Sample records for laboratory llnl llnl

  1. IGPP-LLNL 1998 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J; Cook, K H; Tweed, J

    1999-11-19

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics,more » which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in tectonics, geochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed

  2. 2016 LLNL Nuclear Forensics Summer Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavarin, Mavrik

    The Lawrence Livermore National Laboratory (LLNL) Nuclear Forensics Summer Program is designed to give graduate students an opportunity to come to LLNL for 8–10 weeks for a hands-on research experience. Students conduct research under the supervision of a staff scientist, attend a weekly lecture series, interact with other students, and present their work in poster format at the end of the program. Students also have the opportunity to meet staff scientists one-on-one, participate in LLNL facility tours (e.g., the National Ignition Facility and Center for Accelerator Mass Spectrometry), and gain a better understanding of the various science programs at LLNL.

  3. 2017 LLNL Nuclear Forensics Summer Internship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavarin, Mavrik

    The Lawrence Livermore National Laboratory (LLNL) Nuclear Forensics Summer Internship Program (NFSIP) is designed to give graduate students an opportunity to come to LLNL for 8-10 weeks of hands-on research. Students conduct research under the supervision of a staff scientist, attend a weekly lecture series, interact with other students, and present their work in poster format at the end of the program. Students can also meet staff scientists one-on-one, participate in LLNL facility tours (e.g., the National Ignition Facility and Center for Accelerator Mass Spectrometry), and gain a better understanding of the various science programs at LLNL.

  4. FY16 LLNL Omega Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Ali, S. J.; Benstead, J.

    In FY16, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall, these LLNL programs led 430 target shots in FY16, with 304 shots using just the OMEGA laser system, and 126 shots using just the EP laser system. Approximately 21% of the total number of shots (77 OMEGA shots and 14 EP shots) supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID). The remaining 79% (227 OMEGA shots and 112more » EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports. In addition to these experiments, LLNL Principal Investigators led a variety of Laboratory Basic Science campaigns using OMEGA and EP, including 81 target shots using just OMEGA and 42 shots using just EP. The highlights of these are also summarized, following the ICF and HED campaigns. Overall, LLNL PIs led a total of 553 shots at LLE in FY 2016. In addition, LLNL PIs also supported 57 NLUF shots on Omega and 31 NLUF shots on EP, in collaboration with the academic community.« less

  5. Corporate Functional Management Evaluation of the LLNL Radiation Safety Organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sygitowicz, L S

    2008-03-20

    A Corporate Assess, Improve, and Modernize review was conducted at Lawrence Livermore National Laboratory (LLNL) to evaluate the LLNL Radiation Safety Program and recommend actions to address the conditions identified in the Internal Assessment conducted July 23-25, 2007. This review confirms the findings of the Internal Assessment of the Institutional Radiation Safety Program (RSP) including the noted deficiencies and vulnerabilities to be valid. The actions recommended are a result of interviews with about 35 individuals representing senior management through the technician level. The deficiencies identified in the LLNL Internal Assessment of the Institutional Radiation Safety Program were discussed with Radiationmore » Safety personnel team leads, customers of Radiation Safety Program, DOE Livermore site office, and senior ES&H management. There are significant issues with the RSP. LLNL RSP is not an integrated, cohesive, consistently implemented program with a single authority that has the clear roll and responsibility and authority to assure radiological operations at LLNL are conducted in a safe and compliant manner. There is no institutional commitment to address the deficiencies that are identified in the internal assessment. Some of these deficiencies have been previously identified and corrective actions have not been taken or are ineffective in addressing the issues. Serious funding and staffing issues have prevented addressing previously identified issues in the Radiation Calibration Laboratory, Internal Dosimetry, Bioassay Laboratory, and the Whole Body Counter. There is a lack of technical basis documentation for the Radiation Calibration Laboratory and an inadequate QA plan that does not specify standards of work. The Radiation Safety Program lack rigor and consistency across all supported programs. The implementation of DOE Standard 1098-99 Radiological Control can be used as a tool to establish this consistency across LLNL. The establishment of a

  6. Optics & Materials Science & Technology (OMST) Organization at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala,; Tayyab,; Nguyen, Hoang

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategymore » today.« less

  7. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala,; Tayyab,; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2018-06-13

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  8. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  9. CDAC Student Report: Summary of LLNL Internship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herriman, Jane E.

    Multiple objectives motivated me to apply for an internship at LLNL: I wanted to experience the work environment at a national lab, to learn about research and job opportunities at LLNL in particular, and to gain greater experience with code development, particularly within the realm of high performance computing (HPC). This summer I was selected to participate in LLNL's Computational Chemistry and Material Science Summer Institute (CCMS). CCMS is a 10 week program hosted by the Quantum Simulations group leader, Dr. Eric Schwegler. CCMS connects graduate students to mentors at LLNL involved in similar re- search and provides weekly seminarsmore » on a broad array of topics from within chemistry and materials science. Dr. Xavier Andrade and Dr. Erik Draeger served as my co-mentors over the summer, and Dr. Andrade continues to mentor me now that CCMS has concluded. Dr. Andrade is a member of the Quantum Simulations group within the Physical and Life Sciences at LLNL, and Dr. Draeger leads the HPC group within the Center for Applied Scientific Computing (CASC). The two have worked together to develop Qb@ll, an open-source first principles molecular dynamics code that was the platform for my summer research project.« less

  10. Natural Language Processing as a Discipline at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firpo, M A

    The field of Natural Language Processing (NLP) is described as it applies to the needs of LLNL in handling free-text. The state of the practice is outlined with the emphasis placed on two specific aspects of NLP: Information Extraction and Discourse Integration. A brief description is included of the NLP applications currently being used at LLNL. A gap analysis provides a look at where the technology needs work in order to meet the needs of LLNL. Finally, recommendations are made to meet these needs.

  11. LLNL NESHAPs 2015 Annual Report - June 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, K. R.; Gallegos, G. M.; MacQueen, D. H.

    2016-06-01

    Lawrence Livermore National Security, LLC operates facilities at Lawrence Livermore National Laboratory (LLNL) in which radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants (NESHAPs) in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H, which regulates radionuclide emissions to air from Department of Energy (DOE) facilities. Specifically, NESHAPs limits the emission of radionuclides to the ambient air to levels resulting in an annual effective dose equivalent of 10 mrem (100 μSv) to any member of the public. Using measured and calculated emissions, andmore » building-specific and common parameters, LLNL personnel applied the EPA-approved computer code, CAP88-PC, Version 4.0.1.17, to calculate the dose to the maximally exposed individual member of the public for the Livermore Site and Site 300.« less

  12. Hazardous-waste analysis plan for LLNL operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R.S.

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less

  13. LLNL Mercury Project Trinity Open Science Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantley, Patrick; Dawson, Shawn; McKinley, Scott

    2016-04-20

    The Mercury Monte Carlo particle transport code developed at Lawrence Livermore National Laboratory (LLNL) is used to simulate the transport of radiation through urban environments. These challenging calculations include complicated geometries and require significant computational resources to complete. As a result, a question arises as to the level of convergence of the calculations with Monte Carlo simulation particle count. In the Trinity Open Science calculations, one main focus was to investigate convergence of the relevant simulation quantities with Monte Carlo particle count to assess the current simulation methodology. Both for this application space but also of more general applicability, wemore » also investigated the impact of code algorithms on parallel scaling on the Trinity machine as well as the utilization of the Trinity DataWarp burst buffer technology in Mercury via the LLNL Scalable Checkpoint/Restart (SCR) library.« less

  14. Review of LLNL Mixed Waste Streams for the Application of Potential Waste Reduction Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belue, A; Fischer, R P

    2007-01-08

    In July 2004, LLNL adopted the International Standard ISO 14001 as a Work Smart Standard in lieu of DOE Order 450.1. In support of this new requirement the Director issued a new environmental policy that was documented in Section 3.0 of Document 1.2, ''ES&H Policies of LLNL'', in the ES&H Manual. In recent years the Environmental Management System (EMS) process has become formalized as LLNL adopted ISO 14001 as part of the contract under which the laboratory is operated for the Department of Energy (DOE). On May 9, 2005, LLNL revised its Integrated Safety Management System Description to enhance existingmore » environmental requirements to meet ISO 14001. Effective October 1, 2005, each new project or activity is required to be evaluated from an environmental aspect, particularly if a potential exists for significant environmental impacts. Authorizing organizations are required to consider the management of all environmental aspects, the applicable regulatory requirements, and reasonable actions that can be taken to reduce negative environmental impacts. During 2006, LLNL has worked to implement the corrective actions addressing the deficiencies identified in the DOE/LSO audit. LLNL has begun to update the present EMS to meet the requirements of ISO 14001:2004. The EMS commits LLNL--and each employee--to responsible stewardship of all the environmental resources in our care. The generation of mixed radioactive waste was identified as a significant environmental aspect. Mixed waste for the purposes of this report is defined as waste materials containing both hazardous chemical and radioactive constituents. Significant environmental aspects require that an Environmental Management Plan (EMP) be developed. The objective of the EMP developed for mixed waste (EMP-005) is to evaluate options for reducing the amount of mixed waste generated. This document presents the findings of the evaluation of mixed waste generated at LLNL and a proposed plan for reduction.« less

  15. LLNL Results from CALIBAN-PROSPERO Nuclear Accident Dosimetry Experiments in September 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobaugh, M. L.; Hickman, D. P.; Wong, C. W.

