Sample records for laboratory jpl california

  1. JPL-20180430-JPLf-0001-Vice President Pence Visits NASA Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-30

    Vice President Mike Pence toured NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California on Saturday, April 28 with his wife, Karen, and their daughter, Charlotte. JPL is the birthplace of numerous past, present and future robotic missions. Pence saw and heard more about JPL missions, which support the nation’s goals of furthering exploration of the Moon and Mars. JPL Director Mike Watkins led the tour for Pence and his guests. Vice President Pence toured JPL’s Mission Control where engineers communicate with spacecraft across the solar system through NASA’s Deep Space Network. While there, Charlotte Pence uplinked commands to the Mars Curiosity rover to execute its next science activities. The signal took about seven minutes to reach the rover, which is about 80-million miles from Earth. Pence also saw the Spacecraft Assembly Facility, where the Mars 2020 mission hardware is being assembled in a giant “clean room.” Mars 2020 will not only look for signs of habitable conditions on Mars in the ancient past, but will also search for signs of past microbial life itself.

  2. Test Rover at JPL During Preparation for Mars Rover Low-Angle Selfie

    NASA Image and Video Library

    2015-08-19

    This view of a test rover at NASA's Jet Propulsion Laboratory, Pasadena, California, results from advance testing of arm positions and camera pointings for taking a low-angle self-portrait of NASA's Curiosity Mars rover. This rehearsal in California led to a dramatic Aug. 5, 2015, selfie of Curiosity, online at PIA19807. Curiosity's arm-mounted Mars Hand Lens Imager (MAHLI) camera took 92 of component images that were assembled into that mosaic. The rover team positioned the camera lower in relation to the rover body than for any previous full self-portrait of Curiosity. This practice version was taken at JPL's Mars Yard in July 2013, using the Vehicle System Test Bed (VSTB) rover, which has a test copy of MAHLI on its robotic arm. MAHLI was built by Malin Space Science Systems, San Diego. JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19810

  3. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, left, thanks JPL Deputy Director Lt. Gen. (Ret) Larry James, JPL Director Michael Watkins, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell , UAG Chairman, Admiral (Ret) James Ellis , and California Institute of Technology President Thomas Rosenbaum, right, for giving him a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  4. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, seated next to his wife Karen and daughter Charlotte Pence, during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President was, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, left, UAG Chairman, Admiral (Ret) James Ellis, JPL Deputy Director Lt. Gen. (Ret) Larry James, and California Institute of Technology President Thomas Rosenbaum. Photo Credit: (NASA/Bill Ingalls)

  5. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from left, poses for a group photograph with JPL Director Michael Watkins, left, JPL Deputy Director Lt. Gen. (Ret) Larry James, California Institute of Technology President Thomas Rosenbaum, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, and UAG Chairman, Admiral (Ret) James Ellis, right, after having toured NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  6. Jet Propulsion Laboratory's Space Explorations. Part 1; History of JPL

    NASA Technical Reports Server (NTRS)

    Chau, Savio

    2005-01-01

    This slide presentation briefly reviews the history of the Jet Propulsion Laboratory from its founding by Dr von Karman in 1936 for research in rocketry through the post-Sputnik shift to unmanned space exploration in 1957. The presentation also reviews the major JPL missions with views of the spacecraft.

  7. Percussive Drill Test at JPL

    NASA Image and Video Library

    2018-05-17

    This video clip shows a test of a new percussive drilling technique at NASA's Jet Propulsion Laboratory in Pasadena, California. On May 19, NASA's Curiosity rover is scheduled to test percussive drilling on Mars for the first time since December 2016. The video clip was shot on March 28, 2018. It has been sped up by 50 times. Curiosity's drill was designed to pulverize rocks samples into powder, which can then be deposited into two chemistry laboratories carried inside of the rover. Curiosity's science team is eager to the rover using percussive drilling again; it will approach a clay-enriched area later this year that could shed new light on the history of water in Gale Crater. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22324

  8. 9. Credit JPL. Photographic copy of drawing, engineering drawing showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Credit JPL. Photographic copy of drawing, engineering drawing showing structure of Test Stand 'A' (Building 4202/E-3) and its relationship to the Monitor Building or blockhouse (Building 4203/E-4) when a reinforced concrete machinery room was added to the west side of Test Stand 'A' in 1955. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Electrical Layout - Muroc, Test Stand & Refrigeration Equipment Room,' drawing no. E3/7-0, April 6, 1955. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  9. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 3rd from right, tours NASA's Jet Propulsion Laboratory along with his wife Karen, and daughter Charlotte, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President t and his family on the tour are: UAG Chairman, Admiral (Ret) James Ellis , left, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, behind Mrs. Pence, California Institute of Technology President Thomas Rosenbaum, JPL Director Michael Watkins, and JPL Deputy Director Lt. Gen. (Ret) Larry James, right. Photo Credit: (NASA/Bill Ingalls)

  10. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  11. 4. Credit JPL. Original 4" x 5" black and white ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit JPL. Original 4" x 5" black and white negative housed in the JPL Archives, Pasadena, California. This interior view displays the machine shop in the Administration/Shops Building (the compass angle of the view is undetermined). Looking clockwise from the lower left, the machine tools in view are a power hacksaw, a heat-treatment oven (with white gloves on top), a large hydraulic press with a tool grinder at its immediate right; along the wall in the back of the view are various unidentified machine tool attachments and a vertical milling machine. In the background, a machinist is operating a radial drilling machine, to the right of which is a small drill press. To the lower right, another machinist is operating a Pratt & Whitney engine lathe; behind the operator stand a workbench and vertical bandsaw (JPL negative no. 384-10939, 29 July 1975). - Jet Propulsion Laboratory Edwards Facility, Administration & Shops Building, Edwards Air Force Base, Boron, Kern County, CA

  12. Mars Science Laboratory Rover Taking Shape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The rover is about 9 feet wide and 10 feet long.

    Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin.

    JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.

  13. Activities of the Jet Propulsion Laboratory, 1 January - 31 December 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    There are many facets to the Jet Propulsion Laboratory, for JPL is an organization of multiple responsibilities and broad scope, of diverse talents and great enterprise. The Laboratory's philosophy, mission, and goals have been shaped by its ties to the California Institute of Technology (JPL's parent organization) and the National Aeronautics and Space Administration (JPL's principal sponsor). JPL's activities for NASA in planetary, Earth, and space sciences currently account for almost 75 percent of the Laboratory's overall effort. JPL Research activities in the following areas are discussed: (1) deep space exploration; (2) telecommunications systems; (3) Earth observations; (4) advanced technology; (5) defense programs; and (6) energy and technology applications.

  14. Space Images for NASA/JPL

    NASA Technical Reports Server (NTRS)

    Boggs, Karen; Gutheinz, Sandy C.; Watanabe, Susan M.; Oks, Boris; Arca, Jeremy M.; Stanboli, Alice; Peez, Martin; Whatmore, Rebecca; Kang, Minliang; Espinoza, Luis A.

    2010-01-01

    Space Images for NASA/JPL is an Apple iPhone application that allows the general public to access featured images from the Jet Propulsion Laboratory (JPL). A back-end infrastructure stores, tracks, and retrieves space images from the JPL Photojournal Web server, and catalogs the information into a streamlined rating infrastructure.

  15. First Starshade Prototype at JPL

    NASA Image and Video Library

    2016-08-09

    The first prototype starshade developed by NASA's Jet Propulsion Laboratory, shown in technology partner Astro Aerospace/Northrup Grumman's facility in Santa Barbara, California, in 2013. As shown by this 66 foot (20-meter) model, starshades can come in many shapes and sizes. This design shows petals that are more extreme in shape which properly diffracts starlight for smaller telescopes. Each petal is covered in a high-performance plastic film that resembles gold foil. On a starshade ready for launch, the thermal gold foil will only cover the side of the petals facing away from the telescope, with black on the other, so as not to reflect other light sources such as the Earth into its camera. http://photojournal.jpl.nasa.gov/catalog/PIA20906

  16. JPL Administration Building

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. The Administration Building of NASA's Jet Propulsion Laboratory (Building 180) is pictured in January 1965. What appears as a parking lot in this photograph later becomes "The Mall", a landscaped open-air gathering place. A small security control post can be seen at the left of the 1965 image. And Building 167, one of the lab's cafeterias, is on the right. http://photojournal.jpl.nasa.gov/catalog/PIA21121

  17. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, right, and Executive Director of the National Space Council Scott Pace during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  18. JPL-20170427-CASSINf-0002-Cassinis First Dive Between Saturn and Its Rings Video File

    NASA Image and Video Library

    2017-04-27

    After the first-ever dive through the narrow gap between the planet Saturn and its rings, NASA's Cassini spacecraft called home to mission control at NASA’s Jet Propulsion Laboratory in Pasadena, California. See highlights from the scene at JPL on April 26-27, 2017, and some of the first raw images the spacecraft sent back from its closest-ever look at Saturn’s atmosphere.

  19. JPL-20171130-EARTHf-0001-DIY Glacier Modeling with Virtual Earth System Laboratory

    NASA Image and Video Library

    2017-11-30

    Eric Larour, JPL Climate Scientist, explains the NASA research tool "VESL" -- Virtual Earth System Laboratory -- that allows anyone to run their own climate experiment. The user can use a slider to simulate and increase or decrease in the amount of snowfall on a particular glacier then see a video of the results, including the glacier melting's effect on sea level.

  20. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence can be seen with his wife Karen Pence as they toured NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. The vice President was also joined by his daughter Charlotte Pence, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell , UAG Chairman, Admiral (Ret) James Ellis , Executive Director of the National Space Council Scott Pace, JPL Deputy Director Lt. Gen. (Ret) Larry James, and California Institute of Technology President Thomas Rosenbaum. Photo Credit: (NASA/Bill Ingalls)

  1. Multimission Telemetry Visualization (MTV) system: A mission applications project from JPL's Multimedia Communications Laboratory

    NASA Technical Reports Server (NTRS)

    Koeberlein, Ernest, III; Pender, Shaw Exum

    1994-01-01

    This paper describes the Multimission Telemetry Visualization (MTV) data acquisition/distribution system. MTV was developed by JPL's Multimedia Communications Laboratory (MCL) and designed to process and display digital, real-time, science and engineering data from JPL's Mission Control Center. The MTV system can be accessed using UNIX workstations and PC's over common datacom and telecom networks from worldwide locations. It is designed to lower data distribution costs while increasing data analysis functionality by integrating low-cost, off-the-shelf desktop hardware and software. MTV is expected to significantly lower the cost of real-time data display, processing, distribution, and allow for greater spacecraft safety and mission data access.

  2. A new approach for data acquisition at the JPL space simulators

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.

    1992-01-01

    In 1990, a personal computer based data acquisition system was put into service for the Space Simulators and Environmental Test Laboratory at the Jet Propulsion Laboratory (JPL) in Pasadena, California. The new system replaced an outdated minicomputer system which had been in use since 1980. This new data acquisition system was designed and built by JPL for the specific task of acquiring thermal test data in support of space simulation and thermal vacuum testing at JPL. The data acquisition system was designed using powerful personal computers and local-area-network (LAN) technology. Reliability, expandability, and maintainability were some of the most important criteria in the design of the data system and in the selection of hardware and software components. The data acquisition system is used to record both test chamber operational data and thermal data from the unit under test. Tests are conducted in numerous small thermal vacuum chambers and in the large solar simulator and range in size from individual components using only 2 or 3 thermocouples to entire planetary spacecraft requiring in excess of 1200 channels of test data. The system supports several of these tests running concurrently. The previous data system is described along with reasons for its replacement, the types of data acquired, the new data system, and the benefits obtained from the new system including information on tests performed to date.

  3. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, left, meets with JPL Director Michael Watkins during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  4. The JPL Neptune Radiation Model (NMOD)

    NASA Technical Reports Server (NTRS)

    Garrett, Henry; Evans, Robin

    2017-01-01

    The objective of this study is the development of a comprehensive radiation model of the Neptunian environment for JPL mission planning. The ultimate goal is to provide a description of the high-energy electron and proton environments and the magnetic field at Neptune that can be used for engineering design. The JPL Neptune Radiation Model (NMOD) models the high-energy electrons and protons between 0.025 MeV and 5 MeV based on the California Institute of Technology's Cosmic Ray Subsystem and the Applied Physics Laboratory's Low Energy Charged Particle Detector on Voyager 2. As in previous JPL radiation models, the form of the Neptunian model is based on magnetic field coordinates and requires a conversion from spacecraft coordinates to Neptunian-centered magnetic "B-L" coordinates. Two types of magnetic field models have been developed for Neptune: 1) simple "offset, tilted dipoles" (OTD), and 2) a complex, multi-pole expansion model ("O8"). A review of the existing data on Neptune and a search of the NASA Planetary Data System (PDS) were completed to obtain the most current descriptions of the Neptunian high-energy particle environment. These data were fit in terms of the O8 B-L coordinates to develop the electron and proton flux models. The flux predictions of the new model were used to estimate the total ionizing dose (TID) rate along the Neptunian equator, meridional flux contours for the electrons and protons, and for flux and dose comparisons with the other radiation belts in the Solar System.

  5. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, left, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, seated 4th from left, during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President was, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, left, UAG Chairman, Admiral (Ret) James Ellis, Executive Director of the National Space Council Scott Pace, wife of Mike Pence, Karen Pence, daughter of Mike Pence, Charlotte Pence, and JPL Deputy Director Lt. Gen. (Ret) Larry James. Photo Credit: (NASA/Bill Ingalls)

  6. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, right, is presented a plaque by JPL Director Michael Watkins during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. The plaque presents a view of the Mars Science Laboratory rover Curiosity on the surface of Mars. Photo Credit: (NASA/Bill Ingalls)

  7. The NASA/JPL 64-meter-diameter antenna at Goldstone, California: Project report, technical staff, tracking and data acquisition organization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The significant management and technical aspects of the JPL Project to develop and implement a 64-meter-diameter antenna at the Goldstone Deep Space Communications Complex in California, which was the first of the Advanced Antenna Systems of the National Aeronautics and Space Administration/Jet Propulsion Laboratory Deep Space Network are described. The original need foreseen for a large-diameter antenna to accomplish communication and tracking support of NASA's solar system exploration program is reviewed, and the translation of those needs into the technical specification of an appropriate ground station antenna is described. The antenna project is delineated by phases to show the key technical and managerial skills and the technical facility resources involved. There is a brief engineering description of the antenna and its closely related facilities. Some difficult and interesting engineering problems, then at the state-of-the-art level, which were met in the accomplishment of the Project, are described. The key performance characteristics of the antenna, in relation to the original specifications and the methods of their determination, are stated.

  8. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively.

  9. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from left, his wife Karen, and daughter Charlotte are given a tour of NASA's Jet Propulsion Laboratory by JPL Director Michael Watkins, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  10. JPL preferred parts list: Reliable electronic components

    NASA Technical Reports Server (NTRS)

    Covey, R. E.; Scott, W. R.; Hess, L. M.; Steffy, T. G.; Stott, F. R.

    1982-01-01

    The JPL Preferred Parts List was prepared to provide a basis for selection of electronic parts for JPL spacecraft programs. Supporting tests for the listed parts were designed to comply with specific spacecraft environmental requirements. The list tabulates the electronic, magnetic, and electromechanical parts applicable to all JPL electronic equipment wherein reliability is a major concern. The parts listed are revelant to equipment supplied by subcontractors as well as fabricated at the laboratory.

  11. Earth observation photo taken by JPL with the Shuttle Imaging Radar-A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Earth observation photo taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). This image shows a 50 by 100 kilometer (30 by 60 mile) area of the Imperial Valley in Southern California and neighboring Mexico. The checkered patterns represent agricultural fields where different types of crops in different stages of growth are cultivated. The very bright areas are (top left to lower right) the U.S. towns of Brawley, Imperial, El Centro, Calexico and the Mexican city of Mexicali. The bright L-shaped line (upper right) is the All-American water canal.

  12. Archived 1976-1985 JPL Aircraft SAR Data

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Blom, Ronald G.

    2016-01-01

    This report describes archived data from the Jet Propulsion Laboratory (JPL) aircraft radar expeditions in the mid-1970s through the mid-1980s collected by Ron Blom, JPL Radar Geologist. The dataset was collected during Ron's career at JPL from the 1970s through 2015. Synthetic Aperture Radar (SAR) data in the 1970s and 1980s were recorded optically on long strips of film. SAR imagery was produced via an optical, holographic technique that resulted in long strips of film imagery.

  13. The InSight Team at JPL

    NASA Image and Video Library

    2018-01-25

    The InSight Team at NASA's Jet Propulsion Laboratory, JPL, in June 2015. The InSight team is comprised of scientists and engineers from multiple disciplines and is a unique collaboration between countries and organizations around the world. The science team includes co-investigators from the U.S., France, Germany, Austria, Belgium, Canada, Japan, Switzerland and the United Kingdom. https://photojournal.jpl.nasa.gov/catalog/PIA22234

  14. JPL Innovation Foundry

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; McCleese, Daniel

    2012-01-01

    Space science missions are increasingly challenged today: in ambition, by increasingly sophisticated hypotheses tested; in development, by the increasing complexity of advanced technologies; in budgeting, by the decline of flagship-class mission opportunities; in management, by expectations for breakthrough science despite a risk-averse programmatic climate; and in planning, by increasing competition for scarce resources. How are the space-science missions of tomorrow being formulated? The paper describes the JPL Innovation Foundry, created in 2011, to respond to this evolving context. The Foundry integrates methods, tools, and experts that span the mission concept lifecycle. Grounded in JPL's heritage of missions, flight instruments, mission proposals, and concept innovation, the Foundry seeks to provide continuity of support and cost-effective, on-call access to the right domain experts at the right time, as science definition teams and Principal Investigators mature mission ideas from "cocktail napkin" to PDR. The Foundry blends JPL capabilities in proposal development and concurrent engineering, including Team X, with new approaches for open-ended concept exploration in earlier, cost-constrained phases, and with ongoing research and technology projects. It applies complexity and cost models, projectformulation lessons learned, and strategy analyses appropriate to each level of concept maturity. The Foundry is organizationally integrated with JPL formulation program offices; staffed by JPL's line organizations for engineering, science, and costing; and overseen by senior Laboratory leaders to assure experienced coordination and review. Incubation of each concept is tailored depending on its maturity and proposal history, and its highest leverage modeling and analysis needs.

  15. Starshade Deployed at JPL

    NASA Image and Video Library

    2016-08-09

    is image shows a deployed half-scale starshade with four petals at NASA's Jet Propulsion Laboratory, Pasadena, California in 2014. The full-scale of this starshade (not shown) will measure at 111 feet (34 meters). The flower-like petals of the starshade are designed to diffract bright starlight away from telescopes seeking the dim light of exoplanets. The starshade was re-designed from earlier models to allow these petals to furl, or wrap around the spacecraft, for launch into space. Each petal is covered in a high-performance plastic film that resembles gold foil. On a starshade ready for launch, the thermal gold foil will only cover the side of the petals facing away from the telescope, with black on the other, so as not to reflect other light sources such as the Earth into its lens. The starshade is light enough for space and cannot support its own weight on Earth. Is it shown offloaded with counterweights, much like an elevator. Starlight-blocking technologies such as the starshade are being developed to help image exoplanets, with a focus on Earth-sized, habitable worlds. http://photojournal.jpl.nasa.gov/catalog/PIA20909

  16. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence is given instructions on how to drive a rover nicknamed "Scarecrow" by JPL Director Michael Watkins at NASA's Jet Propulsion Laboratory Mars Yard, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)

  17. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 3rd from left, his wife Karen, and their daughter Charlotte meet with JPL Director Michael Watkins, and Mars Curiosity Mission ACE Walt Hoffman, right, during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  18. This photocopy of an engineering drawing shows the floor plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the floor plan of the Liner Lab, including room functions. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex Phase II, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "Liner Laboratory, Floor Plan and Schedules," drawing no. E33/4-2, 26 June 1962. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  19. Temporal Investment Strategy to Enable JPL Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lincoln, William P.; Hua, Hook; Weisbin, Charles R.

    2006-01-01

    The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has the responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future JPL deep space missions are ready as needed; as such he is responsible for the development of a Strategic Plan. As part of the planning effort, he has supported the development of a structured approach to technology prioritization based upon the work of the START (Strategic Assessment of Risk and Technology) team. A major innovation reported here is the addition of a temporal model that supports scheduling of technology development as a function of time. The JPL Strategic Technology Plan divides the required capabilities into 13 strategic themes. The results reported here represent the analysis of an initial seven.

  20. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  1. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  2. Capability Investment Strategy to Enable JPL Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lincoln, William; Merida, Sofia; Adumitroaie, Virgil; Weisbin, Charles R.

    2006-01-01

    The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future missions are ready as needed. The responsibilities include development of a Strategic Plan (Antonsson, E., 2005). As part of the planning effort, a structured approach to technology prioritization, based upon the work of the START (Strategic Assessment of Risk and Technology) (Weisbin, C.R., 2004) team, was developed. The purpose of this paper is to describe this approach and present its current status relative to the JPL technology investment.

  3. NASA/JPL CLIMATE DAY: Middle and High School Students Get the Facts about Global Climate Change

    NASA Astrophysics Data System (ADS)

    Richardson, Annie; Callery, Susan; Srinivasan, Margaret

    2013-04-01

    In 2007, NASA Headquarters requested that Earth Science outreach teams brainstorm new education and public outreach activities that would focus on the topic of global climate change. At the Jet Propulsion Laboratory (JPL), Annie Richardson, outreach lead for the Ocean Surface Topography missions came up with the idea of a "Climate Day", capitalizing on the popular Earth Day name and events held annually throughout the world. JPL Climate Day would be an education and public outreach event whose objectives are to provide the latest scientific facts about global climate change - including the role the ocean plays in it, the contributions that NASA/JPL satellites and scientists make to the body of knowledge on the topic, and what we as individuals can do to promote global sustainability. The primary goal is that participants get this information in a fun and exciting environment, and walk away feeling empowered and capable of confidently engaging in the global climate debate. In March 2008, JPL and its partners held the first Climate Day event. 950 students from seven school districts heard from five scientists; visited exhibits, and participated in hands-on-activities. Pleased with the outcome, we organized JPL Climate Day 2010 at the Pasadena Convention Center in Pasadena, California, reaching more than 1700 students, teachers, and members of the general public over two days. Taking note of this successful model, NASA funded a multi-center, NASA Climate Day proposal in 2010 to expand Climate Day nation-wide. The NASA Climate Day proposal is a three-pronged project consisting of a cadre of Earth Ambassadors selected from among NASA-affiliated informal educators; a "Climate Day Kit" consisting of climate-related electronic resources available to the Earth Ambassadors; and NASA Climate Day events to be held in Earth Ambassador communities across the United States. NASA/JPL continues to host the original Climate Day event and in 2012 held its 4th event, at the Pasadena

  4. Earth observation photo taken by JPL with the Shuttle Imaging Radar-A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Earth observation photo taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). Image of California's coast from Point Concepcion (far left) to Ventura (right). The city of Santa Barbara is visible as a bright region (center). The row of bright spots in the ocean are oil drilling platforms in the Santa Barbara Channel, while the random points of brightness in the channel are vessels. Lakes Cachuma (left) and Casitas (right) are seen as large dark areas. Folded sedimentary rock layers are visible in the Santa Ynez Mountain Range which stretches down the coastline; the stratification terminates at the Santa Ynez fault on the island side of the mountains.

  5. Bioconversion study conducted by JPL

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J.

    1978-01-01

    The Jet Propulsion Laboratory (JPL) of Caltech conducted a study of bioconversion as a means of identifying the role of biomass for meeting the national energy fuel and chemical requirements and the role and means for JPL-Caltech involvement in bioconversion. The bioconversion study included the following categories; biomass sources, chemicals from biomass, thermochemical conversion of biomass to fuels, biological conversion of biomass to fuels and chemicals, and basic bioconversion sciences. A detailed review is included of the bioconversion fields cited with specific conclusions and recommendations given for future research and development and overall biomass system engineering and economic studies.

  6. A Strategy for an Enterprise-Wide Data Management Capability at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Fuhrman, D.

    2000-01-01

    The Jet Propulsion Laboratory (JPL) is a Federally Research and Development Center (FFRDC) operated by the California Institute of Technology that is engaged in the quest for knowledge about the solar system, the universe, and the Earth.

  7. Roll-Off Test at JPL

    NASA Image and Video Library

    2004-01-11

    This still image illustrates what the Mars Exploration Rover Spirit will look like as it rolls off the northeastern side of the lander on Mars. The image was taken from footage of rover testing at JPL In-Situ Instruments Laboratory, or Testbed.

  8. Rover Rehearses Roll-Off at JPL

    NASA Image and Video Library

    2004-01-15

    Footage from the JPL In-Situ Instruments Laboratory, or testbed, shows engineers rehearsing a crucial maneuver called egress in which NASA Mars Exploration Rover Spirit rolls off its lander platform and touches martian soil.

  9. A Rapid Turn-around, Scalable Big Data Processing Capability for the JPL Airborne Snow Observatory (ASO) Mission

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.

    2014-12-01

    The JPL Airborne Snow Observatory (ASO) is an integrated LIDAR and Spectrometer measuring snow depth and rate of snow melt in the Sierra Nevadas, specifically, the Tuolumne River Basin, Sierra Nevada, California above the O'Shaughnessy Dam of the Hetch Hetchy reservoir, and the Uncompahgre Basin, Colorado, amongst other sites. The ASO data was delivered to water resource managers from the California Department of Water Resources in under 24 hours from the time that the Twin Otter aircraft landed in Mammoth Lakes, CA to the time disks were plugged in to the ASO Mobile Compute System (MCS) deployed at the Sierra Nevada Aquatic Research Laboratory (SNARL) near the airport. ASO performed weekly flights and each flight took between 500GB to 1 Terabyte of raw data, which was then processed from level 0 data products all the way to full level 4 maps of Snow Water Equivalent, albedo mosaics, and snow depth from LIDAR. These data were produced by Interactive Data analysis Language (IDL) algorithms which were then unobtrusively and automatically integrated into an Apache OODT and Apache Tika based Big Data processing system. Data movement was both electronic and physical including novel uses of LaCie 1 and 2 TeraByte (TB) data bricks and deployment in rugged terrain. The MCS was controlled remotely from the Jet Propulsion Laboratory, California Institute of Technology (JPL) in Pasadena, California on behalf of the National Aeronautics and Space Administration (NASA). Communication was aided through the use of novel Internet Relay Chat (IRC) command and control mechanisms and through the use of the Notifico open source communication tools. This talk will describe the high powered, and light-weight Big Data processing system that we developed for ASO and its implications more broadly for airborne missions at NASA and throughout the government. The lessons learned from ASO show the potential to have a large impact in the development of Big Data processing systems in the years

  10. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, left, explains to U.S. Vice President Mike Pence, daughter of Mike Pence, Charlotte Pence, and wife of Mike Pence, Karen Pence the progress for the Mars 2020 mission while inside the Spacecraft Assembly Facility (SAF) during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  11. Overview of the Inland California Translational Consortium

    NASA Astrophysics Data System (ADS)

    Malkas, Linda H.

    2017-05-01

    The mission of the Inland California Translational Consortium (ICTC), an independent research consortium comprising a unique hub of regional institutions (City of Hope [COH], California Institute of Technology [Caltech], Jet Propulsion Laboratory [JPL], University of California Riverside [UCR], and Claremont Colleges Keck Graduate Institute [KGI], is to institute a new paradigm within the academic culture to accelerate translation of innovative biomedical discoveries into clinical applications that positively affect human health and life. The ICTC actively supports clinical translational research as well as the implementation and advancement of novel education and training models for the translation of basic discoveries into workable products and practices that preserve and improve human health while training and educating at all levels of the workforce using innovative forward-thinking approaches.

  12. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  13. JPL Testbed Image of Airbag Retraction

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the deflated airbags retracted underneath the lander petal at the JPL In-Situ Instrument Laboratory. Retracting the airbags helps clear the path for the rover to roll off the lander and onto the martian surface.

  14. Natural Satellite Ephemerides at JPL

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert Arthur; Brozovic, Marina

    2015-08-01

    There are currently 176 known natural planetary satellites in the solar system; 150 are officially recognized by the IAU and 26 have IAU provisional designations. We maintain ephemerides for all of the satellites at NASA's Jet Propulsion Laboratory (JPL) and make them available electronically through the On-Line Solar System Data Service known as Horizons(http://ssd.jpl.nasa.gov/horizons) and in the form of generic Spice Kernels (SPK files) from NASA's Navigation and Ancillary Information Facility (http://naif.jpl.nasa.gov/naif). General satellite information such as physical constants and descriptive orbital elements can be found on the JPL Solar System Dynamics Website (http://ssd.jpl.nasa.gov). JPL's ephemerides directly support planetary spacecraft missions both in navigation and science data analysis. They are also used in general scientific investigations of planetary systems. We produce the ephemerides by fitting numerically integrated orbits to observational data. Our model for the satellite dynamics accounts for the gravitational interactions within a planetary system and the external gravitational perturbations from the Sun and planets. We rely on an extensive data set to determine the parameters in our dynamical models. The majority of the observations are visual, photographic, and CCD astrometry acquired from Earthbased observatories worldwide and the Hubble Space Telescope. Additional observations include optical and photoelectric transits, eclipses, occultations, Earthbased radar ranging, spacecraft imaging,and spacecraft radiometric tracking. The latter data provide information on the planet and satellite gravity fields as well as the satellite position at the times of spacecraft close encounters. In this paper we report on the status of the ephemerides and our plan for future development, specifically that in support of NASA's Juno, Cassini, and New Horizons missions to Jupiter, Saturn, and Pluto, respectively.

  15. JPL Technology Development for the Dark Ages Radio Explorer (DARE) Proposal

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; Lazio, J.; Sanchez Barbetty, M.; Sigel, D.; O'Dwyer, I.

    2014-01-01

    In support of the Dark Ages Radio Explorer (DARE) proposal team, the Jet Propulsion Laboratory (JPL) has been investigating several technologies for this mission. The goal of DARE is to measure the sky-integrated spectrum of highly redshifted Hydrogen from the radio-quiet region above the far side of the Moon. The detailed shape of the spectrum in the 40-120 MHz region contains information on the epoch compact object formation and subsequent re-heating of the intergalactic medium. However, the expected Hydrogen signal strength is orders of magnitude weaker than the galactic foreground, and extreme instrumental stability and calibration accuracy will be needed to extract the signal of interest from the stronger foreground signal. JPL has developed a deployable bi-conical dipole antenna and measured its RF performance against a full-size, solid dipole to verify that the deployable concept will not compromise the spectral bandpass of the instrument. In addition, variations in bandpass response as a function of physical temperature of the front-end electronics (active balun and receiver) have been made over a wide temperature range. These data can be used to determine the required level of thermal control on the DARE spacecraft. This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We also acknowledge support from the Lunar University Network for Astrophysical Research (LUNAR). The LUNAR consortium has been funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon via cooperative agreement NNA09DB30A.

  16. Cascade Helps JPL Explore the Solar System

    NASA Technical Reports Server (NTRS)

    Burke, G. R.

    1996-01-01

    At Jet Propulsion Laboratory (JPL), we are involved with the unmanned exploration of the solar system. Unmanned probes observe the planet surfaces using radar and optical cameras to take a variety of measurements.

  17. JPL Big Data Technologies for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; D'Addario, L. R.; De Jong, E. M.; Mattmann, C. A.; Rebbapragada, U. D.; Thompson, D. R.; Wagstaff, K.

    2014-04-01

    During the past three years the Jet Propulsion Laboratory has been working on several technologies to deal with big data challenges facing next-generation radio arrays, among other applications. This program has focused on the following four areas: 1) We are investigating high-level ASIC architectures that reduce power consumption for cross-correlation of data from large interferometer arrays by one to two orders of magnitude. The cost of operations for the Square Kilometre Array (SKA), which may be dominated by the cost of power for data processing, is a serious concern. A large improvement in correlator power efficiency could have a major positive impact. 2) Data-adaptive algorithms (machine learning) for real-time detection and classification of fast transient signals in high volume data streams are being developed and demonstrated. Studies of the dynamic universe, particularly searches for fast (<< 1 second) transient events, require that data be analyzed rapidly and with robust RFI rejection. JPL, in collaboration with the International Center for Radio Astronomy Research in Australia, has developed a fast transient search system for eventual deployment on ASKAP. In addition, a real-time transient detection experiment is now running continuously and commensally on NRAO's Very Long Baseline Array. 3) Scalable frameworks for data archiving, mining, and distribution are being applied to radio astronomy. A set of powerful open-source Object Oriented Data Technology (OODT) tools is now available through Apache. OODT was developed at JPL for Earth science data archives, but it is proving to be useful for radio astronomy, planetary science, health care, Earth climate, and other large-scale archives. 4) We are creating automated, event-driven data visualization tools that can be used to extract information from a wide range of complex data sets. Visualization of complex data can be improved through algorithms that detect events or features of interest and autonomously

  18. Test Waveform Applications for JPL STRS Operating Environment

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.

    2013-01-01

    This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.

  19. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)

  20. Project Bibliographies: Tracking the Expansion of Knowledge Using JPL Project Publications

    ERIC Educational Resources Information Center

    Coppin, Ann

    2016-01-01

    The Jet Propulsion Laboratory (JPL) Library defines a project bibliography as a bibliography of publicly available publications relating to a specific JPL instrument or mission. These bibliographies may be used to share information between distant project team members, as part of the required Education and Public Outreach effort, or as part of…

  1. Mars Science Laboratory's Descent Stage

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of NASA's Mars Science Laboratory, called the descent stage, does its main work during the final few minutes before touchdown on Mars.

    The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground.

    The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  2. Mars Science Laboratory Spacecraft Assembled for Testing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions.

    These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  3. Publications of the JPL Solar Thermal Power Systems Project 1976 Through 1985

    NASA Technical Reports Server (NTRS)

    Panda, P. (Compiler); Gray, V. (Compiler); Marsh, C. (Compiler)

    1985-01-01

    Bibliographical listings are documentation products associated with the Solar Thermal Power Systems Project carried out by the Jet Propulsion Laboratory from 1976 to 1986. Documents are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports (i.e., deliverable documents produced under contract to JPL). Alphabetical listings by titles are used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference; an author index; and a topical index.

  4. Differences in Ultrasonic Vocalizations between Wild and Laboratory California Mice (Peromyscus californicus)

    PubMed Central

    Kalcounis-Rueppell, Matina C.; Petric, Radmila; Briggs, Jessica R.; Carney, Catherine; Marshall, Matthew M.; Willse, John T.; Rueppell, Olav; Ribble, David O.; Crossland, Janet P.

