was awarded a project to twin with the Changchun Veterinary Research Institute in the People's Republic of China to help the institute develop the skills and methods necessary to become an OIE Reference Laboratory itself. Here, Tony Fooks, Trevor Drew and Changchun Tu describe the OIE's twinning project and the success that has since been realised in China. British Veterinary Association.

  7. Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 126a, 126b, 127, 128, 129, 130, 131, 132, 133, and 134, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Hodges, Mary K.V.; Orr, Stephanie

    2008-01-01

    This report summarizes construction, geophysical, and lithologic data collected from ten U.S. Geological Survey (USGS) boreholes completed between 1999 nd 2006 at the Idaho National Laboratory (INL): USGS 126a, 126b, 127, 128, 129, 130, 131, 132, 133, and 134. Nine boreholes were continuously cored; USGS 126b had 5 ft of core. Completion depths range from 472 to 1,238 ft. Geophysical data were collected for each borehole, and those data are summarized in this report. Cores were photographed and digitally logged using commercially available software. Digital core logs are in appendixes A through J. Borehole descriptions summarize location, completion date, and amount and type of core recovered. This report was prepared by the USGS in cooperation with the U.S. Department of Energy (DOE).

  8. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  9. ETR HEAT EXCHANGER BUILDING, TRA644. WORKERS ARE INSTALLING HEAT EXCHANGER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. WORKERS ARE INSTALLING HEAT EXCHANGER PIPING. INL NEGATIVE NO. 56-3122. Jack L. Anderson, Photographer, 9/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. WEST ELEVATION OF FUEL STORAGE BUILDING (CPP603). PHOTO TAKEN LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST ELEVATION OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTHEAST. INL PHOTO NUMBER HD-54-20-3. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING PLACEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING PLACEMENT OF PIERS. INL PHOTO NUMBER NRTS-54-11716. Unknown Photographer, 8/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. National Ignition Facility project acquisition plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaghan, R.W.

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertialmore » Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.« less

  14. Laboratory directed research and development program, FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less

  15. An Action Resarch Proposal: Identifying and Addressing Problems Related to RACC's Writing Laboratory. Title III Curriculum Enrichment Activity: Faculty Development Project. Final Report.

    ERIC Educational Resources Information Center

    Horner, Annette; Jacobson, Karen H.

    An action research project was undertaken to understand how the Writing Laboratory at Reading Area Community College (RACC) defines and accomplishes its work, what faculty and students expect of the lab, and how they make use of it. The investigation sought to foster discussion and reflection on the appropriate role and staffing of a college…

  16. ETR, TRA642. BASEMENT SPACE ALLOCATION FOR EXPERIMENTERS CA. 1966, SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. BASEMENT SPACE ALLOCATION FOR EXPERIMENTERS CA. 1966, SOUTHEAST QUADRANT OF FLOOR. WESTINGHOUSE ATOMIC POWER DIVISION (WAPD) AND BETTIS ATOMIC POWER LABORATORY (BAPL) CONSUME MOST OF THE QUADRANT. PHILLIPS PETROLEUM COMPANY ETR-E-2256, 12/1966. INL INDEX NO. 532-0642-00-706-021256, REV. F. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Reinforce Design and Construction Issues with a Comprehensive Laboratory Project.

    ERIC Educational Resources Information Center

    Schemmel, John J.

    In 1996, a comprehensive project was introduced in the first course of Reinforced Concrete Design, CVEG 4303 at the University of Arkansas. The primary purpose of this project was to highlight issues related to the construction of reinforced concrete elements. This semester-long project involves the design, fabrication, and testing of 8-foot long…

  18. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSImore » addressed some of these issues to create a more manageable public key infrastructure.« less