    2015-05-21

    Lawrence Livermore National Laboratory (LLNL) uses thin neutron activation foils, sulfur, and threshold energy shielding to determine neutron component doses and the total dose from neutrons in the event of a nuclear criticality accident. The dosimeter also uses a DOELAP accredited Panasonic UD-810 (Panasonic Industrial Devices Sales Company of America, 2 Riverfront Plaza, Newark, NJ 07102, U.S.A.) thermoluminescent dosimetery system (TLD) for determining the gamma component of the total dose. LLNL has participated in three international intercomparisons of nuclear accident dosimeters. In October 2009, LLNL participated in an exercise at the French Commissariat à l’énergie atomique et aux énergies alternativesmore » (Alternative Energies and Atomic Energy Commission- CEA) Research Center at Valduc utilizing the SILENE reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison at CEA Valduc, this time with exposures at the CALIBAN reactor (Hickman et al. 2011). This paper discusses LLNL’s results of a third intercomparison hosted by the French Institut de Radioprotection et de Sûreté Nucléaire (Institute for Radiation Protection and Nuclear Safety- IRSN) with exposures at two CEA Valduc reactors (CALIBAN and PROSPERO) in September 2014. Comparison results between the three participating facilities is presented elsewhere (Chevallier 2015; Duluc 2015).« less

  16. Application Modernization at LLNL and the Sierra Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neely, J. Robert; de Supinski, Bronis R.

    We repport that in 2014, Lawrence Livermore National Laboratory began acquisition of Sierra, a pre-exascale system from IBM and Nvidia. It marks a significant shift in direction for LLNL by introducing the concept of heterogeneous computing via GPUs. LLNL’s mission requires application teams to prepare for this paradigm shift. Thus, the Sierra procurement required a proposed Center of Excellence that would align the expertise of the chosen vendors with laboratory personnel that represent the application developers, system software, and tool providers in a concentrated effort to prepare the laboratory’s codes in advance of the system transitioning to production in 2018.more » Finally, this article presents LLNL’s overall application strategy, with a focus on how LLNL is collaborating with IBM and Nvidia to ensure a successful transition of its mission-oriented applications into the exascale era.« less

  17. Application Modernization at LLNL and the Sierra Center of Excellence

    DOE PAGES

    Neely, J. Robert; de Supinski, Bronis R.

    2017-09-01

    We repport that in 2014, Lawrence Livermore National Laboratory began acquisition of Sierra, a pre-exascale system from IBM and Nvidia. It marks a significant shift in direction for LLNL by introducing the concept of heterogeneous computing via GPUs. LLNL’s mission requires application teams to prepare for this paradigm shift. Thus, the Sierra procurement required a proposed Center of Excellence that would align the expertise of the chosen vendors with laboratory personnel that represent the application developers, system software, and tool providers in a concentrated effort to prepare the laboratory’s codes in advance of the system transitioning to production in 2018.more » Finally, this article presents LLNL’s overall application strategy, with a focus on how LLNL is collaborating with IBM and Nvidia to ensure a successful transition of its mission-oriented applications into the exascale era.« less

  18. Comprehensive Angular Response Study of LLNL Panasonic Dosimeter Configurations and Artificial Intelligence Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, D. K.

    In April of 2016, the Lawrence Livermore National Laboratory External Dosimetry Program underwent a Department of Energy Laboratory Accreditation Program (DOELAP) on-site assessment. The assessment reported a concern that the study performed in 2013 Angular Dependence Study Panasonic UD-802 and UD-810 Dosimeters LLNL Artificial Intelligence Algorithm was incomplete. Only the responses at ±60° and 0° were evaluated and independent data from dosimeters was not used to evaluate the algorithm. Additionally, other configurations of LLNL dosimeters were not considered in this study. This includes nuclear accident dosimeters (NAD) which are placed in the wells surrounding the TLD in the dosimeter holder.

  19. Joint FAM/Line Management Assessment Report on LLNL Machine Guarding Safety Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, J. J.

    2016-07-19

    The LLNL Safety Program for Machine Guarding is implemented to comply with requirements in the ES&H Manual Document 11.2, "Hazards-General and Miscellaneous," Section 13 Machine Guarding (Rev 18, issued Dec. 15, 2015). The primary goal of this LLNL Safety Program is to ensure that LLNL operations involving machine guarding are managed so that workers, equipment and government property are adequately protected. This means that all such operations are planned and approved using the Integrated Safety Management System to provide the most cost effective and safest means available to support the LLNL mission.

  20. Computer Security Awareness Guide for Department of Energy Laboratories, Government Agencies, and others for use with Lawrence Livermore National Laboratory`s (LLNL): Computer security short subjects videos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education & Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1-3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices. Leaders may incorporate the Short Subjects into presentations. After talkingmore » about a subject area, one of the Short Subjects may be shown to highlight that subject matter. Another method for sharing them could be to show a Short Subject first and then lead a discussion about its topic. The cast of characters and a bit of information about their personalities in the LLNL Computer Security Short Subjects is included in this report.« less

  1. Advanced Design Concepts for Dense Plasma Focus Devices at LLNL

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Podpaly, Yuri; Cooper, Christopher; Shaw, Brian; Chapman, Steve; Mitrani, James; Anderson, Michael; Pearson, Aric; Anaya, Enrique; Koh, Ed; Falabella, Steve; Link, Tony; Schmidt, Andrea

    2017-10-01

    The dense plasma focus (DPF) is a z-pinch device where a plasma sheath is accelerated down a coaxial railgun and ends in a radial implosion, pinch phase. During the pinch phase, the plasma generates intense, transient electric fields through physical mechanisms, similar to beam instabilities, that can accelerate ions in the plasma sheath to MeV-scale energies on millimeter length scales. Using kinetic modeling techniques developed at LLNL, we have gained insight into the formation of these accelerating fields and are using these observations to optimize the behavior of the generated ion beam for producing neutrons via beam-target interactions for kilojoule to megajoule-scale devices. Using a set of DPF's, both in operation and in development at LLNL, we have explored critical aspects of these devices, including plasma sheath formation behavior, power delivery to the plasma, and instability seeding during the implosion in order to improve the absolute yield and stability of the device. Prepared by LLNL under Contract DE-AC52-07NA27344. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  2. Control System for the LLNL Kicker Pulse Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J A; Anaya, R M; Cook, E G

    2002-06-18

    A solid-state high voltage pulse generator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high speed electron beam kickers has been designed and tested at LLNL. A control system calculates a desired waveform to be applied to the kicker based on measured electron beam displacement then adjusts the pulse generators to provide the desired waveform. This paper presents the design of the control system and measure performance data from operation on the ETA-11 accelerator at LLNL.

  3. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Percher, Catherine

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  4. Summary of Environmental Data Analysis and Work Performed by Lawrence Livermore National Laboratory (LLNL) in Support of the Navajo Nation Abandoned Mine Lands Project at Tse Tah, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taffet, Michael J.; Esser, Bradley K.; Madrid, Victor M.

    This report summarizes work performed by Lawrence Livermore National Laboratory (LLNL) under Navajo Nation Services Contract CO9729 in support of the Navajo Abandoned Mine Lands Reclamation Program (NAMLRP). Due to restrictions on access to uranium mine waste sites at Tse Tah, Arizona that developed during the term of the contract, not all of the work scope could be performed. LLNL was able to interpret environmental monitoring data provided by NAMLRP. Summaries of these data evaluation activities are provided in this report. Additionally, during the contract period, LLNL provided technical guidance, instructional meetings, and review of relevant work performed by NAMLRPmore » and its contractors that was not contained in the contract work scope.« less

  5. Simulating Afterburn with LLNL Hydrocodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, L D

    2004-06-11

    Presented here is a working methodology for adapting a Lawrence Livermore National Laboratory (LLNL) developed hydrocode, ALE3D, to simulate weapon damage effects when afterburn is a consideration in the blast propagation. Experiments have shown that afterburn is of great consequence in enclosed environments (i.e. bomb in tunnel scenario, penetrating conventional munition in a bunker, or satchel charge placed in a deep underground facility). This empirical energy deposition methodology simulates the anticipated addition of kinetic energy that has been demonstrated by experiment (Kuhl, et. al. 1998), without explicitly solving the chemistry, or resolving the mesh to capture small-scale vorticity. This effortmore » is intended to complement the existing capability of either coupling ALE3D blast simulations with DYNA3D or performing fully coupled ALE3D simulations to predict building or component failure, for applications in National Security offensive strike planning as well as Homeland Defense infrastructure protection.« less

  6. LLNL electro-optical mine detection program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.; Aimonetti, W.; Barth, M.

    1994-09-30

    Under funding from the Advanced Research Projects Agency (ARPA) and the US Marine Corps (USMC), Lawrence Livermore National Laboratory (LLNL) has directed a program aimed at improving detection capabilities against buried mines and munitions. The program has provided a national test facility for buried mines in arid environments, compiled and distributed an extensive data base of infrared (IR), ground penetrating radar (GPR), and other measurements made at that site, served as a host for other organizations wishing to make measurements, made considerable progress in the use of ground penetrating radar for mine detection, and worked on the difficult problem ofmore » sensor fusion as applied to buried mine detection. While the majority of our effort has been concentrated on the buried mine problem, LLNL has worked with the U.S.M.C. on surface mine problems as well, providing data and analysis to support the COBRA (Coastal Battlefield Reconnaissance and Analysis) program. The original aim of the experimental aspect of the program was the utilization of multiband infrared approaches for the detection of buried mines. Later the work was extended to a multisensor investigation, including sensors other than infrared imagers. After an early series of measurements, it was determined that further progress would require a larger test facility in a natural environment, so the Buried Object Test Facility (BOTF) was constructed at the Nevada Test Site. After extensive testing, with sensors spanning the electromagnetic spectrum from the near ultraviolet to radio frequencies, possible paths for improvement were: improved spatial resolution providing better ground texture discrimination; analysis which involves more complicated spatial queueing and filtering; additional IR bands using imaging spectroscopy; the use of additional sensors other than IR and the use of data fusion techniques with multi-sensor data; and utilizing time dependent observables like temperature.« less

  7. A Novel Approach to Semantic and Coreference Annotation at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firpo, M

    A case is made for the importance of high quality semantic and coreference annotation. The challenges of providing such annotation are described. Asperger's Syndrome is introduced, and the connections are drawn between the needs of text annotation and the abilities of persons with Asperger's Syndrome to meet those needs. Finally, a pilot program is recommended wherein semantic annotation is performed by people with Asperger's Syndrome. The primary points embodied in this paper are as follows: (1) Document annotation is essential to the Natural Language Processing (NLP) projects at Lawrence Livermore National Laboratory (LLNL); (2) LLNL does not currently have amore » system in place to meet its need for text annotation; (3) Text annotation is challenging for a variety of reasons, many related to its very rote nature; (4) Persons with Asperger's Syndrome are particularly skilled at rote verbal tasks, and behavioral experts agree that they would excel at text annotation; and (6) A pilot study is recommend in which two to three people with Asperger's Syndrome annotate documents and then the quality and throughput of their work is evaluated relative to that of their neuro-typical peers.« less

  8. Report on the B-Fields at NIF Workshop Held at LLNL October 12-13, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B.; Moody, J. D.