    2010-01-01

    Background Ultrasonic vocalizations (USVs) emitted by muroid rodents, including laboratory mice and rats, are used as phenotypic markers in behavioral assays and biomedical research. Interpretation of these USVs depends on understanding the significance of USV production by rodents in the wild. However, there has never been a study of muroid rodent ultrasound function in the wild and comparisons of USVs produced by wild and laboratory rodents are lacking to date. Here, we report the first comparison of wild and captive rodent USVs recorded from the same species, Peromyscus californicus. Methodology and Principal Findings We used standard ultrasound recording techniques to measure USVs from California mice in the laboratory (Peromyscus Genetic Stock Center, SC, USA) and the wild (Hastings Natural History Reserve, CA, USA). To determine which California mouse in the wild was vocalizing, we used a remote sensing method that used a 12-microphone acoustic localization array coupled with automated radio telemetry of all resident Peromyscus californicus in the area of the acoustic localization array. California mice in the laboratory and the wild produced the same types of USV motifs. However, wild California mice produced USVs that were 2–8 kHz higher in median frequency and significantly more variable in frequency than laboratory California mice. Significance The similarity in overall form of USVs from wild and laboratory California mice demonstrates that production of USVs by captive Peromyscus is not an artifact of captivity. Our study validates the widespread use of USVs in laboratory rodents as behavioral indicators but highlights that particular characteristics of laboratory USVs may not reflect natural conditions. PMID:20368980

  5. Welcome to JPL, 1957

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. This is what greeted visitors to the Jet Propulsion Laboratory in December 1957, before NASA was created and the lab became one of its centers. There is no sign at this location today -- there is just a stairway that runs up the side of the main Administration Building (Building 180). The official lab sign has moved farther south, just as the lab itself has expanded farther south out from the base of the San Gabriel Mountains. http://photojournal.jpl.nasa.gov/catalog/PIA21115

  6. 2. Credit JPL. Photographic copy of photograph, looking northeast at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit JPL. Photographic copy of photograph, looking northeast at unfinished original Test Stand 'C' construction. A portion of the corrugated steel tunnel tube connecting Test Stand 'C' to the first phase of JPL tunnel system construction is visible in the foreground. The steel frame used to support propellant tanks and engine equipment has been erected. The open trap door leads to a chamber inside the Test Stand 'C' base where gaseous nitrogen is distributed via manifolds to Test Stand 'C' control valves. (JPL negative no. 384-1568-A, 19 March 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  7. Proceedings of the 11th JPL Airborne Earth Science Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2002-01-01

    This publication contains the proceedings of the JPL Airborne Earth Science Workshop forum held to report science research and applications results with spectral images measured by the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). These papers were presented at the Jet Propulsion Laboratory from March 5-8, 2001. Electronic versions of these papers may be found at the A VIRIS Web http://popo.jpl.nasa.gov/pub/docs/workshops/aviris.proceedings.html

  8. The NASA-JPL advanced propulsion program

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1994-01-01

    The NASA Advanced Propulsion Concepts (APC) program at the Jet Propulsion Laboratory (JPL) consists of two main areas: The first involves cooperative modeling and research activities between JPL and various universities and industry; the second involves research at universities and industry that is directly supported by JPL. The cooperative research program consists of mission studies, research and development of ion engine technology using C-60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry- supported research includes research (modeling and proof-of-concept experiments) in advanced, long-life electric propulsion, and in fusion propulsion. These propulsion concepts were selected primarily to cover a range of applications from near-term to far-term missions. For example, the long-lived pulsed-xenon thruster research that JPL is supporting at Princeton University addresses the near-term need for efficient, long-life attitude control and station-keeping propulsion for Earth-orbiting spacecraft. The C-60-propellant ion engine has the potential for good efficiency in a relatively low specific impulse (Isp) range (10,000 - 30,000 m/s) that is optimum for relatively fast (less than 100 day) cis-lunar (LEO/GEO/Lunar) missions employing near-term, high-specific mass electric propulsion vehicles. Research and modeling on the C-60-ion engine are currently being performed by JPL (engine demonstration), Caltech (C-60 properties), MIT (plume modeling), and USC (diagnostics). The Li-propellant LFA engine also has good efficiency in the modest Isp range (40,000 - 50,000 m/s) that is optimum for near-to-mid-term megawatt-class solar- and nuclear-electric propulsion vehicles used for Mars missions transporting cargo (in support of a piloted mission). Research and modeling on the Li-LFA engine are currently being performed by JPL (cathode development), Moscow Aviation

  9. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, to the Vice President's left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)

  10. Involving Scientists in the NASA / JPL Solar System Educators Program

    NASA Astrophysics Data System (ADS)

    Brunsell, E.; Hill, J.

    2001-11-01

    The NASA / JPL Solar System Educators Program (SSEP) is a professional development program with the goal of inspiring America's students, creating learning opportunities, and enlightening inquisitive minds by engaging them in the Solar System exploration efforts conducted by the Jet Propulsion Laboratory (JPL). SSEP is a Jet Propulsion Laboratory program managed by Space Explorers, Inc. (Green Bay, WI) and the Virginia Space Grant Consortium (Hampton, VA). The heart of the program is a large nationwide network of highly motivated educators. These Solar System Educators, representing more than 40 states, lead workshops around the country that show teachers how to successfully incorporate NASA materials into their teaching. During FY2001, more than 9500 educators were impacted through nearly 300 workshops conducted in 43 states. Solar System Educators attend annual training institutes at the Jet Propulsion Laboratory during their first two years in the program. All Solar System Educators receive additional online training, materials and support. The JPL missions and programs involved in SSEP include: Cassini Mission to Saturn, Galileo Mission to Jupiter, STARDUST Comet Sample Return Mission, Deep Impact Mission to a Comet, Mars Exploration Program, Outer Planets Program, Deep Space Network, JPL Space and Earth Science Directorate, and the NASA Office of Space Science Solar System Exploration Education and Public Outreach Forum. Scientists can get involved with this program by cooperatively presenting at workshops conducted in their area, acting as a content resource or by actively mentoring Solar System Educators. Additionally, SSEP will expand this year to include other missions and programs related to the Solar System and the Sun.

  11. Protecting Against Faults in JPL Spacecraft

    NASA Technical Reports Server (NTRS)

    Morgan, Paula

    2007-01-01

    A paper discusses techniques for protecting against faults in spacecraft designed and operated by NASA s Jet Propulsion Laboratory (JPL). The paper addresses, more specifically, fault-protection requirements and techniques common to most JPL spacecraft (in contradistinction to unique, mission specific techniques), standard practices in the implementation of these techniques, and fault-protection software architectures. Common requirements include those to protect onboard command, data-processing, and control computers; protect against loss of Earth/spacecraft radio communication; maintain safe temperatures; and recover from power overloads. The paper describes fault-protection techniques as part of a fault-management strategy that also includes functional redundancy, redundant hardware, and autonomous monitoring of (1) the operational and health statuses of spacecraft components, (2) temperatures inside and outside the spacecraft, and (3) allocation of power. The strategy also provides for preprogrammed automated responses to anomalous conditions. In addition, the software running in almost every JPL spacecraft incorporates a general-purpose "Safe Mode" response algorithm that configures the spacecraft in a lower-power state that is safe and predictable, thereby facilitating diagnosis of more complex faults by a team of human experts on Earth.

  12. This photographic copy of an engineering drawing shows floor plans, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photographic copy of an engineering drawing shows floor plans, sections and elevations of Building E-86, with details typical of the steel frame and "Transite" building construction at JPL Edwards Facility. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office: "Casting & Curing, Building E-86, Floor Plan, Elevations & Section," drawing no. E86/6, 25 February 1977. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  13. Credit WCT. Original 2'" x 2'" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-'" x 2-'" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows small autoclave demonstrated by JPL staff member Milton Clay (JPL negative no. JPL-10286AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  14. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (third from left), mission manager and project engineer, Mars Science Laboratory (MSL), Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. From left to right, Watkins is joined by Dwayne Brown, NASA Headquarters public affairs officer; Michael Meyer, lead scientist Mars Exploration Program, NASA Headquarters; Watkins; John Grant, geologist, Smithsonian National Air and Space Museum in Washington; Dawn Sumner, geologist, University of California, Davis and John Grotzinger, MSL project scientist, JPL. Photo Credit: (NASA/Carla Cioffi)

  15. A cognitive operating system (COGNOSYS) for JPL's robot, phase 1 report

    NASA Technical Reports Server (NTRS)

    Mathur, F. P.

    1972-01-01

    The most important software requirement for any robot development is the COGNitive Operating SYStem (COGNOSYS). This report describes the Stanford University Artificial Intelligence Laboratory's hand eye software system from the point of view of developing a cognitive operating system for JPL's robot. In this, the Phase 1 of the JPL robot COGNOSYS task the installation of a SAIL compiler and a FAIL assembler on Caltech's PDP-10 have been accomplished and guidelines have been prepared for the implementation of a Stanford University type hand eye software system on JPL-Caltech's computing facility. The alternatives offered by using RAND-USC's PDP-10 Tenex operating sytem are also considered.

  16. JPL, NASA and the Historical Record: Key Events/Documents in Lunar and Mars Exploration

    NASA Technical Reports Server (NTRS)

    Hooks, Michael Q.

    1999-01-01

    This document represents a presentation about the Jet Propulsion Laboratory (JPL) historical archives in the area of Lunar and Martian Exploration. The JPL archives documents the history of JPL's flight projects, research and development activities and administrative operations. The archives are in a variety of format. The presentation reviews the information available through the JPL archives web site, information available through the Regional Planetary Image Facility web site, and the information on past missions available through the web sites. The presentation also reviews the NASA historical resources at the NASA History Office and the National Archives and Records Administration.

  17. JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  18. Mars 2020 MOXIE Laboratory and Principal Investigator

    NASA Image and Video Library

    2016-07-15

    One investigation on NASA's Mars 2020 rover will extract oxygen from the Martian atmosphere. It is called MOXIE, for Mars Oxygen In-Situ Resource Utilization Experiment. In this image, MOXIE Principal Investigator Michael Hecht, of the Massachusetts Institute of Technology, Cambridge, is in the MOXIE development laboratory at NASA's Jet Propulsion Laboratory, Pasadena, California. Mars' atmosphere is mostly carbon dioxide. Demonstration of the capability for extracting oxygen from it, under Martian environmental conditions, will be a pioneering step toward how humans on Mars will use the Red Planet's natural resources. Oxygen can be used in the rocket http://photojournal.jpl.nasa.gov/catalog/PIA20761

  19. 3. Credit JPL. Photographic copy of photograph, view south into ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit JPL. Photographic copy of photograph, view south into oxidizer tank enclosure and controls on the north side of Test Stand 'C' shortly after the stand's construction in 1957 (oxidizer contents not determined). To the extreme left appear fittings for mounting an engine for tests. Note the robust stainless steel flanges and fittings necessary to contain highly pressurized corrosive chemicals. (JPL negative no. 384-1608-C, 29 August 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  20. JPL Non-NASA Programs

    NASA Technical Reports Server (NTRS)

    Cox, Robert S.

    2006-01-01

    A viewgraph presentation describing JPL's non-NASA Programs is shown. The contents include: 1) JPL/Caltech: National Security Heritage; 2) Organization and Portfolio; 3) Synergistic Areas of Interest; 4) Business Environment; 5) National Space Community; 6) New Business Environment; 7) Technology Transfer Techniques; 8) Innovative Partnership Program (IPP); and 9) JPL's Track Record.

  1. JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  2. Developing the JPL Engineering Processes

    NASA Technical Reports Server (NTRS)

    Linick, Dave; Briggs, Clark

    2004-01-01

    This paper briefly recounts the recent history of process reengineering at the NASA Jet Propulsion Laboratory, with a focus on the engineering processes. The JPL process structure is described and the process development activities of the past several years outlined. The main focus of the paper is on the current process structure, the emphasis on the flight project life cycle, the governance approach that lead to Flight Project Practices, and the remaining effort to capture process knowledge at the detail level of the work group.

  3. A run-time control architecture for the JPL telerobot

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Lokshin, A.; Kreutz, K.; Beahan, J.

    1987-01-01

    An architecture for implementing the process-level decision making for a hierarchically structured telerobot currently being implemented at the Jet Propolusion Laboratory (JPL) is described. Constraints on the architecture design, architecture partitioning concepts, and a detailed description of the existing and proposed implementations are provided.

  4. Planning the future of JPL's management and administrative support systems around an integrated database

    NASA Technical Reports Server (NTRS)

    Ebersole, M. M.

    1983-01-01

    JPL's management and administrative support systems have been developed piece meal and without consistency in design approach over the past twenty years. These systems are now proving to be inadequate to support effective management of tasks and administration of the Laboratory. New approaches are needed. Modern database management technology has the potential for providing the foundation for more effective administrative tools for JPL managers and administrators. Plans for upgrading JPL's management and administrative systems over a six year period evolving around the development of an integrated management and administrative data base are discussed.

  5. California Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wildfires Rage in Southern California     ... Image Large plumes of smoke rising from devastating wildfires burning near Los Angeles and San Diego on Sunday, October 26, 2003, ... at JPL October 26, 2003 - Smoke from wildfires near Los Angeles and San Diego. project:  MISR ...

  6. Parachute Testing for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The team developing the landing system for NASA's Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

    In this image, an engineer is dwarfed by the parachute, which holds more air than a 280-square-meter (3,000-square-foot) house and is designed to survive loads in excess of 36,000 kilograms (80,000 pounds).

    The parachute, built by Pioneer Aerospace, South Windsor, Connecticut, has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 17 meters (55 feet). It is the largest disk-gap-band parachute ever built and is shown here inflated in the test section with only about 3.8 meters (12.5 feet) of clearance to both the floor and ceiling.

    The wind tunnel, which is 24 meters (80 feet) tall and 37 meters (120 feet) wide and big enough to house a Boeing 737, is part of the National Full-Scale Aerodynamics Complex, operated by the U.S. Air Force, Arnold Engineering Development Center.

    NASA's Jet Propulsion Laboratory, Pasadena, California, is building and testing the Mars Science Laboratory spacecraft for launch in 2009. The mission will land a roving analytical laboratory on the surface of Mars in 2010. JPL is a division of the California Institute of Technology.

  7. 8. Credit JPL. Photographic copy of photograph, view west down ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Credit JPL. Photographic copy of photograph, view west down from Test Stand 'A' tower across newly installed tunnel tube to corner of Building 4201/E-2, Test Stand 'A' Workshop (demolished in 1985). Note the wooden retaining structure erected in the foreground to retain earth once the tunnel trench is backfilled (this retaining wall remained in 1994). Note also the propellant control piping on the Test Stand 'A' platform in the immediate foreground. (JPL negative no. 384-1547-C, 6 February 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  8. This photocopy of an engineering drawing shows the BakerPerkins 150gallon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the Baker-Perkins 150-gallon mixer installation in the building. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "150 Gallon Mixer System Bldg. E-34, Plans, Sections & Details," drawing no. E34/6-0, 10 July 1963. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA

  9. NASA Damage Map Aids Northern California Wildfire Response

    NASA Image and Video Library

    2017-10-18

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, and Caltech, also in Pasadena, created this Damage Proxy Map depicting areas in Northern California that are likely damaged (shown by red and yellow pixels) as a result of the region's current outbreak of wildfires. The map is derived from synthetic aperture radar (SAR) images from the Copernicus Sentinel-1 satellites, operated by the European Space Agency (ESA). The images were taken before (Sep. 27, 2017, 7 p.m. PDT) and after (Oct. 9, 2017, 7 p.m. PDT) the onset of the fires. The map has been provided to various agencies to aid in the wildfire response. The map covers the area within the large red polygon, and measures 155 by 106 miles (250 by 170 kilometers). The illustrative figure from the map depicted in the inset shows damage in the city of Santa Rosa. Each pixel in the Damage Proxy Map measures about 98 feet (30 meters) across. The color variation from yellow to red indicates increasingly more significant ground surface change. Preliminary validation was done by comparing to optical satellite imagery from DigitalGlobe. This Damage Proxy Map should be used as guidance to identify damaged areas, and may be less reliable over vegetated areas. Sentinel-1 data were accessed through the Copernicus Open Access Hub. The image contains modified Copernicus Sentinel data (2017), processed by ESA and analyzed by the NASA-JPL/Caltech ARIA team. This research was carried out at JPL under a contract with NASA. https://photojournal.jpl.nasa.gov/catalog/PIA22048

  10. Publications of the JPL Solar Thermal Power Systems Project, 1976 to 1983

    NASA Technical Reports Server (NTRS)

    Gray, V. (Compiler); Marsh, C. (Compiler); Panda, P. (Compiler)

    1984-01-01

    The bibliographical listings in this publication are documentation products associated with the solar thermal power system project carried out by the Jet Propulsion Laboratory from 1976 to 1983. Documents listed are categorized as conference and journal papers, JPL external reports, JPL internal reports, or contractor reports. Alphabetical listings by title were used in the bibliography itself to facilitate location of the document by subject. Two indexes are included for ease of reference: one, an author index; the other, a topical index.

  11. 7. This photographic copy of an engineering drawing displays the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. This photographic copy of an engineering drawing displays the building's floor plan in its 1995 arrangement, with rooms designated. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office, "Addition to Weigh & Control Bldg. E-35, Demolition, Floor and Roof Plans," drawing no. E35/3-0, October 5, 1983. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  12. Calling Home in 2003: JPL Roadmap to Standardized TT&C Customer Support

    NASA Technical Reports Server (NTRS)

    Kurtik, S.; Berner, J.; Levesque, M.

    2000-01-01

    The telecommunications and Mission Operations Directorate (TMOD at the Jet Propulsion Laboratory (JPL) provides tracking, telemetry and command (TT&C) services for execution of a broad spectrum of deep space missions.

  13. 4. Credit WCT. Original 2'" x 21" color negative is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit WCT. Original 2-'" x 2-1" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This view shows the control room in use, with JPL employees Ron Wright, Harold Anderson, and John Morrow presiding. (JPL negative no. JPL-10288A, 27 January 1989.) - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  14. Mars Express Interplanetary Navigation from Launch to Mars Orbit Insertion: The JPL Experience

    NASA Technical Reports Server (NTRS)

    Han, Dongsuk; Highsmith, Dolan; Jah, Moriba; Craig, Diane; Border, James; Kroger, Peter

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) played a significant role in supporting the safe arrival of the European Space Agency (ESA) Mars Express (MEX) orbiter to Mars on 25 December 2003. MEX mission is an international collaboration between member nations of the ESA and NASA, where NASA is supporting partner. JPL's involvement included providing commanding and tracking service with JPL's Deep Space Network (DSN), in addition to navigation assurance. The collaborative navigation effort between European Space Operations Centre (ESOC) and JPL is the first since ESA's last deep space mission, Giotto, and began many years before the MEX launch. This paper discusses the navigational experience during the cruise and final approach phase of the mission from JPL's perspective. Topics include technical challenges such as orbit determination using non-DSN tracking data and media calibrations, and modeling of spacecraft physical properties for accurate representation of non-gravitational dynamics. Also mentioned in this paper is preparation and usage of DSN Delta Differential Oneway Range ((Delta)DOR) measurements, a key element to the accuracy of the orbit determination.

  15. Retrieving Ice Basal Motion Using the Hydrologically Coupled JPL/UCI Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Khakbaz, B.; Morlighem, M.; Seroussi, H. L.; Larour, E. Y.

    2011-12-01

    The study of basal sliding in ice sheets requires coupling ice-flow models with subglacial water flow. In fact, subglacial hydrology models can be used to model basal water-pressure explicitly and to generate basal sliding velocities. This study addresses the addition of a thin-film-based subglacial hydrologic module to the Ice Sheet System Model (ISSM) developed by JPL in collaboration with the University of California Irvine (UCI). The subglacial hydrology model follows the study of J. Johnson (2002) who assumed a non-arborscent distributed drainage system in the form of a thin film beneath ice sheets. The differential equation that arises from conservation of mass in the water system is solved numerically with the finite element method in order to obtain the spatial distribution of basal water over the study domain. The resulting sheet water thickness is then used to model the basal water-pressure and subsequently the basal sliding velocity. In this study, an introduction and preliminary results of the subglacial water flow and basal sliding velocity will be presented for the Pine Island Glacier west Antarctica.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.

  16. Descent Stage of Mars Science Laboratory During Assembly

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from early October 2008 shows personnel working on the descent stage of NASA's Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground. The larger three of the orange spheres in the descent stage are fuel tanks. The smaller two are tanks for pressurant gas used for pushing the fuel to the rocket engines.

    JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  17. Photographic copy of photograph, view looking northeast of JPL Edwards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, view looking northeast of JPL Edwards Test Station as it looked in 1945. To the immediate right of the Test Stand 'A' tower stands a concrete monitor building or blockhouse (now Building 4203/E-4) for observation and control of tests. Other frame buildings housed workshop and administrative functions. Long structure behind automobiles was designated 4207/E-8 and was used for instrument repair and storage, a cafeteria, machine and welding shops. To the immediate south of 4207/E-8 were 4200/E-1 (used as an office and photographic laboratory) and 4205/E-6 (guardhouse, with fire extinguisher mounted on it). To the northeast of 4205/E-6 was 4204/E-5 (a propellant storage dock, with shed roof). Buildings 4200/E-1, 4205/E-6 and 4207/E-8 were demolished in 1983. Note the absence of trees. (JPL negative no. 383-1297, July 1946) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  18. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 5th from left, joined by his wife Karen Pence, left, and daughter Charlotte Pence. 2nd from left, view the Vehicle System Test Bed (VSTB) rover in the Mars Yard during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. NASA Mars Exploration Manager Li Fuk, 2nd from left, JPL Director Michael Watkins, Mars Curiosity Engineering Operations Team Chief Megan Lin, and MSL Engineer Sean McGill, right, helped explain to the Vice President and his family how they use these test rovers. Photo Credit: (NASA/Bill Ingalls)

  19. Credit WCT. Original 21/4"x21/4" color negative is housed in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff member Leonard "Dutch" Sebring loads propellant grain into tube for a BATES (Ballistic And Test Evaluation System) test (JPL negative no. JPL-10279BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Weigh & Test Preparation Building, Edwards Air Force Base, Boron, Kern County, CA

  20. 6. Credit WCT. Original 21" x 2Y" color negative is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Credit WCT. Original 2-1" x 2-Y" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff members Harold Anderson and John Morrow weigh out small amounts of an undetermined substance according to a solid propellant formula (JPL negative no. JPL-10277AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  1. Atlas of Absorption Lines from 0 to 17900 cm-1

    DTIC Science & Technology

    1987-09-01

    Hampton, Virginia H. M. Pickett Jet Propulsion Laboratory Pasadena, California D. J. Richardson and J. S. Namkung ST Systems Corporation (STX...2 NH3 HN03 OH HF HCi HBr HI CIO OCS H2CO H0C1 N2 HCN CH3C! H202 C2H2 C2H6 PH3 Oj(JPL) +- 0(3P)(JPL) H02(JPL) Solor CO...Hanscom AFB, Massachusetts. H. M. Pickett: Jet Propulsion Laboratory, Pasadena, California. D. J. Richardson and J. S. Namkung: ST Systems Corporation

  2. JPL Innovation Foundry

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; McCleese, Daniel J.

    2012-01-01

    NASA supports the community of mission principal investigators by helping them ideate, mature, and propose concepts for new missions. As NASA's Federally Funded Research and Development Center (FFRDC), JPL is a primary resource for providing this service. The environmental context for the formulation lifecycle evolves continuously. Contemporary trends include: more competitors; more-complex mission ideas; scarcer formulation resources; and higher standards for technical evaluation. Derived requirements for formulation support include: stable, clear, reliable methods tailored for each stage of the formulation lifecycle; on-demand access to standout technical and programmatic subject-matter experts; optimized, outfitted facilities; smart access to learning embodied in a vast oeuvre of prior formulation work; hands-on method coaching. JPL has retooled its provision of integrated formulation lifecycle support to PIs, teams, and program offices in response to this need. This mission formulation enterprise is the JPL Innovation Foundry.

  3. The software product assurance metrics study: JPL's software systems quality and productivity

    NASA Technical Reports Server (NTRS)

    Bush, Marilyn W.

    1989-01-01

    The findings are reported of the Jet Propulsion Laboratory (JPL)/Software Product Assurance (SPA) Metrics Study, conducted as part of a larger JPL effort to improve software quality and productivity. Until recently, no comprehensive data had been assembled on how JPL manages and develops software-intensive systems. The first objective was to collect data on software development from as many projects and for as many years as possible. Results from five projects are discussed. These results reflect 15 years of JPL software development, representing over 100 data points (systems and subsystems), over a third of a billion dollars, over four million lines of code and 28,000 person months. Analysis of this data provides a benchmark for gauging the effectiveness of past, present and future software development work. In addition, the study is meant to encourage projects to record existing metrics data and to gather future data. The SPA long term goal is to integrate the collection of historical data and ongoing project data with future project estimations.

  4. 4. This photographic copy of an engineering drawing shows the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. This photographic copy of an engineering drawing shows the plan and details for Test Stand "G" and the placement of the vibrator. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: "Vibration Test Facility-Bldg E-72, Floor & Roof Plans, Sections, Details & Door Schedule," drawing no. E72/2-5, 21 May 1964. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA

  5. The JPL Uranian Radiation Model (UMOD)

    NASA Technical Reports Server (NTRS)

    Garrett, Henry; Martinez-Sierra, Luz Maria; Evans, Robin

    2015-01-01

    The objective of this study is the development of a comprehensive radiation model (UMOD) of the Uranian environment for JPL mission planning. The ultimate goal is to provide a description of the high energy electron and proton environments and the magnetic field at Uranus that can be used for engineering design. Currently no model exists at JPL. A preliminary electron radiation model employing Voyager 2 data was developed by Selesnick and Stone in 1991. The JPL Uranian Radiation Model extends that analysis, which modeled electrons between 0.7 MeV and 2.5 MeV based on the Voyager Cosmic Ray Subsystem electron telescope, down to an energy of 0.022 MeV for electrons and from 0.028 MeV to 3.5 MeV for protons. These latter energy ranges are based on measurements by the Applied Physics Laboratory Low Energy Charged Particle Detector on Voyager 2. As in previous JPL radiation models, the form of the Uranian model is based on magnetic field coordinates and requires a conversion from spacecraft coordinates to Uranian-centered magnetic "B-L" coordinates. Two magnetic field models have been developed for Uranus: 1) a simple "offset, tilted dipole" (OTD), and 2) a complex, multi-pole expansion model ("Q3"). A review of the existing data on Uranus and a search of the NASA Planetary Data System (PDS) were completed to obtain the latest, up to date descriptions of the Uranian high energy particle environment. These data were fit in terms of the Q3 B-L coordinates to extend and update the original Selesnick and Stone electron model in energy and to develop the companion proton flux model. The flux predictions of the new model were used to estimate the total ionizing dose for the Voyager 2 flyby, and a movie illustrating the complex radiation belt variations was produced to document the uses of the model for planning purposes.

  6. Summary of JPL Activities

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul J.; Surampudi, Subbarao

    2000-01-01

    A viewgraph presentation outlines the Jet Propulsion Laboratory (JPL) flight programs, including past, present and future missions targeting Solar System exploration. Details, including launch dates and batteries used, are given for Deep Space 1 (Asteroid Rendezvous), Deep Space 2 (Mars Penetrator), Mars Global Surveyor, Mars Surveyor '98, Stardust, Europa Orbiter, Mars Surveyor 2001, Mars 2003 Lander and Rover, and Genesis (Solar Dust Return). Earth science projects are also outlined: Active Cavity Radiometer Irradiance Monitor (ARIMSAT), Ocean Topography Experiment (TOPEX/Poseidon), Jason-1 (TOPEX follow-on), and QuikScat/Seawinds (Ocean Winds Tracking). The status, background, and plans are given for several batteries: (1) 2.5 inch common pressure vessel (CPV), (2) 3.5 inch CPV, (3) Ni-H2, and (4) Li-Ion.

  7. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  8. Advanced Technology: It's Available at JPL

    NASA Technical Reports Server (NTRS)

    Edberg, James R.

    1996-01-01

    Non-NASA activities at JPL are the province of the JPL Technology and Applications Programs Directorate, and include working relationships with industry, academia, and other government agencies. Within this Directorate, the JPL Undersea Technology Program endeavors to apply and transfer these capabilities to the area of underwater research and operations. Of particular interest may be a Reversed Electron Attachment Detector (READ). It is a man-portable device capabable of unambiguous detection of unique chemical signatures associated with mines. In addition, there are other JPL technologies which merit investigation for marine applications.

  9. Results from the Galileo Laser Uplink: A JPL Demonstration of Deep-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Lesh, J. R.

    1993-01-01

    The successful completion of the Galileo Optical Experiment (GOPEX), represented the accomplishment of a significant milestone in JPL's optical communication plan. The experiment demonstrated the first transmission of a narrow laser beam to a deep-space vehicle. Laser pulses were beamed to the Galileo spacecraft by Earth-based transmitters at the Table Mountain Facility (TMF), California, and Starfire Optical Range (SOR), New Mexico. The experiment took place over an eight-day period (December 9 through December 16, 1992) as Galileo receded from Earth on its way to Jupiter, and covered ranges from 1 to 6 million kilometers (15 times the Earth-Moon distance), the laser uplink from TMF covered the longest known range for laser beam transmission and detection. This demonstration is the latest in a series of accomplishments by JPL in the development of deep-space optical communications technology.

  10. Comparisons and Evaluations of JPL Ephemerides

    NASA Astrophysics Data System (ADS)

    Deng, X. M.; Fan, M.; Xie, Y.

    2013-11-01

    Since NASA's JPL (Jet Propulsion Laboratory) Ephemerides are widely used in deep space navigation and planetary exploration, it is necessary to compare their details, including the coverage, realization and maintenance. Focusing on Chinese Venus and Mars missions in the future, we take DE405, DE421, and DE423 as samples to analyze their dynamical models and observation data. By evaluating their accuracies and performances, we investigate their effects on an orbiter around Venus and Mars, and recommend that it is better to use DE423 for Venus missions and DE421/DE423 for Mars missions.

  11. Structural analyses of the JPL Mars Pathfinder impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwinn, K.W.

    1994-12-31

    The purpose of this paper is to demonstrate that finite element analysis can be used in the design process for high performance fabric structures. These structures exhibit extreme geometric nonlinearity; specifically, the contact and interaction of fabric surfaces with the large deformation which necessarily results from membrane structures introduces great complexity to analyses of this type. All of these features are demonstrated here in the analysis of the Jet Propulsion Laboratory (JPL) Mars Pathfinder impact onto Mars. This lander system uses airbags to envelope the lander experiment package, protecting it with large deformation upon contact. Results from the analysis showmore » the stress in the fabric airbags, forces in the internal tendon support system, forces in the latches and hinges which allow the lander to deploy after impact, and deceleration of the lander components. All of these results provide the JPL engineers with design guidance for the success of this novel lander system.« less

  12. Structural analyses of the JPL Mars Pathfinder impact

    NASA Astrophysics Data System (ADS)

    Gwinn, Kenneth W.

    The purpose of this paper is to demonstrate that finite element analysis can be used in the design process for high performance fabric structures. These structures exhibit extreme geometric nonlinearity; specifically, the contact and interaction of fabric surfaces with the large deformation which necessarily results from membrane structures introduces great complexity to analyses of this type. All of these features are demonstrated here in the analysis of the Jet Propulsion Laboratory (JPL) Mars Pathfinder impact onto Mars. This lander system uses airbags to envelope the lander experiment package, protecting it with large deformation upon contact. Results from the analysis show the stress in the fabric airbags, forces in the internal tendon support system, forces in the latches and hinges which allow the lander to deploy after impact, and deceleration of the lander components. All of these results provide the JPL engineers with design guidance for the success of this novel lander system.

  13. JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) data availability, version 1-94

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and integrated water vapor. The JPL PO.DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and is the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  14. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  15. Telerobot task planning and reasoning: Introduction to JPL artificial intelligence research

    NASA Technical Reports Server (NTRS)

    Atkinson, D. J.

    1987-01-01

    A view of the capabilities and areas of artificial intelligence research which are required for autonomous space telerobotics extending through the year 2000 is given. In the coming years, JPL will be conducting directed research to achieve these capabilities, as well as drawing heavily on collaborative efforts conducted with other research laboratories.

  16. Data communication between data terminal equipment and the JPL administrative data base management system

    NASA Technical Reports Server (NTRS)

    Iverson, R. W.

    1984-01-01

    Approaches to enabling an installed base of mixed data terminal equipment to access a data base management system designed to work with a specific terminal are discussed. The approach taken by the Jet Propulsion Laboratory is described. Background information on the Jet Propulsion Laboratory (JPL), its organization and a description of the Administrative Data Base Management System is included.

  17. Implementing the President's Vision: JPL and NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Sander, Michael J.

    2006-01-01

    As part of the NASA team the Jet Propulsion Laboratory is involved in the Exploration Systems Mission Directorate (ESMD) work to implement the President's Vision for Space exploration. In this slide presentation the roles that are assigned to the various NASA centers to implement the vision are reviewed. The plan for JPL is to use the Constellation program to advance the combination of science an Constellation program objectives. JPL's current participation is to contribute systems engineering support, Command, Control, Computing and Information (C3I) architecture, Crew Exploration Vehicle, (CEV) Thermal Protection System (TPS) project support/CEV landing assist support, Ground support systems support at JSC and KSC, Exploration Communication and Navigation System (ECANS), Flight prototypes for cabin atmosphere instruments

  18. JPL-20170811-CASSINf-0001a-A World Unveiled Cassini at TItan

    NASA Image and Video Library

    2017-08-11

    A look at the Cassini-Huygens mission's discoveries at Saturn's moon Titan and a description of how flybys of Titan allowed the mission to change to new orbits repeatedly without wasting fuel. Featuring Linda Spilker, Cassini Project Scientist, JPL; Jonathan Lunine, Cassini Titan Scientist, Cornell University; and Elizabeth "Zibi" Turtle, Cassini Imaging Team, John Hopkins Applied Physics Laboratory.

  19. Credit WCT. Original 2Y4" x 2Y4" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-Y4" x 2-Y4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff members Harold Anderson and John Morrow cast grain from the 1-gallon BakerPerkins model 4-PU mixer. A 1-pint Baker-Perkins model 2-PX mixer stands to the left in this view (JPL negative no. JPL-10295BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Mixer & Casting Building, Edwards Air Force Base, Boron, Kern County, CA

  20. Credit WCT. Original 21/4"x21/4" color negative is housed in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. At one time, Building 4285/E-86 accommodated tensile testing of propellant samples. This view shows a tensile strength tester set up for propellant tests, under the supervision of JPL staff member Milton Clay (JPL negative no. JPL-10291AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  1. JPL Contamination Control Engineering

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  2. JPL noise control program

    NASA Technical Reports Server (NTRS)

    Klascius, A. F.

    1975-01-01

    Exposures of personnel to noise pollution at the Jet Propulsion Laboratories, Pasadena, California, were investigated. As a result of the study several protective measures were taken: (1) employees exposed to noise hazards were required to wear ear-protection devices, (2) mufflers and air diversion devices were installed around the wind tunnels; and (3) all personnel that are required to wear ear protection are given annual audimeter tests.

  3. Pension fund activities at Department laboratories managed by the University of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-18

    The Department of Energy`s (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department`s interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department`s contract administration of its interest in those pension plans.

  4. Credit WCT. This view is an enlargement of an original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. This view is an enlargement of an original 2-A" x 2-Y4" color negative housed in the JPL Photography Laboratory, Pasadena, California. The doors of the conditioning chamber have been opened to reveal the arrangement of wrapped motors ready for treatment (JPL negative no. JPL-10281BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA

  5. GPS Position Time Series @ JPL

    NASA Technical Reports Server (NTRS)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  6. Galileo Press Conference from JPL. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This two-tape Jet Propulsion Laboratory (JPL) video production presents a Dec. 8, 1992 press conference held at JPL to discuss the final Galileo spacecraft encounter with Earth before beginning its journey to Jupiter. The main theme of the conference was centered on the significance of the 2nd and final Earth/Moon flyby as being the spacecraft's last planetary encounter in the solar system before reaching Jupiter, as well as final flight preparations prior to its final journey. Each person of the five member panel was introduced by Robert MacMillan (JPL Public Information Mgr.) before giving brief presentations including slides and viewgraphs covering their area of expertise regarding Galileo's current status and future plans. After the presentations, the media was given an opportunity to ask questions of the panel regarding the mission. Mr. Wesley Huntress (Dir. of Solar System Exploration (NASA)), William J. ONeill (Galileo Project Manager), Neal E. Ausman, Jr. (Galileo Mission Director), Dr. Torrence V. Johnson (Galileo Project Scientist) and Dr. Ronald Greeley (Member, Imaging Team, Colorado St. Univ.) made up the panel and discussed topics including: Galileo's interplanetary trajectory; project status and performance review; instrument calibration activities; mission timelines; lunar observation and imaging; and general lunar science. Also included in the last three minutes of the video are simulations and images of the 2nd Galileo/Moon encounter.

  7. Energy efficiency in California laboratory-type facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, E.; Bell, G.; Sartor, D.

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in themore » overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.« less

  8. NASA Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1999-01-01

    Managed for NASA by the California Institute of Technology, the Jet Propulsion Laboratory is the lead U.S. center for robotic exploration of the solar system. JPL spacecraft have visited all known planets except Pluto (a Pluto mission is currently under study). In addition to its work for NASA, JPL conducts tasks for a variety of other federal agencies. In addition, JPL manages the worldwide Deep Space Network, which communicates with spacecraft and conducts scientific investigations from its complexes in California's Mojave Desert near Goldstone; near Madrid, Spain; and near Canberra, Australia. JPL employs about 6000 people.

  9. The JPL optical communications telescope laboratory (OCTL) test bed for the future optical Deep Space Network

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Page, N.; Wu, J.; Srinivasan, M.

    2003-01-01

    Relative to RF, the lower power-consumption and lower mass of high bandwidth optical telecommunications make this technology extremely attractive for returning data from future NASA/JPL deep space probes.