  19. MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR CONTROL ROOM WITH CONTROL CONSOLE AND STATUS READOUTS ALONG WALL. WORKERS MAKE ELECTRICAL AND OTHER CONNECTIONS. INL NEGATIVE NO. 4289. Unknown Photographer, 2/26/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. SOUTH WING, TRA661. SOUTH SIDE. CAMERA FACING NORTH. MTR HIGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH WING, TRA-661. SOUTH SIDE. CAMERA FACING NORTH. MTR HIGH BAY BEYOND. INL NEGATIVE NO. HD46-45-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. ETRMTR MECHANICAL SERVICES BUILDING, TRA653. CAMERA FACING NORTHWEST AS BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR-MTR MECHANICAL SERVICES BUILDING, TRA-653. CAMERA FACING NORTHWEST AS BUILDING WAS NEARLY COMPLETE. INL NEGATIVE NO. 57-3653. K. Mansfield, Photographer, 7/22/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. MISCELLANEOUS ARCHITECTURAL DETAILS AND SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP627). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MISCELLANEOUS ARCHITECTURAL DETAILS AND SECTIONS OF REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-0627-00-098-105632. ALTERNATE ID NUMBER 4272-814-135. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-885. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR AND ETR COMPLEXES. CAMERA FACING EASTERLY TOWARD CHEMICAL PROCESSING PLANT. MTR AND ITS ATTACHMENTS IN FOREGROUND. ETR BEYOND TO RIGHT. INL NEGATIVE NO. 56-4100. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP627) SHOWING EMPLACEMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING EMPLACEMENT OF ROOF SLABS. INL PHOTO NUMBER NRTS-54-13463. R.G. Larsen, Photographer, 12/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF THE REMOTE ANALYTICAL FACILITY OF SHIELDED GLOVE BOXES IN OPERATING CORRIDOR (CPP-627). INL PHOTO NUMBER NRTS-55-1524. Unknown Photographer, 1955 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING CRANE ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING CRANE ASSEMBLY FOR TRANSFER PIT. INL PHOTO NUMBER NRTS-51-2404. Unknown Photographer, 5/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. PLAN VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAN VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS. INL DRAWING NUMBER 200-0603-00-706-051285. ALTERNATE ID NUMBER CPP-D-1285. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  12. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  13. TA 55 Reinvestment Project II Phase C Update Project Status May 23, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, Anthony P.

    The TA-55 Reinvestment Project (TRP) II Phase C is a critical infrastructure project focused on improving safety and reliability of the Los Alamos National Laboratory (LANL) TA-55 Complex. The Project recapitalizes and revitalizes aging and obsolete facility and safety systems providing a sustainable nuclear facility for National Security Missions.

  14. Acoustic impulse response method as a source of undergraduate research projects and advanced laboratory experiments.

    PubMed

    Robertson, W M; Parker, J M

    2012-03-01

    A straightforward and inexpensive implementation of acoustic impulse response measurement is described utilizing the signal processing technique of coherent averaging. The technique is capable of high signal-to-noise measurements with personal computer data acquisition equipment, an amplifier/speaker, and a high quality microphone. When coupled with simple waveguide test systems fabricated from commercial PVC plumbing pipe, impulse response measurement has proven to be ideal for undergraduate research projects-often of publishable quality-or for advanced laboratory experiments. The technique provides important learning objectives for science or engineering students in areas such as interfacing and computer control of experiments; analog-to-digital conversion and sampling; time and frequency analysis using Fourier transforms; signal processing; and insight into a variety of current research areas such as acoustic bandgap materials, acoustic metamaterials, and fast and slow wave manipulation. © 2012 Acoustical Society of America

  15. Reengineering the project design process

    NASA Astrophysics Data System (ADS)

    Kane Casani, E.; Metzger, Robert M.

    1995-01-01

    In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.

  16. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Improving quality management systems of laboratories in developing countries: an innovative training approach to accelerate laboratory accreditation.

    PubMed

    Yao, Katy; McKinney, Barbara; Murphy, Anna; Rotz, Phil; Wafula, Winnie; Sendagire, Hakim; Okui, Scolastica; Nkengasong, John N

    2010-09-01

    The Strengthening Laboratory Management Toward Accreditation (SLMTA) program was developed to promote immediate, measurable improvement in laboratories of developing countries. The laboratory management framework, a tool that prescribes managerial job tasks, forms the basis of the hands-on, activity-based curriculum. SLMTA is implemented through multiple workshops with intervening site visits to support improvement projects. To evaluate the effectiveness of SLMTA, the laboratory accreditation checklist was developed and subsequently adopted by the World Health Organization Regional Office for Africa (WHO AFRO). The SLMTA program and the implementation model were validated through a pilot in Uganda. SLMTA yielded observable, measurable results in the laboratories and improved patient flow and turnaround time in a laboratory simulation. The laboratory staff members were empowered to improve their own laboratories by using existing resources, communicate with clinicians and hospital administrators, and advocate for system strengthening. The SLMTA program supports laboratories by improving management and building preparedness for accreditation.

  18. A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Chichester; S. J. Thompson

    2013-09-01

    This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium inmore » the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility

  19. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Maolong; Ryals, Matthew; Ali, Amir

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institutemore » of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.« less