    2015-12-13

    A national ICF laboratory workshop on requirements for a magnetized target capability on NIF was held by NIF at LLNL on October 12 and 13, attended by experts from LLNL, SNL, LLE, LANL, GA, and NRL. Advocates for indirect drive (LLNL), magnetic (Z) drive (SNL), polar direct drive (LLE), and basic science needing applied B (many institutions) presented and discussed requirements for the magnetized target capabilities they would like to see. 30T capability was most frequently requested. A phased operation increasing the field in steps experimentally can be envisioned. The NIF management will take the inputs from the scientific communitymore » represented at the workshop and recommend pulse-powered magnet parameters for NIF that best meet the collective user requests. In parallel, LLNL will continue investigating magnets for future generations that might be powered by compact laser-B-field generators (Moody, Fujioka, Santos, Woolsey, Pollock). The NIF facility engineers will start to analyze compatibility of the recommended pulsed magnet parameters (size, field, rise time, materials) with NIF chamber constraints, diagnostic access, and final optics protection against debris in FY16. The objective of this assessment will be to develop a schedule for achieving an initial Bfield capability. Based on an initial assessment, room temperature magnetized gas capsules will be fielded on NIF first. Magnetized cryo-ice-layered targets will take longer (more compatibility issues). Magnetized wetted foam DT targets (Olson) may have somewhat fewer compatibility issues making them a more likely choice for the first cryo-ice-layered target fielded with applied Bz.« less

  9. LLNL Partners with IBM on Brain-Like Computing Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Essen, Brian

    Lawrence Livermore National Laboratory (LLNL) will receive a first-of-a-kind brain-inspired supercomputing platform for deep learning developed by IBM Research. Based on a breakthrough neurosynaptic computer chip called IBM TrueNorth, the scalable platform will process the equivalent of 16 million neurons and 4 billion synapses and consume the energy equivalent of a hearing aid battery – a mere 2.5 watts of power. The brain-like, neural network design of the IBM Neuromorphic System is able to infer complex cognitive tasks such as pattern recognition and integrated sensory processing far more efficiently than conventional chips.

  10. LLNL Partners with IBM on Brain-Like Computing Chip

    ScienceCinema

    Van Essen, Brian

    2018-06-25

    Lawrence Livermore National Laboratory (LLNL) will receive a first-of-a-kind brain-inspired supercomputing platform for deep learning developed by IBM Research. Based on a breakthrough neurosynaptic computer chip called IBM TrueNorth, the scalable platform will process the equivalent of 16 million neurons and 4 billion synapses and consume the energy equivalent of a hearing aid battery – a mere 2.5 watts of power. The brain-like, neural network design of the IBM Neuromorphic System is able to infer complex cognitive tasks such as pattern recognition and integrated sensory processing far more efficiently than conventional chips.

  11. LLNL Experimental Test Site (Site 300) Potable Water System Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, R. P.; Bellah, W.

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less

  12. Evaluation of LLNL BSL-3 Maximum Credible Event Potential Consequence to the General Population and Surrounding Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.

    2010-08-16

    The purpose of this evaluation is to establish reproducibility of the analysis and consequence results to the general population and surrounding environment in the LLNL Biosafety Level 3 Facility Environmental Assessment (LLNL 2008).

  13. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction: LLNL-G3DV3---GLOBAL P WAVE TOMOGRAPHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, N. A.; Myers, S. C.; Johannesson, G.

    [1] We develop a global-scale P wave velocity model (LLNL-G3Dv3) designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The model provides a new image of Earth's interior, but the underlying practical purpose of the model is to provide enhanced seismic event location capabilities. The LLNL-G3Dv3 model is based on ∼2.8 millionP and Pnarrivals that are re-processed using our global multiple-event locator called Bayesloc. We construct LLNL-G3Dv3 within a spherical tessellation based framework, allowing for explicit representation of undulating and discontinuous layers including the crust and transition zone layers. Using a multiscale inversion technique, regional trendsmore » as well as fine details are captured where the data allow. LLNL-G3Dv3 exhibits large-scale structures including cratons and superplumes as well numerous complex details in the upper mantle including within the transition zone. Particularly, the model reveals new details of a vast network of subducted slabs trapped within the transition beneath much of Eurasia, including beneath the Tibetan Plateau. We demonstrate the impact of Bayesloc multiple-event location on the resulting tomographic images through comparison with images produced without the benefit of multiple-event constraints (single-event locations). We find that the multiple-event locations allow for better reconciliation of the large set of direct P phases recorded at 0–97° distance and yield a smoother and more continuous image relative to the single-event locations. Travel times predicted from a 3-D model are also found to be strongly influenced by the initial locations of the input data, even when an iterative inversion/relocation technique is employed.« less

  14. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, D. K.

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC ismore » the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.« less

  15. LLNL Scientists Use NERSC to Advance Global Aerosol Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, D J; Chuang, C; Rotman, D

    2004-10-13

    While ''greenhouse gases'' have been the focus of climate change research for a number of years, DOE's ''Aerosol Initiative'' is now examining how aerosols (small particles of approximately micron size) affect the climate on both a global and regional scale. Scientists in the Atmospheric Science Division at Lawrence Livermore National Laboratory (LLNL) are using NERSC's IBM supercomputer and LLNL's IMPACT (atmospheric chemistry) model to perform simulations showing the historic effects of sulfur aerosols at a finer spatial resolution than ever done before. Simulations were carried out for five decades, from the 1950s through the 1990s. The results clearly show themore » effects of the changing global pattern of sulfur emissions. Whereas in 1950 the United States emitted 41 percent of the world's sulfur aerosols, this figure had dropped to 15 percent by 1990, due to conservation and anti-pollution policies. By contrast, the fraction of total sulfur emissions of European origin has only dropped by a factor of 2 and the Asian emission fraction jumped six fold during the same time, from 7 percent in 1950 to 44 percent in 1990. Under a special allocation of computing time provided by the Office of Science INCITE (Innovative and Novel Computational Impact on Theory and Experiment) program, Dan Bergmann, working with a team of LLNL scientists including Cathy Chuang, Philip Cameron-Smith, and Bala Govindasamy, was able to carry out a large number of calculations during the past month, making the aerosol project one of the largest users of NERSC resources. The applications ran on 128 and 256 processors. The objective was to assess the effects of anthropogenic (man-made) sulfate aerosols. The IMPACT model calculates the rate at which SO{sub 2} (a gas emitted by industrial activity) is oxidized and forms particles known as sulfate aerosols. These particles have a short lifespan in the atmosphere, often washing out in about a week. This means that their effects on climate

  16. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    DTIC Science & Technology

    2013-06-21

    neutron activation detectors (FNADS) 2013-049951s2.ppt Detector locations • Average rR ~ 1 g/cm2 • ~ 50% variations Motivates new 2D backlit imaging...of the implosion Motivates Compton radiography for stagnated fuel shape g/cm2 DrR rR map from neutron Activation Detectors (90Zr(n,2n)  89Zr...high energy cosmic rays Oxford Univ./LLNL LLNL Novel phases of compressed diamond Synthesis of elements heavier than iron 1545 Neutron flux in

  17. Advancing Your Career at LLNL: Meet NIF’s Radiation Control Technicians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarco, Judy; Gutierrez, Myrna; Beale, Richard

    2017-04-26

    Myrna Gutierrez and Judy Zarco took advantage of LLNL's legacy of encouraging continuing education to get the necessary degrees and training to advance their careers at the Lab. As Radiation Control Technicians, they help maintain safety at the National Ignition Facility.

  18. LLNL Center of Excellence Work Items for Q9-Q10 period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neely, J. R.

    This work plan encompasses a slice of effort going on within the ASC program, and for projects utilizing COE vendor resources, describes work that will be performed by both LLNL staff and COE vendor staff collaboratively.

  19. Dielectronic Satellite Spectra of Na-like Mo Ions Benchmarked by LLNL EBIT with Application to HED Plasmas

    NASA Astrophysics Data System (ADS)

    Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Safronova, U. I.; Petkov, E. E.; Shlyaptseva, V. V.; Childers, R.; Shrestha, I.; Beiersdorfer, P.; Hell, H.; Brown, G. V.

    2017-10-01

    Dielectronic recombination (DR) is an important process for astrophysical and laboratory high energy density (HED) plasmas and the associated satellite lines are frequently used for plasma diagnostics. In particular, K-shell DR satellite lines were studied in detail in low-Z plasmas. L-shell Na-like spectral features from Mo X-pinches considered here represent the blend of DR and inner shell satellites and motivated the detailed study of DR at the EBIT-1 electron beam ion trap at LLNL. In these experiments the beam energy was swept between 0.6 - 2.4 keV to produce resonances at certain electron beam energies. The advantages of using an electron beam ion trap to better understand atomic processes with highly ionized ions in HED Mo plasma are highlighted. This work was supported by NNSA under DOE Grant DE-NA0002954. Work at LLNL was performed under the auspices of the U.S. DOE under Contract No. DE-AC52-07NA27344.

  20. Fast Steering Mirror systems for the U-AVLIS program at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.; Avicola, K.; Payne, A.

    1994-07-01

    We have successfully deployed several fast steering mirror systems in the Uranium Atomic Vapor Isotope Separation (U-AVLIS) facility at LLNL. These systems employ 2 mm to 150 mm optics and piezoelectric actuators to achieve microradian pointing accuracy with disturbance rejection bandwidths to a few hundred hertz.