  10. Credit WCT. Original 21" x 2A" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1" x 2-A" color negative is housed in the JPL Photography Laboratory, Pasadena, California. The mixing pot of the 150-gallon (Size 16-PVM) Baker-Perkins vertical mixer appears in its lowered position, exposing the mixer paddles. JPL employees Harold "Andy" Anderson and Ron Wright in protective clothing demonstrate how to scrape mixed propellant from mixer blades (JPL negative JPL10284BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA

  11. This overview displays the concentration of JPL solid propellant production ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This overview displays the concentration of JPL solid propellant production buildings as seen looking directly north (6 degrees) from the roof of the Administration Building (4231-E-32). The structures closest to the camera contain the equipment for weighing, grinding, mixing, and casting solid propellant grain for motors. Structures in the distance generally house curing or inspection activities. - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  12. Dairy cattle abortion in California: evaluation of diagnostic laboratory data.

    PubMed

    Jamaluddin, A A; Case, J T; Hird, D W; Blanchard, P C; Peauroi, J R; Anderson, M L

    1996-04-01

    A descriptive study was undertaken on 595 dairy cattle abortion submissions to the California Veterinary Diagnostic Laboratory System from July 1, 1987, to December 31, 1989, to determine the etiologic nature and distribution (seasonal and geographical) of dairy cattle abortion in California as reflected by laboratory submissions. Univariate analysis was performed to characterize abortion-related submissions by farm and laboratory variables, and logistic regression analysis was performed to determine factors that may influence success of abortion diagnosis in the laboratory. The proportions of dairies that submitted abortion-related specimens from northern, central, and southern milksheds during the 2.5-year period were 20.3%, 15.7%, and 13.1%, respectively, and 60% of submissions were from medium-sized (200-999 cows) dairies. Submissions consisted of fetus (58%), placenta (2%), fetus and placenta (12%), and fetus, placenta, and maternal blood (0.84%); fetal tissues and uterine fluid constituted the rest. An apparent pattern in abortion submissions was indicated by a peak in submissions during the winter and summer of 1988 and 1989. Infectious agents were associated with 37.1% of submissions; noninfectious causes, 5.5%, and undetermined etiology, 57.3%. Bacterial abortion accounted for 18% of etiologic diagnoses; protozoal, 14.6%; viral, 3.2%; and fungal, 1.3%. Submissions comprising fetus, placenta, maternal blood, or their combinations were associated with a higher likelihood of definitive diagnosis for abortion than tissues, as were fresher specimens and submissions associated with the second trimester of fetal gestation.

  13. JPL/USC GAIM: Using COSMIC Occultations in a Real-Time Global Ionospheric Data Assimilation Model

    NASA Astrophysics Data System (ADS)

    Mandrake, L.; Komjathy, A.; Wilson, B. D.; Pi, X.; Hajj, G.; Iijima, B.; Wang, C.

    2006-12-01

    We are in the midst of a revolution in ionospheric remote sensing driven by the illuminating powers of ground and space-based GPS receivers, new UV remote sensing satellites, and the advent of data assimilation techniques for space weather. In particular, the COSMIC 6-satellite constellation launched in April 2006. COSMIC will provide unprecedented global coverage of GPS occultations (~5000 per day), each of which yields electron density information with unprecedented ~1 km vertical resolution. Calibrated measurements of ionospheric delay (total electron content or TEC) suitable for input into assimilation models will be available in near real-time (NRT) from the COSMIC project with a latency of 30 to 120 minutes. Similarly, NRT TEC data are available from two worldwide NRT networks of ground GPS receivers (~75 5-minute sites and ~125 more hourly sites, operated by JPL and others). The combined NRT ground and space-based GPS datasets provide a new opportunity to more accurately specify the 3-dimensional ionospheric density with a time lag of only 15 to 120 minutes. With the addition of the vertically-resolved NRT occultation data, the retrieved profile shapes will model the hour-to-hour ionospheric "weather" much more accurately. The University of Southern California (USC) and the Jet Propulsion Laboratory (JPL) have jointly developed a real-time Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for DoD customers and NASA flight projects. JPL/USC GAIM is a physics- based 3D data assimilation model that uses both 4DVAR and Kalman filter techniques to solve for the ion & electron density state and key drivers such as equatorial electrodynamics, neutral winds, and production terms. Daily (delayed) GAIM runs can accept as input ground GPS TEC data from 1000+ sites, occultation links from CHAMP, SAC-C, and the COSMIC constellation, UV limb and nadir scans from the TIMED and DMSP satellites

  14. Earth observation photo taken by JPL with the Shuttle Imaging Radar-A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Earth observation photo taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). This image shows the Los Angeles basin. The area's freeways are visible as dark lines. The Los Angles harbor breakwater off Long Beach is seen as a bright line. Vessels in the harbor show as bright points.

  15. 2. Credit WCT. Original 21/4"x22/4" color negative is housed in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit WCT. Original 2-1/4"x2-2/4" color negative is housed in the JPL Archives, Pasadena, California. This view depicts the interior of Test Stand "G" with its "Vibration System consisting of a MB-C210E Electrodynamic Exciter having a maximum sinusoidal force output of 28,000 lbs. and a noload-peak acceleration sine wave of 80 gs." (Quotation based on JPL photo caption in notebook The Jet Propulsion Laboratory Edwards Facility, Jet Propulsion Laboratory, California Institute of Technology, no date; "80 gs" means 80 times the force of gravity.) This machine could be controlled to deliver a wide variety of perturbations (JPL negative no. 344-3802B, 27 February 1981). - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA

  16. Jet Propulsion Laboratory: Annual Report 2007

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Many milestones are celebrated in the business of space exploration, but one of them that arrived this year has particular meaning for us. Half a century ago, on January 31, 1958, the Jet Propulsion Laboratory was responsible for creating America's first satellite, Explorer 1, and joined with the Army to launch it into orbit. That makes 2007 the 50th year we have been sending robotic craft from Earth to explore space. No other event before or since has had such a profound effect on JPL's basic identity, setting it on the path to become the world's leader in robotic solar system exploration. It is not lost on historians that Explorer 1, besides being America's first satellite, was also the first spacecraft from any country to deliver scientific results in its case, the discovery of the Van Allen Radiation Belts that surround Earth. Science, of course, has been the prime motivator for all the dozens of missions that we have lofted into space in the half-century since then. JPL has sent spacecraft to every planet in the solar system from Mercury to Neptune, some of them very sophisticated machines. But in one way or another, they all owe their heritage to the 31-pound bullet-shaped probe JPL shot into space in 1958. Although we have ranged far and wide across the solar system, we have a very strong contingent of satellites and instruments dedicated, like Explorer, to the environment of our home planet. JPL missions have been providing much of the data to establish the facts of global warming - most especially, the melting of ice sheets in Greenland and Antarctica. During the past year, JPL and our parent organization, the California Institute of Technology, have created a task force to focus the special capabilities of the Laboratory and campus on ways to better understand the physics of global change. While Earth is a chaotic and dynamic system capable of large natural variations, evidence is mounting that human activities are playing an increasingly important role

  17. Supreme Court Hears Privacy Case Between NASA and Jet Propulsion Laboratory Scientists

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    After NASA put into practice the 2004 Homeland Security Presidential Directive-12, known as HSPD-12, Dennis Byrnes talked to then-NASA administrator Michael Griffin. Byrnes recalls that Griffin told him in 2007 that if he didn’t like the agency's implementation of HSPD-12, he should go to court. That's exactly what Byrnes, an employee of the California Institute of Technology (Caltech) working as a senior engineer at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., did. Concerned about prying and open-ended background investigations of federal contractors through NASA's implementation of HSPD-12, he, along with lead plaintiff Robert Nelson and 26 other Caltech employees working at JPL, sued NASA. Following several lower court decisions, including an injunction issued by a U.S. federal appeals court in response to a plaintiff motion, the case made it all the way to the U.S. Supreme Court, which heard oral arguments on 5 October.

  18. JPL Mission Bibliometrics

    NASA Technical Reports Server (NTRS)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  19. (abstract) NDE and Advanced Actuators at JPL

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1996-01-01

    JPL is responsible for deep space exploration using spacecraft and telerobotic technologies. Since all JPL's missions are one of a kind and hardware dependent, the requirements for nondestructive evaluation (NDE) of the materials and structures that are employed are significantly more stringent than the ones for conventional aerospace needs. The multidisciplinary technologies that are developed at JPL, particularily the ones for the exploration of Mars, are finding applications to a wide variety of NDE applications. Further, technology spin-offs are enabling the development of advanced actuators that are being used to drive various types of telerobotic devices. A review will be given of the recent JPL NDE and advanced actuators activity and it will include several short videos.

  20. Earth observation photo taken by JPL with the Shuttle Imaging Radar-A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Photos of earth observations taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). This image shows Lake Okeechobee (right) and Lake Istokopoga (left) in Central Florida. Lake Okeechobee is bounded on the east by rectangular agricultural fields and to the south and west by swamps and wetlands which appear as bright features.

  1. Acoustic environments for JPL shuttle payloads based on early flight data

    NASA Technical Reports Server (NTRS)

    Oconnell, M. R.; Kern, D. L.

    1983-01-01

    Shuttle payload acoustic environmental predictions for the Jet Propulsion Laboratory's Galileo and Wide Field/Planetary Camera projects have been developed from STS-2 and STS-3 flight data. This evaluation of actual STS flight data resulted in reduced predicted environments for the JPL shuttle payloads. Shuttle payload mean acoustic levels were enveloped. Uncertainty factors were added to the mean envelope to provide confidence in the predicted environment.

  2. Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1998-01-01

    This publication contains the summaries for the Seventh JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 12-16, 1998. The main workshop is divided into three smaller workshops, and each workshop has a volume as follows: (1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop; (2) Airborne Synthetic Aperture Radar (AIRSAR) Workshop; and (3) Thermal Infrared Multispectral Scanner (TIMS) Workshop. This Volume 1 publication contains 58 papers taken from the AVIRIS workshop.

  3. GNSS-Based Space Weather Systems Including COSMIC Ionospheric Measurements

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Mandrake, Lukas; Wilson, Brian; Iijima, Byron; Pi, Xiaoqing; Hajj, George; Mannucci, Anthony J.

    2006-01-01

    The presentation outline includes University Corporation for Atmospheric Research (UCAR) and Jet Propulsion Laboratory (JPL) product comparisons, assimilating ground-based global positioning satellites (GPS) and COSMIC into JPL/University of Southern California (USC) Global Assimilative Ionospheric Model (GAIM), and JPL/USC GAIM validation. The discussion of comparisons examines Abel profiles and calibrated TEC. The JPL/USC GAIM validation uses Arecibo ISR, Jason-2 VTEC, and Abel profiles.

  4. Northern California and San Francisco Bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The left image of this pair was acquired by MISR's nadir camera on August 17, 2000 during Terra orbit 3545. Toward the top, and nestled between the Coast Range and the Sierra Nevadas, are the green fields of the Sacramento Valley. The city of Sacramento is the grayish area near the right-hand side of the image. Further south, San Francisco and other cities of the Bay Area are visible.

    On the right is a zoomed-in view of the area outlined by the yellow polygon. It highlights the southern end of San Francisco Bay, and was acquired by MISR's airborne counterpart, AirMISR, during an engineering check-out flight on August 25, 1997. AirMISR flies aboard a NASA ER-2 high-altitude aircraft and contains a single camera that rotates to different view angles. When this image was acquired, the AirMISR camera was pointed 70 degrees forward of the vertical. Colorful tidal flats are visible in both the AirMISR and MISR imagery.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    For more information: http://www-misr.jpl.nasa.gov

  5. Credit WCT. Original 21/4"x21/4" color negative is housed in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This interior view of the Xray chamber shows operator Leonard "Dutch" Sebring positioning the 1 million electron volt X-ray machine to make an image of a Syncom 2 motor (JPL negative no. JPL-10285BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Radiographic Inspection Building, Edwards Air Force Base, Boron, Kern County, CA

  6. JPL HAMSR Takes Hurricane Matthew Temperature

    NASA Image and Video Library

    2016-10-07

    JPL's High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) instrument captured this look inside Hurricane Matthew's spiral clouds on Oct. 7, 2016, flying on a NASA Global Hawk unmanned aircraft. Red colors show cloud bands without precipitation; blues show rain bands. http://photojournal.jpl.nasa.gov/catalog/PIA21093

  7. Minority University System Engineering: A Small Satellite Design Experience Held at the Jet Propulsion Laboratory During the Summer of 1996

    NASA Technical Reports Server (NTRS)

    Ordaz, Miguel Angel

    1997-01-01

    The University of Texas at El Paso (UTEP) in conjunction with the Jet Propulsion Laboratory (JPL), North Carolina A&T and California State University of Los Angeles participated during the summer of 1996 in a prototype program known as Minority University Systems Engineering (MUSE). The program consisted of a ten week internship at JPL for students and professors of the three universities. The purpose of MUSE as set forth in the MUSE program review August 5, 1996 was for the participants to gain experience in the following areas: 1) Gain experience in a multi-disciplinary project; 2) Gain experience working in a culturally diverse atmosphere; 3) Provide field experience for students to reinforce book learning; and 4) Streamline the design process in two areas: make it more financially feasible; and make it faster.

  8. NASA-Produced Map Shows Extent of Southern California Wildfire Damage

    NASA Image and Video Library

    2017-12-14

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, and Caltech, also in Pasadena, created a Damage Proxy Map (DPM) depicting areas in Southern California that are likely damaged (shown by red and yellow pixels) as a result of recent wildfires, including the Thomas Fire in Ventura and Santa Barbara Counties, highlighted in the attached image taken from the DPM. The map is derived from synthetic aperture radar (SAR) images from the Copernicus Sentinel-1 satellites, operated by the European Space Agency (ESA). The images were taken before (Nov. 28, 2017, 6 a.m. PST) and after (Dec. 10, 2017, 6 a.m. PST) the onset of the fires. The map covers an area of 107 by 107 miles (172 by 172 kilometers), shown by the large red polygon. Each pixel measures about 33 yards (30 meters) across. The color variation from yellow to red indicates increasingly more significant ground surface change. Preliminary validation was done by comparing the map to optical satellite imagery from DigitalGlobe. This damage proxy map should be used as guidance to identify damaged areas, and may be less reliable over vegetated areas. For example, the colored pixels seen over mountainous areas may seem a little scattered even though the reality could be that the contiguous areas were burned. Patches of farmland can also appear as signals due to plowing or irrigation. The full map is available to download from https://aria-share.jpl.nasa.gov/events/20171210-SoCal_Fire/. https://photojournal.jpl.nasa.gov/catalog/PIA22191

  9. JPL-20170926-TECHf-0001-Robot Descends into Alaska Moulin

    NASA Image and Video Library

    2017-09-26

    JPL engineer Andy Klesh lowers a robotic submersible into a moulin. Klesh and JPL's John Leichty used robots and probes to explore the Matanuska Glacier in Alaska this past July. Image Credit: NASA/JPL-Caltech

  10. Reengineering the JPL Spacecraft Design Process

    NASA Technical Reports Server (NTRS)

    Briggs, C.

    1995-01-01

    This presentation describes the factors that have emerged in the evolved process of reengineering the unmanned spacecraft design process at the Jet Propulsion Laboratory in Pasadena, California. Topics discussed include: New facilities, new design factors, new system-level tools, complex performance objectives, changing behaviors, design integration, leadership styles, and optimization.

  11. Mars Navigator: An Interactive Multimedia Program about Mars, Aerospace Engineering, Astronomy, and the JPL Mars Missions. [CD-ROM

    ERIC Educational Resources Information Center

    Gramoll, Kurt

    This CD-ROM introduces basic astronomy and aerospace engineering by examining the Jet Propulsion Laboratory's (JPL) Mars Pathfinder and Mars Global Surveyor missions to Mars. It contains numerous animations and narrations in addition to detailed graphics and text. Six interactive laboratories are included to help understand topics such as the…

  12. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, March 4-8, 1996. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  13. Retrieval of pine forest biomass using JPL AIRSAR data

    NASA Technical Reports Server (NTRS)

    Beaudoin, A.; Letoan, T.; Zagolski, F.; Hsu, C. C.; Han, H. C.; Kong, J. A.

    1992-01-01

    The analysis of Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) data over the Landes forest in South-West France revealed strong correlation between L- and especially P-band sigma degrees and the pine forest biomass. To explain the physical link of radar backscatter to biomass, a polarimetric backscattering model was developed and validated. Then the model was used in a simulation study to predict sigma degree sensitivity to undesired canopy and environmental parameters. Main results concerning the data analysis, modeling, and simulation at P-band are reported.

  14. The JPL telerobot operator control station. Part 2: Software

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Landell, B. Patrick; Oxenberg, Sheldon; Morimoto, Carl

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The software design of the operator control system is discussed.

  15. Contents of the JPL Distributed Active Archive Center (DAAC) archive, version 2-91

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)

    1991-01-01

    The Distributed Active Archive Center (DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea surface height, surface wind vector, sea surface temperature, atmospheric liquid water, and surface pigment concentration. The Jet Propulsion Laboratory DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for the Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  16. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1995-01-01

    This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  17. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1995-01-01

    This publication is the first of three containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in this volume; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in Volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  18. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1995-01-01

    This publication is the second volume of the summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop on January 25-26. The summaries for this workshop appear in volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop on January 26. The summaries for this workshop appear in this volume.

  19. Commercialization of JPL Virtual Reality calibration and redundant manipulator control technologies

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Seraji, Homayoun; Fiorini, Paolo; Brown, Robert; Christensen, Brian; Beale, Chris; Karlen, James; Eismann, Paul

    1994-01-01

    Within NASA's recent thrust for industrial collaboration, JPL (Jet Propulsion Laboratory) has recently established two technology cooperation agreements in the robotics area: one on virtual reality (VR) calibration with Deneb Robotics, Inc., and the other on redundant manipulator control with Robotics Research Corporation (RRC). These technology transfer cooperation tasks will enable both Deneb and RRC to commercialize enhanced versions of their products that will greatly benefit both space and terrestrial telerobotic applications.

  20. JPL Tech Works Mars 2020 Descent Stage

    NASA Image and Video Library

    2018-03-13

    A technician works on the descent stage for NASA's Mars 2020 mission inside JPL's Spacecraft Assembly Facility. Mars 2020 is slated to carry NASA's next Mars rover to the Red Planet in July of 2020. https://photojournal.jpl.nasa.gov/catalog/PIA22342

  1. The JPL/KSC telerobotic inspection demonstration

    NASA Technical Reports Server (NTRS)

    Mittman, David; Bon, Bruce; Collins, Carol; Fleischer, Gerry; Litwin, Todd; Morrison, Jack; Omeara, Jacquie; Peters, Stephen; Brogdon, John; Humeniuk, Bob

    1990-01-01

    An ASEA IRB90 robotic manipulator with attached inspection cameras was moved through a Space Shuttle Payload Assist Module (PAM) Cradle under computer control. The Operator and Operator Control Station, including graphics simulation, gross-motion spatial planning, and machine vision processing, were located at JPL. The Safety and Support personnel, PAM Cradle, IRB90, and image acquisition system, were stationed at the Kennedy Space Center (KSC). Images captured at KSC were used both for processing by a machine vision system at JPL, and for inspection by the JPL Operator. The system found collision-free paths through the PAM Cradle, demonstrated accurate knowledge of the location of both objects of interest and obstacles, and operated with a communication delay of two seconds. Safe operation of the IRB90 near Shuttle flight hardware was obtained both through the use of a gross-motion spatial planner developed at JPL using artificial intelligence techniques, and infrared beams and pressure sensitive strips mounted to the critical surfaces of the flight hardward at KSC. The Demonstration showed that telerobotics is effective for real tasks, safe for personnel and hardware, and highly productive and reliable for Shuttle payload operations and Space Station external operations.

  2. Earthquake prediction research at the Seismological Laboratory, California Institute of Technology

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    Nevertheless, basic earthquake-related information has always been of consuming interest to the public and the media in this part of California (fig. 2.). So it is not surprising that earthquake prediction continues to be a significant reserach program at the laboratory. Several of the current spectrum of projects related to prediction are discussed below. 

  3. Participation of Bell Telephone Laboratories in Project Echo and Experimental Results

    NASA Technical Reports Server (NTRS)

    Jakes, William C., Jr.

    1961-01-01

    On August 12, 1960, Echo I, a 100-foot-diameter spherical balloon, was placed in orbit around the earth by the National Aeronautics and Space Administration. The objective was to demonstrate the feasibility of long-distance communication by microwave reflection from a satellite. A two-way coast-to-coast voice circuit was to be established between the Jet Propulsion Laboratory (JPL) facility in California and a station provided by Bell Telephone Laboratories (STL) in New Jersey. Similar tests were also planned with the Naval Research Laboratory and other stations. This paper describes the general organization and operation of the Holmdel, New Jersey, station, and discusses the results of the experiments performed between the balloon launching and March 1, 1961. Successful voice communication was achieved through a variety of modulation methods including frequency modulation with feedback, amplitude modulation, single-sideband modulation, and narrow-band phase modulation. Careful measurements were also made of the loss in the transmission path.

  4. JPL/USC GAIM: Validating COSMIC and Ground-Based GPS Assimilation Results to Estimate Ionospheric Electron Densities

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Wilson, B.; Akopian, V.; Pi, X.; Mannucci, A.; Wang, C.

    2008-12-01

    We seem to be in the midst of a revolution in ionospheric remote sensing driven by the abundance of ground and space-based GPS receivers, new UV remote sensing satellites, and the advent of data assimilation techniques for space weather. In particular, the COSMIC 6-satellite constellation was launched in April 2006. COSMIC now provides unprecedented global coverage of GPS occultations measurements, each of which yields electron density information with unprecedented ~1 km vertical resolution. Calibrated measurements of ionospheric delay (total electron content or TEC) suitable for input into assimilation models is currently made available in near real-time (NRT) from the COSMIC with a latency of 30 to 120 minutes. The University of Southern California (USC) and the Jet Propulsion Laboratory (JPL) have jointly developed a real-time Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for DoD customers and NASA flight projects. JPL/USC GAIM is a physics- based 3D data assimilation model that uses both 4DVAR and Kalman filter techniques to solve for the ion and electron density state and key drivers such as equatorial electrodynamics, neutral winds, and production terms. Daily (delayed) GAIM runs can accept as input ground GPS TEC data from 1200+ sites, occultation links from CHAMP, SAC-C, and the COSMIC constellation, UV limb and nadir scans from the TIMED and DMSP satellites, and in situ data from a variety of satellites (DMSP and C/NOFS). Real-Time GAIM (RTGAIM) ingests multiple data sources in real time, updates the 3D electron density grid every 5 minutes, and solves for improved drivers every 1-2 hours. Since our forward physics model and the adjoint model were expressly designed for data assimilation and computational efficiency, all of this can be accomplished on a single dual- processor Unix workstation. Customers are currently evaluating the accuracy of JPL/USC GAIM 'nowcasts' for ray

  5. RoboSimian Disaster Relief Poster Artist Concept

    NASA Image and Video Library

    2015-03-11

    This artist's concept shows RoboSimian, a robot intended to assist with disaster relief and mitigation. RoboSimian is an ape-like robot that moves around on four limbs. It was designed and built at the Jet Propulsion Laboratory in Pasadena, California. It will compete in the 2015 DARPA Robotics Challenge Finals. To get the robot in shape for the contest, researchers at JPL are collaborating with partners at University of California, Santa Barbara, and the California Institute of Technology. http://photojournal.jpl.nasa.gov/catalog/PIA19313

  6. Patchwork Chemical Garden

    NASA Image and Video Library

    2015-08-05

    A laboratory-created "chemical garden" made of a combination of black iron sulfide and orange iron hydroxide/oxide is shown in this photo. Chemical gardens are a nickname for chimney-like structures that form at bubbling vents on the seafloor. Some researchers think that life may have originated at structures like these billions of years ago. JPL's research team is part of the Icy Worlds team of the NASA Astrobiology Institute, based at NASA's Ames Research Center in Moffett Field, California. JPL is managed by the California Institute of Technology in Pasadena for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA19835

  7. Experiences with Text Mining Large Collections of Unstructured Systems Development Artifacts at JPL

    NASA Technical Reports Server (NTRS)

    Port, Dan; Nikora, Allen; Hihn, Jairus; Huang, LiGuo

    2011-01-01

    Often repositories of systems engineering artifacts at NASA's Jet Propulsion Laboratory (JPL) are so large and poorly structured that they have outgrown our capability to effectively manually process their contents to extract useful information. Sophisticated text mining methods and tools seem a quick, low-effort approach to automating our limited manual efforts. Our experiences of exploring such methods mainly in three areas including historical risk analysis, defect identification based on requirements analysis, and over-time analysis of system anomalies at JPL, have shown that obtaining useful results requires substantial unanticipated efforts - from preprocessing the data to transforming the output for practical applications. We have not observed any quick 'wins' or realized benefit from short-term effort avoidance through automation in this area. Surprisingly we have realized a number of unexpected long-term benefits from the process of applying text mining to our repositories. This paper elaborates some of these benefits and our important lessons learned from the process of preparing and applying text mining to large unstructured system artifacts at JPL aiming to benefit future TM applications in similar problem domains and also in hope for being extended to broader areas of applications.

  8. The JPL telerobot operator control station. Part 1: Hardware

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Tower, John T.; Hunka, George W.; Vansant, Glenn J.

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The hardware design, system architecture, and its integration and interface with the rest of the Telerobot Demonstrator System are discussed.

  9. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  10. 1. Credit WCT. Original 2 1/4" x 2 1/4" color ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit WCT. Original 2- 1/4" x 2- 1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. Photo shows John Morrow in charge of milling operations on coupons ("dogbones") of propellant on an Index milling machine. Coupons were milled to precise dimensions for tensile tests. Note that two sprinkler heads have been placed in very close proximity to the milling table for fire suppression purposes (JPL negative no. JPL-10283AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Preparation Building, Edwards Air Force Base, Boron, Kern County, CA

  11. A Snowy Entrance

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. This photograph from 1949 shows the main entrance gate to the Jet Propulsion Laboratory in Pasadena, California, after a snowstorm. To the left is JPL's administration building at the time (Building 67). Building 67 is the Materials Research Building today. The Space Flight Operations Facility (Building 230), which houses JPL's Mission Control, now stands over the parking area on the right. As the lab expanded, the main entrance gate moved farther south. http://photojournal.jpl.nasa.gov/catalog/PIA21118

  12. The JPL Electronic Nose: Monitoring Air in the US Lab on the International Space Station

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Manatt, K. S.; Gluck, S.; Shevade, A. V.; Kisor, A. K.; Zhou, H.; Lara, L. M.; Homer, M. L.

    2010-01-01

    An electronic nose with a sensor array of 32 conductometric sensors has been developed at the Jet Propulsion Laboratory (JPL) to monitor breathing air in spacecraft habitat. The Third Generation ENose is designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 oC, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The monitoring targets are anomalous events such as leaks and spills of solvents, coolants or other fluids. The JPL ENose operated as a technology demonstration for seven months in the U.S. Laboratory Destiny during 2008-2009. Analysis of ENose monitoring data shows that there was regular, periodic rise and fall of humidity and occasional releases of Freon 218 (perfluoropropane), formaldehyde, methanol and ethanol. There were also several events of unknown origin, half of them from the same source. Each event lasted from 20 to 100 minutes, consistent with the air replacement time in the US Lab.

  13. JPL Development Ephemeris number 96

    NASA Technical Reports Server (NTRS)

    Standish, E. M., Jr.; Keesey, M. S. W.; Newhall, X. X.

    1976-01-01

    The fourth issue of JPL Planetary Ephemerides, designated JPL Development Ephemeris No. 96 (DE96), is described. This ephemeris replaces a previous issue which has become obsolete since its release in 1969. Improvements in this issue include more recent and more accurate observational data, new types of data, better processing of the data, and refined equations of motion which more accurately describe the actual physics of the solar system. The descriptions in this report include these new features as well as the new export version of the ephemeris. The tapes and requisite software will be distributed through the NASA Computer Software Management and Information Center (COSMIC) at the University of Georgia.

  14. A modeling analysis program for the JPL table mountain Io sodium cloud

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Goldberg, B. A.

    1985-01-01

    Progress and achievements in the first year are discussed in three main areas: (1) review and assessment of the massive JPL Table Mountain Io sodium cloud data set, (2) formulation and execution of a plan to perform further processing of this data set, and (3) initiation of modeling activities. The complete 1976-79 and 1981 data sets are reviewed. Particular emphasis is placed on the superior 1981 Region B/C images which provide a rich base of information for studying the structure and escape of gases from Io as well as possible east-west and magnetic longitudinal asymmetries in the plasma torus. A data processing plan is developed and is undertaken by the Multimission Image Processing Laboratory of JPL for the purpose of providing a more refined and complete data set for our modeling studies in the second year. Modeling priorities are formulated and initial progress in achieving these goals is reported.

  15. Lake Shasta, California

    NASA Image and Video Library

    2015-06-17

    This image from NASA Terra spacecraft shows Shasta Lake in northern California, which has an area of 12,000 ha, making it the state largest reservoir. Impacts of the continuing drought in the western US is evident in the two ASTER images acquired 9 years apart. The images were acquired September 9, 2005 and September 2, 2014. They cover an area of 27.6 x 40.4 km, and are located at 40.6 degrees north, 122.4 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19492

  16. Sandia National Laboratories, California Environmental Management System program manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a setmore » of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  17. Sandia National Laboratories California Waste Management Program Annual Report February 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynildson, Mark E.

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  18. Surrogate Poster Artist Concept

    NASA Image and Video Library

    2015-03-11

    This artist's concept shows Surrogate, a robot that could one day assist in disasters or hazardous situations such as a dangerous chemical laboratory. Surrogate was designed and built at the Jet Propulsion Laboratory in Pasadena, California. Its components came from RoboSimian, another JPL-built robot designed for disaster relief and mitigation (see PIA19313). Surrogate rolls on a track rather than moving on its limbs. http://photojournal.jpl.nasa.gov/catalog/PIA19314

  19. Credit WCT. Original 214" x 21/4" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-14" x 2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This image depicts the tray dryer for "AP" (ammonium perchlorate, an oxidizer). The dryer was heated by a water jacket; insulated pipes appear at left in the view. In the extreme left foreground appears a marble table similar to the tables used for scales in the weighing room of Building E-35. Note the use of gloves, fireresistant coveralls and breathing apparatus by the JPL employee in view (JPL negative no. JPL-10283BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Blender Building, Edwards Air Force Base, Boron, Kern County, CA

  20. Wildfires Rage in Southern California

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Large plumes of smoke rising from devastating wildfires burning near Los Angeles and San Diego on Sunday, October 26, 2003, are highlighted in this set of images from the Multi-angle Imaging SpectroRadiometer (MISR). These images include a natural color view from MISR's nadir camera (left) and an automated stereo height retrieval (right). The tops of the smoke plumes range in altitude from 500 - 3000 meters, and the stereo retrieval clearly differentiates the smoke from patches of high-altitude cirrus. Plumes are apparent from fires burning near the California-Mexico border, San Diego, Camp Pendleton, the foothills of the San Bernardino Mountains, and in and around Simi Valley. The majority of the smoke is coming from the fires near San Diego and the San Bernardino Mountains.

    The Multiangle Imaging Spectro Radiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 20510. The panels cover an area of 329 kilometers x 543 kilometers, and utilize data from blocks 62 to 66 within World Reference System-2 path 40.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  1. Publications of the Jet Propulsion Laboratory, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Jet Propulsion Laboratory (JPL) bibliography 39-26 describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1984, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications (82-, 83-, 84-series, etc.), in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Program Report (42-series); and (3) articles published in the open literature.

  2. Assimilation and implications of AE-9/AP-9 in the design process of JPL missions

    NASA Astrophysics Data System (ADS)

    de Soria-Santacruz Pich, M.; Jun, I.

    2015-12-01

    The NASA AE-8/AP-8 has been the standard geospace environment specification for decades. This model describes the energetic particle environment around the Earth and is currently the default model used in the design of space missions at the Jet Propulsion Laboratory (JPL). Moreover, the model plays a critical role in the determination of the shielding and survivability of the satellites orbiting our planet. A recent update supported by the Air Force Research Laboratory (AFRL) and the National Reconnaissance Office (NRO), the AE-9/AP-9 model, was released in September 2012 and included many improvements like increased spatial resolution and the specification of the uncertainty due to instrument errors or space weather variability. A current effort at JPL is in place with the objective of making a decision within the Laboratory on the transition from AE-8/AP-8 to the new AE-9/AP-9. In this study we present the results of this effort, which involves the comparison between both versions of the model for different satellite orbits, the comparison between AE-9/AP-9 and in-situ satellite data from the Van Allen Probes and the OSTM/Jason 2 satellite, and the implications of adopting the new model for spacecraft design in terms of survivability, shielding, single event effects, and spacecraft charging.

  3. The MPD thruster program at JPL

    NASA Technical Reports Server (NTRS)

    Barnett, John; Goodfellow, Keith; Polk, James; Pivirotto, Thomas

    1991-01-01

    The main topics covered include: (1) the Space Exploration Initiative (SEI) context; (2) critical issues of MPD Thruster design; and (3) the Magnetoplasmadynamic (MPD) Thruster Program at JPL. Under the section on the SEI context the nuclear electric propulsion system and some electric thruster options are addressed. The critical issues of MPD Thruster development deal with the requirements, status, and approach taken. The following areas are covered with respect to the MPD Thruster Program at JPL: (1) the radiation-cooled MPD thruster; (2) the High-Current Cathode Test Facility; (3) thruster component thermal modeling; and (4) alkali metal propellant studies.

  4. Measurements of atmospheric ethene by solar absorption FTIR spectrometry

    NASA Astrophysics Data System (ADS)

    Toon, Geoffrey C.; Blavier, Jean-Francois L.; Sung, Keeyoon

    2018-04-01

    Atmospheric ethene (C2H4; ethylene) amounts have been retrieved from high-resolution solar absorption spectra measured by the Jet Propulsion Laboratory (JPL) MkIV interferometer. Data recorded from 1985 to 2016 from a dozen ground-based sites have been analyzed, mostly between 30 and 67° N. At clean-air sites such as Alaska, Sweden, New Mexico, or the mountains of California, the ethene columns were always less than 1 × 1015 molec cm-2 and therefore undetectable. In urban sites such as JPL, California, ethene was measurable with column amounts of 20 × 1015 molec cm-2 observed in the 1990s. Despite the increasing population and traffic in southern California, a factor 3 decrease in ethene column density is observed over JPL over the past 25 years, accompanied by a decrease in CO. This is likely due to southern California's increasingly stringent vehicle exhaust regulations and tighter enforcement over this period.

  5. Improved Infrastucture for Cdms and JPL Molecular Spectroscopy Catalogues

    NASA Astrophysics Data System (ADS)

    Endres, Christian; Schlemmer, Stephan; Drouin, Brian; Pearson, John; Müller, Holger S. P.; Schilke, P.; Stutzki, Jürgen

    2014-06-01

    Over the past years a new infrastructure for atomic and molecular databases has been developed within the framework of the Virtual Atomic and Molecular Data Centre (VAMDC). Standards for the representation of atomic and molecular data as well as a set of protocols have been established which allow now to retrieve data from various databases through one portal and to combine the data easily. Apart from spectroscopic databases such as the Cologne Database for Molecular Spectroscopy (CDMS), the Jet Propulsion Laboratory microwave, millimeter and submillimeter spectral line catalogue (JPL) and the HITRAN database, various databases on molecular collisions (BASECOL, KIDA) and reactions (UMIST) are connected. Together with other groups within the VAMDC consortium we are working on common user tools to simplify the access for new customers and to tailor data requests for users with specified needs. This comprises in particular tools to support the analysis of complex observational data obtained with the ALMA telescope. In this presentation requests to CDMS and JPL will be used to explain the basic concepts and the tools which are provided by VAMDC. In addition a new portal to CDMS will be presented which has a number of new features, in particular meaningful quantum numbers, references linked to data points, access to state energies and improved documentation. Fit files are accessible for download and queries to other databases are possible.

  6. Jet Propulsion Laboratory: Annual Report 2002

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The year 2002 brought advances on many fronts in our space exploration ventures. A new orbiter settled in at Mars and delivered tantalizing science results suggesting a vast store of water ice under the planet's surface, a discovery that may have profound consequences for exploring Mars. A long-lived spacecraft made its final fly-bys of Jupiter's moons, while another started its final approach toward Saturn and yet another flew by an asteroid on its way to a comet. A new ocean satellite began science observations, joined in Earth orbit by a pair of spacecraft measuring our home planets gravity field, as well as JPL instruments on NASA and Japanese satellites. A major new infrared observatory and a pair of Mars rovers were readied for launch. All told, JPL is now communicating with 14 spacecraft cast like gems across the velvet expanses of the solar system. It is a far cry from the early 1960's, when JPL engineers made prodigious efforts to get the first planetary explorers off the ground and into space - an achievement of which we were especially mindful this year, as 2002 marked the 40th anniversary of the first successful planetary mission, Mariner 2, which barely reached our closest planetary neighbor, Venus. Added to this anniversary were celebrations surrounding the 25th anniversaries of the launches of Voyagers 1 and 2, two remarkable spacecraft that are still flying and are actively probing the outer realms of the solar system. These events of the past and present provide an occasion for reflection on the remarkable era of exploration that we at the Jet Propulsion Laboratory are privileged to be a part of. As 2002 neared its end, the Laboratory had yet another reason for celebration, as a new five-year management contract between NASA and the California Institute of Technology was signed that calls for a closer working relationship with NASA and other NASA centers as a member of the 'One NASA' team. There is a strong emphasis on cost control and management

  7. Pension fund activities at Department laboratories managed by the University of California. [Contains Management and Auditor Comments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-18

    The Department of Energy's (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department's interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department's contract administration of its interest in those pension plans.

  8. Site environmental report for 2009 : Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into tenmore » chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  9. Site Environmental Report for 2010 Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chaptermore » 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  10. Monitoring Subsidence in California with InSAR

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Jones, C. E.; Liu, Z.; Neff, K. L.; Gurrola, E. M.; Manipon, G.

    2016-12-01

    Subsidence caused by groundwater pumping in the rich agricultural area of California's Central Valley has been a problem for decades. Over the last few years, interferometric synthetic aperture radar (InSAR) observations from satellite and aircraft platforms have been used to produce maps of subsidence with cm accuracy. We are continuing work reported previously, using ESA's Sentinel-1 to extend our maps of subsidence in time and space, in order to eventually cover all of California. The amount of data to be processed has expanded exponentially in the course of our work and we are now transitioning to the use of the ARIA project at JPL to produce the time series. ARIA processing employs large Amazon cloud instances to process single or multiple frames each, scaling from one to many (20+) instances working in parallel to meet the demand (700 GB InSAR products within 3 hours). The data are stored in Amazon long-term storage and an http view of the products are available for users of the ARIA system to download the products. Higher resolution InSAR data were also acquired along the California Aqueduct by the NASA UAVSAR from 2013 - 2016. Using multiple scenes acquired by these systems, we are able to produce time series of subsidence at selected locations and transects showing how subsidence varies both spatially and temporally. The maps show that subsidence is continuing in areas with a history of subsidence and that the rates and areas affected have increased due to increased groundwater extraction during the extended western US drought. Our maps also identify and quantify new, localized areas of accelerated subsidence. The California Department of Water Resources (DWR) funded this work to provide the background and an update on subsidence in the Central Valley to support future policy. Geographic Information System (GIS) files are being furnished to DWR for further analysis of the 4 dimensional subsidence time-series maps. Part of this work was carried out at the

  11. Proceedings of the Third Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication contains summaries of the papers presented at the Third Spaceborne Imaging Radar Symposium held at the Jet Propulsion Laboratory (JPL), California Institute of Technology, in Pasadena, California, on 18-21 Jan. 1993. The purpose of the symposium was to present an overview of recent developments in the different scientific and technological fields related to spaceborne imaging radars and to present future international plans. This symposium is the third in a series of 'Spaceborne Imaging Radar' symposia held at JPL. The first symposium was held in Jan. 1983 and the second in 1986.

  12. Architectures for mission control at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Davidson, Reger A.; Murphy, Susan C.

    1992-01-01

    JPL is currently converting to an innovative control center data system which is a distributed, open architecture for telemetry delivery and which is enabling advancement towards improved automation and operability, as well as new technology, in mission operations at JPL. The scope of mission control within mission operations is examined. The concepts of a mission control center and how operability can affect the design of a control center data system are discussed. Examples of JPL's mission control architecture, data system development, and prototype efforts at the JPL Operations Engineering Laboratory are provided. Strategies for the future of mission control architectures are outlined.

  13. 10. Photographic copy of engineering drawing showing the plumbing layout ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photographic copy of engineering drawing showing the plumbing layout of Test Stand 'C' Cv Cell, vacuum line, and scrubber-condenser as erected in 1977-78. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: 'JPL-ETS E-18 (C-Stand Modifications) Flow Diagram,' sheet M-2 (JPL sheet number E18/41-0), September 1, 1977. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  14. 3. Credit WCT. Original 4"x5" black and white negative is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view of the vibrator shows a large mounted ATS (Advanced Technology Satellite) motor. Accelerometer instrumentation has been added. JPL caption reads "C-210E Vibration Exciter ATS Accelerometer Installation on Q4TX AXIS" (JPL negative no. 384-5848B, 31 March 1966). - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA

  15. Mars Science Laboratory Rover Taking Shape

    NASA Image and Video Library

    2008-11-19

    This image taken in August 2008 in a clean room at NASA JPL, Pasadena, Calif., shows NASA next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

  16. JPL initiative on historically black colleges and universities

    NASA Technical Reports Server (NTRS)

    Allen, Lew; Forte, Paul, Jr.; Leipold, Martin H.

    1989-01-01

    Executive order number 12320 of September 15, 1981, established a program designed to significantly increase the participation of historically black colleges and universities (HBCU's) in Federal programs. Because of its geographical remoteness and position as a contractor operated center, JPL had not participated in grant and training programs with the HBCU's. In recognition of JPL's responsibility to the national commitment on behalf of the historically black colleges and universities, an initiative with effective, achievable guidelines and early progress for a better and more productive interaction between JPL and the HBCU's is described. Numerous areas of interaction with the historically black colleges and universities have been identified and are being inplemented. They have two broad objectives: research interactions and faculty/student interactions. Plans and progress to date for each specific area are summarized.

  17. Photographic copy of plan of new Dy horizontal station and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of plan of new Dy horizontal station and accumulator additions to Test Stand "D," also showing existing Dd test station. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: "Jet Propulsion Laboratory-Edwards Test Station, Motive Steam Supply & Ejector Pumping System: Plan - Test Stand "D," sheet M-3 (JPL sheet number E24/33), 21 December 1976 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  18. Virtual time and time warp on the JPL hypercube. [operating system implementation for distributed simulation

    NASA Technical Reports Server (NTRS)

    Jefferson, David; Beckman, Brian

    1986-01-01

    This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.

  19. Credit WCT. Original 4" x 5" black and white negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 4" x 5" black and white negative is housed in the JPL Archives, Pasadena, California. This view shows the original furnace for burning scrap propellant, the surrounding incinerator pit, and the earth mound personnel shield (JPL negative no. 381-2737, 11 February 1963) - Jet Propulsion Laboratory Edwards Facility, Incinerator, Edwards Air Force Base, Boron, Kern County, CA

  20. Forest fire laboratory at Riverside and fire research in California: past, present, and future

    Treesearch

    Carl C. Wilson; James B. Davis

    1988-01-01

    The need for protection from uncontrolled fire in California was identified by Abbott Kinney, Chairman of the State Board of Forestry, more than 75 years before the construction of the Riverside Forest Fire Laboratory. With the organization of the USDA Forest Service the need for an effective fire protection organization became apparent. In response, a...

  1. Publications of the Jet Propulsion Laboratory: 1990 and 1991

    NASA Technical Reports Server (NTRS)

    1993-01-01

    JPL Bibliography 39-32 describes and indexes by primary author the externally distributed technical reporting, released during calendar years 1990 and 1991, that resulted from scientific and engineering work performed or managed by the Jet Propulsion Laboratory (JPL). Three classes of publications are included: (1) JPL publications (90- and 91-series) in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report (42-series); and (3) articles published in the open literature.

  2. 9. Photographic copy of engineering drawing showing the mechanical layout ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photographic copy of engineering drawing showing the mechanical layout of Test Stand 'C' Cv Cell, vacuum line, and scrubber-condenser as erected in 1977-78. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: 'JPL-ETS E-18 (C-Stand Modifications) Control Elevations & Schematics,' sheet M-5 (JPL sheet number E18/44-0), 1 September 1977. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA

  3. Blackhawk Landslide, California

    NASA Image and Video Library

    2016-09-30

    The Blackhawk landslide, Lucerne Valley, California, is a lobe of marble breccia, 10 to 30 m thick, 3 km wide, and nearly 8 km long. Geologic evidence shows that the rockslide came down the gently inclined slope as a nearly monolithic sheet moving more than 100 km per hour. The accepted hypothesis is that the slide was lubricated by a layer of compressed air. At least two earlier similar but smaller rockslides have occurred in the area. The south-looking perspective view image was acquired on September 22, 2014, and is located at 34.4 degrees north, 116.7 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA21008

  4. Defect measurement and analysis of JPL ground software: a case study

    NASA Technical Reports Server (NTRS)

    Powell, John D.; Spagnuolo, John N., Jr.

    2004-01-01

    Ground software systems at JPL must meet high assurance standards while remaining on schedule due to relatively immovable launch dates for spacecraft that will be controlled by such systems. Toward this end, the Software Quality Improvement (SQI) project's Measurement and Benchmarking (M&B) team is collecting and analyzing defect data of JPL ground system software projects to build software defect prediction models. The aim of these models is to improve predictability with regard to software quality activities. Predictive models will quantitatively define typical trends for JPL ground systems as well as Critical Discriminators (CDs) to provide explanations for atypical deviations from the norm at JPL. CDs are software characteristics that can be estimated or foreseen early in a software project's planning. Thus, these CDs will assist in planning for the predicted degree to which software quality activities for a project are likely to deviation from the normal JPL ground system based on pasted experience across the lab.

  5. JPL stories: story on the story (series) Careering through JPL, presented by Alice M. Fairhurst

    NASA Technical Reports Server (NTRS)

    Hendrickson, S.

    2002-01-01

    Alice Fairhurst, co-author of Effective Teaching, Effective Learning, presented an enthusiastic overview of her tenure as a JPL career development and mentoring coordinator (1991-2001). Among other things, Alice is an expert in Keirseyian Temperament and Myers-Briggs typology.

  6. JPL future missions and energy storage technology implications

    NASA Technical Reports Server (NTRS)

    Pawlik, Eugene V.

    1987-01-01

    The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.

  7. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  8. JPL-20180522-GRACFOf-0001-NASAs GRACE FO Satellite Launches Aboard a SpaceX Falcon 9 Rocket

    NASA Image and Video Library

    2018-05-22

    3-2-1 liftoff of Falcon 9 with GRACE-FO! NASA's Gravity Recovery and Climate Experiment Follow-on, or GRACE-FO, launched from Vandenberg Air Force Base on California's Central Coast on May 22, 2018. The twin orbiters shared a ride to space with five Iridium NEXT communications satellites. GRACE-FO will continue a study begun by the original GRACE mission, which proved that water movement can be tracked with high precision by its effect on Earth's gravitational field. GRACE-FO will continue the record of regional variations in gravity, telling us about changes in glaciers, ground water, sea levels and the health of our planet as a whole. For more, visit https://gracefo.jpl.nasa.gov .

  9. Credit WCT. Original 2¾" x 2Y4" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-¾" x 2-Y4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows JPL staff member John Morrow loading the grinder hopper. The hopper has a 10 mesh screen to filter out particles too large for the mill. Oxidizer is passed steadily to the hammers by a stainless steel feed screw. Oxidizer may be passed through the mill several times depending on the fineness required by a given propellant formula; the maximum charge is 130 pounds (59.0 Kg). The drum below the mill has an electrically conductive plastic liner which receives the ground oxidizer (JPL negative no. JPL10279AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Oxidizer Grinder Building, Edwards Air Force Base, Boron, Kern County, CA

  10. Case Study of 'Engineering Peer Meetings' in JPL's ST-6 Project

    NASA Technical Reports Server (NTRS)

    Chao, Lawrence P.; Tumer, Irem

    2004-01-01

    This design process error-proofing case study describes a design review practice implemented by a project manager at NASA Jet Propulsion Laboratory. There are many types of reviews at NASA: required and not, formalized and informal, programmatic and technical. Standing project formal reviews such as the Preliminary Design Review (PDR) and Critical Design Review (CDR) are a required part of every project and mission development. However, the engineering peer reviews that support teams technical work on such projects are often informal, ad hoc, and inconsistent across the organization. This case study discusses issues and innovations identified by a project manager at JPL and implemented in 'engineering peer meetings' for his group.

  11. Case Study of "Engineering Peer Meetings" in JPL's ST-6 Project

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Chao, Lawrence P.

    2003-01-01

    This design process error-proofing case study describes a design review practice implemented by a project manager at NASA Jet Propulsion Laboratory. There are many types of reviews at NASA: required and not, formalized and informal, programmatic and technical. Standing project formal reviews such as the Preliminary Design Review (PDR) and Critical Design Review (CDR) are a required part of every project and mission development. However, the engineering peer reviews that support teams technical work on such projects are often informal, ad hoc, and inconsistent across the organization. This case study discusses issues and innovations identified by a project manager at JPL and implemented in "engineering peer meetings" for his group.

  12. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, left, and Mike Gunson, OCO-2 project scientist at JPL, discuss the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  13. An Operations Concept for Integrated Model-Centric Engineering at JPL

    NASA Technical Reports Server (NTRS)

    Bayer, Todd J.; Cooney, Lauren A.; Delp, Christopher L.; Dutenhoffer, Chelsea A.; Gostelow, Roli D.; Ingham, Michel D.; Jenkins, J. Steven; Smith, Brian S.

    2010-01-01

    As JPL's missions grow more complex, the need for improved systems engineering processes is becoming clear. Of significant promise in this regard is the move toward a more integrated and model-centric approach to mission conception, design, implementation and operations. The Integrated Model-Centric Engineering (IMCE) Initiative, now underway at JPL, seeks to lay the groundwork for these improvements. This paper will report progress on three fronts: articulating JPL's need for IMCE; characterizing the enterprise into which IMCE capabilities will be deployed; and constructing an operations concept for a flight project development in an integrated model-centric environment.

  14. Earth observation photo taken by JPL with the Shuttle Imaging Radar-A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Earth observation photo taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). This image shows a 50 by 120 kilometer (30 by 75 mile) area of the Mediterranean Sea and the eastern coast of Central Sardinia (left). The city of Arbatose is seen as a bright area along the coast in the lower part of the image, and the star-like spot off the coast is a ship's reflection. The Gulf of Orsei is near the top of the image. Bright, mottled features in the sea (right) represent surface choppiness.

  15. A spaceborne optical interferometer: The JPL CSI mission focus

    NASA Astrophysics Data System (ADS)

    Laskin, R. A.

    1989-08-01

    The JPL Control Structure Interaction (CSI) program is part of the larger NASA-wide CSI program. Within this larger context, the JPL CSI program will emphasize technology for systems that demand micron or sub-micron level control, so-called Micro-Precision Controlled Structures (u-PCS). The development of such technology will make it practical to fly missions with large optical or large precision antenna systems. In keeping with the focused nature of the desired technology, the JPL approach is to identify a focus mission, develop the focus mission CSI system design to a preliminary level, and then use this design to drive out requirements for CSI technology development in the design and analysis, ground test bed, and flight experiment areas.

  16. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    Second Lady Karen Pence gives commands to a rover nicknamed "Scarecrow" as NASA Mars Exploration Manager Li Fuk, left, Mars Curiosity Engineering Operations Team Chief Megan Lin, Vice President Mike Pence, daughter of Mike Pence, Charlotte Pence, and JPL Director Michael Watkins, right, look on, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)

  17. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence gives commands to a rover nicknamed "Scarecrow" as NASA Mars Exploration Manager Li Fuk, left, Mars Curiosity Engineering Operations Team Chief Megan Lin, JPL Director Michael Watkins, and daughter of Mike Pence, Charlotte Pence, right, look on, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)

  18. 1. Credit WCT. Original 2 1/4" x 2 1/4" color ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit WCT. Original 2- 1/4" x 2- 1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This view shows the remote charge trimmer, a vertical lathe for turning propellant castings ("grain") in the front room of this structure. Ron Wright is shown in charge of the procedure; the hoist operator is unidentified. Grain for a BATES (Ballistic And Test Evaluation System) motor is being lowered into the lathe with a hoist and specially designed BATES fitting. The spout and waste barrel, in the foreground, collects waste trimmings for disposal (JPL negative no. JPL10286BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Preparation Building, Edwards Air Force Base, Boron, Kern County, CA

  19. JPL IGS Analysis Center Report, 2001-2003

    NASA Technical Reports Server (NTRS)

    Heflin, M. B.; Bar-Sever, Y. E.; Jefferson, D. C.; Meyer, R. F.; Newport, B. J.; Vigue-Rodi, Y.; Webb, F. H.; Zumberge, J. F.

    2004-01-01

    Three GPS orbit and clock products are currently provided by JPL for consideration by the IGS. Each differs in its latency and quality, with later results being more accurate. Results are typically available in both IGS and GIPSY formats via anonymous ftp. Current performance based on comparisons with the IGS final products is summarized. Orbit performance was determined by computing the 3D RMS difference between each JPL product and the IGS final orbits based on 15 minute estimates from the sp3 files. Clock performance was computed as the RMS difference after subtracting a linear trend based on 15 minute estimates from the sp3 files.

  20. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA JPL digital and social media lead Stephanie Smith, introduces technical producer for NASA's Eyes at JPL, Jason Craig, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    NASA Headquarters Public Affairs Officer Steve Cole, standing, moderates a Orbiting Carbon Observatory-2 (OCO-2) briefing with (from left), Betsy Edwards, OCO-2 program executive with the Science Mission Directorate at NASA Headquarters, Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, Mike Gunson, OCO-2 project scientist with JPL, and Annmarie Eldering, OCO-2 deputy project scientist JPL, , Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2, NASA’s first spacecraft dedicated to studying carbon dioxide, is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  2. Effects of Deadly California Debris Flows Seen in Before/After Images from NASA's UAVSAR

    NASA Image and Video Library

    2018-02-12

    Extreme winter rains in January 2018 following the Thomas Fire in Ventura and Santa Barbara Counties caused severe debris flows, resulting in significant loss of life and considerable property damage in the town on Montecito, just east of Santa Barbara. NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne radar platform detected changes caused by the debris flows between two images acquired on Nov. 2, 2017, and Feb. 5, 2018. An enhanced image pair (top left) shows disturbed areas in orange. In areas of severe surface disruption from the fire scar and debris flows the two image pairs can't be matched and decorrelate (top right). In the middle panels, the radar images are overlaid on the structure damage map produced by the County of Santa Barbara. The fire scars and damage correspond well with the risk map (lower left) and damage map (lower right). With an operational system, products such as these have the potential to augment information available for search and rescue, and for damage assessment for government agencies or the insurance industry. Radar has the advantage of being available in all weather conditions, as it can image through clouds. NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), developed and managed by the Jet Propulsion Laboratory, Pasadena, California, can record changes on the ground beneath the aircraft that occur between multiple flights, which take exactly the same flight path. The instrument is used to monitor how volcanoes, earthquakes, and other natural hazards are changing Earth. The JPL UAVSAR team collected and processed the imagery for Principal Investigator Andrea Donnellan who performed the analysis. She has been conducting ground change research using UAVSAR in this and other regions of California since 2009. https://photojournal.jpl.nasa.gov/catalog/PIA22243

  3. Mixed Reality Technology at NASA JPL

    NASA Image and Video Library

    2016-05-16

    NASA's JPL is a center of innovation in virtual and augmented reality, producing groundbreaking applications of these technologies to support a variety of missions. This video is a collection of unedited scenes released to the media.

  4. Salton Sea, California

    NASA Image and Video Library

    2015-09-23

    The Salton Sea in south California was created in 1905 when spring flooding on the Colorado River breached a canal. For 18 months the entire volume of the river rushed into the Salton Trough, creating a lake 32 km wide and 72 km long. In the 1950s, resorts sprang up along the shores. However, shrinking of the lake and increased salinity led to the abandonment of the resorts. The two images show the shrinking lake on May 31, 1984 (Landsat) and June 14, 2015 (ASTER). The images cover an area of 37.5 x 27 km, and are located at 33.2 degrees north, 115.7 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19786

  5. Northern California Fires

    NASA Image and Video Library

    2017-10-31

    The October fires in Northern California were some of the most destructive in the state's history. The burned area on the right side of the image is the ATLAS fire, that burned east of Napa; the fire consumed 51,000 acres and destroyed almost 500 structures. The burned area on the left is part of the Nuns fire that burned between Sonoma and Napa; it consumed 110,000 acres, and destroyed almost 7,000 structures. The images were acquired September 7, 2016 and October 28, 2017, cover an area of 34.5 by 39 kilometers, and are located near 38.3 degrees north, 122.3 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22019

  6. Genesis failure investigation report : JPL Failure Review Board, Avionics Sub-Team

    NASA Technical Reports Server (NTRS)

    Klein, John; Manning, Rob; Barry, Ed; Donaldson, Jim; Rivellini, Tom; Battel, Steven; Savino, Joe; Lee, Wayne; Dalton, Jerry; Underwood, Mark; hide

    2004-01-01

    On January 7, 2001, the Genesis spacecraft lifted off from Cape Canaveral. Its mission was to collect solar wind samples and return those samples to Earth for detailed analysis by scientists. The mission proceeded successfully for three-and-a-half years. On September 8, 2004, the spacecraft approached Earth, pointed the Sample Return Capsule (SRC) at its entry target, and then fired pyros that jettisoned the SRC. The SRC carried the valuable samples collected over the prior 29 months. The SRC also contained the requisite hardware (mechanisms, parachutes, and electronics) to manage the process of entry, descent, and landing (EDL). After entering Earthas atmosphere, the SRC was expected to open a drogue parachute. This should have been followed by a pyro event to release the drogue chute, and then by a pyro event to deploy the main parachute at an approximate elevation of 6.7 kilometers. As the SRC descended to the Utah landing site, helicopters were in position to capture the SRC before the capsule touched down. On September 8, 2004, observers of the SRCas triumphant return became concerned as the NASA announcer fell silent, and then became even more alarmed as they watched the spacecraft tumble as it streaked across the sky. Long-distance cameras clearly showed that the drogue parachute had not deployed properly. On September 9, 2004, General Eugene Tattini, Deputy Director of the Jet Propulsion Laboratory formed a Failure Review Board (FRB). This board was charged with investigating the cause of the Genesis mishap in close concert with the NASA Mishap Investigation Board (MIB). The JPL-FRB was populated with experts from within and external to the Jet Propulsion Laboratory. The JPL-FRB participated with the NASA-MIB through all phases of the investigation, working jointly and concurrently as one team to discover the facts of the mishap.

  7. Experiences with the JPL telerobot testbed: Issues and insights

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Balaram, Bob; Beahan, John

    1989-01-01

    The Jet Propulsion Laboratory's (JPL) Telerobot Testbed is an integrated robotic testbed used to develop, implement, and evaluate the performance of advanced concepts in autonomous, tele-autonomous, and tele-operated control of robotic manipulators. Using the Telerobot Testbed, researchers demonstrated several of the capabilities and technological advances in the control and integration of robotic systems which have been under development at JPL for several years. In particular, the Telerobot Testbed was recently employed to perform a near completely automated, end-to-end, satellite grapple and repair sequence. The task of integrating existing as well as new concepts in robot control into the Telerobot Testbed has been a very difficult and timely one. Now that researchers have completed the first major milestone (i.e., the end-to-end demonstration) it is important to reflect back upon experiences and to collect the knowledge that has been gained so that improvements can be made to the existing system. It is also believed that the experiences are of value to the others in the robotics community. Therefore, the primary objective here will be to use the Telerobot Testbed as a case study to identify real problems and technological gaps which exist in the areas of robotics and in particular systems integration. Such problems have surely hindered the development of what could be reasonably called an intelligent robot. In addition to identifying such problems, researchers briefly discuss what approaches have been taken to resolve them or, in several cases, to circumvent them until better approaches can be developed.

  8. JPL's role in the SETI program

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1986-01-01

    The goal of the JPL SETI Team is to develop the strategies and the instrumentation required to carry out an effective, yet affordable, SETI Microwave Observing Program. The primary responsibility for JPL is the development and implementation of the Sky Survey component of the bimodal search program recommended by the SETI Science Working Group (NASA Technical Paper 2244, 1983). JPL is also responsible for the design and implementation of microwave analog instrumentation (including antenna feed systems, low noise RF amplifiers, antenna monitor and control interfaces, etc.) to cover the microwave window for the Sky Survey and the Target Search observations. The primary site for the current SETI Field Test activity is the Venus Station of the Goldstone Deep Space Communication Complex. A SETI controller was constructed and installed so that pre-programmed and real time SETI monitor and control data can be sent to and from the station controller. This unit will be interfaced with the MCSA. A SETI Hardware Handbook was prepared to describe the various systems that will be used by the project at the Venus Station; the handbook is frequently being expanded and updated. The 65,000 channel FFT Spectrum analyzer in the RFI Surveillance System was modified to permit operation with variable resolutions (300 Hz to less than 1 Hz) and with real-time accumulation, which will enhance the capability of the system for testing Sky Survey search strategies and signal detection algorithms.

  9. Pasadena, California Anaglyph with Aerial Photo Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph shows NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. Red-blue glasses are required to see the 3-D effect. The surrounding residential areas of La Canada-Flintridge (to the left) and Altadena/Pasadena (to the right) are also shown. JPL is located at the base of the San Gabriel Mountains, an actively growing mountain range, seen towards the top of the image. The large canyon coming out of the mountains (top to bottom of image) is the Arroyo Seco, which is a major drainage channel for the mountains. Sand and gravel removal operations in the lower part of the arroyo (bottom of image) are removing debris brought down by flood and mudflow events. Old landslide scars (lobe-shaped features) are seen in the arroyo, evidence that living near steep canyon slopes in tectonically active areas can be hazardous. The data can also be utilized by recreational users such as hikers enjoying the natural beauty of these rugged mountains.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. The detailed aerial image was provided by U. S. Geological Survey digital orthophotography. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  10. Publications of the Jet Propulsion Laboratory 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Jet propulsion Laboratory (JPL) bibliography describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1983, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included. JPL Publication (81-,82-,83-series, etc.), in which the information is complete for a specific accomplishment, articles published in the open literature, and articles from the quarterly telecommunications and Data Acquisition (TDA) Progress Report (42-series) are included. Each collection of articles in this class of publication presents a periodic survey of current accomplishments by the Deep Space Network as well as other developments in Earth-based radio technology.

  11. A Summer Research Program of NASA/Faculty Fellowships at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Albee, Arden

    2004-01-01

    The NASA Faculty Fellowship Program (NFFP) is designed to give college and university faculty members a rewarding personal as well as enriching professional experience. Fellowships are awarded to engineering and science faculty for work on collaborative research projects of mutual interest to the fellow and his or her JPL host colleague. The Jet Propulsion Laboratory (JPL) and the California Institute of Technology (Caltech) have participated in the NASA Faculty Fellowship Program for more than 25 years. Administrative offices are maintained both at the Caltech Campus and at JPL; however, most of the activity takes place at JPL. The Campus handles all fiscal matters. The duration of the program is ten continuous weeks. Fellows are required to conduct their research on-site. To be eligible to participate in the program, fellows must be a U.S. citizen and hold a teaching or research appointment at a U.S. university or college. The American Society of Engineering Education (ASEE) contracts with NASA and manages program recruitment. Over the past several years, we have made attempts to increase the diversity of the participants in the NFFP Program. A great deal of attention has been given to candidates from minority-serving institutions. There were approximately 100 applicants for the 34 positions in 2002. JPL was the first-choice location for more than half of them. Faculty from 16 minority-serving institutions participated as well as four women. The summer began with an orientation meeting that included introduction of key program personnel, and introduction of the fellows to each other. During this welcome, the fellows were briefed on their obligations to the program and to their JPL colleagues. They were also given a short historical perspective on JPL and its relationship to Caltech and NASA. All fellows received a package, which included information on administrative procedures, roster of fellows, seminar program, housing questionnaire, directions to JPL, maps of

  12. Credit WCT. Original 4"x5" black and white negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view shows the underfloor ductwork of Building E-46 during construction. The ductwork conducts hot or cold air to maintain required temperatures in the curing chamber (JPL negative no. 381-2569, 12 December 1962) - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA

  13. Goldstone Tracking the Echo Satelloon.

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. This photograph shows the first pass of Echo 1, NASA's first communications satellite, over the Goldstone Tracking Station managed by NASA's Jet Propulsion Laboratory, in Pasadena, California, in the early morning of Aug. 12, 1960. The movement of the antenna, star trails (shorter streaks), and Echo 1 (the long streak in the middle) are visible in this image. Project Echo bounced radio signals off a 10-story-high, aluminum-coated balloon orbiting the Earth. This form of "passive" satellite communication -- which mission managers dubbed a "satelloon" -- was an idea conceived by an engineer from NASA's Langley Research Center in Hampton, Virginia, and was a project managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. JPL's role involved sending and receiving signals through two of its 85-foot-diameter (26-meter-diameter) antennas at the Goldstone Tracking Station in California's Mojave Desert. The Goldstone station later became part of NASA's Deep Space Network. JPL, a division of Caltech in Pasadena, California, manages the Deep Space Network for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA21114

  14. Voyager Testing

    NASA Image and Video Library

    2017-07-05

    This image shows one of the Voyagers in the 25-foot space simulator chamber at NASA's Jet Propulsion Laboratory, Pasadena, California. The photo is dated April 27, 1977. https://photojournal.jpl.nasa.gov/catalog/PIA21737

  15. The JPL functional requirements tool

    NASA Technical Reports Server (NTRS)

    Giffin, Geoff; Skinner, Judith; Stoller, Richard

    1987-01-01

    Planetary spacecraft are complex vehicles which are built according to many thousands of requirements. Problems encountered in documenting and maintaining these requirements led to the current attempt to reduce or eliminate these problems by a computer automated data base Functional Requirements Tool. The tool developed at JPL and in use on several JPL Projects is described. The organization and functionality of the Tool, together with an explanation of the data base inputs, their relationships, and use are presented. Methods of interfacing with external documents, representation of tables and figures, and methods of approval and change processing are discussed. The options available for disseminating information from the Tool are identified. The implementation of the Requirements Tool is outlined, and the operation is summarized. The conclusions drawn from this work is that the Requirements Tool represents a useful addition to the System Engineer's Tool kit, it is not currently available elsewhere, and a clear development path exists to expand the capabilities of the Tool to serve larger and more complex projects.

  16. Engineers Test Roll-Off at JPL

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at JPL shows engineers testing the route by which the Mars Exploration Rover Opportunity will roll off its lander. Opportunity touched down at Meridiani Planum, Mars on Jan. 24, 9:05 p.m. PST, 2004, Earth-received time.

  17. A systems approach to the commercialization of space communications technology - The NASA/JPL Mobile Satellite Program

    NASA Technical Reports Server (NTRS)

    Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.

    1991-01-01

    This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.

  18. NDSC and JPL stratospheric lidars

    NASA Technical Reports Server (NTRS)

    McDermid, I. Stuart

    1995-01-01

    The Network for the Detection of Stratospheric Change is an international cooperation providing a set of high-quality, remote-sensing instruments at observing stations around the globe. A brief description of the NDSC and its goals is presented. Lidar has been selected as the NDSC instrument for measurements of stratospheric profiles of ozone, temperature, and aerosol. The Jet Propulsion Laboratory has developed and implemented two stratospheric lidar systems for NDSC. These are located at Table Mountain, California, and at Mauna Loa, Hawaii. These systems, which utilize differential absorption lidar, Rayleigh lidar, raman lidar, and backscatter lidar, to measure ozone, temperature, and aerosol profiles in the stratosphere are briefly described. Examples of results obtained for both long-term and individual profiles are presented.

  19. Site Environmental Report for 2016 Sandia National Laboratories California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary ofmore » environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.« less

  20. Voyager 2: Rendezvous with Saturn - America celebrates its space flight at the JPL

    NASA Astrophysics Data System (ADS)

    Thiele, S.

    1981-11-01

    Impressions of a German scientist invited to the Jet Propulsion Laboratory during the time of the rendezvous of Voyager 2 with Saturn are presented. During the period from the 21st to the 28th of August 1981, Voyager 2 transmitted data concerning Saturn and its satellites to earth. The received information, including photographs and measurement results, were made available at the JPL to approximately 100 scientists and a few hundred reporters. The future of planetary research is briefly discussed, and attention is given to a space mission for the study of the comet Halley in 1986.

  1. Test aspects of the JPL Viterbi decoder

    NASA Technical Reports Server (NTRS)

    Breuer, M. A.

    1989-01-01

    The generation of test vectors and design-for-test aspects of the Jet Propulsion Laboratory (JPL) Very Large Scale Integration (VLSI) Viterbi decoder chip is discussed. Each processor integrated circuit (IC) contains over 20,000 gates. To achieve a high degree of testability, a scan architecture is employed. The logic has been partitioned so that very few test vectors are required to test the entire chip. In addition, since several blocks of logic are replicated numerous times on this chip, test vectors need only be generated for each block, rather than for the entire circuit. These unique blocks of logic have been identified and test sets generated for them. The approach employed for testing was to use pseudo-exhaustive test vectors whenever feasible. That is, each cone of logid is tested exhaustively. Using this approach, no detailed logic design or fault model is required. All faults which modify the function of a block of combinational logic are detected, such as all irredundant single and multiple stuck-at faults.

  2. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    NASA Astrophysics Data System (ADS)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  3. JPL-20170915-CASSINf-0002-Cassini End of Mission Post Event Press ConferenceAVAIL

    NASA Image and Video Library

    2017-09-15

    This press briefing summarizes the end of NASA-ESA's Cassini-Huygens mission to Saturn and presents the final images made by the spacecraft before its planned disintegration in Saturn's atmosphere on September 15, 2017. Featured: Earl Maize, Cassini Program Manager, JPL; Linda Spilker, Cassini Project Scientist, JPL; Julie Webster, Cassini Spacecraft operations Manager, JPL; and Thomas Zurbuchen, Associate Administrator, Science Mission Directorate, NASA HQ.

  4. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker, right, looks on as Cassini program manager at JPL, Earl Maize speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Mono Lake, California

    NASA Image and Video Library

    2017-03-24

    In eastern California, along the western edge of the Great Basin, sits Mono Lake. This is a salty remnant of a wetter era. Estimates are that the lake existed for at least 760,000 years. Now surrounded by mountain ranges, however, Mono Lake has no outlet; water entering the lake can only evaporate away, so Mono Lake is saltier than the ocean. South of the lake appear some of the geologic features known as Mono Craters. Geologists estimate that the Mono Craters last erupted about 650 years ago. The image was acquired July 7, 2016, covers an area of 22.6 by 34 km, and is located at 37.9 degrees north, 119 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA21518

  6. Credit WCT. Original 4"x5" black and white negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view shows Building E-39 under construction. E-39 is an example of the typical reinforced concrete block construction of the E-30s and E-40s structures (JPL negative no. 381-2586, 13 December 1962) - Jet Propulsion Laboratory Edwards Facility, Propellant Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  7. Credit WCT. Original 4" x 5" black and white print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 4" x 5" black and white print housed in the JPL Archives, Pasadena, California. This view displays the west elevation of the mixer building and barricades. The slide from the second floor balcony (missing in 1995) provided rapid emergency evacuation for personnel in case of fire or other imminent danger. JPL negative 384-10506, 7 July 1964 - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA

  8. State of laboratory manual instruction in California community college introductory (non-majors) biology laboratory instruction

    NASA Astrophysics Data System (ADS)

    Priest, Michelle

    College students must complete a life science course prior to graduation for a bachelor's degree. Generally, the course has lecture and laboratory components. It is in the laboratory where there are exceptional opportunities for exploration, challenge and application of the material learned. Optimally, this would utilize the best of inquiry based approaches. Most community colleges are using a home-grown or self written laboratory manual for the direction of work in the laboratory period. Little was known about the motivation, development and adaptation of use. It was also not known about the future of the laboratory manuals in light of the recent learning reform in California Community Colleges, Student Learning Outcomes. Extensive interviews were conducted with laboratory manual authors to determine the motivation, process of development, who was involved and learning framework used in the creation of the manuals. It was further asked of manual authors their ideas about the future of the manual, the development of staff and faculty and finally, the role Student Learning Outcomes would play in the manual. Science faculty currently teaching the non-majors biology laboratories for at least two semesters were surveyed on-line about actual practice of the manual, assessment, manual flexibility, faculty training and incorporation of Student Learning Outcomes. Finally, an evaluation of the laboratory manual was done using an established Laboratory Task Analysis Instrument. Laboratory manuals were evaluated on a variety of categories to determine the level of inquiry instruction done by students in the laboratory section. The results were that the development of homegrown laboratory manuals was done by community colleges in the Los Angeles and Orange Counties in an effort to minimize the cost of the manual to the students, to utilize all the exercises in a particular lab and to effectively utilize the materials already owned by the department. Further, schools wanted to

  9. Mars Science Laboratory Rover and Descent Stage

    NASA Image and Video Library

    2008-11-19

    In this February 17, 2009, image, NASA Mars Science Laboratory rover is attached to the spacecraft descent stage. The image was taken inside the Spacecraft Assembly Facility at NASA JPL, Pasadena, Calif.