  1. Code Verification Results of an LLNL ASC Code on Some Tri-Lab Verification Test Suite Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S R; Bihari, B L; Salari, K

    As scientific codes become more complex and involve larger numbers of developers and algorithms, chances for algorithmic implementation mistakes increase. In this environment, code verification becomes essential to building confidence in the code implementation. This paper will present first results of a new code verification effort within LLNL's B Division. In particular, we will show results of code verification of the LLNL ASC ARES code on the test problems: Su Olson non-equilibrium radiation diffusion, Sod shock tube, Sedov point blast modeled with shock hydrodynamics, and Noh implosion.

  2. Analyses in Support of Z-IFE: LLNL Progress Report for FY-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W; Abbott, R; Latkowski, J

    2004-10-06

    During the last quarter of FY2004, Lawrence Livermore National Laboratory (LLNL) conducted a brief study of power plant options for a z-pinch-based inertial fusion energy (Z-IFE) power plant. Areas that were covered include chamber design, thick-liquid response, neutronics and activation, and systems studies. This report summarizes the progress made in each of these areas, provides recommendations for improvements to the basic design concept, and identifies future work that is needed. As a starting point to the LLNL studies, we have taken information provided in several publications and presentations. In particular, many of the basic parameters were taken from the ZP-3more » study, which is described in reference 4. The ZP-3 design called for 12 separate target chambers, with any 10 of them operating at a given time. Each chamber would be pulsed at a repetition rate of 0.1 Hz with a target yield of 3 GJ. Thus, each chamber would have a fusion power of 300 MW for a power plant total of 3000 MW. The ZP-3 study considered several options for the recyclable transmission lines (RTL). Early in the study, the LLNL group questioned the use of many chambers as well as the yield limitation of 3 GJ. The feeling was that a large number of chambers would invariably lead to a considerably higher system cost than for a system with fewer chambers. Naturally, this trend would be somewhat offset by the increased availability that might be possible with many chambers. Reference 4 points out that target yields as high as 20 GJ would be possible with currently available manufacturing technology. The LLNL team considered yields ranging from 3 to 20 GJ. Our findings indicate that higher yields, which lead one to fewer chambers, make the most sense from an economic point of view. Systems modeling, including relative economics, is covered in Section 2. Regardless of the number of chambers of the fusion yield per target, a Z-IFE power plant would make use of a thick-liquid wall protection

  3. LLNL small-scale static spark machine: static spark sensitivity test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F; Simpson, L R

    1999-08-23

    Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less

  4. Ferrenberg Swendsen Analysis of LLNL and NYBlue BG/L p4rhms Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltz, R

    2007-12-05

    These results are from the continuing Lattice Quantum Chromodynamics runs on BG/L. These results are from the Ferrenberg-Swendsen analysis [?] of the combined data from LLNL and NYBlue BG/L runs for 32{sup 3} x 8 runs with the p4rhmc v2.0 QMP-MPI.X (semi-optimized p4 code using qmp over mpi). The jobs include beta values ranging from 3.525 to 3.535 with an alternate analysis extending to 3.540. The NYBlue data sets are from 9k trajectories from Oct 2007, and the LLNL data are from two independent streams of {approx}5k each, taking from the July 2007 runs. The following outputs are produced bymore » the fs-2+1-chiub.c program. All outputs have had checksums produced by addCks.pl and checked by the checkCks.pl perl script after scanning.« less

  5. Selected results from LLNL-Hughes RAR for West Coast Scotland Experiment 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S.K.; Johnston, B.; Twogood, R.

    1993-01-05

    The joint US-UK 1992 West Coast Scotland Experiment (WCSEX) was held in the Sound of Sleat from June 6 to 25. The LLNL-Hughes team fielded a fully polarimetric X-band hill-side real aperture radar to collect internal wave wake data. We present here a sample data set of the best radar runs.

  6. FY15 LLNL OMEGA Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Baker, K. L.; Barrios, M. A.

    In FY15, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 468 target shots in FY15, with 315 shots using just the OMEGA laser system, 145 shots using just the EP laser system, and 8 Joint shots using Omega and EP together. Approximately 25% of the total number of shots (56 OMEGA shots and 67 EP shots, including the 8 Joint shots) supported the Indirect Drivemore » Inertial Confinement Fusion Campaign (ICF-ID). The remaining 75% (267 OMEGA shots and 86 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less

  7. LLNL 10(a)(1)(A) Annual Report (TE-053672-2)--2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woollett, J

    2006-01-26

    This report summarizes research related to Lawrence Livermore National Laboratory's (LLNL) Experimental Test Site, Site 300 (S300), located within Alameda and San Joaquin Counties (Figure 1) and conducted under the 10(a)(1)(A) (Recovery) permit TE-053672-2. This property is held in ownership by the U.S. Department of Energy/National Nuclear Security Administration (NNSA). The 2005 Recovery research at S300 involved fieldwork associated with only two species: Alameda whipsnake (Masticophis lateralis euryxanthus) and the California red-legged frog (Rana aurora draytonii) (RLF). Note: the whipsnake subspecies existing at S300 shows taxonomic variation (generally 50% chaparral whipsnake [Masticophis lateralis] traits) when compared to the Alameda whipsnakemore » (Riemer 1954) and therefore it will be referred to as ''California whipsnake (Masticophis lateralis)'' (CWS) for classification purposes in this report (Swaim 2004).« less

  8. FY14 LLNL OMEGA Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Fournier, K. B.; Baker, K.

    In FY14, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 324 target shots in FY14, with 246 shots using just the OMEGA laser system, 62 shots using just the EP laser system, and 16 Joint shots using Omega and EP together. Approximately 31% of the total number of shots (62 OMEGA shots, 42 EP shots) shots supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID).more » The remaining 69% (200 OMEGA shots and 36 EP shots, including the 16 Joint shots) were dedicated to experiments for High- Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less

  9. Author Contribution to the Pu Handbook II: Chapter 37 LLNL Integrated Sample Preparation Glovebox (TEM) Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Mark A.

    The development of our Integrated Actinide Sample Preparation Laboratory (IASPL) commenced in 1998 driven by the need to perform transmission electron microscopy studies on naturally aged plutonium and its alloys looking for the microstructural effects of the radiological decay process (1). Remodeling and construction of a laboratory within the Chemistry and Materials Science Directorate facilities at LLNL was required to turn a standard radiological laboratory into a Radiological Materials Area (RMA) and Radiological Buffer Area (RBA) containing type I, II and III workplaces. Two inert atmosphere dry-train glove boxes with antechambers and entry/exit fumehoods (Figure 1), having a baseline atmospheremore » of 1 ppm oxygen and 1 ppm water vapor, a utility fumehood and a portable, and a third double-walled enclosure have been installed and commissioned. These capabilities, along with highly trained technical staff, facilitate the safe operation of sample preparation processes and instrumentation, and sample handling while minimizing oxidation or corrosion of the plutonium. In addition, we are currently developing the capability to safely transfer small metallographically prepared samples to a mini-SEM for microstructural imaging and chemical analysis. The gloveboxes continue to be the most crucial element of the laboratory allowing nearly oxide-free sample preparation for a wide variety of LLNL-based characterization experiments, which includes transmission electron microscopy, electron energy loss spectroscopy, optical microscopy, electrical resistivity, ion implantation, X-ray diffraction and absorption, magnetometry, metrological surface measurements, high-pressure diamond anvil cell equation-of-state, phonon dispersion measurements, X-ray absorption and emission spectroscopy, and differential scanning calorimetry. The sample preparation and materials processing capabilities in the IASPL have also facilitated experimentation at world-class facilities such as

  10. Installation of hybrid ion source on the 1-MV LLNL BioAMS spectrometer

    PubMed Central

    Ognibene, T. J.; Salazar, G. A.

    2012-01-01

    A second ion source was recently installed onto the LLNL 1-MV AMS spectrometer, which is dedicated to the quantification of 14C and 3H within biochemical samples. This source is unique among the other LLNL cesium sputter ion sources in that it can ionize both gaseous and solid samples. Also, the injection beam line has been designed to directly measure 14C/12C isotope ratios without the need for electrostatic bouncing. Preliminary tests show that this source can ionize transient CO2 gas pulses containing less than 1 ug carbon with approximately 1.5% efficiency. We demonstrate that the measured 14C/12C isotope ratio is largely unaffected by small drifts in the argon stripper gas density. We also determine that a tandem accelerating voltage of 670 kV enables the highest 14C transmission through the system. Finally, we describe a series of performance tests using solid graphite targets spanning nearly 3 orders in magnitude dynamic range and compare the results to our other ion source. PMID:23467295

  11. Advanced Compton scattering light source R&D at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, F; Anderson, S G; Anderson, G

    2010-02-16

    We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less

  12. Lightning Protection System for HE Facilities at LLNL - Certification Template

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, T J; Ong, M M; Brown, C G

    2005-12-08

    This document is meant as a template to assist in the development of your own lighting certification process. Aside from this introduction and the mock representative name of the building (Building A), this document is nearly identical to a lightning certification report issued by the Engineering Directorate at Lawrence Livermore National Laboratory. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facilities. In Chapters 1 and 2 respectively, we address the need and methods of lightning certification for HE processing and storage facilities at LLNL. We present the preferredmore » method of lightning protection in Chapter 3, as well as the likely building modifications that are needed to comply with this method. In Chapter 4, we present the threat assessment and resulting safe work areas within a cell. After certification, there may be changes to operations during a lightning alert, and this is discussed in Chapter 5. Chapter 6 lists the maintenance requirements for the continuation of lighting certification status. Appendices of this document are meant as an aid in developing your own certification process, and they include a bonding list, an inventory of measurement equipment, surge suppressors in use at LLNL, an Integrated Work and Safety form (IWS), and a template certification sign-off sheet. The lightning certification process involves more that what is spelled out in this document. The first steps involve considerable planning, the securing of funds, and management and explosives safety buy-in. Permits must be obtained, measurement equipment must be assembled and tested, and engineers and technicians must be trained in their use. Cursory building inspections are also recommended, and surge suppression for power systems must be addressed. Upon completion of a certification report and its sign-off by management, additional work is required. Training will be needed in order to educate workers and facility

  13. Selected results from LLNL-Hughes RAR for West Coast Scotland Experiment 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S K; Johnston, B; Twogood, R

    1993-01-05

    The joint US -- UK 1991 West Coast Scotland Experiment (WCSEX) was held in two locations. From July 5 to 12, 1991, in Upper Loch Linnhe, and from July 18 to July 26, 1991, in the Sound of Sleat. The LLNL-Hughes team fielded a fully polarimetric X-band hill-side real aperture radar to collect internal wave wake data. We present here a sample data set of the best radar runs.

  14. Transition-ready technologies and expertise from the Chemical and Biological National Security Program at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folta, P A; McBride, M T

    2006-02-22

    HSARPA has initiated a new Bioinformatics and Assay Development solicitation, BIAD2 (BAA 06-01), to address a number of technology gaps and requirements for biodetection (www.hsarpabaa.com). This solicitation will leverage the vast research and development capabilities of the private sector and academia in order to meet the needs of HSARPA and Homeland Security. In order to meet these requirements, this solicitation will: (1) Develop and validate actionable assays for the public and private sector; (2) Develop and validate new assays and novel assay methodologies to enhance existing detection systems and enable future detection platforms; (3) Develop next generation assays which aremore » robust against novel, emerging and engineered threats; (4) Develop novel assays that detect low levels of ribonucleic acid (RNA)-based viral threats in complex backgrounds; (5) Develop novel assays to characterize the viability, degree of virulence or toxicity, and countermeasure resistance of a biological agent; and (6) Develop new bioinformatics tools to support assay development and assay validation The Lawrence Livermore National Laboratory (LLNL) Bioassays and Signature Program (BSP) develops nationally-validated detection and identification assays to cover the full range of biological threat agents, starting from human, animal, and plant pathogens on the Select Agent list. The assays that have been co-developed by the CDC and the BSP are used internationally and represent the gold standard for molecular detection of select agent pathogens for the public health community. They are also used in the DHS environmental monitoring operations such as BioWatch and DHS National Security Special Events support. These reagents have been used to process and analyze more than 5 million samples and have delivered exceptional performance for the end users, with zero false positives since their deployment. Currently, highly-multiplexed nucleic acid assays that represent the ''next

  15. Status of experiments at LLNL on high-power X-band microwave generators

    NASA Astrophysics Data System (ADS)

    Houck, Timothy L.; Westenskow, Glen A.

    1994-05-01

    The Microwave Source Facility at the Lawrence Livermore National Laboratory (LLNL) is studying the application of induction accelerator technology to high-power microwave generators suitable for linear collider power sources. We report on the results of two experiments, both using the Choppertron's 11.4 GHz modulator and a 5-MeV, 1-kA induction beam. The first experimental configuration has a single traveling-wave output structure designed to produce in excess of 300 MW in a single fundamental waveguide. This output structure consists of 12 individual cells, the first two incorporating de-Q-ing circuits to dampen higher order resonant modes. The second experiment studies the feasibility of enhancing beam to microwave power conversion by accelerating a modulated beam with induction cells. Referred to as the `reacceleration experiment,' this experiment consists of three traveling-wave output structures designed to produce about 125 MW per output and two induction cells located between the outputs. Status of current and planned experiments are presented.

  16. Summary Statistics for Fun Dough Data Acquired at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallman, J S; Morales, K E; Whipple, R E

    Using x-ray computerized tomography (CT), we have characterized the x-ray linear attenuation coefficients (LAC) of a Play Dough{trademark}-like product, Fun Dough{trademark}, designated as PD. Table 1 gives the first-order statistics for each of four CT measurements, estimated with a Gaussian kernel density estimator (KDE) analysis. The mean values of the LAC range from a high of about 2100 LMHU{sub D} at 100kVp to a low of about 1100 LMHU{sub D} at 300kVp. The standard deviation of each measurement is around 1% of the mean. The entropy covers the range from 3.9 to 4.6. Ordinarily, we would model the LAC ofmore » the material and compare the modeled values to the measured values. In this case, however, we did not have the composition of the material and therefore did not model the LAC. Using a method recently proposed by Lawrence Livermore National Laboratory (LLNL), we estimate the value of the effective atomic number, Z{sub eff}, to be near 8.5. LLNL prepared about 50mL of the Fun Dough{trademark} in a polypropylene vial and firmly compressed it immediately prior to the x-ray measurements. Still, layers can plainly be seen in the reconstructed images, indicating that the bulk density of the material in the container is affected by voids and bubbles. We used the computer program IMGREC to reconstruct the CT images. The values of the key parameters used in the data capture and image reconstruction are given in this report. Additional details may be found in the experimental SOP and a separate document. To characterize the statistical distribution of LAC values in each CT image, we first isolated an 80% central-core segment of volume elements ('voxels') lying completely within the specimen, away from the walls of the polypropylene vial. All of the voxels within this central core, including those comprised of voids and inclusions, are included in the statistics. We then calculated the mean value, standard deviation and entropy for (a) the four image segments and

  17. Summary Statistics for Homemade ?Play Dough? -- Data Acquired at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallman, J S; Morales, K E; Whipple, R E

    Using x-ray computerized tomography (CT), we have characterized the x-ray linear attenuation coefficients (LAC) of a homemade Play Dough{trademark}-like material, designated as PDA. Table 1 gives the first-order statistics for each of four CT measurements, estimated with a Gaussian kernel density estimator (KDE) analysis. The mean values of the LAC range from a high of about 2700 LMHU{sub D} 100kVp to a low of about 1200 LMHUD at 300kVp. The standard deviation of each measurement is around 10% to 15% of the mean. The entropy covers the range from 6.0 to 7.4. Ordinarily, we would model the LAC of themore » material and compare the modeled values to the measured values. In this case, however, we did not have the detailed chemical composition of the material and therefore did not model the LAC. Using a method recently proposed by Lawrence Livermore National Laboratory (LLNL), we estimate the value of the effective atomic number, Z{sub eff}, to be near 10. LLNL prepared about 50mL of the homemade 'Play Dough' in a polypropylene vial and firmly compressed it immediately prior to the x-ray measurements. We used the computer program IMGREC to reconstruct the CT images. The values of the key parameters used in the data capture and image reconstruction are given in this report. Additional details may be found in the experimental SOP and a separate document. To characterize the statistical distribution of LAC values in each CT image, we first isolated an 80% central-core segment of volume elements ('voxels') lying completely within the specimen, away from the walls of the polypropylene vial. All of the voxels within this central core, including those comprised of voids and inclusions, are included in the statistics. We then calculated the mean value, standard deviation and entropy for (a) the four image segments and for (b) their digital gradient images. (A digital gradient image of a given image was obtained by taking the absolute value of the difference between the

  18. Multilayer deposition and EUV reflectance characterization of 131 ? flight mirrors for AIA at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Robinson, J C; Spiller, E

    2006-02-22

    Mo/Si multilayer coatings reflecting at 131 {angstrom} were deposited successfully on the AIA primary and secondary flight mirrors and on two coating witness Si wafers, on November 16, 2005, at LLNL. All coatings were characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL, and were found to be well within specifications.

  19. The EBIT Calorimeter Spectrometer: a new, permanent user facility at the LLNL EBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, F S; Beiersdorfer, P; Brown, G V

    The EBIT Calorimeter Spectrometer (ECS) is currently being completed and will be installed at the EBIT facility at the Lawrence Livermore National Laboratory in October 2007. The ECS will replace the smaller XRS/EBIT microcalorimeter spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory program. The new ECS spectrometer was built to be a low maintenance, high performance implanted silicon microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 {micro}s event timing, and capable of uninterrupted acquisitionmore » sessions of over 60 hours at 50 mK. The XRS/EBIT program has been very successful, producing many results on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES instrument.« less

  20. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, S

    2007-08-15

    Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based onmore » expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.« less

  1. Java Performance for Scientific Applications on LLNL Computer Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapfer, C; Wissink, A

    2002-05-10

    Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part ofmore » the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.« less

  2. LLNL compiled first pages ordered by ascending B&R code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, G; Kumar, M; Tobin, J

    We aim to develop a fundamental understanding of materials dynamics (from {micro}s to ns) in systems where the required combination of spatial and temporal resolution can only be reached by the dynamic transmission electron microscope (DTEM). In this regime, the DTEM is capable of studying complex transient phenomena with several orders of magnitude time resolution advantage over any existing in-situ TEM. Using the unique in situ capabilities and the nanosecond time resolution of the DTEM, we seek to study complex transient phenomena associated with rapid processes in materials, such as active sites on nanoscale catalysts and the atomic level mechanismsmore » and microstructural features for nucleation and growth associated with phase transformations in materials, specifically in martensite formation and crystallization reactions from the amorphous phase. We also will study the transient phase evolution in rapid solid-state reactions, such as those occurring in reactive multilayer foils (RMLF). Program Impact: The LLNL DTEM possesses unique capabilities for capturing time resolved images and diffraction patterns of rapidly evolving materials microstructure under strongly driven conditions. No other instrument in the world can capture images with <10 nm spatial resolution of interesting irreversible materials processes such as phase transformations, plasticity, or morphology changes with 15 ns time resolution. The development of this innovative capability requires the continuing collaboration of laser scientists, electron microscopists, and materials scientists experienced in time resolved observations of materials that exist with particularly relevant backgrounds at LLNL. The research team has made observations of materials processes that are possible by no other method, such as the rapid crystallization of thin film NiTi that identified a change in mechanism at high heating rates as compared to isothermal anneals through changes in nucleation and growth rates of

  3. Detailed characterization of the LLNL imaging proton spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmus, A. M., E-mail: rasmus@lanl.gov, E-mail: arasmus@umich.edu; University of Michigan, Ann Arbor, Michigan 48109; Hazi, A. U.