  10. Global features of ionospheric slab thickness derived from JPL TEC and COSMIC observations

    NASA Astrophysics Data System (ADS)

    Huang, He; Liu, Libo

    2016-04-01

    The ionospheric equivalent slab thickness (EST) is the ratio of total electron content (TEC) to F2-layer peak electron density (NmF2), describing the thickness of the ionospheric profile. In this study, we retrieve EST from Jet Propulsion Laboratory (JPL) TEC data and NmF2 retrieved from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) ionospheric radio occultation data. The diurnal, seasonal and solar activity variations of global EST are analyzed as the excellent spatial coverage of JPL TEC and COSMIC data. During solstices, daytime EST in the summer hemisphere is larger than that in the winter hemisphere, except in some high-latitude regions; and the reverse is true for the nighttime EST. The peaks of EST often appear at 0400 local time. The pre-sunrise enhancement in EST appears in all seasons, while the post-sunset enhancement in EST is not readily observed in equinox. The dependence of EST on solar activity is very complicated. Furthermore, an interesting phenomenon is found that EST is enhanced from 0° to 120° E in longitude and 30° to 75° S in latitude during nighttime, just to the east of Weddell Sea Anomaly, during equinox and southern hemisphere summer.

  11. Emerging Array Antenna Technologies at JPL

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1998-01-01

    JPL/NASA's Earth remote sensing and deep-space exploration programs have been placing emphasis on their spacecraft's high-gain and large-aperture antennas. At the same time, however, low mass and small storage volume are demanded in order to reduce payload weight and reduce shroud size and thus reduce launch cost.

  12. The Mars Express/NASA Project at JPL

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S.; Goltz, G.

    2006-03-01

    The Mars Express/NASA Project at JPL supports much of the U.S. involvement in ESA's Mars Express mission. Mars Express has just completed its prime mission in late 2005 and has embarked on its first extended mission cycle.

  13. Cruise Stage Testing for Mars Science Laboratory

    NASA Image and Video Library

    2010-09-02

    Testing of the cruise stage for NASA Mars Science Laboratory in August 2010 included a session in a facility that simulates the environment found in interplanetary space. Spacecraft technicians at JPL prepare a space-simulation test.

  14. JPL-20180410-GRACEFOf-0001-Facebook

    NASA Image and Video Library

    2018-04-10

    GRACE-Follow On (GRACE-FO) is a satellite mission scheduled for launch in May 2018. GRACE-FO will continue the work of the GRACE satellite mission tracking Earth's water movement around the globe. These discoveries provide a unique view of Earth's climate and have far-reaching benefits to society and the world's population. For more information about this mission, visit https://www.nasa.gov/missions/grace-fo and https://gracefo.jpl.nasa.gov/

  15. Activities of the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Work accomplished by the Jet Propulsion Laboratory (JPL) under contract to NASA in 1985 is described. The work took place in the areas of flight projects, space science, geodynamics, materials science, advanced technology, defense and civil programs, telecommunications systems, and institutional activities.

  16. JPL CMOS Active Pixel Sensor Technology

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    This paper will present the JPL-developed complementary metal- oxide-semiconductor (CMOS) active pixel sensor (APS) technology. The CMOS APS has achieved performance comparable to charge coupled devices, yet features ultra low power operation, random access readout, on-chip timing and control, and on-chip analog to digital conversion. Previously published open literature will be reviewed.

  17. NASA's Mobile and Telecom Antenna Development at JPL

    NASA Technical Reports Server (NTRS)

    Huang, John

    1997-01-01

    Chartered by NASA to develop and demonstrate enabling technologies for mobile and satellite telecommuniation systems, JPL has developed various antenna technologies throughout the microwave spectrum in the past two decades.

  18. JPL Project Information Management: A Continuum Back to the Future

    NASA Technical Reports Server (NTRS)

    Reiz, Julie M.

    2009-01-01

    This slide presentation reviews the practices and architecture that support information management at JPL. This practice has allowed concurrent use and reuse of information by primary and secondary users. The use of this practice is illustrated in the evolution of the Mars Rovers from the Mars Pathfinder to the development of the Mars Science Laboratory. The recognition of the importance of information management during all phases of a project life cycle has resulted in the design of an information system that includes metadata, has reduced the risk of information loss through the use of an in-process appraisal, shaping of project's appreciation for capturing and managing the information on one project for re-use by future projects as a natural outgrowth of the process. This process has also assisted in connection of geographically disbursed partners into a team through sharing information, common tools and collaboration.

  19. Voyager Proof Test Model and Cleanroom

    NASA Image and Video Library

    1977-01-12

    This archival photo shows the Voyager Proof Test Model (in the foreground right of center) undergoing a mechanical preparation and weight center of gravity test at NASA's Jet Propulsion Laboratory, Pasadena, California, on January 12, 1977. https://photojournal.jpl.nasa.gov/catalog/PIA21476

  20. USC/JPL GAIM: A Real-Time Global Ionospheric Data Assimilation Model

    NASA Astrophysics Data System (ADS)

    Mandrake, L.; Wilson, B. D.; Hajj, G.; Wang, C.; Pi, X. `; Iijima, B.

    2004-12-01

    We are in the midst of a revolution in ionospheric remote sensing driven by the illuminating powers of ground and space-based GPS receivers, new UV remote sensing satellites, and the advent of data assimilation techniques for space weather. The University of Southern Califronia (USC) and the Jet Propulsion Laboratory (JPL) have jointly developed a Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for DoD customers and NASA flight projects. GAIM is a physics-based 3D data assimilation model that uses both 4DVAR and Kalman filter techniques to solve for the ion & electron density state and key drivers such as equatorial electrodynamics, neutral winds, and production terms. GAIM accepts as input ground GPS TEC data from 900+ sites, occultation links from CHAMP, SAC-C, IOX, and the coming COSMIC constellation, UV limb and nadir scans from the TIMED and DMSP satellites, and in situ data from a variety of satellites (C/NOFS & DMSP). GAIM can ingest multiple data sources in real time, updates the 3D electron density grid every 5 minutes, and solves for improved drivers every 1-2 hours. GAIM density retrievals have been validated by comparisons to vertical TEC measurements from TOPEX & JASON, slant TEC measurements from independent GPS sites, density profiles from ionosondes & incoherent scatter radars, and alternative tomographic retrievals. Daily USC/JPL GAIM runs have been operational since March 2003 using 100-200 ground GPS sites as input and TOPEX/JASON and ionosondes for daily validation. A prototype real-time GAIM system has been running since May 2004. RT GAIM ingests TEC data from 77+ streaming GPS sites every 5 minutes, adds more TEC for better global coverage every hour from hourly GPS sites, and updates the ionospheric state every 5 minutes using the Kalman filter. We plan to add TEC links from COSMIC occultations and UV radiance data from the DMSP satellites, when they become

  1. Advancing the practice of systems engineering at JPL

    NASA Technical Reports Server (NTRS)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of

  2. Review and Assessment of JPL's Thermal Margins

    NASA Technical Reports Server (NTRS)

    Siebes, G.; Kingery, C.; Farguson, C.; White, M.; Blakely, M.; Nunes, J.; Avila, A.; Man, K.; Hoffman, A.; Forgrave, J.

    2012-01-01

    JPL has captured its experience from over four decades of robotic space exploration into a set of design rules. These rules have gradually changed into explicit requirements and are now formally implemented and verified. Over an extended period of time, the initial understanding of intent and rationale for these rules has faded and rules are now frequently applied without further consideration. In the meantime, mission classes and their associated risk postures have evolved, coupled with resource constraints and growing design diversity, bringing into question the current "one size fits all" thermal margin approach. This paper offers a systematic review of the heat flow path from an electronic junction to the eventual heat rejection to space. This includes the identification of different regimes along this path and the associated requirements. The work resulted in a renewed understanding of the intent behind JPL requirements for hot thermal margins and a framework for relevant considerations, which in turn enables better decision making when a deviation to these requirements is considered.

  3. JPL Space Telecommunications Radio System Operating Environment

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  4. Yogi the rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. The soil in the foreground will be the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists will be able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties.

    The image was taken by the Imager for Mars Pathfinder (IMP) after its deployment on Sol 3. Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  5. Harnessing Electricity from Chemical Gardens

    NASA Image and Video Library

    2015-08-05

    This photo simulation shows a laboratory-created "chemical garden," which is a chimney-like structure found at bubbling vents on the seafloor. Some researchers think life on Earth might have got its start at structures like these billions of years ago, partly due to their ability to transfer electrical currents -- an essential trait of life as we know it. The battery-like property of these chemical gardens was demonstrated by linking several together in series to light an LED (light-emitting diode) bulb. In this photo simulation, the bulb is not really attached to the chimney. The chimney membranes are made of iron sulfides and iron hydroxides, geologic materials that conduct electrons. JPL's research team is part of the Icy Worlds team of the NASA Astrobiology Institute, based at NASA's Ames Research Center in Moffett Field, California. JPL is managed by the California Institute of Technology in Pasadena for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA19834

  6. Space Images for NASA JPL Android Version

    NASA Technical Reports Server (NTRS)

    Nelson, Jon D.; Gutheinz, Sandy C.; Strom, Joshua R.; Arca, Jeremy M.; Perez, Martin; Boggs, Karen; Stanboli, Alice

    2013-01-01

    This software addresses the demand for easily accessible NASA JPL images and videos by providing a user friendly and simple graphical user interface that can be run via the Android platform from any location where Internet connection is available. This app is complementary to the iPhone version of the application. A backend infrastructure stores, tracks, and retrieves space images from the JPL Photojournal and Institutional Communications Web server, and catalogs the information into a streamlined rating infrastructure. This system consists of four distinguishing components: image repository, database, server-side logic, and Android mobile application. The image repository contains images from various JPL flight projects. The database stores the image information as well as the user rating. The server-side logic retrieves the image information from the database and categorizes each image for display. The Android mobile application is an interfacing delivery system that retrieves the image information from the server for each Android mobile device user. Also created is a reporting and tracking system for charting and monitoring usage. Unlike other Android mobile image applications, this system uses the latest emerging technologies to produce image listings based directly on user input. This allows for countless combinations of images returned. The backend infrastructure uses industry-standard coding and database methods, enabling future software improvement and technology updates. The flexibility of the system design framework permits multiple levels of display possibilities and provides integration capabilities. Unique features of the software include image/video retrieval from a selected set of categories, image Web links that can be shared among e-mail users, sharing to Facebook/Twitter, marking as user's favorites, and image metadata searchable for instant results.

  7. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, right, Cassini project scientist at JPL, Linda Spilker, center, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, are seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. MEMS Reliability Assurance Activities at JPL

    NASA Technical Reports Server (NTRS)

    Kayali, S.; Lawton, R.; Stark, B.

    2000-01-01

    An overview of Microelectromechanical Systems (MEMS) reliability assurance and qualification activities at JPL is presented along with the a discussion of characterization of MEMS structures implemented on single crystal silicon, polycrystalline silicon, CMOS, and LIGA processes. Additionally, common failure modes and mechanisms affecting MEMS structures, including radiation effects, are discussed. Common reliability and qualification practices contained in the MEMS Reliability Assurance Guideline are also presented.

  9. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of JPL's 2009 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Smart, M.C.; Ratnakumar, B.V.; Whitcanack, L. D.; Dewell, E. A.; Jones, L. E.; Salvo, C. G.; Puglia, F. J.; Cohen, S.; Gitzendanner, R.

    2008-01-01

    In 2009, JPL is planning to launch an unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than three years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar lithium-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. Although comparable in many facets, such as being required to operate over a wide temperature range (-20 to 40 C), the MSL mission has more demanding performance requirements compared to the MER mission, including much longer mission duration (approx. 687 sols vs. 90 sols), higher power capability, and the need to withstand higher temperature excursions. In addition, due to the larger rover size, the MSL mission necessitates the use of a much larger battery to meet the energy, life, and power requirements. In order to determine the viability of meeting these requirements, a number of performance verification tests were performed on 10 Ah Yardney lithium-ion cells (MER design) under MSL-relevant conditions, including mission surface operation simulation testing. In addition, the performance of on-going ground life testing of 10 Ah MER cells and 8-cell batteries will be discussed in the context of capacity loss and impedance growth predictions.

  10. Real-Time GNSS Positioning with JPL's new GIPSYx Software

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2016-12-01

    The JPL Global Differential GPS (GDGPS) System is now producing real-time orbit and clock solutions for GPS, GLONASS, BeiDou, and Galileo. The operations are based on JPL's next generation geodetic analysis and data processing software, GIPSYx (also known at RTGx). We will examine the impact of the nascent GNSS constellations on real-time kinematic positioning for earthquake monitoring, and assess the marginal benefits from each constellation. We will discus the options for signal selection, inter-signal bias modeling, and estimation strategies in the context of real-time point positioning. We will provide a brief overview of the key features and attributes of GIPSYx. Finally we will describe the current natural hazard monitoring services from the GDGPS System.

  11. The Mars Express/NASA Project at JPL

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S. W.; Goltz, G.

    2005-01-01

    An overview of the Mars Express/NASA Project at JPL is presented. The topics include: 1) Mars Express Mission Experiments and Investigators; 2) Mars Advanced Radar for Subsurface and Ionospheric Soundig (MARSIS) Overview; 3) MARSIS Experiment Overview; 4) Interoperability Concept; 5) Mars Express Science Operations; 6) Mars Express Schedule (2003-2007);

  12. Leveraging Cloud Technology to Provide a Responsive, Reliable and Scalable Backend for the Virtual Ice Sheet Laboratory Using the Ice Sheet System Model and Amazon's Elastic Compute Cloud

    NASA Astrophysics Data System (ADS)

    Perez, G. L.; Larour, E. Y.; Halkides, D. J.; Cheng, D. L. C.

    2015-12-01

    The Virtual Ice Sheet Laboratory(VISL) is a Cryosphere outreach effort byscientists at the Jet Propulsion Laboratory(JPL) in Pasadena, CA, Earth and SpaceResearch(ESR) in Seattle, WA, and the University of California at Irvine (UCI), with the goal of providing interactive lessons for K-12 and college level students,while conforming to STEM guidelines. At the core of VISL is the Ice Sheet System Model(ISSM), an open-source project developed jointlyat JPL and UCI whose main purpose is to model the evolution of the polar ice caps in Greenland and Antarctica. By using ISSM, VISL students have access tostate-of-the-art modeling software that is being used to conduct scientificresearch by users all over the world. However, providing this functionality isby no means simple. The modeling of ice sheets in response to sea and atmospheric temperatures, among many other possible parameters, requiressignificant computational resources. Furthermore, this service needs to beresponsive and capable of handling burst requests produced by classrooms ofstudents. Cloud computing providers represent a burgeoning industry. With majorinvestments by tech giants like Amazon, Google and Microsoft, it has never beeneasier or more affordable to deploy computational elements on-demand. This isexactly what VISL needs and ISSM is capable of. Moreover, this is a promisingalternative to investing in expensive and rapidly devaluing hardware.

  13. Aeroshell for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    this image does not have the tiles.

    JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  14. Publications of the Jet Propulsion Laboratory, 1992

    NASA Technical Reports Server (NTRS)

    1994-01-01

    JPL Bibliography 39-33 describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1992, that resulted from scientific and engineering work performed or managed by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publication (92-series) in which the information is complete for a specific accomplishment; (2) articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report (42-series) (each collection of articles in this class of publication presents a periodic survey of current accomplishments by the Deep Space Network as well as other developments in Earth-based radio technology); and (3) articles published in the open literature.

  15. Current progress on TPFI nulling architectures at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Gappinger, Robert O.; Wallace, J. Kent; Bartos, Randall D.; Macdonald, Daniel R.; Brown, Kenneth A.

    2005-01-01

    Infrared interferometric nulling is a promising technology for exoplanet detection. Nulling research for the Terrestrial Planet Finder Interferometer has been exploring a variety of interferometer architectures at the Jet Propulsion Laboratory (JPL).

  16. Environmental projects. Volume 15: Environmental assessment: Proposed 1-megawatt radar transmitter at the Mars site

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 64.5 km (40 mi) north of Barstow, California. and about 258 km (160 mi) northeast of Pasadena, California, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN), one of the world's larger and more sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC support the operation of six parabolic dish antennas located at five separate sites called Deep Space Stations (DSS's). Four sites, named Echo, Mars, Uranus, and Apollo, are operational for space missions, while the remaining Venus Site is devoted to research and development activities. The Mars Site at the GDSCC contains two antennas: the Uranus antenna (DSS 15, 34 m) and the Mars antenna (DSS 14, 70 m). This present volume deals solely with the DSS-14 Mars antenna. The Mars antenna not only can act as a sensitive receiver to detect signals from spacecraft, but it also can be used in radar astronomy as a powerful transmitter to send out signals to probe the solar system. At present, the Mars antenna operates as a continuous-wave microwave system at a frequency of 8.51 GHz at a power level of 0.5 MW. JPL has plans to upgrade the Mars antenna to a power level of 1 MW. Because of the anticipated increase in the ambient levels of radio frequency radiation (RFR), JPL retained Battelle Pacific Northwest Laboratories (BPNL), Richland, Washington, to conduct an environmental assessment with respect to this increased RFR. This present volume is a JPL-expanded version of the BPNL report titled Environmental Assessment of the Goldstone Solar System Radar, which was submitted to JPL in Nov. 1991. This BPNL report concluded that the operation of the upgraded Mars antenna at the

  17. Disturbing Pop-Tart

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover's front right camera imaged Pop-tart, a small rock or indurated soil material which was pushed out of the surrounding drift material by Sojourner's front left wheel during a soil mechanics experiment.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. Spatial distribution of free-of-charge pathology submissions to the California Animal Health and Food Safety laboratories during the exotic Newcastle outbreak in 2002-2003.

    PubMed

    Soberano, Gustavo; Carpenter, A Tim E; Cardona, Carol; Charlton, Bruce

    2009-03-01

    After the 1971-1973 outbreak of exotic Newcastle disease (END) in California, a free-of-charge diagnostic submission program was created for backyard poultry flocks. This program was implemented to improve disease surveillance in small poultry flocks. The aim of this study was to evaluate the spatial distribution of free-of-charge pathology submissions to the California Animal Health and Food Safety laboratories during the END outbreak in 2002-2003. Cases and controls were selected from within a 100-mile (161-km) radius of each of three laboratories, and their geographic distributions were evaluated. Global clustering of cases was significant around all three laboratories, with mixed results at the local clustering level and the only significant clustering at the focal level around the Davis laboratory with an observed to expected ratio of approximately 5. The area of influence for all three laboratories was about 20 miles (32 km). The significant clustering of cases around the laboratories indicates that more public information about the free-of-charge program could result in coverage of a larger portion of the population; however, the value of the information resulting from increased sampling should be considered relative to the additional cost of obtaining it.

  19. Application of symmetry properties to polarimetric remote sensing with JPL AIRSAR data

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, Simon H.; Kwok, R.; Li, F. K.

    1992-01-01

    Based on symmetry properties, polarimetric remote sensing of geophysical media is studied. From the viewpoint of symmetry groups, media with reflection, rotation, azimuthal, and centrical symmetries are considered. The symmetries impose relations among polarimetric scattering coefficients, which are valid to all scattering mechanisms in the symmetrical configurations. Various orientation distributions of non-spherical scatterers can be identified from the scattering coefficients by a comparison with the symmetry calculations. Experimental observations are then analyzed for many geophysical scenes acquired with the Jet Propulsion Laboratory (JPL) airborne polarimetric SAR at microwave frequencies over sea ice and vegetation. Polarimetric characteristics of different ice types are compared with symmetry behaviors. The polarimetric response of a tropical rain forest reveals characteristics close to the centrical symmetry properties, which can be used as a distributed target to relatively calibrate polarimetric radars without any deployment of manmade calibration targets.

  20. Ultraviolet-Blocking Lenses Protect, Enhance Vision

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To combat the harmful properties of light in space, as well as that of artificial radiation produced during laser and welding work, Jet Propulsion Laboratory (JPL) scientists developed a lens capable of absorbing, filtering, and scattering the dangerous light while not obstructing vision. SunTiger Inc. now Eagle Eyes Optics, of Calabasas, California was formed to market a full line of sunglasses based on the JPL discovery that promised 100-percent elimination of harmful wavelengths and enhanced visual clarity. The technology was recently inducted into the Space Technology Hall of Fame.

  1. Artwork Separation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Under a grant from California Institute of Technology, Jet Propulsion Laboratory (JPL) and LACMA (Los Angeles County Museum of Art) used image enhancement techniques to separate x-ray images of paintings when one had been painted on top of another. The technique is derived from computer processing of spacecraft-acquired imagery, and will allow earlier paintings, some of which have been covered for centuries, to be evaluated. JPL developed the program for "subtracting" the top painting and enhancing the bottom one, and believes an even more advanced system is possible.

  2. Progress in Design and Construction of the Optical Communications Laser Laboratory

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Britcliffe, M.; Golshan, N.

    1999-01-01

    The deployment of advanced hyperspectral imaging and other Earth sensing instruments on board Earth observing satellites is driving the demand for high-data-rate communications. Optical communications meet the required data rates with small, low mass, and low-power communications packages. JPL, as NASA's lead center in optical communications, plans to construct a 1-m Optical Communications Telescope Laboratory (OCTL) at its Table Mountain Facility (TMF) complex in the San Gabriel Mountains of Southern California. The design of the building has been completed, and the construction contractor has been selected. Ground breaking is expected to start at the beginning of the 1999 TMF construction season. A request for proposal (RFP) has been issued for the procurement of the telescope system. Prior to letting the RFP we conducted a request for information with industry for the telescope system. Several vendors responded favorably and provided information on key elements of the proposed design. These inputs were considered in developing the final requirements in the RFP. Keywords: Free space optical communications, lasercom, telescopes, ground stations, adaptive optics, astrometry, Table Mountain Facility

  3. Extracting Tree Height from Repeat-Pass PolInSAR Data : Experiments with JPL and ESA Airborne Systems

    NASA Technical Reports Server (NTRS)

    Lavalle, Marco; Ahmed, Razi; Neumann, Maxim; Hensley, Scott

    2013-01-01

    In this paper we present our latest developments and experiments with the random-motion-over-ground (RMoG) model used to extract canopy height and other important forest parameters from repeat-pass polarimetricinterferometric SAR (Pol-InSAR) data. More specifically, we summarize the key features of the RMoG model in contrast with the random-volume-over-ground (RVoG) model, describe in detail a possible inversion scheme for the RMoG model and illustrate the results of the RMoG inversion using airborne data collected by the Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA).

  4. Mobile Timekeeping Application Built on Reverse-Engineered JPL Infrastructure

    NASA Technical Reports Server (NTRS)

    Witoff, Robert J.

    2013-01-01

    Every year, non-exempt employees cumulatively waste over one man-year tracking their time and using the timekeeping Web page to save those times. This app eliminates this waste. The innovation is a native iPhone app. Libraries were built around a reverse- engineered JPL API. It represents a punch-in/punch-out paradigm for timekeeping. It is accessible natively via iPhones, and features ease of access. Any non-exempt employee can natively punch in and out, as well as save and view their JPL timecard. This app is built on custom libraries created by reverse-engineering the standard timekeeping application. Communication is through custom libraries that re-route traffic through BrowserRAS (remote access service). This has value at any center where employees track their time.

  5. An American Laboratory: Population Growth and Environmental Quality in California.

    ERIC Educational Resources Information Center

    McConnell, Robert

    1993-01-01

    Describes the cumulative impact of rapid population growth, industrial and military activity, agriculture, and motor vehicles on California's environmental and social fabric. Discusses these problems in California as a forecast for the nation and test to consensus-based U.S. representative government. (Author/ MCO)

  6. California four cities program, 1971 - 1973. [aerospace-to-urban technology application

    NASA Technical Reports Server (NTRS)

    Macomber, H. L.; Wilson, J. H.

    1974-01-01

    A pilot project in aerospace-to-urban technology application is reported. Companies assigned senior engineering professionals to serve as Science and Technology Advisors to participating city governments. Technical support was provided by the companies and JPL. The cities, Anaheim, Fresno, Pasadena, and San Hose, California, provided the working environment and general service support. Each city/company team developed and carried out one or more technical or management pilot projects together with a number of less formalized technology efforts and studies. An account and evaluation is provided of the initial two-year phase of the program.

  7. Impact of Northern California Fires Seen in New NASA Satellite Image

    NASA Image and Video Library

    2017-10-23

    As firefighters continue to work toward full containment of the rash of wildfires burning in Northern California, a new image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite shows the growing fire scar on the landscape. In this ASTER image, acquired Oct. 21, 2017, vegetation is red, while burned areas appear dark gray. The image covers an area of 38 by 39 miles (60.5 by 63 kilometers) and is located near 38.5 degrees north, 122.4 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22049

  8. Three dimensional perspective view of Mammoth Mountain, California

    NASA Image and Video Library

    1994-04-17

    STS059-S-084 (17 April 1994) --- This is a three-dimensional perspective of Mammoth Mountain, California. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. Vertical exaggeration is 2x. The image is centered at 37.6 degrees north, 119.0 degrees west. It was acquired from the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on its 67th orbit, April 13, 1994. In this color representation, red is C-Band HV-polarization, green is C-Band VV-polarization and blue is the ratio of C-Band VV to C-Band HV. Blue areas are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. Crowley Lake is in the foreground and Highway 395 crosses in the middle of the image. Mammoth Mountain is shown in the upper right. SIR-C/X-SAR is part of NASA's Mission to Planet Earth (MTPE). SIR-C/X-SAR radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-Band (24 cm), C-Band (6 cm), and X-Band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory (JPL). X-SAR was developed by the Dornire and Alenia Spazio Companies for the German Space Agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian Space Agency, Agenzia Spaziale Italiana (ASI). JPL Photo ID: P-43933

  9. Team RoboSimian

    NASA Image and Video Library

    2015-06-09

    Many members of Team RoboSimian and a few guests gather with competition hardware at a "Meet the Robots" event during the DARPA Robotics Challenge Finals in Pomona, California, on June 6, 2015. The RoboSimian team at JPL is collaborating with partners at the University of California, Santa Barbara, and the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA19329

  10. NASA-JPL overview, space technology and relevance to medicine (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    van Zyl, Jakob

    2017-05-01

    There is special synergy between NASA space instruments and medical devices, especially those that may be implanted in the human body. For example, in both cases instruments have to be small, typically have to consume little power and often have to operate in harsh environments. JPL has a long history in using this synergy to leverage from the technology developed for space missions for application in medical fields. In this talk, we discuss the general overlap of technological requirements in the medical field and space science. We will highlight some examples where JPL instrumentation and engineering has been transferred successfully.

  11. JPL's On-Line Solar System Data Service

    NASA Astrophysics Data System (ADS)

    Giorgini, J. D.; Yeomans, D. K.; Chamberlin, A. B.; Chodas, P. W.; Jacobson, R. A.; Keesey, M. S.; Lieske, J. H.; Ostro, S. J.; Standish, E. M.; Wimberly, R. N.

    1996-09-01

    Numerous data products from the JPL ephemeris team are being made available via an interactive telnet computer service and separate web page. For over 15,000 comets and asteroids, 60 natural satellites, and 9 planets, users with an Internet connection can easily create and download information 24 hours a day, 7 days a week. These data include customized, high precision ephemerides, orbital and physical characteristics, and search-lists of comets and asteroids that match combinations of up to 39 different parameters. For each body, the user can request computation of more than 70 orbital and physical quantities. Ephemerides output can be generated in ICRF/J2000.0 and FK4/1950.0 reference frames with TDB, TT, or UTC timescales, as appropriate, at user specified intervals. Computed tables are derived from the same ephemerides used at JPL for radar astronomy and spacecraft navigation. The dynamics and computed observables include relativistic effects. Available ephemeris time spans currently range from A.D. 1599-2200 for the planets to a few decades for the satellites, comets and asteroids. Information on the interference from sunlight and moonlight is available. As an example of a few of the features available, we note that a user could easily generate information on satellite and planetary magnitudes, illuminated fractions, and the planetographic longitudes and latitudes of their centers and sub-solar points as seen from a particular observatory location on Earth. Satellite transits, occultations and eclipses are available as well. The resulting ASCII tables can be transferred to the user's host computer via e-mail, ftp, or kermit protocols. For those who have WWW access, the telnet solar system ephemeris service will be one feature of the JPL solar system web page. This page will provide up-to-date physical and orbital characteristics as well as current and predicted observing opportunities for all solar system bodies. Close Earth approaches and radar observations

  12. An update of the JPL program to develop Li-SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Halpert, S.; Ang, V.; Banes, R.; Dawson, S.; Frank, H.; Subbarao, S.; Whitcanack, L.

    1985-01-01

    The goal of producing spiral wound D cell was met. The cell design and electrodes, particularly the carbon cathodes were produced in-house. Also all parts were assembled, the welding performed, the electrolyte aided and the cells sealed in-house. The lithium capacity (theoretical) was 19.3 Ah and that of the SOCl2 in the 1.8 m LiAlCl4 electrolyte, 16.4 Ah (a greater excess of SOCl2 is necessary for safe high rate operation). The electrode surface area was 452 sq cm. The carbon electrode comprised Shawinigen Black/Teflon -30 (90/10 by weight) mixture 0.020 inches thick on an expanded metal screen prepared in the JPL laboratory. There were two tab connections to the cathode. The 0.0078 inch thick lithium foil was rolled into an expanded nickel screen. The separator was Mead 934-5 fiberglass material.

  13. Development of a safe ground to space laser propagation system for the optical communications telescope laboratory

    NASA Technical Reports Server (NTRS)

    Wu, Janet P.

    2003-01-01

    Furthering pursuits in high bandwidth communications to future NASA deep space and neat-Earth probes, the Jet Propulsion Laboratory (JPL) is building the Optical communications Telescope Laboratory (OCTL) atop Table Mountain in Southern California. This R&D optical antenna will be used to develop optical communication strategies for future optical ground stations. Initial experiments to be conducted include propagating high-powered, Q-switched laser beams to retro-reflecting satellites. Yet laser beam propagation from the ground to space is under the cognizance of various government agencies, namely: the Occupational Safety and Health Administration (ISHA) that is responsible for protecting workforce personnel; the Federal Aviation Administration (FAA) responsible for protecting pilots and aircraft; and the Laser Clearinghouse of Space Command responsible for protecting space assets. To ensure that laser beam propagation from the OCTL and future autonomously operated ground stations comply with the guidelines of these organizations, JPL is developing a multi-tiered safety system that will meet the coordination, monitoring, and reporting functions required by the agencies. At Tier 0, laser operators will meet OSHA safety standards for protection and access to the high power lasers area will be restricted and interlocked. Tier 1, the area defined from the telescope dome out to a range of 3.4-km, will utilize long wave infrared camera sensors to alert operators of at risk aircraft in the FAA controlled airspace. Tier 2, defined to extend from 3.4-km out to the aircraft service ceiling in FAA airspace, will detect at risk aircraft by radar. Lastly, beam propagation into space, defined as Tier 3, will require coordination with the Laser Clearinghouse. A detailed description of the four tiers is presented along with the design of the integrated monitoring and beam transmission control system.

  14. Data assimilation of ground GPG total electron content into a physics-based ionosheric model by use of the Kalman filter

    NASA Technical Reports Server (NTRS)

    Hajj, G. A.; Wilson, B. D.; Wang, C.; Pi, X.; Rosen, I. G.

    2004-01-01

    A three-dimensional (3-D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first-principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques.

  15. Rocky terrain & airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of very rocky terrain at the Ares Vallis landing site, along with the lander's deflated airbags, were imaged by the Imager for Mars Pathfinder (IMP) before its deployment on Sol 2. The metallic object at the bottom is a bracket for the IMP's release mechanism.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  16. Sojourner, Wedge, & Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Imager for Mars Pathfinder (IMP) image taken near the end of daytime operations on Sol 50 shows the Sojourner rover between the rocks 'Wedge' (foreground) and 'Shark' (behind rover). The rover successfully deployed its Alpha Proton X-Ray Spectrometer on Shark on Sol 52.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. Overview of the MARS Laser Communications Demonstration Project

    NASA Technical Reports Server (NTRS)

    Edward, Bernard L.; Townes, Stephen A.; Bondurant, Roy S.; Scozzafava, Joseph J.; Boroson, Don M.; Parvin, Ben A.; Biswas, Abhijit; Pillsbury, Alan D.; Khatri, Farzana I.; Burnside, Jamie W.

    2003-01-01

    This paper provides an overview of the Mars Laser Communications Demonstration Project, a joint project between NASA s Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reviews the strawman designs for the flight and ground segments, the critical technologies required, and the concept of operations. It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done at JPL and GSFC. The lasercom flight terminal will be flown on the Mars Telecom Orbiter (MTO) to be launched by NASA in 2009, and will demonstrate a technology which has the potential of vastly improving NASA s ability to communicate throughout the solar system.

  18. The JPL ASTER Volcano Archive: the development and capabilities of a 15 year global high resolution archive of volcano data.

    NASA Astrophysics Data System (ADS)

    Linick, J. P.; Pieri, D. C.; Sanchez, R. M.

    2014-12-01

    The physical and temporal systematics of the world's volcanic activity is a compelling and productive arena for the exercise of orbital remote sensing techniques, informing studies ranging from basic volcanology to societal risk. Comprised of over 160,000 frames and spanning 15 years of the Terra platform mission, the ASTER Volcano Archive (AVA: http://ava.jpl.nasa.gov) is the world's largest (100+Tb) high spatial resolution (15-30-90m/pixel), multi-spectral (visible-SWIR-TIR), downloadable (kml enabled) dedicated archive of volcano imagery. We will discuss the development of the AVA, and describe its growing capability to provide new easy public access to ASTER global volcano remote sensing data. AVA system architecture is designed to facilitate parameter-based data mining, and for the implementation of archive-wide data analysis algorithms. Such search and analysis capabilities exploit AVA's unprecedented time-series data compilations for over 1,550 volcanoes worldwide (Smithsonian Holocene catalog). Results include thermal anomaly detection and mapping, as well as detection of SO2 plumes from explosive eruptions and passive SO2 emissions confined to the troposphere. We are also implementing retrospective ASTER image retrievals based on volcanic activity reports from Volcanic Ash Advisory Centers (VAACs) and the US Air Force Weather Agency (AFWA). A major planned expansion of the AVA is currently underway, with the ingest of the full 1972-present LANDSAT, and NASA EO-1, volcano imagery for comparison and integration with ASTER data. Work described here is carried out under contract to NASA at the Jet Propulsion Laboratory as part of the California Institute of Technology.

  19. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from right, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, are seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, speaks during a press conference previewing Cassini's End of Mission as director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from left, and Cassini project scientist at JPL, Linda Spilker, second from right, look on, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, left, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Also participating in the press conference were Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from left, and principle investigator for the Ion and Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, answer questions from the media during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Stirling laboratory research engine survey report

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  4. Software risk estimation and management techniques at JPL

    NASA Technical Reports Server (NTRS)

    Hihn, J.; Lum, K.

    2002-01-01

    In this talk we will discuss how uncertainty has been incorporated into the JPL software model, probabilistic-based estimates, and how risk is addressed, how cost risk is currently being explored via a variety of approaches, from traditional risk lists, to detailed WBS-based risk estimates to the Defect Detection and Prevention (DDP) tool.

  5. The NASA/JPL Evaluation of Oxygen Interactions with Materials-3 (EOIM-3)

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Chung, Shirley Y.; Minton, Timothy K.; Liang, Ranty H.

    1994-01-01

    The deleterious effects of hyperthermal atomic oxygen (AO) found in low-earth-orbit (LEO) environments on critical flight materials has been known since early shuttle flights. This corrosive effect is of considerable concern because it compromises the performance and longevity of spacecraft/satellite materials deployed for extended periods in LEO. The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a testbed for a variety of candidate flight materials for space assets. A total of 57 JPL test specimens were present in six subexperiments aboard EOIM-3. In addition to a number of passive exposure materials for flight and advanced technology programs, several subexperiments were included to provide data for understanding the details of atomic oxygen interactions with materials. Data and interpretations are presented for the heated tray, heated strips, solar ultraviolet exposure, and scatterometer subexperiments, along with a detailed description of the exposure conditions experienced by materials in the various experiments. Mass spectra of products emerging from identical samples of a (sup 13)C-enriched polyimide polymer (chemically equivalent to Kapton) under atomic oxygen bombardment in space and in the laboratory were collected. Reaction products unambiguously detected in space were (sup 13)CO, NO, (sup 12)CO2, and (sup 13)CO2. These reaction products and two others, H2O and (sup 12)CO, were detected in the laboratory, along with inelastically scattered atomic and molecular oxygen. Qualitative agreement was seen in the mass spectra taken in space and in the laboratory; the agreement may be improved by reducing the fraction of O2 in the laboratory molecular beam.

  6. Shipping InSight Mars Spacecraft to California for Launch

    NASA Image and Video Library

    2018-02-28

    Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space, was shipped February 28, 2018, in preparation for launch from Vandenberg in May 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22220

  7. Shipping InSight Mars Spacecraft to California for Launch

    NASA Image and Video Library

    2018-02-28

    Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space, was shipped February 28, 2018, in preparation for launch from Vandenberg in May 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22252

  8. Shipping InSight Mars Spacecraft to California for Launch

    NASA Image and Video Library

    2018-02-28

    Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space, was shipped February 28, 2018, in preparation for launch from Vandenberg in May 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22253

  9. Cryosphere Science Outreach using the NASA/JPL Virtual Earth System Laboratory

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Cheng, D. L. C.; Quinn, J.; Halkides, D. J.; Perez, G. L.

    2016-12-01

    Understanding the role of Cryosphere Science within the larger context of Sea Level Rise is both a technical and educational challenge that needs to be addressed if the public at large is to truly understand the implications and consequences of Climate Change. Within this context, we propose a new approach in which scientific tools are used directly inside a mobile/website platform geared towards Education/Outreach. Here, we apply this approach by using the Ice Sheet System Model, a state of the art Cryosphere model developed at NASA, and integrated within a Virtual Earth System Laboratory, with the goal to outreach Cryosphere science to K-12 and College level students. The approach mixes laboratory experiments, interactive classes/lessons on a website, and a simplified interface to a full-fledged instance of ISSM to validate the classes/lessons. This novel approach leverages new insights from the Outreach/Educational community and the interest of new generations in web based technologies and simulation tools, all of it delivered in a seamlessly integrated web platform, relying on a state of the art climate model and live simulations.

  10. JPL Activated Carbon Treatment System (ACTS) for sewage

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  11. GPS Data Analysis for Earth Orientation at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Zumberge, J.; Webb, F.; Lindqwister, U.; Lichten, S.; Jefferson, D.; Ibanez-Meier, R.; Heflin, M.; Freedman, A.; Blewitt, G.

    1994-01-01

    Beginning June 1992 and continuing indefinitely as part of our contribution to FLINN (Fiducial Laboratories for an International Natural Science Network), DOSE (NASA's Dynamics of the Solid Earth Program), and the IGS (International GPS Geodynamics Service), analysts at the Jet Propulsion Laboratory (JPL) have routinely been reducing data from a globally-distributed network of Rogue Global Positioning System (GPS) receivers.

  12. NASA/JPL Aircraft SAR Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Donovan, N. (Editor); Evans, D. L. (Editor); Held, D. N. (Editor)

    1985-01-01

    Speaker-supplied summaries of the talks given at the NASA/JPL Aircraft SAR Workshop on February 4 and 5, 1985, are provided. These talks dealt mostly with composite quadpolarization imagery from a geologic or ecologic prespective. An overview and summary of the system characteristics of the L-band synthetic aperture radar (SAR) flown on the NASA CV-990 aircraft are included as supplementary information. Other topics ranging from phase imagery and interferometric techniques classifications of specific areas, and the potentials and limitations of SAR imagery in various applications are discussed.

  13. 41st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  14. AquaSimian Poster Artist Concept

    NASA Image and Video Library

    2015-03-11

    This artist's rendering shows a concept for a robot called AquaSimian that would assist with hazardous situations underwater. The concept is derived from RoboSimian, a land-based robot designed and built at the Jet Propulsion Laboratory in Pasadena, California. RoboSimian is shown in PIA19313. http://photojournal.jpl.nasa.gov/catalog/PIA19315

  15. KSC-97PC1028

    NASA Image and Video Library

    1997-07-08

    The complete remote sensing pallet is lowered by technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology and mated at the interface with the Cassini spacecraft in the Payload Hazardous Servicing Facility at KSC in July. A four-year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA

  16. KSC-97PC1027

    NASA Image and Video Library

    1997-07-08

    The complete remote sensing pallet is lowered by technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology to mate with the Cassini spacecraft in the Payload Hazardous Servicing Facility at KSC in July. A four-year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA

  17. KSC-97PC1026

    NASA Image and Video Library

    1997-07-08

    Technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology lift the remote sensing pallet in the Payload Hazardous Servicing Facility at KSC in July prior to installation on the Cassini spacecraft. A four- year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA

  18. Mars Observer Press Conference JPL

    NASA Astrophysics Data System (ADS)

    1993-08-01

    The Mars Observer mission spacecraft was primarily designed for exploring Mars and the Martian environment. The Mars Observer was launched on September 25, 1992. The spacecraft was lost in the vicinity of Mars on August 21, 1993 when the spacecraft began its maneuvering sequence for Martian orbital insertion. This videotape shows a press briefing, held after the spacecraft had not responded to attempts to communicate with it, to explain to the press the problems and the steps that were being taken to re-establish communication with the spacecraft. The communications had been shutdown prior to the orbital insertion burn to protect the instruments. At the time of the press conference, the communications system was still not operational, and attempts were being made to re-establish communication. Bob McMillan of the Public Affairs Office at JPL gives the initial announcement of the continuing communication problem with the spacecraft. Mr. McMillan introduces William Piotrowski, acting director of solar system exploration, who reiterates that there is indeed no communication with the Observer spacecraft. He is followed by Glenn Cunningham, the Project Manager of the Mars Observer who speaks about the attempts to re-establish contact. Mr. Cunningham is followed by Satenios Dallas, the Mission Manager for the Mars Observer Project, who speaks about the sequence of events leading up to the communication failure, and shows an animated video presenting the orbital insertion maneuvers. The briefing was then opened up for questions from the assembled press, both at JPL and at the other NASA Centers. The questions are about the possible reasons for the communication failure, and the attempts to restore communications with the spacecraft. Dr. Arden L. Albee, chief scientist for the Mars Observer Mission, joins the other panel members to answer questions. At the end of the press briefing the animation of the Mars orbital insertion is shown again.

  19. Space Missions Trade Space Generation and Assessment Using JPL Rapid Mission Architecture (RMA) Team Approach

    NASA Technical Reports Server (NTRS)

    Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert

    2011-01-01

    The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.

  20. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema

    Wiens, Roger

    2018-02-06

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  1. Performance capabilities of a JPL dual-arm advanced teleoperation system

    NASA Technical Reports Server (NTRS)

    Szakaly, Z. F.; Bejczy, A. K.

    1991-01-01

    The system comprises: (1) two PUMA 560 robot arms, each equipped with the latest JPL developed smart hands which contain 3-D force/moment and grasp force sensors; (2) two general purpose force reflecting hand controllers; (3) a NS32016 microprocessors based distributed computing system together with JPL developed universal motor controllers; (4) graphics display of sensor data; (5) capabilities for time delay experiments; and (6) automatic data recording capabilities. Several different types of control modes are implemented on this system using different feedback control techniques. Some of the control modes and the related feedback control techniques are described, and the achievable control performance for tracking position and force trajectories are reported. The interaction between position and force trajectory tracking is illustrated. The best performance is obtained by using a novel, task space error feedback technique.

  2. Payload test philosophy. [JPL views on qualification/acceptance testing

    NASA Technical Reports Server (NTRS)

    Gindorf, T.

    1979-01-01

    The general philosophy of how JPL views payload qualification/acceptance testing for programs that are done either in-house or by contractors is described. Particular attention is given to mission risk classifications, preliminary critical design reviews, environmental design requirements, the thermal and dynamics development tests, and the flight spacecraft system test.

  3. DOE/JPL advanced thermionic technology program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Accomplishments in the DOE program include: continuing stable output from the combustion life test of the one-inch diameter hemispherical silicon carbine diode (Converter No. 239) at an emitter temperature of 1730 K for a period of over 4200 hours; construction of four diode module completed; favorable results obtained from TAM combustor-gas turbine system analyses; and obtained a FERP work function of 2.3 eV with the W(100)-O-Zr-C electrode. JPL program accomplishments include: the average minimum barrier index of the last six research diodes built with sublimed molybdenum oxide collectors was 20 eV (WHK).

  4. Video Clip of a Rover Rock-Drilling Demonstration at JPL

    NASA Image and Video Library

    2013-02-20

    This frame from a video clip shows moments during a demonstration of drilling into a rock at NASA JPL, Pasadena, Calif., with a test double of the Mars rover Curiosity. The drill combines hammering and rotation motions of the bit.

  5. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover is at lower right, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  6. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover, still in its deployed position, is at center image, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  7. Sojourner's APXS at Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover is seen next to the rock 'Shark', in this image taken by the Imager for Mars Pathfinder (IMP) near the end of daytime operations on Sol 52. The rover's Alpha Proton X-Ray Spectrometer is deployed against the rock. The rock 'Wedge' is in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  8. Impact of Destructive California Wildfire Captured by NASA Spacecraft

    NASA Image and Video Library

    2016-07-01

    The Erskine wildfire, northeast of Bakersfield, California, is the state's largest to date in 2016. After starting on June 23, the fire has consumed 47,000 acres (19,020 hectares), destroyed more than 250 single residences, and is responsible for two fatalities. As of June 30, the fire was 70 percent contained; full containment was estimated by July 5. This image, obtained June 30 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft, displays vegetation in red. The image covers an area of 19 by 21 miles (31 by 33 kilometers), and is located at 35.6 degrees north, 118.5 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20741

  9. The JPL Cryogenic Dilatometer: Measuring the Thermal Expansion Coefficient of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Dudick, Matthew J.; Karlmann, Paul; Klein, Kerry J.; Levine, Marie; Marcin, Martin; Parker, Tyler J.; Peters, Robert D.; Shaklan, Stuart; VanBuren, David

    2007-01-01

    This slide presentation details the cryogenic dilatometer, which is used by JPL to measure the thermal expansion coefficient of materials used in Aerospace. Included is a system diagram, a picture of the dilatometer chamber and the laser source, a description of the laser source, pictures of the interferometer, block diagrams of the electronics and software and a picture of the electronics, and software. Also there is a brief review of the accurace.error budget. The materials tested are also described, and the results are shown in strain curves, JPL measured strain fits are described, and the coefficient of thermal expansion (CTE) is also shown for the materials tested.

  10. Destination Mars Grand Opening

    NASA Image and Video Library

    2016-09-18

    Apollo 11 astronaut Buzz Aldrin, left and Erisa Hines of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, try out Microsoft HoloLens mixed reality headset during a preview of the new Destination: Mars experience at the Kennedy Space Center Visitor Complex. Destination: Mars gives guests an opportunity to “visit” several sites on Mars using real imagery from NASA’s Curiosity Mars Rover. Based on OnSight, a tool created by NASA’s Jet Propulsion Laboratory in Pasadena, California, the experience brings guests together with a holographic version of Aldrin and Curiosity rover driver Hines as they are guided to Mars using Microsoft HoloLens mixed reality headset. Photo credit: NASA/Charles Babir

  11. Studying the Sky/Planets Can Drown You in Images: Machine Learning Solutions at JPL/Caltech

    NASA Technical Reports Server (NTRS)

    Fayyad, U. M.

    1995-01-01

    JPL is working to develop a domain-independent system capable of small-scale object recognition in large image databases for science analysis. Two applications discussed are the cataloging of three billion sky objects in the Sky Image Cataloging and Analysis Tool (SKICAT) and the detection of possibly one million small volcanoes visible in the Magellan synthetic aperture radar images of Venus (JPL Adaptive Recognition Tool, JARTool).

  12. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Ralph Basilio, OCO-2 project manager with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  13. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Mike Gunson, OCO-2 project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  14. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Mike Gunson, OCO-2 project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, listens to a question during a press briefing for the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2 is set for a July 1, 2014 launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  15. Perspective view, Landsat overlay Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image shows a perspective view of the area around Pasadena, California, just north of Los Angeles. The cluster of hills surrounded by freeways on the left is the Verdugo Hills, which lie between the San Gabriel Valley in the foreground and the San Fernando Valley in the upper left. The San Gabriel Mountains are seen across the top of the image, and parts of the high desert near the city of Palmdale are visible along the horizon on the right. Several urban features can be seen in the image. NASA's Jet Propulsion Laboratory (JPL) is the bright cluster of buildings just right of center; the flat tan area to the right of JPL at the foot of the mountains is a new housing development devoid of vegetation. Two freeways (the 210 and the 134) cross near the southeastern end of the Verdugo Hills near a white circular feature, the Rose Bowl. The commercial and residential areas of the city of Pasadena are the bright areas clustered around the freeway. These data will be used for a variety of applications including urban planning and natural hazard risk analysis.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers

  16. Device for Lowering Mars Science Laboratory Rover to the Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is hardware for controlling the final lowering of NASA's Mars Science Laboratory rover to the surface of Mars from the spacecraft's hovering, rocket-powered descent stage.

    The photo shows the bridle device assembly, which is about two-thirds of a meter, or 2 feet, from end to end, and has two main parts. The cylinder on the left is the descent brake. On the right is the bridle assembly, including a spool of nylon and Vectran cords that will be attached to the rover.

    When pyrotechnic bolts fire to sever the rigid connection between the rover and the descent stage, gravity will pull the tethered rover away from the descent stage. The bridle or tether, attached to three points on the rover, will unspool from the bridle assembly, beginning from the larger-diameter portion of the spool at far right. The rotation rate of the assembly, hence the descent rate of the rover, will be governed by the descent brake. Inside the housing of that brake are gear boxes and banks of mechanical resistors engineered to prevent the bridle from spooling out too quickly or too slowly. The length of the bridle will allow the rover to be lowered about 7.5 meters (25 feet) while still tethered to the descent stage.

    The Starsys division of SpaceDev Inc., Poway, Calif., provided the descent brake. NASA's Jet Propulsion Laboratory, Pasadena, Calif., built the bridle assembly. Vectran is a product of Kuraray Co. Ltd., Tokyo. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  17. KSC-2014-2978

    NASA Image and Video Library

    2014-06-18

    CAPE CANAVERAL, Fla. – Personnel from NASA's Jet Propulsion Laboratory JPL in California secure the protective cover around NASA's International Space Station-RapidScat during testing of its rotating radar antenna and its flight computer and airborne support equipment, at left, in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left are RapidScat project manager John Wirth and JPL flight technician Kieran McKay. Built at JPL, the radar scatterometer is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. ISS-RapidScat will be delivered to the station on the SpaceX-4 commercial cargo resupply flight targeted for August 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Daniel Casper

  18. Radiation Testing at Sandia National Laboratories: Sandia – JPL Collaboration for Europa Lander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattar, Khalid Mikhiel; Olszewska-Wasiolek, Maryla Aleksandra

    Sandia National Laboratories (SNL) is assisting Jet Propulsion Laboratory in undertaking feasibility studies and performance assessments for the Planetary Protection aspect of the Europa Lander mission. The specific areas of interest for this project are described by task number. This white paper presents the evaluation results for Task 2, Radiation Testing, which was stated as follows: Survey SNL facilities and capabilities for simulating the Europan radiation environment and assess suitability for: A. Testing batteries, electronics, and other component and subsystems B. Exposing biological organisms to assess their survivability metrics. The radiation environment the Europa Lander will encounter on route andmore » in orbit upon arrival at its destination consists primarily of charged particles, energetic protons and electrons with the energies up to 1 GeV. The charged particle environments can be simulated using the accelerators at the Ion Beam Laboratory. The Gamma Irradiation Facility and its annex, the Low Dose Rate Irradiation Facility, offer irradiations using Co-60 gamma sources (1.17 and 1.33 MeV), as well as Cs-137 gamma (0.661 MeV) AmBe neutron (0-10 MeV) sources.« less

  19. Stress Rupture Testing and Analysis of the NASA WSTF-JPL Carbon Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Yoder, Tommy; Saulsberry, Regor; Grimes, Lorie; Thesken, John; Phoenix, Leigh

    2007-01-01

    Carbon composite overwrapped pressure vessels (COPVs) are widely used in applications from spacecraft to life support. COPV technology provides a pressurized media storage advantage over amorphous technology with weight savings on the order of 30 percent. The National Aeronautics and Space Administration (NASA) has been supporting the development of this technology since the early 1970's with an interest in safe application of these components to reduce mass to orbit. NASA White Sands Test Facility (WSTF) has been testing components in support of this objective since the 1980s and has been involved in test development and analysis to address affects of impact, propellant and cryogenic fluids exposure on Kevlar and carbon epoxy. The focus of this paper is to present results of a recent joint WSTF-Jet Propulsion Laboratories (JPL) effort to assess safe life of these components. The WSTF-JPL test articles consisted of an aluminum liner and a carbon fiber overwrap in an industry standard epoxy resin system. The vessels were specifically designed with one plus-minus helical wrap and one hoop wrap over the helical and they measured 4.23 x 11.4 in. long. 120 test articles were manufactured in August of 1998 of one lot fiber and resin and the 110 test articles were delivered to WSTF for test. Ten of the 120 test articles were burst tested at the manufacturer to establish the delivered fiber stress. Figure 1 shows a test article in a pre burst condition and with a hoop fiber failure (no leak of pressurized media) and post burst (failure of liner and loss of pressurized media).

  20. Customizing the JPL Multimission Ground Data System: Lessons learned

    NASA Technical Reports Server (NTRS)

    Murphy, Susan C.; Louie, John J.; Guerrero, Ana Maria; Hurley, Daniel; Flora-Adams, Dana

    1994-01-01

    The Multimission Ground Data System (MGDS) at NASA's Jet Propulsion Laboratory has brought improvements and new technologies to mission operations. It was designed as a generic data system to meet the needs of multiple missions and avoid re-inventing capabilities for each new mission and thus reduce costs. It is based on adaptable tools that can be customized to support different missions and operations scenarios. The MGDS is based on a distributed client/server architecture, with powerful Unix workstations, incorporating standards and open system architectures. The distributed architecture allows remote operations and user science data exchange, while also providing capabilities for centralized ground system monitor and control. The MGDS has proved its capabilities in supporting multiple large-class missions simultaneously, including the Voyager, Galileo, Magellan, Ulysses, and Mars Observer missions. The Operations Engineering Lab (OEL) at JPL has been leading Customer Adaptation Training (CAT) teams for adapting and customizing MGDS for the various operations and engineering teams. These CAT teams have typically consisted of only a few engineers who are familiar with operations and with the MGDS software and architecture. Our experience has provided a unique opportunity to work directly with the spacecraft and instrument operations teams and understand their requirements and how the MGDS can be adapted and customized to minimize their operations costs. As part of this work, we have developed workstation configurations, automation tools, and integrated user interfaces at minimal cost that have significantly improved productivity. We have also proved that these customized data systems are most successful if they are focused on the people and the tasks they perform and if they are based upon user confidence in the development team resulting from daily interactions. This paper will describe lessons learned in adapting JPL's MGDS to fly the Voyager, Galileo, and Mars

  1. Soil disturbance by airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Disturbance of the drift at the Pathfinder landing site reveals a shallow subsurface that is slightly darker but has similar spectral properties. The top set of images, in true color, shows the soils disturbed by the last bounce of the lander on its airbags before coming to rest and the marks created by retraction of the airbags. In the bottom set of images color differences have been enhanced. The mast at center is the Atmospheric Structure Instrument/Meteorology Package (ASI/MET). The ASI/MET is an engineering subsytem that acquired atmospheric data during Pathfinder's descent, and will continue to get more data through the entire landed mission. A shadow of the ASI/MET appears on a rock at left.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  3. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini spacecraft is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Participants in the press conference were: Director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from right, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, are seen as they watch a replay of the final moments of the Cassini spacecraft during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, react to seeing images of the Cassini science and engineering teams during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger

    2010-09-03

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008.more » The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.« less

  7. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema

    LANL

    2017-12-09

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  8. JPL VLBI Analysis Center Report for 2012

    NASA Technical Reports Server (NTRS)

    Jacobs, Chris

    2013-01-01

    This report describes the activities of the JPL VLBI Analysis Center for the year 2012. The highlight of the year was the successful MSL rover Mars landing, which was supported by VLBI-based navigation using our combined spacecraft, celestial reference frame, terrestrial reference frame, earth orientation, and planetary ephemeris VLBI systems. We also supported several other missions with VLBI navigation measurements. A combined NASA-ESA network was demonstrated with first Ka-band fringes to ESA's Malargue, Argentina 35 m. We achieved first fringes with our new digital back end and Mark 5C recorders.

  9. In-Situ Mosaic Production at JPL/MIPL

    NASA Technical Reports Server (NTRS)

    Deen, Bob

    2012-01-01

    Multimission Image Processing Lab (MIPL) at JPL is responsible for (among other things) the ground-based operational image processing of all the recent in-situ Mars missions: (1) Mars Pathfinder (2) Mars Polar Lander (3) Mars Exploration Rovers (MER) (4) Phoenix (5) Mars Science Lab (MSL) Mosaics are probably the most visible products from MIPL (1) Generated for virtually every rover position at which a panorama is taken (2) Provide better environmental context than single images (3) Valuable to operations and science personnel (4) Arguably the signature products for public engagement

  10. Operation of a Third Generation JPL Electronic Nose in the Regenerative ECLSS Module Simulator at MSFC

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Shevade, A. V.; Manatt, K. S.; Haines, B. E.; Perry, J. L.; Roman, M. C.; Scott, J. P.; Frederick, K. R.

    2010-01-01

    An electronic nose has been developed at the Jet Propulsion Laboratory (JPL) to monitor spacecraft cabin air for anomalous events such as leaks and spills of solvents, coolants or other fluids with near-real-time analysis. It is designed to operate in the environment of the US Lab on ISS and was deployed on the International Space Station for a seven-month experiment in 2008-2009. In order improve understanding of ENose response to crew activities, an ENose was installed in the Regenerative ECLSS Module Simulator (REMS) at Marshall Space Flight Center (MSFC) for several months. The REMS chamber is operated with continuous analysis of the air for presence and concentration of CO, CO2, ethane, ethanol and methane. ENose responses were analyzed and correlated with logged activities and air analyses in the REMS.

  11. NASA's AVIRIS Instrument Sheds New Light on Southern California Wildfires

    NASA Image and Video Library

    2017-12-08

    NASA's Airborne Visible Infrared Imaging Spectrometer instrument (AVIRIS), flying aboard a NASA Armstrong Flight Research Center high-altitude ER-2 aircraft, flew over the wildfires burning in Southern California on Dec. 5, 2017 and acquired this false-color image. Active fires are visible in red, ground surfaces are in green and smoke is in blue. AVIRIS is an imaging spectrometer that observes light in visible and infrared wavelengths, measuring the full spectrum of radiated energy. Unlike regular cameras with three colors, AVIRIS has 224 spectral channels from the visible through the shortwave infrared. This permits mapping of fire temperatures, fractional coverage, and surface properties, including how much fuel is available for a fire. Spectroscopy is also valuable for characterizing forest drought conditions and health to assess fire risk. AVIRIS has been observing fire-prone areas in Southern California for many years, forming a growing time series of before/after data cubes. These data are helping improve scientific understanding of fire risk and how ecosystems respond to drought and fire. https://photojournal.jpl.nasa.gov/catalog/PIA11243

  12. JPL Ephemeris Tapes E9510, E9511, and E9512

    NASA Technical Reports Server (NTRS)

    Peabody, P. R.; Scott, J. F.; Orozco, E. G.

    1964-01-01

    The first issue of JPL Ephemeris Tapes is described. These tapes carry the positions and velocities of the planets and of the Moon, plus nutations and nutation rates in longitude and obliquity, together with second and fourth modified differences, for the interval December 30, 1949, to January 5, 2000.

  13. An industrial application of the JPL ACTS with energy recovery

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Wilson, G. E.; Schroepfer, T. W.

    1980-01-01

    The JPL Activated Carbon Treatment System (ACTS) uses sewage solids derived from municipal wastewater treatment systems as a source of organic material for powdered activated carbons (PAC). The PAC is used for the COD removal from wastewater and as a filter aid in the recovery of additional sewage solids.

  14. JPL Facilities and Software for Collaborative Design: 1994 - Present

    NASA Technical Reports Server (NTRS)

    DeFlorio, Paul A.

    2004-01-01

    The viewgraph presentation provides an overview of the history of the JPL Project Design Center (PDC) and, since 2000, the Center for Space Mission Architecture and Design (CSMAD). The discussion includes PDC objectives and scope; mission design metrics; distributed design; a software architecture timeline; facility design principles; optimized design for group work; CSMAD plan view, facility design, and infrastructure; and distributed collaboration tools.

  15. Mono Lake, California

    NASA Image and Video Library

    1994-10-01

    STS068-150-020 (30 September-11 October 1994) --- An exceptionally clear, high-contrast view of the desert basins east and south of Mono Lake, California. Light clouds dot the mountain ranges; the clouds were transparent to radar beams from the Space Radar Laboratory 2 (SRL-2) payload.

  16. Rover Soil Experiments Near Yogi

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sojourner, while on its way to the rock Yogi, performed several soil mechanics experiments. Piles of loose material churned up from the experiment are seen in front of and behind the Rover. The rock Pop-Tart is visible near the front right rover wheel. Yogi is at upper right. The image was taken by the Imager for Mars Pathfinder.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. Marie Curie during ORT6

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Marie Curie sits on the lander petal prior to deployment during the pre launch Operations Readiness Test (ORT) 6.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over thenext ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  19. Marie Curie during ORT4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Marie Curie rover drives down the rear ramp during Operational Readiness Test (ORT) 4.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over thenext ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. Publications of the Jet Propulsion Laboratory, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1988, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: JPL publications in which the information is complete for a specific accomplishment; articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report; and articles published in the open literature.

  1. Publications of the Jet Propulsion Laboratory, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This bibliography describes and indexes by primary author the externally distributed technical reporting, released during calender year 1985, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: JPL publications in which the information is complete for a specific accomplisment; Articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report; and article published in the open literature.

  2. Lava-flow characterization at Pisgah Volcanic Field, California, with multiparameter imaging radar

    USGS Publications Warehouse

    Gaddis, L.R.

    1992-01-01

    Multi-incidence-angle (in the 25?? to 55?? range) radar data aquired by the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) at three wavelengths simultaneously and displayed at three polarizations are examined for their utility in characterizing lava flows at Pisgah volcanic field, California. Pisgah lava flows were erupted in three phases; flow textures consist of hummocky pahoehoe, smooth pahoehoe, and aa (with and without thin sedimentary cover). Backscatter data shown as a function of relative age of Pisgah flows indicate that dating of lava flows on the basis of average radar backscatter may yield ambiguous results if primary flow textures and modification processes are not well understood. -from Author

  3. Federal Labs and Research Centers Benefiting California: 2017 Impact Report for State Leaders.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koning, Patricia Brady

    Sandia National Laboratories is the largest of the Department of Energy national laboratories with more than 13,000 staff spread across its two main campuses in New Mexico and California. For more than 60 years, the Sandia National Laboratories campus in Livermore, California has delivered cutting-edge science and technology solutions to resolve the nation’s most challenging and complex problems. As a multidisciplinary laboratory, Sandia draws from virtually every science and engineering discipline to address challenges in energy, homeland security, cybersecurity, climate, and biosecurity. Today, collaboration is vital to ensuring that the Lab stays at the forefront of science and technology innovation.more » Partnerships with industry, state, and local governments, and California universities help drive innovation and economic growth in the region. Sandia contributed to California’s regional and statewide economy with more than $145 million in contracts to California companies, $92 million of which goes to California small businesses. In addition, Sandia engages the community directly by running robust STEM education programs for local schools and administering community giving programs. Meanwhile, investments like the Livermore Valley Open Campus (LVOC), an innovation hub supported by LLNL and Sandia, help catalyze the local economy.« less

  4. AIRS Storm Front Approaching California (animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  5. Simulating Extraterrestrial Ices in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.

    2017-12-01

    Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.

  6. From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 4)

    NASA Image and Video Library

    2017-04-20

    Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes

  7. From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 2)

    NASA Image and Video Library

    2017-04-03

    Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes

  8. From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 3)

    NASA Image and Video Library

    2017-04-12

    Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes

  9. A Tool for Medical Research

    NASA Technical Reports Server (NTRS)

    1992-01-01

    California Measurements, Inc.'s PC-2 Aerosol Particle Analyzer, developed by William Chiang, a former Jet Propulsion Laboratory (JPL) engineer, was used in a study to measure the size of particles in the medical environment. Chiang has a NASA license for the JPL crystal oscillator technology and originally built the instrument for atmospheric research. In the operating room, it enabled researchers from the University of California to obtain multiple sets of data repeatedly and accurately. The study concluded that significant amounts of aerosols are generated during surgery when power tools are employed, and most of these are in the respirable size. Almost all contain blood and are small enough to pass through surgical masks. Research on the presence of blood aerosols during oral surgery had similar results. Further studies are planned to determine the possibility of HIV transmission during surgery, and the PC-2H will be used to quantify blood aerosols.

  10. Devastation from California's Largest Wildfire Seen in New NASA Satellite Image

    NASA Image and Video Library

    2018-01-05

    The Thomas Fire is the largest wildfire in California's recorded history. As of January 3, 2018, it was 93 percent contained after burning 282,000 acres and destroying 1,063 structures. The fire started Dec. 4, 2017, and quickly spread out of control, fanned by high temperatures and winds. At its peak, more than 8,500 firefighters mobilized to fight it. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite acquired this image on Dec. 26, 2017. It covers an area of 21 by 38 miles (33 by 61.8 kilometers), and is located at 34.5 degrees north, 119.3 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22189

  11. Results of the 1995 JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1995-01-01

    The Jet Propulsion Laboratory (JPL) solar cell calibration program was conceived to produce reference standards for the purpose of accurately setting solar simulator intensities. The concept was to fly solar cells on a high-altitude balloon, to measure their output at altitudes near 120,000 ft (36.6 km), to recover the cells, and to use them as reference standards. The procedure is simple. The reference cell is placed in the simulator beam, and the beam intensity is adjusted until the reference cell reads the same as it read on the balloon. As long as the reference cell has the same spectral response as the cells or panels to be measured, this is a very accurate method of setting the intensity. But as solar cell technology changes, the spectral response of the solar cells changes also, and reference standards using the new technology must be built and calibrated. Until the summer of 1985, there had always been a question as to how much the atmosphere above the balloon modified the solar spectrum. If the modification was significant, the reference cells might not have the required accuracy. Solar cells made in recent years have increasingly higher blue responses, and if the atmosphere has any effect at all, it would be expected to modify the calibration of these newer blue cells much more so than for cells made in the past. JPL has been flying calibration standards on high-altitude balloons since 1963 and continues to organize a calibration balloon flight at least once a year. The 1995 flight was the 48th flight in this series. The 1995 flight incorporated 46 solar cell modules from 7 different participants. The payload included Si, amorphous Si, GaAs, GaAs/Ge, dual junction cells, top and bottom sections of dual junction cells, and a triple junction cell. A new data acquisition system was built for the balloon flights and flown for the first time on the 1995 flight. This system allows the measurement of current-voltage (I-V) curves for 20 modules in addition to

  12. Model Checking Verification and Validation at JPL and the NASA Fairmont IV and V Facility

    NASA Technical Reports Server (NTRS)

    Schneider, Frank; Easterbrook, Steve; Callahan, Jack; Montgomery, Todd

    1999-01-01

    We show how a technology transfer effort was carried out. The successful use of model checking on a pilot JPL flight project demonstrates the usefulness and the efficacy of the approach. The pilot project was used to model a complex spacecraft controller. Software design and implementation validation were carried out successfully. To suggest future applications we also show how the implementation validation step can be automated. The effort was followed by the formal introduction of the modeling technique as a part of the JPL Quality Assurance process.

  13. MACSIGMA0 - MACINTOSH TOOL FOR ANALYZING JPL AIRSAR, ERS-1, JERS-1, AND MAGELLAN MIDR DATA

    NASA Technical Reports Server (NTRS)

    Norikane, L.

    1994-01-01

    MacSigma0 is an interactive tool for the Macintosh which allows you to display and make computations from radar data collected by the following sensors: the JPL AIRSAR, ERS-1, JERS-1, and Magellan. The JPL AIRSAR system is a multi-polarimetric airborne synthetic aperture radar developed and operated by the Jet Propulsion Laboratory. It includes the single-frequency L-band sensor mounted on the NASA CV990 aircraft and its replacement, the multi-frequency P-, L-, and C-band sensors mounted on the NASA DC-8. MacSigma0 works with data in the standard JPL AIRSAR output product format, the compressed Stokes matrix format. ERS-1 and JERS-1 are single-frequency, single-polarization spaceborne synthetic aperture radars launched by the European Space Agency and NASDA respectively. To be usable by MacSigma0, The data must have been processed at the Alaska SAR Facility and must be in the "low-resolution" format. Magellan is a spacecraft mission to map the surface of Venus with imaging radar. The project is managed by the Jet Propulsion Laboratory. The spacecraft carries a single-frequency, single-polarization synthetic aperture radar. MacSigma0 works with framelets of the standard MIDR CD-ROM data products. MacSigma0 provides four basic functions: synthesis of images (if necessary), statistical analysis of selected areas, analysis of corner reflectors as a calibration measure (if appropriate and possible), and informative mouse tracking. For instance, the JPL AIRSAR data can be used to synthesize a variety of images such as a total power image. The total power image displays the sum of the polarized and unpolarized components of the backscatter for each pixel. Other images which can be synthesized are HH, HV, VV, RL, RR, HHVV*, HHHV*, HVVV*, HHVV* phase and correlation coefficient images. For the complex and phase images, phase is displayed using color and magnitude is displayed using intensity. MacSigma0 can also be used to compute statistics from within a selected area. The

  14. SRTM Perspective View with Landsat Overlay: Ventura, and Lake Casitas, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Ventura, California is one of this state's oldest cities. Officially known as San Buenaventura, it was established in 1782 with the founding of the Mission San Buenaventura, the ninth of the 21 Spanish missions founded in California. In this perspective view generated from SRTM elevation data, the city can be seen occupying the shore of the Pacific Ocean and the nearby foothills. Lake Casitas, a reservoir and popular recreation area, is the dark blue feature in the center of the image. Holding back the 313,000 megaliter (254,000 acre-feet) storage capacity of the reservoir and visible as a very bright feature foreground of the lake, is the Casitas Dam, a 102-meter(334-foot) Earth fill dam. The reservoir and dam were built between 1956 and 1959 for the Federal Bureau of Reclamation's Ventura River Project. In addition to recreational use, Lake Casitas provides irrigation, municipal and industrial water to urban and suburban areas in Ventura County. For visualization purposes, topographic heights displayed in this image are exaggerated two times.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena

  15. Sniffing out cancer using the JPL electronic nose: a pilot study of a novel approach to detection and differentiation of brain cancer.