    2016-11-15

    Ultra-intense short pulse lasers incident on solid targets (e.g., thin Au foils) produce well collimated, broad-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields, and density gradients in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built [H. Chen et al., Rev. Sci. Instrum. 81, 10D314 (2010)] for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. In ordermore » to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.« less

  4. LLNL Radiation Protection Program (RPP) Rev 9.2, Implementation of 10 CFR 835, 'Occupational Radiation Protection'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shingleton, K. L.

    2011-06-15

    The Department of Energy (DOE) originally issued Part 10 CFR 835, Occupational Radiation Protection, on January 1, 1994. This regulation, hereafter referred to as “the Rule”, required DOE contractors to develop and maintain a DOE-approved Radiation Protection Program (RPP); DOE approved the initial Lawrence Livermore National Laboratory (LLNL) RPP (Rev 2) on 6/29/95. DOE issued a revision to the Rule on December 4, 1998 and approved LLNL’s revised RPP (Rev 7.1) on 11/18/99. DOE issued a second Rule revision on June 8, 2007 (effective July 9, 2007) and on June 13, 2008 approved LLNL’s RPP (Rev 9.0) which contained plansmore » and measures for coming into compliance with the 2007 Rule changes. DOE issued a correction to the Rule on April 21, 2009.« less

  5. 2020 Foresight Forging the Future of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, P.

    2000-01-01

    The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstratemore » LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.« less

  6. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor

    NASA Astrophysics Data System (ADS)

    Osuna, J. L.; Bora, M.; Bond, T.

    2015-12-01

    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  7. Review of Excess Weapons Plutonium Disposition LLNL Contract Work in Russia-(English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L; Borisov, G B

    This third meeting of the recently completed and ongoing Russian plutonium immobilization contract work was held at the State Education Center (SEC) in St. Petersburg on January 14-18, 2002. The meeting agenda is reprinted here as Appendix A and the attendance list as Appendix B. The meeting had 58 Russian participants from 21 Russian organizations, including the industrial sites (Mayak, Krasonayarsk-26, Tomsk), scientific institutes (VNIINM, KRI, VNIPIPT, RIAR), design organizations (VNIPIET and GSPI), universities (Nyzhny Novgorod, Urals Technical), Russian Academy of Sciences (Institute of Physical Chemistry or IPhCh, Institute of Ore-Deposit Geology, Petrography, Mineralogy, and Geochemistry or IGEM), Radon-Moscow, S&TCmore » Podol'osk, Kharkov-Ukraine, GAN-SEC-NRS and SNIIChM, the RF Ministry of Atomic Energy (Minatom) and Gosatomnadzor (GAN). This volume, published by LLNL, documents this third annual meeting. Forty-nine technical papers were presented by the Russian participants, and nearly all of these have been collected in this Proceedings. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing this contract work into one place for four days to review and discuss their work amongst each other. (2) Publish a meeting summary and proceedings of all the excellent Russian plutonium immobilization and other plutonium disposition contract work in one document so that the wide extent of the Russian immobilization activities are documented, referencable and available for others to use, as were the Proceedings of the two previous meetings. Attendees gave talks describing their LLNL contract work and submitted written papers documenting their contract work (in English and Russian), in both hard copy and on computer disks. Simultaneous translation into Russian and English was used for presentations made at the State Region Educational Center (SEC).« less

  8. Net Weight Issue LLNL DOE-STD-3013 Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilk, P

    2008-01-16

    The following position paper will describe DOE-STD-3013 container sets No.L000072 and No.L000076, and how they are compliant with DOE-STD-3013-2004. All masses of accountable nuclear materials are measured on LLNL certified balances maintained under an MC&A Program approved by DOE/NNSA LSO. All accountability balances are recalibrated annually and checked to be within calibration on each day that the balance is used for accountability purposes. A statistical analysis of the historical calibration checks from the last seven years indicates that the full-range Limit of Error (LoE, 95% confidence level) for the balance used to measure the mass of the contents of themore » above indicated 3013 containers is 0.185 g. If this error envelope, at the 95% confidence level, were to be used to generate an upper-limit to the measured weight of the containers No.L000072 and No.L000076, the error-envelope would extend beyond the 5.0 kg 3013-standard limit on the package contents by less than 0.3 g. However, this is still well within the intended safety bounds of DOE-STD-3013-2004.« less

  9. Lawrence Livermore National Laboratory Environmental Report 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H E; Bertoldo, N A; Campbell, C G

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and ismore » available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special

  10. LLNL's Big Science Capabilities Help Spur Over $796 Billion in U.S. Economic Activity Sequencing the Human Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Jeffrey S.

    LLNL’s successful history of taking on big science projects spans beyond national security and has helped create billions of dollars per year in new economic activity. One example is LLNL’s role in helping sequence the human genome. Over $796 billion in new economic activity in over half a dozen fields has been documented since LLNL successfully completed this Grand Challenge.

  11. Lawrence Livermore National Laboratory Environmental Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Henry E.; Armstrong, Dave; Blake, Rick G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  12. Lawrence Livermore National Laboratory Environmental Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  13. Impact of the Revised 10 CFR 835 on the Neutron Dose Rates at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2009-01-13

    In June 2007, 10 CFR 835 [1] was revised to include new radiation weighting factors for neutrons, updated dosimetric models, and dose terms consistent with the newer ICRP recommendations. A significant aspect of the revised 10 CFR 835 is the adoption of the recommendations outlined in ICRP-60 [2]. The recommended new quantities demand a review of much of the basic data used in protection against exposure to sources of ionizing radiation. The International Commission on Radiation Units and Measurements has defined a number of quantities for use in personnel and area monitoring [3,4,5] including the ambient dose equivalent H*(d) tomore » be used for area monitoring and instrument calibrations. These quantities are used in ICRP-60 and ICRP-74. This report deals only with the changes in the ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms neutron dose and neutron dose rate will be used for convenience for ambient neutron dose and ambient neutron dose rate unless otherwise stated. This report provides a qualitative and quantitative estimate of how much the neutron dose rates at LLNL will change with the implementation of the revised 10 CFR 835. Neutron spectra and dose rates from selected locations at the LLNL were measured with a high resolution spectroscopic neutron dose rate system (ROSPEC) as well as with a standard neutron rem meter (a.k.a., a remball). The spectra obtained at these locations compare well with the spectra from the Radiation Calibration Laboratory's (RCL) bare californium source that is currently used to calibrate neutron dose rate instruments. The measurements obtained from the high resolution neutron spectrometer and dose meter ROSPEC and the NRD dose meter compare within the range of {+-}25%. When the new radiation weighting factors are adopted with the implementation of the revised 10 CFR 835, the measured dose rates will increase by up

  14. The EBIT Calorimeter Spectrometer: A New, Permanent User Facility at the LLNL EBIT

    NASA Technical Reports Server (NTRS)

    Porter, S.

    2007-01-01

    The EBIT Calorimeter Spectrometer (ECS) has recently been completed and is currently being installed at the EBIT facility at the Lawrence Livermore National Laboratory. The ECS will replace the smaller XRS/EBIT spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory. The new ECS spectrometer was built from the ground up to be a low maintenance, high performance microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 us event timing, and capable of uninterrupted acquisition sessions of over 70 hours at 50 mK. The XRSIEBIT program has been extremely successful, producing over two-dozen refereed publications on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility, with many more publications in preparation. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. This proposed future instrument would include a hybrid detector system with 0.8 eV resolution in the band from 0.1-1.0 keV, 2 eV from 0.1-10 keV, and 30 eV from 0.5-100 keV, with high quantum efficiency in each band. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES spectrometer.

  15. Comparison of the LLNL ALE3D and AKTS Thermal Safety Computer Codes for Calculating Times to Explosion in ODTX and STEX Thermal Cookoff Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wemhoff, A P; Burnham, A K

    2006-04-05

    Cross-comparison of the results of two computer codes for the same problem provides a mutual validation of their computational methods. This cross-validation exercise was performed for LLNL's ALE3D code and AKTS's Thermal Safety code, using the thermal ignition of HMX in two standard LLNL cookoff experiments: the One-Dimensional Time to Explosion (ODTX) test and the Scaled Thermal Explosion (STEX) test. The chemical kinetics model used in both codes was the extended Prout-Tompkins model, a relatively new addition to ALE3D. This model was applied using ALE3D's new pseudospecies feature. In addition, an advanced isoconversional kinetic approach was used in the AKTSmore » code. The mathematical constants in the Prout-Tompkins code were calibrated using DSC data from hermetically sealed vessels and the LLNL optimization code Kinetics05. The isoconversional kinetic parameters were optimized using the AKTS Thermokinetics code. We found that the Prout-Tompkins model calculations agree fairly well between the two codes, and the isoconversional kinetic model gives very similar results as the Prout-Tompkins model. We also found that an autocatalytic approach in the beta-delta phase transition model does affect the times to explosion for some conditions, especially STEX-like simulations at ramp rates above 100 C/hr, and further exploration of that effect is warranted.« less

  16. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougan, A; Dreicer, M; Essner, J

    2009-11-16

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship;more » (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.« less

  17. Attenuation Drift in the Micro-Computed Tomography System at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooraghi, Alex A.; Brown, William; Seetho, Isaac

    2016-01-12

    The maximum allowable level of drift in the linear attenuation coefficients (μ) for a Lawrence Livermore National Laboratory (LLNL) micro-computed tomography (MCT) system was determined to be 0.1%. After ~100 scans were acquired during the period of November 2014 to March 2015, the drift in μ for a set of six reference materials reached or exceeded 0.1%. Two strategies have been identified to account for or correct the drift. First, normalizing the 160 kV and 100 kV μ data by the μ of water at the corresponding energy, in contrast to conducting normalization at the 160 kV energy only, significantlymore » compensates for measurement drift. Even after the modified normalization, μ of polytetrafluoroethylene (PTFE) increases linearly with scan number at an average rate of 0.00147% per scan. This is consistent with PTFE radiation damage documented in the literature. The second strategy suggested is the replacement of the PTFE reference with fluorinated ethylene propylene (FEP), which has the same effective atomic number (Ze) and electron density (ρe) as PTFE, but is 10 times more radiation resistant. This is important as effective atomic number and electron density are key parameters in analysis. The presence of a material with properties such as PTFE, when taken together with the remaining references, allows for a broad range of the (Ze, ρe) feature space to be used in analysis. While FEP is documented as 10 times more radiation resistant, testing will be necessary to assess how often, if necessary, FEP will need to be replaced. As radiation damage to references has been observed, it will be necessary to monitor all reference materials for radiation damage to ensure consistent x-ray characteristics of the references.« less

  18. LLNL Location and Detection Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, S C; Harris, D B; Anderson, M L

    2003-07-16

    We present two LLNL research projects in the topical areas of location and detection. The first project assesses epicenter accuracy using a multiple-event location algorithm, and the second project employs waveform subspace Correlation to detect and identify events at Fennoscandian mines. Accurately located seismic events are the bases of location calibration. A well-characterized set of calibration events enables new Earth model development, empirical calibration, and validation of models. In a recent study, Bondar et al. (2003) develop network coverage criteria for assessing the accuracy of event locations that are determined using single-event, linearized inversion methods. These criteria are conservative andmore » are meant for application to large bulletins where emphasis is on catalog completeness and any given event location may be improved through detailed analysis or application of advanced algorithms. Relative event location techniques are touted as advancements that may improve absolute location accuracy by (1) ensuring an internally consistent dataset, (2) constraining a subset of events to known locations, and (3) taking advantage of station and event correlation structure. Here we present the preliminary phase of this work in which we use Nevada Test Site (NTS) nuclear explosions, with known locations, to test the effect of travel-time model accuracy on relative location accuracy. Like previous studies, we find that the reference velocity-model and relative-location accuracy are highly correlated. We also find that metrics based on travel-time residual of relocated events are not a reliable for assessing either velocity-model or relative-location accuracy. In the topical area of detection, we develop specialized correlation (subspace) detectors for the principal mines surrounding the ARCES station located in the European Arctic. Our objective is to provide efficient screens for explosions occurring in the mines of the Kola Peninsula (Kovdor

  19. Sub-picosecond streak camera measurements at LLNL: From IR to x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Shepherd, R; Booth, R

    An ultra fast, sub-picosecond resolution streak camera has been recently developed at the LLNL. The camera is a versatile instrument with a wide operating wavelength range. The temporal resolution of up to 300 fs can be achieved, with routine operation at 500 fs. The streak camera has been operated in a wide wavelength range from IR to x-rays up to 2 keV. In this paper we briefly review the main design features that result in the unique properties of the streak camera and present its several scientific applications: (1) Streak camera characterization using a Michelson interferometer in visible range, (2)more » temporally resolved study of a transient x-ray laser at 14.7 nm, which enabled us to vary the x-ray laser pulse duration from {approx}2-6 ps by changing the pump laser parameters, and (3) an example of a time-resolved spectroscopy experiment with the streak camera.« less

  20. Lawrence Livermore National Laboratory environmental report for 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silvermore » concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.« less

  1. Production of High Harmonic X-ray Radiation from Non-linear Thomson Scattering at LLNL PLEIADES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, J; Doyuran, A; Frigola, P

    2005-05-17

    We describe an experiment for production of high harmonic x-ray radiation from Thomson backscattering of an ultra-short high power density laser by a relativistic electron beam at the PLEIADES facility at LLNL. In this scenario, electrons execute a ''figure-8'' motion under the influence of the high-intensity laser field, where the constant characterizing the field strength is expected to exceed unity: a{sub L} = eE{sub L}/m{sub e}cw{sub L} {ge} 1. With large a{sub L} this motion produces high harmonic x-ray radiation and significant broadening of the spectral peaks. This paper is intended to give a layout of the PLEIADES experiment, alongmore » with progress towards experimental goals.« less

  2. Architectural Analysis of a LLNL LWIR Sensor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Essex J.; Curry, Jim R.; LaFortune, Kai N.

    The architecture of an LLNL airborne imaging and detection system is considered in this report. The purpose of the system is to find the location of substances of interest by detecting their chemical signatures using a long-wave infrared (LWIR) imager with geo-registration capability. The detection system consists of an LWIR imaging spectrometer as well as a network of computer hardware and analysis software for analyzing the images for the features of interest. The system has been in the operations phase now for well over a year, and as such, there is enough use data and feedback from the primary beneficiarymore » to assess the current successes and shortcomings of the LWIR system architecture. LWIR system has been successful in providing reliable data collection and the delivery of a report with results. The weakness of the architecture has been identified in two areas: with the network of computer hardware and software and with the feedback of the state of the system health. Regarding the former, the system computers and software that carry out the data acquisition are too complicated for routine operations and maintenance. With respect to the latter, the primary beneficiary of the instrument’s data does not have enough metrics to use to filter the large quantity of data to determine its utility. In addition to the needs in these two areas, a latent need of one of the stakeholders is identified. This report documents the strengths and weaknesses, as well as proposes a solution for enhancing the architecture that simultaneously addresses the two areas of weakness and leverages them to meet the newly identified latent need.« less

  3. Detailed characterization of the LLNL imaging proton spectrometer

    DOE PAGES

    Rasmus, A. M.; Hazi, A. U.; Manuel, M. J. -E.; ...

    2016-09-01

    Here, ultra-intense short pulse lasers incident on solid targets (e.g., several um thick Au foils) produce well collimated, broad-energy-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields (through particle deflection), and density gradients (through collisions) in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. The protons enter themore » diagnostic through a vertical slit, aligned with a magnetic field imposed by permanent magnets. The protons are deflected perpendicular to the magnetic field (and therefor slit), so that spatial information in the direction of the slit is preserved. The extent to which the protons are bent by the magnetic field depends on the energy, so that the energy of the protons can be resolved as well. The protons are then measured by image plates, in which a meta-stable state is excited by collisions with the protons, which can later be imaged by a scanner. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.« less

  4. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  5. Laboratory directed research and development fy1999 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensuremore » that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD

  6. Screening Program Reduced Melanoma Mortality at the Lawrence Livermore National Laboratory, 1984-1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, MD, J S; II, PhD, D; MD, PhD, M

    Worldwide incidence of cutaneous malignant melanoma has increased substantially, and no screening program has yet demonstrated reduction in mortality. We evaluated the education, self examination and targeted screening campaign at the Lawrence Livermore National Laboratory (LLNL) from its beginning in July 1984 through 1996. The thickness and crude incidence of melanoma from the years before the campaign were compared to those obtained during the 13 years of screening. Melanoma mortality during the 13-year period was based on a National Death Index search. Expected yearly deaths from melanoma among LLNL employees were calculated by using California mortality data matched by age,more » sex, and race/ethnicity and adjusted to exclude deaths from melanoma diagnosed before the program began or before employment at LLNL. After the program began, crude incidence of melanoma thicker than 0.75 mm decreased from 18 to 4 cases per 100,000 person-years (p = 0.02), while melanoma less than 0.75mm remained stable and in situ melanoma increased substantially. No eligible melanoma deaths occurred among LLNL employees during the screening period compared with a calculated 3.39 expected deaths (p = 0.034). Education, self examination and selective screening for melanoma at LLNL significantly decreased incidence of melanoma thicker than 0.75 mm and reduced the melanoma-related mortality rate to zero. This significant decrease in mortality rate persisted for at least 3 yr after employees retired or otherwise left the laboratory.« less

  7. Historic Context and Building Assessments for the Lawrence Livermore National Laboratory Built Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullrich, R. A.; Sullivan, M. A.

    2007-09-14

    This document was prepared to support u.s. Department of Energy / National Nuclear Security Agency (DOE/NNSA) compliance with Sections 106 and 110 of the National Historic Preservation Act (NHPA). Lawrence Livermore National Laboratory (LLNL) is a DOE/NNSA laboratory and is engaged in determining the historic status of its properties at both its main site in Livermore, California, and Site 300, its test site located eleven miles from the main site. LLNL contracted with the authors via Sandia National Laboratories (SNL) to prepare a historic context statement for properties at both sites and to provide assessments of those properties of potentialmore » historic interest. The report contains an extensive historic context statement and the assessments of individual properties and groups of properties determined, via criteria established in the context statement, to be of potential interest. The historic context statement addresses the four contexts within which LLNL falls: Local History, World War II History (WWII), Cold War History, and Post-Cold War History. Appropriate historic preservation themes relevant to LLNL's history are delineated within each context. In addition, thresholds are identified for historic significance within each of the contexts based on the explication and understanding of the Secretary of the Interior's Guidelines for determining eligibility for the National Register of Historic Places. The report identifies specific research areas and events in LLNL's history that are of interest and the portions of the built environment in which they occurred. Based on that discussion, properties of potential interest are identified and assessments of them are provided. Twenty individual buildings and three areas of potential historic interest were assessed. The final recommendation is that, of these, LLNL has five individual historic buildings, two sets of historic objects, and two historic districts eligible for the National Register. All are eligible

  8. Laboratory Directed Research and Development FY2001 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts thatmore » started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.« less

  9. Summary of International Waste Management Programs (LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Harris R.; Blink, James A.; Halsey, William G.

    2011-08-11

    The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned;more » the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.« less

  10. Study of laser-generated debris free x-ray sources produced in a high-density linear Ar, Kr, Xe, Kr/Ar and Xe/Kr/Ar mixtures gas jets by 2 ω, sub-ps LLNL Titan laser

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Cooper, M. C.; Shrestha, I. K.; Petkov, E. E.; Stafford, A.; Moschella, J. J.; Schmidt-Petersen, M. T.; Butcher, C. J.; Kemp, G. E.; Andrews, S. D.; Fournier, K. B.