    PubMed

    Kateb, Babak; Ryan, M A; Homer, M L; Lara, L M; Yin, Yufang; Higa, Kerin; Chen, Mike Y

    2009-08-01

    A proof-of-concept study was done to determine whether an electronic nose developed for air quality monitoring at the Jet Propulsion Laboratory (JPL) could be used to distinguish between the odors of organ and tumor tissues, with an eye to using such a device as one of several modes in multi-modal imaging and tumor differentiation during surgery. We hypothesized that the JPL electronic nose (ENose) would be able to distinguish between the odors of various organ and tumor tissues. The odor signatures, or array response, of two organs, chicken heart and chicken liver, and cultured glioblastoma and melanoma tumor cell lines were recorded using the JPL Electronic Nose. The overall array responses were compared to determine whether they were sufficiently different to allow the organs and cell lines to be identified by their array responses. The ENose was able to distinguish between the two types of organ tissue and between the two types of tumor cell lines. The variation in array response for the organ tissues was 19% and between the two types of cultured cell lines was 22%. This study shows that it is possible to use an electronic nose to distinguish between two types of tumor cells and between two types of organ tissue. As we conducted the experiment with a sensor array built for air quality monitoring rather than for medical purposes, it may be possible to select an array that is optimized to distinguish between different types of cells and organ tissues. Further focused studies are needed to investigate the odor signatures of different cells as well as cellular proliferation, growth, differentiation and infiltration.

  16. Photos of earth observations taken by JPL with the Shuttle Imaging Radar-A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Photos of earth observations taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). The first image show northern Peloponnesia and part of southern Greece. The Corinthian Canal is visible as a bright line cutting across the narrow Corinth Isthmus (upper center). Black area to the right is the Aegian Sea; on the left, the Gulf of Corinth. Islands to the right, starting at the top, are Salamis, Aegene and Angistrion, and the Peninsula of Methana. Southwest of the canal on the gulf coast is the city of Corinth, appearing as bright, white spots (40244); This image shows the Hamersley mountain range in Western Australia. A circular pattern of eroded folds surround a prominent granite dome, remnants of a volcanic past, is seen in the center of the photograph. The Hardey River is seen running vertically to the right of the center circular dome, and the small town of Paraburdoo appears as a patch of tiny bright rectangles in the lower right corner (40245).

  17. Chemistry in California: How it Started and How it Grew

    ERIC Educational Resources Information Center

    Norberg, Arthur L.

    1976-01-01

    Gives a brief history of chemistry in California during the last 100 years, including the foundation of chemical industries, the development of chemistry departments in universities and their respective specialities, and the role of California laboratories in World War II. (MLH)

  18. Destination Mars Grand Opening

    NASA Image and Video Library

    2016-09-18

    A ceremonial ribbon is cut for the opening of new Destination: Mars experience at the Kennedy Space Center Visitor Complex. From the left are Therrin Protze, chief operating officer of the visitor complex, center director Bob Cabana, Apollo 11 astronaut Buzz Aldrin, Kudo Tsunoda of Microsoft, and Jeff Norris of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. Destination: Mars gives guests an opportunity to “visit” several sites on Mars using real imagery from NASA’s Curiosity Mars Rover. Based on OnSight, a tool created by JPL, the experience brings guests together with a holographic version of Aldrin as they are guided to Mars using Microsoft HoloLens mixed reality headset. Photo credit: NASA/Charles Babir

  19. Voyager Proof Test Model

    NASA Image and Video Library

    1977-01-12

    This archival photo shows the Voyager Proof Test Model undergoing a mechanical preparation and weight center of gravity test at NASA's Jet Propulsion Laboratory, Pasadena, California, on January 12, 1977. The stack of three white cylinders seen near center is a stand-in for the spacecraft's power generators (called RTGs). Above that, a silvery canister holds the spacecraft's magnetometer in its stowed configuration. https://photojournal.jpl.nasa.gov/catalog/PIA21477

  20. A Statewide Evaluation of the California Medical Supervision Program Using Cholinesterase Electronic Laboratory Reporting Data

    PubMed Central

    Laribi, Ouahiba; Malig, Brian; Sutherland-Ashley, Katherine; Broadwin, Rachel; Wieland, Walker; Salocks, Charles

    2017-01-01

    The California Medical Supervision program is designed to protect workers who regularly mix, load, or apply the highly toxic Category I and II organophosphates and carbamates from overexposure by monitoring cholinesterase (ChE) inhibition in plasma and red blood cells. Since January 2011, testing laboratories are required to report test results electronically to the California Department of Pesticide Regulation who shares it with the Office of Environmental Health Hazard Assessment for evaluation. The purpose of this study is to assess the utility of this reporting in evaluating the effectiveness of the Program for illness surveillance and prevention. From 2011 to 2013, we received more than 90 000 test results. Despite data gaps and data quality issues, we were able to perform spatial and temporal analyses and developed a screening tool to identify individuals potentially at risk of overexposure. The data analysis provided some evidence that the Program is effective in protecting agricultural workers handling the most toxic ChE-inhibiting pesticides even though it also identified some areas of potential concerns with individuals that appeared lacking corrective actions in the workplace in response to excessive ChE depressions and parts of the state with disproportionately at-risk individuals. However, changes to the electronic reporting are needed to more accurately identify tests related to the Program and therefore improve the utility of the data received. Moreover, data analysis also revealed that electronic reporting has its limitation in evaluating the Program.

  1. SRTM Perspective View with Landsat Overlay: Mt. Pinos and San Joaquin Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Ask any astronomer where the best stargazing site in Southern California is, and chances are they'll say Mt. Pinos. In this perspective view generated from SRTM elevation data the snow-capped peak is seen rising to an elevation of 2,692 meters (8,831 feet), in stark contrast to the flat agricultural fields of the San Joaquin valley seen in the foreground. Below the summit, but still well away from city lights, the Mt. Pinos parking lot at 2,468 meters (8,100 feet) is a popular viewing area for both amateur and professional astronomers and astro-photographers. For visualization purposes, topographic heights displayed in this image are exaggerated two times.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.

    Distance to Horizon: 176 kilometers (109 miles) Location: 34.83 deg. North lat., 119.25 deg. West lon. View: Toward the Southwest Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat

  2. Electric vehicle chassis dynamometer test methods at JPL and their correlation to track tests

    NASA Technical Reports Server (NTRS)

    Marte, J.; Bryant, J.

    1983-01-01

    Early in its electric vehicle (EV) test program, JPL recognized that EV test procedures were too vague and too loosely defined to permit much meaningful data to be obtained from the testing. Therefore, JPL adopted more stringent test procedures and chose the chassis dynamometer rather than the track as its principal test technique. Through the years, test procedures continued to evolve towards a methodology based on chassis dynamometers which would exhibit good correlation with track testing. Based on comparative dynamometer and track test results on the ETV-1 vehicle, the test methods discussed in this report demonstrate a means by which excellent track-to-dynamometer correlation can be obtained.

  3. Forest Structure Characterization Using JPL's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  4. Forest Structure Characterization Using Jpl's UAVSAR Multi-Baseline Polarimetric SAR Interferometry and Tomography

    NASA Technical Reports Server (NTRS)

    Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi

    2013-01-01

    This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.

  5. Sojourner near the Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Sojourner rover was taken near the end of daytime operations on Sol 42. The rover is between the rocks 'Wedge' (left) and 'Flute Top' (right). Other rocks visible include 'Flat Top' (behind Flute Top) and those in the Rock Garden, at the top of the frame. The cylindrical object extending from the back end of Sojourner is the Alpha Proton X-Ray Spectrometer.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  6. The JPL Cost Risk Analysis Approach that Incorporates Engineering Realism

    NASA Technical Reports Server (NTRS)

    Harmon, Corey C.; Warfield, Keith R.; Rosenberg, Leigh S.

    2006-01-01

    This paper discusses the JPL Cost Engineering Group (CEG) cost risk analysis approach that accounts for all three types of cost risk. It will also describe the evaluation of historical cost data upon which this method is based. This investigation is essential in developing a method that is rooted in engineering realism and produces credible, dependable results to aid decision makers.

  7. Research in the Caspar Creek Experimental Watersheds, Northern California

    Treesearch

    Jack Lewis; Rand E. Eads; Robert R. Ziemer

    2000-01-01

    For the past four decades, researchers from the Pacific Southwest Research Station's Redwood Sciences Laboratory, in cooperation with the California Department of Forestry and Fire Protection, have been studying the effects of logging in the Caspar Creek Experimental Watersheds on the Jackson Demonstration State Forest near Fort Bragg, California. Their findings...

  8. California Energy Systems for the 21st Century 2016 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Randwyk, J.; Boutelle, A.; McClelland, C.

    The California Energy Systems for the 21st Century (CES-21) Program is a public-private collaborative research and development program between the California Joint Utilities1 and Lawrence Livermore National Laboratory (LLNL). The purpose of this annual report is to provide the California Public Utilities Commission (CPUC or Commission) with a summary of the 2016 progress of the CES-21 Program.

  9. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    One of the final images of Saturn's moon Titan, that was taken by the Cassini spacecraft on Sept. 11, is seen as Cassini project scientist at JPL, Linda Spilker, second from right, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Also participating in the press conference were director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from left, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, left. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini project scientist at JPL, Linda Spilker, center, speaks about a montage of images, made from data obtained by Cassini's visual and infrared mapping spectrometer, shows the location on Saturn where the NASA spacecraft entered Saturn's atmosphere, Friday, Sept. 15, 2017 during a press conference at NASA's Jet Propulsion Laboratory in Pasadena, California. Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, also participated in the press conference. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, center row, calls out the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  15. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  16. Before-and-After LIDAR Images from 2014 King Fire in El Dorado National Forest

    NASA Image and Video Library

    2015-04-09

    New maps of two recent California megafires that combine unique data sets from the U.S. Forest Service and NASA's Jet Propulsion Laboratory in Pasadena, California, are answering some of the urgent questions that follow a huge wildfire. These before-and-after USFS LIght Detection And Ranging (LIDAR) images from the 2014 King fire region in El Dorado National Forest, California are among new maps. They show a small section of the Rubicon River drainage basin, where fire damage was severe. Blue indicates ground level; lighter colors are higher. A road -- bordered by dense trees in the before image at left -- and part of a bridge are in the center, with the bridge appearing green. http://photojournal.jpl.nasa.gov/catalog/PIA19360

  17. Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photo by Voyager 1 (JPL) The spacecraft took this photo of the planet Jupiter on Jan 24, while still more than 25 million miles (40 million kilometers) away. As the spacecraft draws closer to the planet (about 1 million kilometers a day) more details are emergng in the turbulent clouds. The Great Red Spot shows prominently below center, surrounded by what scientists call a remarkably complex region of the giant planet's atmosphere. An elongated yellow cloud within the Great Red Spot is swirling around the spot's interior boundary in a counterclockwise direction with a period of a little less than six days, confirming the whirlpool-like circulation that astronomers have suspected from ground-based photographs. Ganymede, Jupiter's largest satellite, can be seen to the lower left of the planet. Ganymede is a planet-sized body larger than Mercury. This color photo was assembled at Jet Propulsion Laboratory's Image Processing Lab from there black and white images taken through filters. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory. (ref: P-20945C Mission Image 1-9)

  18. Death Valley, California

    NASA Image and Video Library

    1994-04-11

    . Death Valley is also one of the primary calibration sites for SIR-C/X-SAR. The bright dots near the center of the image are corner reflectors that have been set-up to calibrate the radar as the Shuttle passes overhead. Thirty triangular-shaped reflectors (they look like aluminum pyramids) have been deployed by the calibration team from JPL over a 40 kilometer by 40 kilometer area in and around Death Valley. The calibration team will also deploy transponders (electronic reflectors) and recievers to measure the radar signals from SIR-C/X-SAR on the ground. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth (MTPE). The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-Band (24 cm), C-Band (6 cm), and X-Band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was develpoed by NASA's Jet Propulsion Laboratory (JPL). X-SAR was developed by the Dornire and Alenia Spazio Companies for the German Space Agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian Space Agency, Agenzia Spaziale Italiana (ASI). JPL Photo ID: P-43883

  19. California bearing ratio analysis on Kunduran - Goa Terawangan road, Blora Regency

    NASA Astrophysics Data System (ADS)

    Lashari, Widodo, Aris; Azizah, Nur

    2018-03-01

    The study about California Bearing Ratio on subgrade is required as the road infrastructure. Some researchers has conducted studies about California Bearing Ratio in both laboratory and the field to figure out the load bearing capacity of the existing soil in the field. The Kunduran - Goa Terawang road is a regency road which connects the Kunduran district and Todanan district. The length of the Kunduran - Goa Terawang is 11,44 km with the endpoint identifier (STA 0 road) from T intersection 3/49 on the provincial road km 25. The Kunduran - Goa Terawang road has experienced damaged from time to time. Therefore, the condition of load bearing capacity on the subgrade must be analysed. The value of load bearing capacity of the subgrade on the road. The California Bearing Ratio had to be conducted to figure out the value. The California Bearing Ratio test was conducted in two ways, 1) the laboratory California Bearing Ratio testing and the field California Bearing Ration using the Dynamic Cone Penetrometer. The testing was conducted in three points, STA 0+250, STA 0+500, dan STA 0+750.

  20. Man-machine interface issues in space telerobotics: A JPL research and development program

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1987-01-01

    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.

  1. Jet Propulsion Laboratory: Annual Report 2001

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For many years before the clock counted down to midnight and the arrival of the year 2000, the world had anticipated 2001 as a special time and a new era. Now we know that 2001 will be a year none of us will ever forget. We began a new year, a new century, and a new millennium. Yet after September 11, the world in many ways seems profoundly changed. On that day we witnessed both the worst and best in human nature. Space exploration is one pursuit that points towards the best instincts in our nature. And certainly the pioneering spirit, so much a part of the American character, is a value deeply embedded into all the work we undertake at JPL. We are privileged that the nation has entrusted us with exploring space on its behalf. And we are fortunate to find ourselves part of two of the world's most accomplished institutions - NASA and the California Institute of Technology. Looking back over the past four decades, JPL has carried out an initial reconnaissance of nearly all of the solar systems planets. Today we have more than a dozen missions flying, and many more in various stages of development. Our challenge now is to create missions that help us understand these places more deeply. And in addition to exploring and understanding our solar system, we want to discover neighboring solar systems and explore them as well. The 21st century is upon us. So is a tremendous era of space exploration. There were many events in 2001 to celebrate, one being the arrival of the Mars Odyssey orbiter, which joins the Mars Global Surveyor orbiter in providing continuous coverage of the red planet. This is a major step in establishing a permanent robotic presence at Mars. Ahead for JPL will be both rewarding and challenging moments; thats the nature of being pioneers and explorers.

  2. The Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    1998-01-01

    Under this contract SAIC, the University of California, Irvine (UCI), and the Jet Propulsion Laboratory (JPL), have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model. During the period covered by this report we have published 17 articles in the scientific literature. These publications are listed in Section 4 of this report. In the Appendix we have attached reprints of selected articles.

  3. 2014 California Aerospace Week Highlights NASA Research (Reporter Package)

    NASA Image and Video Library

    2014-04-02

    The State Capitol in Sacramento was the scene of the 3rd Annual California Aerospace Week. It provided the opportunity for the three California-based NASA Centers (Ames Research Center, Armstrong Flight Research Center and the Jet Propulsion Laboratory) to educate lawmakers and the public about the importance NASA research and their contributions to the state's aerospace industry.

  4. Use of Reference Frames for Interplanetary Navigation at JPL

    NASA Technical Reports Server (NTRS)

    Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue

    2010-01-01

    Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.

  5. LDR structural technology activities at JPL

    NASA Technical Reports Server (NTRS)

    Wada, Ben

    1988-01-01

    The status of the Large Deployable Reflector (LDR) technology requirements and the availability of that technology in the next few years are summarized. The research efforts at JPL related to these technology needs are also discussed. LDR requires that a large and relatively stiff truss-type backup structure have a surface accurate to 100 microns in space (initial position with thermal distortions) and the dynamic characteristics predictable and/or measurable by on-orbit system identification for micron level motion. This motion may result from the excitation of the lower modes or from wave-type motions. It is also assumed that the LDR structure can be ground tested to validate its ability to meet mission requirements. No program manager will commit a structural design based solely on analysis, unless the analysis is backed by a validation test program.

  6. Single Still Image

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This narrow angle image taken by Cassini's camera system of the Moon is one of the best of a sequence of narrow angle frames taken as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. The 80 millisecond exposure was taken through a spectral filter centered at 0.33 microns; the filter bandpass was 85 Angstroms wide. The spatial scale of the image is about 1.4 miles per pixel (about 2.3 kilometers). The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  7. SRTM Perspective View with Landsat Overlay: San Joaquin Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    .S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif, for NASA's Earth Science Enterprise,Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.

    Location: 35.08 deg. North lat., 119.00 deg. West lon. View: Toward the Southwest Scale: Scale Varies in this Perspective Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat

  8. Recovery Act - LADWP Smart Grid Regional Demonstration Program Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Sungly; Vohra, Surendra; Abdelshehid, Emil

    LADWP collaborated with its project partners to carry out this demonstration in the designated areas to include two university campuses – the University of California, Los Angeles (UCLA) and the University of Southern California (USC) – surrounding neighborhoods, City of Los Angeles facilities, and LADWP power system test labs. The last project partner, Jet Propulsion Laboratory (JPL) was responsible for the cyber security aspects of the project. The program’s use cases provided insightful information to understand triggers for customers, distributors, and generators to adapt their behavior which aid in reducing system demands and costs, increasing energy efficiency, and increasing gridmore » reliability.« less

  9. JPL Thermal Design Modeling Philosophy and NASA-STD-7009 Standard for Models and Simulations - A Case Study

    NASA Technical Reports Server (NTRS)

    Avila, Arturo

    2011-01-01

    The Standard JPL thermal engineering practice prescribes worst-case methodologies for design. In this process, environmental and key uncertain thermal parameters (e.g., thermal blanket performance, interface conductance, optical properties) are stacked in a worst case fashion to yield the most hot- or cold-biased temperature. Thus, these simulations would represent the upper and lower bounds. This, effectively, represents JPL thermal design margin philosophy. Uncertainty in the margins and the absolute temperatures is usually estimated by sensitivity analyses and/or by comparing the worst-case results with "expected" results. Applicability of the analytical model for specific design purposes along with any temperature requirement violations are documented in peer and project design review material. In 2008, NASA released NASA-STD-7009, Standard for Models and Simulations. The scope of this standard covers the development and maintenance of models, the operation of simulations, the analysis of the results, training, recommended practices, the assessment of the Modeling and Simulation (M&S) credibility, and the reporting of the M&S results. The Mars Exploration Rover (MER) project thermal control system M&S activity was chosen as a case study determining whether JPL practice is in line with the standard and to identify areas of non-compliance. This paper summarizes the results and makes recommendations regarding the application of this standard to JPL thermal M&S practices.

  10. Institute of Laboratory Animal Resources (ILAR)

    DTIC Science & Technology

    1994-05-12

    Athens. Georgia Muriel T. Davisson. The Jackson Laboratory, Bar Harbor. Maine Neal L. First. University of Wisconsin, Madison , Wisconsin James W. Glosser...Hear, Wisconsin Regional Primate Research Center, Madison . Wisconsin Margaret Z. Jones. Michigan State University, East Lansing, Michigan Michael D...California School of Medicine, Los Angeles, California Henry C. Pitot III, University of Wisconsin. Madison , Wisconsin Paul G. Risser, Miami University

  11. The NASA SETI sky survey: Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Olsen, E. T.; Renzetti, N. A.

    1989-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complementary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory (JPL) in Pasadena, California, has primary responsibility to develop and carry out the sky survey part. Described here is progress that has been made developing the major elements of the survey including a 2-million channel wideband spectrum analyzer system that is being designed and constructed by JPL for the Deep Space Network (DSN). The system will be a multiuser instrument; it will serve as a prototype for the SETI sky survey processor. This prototype system will be used to test the signal detection and observational strategies on DSN antennas in the near future.

  12. Aid for the Medical Laboratory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A process for separating chemical compounds in fluids resulted from a Jet Propulsion Laboratory (JPL)/LAPD project. The technique involves pouring a blood or urine sample into an extraction tube where packing material contained in a disposable tube called an "extraction column" absorbs water and spreads the specimen as a thin film, making it easy to identify specific components. When a solvent passes through the packing material, the desired compound dissolves and exits through the tube's bottom stem and is collected. Called AUDRI, Automated Drug Identification, it is commercially produced by Analytichem International which has successfully advanced the original technology.

  13. SRTM Perspective View with Landsat Overlay: Santa Paula, and Santa Clara River Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Rectangular fields of the agriculturally rich Santa Clara River Valley are visible in this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image. The Santa Clara River, which lends its name to this valley, flows from headwaters near Acton, California, 160 km (100 miles) to the Pacific Ocean, and is one of only two natural river systems remaining in southern California. In the foreground of this image, the largely dry riverbed can be seen as a bright feature as it winds its way along the base of South Mountain. The bright region at the right end of this portion of the valley is the city of Santa Paula, California. Founded in 1902, this small, picturesque town at the geographic center of Ventura County is referred to as the 'Citrus Capital of the World.' The city is surrounded by orange, lemon, and avocado groves and is a major distribution point for citrus fruits in the United States. The bright, linear feature in the center of the valley is State Highway 126, the valley's 'main drag.' For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory

  14. AirMSPI Level 1B2 V006 New Data for the NASA/JPL/Caltech ImPACT-PM Campaign

    Atmospheric Science Data Center

    2018-05-17

    AirMSPI Level 1B2 V006 New Data for the NASA/JPL/Caltech ImPACT-PM Campaign ImPACT-PM Wednesday, May 16, 2018 The NASA Langley Atmospheric Science Data Center (ASDC) and Jet Propulsion ... flight campaign.   AirMSPI flies in the nose of NASA's high-altitude ER-2 aircraft. The instrument was built by JPL and the ...

  15. Fog and Haze in California's San Joaquin Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    topographically complex terrain, no results are obtained over the Sierra Nevada and Coastal mountains and these areas are shown in black. However, the enhanced haziness of the San Joaquin Valley is evident in this derived product. Within the yellow pixels, the Sun would look about 40% dimmer to an observer on the ground in comparison to its brightness on a much clearer day.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  16. Inadvertent laboratory exposure to Bacillus anthracis--California, 2004.

    PubMed

    2005-04-01

    On June 9, 2004, the California Department of Health Services (CDHS) was notified of possible inadvertent exposure to Bacillus anthracis spores at Children's Hospital Oakland Research Institute (CHORI), where workers were evaluating the immune response of mice to B. anthracis. This report summarizes the subsequent investigation by CDHS and CDC, including assessment of exposures, administration of postexposure chemoprophylaxis, and serologic testing of potentially exposed workers. The findings underscore the importance of using appropriate biosafety practices and performing adequate sterility testing when working with material believed to contain inactivated B. anthracis organisms.

  17. Sandia, California Tritium Research Laboratory transition and reutilization project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, T.B.

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  18. Wind effects on Martian soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false-color combination image highlights details of wind effects on the Martian soil at the Pathfinder landing site. Red and blue filter images have been combined to enhance brightness contrasts among several soil units. Martian winds have distributed these lighter and darker fine materials in complex patterns around the rocks in the scene (blue). For scale, the rock at right center is 16 centimeters (6.3 inches) long. This scene is one of several that will be monitored weekly for changes caused by wind activity.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  19. Pooh Bear rock and Mermaid Dune

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the two forward cameras aboard Sojourner imaged this area of Martian terrain on Sol 26. The large rock dubbed 'Pooh Bear' is at far left, and stands between four and five inches high. Mermaid Dune is the smooth area stretching horizontally across the top quarter of the image. The Alpha Proton X-Ray Spectrometer (APXS) instrument aboard Sojourner will be deployed on Mermaid Dune, and the rover will later use its cleated wheels to dig into it.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. Sojourner Sits Near Rock Garden

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Mars Pathfinder Rover Sojourner is images by the Imager for Mars Pathfinder as it nears the rock 'Wedge.' Part of the Rock Garden is visible in the upper right of the image.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over the next ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. Optical Atomic Clock for Fundamental Physics and Precision Metrology in Space

    NASA Astrophysics Data System (ADS)

    Williams, Jason; Le, Thanh; Kulas, Sascha; Yu, Nan

    2017-04-01

    The maturity of optical atomic clocks (OC), which operate at optical frequencies for higher quality-factor as compared to their microwave counterparts, has rapidly progressed to the point where lab-based systems now outperform the record cesium clocks by orders of magnitude in both accuracy and stability. We will present our efforts to develop a strontium optical clock testbed at JPL, aimed towards extending the exceptional performance demonstrated by OCs from state-of-the-art laboratory designs to a transportable instrument that can fit within the space and power constraints of e.g. a single express rack onboard the International Space Station. The overall technology will find applications for future fundamental physics research, both on ground and in space, precision time keeping, and NASA/JPL time and frequency test capabilities. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  2. Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image from the Pathfinder lander shows the rock 'Shark' at upper right (Shark is about 0.69 m wide, 0.40 m high, and 6.4 m from the lander). The rock looks like a conglomerate in Sojourner rover images, but only the large elements of its surface textures can be seen here. This demonstrates the usefulness of having a robot rover geologist able to examine rocks up close.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  3. The Snow Data System at NASA JPL

    NASA Astrophysics Data System (ADS)

    Horn, J.; Painter, T. H.; Bormann, K. J.; Rittger, K.; Brodzik, M. J.; Skiles, M.; Burgess, A. B.; Mattmann, C. A.; Ramirez, P.; Joyce, M.; Goodale, C. E.; McGibbney, L. J.; Zimdars, P.; Yaghoobi, R.

    2017-12-01

    The Snow Data System at NASA JPL includes data processing pipelines built with open source software, Apache 'Object Oriented Data Technology' (OODT). Processing is carried out in parallel across a high-powered computing cluster. The pipelines use input data from satellites such as MODIS, VIIRS and Landsat. They apply algorithms to the input data to produce a variety of outputs in GeoTIFF format. These outputs include daily data for SCAG (Snow Cover And Grain size) and DRFS (Dust Radiative Forcing in Snow), along with 8-day composites and MODICE annual minimum snow and ice calculations. This poster will describe the Snow Data System, its outputs and their uses and applications. It will also highlight recent advancements to the system and plans for the future.

  4. The Snow Data System at NASA JPL

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Laidlaw, R.; Painter, T. H.; Bormann, K. J.; Rittger, K.; Brodzik, M. J.; Skiles, M.; Burgess, A. B.; Mattmann, C. A.; Ramirez, P.; Goodale, C. E.; McGibbney, L. J.; Zimdars, P.; Yaghoobi, R.

    2016-12-01

    The Snow Data System at NASA JPL includes data processing pipelines built with open source software, Apache 'Object Oriented Data Technology' (OODT). Processing is carried out in parallel across a high-powered computing cluster. The pipelines use input data from satellites such as MODIS, VIIRS and Landsat. They apply algorithms to the input data to produce a variety of outputs in GeoTIFF format. These outputs include daily data for SCAG (Snow Cover And Grain size) and DRFS (Dust Radiative Forcing in Snow), along with 8-day composites and MODICE annual minimum snow and ice calculations. This poster will describe the Snow Data System, its outputs and their uses and applications. It will also highlight recent advancements to the system and plans for the future.

  5. How Engineers Really Think About Risk: A Study of JPL Engineers

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Deb; Valerdi, Ricardo

    2011-01-01

    The objectives of this work are: To improve risk assessment practices as used during the mission design process by JPL's concurrent engineering teams. (1) Developing effective ways to identify and assess mission risks (2) Providing a process for more effective dialog between stakeholders about the existence and severity of mission risks (3) Enabling the analysis of interactions of risks across concurrent engineering roles.

  6. NASA/JPL aircraft SAR operations for 1984 and 1985

    NASA Technical Reports Server (NTRS)

    Thompson, T. W. (Editor)

    1986-01-01

    The NASA/JPL aircraft synthetic aperture radar (SAR) was used to conduct major data acquisition expeditions in 1983 through 1985. Substantial improvements to the aircraft SAR were incorporated in 1981 through 1984 resulting in an imaging radar that could simultaneously record all four combinations of linear horizontal and vertical polarization (HH, HV, VH, VV) using computer control of the radar logic, gain setting, and other functions. Data were recorded on high-density digital tapes and processed on a general-purpose computer to produce 10-km square images with 10-m resolution. These digital images yield both the amplitude and phase of the four polarizations. All of the digital images produced so far are archived at the JPL Radar Data Center and are accessible via the Reference Notebook System of that facility. Sites observed in 1984 and 1985 included geological targets in the western United States, as well as agricultural and forestry sites in the Midwest and along the eastern coast. This aircraft radar was destroyed in the CV-990 fire at March Air Force Base on 17 July 1985. It is being rebuilt for flights in l987 and will likely be operated in a mode similar to that described here. The data from 1984 and 1985 as well as those from future expeditions in 1987 and beyond will provide users with a valuable data base for the multifrequency, multipolarization Spaceborne Imaging Radar (SIR-C) scheduled for orbital operations in the early 1990's.

  7. Making Sense of Remotely Sensed Ultra-Spectral Infrared Data

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's Jet Propulsion Laboratory (JPL), Pasadena, California, Earth Observing System (EOS) programs, the Deep Space Network (DSN), and various Department of Defense (DOD) technology demonstration programs, combined their technical expertise to develop SEASCRAPE, a software program that obtains data when thermal infrared radiation passes through the Earth's atmosphere and reaches a sensor. Licensed by the California Institute of Technology (Caltech), SEASCRAPE automatically inverts complex infrared data and makes it possible to obtain estimates of the state of the atmosphere along the ray path. Former JPL staff members created a small entrepreneurial firm, Remote Sensing Analysis Systems, Inc., of Altadena, California, to commercialize the product. The founders believed that a commercial version of the software was needed for future U.S. government missions and the commercial monitoring of pollution. With the inversion capability of this software and remote sensing instrumentation, it is possible to monitor pollution sources from safe and secure distances on a noninterfering, noncooperative basis. The software, now know as SEASCRAPE_Plus, allows the user to determine the presence of pollution products, their location and their abundance along the ray path. The technology has been cleared by the Department of Commerce for export, and is currently used by numerous research and engineering organizations around the world.

  8. A Laboratory Classroom Where ?Wining? Is Encouraged

    ERIC Educational Resources Information Center

    Gibbs, Hope

    2004-01-01

    A wine analysis for most is: take a sip, and either like it or don't. Not so for the students taking wine analysis courses at California Polytechnic State University in San Luis Obispo, California. In the college's new Wine Analysis Laboratory, students learn how to run chemical analyses of wines and compare chemical profiles of wines. Professor…

  9. Large Parachute for NASA Mars Science Laboratory

    NASA Image and Video Library

    2009-04-22

    The parachute for NASA Mars Science Laboratory mission opens to a diameter of nearly 16 meters 51 feet. This image shows a duplicate qualification-test parachute inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, Calif. The Mars Science Laboratory will be launched in 2011 for a landing on Mars in 2012. Its parachute is the largest ever built to fly on an extraterrestrial mission. The parachute uses a configuration called disk-gap-band, with 80 suspension lines. Most of the orange and white fabric is nylon, though a small disk of heavier polyester is used near the vent in the apex of the canopy due to higher stresses there. http://photojournal.jpl.nasa.gov/catalog/PIA11994

  10. Industrial Physics---Southern California Style

    NASA Astrophysics Data System (ADS)

    Leslie, Stuart

    2013-03-01

    Only in Southern California did space-age style really come into its own as a unique expression of Cold War scientific culture. The corporate campuses of General Atomic in San Diego and North American Aviation in Los Angeles perfectly expressed the exhilarating spirit of Southern California's aerospace era, scaling up the residential version of California modernism to industrial proportion. Architects William Pereira and A.C. Martin Jr., in collaboration with their scientific counterparts, fashioned military-industrial `dream factories' for industrial physics that embodied the secret side of the space-age zeitgeist, one the public could only glimpse of in photographs, advertisements, and carefully staged open houses. These laboratories served up archetypes of the California dream for a select audience of scientists, engineers, and military officers, live-action commercials for a lifestyle intended to lure the best and brightest to Southern California. Paradoxically, they hid in plain sight, in the midst of aerospace suburbs, an open secret, at once visible and opaque, the public face of an otherwise invisible empire. Now, at the end of the aerospace era, these places have become an endangered species, difficult to repurpose, on valuable if sometimes highly polluted land. Yet they offer an important reminder of a more confident time when many physicists set their sights on the stars.

  11. Expanding the analyte set of the JPL Electronic Nose to include inorganic compounds

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Homer, M. L.; Zhou, H.; Mannat, K.; Manfreda, A.; Kisor, A.; Shevade, A.; Yen, S. P. S.

    2005-01-01

    An array-based sensing system based on 32 polymer/carbon composite conductometric sensors is under development at JPL. Until the present phase of development, the analyte set has focuses on organic compounds and a few selected inorganic compounds, notably ammonia and hydrazine.

  12. Extent of California Blue Cut Fire Devastation Seen by NASA Spacecraft

    NASA Image and Video Library

    2016-09-07

    In San Bernardino County, California, the Blue Cut fire burned ferociously for one week starting Aug. 16, 2016. By the time it was contained, it had burned 36,000 acres and destroyed 105 homes. More than 80,000 people were affected by evacuation orders. Ten days after containment, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft captured this image of the region, highlighting the extent of the damage. Healthy vegetation is depicted in red, with burnt areas in the mountains and fields shown in shades of black. The image, acquired Sept. 3, covers an area of 14 by 17 miles (22 by 27 kilometers), and is located at 34.3 degrees north, 117.5 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20899

  13. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker answers questions from members of the media during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, center, answers questions from members of the media during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  15. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Nechnical producer for NASA's Eyes at JPL, Jason Craig discusses the Cassini mission as seen through the NASA Eyes program during a NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  16. JPL's Approach for Helping Flight Project Managers Meet Today's Management Challenges

    NASA Technical Reports Server (NTRS)

    Leising, Charles J.

    2004-01-01

    All across NASA project managers are facing tough new challenges. NASA has imposed increased oversight and the number of projects at Centers such as JPL has exploded from a handful of large projects to a much greater number of smaller ones. Experienced personnel are retiring at increasing rates and younger, less experienced managers are being rapidly promoted up the ladder. Budgets are capped, competition among NASA Centers and Federally Funded Research and Development Centers (FFRDCs) has increased significantly and there is no longer any tolerance to cost overruns. On top of all this, implementation schedules have been reduced by 25 to 50% to reduce run-out costs, making it even more difficult to define requirements, validate heritage assumptions and make accurate cost estimates during the early phases of the life-cycle.JPL's executive management, under the leadership of the Associate Director for Flight Projects and Mission Success, have attempted to meet these challenges by improving operations in five areas: (1) increased standardization, where it is judged to have significant benefit; (2) better balance and more effective partnering between projects and the line management; (3) increased infrastructure support; (4) improved management training; and (5) more effective review and oversight.

  17. Photographer : JPL Range :12.2 million kilometers (7.6 million miles) The view in this photo shows

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range :12.2 million kilometers (7.6 million miles) The view in this photo shows Jupiter's Great Red Spot emerging from the five-hour Jovian night. One of the three bright, oval clouds which were observed to form approximately 40 years ago can be seen immediately below the Red Spot. Most of the other features appearing in this view are too small to be seen clearly from Earth. The color picture was assembled from three black and white photos in the Image Processing Lab at JPL.

  18. Mars Science Laboratory Rover System Thermal Test

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  19. Cassini Spacecraft in a JPL Assembly Room

    NASA Image and Video Library

    2003-07-02

    On October of 1997, a two-story-tall robotic spacecraft will begin a journey of many years to reach and explore the exciting realm of Saturn, the most distant planet that can easily be seen by the unaided human eye. In addition to Saturn's interesting atmosphere and interior, its vast system contains the most spectacular of the four planetary ring systems, numerous icy satellites with a variety of unique surface features. A huge magnetosphere teeming with particles that interact with the rings and moons, and the intriguing moon Titan, which is slightly larger than the planet Mercury, and whose hazy atmosphere is denser than that of Earth, make Saturn a fascinating planet to study. The Cassini mission is an international venture involving NASA, the European Space Agency (ESA), the Italian Space Agency (ASI), and several separate European academic and industrial partners. The mission is managed for NASA by JPL. The spacecraft will carry a sophisticated complement of scientific sensors to support 27 different investigations to probe the mysteries of the Saturn system. The large spacecraft will consist of an orbiter and ESA's Huygens Titan probe. The orbiter mass at launch will be nearly 5300 kg, over half of which is propellant for trajectory control. The mass of the Titan probe (2.7 m diameter) is roughly 350 kg. The mission is named in honor of the seventeenth-century, French-Italian astronomer Jean Dominique Cassini, who discovered the prominent gap in Saturn's main rings, as well as the icy moons Iapetus, Rhea, Dione, and Tethys. The ESA Titan probe is named in honor of the exceptional Dutch scientist Christiaan Huygens, who discovered Titan in 1655, followed in 1659 by his announcement that the strange Saturn "moons" seen by Galileo in 1610 were actually a ring system surrounding the planet. Huygens was also famous for his invention of the pendulum clock, the first accurate timekeeping device. http://photojournal.jpl.nasa.gov/catalog/PIA04603

  20. Space Radar Image of Mammoth Mountain, California

    NASA Image and Video Library

    1999-05-01

    This false-color composite radar image of the Mammoth Mountain area in the Sierra Nevada Mountains, California, was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on October 3, 1994. The image is centered at 37.6 degrees north latitude and 119.0 degrees west longitude. The area is about 39 kilometers by 51 kilometers (24 miles by 31 miles). North is toward the bottom, about 45 degrees to the right. In this image, red was created using L-band (horizontally transmitted/vertically received) polarization data; green was created using C-band (horizontally transmitted/vertically received) polarization data; and blue was created using C-band (horizontally transmitted and received) polarization data. Crawley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The purple areas at the higher elevations in the upper part of the scene are discontinuous patches of snow cover from a September 28 storm. New, very thin snow was falling before and during the second space shuttle pass. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput Synthetic Aperture Radar processing in preparation for upcoming data-intensive SAR missions. The image released here was produced as part of this experimental effort. http://photojournal.jpl.nasa.gov/catalog/PIA01746

  1. The navigation system of the JPL robot

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1977-01-01

    The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.

  2. SRTM Perspective View with Landsat Overlay: Santa Barbara, California

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Santa Barbara, California, is often called 'America's Riviera.' It enjoys a Mediterranean climate, a mountain backdrop, and a long and varied coastline. This perspective view of the Santa Barbara region was generated using data from the Shuttle Radar Topography Mission (SRTM) and an enhanced Landsat satellite image. The view is toward the northeast, from the Goleta Valley in the foreground to a snow-capped Mount Abel (elevation 2526 m or 8286 feet) along the skyline. The coast here generally faces south. Consequently, Fall and Winter sunrises occur over the ocean, which is unusual for the U.S. west coast. The Santa Barbara 'back country' is very rugged and largely remains as undeveloped wilderness and an important watershed for local communities. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data match the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors approximate natural colors.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface.

    To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200-feet) long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif, for NASA's Earth Science Enterprise,Washington, D.C. JPL

  3. NASA JPL Distributed Systems Technology (DST) Object-Oriented Component Approach for Software Inter-Operability and Reuse

    NASA Technical Reports Server (NTRS)

    Hall, Laverne; Hung, Chaw-Kwei; Lin, Imin

    2000-01-01

    The purpose of this paper is to provide a description of NASA JPL Distributed Systems Technology (DST) Section's object-oriented component approach to open inter-operable systems software development and software reuse. It will address what is meant by the terminology object component software, give an overview of the component-based development approach and how it relates to infrastructure support of software architectures and promotes reuse, enumerate on the benefits of this approach, and give examples of application prototypes demonstrating its usage and advantages. Utilization of the object-oriented component technology approach for system development and software reuse will apply to several areas within JPL, and possibly across other NASA Centers.

  4. The JPL Tropical Cyclone Information System: Data and Tools for Researchers

    NASA Astrophysics Data System (ADS)

    Knosp, B. W.; Ao, C. O.; Chao, Y.; Dang, V.; Garay, M.; Haddad, Z.; Hristova-Veleva, S.; Lambrigtsen, B.; Li, P. P.; Park, K.; Poulsen, W. L.; Rosenman, M. A.; Su, H.; Vane, D.; Vu, Q. A.; Willis, J. K.; Wu, D.

    2008-12-01

    The JPL Tropical Cyclone Information System (TCIS) is now open to the public. This web portal is designed to assist researchers by providing a one-stop shop for hurricane related data and analysis tools. While there are currently many places that offer storm data, plots, and other information, none offer an extensive archive of data files and images in a common space. The JPL TCIS was created to fill this gap. As currently configured, the JPL Tropical Cyclone Portal has three main features for researchers. The first feature consists of storm-scale data and plots for both observed and modeled data. As of the TCIS' first release, the entire 2005 storm season has been populated with data and plots from AIRS, MLS, AMSU-A, QuikSCAT, Argo floats, WRF models, GPS, and others. Storm data is subsetted to a 1000x1000 km window around the hurricane track for all six oceanic cyclone basins, and all the available data during the life time of any storm can be downloaded with one mouse click. Users can also view pre-generated storm-scale plots from all these data sets that are all co-located to the same temporal and spatial parameters. Work is currently underway to backfill all storm seasons to 1998 with as many relevant data sets as possible. The second offering from this web portal are large-scale data sets and associated visualization tools powered by Google Maps. On this interactive map, researchers can view a particular storm's intensity and track. Users may also overlay large-scale data such as aerosol maps from MODIS and MISR, and a blended microwave sea-surface temperature (SST) to gain an understanding of the large-scale environment of the storm. For example, by using this map, the cold sea-surface temperature wake can be tracked as a storm passes by. The third feature of this portal deals with interactive model and data analysis. A single-parameter analysis tools has recently been developed and added to this portal where users can plot maps, profiles, and histograms of

  5. JPL's GNSS Real-Time Earthquake and Tsunami (GREAT) Alert System

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Yoaz; Miller, Mark; Vallisneri, Michele; Khachikyan, Robert; Meyer, Robert

    2017-04-01

    We describe recent developments to the GREAT Alert natural hazard monitoring service from JPL's Global Differential GPS (GDGPS) System. GREAT Alert provides real-time, 1 Hz positioning solutions for hundreds of GNSS tracking sites, from both global and regional networks, aiming to monitor ground motion in the immediate aftermath of earthquakes. We take advantage of the centralized data processing, which is collocated with the GNSS orbit determination operations of the GDGPS System, to combine orbit determination with large-scale point-positioning in a grand estimation scheme, and as a result realize significant improvement to the positioning accuracy compared to conventional stand-alone point positioning techniques. For example, the measured median site (over all sites) real-time horizontal positioning accuracy is 2 cm 1DRMS, and the median real-time vertical accuracy is 4 cm RMS. The GREAT Alert positioning service is integrated with automated global earthquake notices from the United States Geodetic Survey (USGS) to support near-real-time calculations of co-seismic displacements with attendant formal errors based both short-term and long-term error analysis for each individual site. We will show the millimeter-level resolution of co-seismic displacement can be achieved by this system. The co-seismic displacements, in turn, are fed into a JPL geodynamics and ocean models, that estimate the Earthquake magnitude and predict the potential tsunami scale.

  6. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grotzinger, Mars Science Laboratory (MSL) project scientist, Jet Propulsion Lab (JPL), Pasadena, Calif., answers a reporter's question at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  7. Improved OSC Amtec generator design to meet goals of JPL's candidate Europa Orbiter mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, A.; Noravian, H.; Or, C.

    1998-07-01

    The preceding paper (Paper IECEC.98.244) described OSC's initial designs of AMTEC (Alkali Metal Thermal-to-Electrical Conversion) power systems, consisting of one or two generators, each with 2, 3, or 4 General Purpose Heat Source (GPHS) modules and with 16 refractory AMTEC cells containing 5 Beta Alumina Solid Electrolyte (BASE) tubes; and presented the effect of heat input and voltage output on the generator's BOM evaporator and clad temperatures and on its EOM system efficiency and power output. Comparison of the computed results with JPL's goals for the Europa Orbiter mission showed that all of the initial 16-cell design options yielded eithermore » excessive evaporator and clad temperatures or insufficient EOM power to satisfy the JPL-specified mission goals. The present paper describes modified OSC generator designs with different numbers of AMTEC cells, cell diameters, cell lengths, cell materials, BASE tube lengths, and number of tubes per cell. These efforts succeeded in identifying generator designs with only half the number of AMTEC cells which -- for the same assumptions -- can produce EOM power outputs substantially in excess of JPL's goals for NASA's Europa Orbiter mission while operating well below the prescribed BOM limits on evaporator and clad temperature; and revealed that lowering the emissivity of the generator's housing to raise the cells' condenser temperatures can achieve substantial additional performance improvement. Finally, the paper culminates in programmatic recommendations.« less

  8. With Grid Flexibility, California can Slash Emissions while Limiting Curtailment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    California can achieve a 50% percent reduction in CO2 levels by 2030 in the electric sector under a wide variety of scenarios and assumptions, according to the Low Carbon Grid Study: Analysis of a 50% Emission Reduction in California, published in January 2016 by the Department of Energy's National Renewable Energy Laboratory. This document summarizes key findings and analysis from the study.

  9. Use of a krypton isotope for rapid ion changeover at the Lawrence Berkeley Laboratory 88-inch cyclotron

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1989-01-01

    An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.

  10. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Annmarie Eldering, OCO-2 deputy project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, demonstrates with a few white beans in a container of black beans the small differences in carbon dioxide in the atmosphere that the Orbiting Carbon Observatory-2 (OCO-2) will be able to measure, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2, NASA’s first spacecraft dedicated to studying carbon dioxide, is set for a July 1, 2014, launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  11. Expanding public outreach: The solar system ambassadors program.

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    The Solar System Ambassadors Program is a public outreach program sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California designed to work with motivated volunteers across the nation. These competitively selected volunteers or- ganize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non_traditional forums; e.g. community service clubs, libraries, museums, planetariums, "star parties," mall displays, etc. In this talk I will give an overview of the program and discuss lessons learned. The Solar System Ambassadors Program is , an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA)

  12. The PIAA Coronagraph Prototype: First Laboratory Results.

    NASA Astrophysics Data System (ADS)

    Pluzhnik, Eugene; Guyon, O.; Colley, S.; Gallet, B.; Ridgway, S.; Woodruff, R.; Tanaka, S.; Warren, M.

    2006-12-01

    The phase-induced amplitude apodization (PIAA) coronagraph combines the main advantages of classical pupil apodization with high throughput ( 100%), high angular resolution ( 2λ/D) and low chromaticity. These advantages can allow direct imaging of nearby extrasolar planets with a 4-meter telescope. The PIAA coronagraph laboratory prototype has been successfully manufactured and starts to operate at the Subary Telescope facility. We present here our first laboratory results with this prototype where we have achieved 2x10-6 contrast within 2 λ/D. We also discuss the main constrains limiting the contrast and describe our future efforts. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  13. Wildfires in California, August 17, 2015

    NASA Image and Video Library

    2017-12-08

    Very hot, dry and unstable conditions in California and across the Pacific Northwest add to the challenges facing firefighters as they battle blazes around the region. Cal Fire is urging Californians to be extremely cautious, especially for the next few days, as the current conditions increase the dangers authorities face. This image was taken by NASA-NOAA's Suomi NPP satellite's VIIRS instrument around 2145 UTC (5:45 p.m. EDT) on August 17, 2015. Northern California is seeing smoke from the River Complex, Route Complex, South Complex, Fork Complex and Mad River Complex fires combine over a large area of the Shasta-Trinity National Forest west of Redding, California, while the Rough Fire in Fresno County is spreading toward the Black Rock Reservoir, causing evacuations and road closures. Fires across the Pacific Northwest aren't limited to California. Please see the Suomi NPP VIIRS composites in NOAA View to see the growth and extent of fires over the past weeks. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory

  14. Where do California's greenhouse gases come from?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Marc

    2009-12-11

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaborationmore » between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.« less

  15. Anaglyph of Perspective View with Aerial Photo Overlay Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Red-blue glasses are required to see the 3-D effect. Portions of the cities of Altadena and La Canada-Flintridge are also shown. The image was created from two datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data and U. S. Geological Survey digital aerial photography provided the image detail. The Jet Propulsion Laboratory is the cluster of large buildings left of center, at the base of the mountains. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires can strip the mountains of vegetation, increasing the hazards from flooding and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C

  16. Tiger Team Assessment of the Sandia National Laboratories, Livermore, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-08-01

    This report provides the results of the Tiger Team Assessment of the Sandia National Laboratories (SNL) in Livermore, California, conducted from April 30 to May 18, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety and health (ES H) activities at SNL, Livermore. The assessment was conducted by a team consisting of three subteams of federal and private sector technical specialists in the disciplines of environment, safety and health, and management. On-site activities for the assessment included document reviews, observation of site operations, and discussions and interviews with DOE personnel,more » site contractor personnel, and regulators. Using these sources of information and data, the Tiger Team identified a significant number of findings and concerns having to do with the environment, safety and health, and management, as well as concerns regarding noncompliance with Occupational Safety and Health Administration (OSHA) standards. Although the Tiger Team concluded that none of the findings or concerns necessitated immediate cessation of any operations at SNL, Livermore, it does believe that a sizable number of them require prompt management attention. A special area of concern identified for the near-term health and safety of on-site personnel pertained to the on-site Trudell Auto Repair Shop site. Several significant OSHA concerns and environmental findings relating to this site prompted the Tiger Team Leader to immediately advise SNL, Livermore and AL management of the situation. A case study was prepared by the Team, because the root causes of the problems associated with this site were believed to reflect the overall root causes for the areas of ES H noncompliance at SNL, Livermore. 4 figs., 3 tabs.« less

  17. The Mars Express - NASA Project at JPL

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Horttor, Richard L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S. W.; Goltz, G.

    2006-01-01

    This viewgraph presentation gives a general overview of the Mars Express NASA Project at JPL. The contents include: 1) Mars Express/NASA Project Overview; 2) Experiment-Investigator Matrix; 3) Mars Express Support of NASA's Mars Exploration Objectives; 4) U.S./NASA Support of Mars Express; 5) Mars Express Schedule (2003-2007); 6) Mars Express Data Rates; 7) MARSIS Overview Results; 8) MARSIS with Antennas Deployed; 9) MARSIS Science Objectives; 10) Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) Experiment Overview; 11) Mars Express Orbit Evolution; 12) MARSIS Science - Subsurface Sounding; 13) MARSIS-North Polar Ice Cap; 14) MARSIS Data-Buried Basin; 15) MARSIS over a Crater Basin; 16) MARSIS-Buried Basin; 17) Ionogram - Orbit 2032 (example from Science paper); 18) Ionogram-Orbit 2018 (example from Science paper); and 19) Recent MARSIS Results ESA Press Releases.

  18. Photographic copy of photograph, view of rail launcher used for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of photograph, view of rail launcher used for 'Baby Corporal E' missiles on 6 and 7 May 1946 at JPL-Muroc Army Air Base (later Edwards Air Force Base) (This launcher was also used for 'Baby WAC' missiles at Goldstone, Fort Irwin, California in 1945). Photocopy of 35mm photograph made in December 1994, looking west with Test Stand 'A' immediately behind the rail launcher. - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA

  19. 3-D View of Death Valley, California

    NASA Image and Video Library

    2001-07-21

    This 3-D perspective view looking north over Death Valley, California, was produced by draping ASTER nighttime thermal infrared data over topographic data from the US Geological Survey. The ASTER data were acquired April 7, 2000 with the multi-spectral thermal infrared channels, and cover an area of 60 by 80 km (37 by 50 miles). Bands 13, 12, and 10 are displayed in red, green and blue respectively. The data have been computer enhanced to exaggerate the color variations that highlight differences in types of surface materials. Salt deposits on the floor of Death Valley appear in shades of yellow, green, purple, and pink, indicating presence of carbonate, sulfate, and chloride minerals. The Panamint Mtns. to the west, and the Black Mtns. to the east, are made up of sedimentary limestones, sandstones, shales, and metamorphic rocks. The bright red areas are dominated by the mineral quartz, such as is found in sandstones; green areas are limestones. In the lower center part of the image is Badwater, the lowest point in North America. http://photojournal.jpl.nasa.gov/catalog/PIA02663

  20. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Cassini program manager at JPL, Earl Maize, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, standing, watches telemetry come in from Cassini with Julie Bellerose, left, Duane Roth, second from left, and Mar Vaquero of the Cassini navigation team in the mission control room, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, is seen in mission control as he monitors the Cassini spacecraft, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, embrace after the Cassini spacecraft plunged into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Shipping InSight Mars Spacecraft to California for Launch

    NASA Image and Video Library

    2015-12-17

    Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space Systems, was shipped Dec. 16, 2015, in preparation for launch from Vandenberg in March 2016. InSight, for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20278

  5. The JPL near-real-time VLBI system and its application to clock synchronization and earth orientation measurements

    NASA Technical Reports Server (NTRS)

    Callahan, P. S.; Eubanks, T. M.; Roth, M. G.; Steppe, J. A.; Esposito, P. B.

    1983-01-01

    The JPL near-real-time VLBI system called Block I is discussed. The hardware and software of the system are described, and the Time and Earth Motion Precision Observations (TEMPO) which utilize Block I are discussed. These observations are designed to provide interstation clock synchronization to 10 nsec and to determine earth orientation (UT1 and polar motion - UTPM) to 30 cm or better in each component. TEMPO results for clock synchronization and UTPM are presented with data from the July 1980-August 1981 analyzed using the most recent JPL solution software and source catalog. Future plans for TEMPO and Block I are discussed.

  6. Decentralized control experiments on the JPL flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Ozguner, U.; Ossman, K.; Donne, J.; Boesch, M.; Ahmed, A.

    1990-01-01

    Decentralized control experiments were successfully demonstrated for the JPL/AFAL Flexible Structure. A simulation package using MATRIXx showed strong correlation between the simulations and experimental result, while providing a means for test and debug of the various control strategies. Implementation was simplified by a modular software design that was easily transported from the simulation environment to the experimental environment. Control designs worked well for suppression of the dominant modes of the structure. Static decentralized output feedback dampened the excited modes of the structure, but sometimes excited higher order modes upon startup of the controller. A second-order frequency shaping controller helped to eliminate excitation of the higher order modes by attenuating high frequencies in the control effort. However, it also resulted in slightly longer settling times.

  7. Laser Communications Relay Demonstration (LCRD) Update and the Path Towards Optical Relay Operations

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Edwards, Bernard L.; Staren, John W.

    2017-01-01

    This paper provides a concept for an evolution of NASA's optical communications near Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory - California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO), following launch in 2019. This paper will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.

  8. Laser Communications Relay Demonstration (LCRD) Update and the Path Towards Optical Relay Operations

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Edwards, Bernard L.; Staren, John W.

    2017-01-01

    This Presentation provides a concept for an evolution of NASAs optical communications near Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD), a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory - California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO), following launch in 2019. This paper will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.

  9. Watching the Creation of Southern California's Largest Reservoir

    NASA Technical Reports Server (NTRS)

    2001-01-01

    view (displayed as yellow). This technique enables bodies of water to standout prominently by taking advantage of the strong change in brightness between the two view angles and the contrasting angular signature of the surrounding land. The blue-yellow separation in the cloud field is due to geometric parallax resulting from the clouds' elevation above the surface terrain.

    Each image covers an area measuring approximately 125 kilometers x 95 kilometers. The northwest to southeast trending linear feature is the Elsinore Fault.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  10. Building leadership among laboratory-based and clinical and translational researchers: the University of California, San Francisco experience.

    PubMed

    Wides, Cynthia; Mertz, Elizabeth; Lindstaedt, Bill; Brown, Jeanette

    2014-02-01

    In 2005 the University of California, San Francisco (UCSF) implemented the Scientific Leadership and Management (SLM) course, a 2-day leadership training program to assist laboratory-based postdoctoral scholars in their transition to independent researchers managing their own research programs. In 2011, the course was expanded to clinical and translational junior faculty and fellows. The course enrollment was increased from approximate 100 to 123 participants at the same time. Based on course evaluations, the number and percent of women participants appears to have increased over time from 40% (n = 33) in 2007 to 53% (n = 58) in 2011. Course evaluations also indicated that participants found the course to be relevant and valuable in their transition to academic leadership. This paper describes the background, structure, and content of the SLM and reports on participant evaluations of the course offerings from 2007 through 2011. © 2014 Wiley Periodicals, Inc.

  11. MEMS Micropropulsion Activities at JPL

    NASA Technical Reports Server (NTRS)

    Mueller, Juergen; Chakraborty, Indrani; Vargo, Stephen; Bame, David; Marrese, Colleen; Tang, William C.

    1999-01-01

    A status of MEMS-based micropropulsion activities conducted at JPL will be given. These activities include work conducted on the so called Vaporizing Liquid Micro-Thruster (VLM) which recently underwent proof-of-concept testing, demonstrating the ability to vaporize water propellant at 2 W and 2 V. Micro-ion engine technologies, such m field emitter arrays and micro-grids are being studied. Focus in the field emitter area is on arrays able to survive in thruster plumes and micro-ion engine plasmas to serve as neutralizers aW engine cathodes. Integrated, batch-fabricated Ion repeller grid structures are being studied as well as different emitter tip materials are being investigated to meet these goals. A micro-isolation valve is being studied to isolate microspacecraft feed system during long interplanetary cruises, avoiding leakage and prolonging lifetime and reliability of such systems. This concept relies on the melting of a thin silicon barrier. Burst pressure values as high as 2,900 psig were obtained for these valves and power requirements to melt barriers ranging between 10 - 50 microns in thickness, as determined through thermal finite element calculations, varied between 10 - 30 W to be applied over a duration of merely 0.5 ms.

  12. Space Station Crew Discusses Life in Space with California Students

    NASA Image and Video Library

    2017-10-30

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineer Joe Acaba of NASA discussed life and research on the outpost during an in-flight educational event Oct. 30 with students at the Santa Monica High School in Santa Monica, California. Acaba, who is a native of southern California, and Bresnik are in various stages of their respective five-and-a half-month missions on the orbital laboratory.

  13. Publications of the Jet Propulsion Laboratory, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography includes 1004 technical reports, released during calendar year 1979, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: (1) JPL Publications; (2) articles published in the open literature; and (3) articles from the bimonthly Deep Space Network Progress Report. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first listed) author. Unless designated otherwise, all publications listed are unclassified.

  14. Emulating JWST Exoplanet Transit Observations in a Testbed laboratory experiment

    NASA Astrophysics Data System (ADS)

    Touli, D.; Beichman, C. A.; Vasisht, G.; Smith, R.; Krist, J. E.

    2014-12-01

    The transit technique is used for the detection and characterization of exoplanets. The combination of transit and radial velocity (RV) measurements gives information about a planet's radius and mass, respectively, leading to an estimate of the planet's density (Borucki et al. 2011) and therefore to its composition and evolutionary history. Transit spectroscopy can provide information on atmospheric composition and structure (Fortney et al. 2013). Spectroscopic observations of individual planets have revealed atomic and molecular species such as H2O, CO2 and CH4 in atmospheres of planets orbiting bright stars, e.g. Deming et al. (2013). The transit observations require extremely precise photometry. For instance, Jupiter transit results to a 1% brightness decrease of a solar type star while the Earth causes only a 0.0084% decrease (84 ppm). Spectroscopic measurements require still greater precision <30ppm. The Precision Projector Laboratory (PPL) is a collaboration between the Jet Propulsion Laboratory (JPL) and California Institute of Technology (Caltech) to characterize and validate detectors through emulation of science images. At PPL we have developed a testbed to project simulated spectra and other images onto a HgCdTe array in order to assess precision photometry for transits, weak lensing etc. for Explorer concepts like JWST, WFIRST, EUCLID. In our controlled laboratory experiment, the goal is to demonstrate ability to extract weak transit spectra as expected for NIRCam, NIRIS and NIRSpec. Two lamps of variable intensity, along with spectral line and photometric simulation masks emulate the signals from a star-only, from a planet-only and finally, from a combination of a planet + star. Three masks have been used to simulate spectra in monochromatic light. These masks, which are fabricated at JPL, have a length of 1000 pixels and widths of 2 pixels, 10 pixels and 1 pixel to correspond respectively to the noted above JWST instruments. From many-hour long

  15. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grotzinger, Mars Science Laboratory (MSL) project scientist, Jet Propulsion Lab (JPL), Pasadena, Calif., holds up a model of the MSL, or Curiosity, at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  16. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.

    1988-01-01

    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).

  17. RoboSimian Exits Vehicle

    NASA Image and Video Library

    2015-06-09

    JPL's RoboSimian exits its vehicle following a brief drive through a slalom course at the DARPA Robotics Challenge in Pomona, California. This image was taken June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19324

  18. RoboSimian Driving

    NASA Image and Video Library

    2015-06-09

    JPL's RoboSimian drives a four-wheeled vehicle through a slalom course at the DARPA Robotics Challenge Finals in Pomona, California. This image was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19325

  19. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  20. Photographer : JPL Range : 862,200 km. ( 500,000 miles ) This photograph shows subspacecraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 862,200 km. ( 500,000 miles ) This photograph shows subspacecraft longitude of approximately 146 degrees of Jupiter's moon Io. Circular features are seen that may be meteorite impact craters or features of internal origins. Irregular depressions are seen that indicate surface modifications. The bright irregular patches appear to be younger deposits masking the surface detail.

  1. KSC-2014-4252

    NASA Image and Video Library

    2014-10-15

    VANDENBERG AIR FORCE BASE, Calif. – A forklift is enlisted to offload the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft from the truck that delivered it from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Stephen Greenberg, JPL

  2. KSC-2014-2480

    NASA Image and Video Library

    2014-05-01

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, Orbital Sciences workers and technicians move their work platforms away from NASA's Orbiting Carbon Observatory-2, or OCO-2, in preparation for its lift from the transportation trailer. Testing and launch preparations now will get underway for its launch from Space Launch Complex 2 aboard a United Launch Alliance Delta II rocket, scheduled for July 1, 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. OCO-2 is a NASA Earth System Science Pathfinder Program mission managed by NASA's Jet Propulsion Laboratory JPL in Pasadena, California, for NASA's Science Mission Directorate in Washington. Orbital Sciences built the spacecraft and provides mission operations under JPL’s leadership. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Doug Gruben, 30th Space Wing

  3. Integration of AIRSAR and AVIRIS data for Trail Canyon alluvial fan, Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.

    1995-01-01

    Combining quantitative geophysical information extracted from the optical and microwave wavelengths provides complementary information about both the surface mineralogy and morphology. This study combines inversion results from two remote sensing instruments, a polarimetric synthetic aperture radar, AIRSAR, and an imaging spectrometer, AVIRIS, for Trail Canyon alluvial fan in Death Valley, California. The NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) is a quad-polarization, three frequency instrument. AIRSAR collects data at C-band = 5.66 cm, L-band = 23.98 cm, and P-band = 68.13 cm. The data are processed to four-looks and have a spatial resolution of 10 m and a swath width of 12 km. The AIRSAR data used in this study were collected as part of the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley on 9/14/89. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is a NASA/JPL instrument that flies in an ER-2 aircraft at an altitude of 20 km. AVIRIS uses four spectrometers to collect data in 224 spectral channels from 0.4 micrometer to 2.45 micrometer. The width of each spectral band is approximately 10 nm. AVIRIS collects data with a swath width of 11 km and a pixel size of 20 m. The AVIRIS data used in this study were collected over Death Valley on 5/31/92.

  4. Getting started on metrics - Jet Propulsion Laboratory productivity and quality

    NASA Technical Reports Server (NTRS)

    Bush, M. W.

    1990-01-01

    A review is presented to describe the effort and difficulties of reconstructing fifteen years of JPL software history. In 1987 the collection and analysis of project data were started with the objective of creating laboratory-wide measures of quality and productivity for software development. As a result of this two-year Software Product Assurance metrics study, a rough measurement foundation for software productivity and software quality, and an order-of-magnitude quantitative baseline for software systems and subsystems are now available.

  5. Biomonitoring in California Firefighters

    PubMed Central

    Israel, Leslie; McNeel, Sandra; Voss, Robert; Wang, Miaomiao; Gajek, Ryszard; Park, June-Soo; Harwani, Suhash; Barley, Frank; She, Jianwen; Das, Rupali

    2015-01-01

    Objective: To assess California firefighters' blood concentrations of selected chemicals and compare with a representative US population. Methods: We report laboratory methods and analytic results for cadmium, lead, mercury, and manganese in whole blood and 12 serum perfluorinated chemicals in a sample of 101 Southern California firefighters. Results: Firefighters' blood metal concentrations were all similar to or lower than the National Health and Nutrition Examination Survey (NHANES) values, except for six participants whose mercury concentrations (range: 9.79 to 13.42 μg/L) were close to or higher than the NHANES reporting threshold of 10 μg/L. Perfluorodecanoic acid concentrations were elevated compared with NHANES and other firefighter studies. Conclusions: Perfluorodecanoic acid concentrations were three times higher in this firefighter group than in NHANES adult males. Firefighters may have unidentified sources of occupational exposure to perfluorinated chemicals. PMID:25563545

  6. Sunset over Twin Peaks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was taken by the Imager for Mars Pathfinder (IMP) about one minute after sunset on Mars on Sol 21. The prominent hills dubbed 'Twin Peaks' form a dark silhouette at the horizon, while the setting sun casts a pink glow over the darkening sky. The image was taken as part of a twilight study which indicates how the brightness of the sky fades with time after sunset. Scientists found that the sky stays bright for up to two hours after sunset, indicating that Martian dust extends very high into the atmosphere.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  7. Pre-Dawn Martian Sky

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On Sol 39 there were wispy blue clouds in the pre-dawn sky of Mars, as seen by the Imager for Mars Pathfinder (IMP). The color image was made by taking blue, green, and red images and then combining them into a single color image. The clouds appear to have a bluish side and a greenish side because they moved (in the wind from the northeast) between images. This picture was made an hour and twenty minutes before sunrise -- the sun is not shining directly on the water ice clouds, but they are illuminated by the dawn twilight.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  8. Martian Surface & Pathfinder Airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Martian surface was taken in the afternoon of Mars Pathfinder's first day on Mars. Taken by the Imager for Mars Pathfinder (IMP camera), the image shows a diversity of rocks strewn in the foreground. A hill is visible in the distance (the notch within the hill is an image artifact). Airbags are seen at the lower right.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  9. New perspective of undeployed rover

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image features a different perspective of one of the first pictures taken by the Imager for Mars Pathfinder (IMP) lander shortly after its touchdown at 10:07 AM Pacific Daylight Time on July 4. The image has been transformed to a perspective that would match that of an observer standing at the point the image was taken. Sojourner is seen in the foreground in its stowed position on a solar panel of the lander. Both ramps, the rear of which Sojourner would use on July 5 to safely descend to the Martian surface, were still undeployed when this image was taken. The double hills called 'Twin Peaks' are clearly visible in the background.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  10. Island Fox Veterinary And Pathology Services On San Clemente Island, California

    DTIC Science & Technology

    2017-02-01

    conservation and management efforts by attempting to mitigate anthropogenic-related injuries or illnesses. We utilized our mobile veterinary hospital...the U.S. Navy. The Island Fox Veterinary and Pathology Services project was designed to assist the Navy in island fox conservation and management ...the California Animal Health and Food Safety Laboratory System (CAHFS), at the University of California, Davis, to be necropsied. Necropsy reports

  11. LCRD Update and Path to Optical Relay Operations

    NASA Technical Reports Server (NTRS)

    Israel, David

    2017-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on May 23, 2017 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. This presentation discusses a concept for an evolution of NASAs optical communications near-Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD) is a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO) following launch in 2019. This presentation will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.

  12. New mode switching algorithm for the JPL 70-meter antenna servo controller

    NASA Technical Reports Server (NTRS)

    Nickerson, J. A.

    1988-01-01

    The design of control mode switching algorithms and logic for JPL's 70 m antenna servo controller are described. The old control mode switching logic was reviewed and perturbation problems were identified. Design approaches for mode switching are presented and the final design is described. Simulations used to compare old and new mode switching algorithms and logic show that the new mode switching techniques will significantly reduce perturbation problems.

  13. Jet Propulsion Laboratory: Annual Report 2008

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Nothing is more exciting than when science mines the far end of our knowledge for the new and the unexpected. In 2008, the world was taken by surprise when JPL astronomers announced the discovery of organic compounds on a planet orbiting another star. We were equally excited to learn from the Spitzer Space Telescope that many, if not most, sun-like stars have rocky planets roughly similar to Earth. Together these are very intriguing clues in our quest to learn if there is life elsewhere in the universe, which certainly has to be one of the most profound mysteries of our age.There are times when, dealing with unknowns, we are reminded to be humble. Very impressive progress is being made by the team developing our next flagship mission, Mars Science Laboratory. Ther conclusion, however, is that it would not be safe to try to fly during the Mars launch window in 2009, and reset for the next opportunity in 2011. We are lucky to have valuable assets that support us as we venture into the unknown. One is the global Deep Space Network, which functions both as our communication gateway to our spacecraft across the solar system as well as a research tool itself in conducting radar astronomy. Our successes depend on our entire team, administrators and business specialists as much as technical people. There are those who help share our missions with the public, finding imaginative venues such as sending out dispatches on the Internet's Twitter.com during the Phoenix mission. We also benefit greatly from the intellectual infusion that comes from our unique identity as a division of the California Institute of Technology and a member of the NASA family.

  14. Parachute Testing for Mars Science Laboratory

    NASA Image and Video Library

    2007-12-20

    The team developing the landing system for NASA Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

  15. Sandia National Laboratories: Contact Us

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New )* Non-mail deliveries: 1515 Eubank SE Albuquerque, NM 87123 Sandia National Laboratories, California P.O

  16. Coupled Oscillator Based Agile Beam Transmitters and Receivers: A Review of Work at JPL

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2006-01-01

    This is a review of the work done at Caltech's Jet Propulsion Laboratory during the past decade on development of the coupled oscillator technology in phased array applications to spacecraft telecommunications. First, some historical background is provided to set the work in context. However, this is by no means intended to be a comprehensive review of all work in this area. Rather, the focus is on the JPL contribution with some mention of other work which provided either insight or motivation. In the mid 1990's, R. A. York, and collaborators proposed that an array of mutually injection locked electronic oscillators could provide appropriately phased signals to the radiating elements of an array antenna such that the radiated beam could be steered merely by tuning the end or perimeter oscillators of the array. York, et al. also proposed a receiving system based on such oscillator arrays in which the oscillators provide properly phased local oscillator signals to be mixed with the signals received by the array elements to remove the phase due to angle of arrival of the incident wave. These concepts were viewed as a promising simplification of the beam steering control system that could result in significant cost, mass, and prime power reduction and were therefore attractive for possible space application.

  17. Security Verification Techniques Applied to PatchLink COTS Software

    NASA Technical Reports Server (NTRS)

    Gilliam, David P.; Powell, John D.; Bishop, Matt; Andrew, Chris; Jog, Sameer

    2006-01-01

    Verification of the security of software artifacts is a challenging task. An integrated approach that combines verification techniques can increase the confidence in the security of software artifacts. Such an approach has been developed by the Jet Propulsion Laboratory (JPL) and the University of California at Davis (UC Davis). Two security verification instruments were developed and then piloted on PatchLink's UNIX Agent, a Commercial-Off-The-Shelf (COTS) software product, to assess the value of the instruments and the approach. The two instruments are the Flexible Modeling Framework (FMF) -- a model-based verification instrument (JPL), and a Property-Based Tester (UC Davis). Security properties were formally specified for the COTS artifact and then verified using these instruments. The results were then reviewed to determine the effectiveness of the approach and the security of the COTS product.

  18. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  19. Global View of Io (Natural and False/Enhanced Color)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Global view of Jupiter's volcanic moon Io obtained on 07 September, 1996 Universal Time using the near-infrared, green, and violet filters of the Solid State Imaging system aboard NASA/JPL's Galileo spacecraft. The top disk is intended to show the satellite in natural color, similar to what the human eye would see (but colors will vary with display devices), while the bottom disk shows enhanced color to highlight surface details. The reddest and blackest areas are closely associated with active volcanic regions and recent surface deposits. Io was imaged here against the clouds of Jupiter. North is to the top of the frames. The finest details that can discerned in these frames are about 4.9 km across.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Antarctica's Larsen C Ice Shelf Crack

    Atmospheric Science Data Center

    2016-12-30

    ... square kilometers), greater than the size of Maryland. Computer modeling by Project MIDAS predicts that the crack will continue to ... Virginia. JPL is a division of the California Institute of Technology in Pasadena.   Image Credit: NASA/GSFC/LaRC/JPL, ...