    2016-10-01

    The study of laser-generated debris-free x-ray sources in an underdense plasma produced in a high-density linear gas-puff jet was carried out at the LLNL Titan laser (2 ω, 45 J, sub-ps) with an intensity in the 10 um focal spot of 7 x 1019 W/cm2. A linear nozzle with a fast valve was used for the generation of a clusters/gas jet. X-ray diagnostics for the spectral region of 0.7 - 9 keV include: two spectrometers and pinhole cameras, and 3 groups of fast filtered detectors. Electron beams were measured with the EPPS magnetic spectrometer (>1 MeV) and Faraday cups (>72 keV). Spectralon/spectrometer devices were also used to measure absorption of laser radiation in the jets. New results were obtained on: anisotropic generation of x-rays (laser to x-ray conversion coefficient was >1%) and characteristics of laser-generated electron beams; evolution of x-ray generation with the location of the laser focus in a cluster-gas jet, and observations of a strong x-ray flash in some focusing regimes. Non-LTE kinetic modeling was used to estimate plasma parameters. UNR work supported by the DTRA Basic Research Award # HDTRA1-13-1-0033. Work at LLNL was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  11. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory J.

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less

  12. Report on the Threatened Valley Elderberry Longhorn Beetle and its Elderberry Food Plant at the Lawrence Livermore National Laboratory--Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Ph.D., R A; Woollett, J

    2004-11-16

    This report describes the results of an entomological survey in 2002 to determine the presence of the federally-listed, threatened Valley Elderberry Longhorn Beetle or ''VELB'' (Desmocerus culifornicus dimorphus: Coleoptera, Cerambycidae) and its elderberry food plant (Sumbucus mexicana: Caprifoliaceae) on the Lawrence Livermore National Laboratory's (LLNL) Experimental Test Site, known as Site 300. In addition, an area located immediately southeast of Site 300, which is owned and managed by the California Department of Fish and Game (CDFG), but secured by LLNL, was also included in this survey. This report will refer to the survey areas as the LLNL-Site 300 and themore » CDFG site. The 2002 survey included mapping the locations of elderberry plants that were observed using a global positioning system (GPS) to obtain positional coordinates for every elderberry plant at Site 300. In addition, observations of VELB adults and signs of their infestation on elderberry plants were also mapped using GPS technology. LLNL requested information on the VELB and its elderberry food plants to update earlier information that had been collected in 1991 (Arnold 1991) as part of the 1992 EIS/EIR for continued operation of LLNL. No VELB adults were observed as part of this prior survey. The findings of the 2002 survey reported herein will be used by LLNL as it updates the expected 2004 Environmental Impact Statement for ongoing operations at LLNL, including Site 300.« less

  13. Thermal safety characterization on PETN, PBX-9407, LX-10-2, LX-17-1 and detonator in the LLNL's P-ODTX system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P. C.; Strout, S.; Reynolds, J. G.

    Incidents caused by fire and other thermal events can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Thus, it is important to understand the response of energetic materials to thermal insults. The One-Dimensional-Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) has been used for decades to characterize thermal safety of energetic materials. In this study, an integration of a pressure monitoring element has been added into the ODTX system (P-ODTX) to perform thermal explosion (cook-off) experiments (thermal runaway) on PETN powder, PBX-9407, LX-10-2, LX-17-1, and detonator samples (cupmore » tests). The P-ODTX testing generates useful data (thermal explosion temperature, thermal explosion time, and gas pressures) to assist with the thermal safety assessment of relevant energetic materials and components. This report summarizes the results of P-ODTX experiments that were performed from May 2015 to July 2017. Recent upgrades to the data acquisition system allows for rapid pressure monitoring in microsecond intervals during thermal explosion. These pressure data are also included in the report.« less

  14. Laboratory Directed Research and Development FY 2000 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

  15. Laboratory Directed Research and Development FY2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser

  16. Training and qualification of health and safety technicians at a national laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egbert, W.F.; Trinoskey, P.A.

    1994-10-01

    Over the last 30 years, Lawrence Livermore National Laboratory (LLNL) has successfully implemented the concept of a multi-disciplined technician. LLNL Health and Safety Technicians have responsibilities in industrial hygiene, industrial safety, health physics, as well as fire, explosive, and criticality safety. One of the major benefits to this approach is the cost-effective use of workers who display an ownership of health and safety issues which is sometimes lacking when responsibilities are divided. Although LLNL has always promoted the concept of a multi-discipline technician, this concept is gaining interest within the Department of Energy (DOE) community. In November 1992, individuals frommore » Oak Ridge Institute of Science and Education (ORISE) and RUST Geotech, joined by LLNL established a committee to address the issues of Health and Safety Technicians. In 1993, the DOE Office of Environmental, Safety and Health, in response to the Defense Nuclear Facility Safety Board Recommendation 91-6, stated DOE projects, particularly environmental restoration, typically present hazards other than radiation such as chemicals, explosives, complex construction activities, etc., which require additional expertise by Radiological Control Technicians. They followed with a commitment that a training guide would be issued. The trend in the last two decades has been toward greater specialization in the areas of health and safety. In contrast, the LLNL has moved toward a generalist approach integrating the once separate functions of the industrial hygiene and health physics technician into one function.« less

  17. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  18. Lawrence Livermore National Laboratory`s Computer Security Short Subjects Videos: Hidden Password, The Incident, Dangerous Games and The Mess; Computer Security Awareness Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A video on computer security is described. Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education and Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1--3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices.

  19. A Report of the Joint Development of a Prototype Communications Link to Share Nuclear Accident Dispersion and Dose Assessment Modeling Products Between JAERI/WSPEEDI and LLNL/NARAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, T J; Belles, R D; Ellis, J S

    2001-05-01

    In June of 1997, under an umbrella Memorandum of Understanding between the Japan Atomic Energy Research Institute (JAERI) and the U.S. Department of Energy (US/DOE) concerning matters of nuclear research and development, a Specific Memorandum of Agreement (SMA) entitled ''A Collaborative Programme of Development of a Prototype Communication Link to Share Atmospheric Dispersion and Dose Assessment Modelling Products'' was signed. This SMA formalized an informal collaborative exchange between the DOE's Lawrence Livermore National Laboratory (LLNL) Atmospheric Release Advisory Capability (ARAC) center and the Japan Atomic Energy Research Institute (JAERI) Worldwide System for Prediction of Environmental Emergency Dose Information (WSPEEDI). Themore » intended objective of this agreement was to explore various modes of information exchange, beyond facsimile transmission, which could provide for the quick exchange of information between two major nuclear emergency dose assessment and prediction national centers to provide consistency checks and data exchange before public release of their calculations. The extreme sensitivity of the general public to any nuclear accident information has been a strong motivation to seek peer preview prior to public release. Other intended objectives of this work are the development of an affordable/accessible system for distribution of prediction results to other countries having no prediction capabilities and utilization of the link for collaboration studies. To fulfill the objectives of this project JAERI and LLNL scientists determined to assess the evolving Internet and rapidly emerging communications application software. Our timing was a little early in 1997-1998 but nonetheless a few candidate software packages were found, evaluated and a selection was made for initial test and evaluation. Subsequently several new candidate software packages have arrived, albeit with limitations. This report outlines the ARAC and JAERI emergency

  20. Lawrence Livermore National Laboratory Environmental Report 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosene, Crystal

    The purposes of the Environmental Report 2016 are to record LLNL’s compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring. Specifically, the report discusses LLNL’s EMS; describes significant accomplishments in pollution prevention; presents the results of air, water, vegetation, and foodstuff monitoring; reports radiological doses from LLNL operations; summarizes LLNL’s activities involving special status wildlife, plants, and habitats; and describes the progress LLNL has made in remediating groundwater contamination. Environmental monitoring at LLNL, including analysis of samples and data, is conducted according to documented standard operating procedures. Duplicate samplesmore » are collected and analytical results are reviewed and compared to internal acceptance standards. This report is prepared for DOE by LLNL’s Environmental Functional Area (EFA). Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.” The report is distributed in electronic form and is available to the public at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning with 1994 are also on the website.« less

  1. Lawrence Livermore National Laboratory Safeguards and Security quarterly progress report to the US Department of Energy: Quarter ending December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.

    1994-01-01

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the first quarter of fiscal year 1994 (October through December, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise.more » These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: (1) Safeguards Technology, (2) Safeguards and Decision Support, (3) Computer Security, (4) DOE Automated Physical Security, and (5) DOE Automated Visitor Access Control System. This report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.« less

  2. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the U.S. Department of Energy. Quarter ending December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise.more » These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.« less

  3. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SAmore » examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.« less

  4. Feasibility of Wide-Area Decontamination of Bacillus anthracis Spores Using a Germination-Lysis Approach

    DTIC Science & Technology

    2011-11-16

    Security, LLC 2011 CBD S& T Conference November 16, 2011 LLNL-PRES-508394 Lawrence Livermore National Laboratory LLNL-PRES-  Background...PRES-  Gruinard Island 5% formaldehyde  Sverdlosk Release UNKNOWN: but washing, chloramines , soil disposal believed to have been used...508394 Lawrence Livermore National Laboratory LLNL-PRES- 4 Disinfectant >6 Log Reduction on Materials (EPA, 2010a,b; Wood et al., 2011

  5. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  6. LLNL demonstration of liquid gun propellant destruction in a 0.1 gallon per minute scale reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cena, R.J.; Thorsness, C.B.; Coburn, T.T.

    1994-06-01

    The Lawrence Livermore National Laboratory (LLNL) has built and operated a pilot plant for processing oil shale using recirculating hot solids. This pilot plant, was adapted in 1993 to demonstrate the feasibility of decomposing a liquid gun propellant (LGP), LP XM46, a mixture of 76% HAN (NH{sub 3}OHNO{sub 3}) and 24% TEAN (HOCH{sub 2}CH{sub 2}){sub 3} NHNO{sub 3} diluted 1:3 in water. In the Livermore process, the LPG is thermally treated in a moving packed bed of ceramic spheres, where TEAN and HAN decompose, forming a suite of gases including: methane, carbon monoxide, oxygen, nitrogen oxides, ammonia and molecular nitrogen.more » The ceramic spheres are circulated and heated, providing the energy required for thermal decomposition. The authors performed an extended one day (8 hour) test of the solids recirculation system, with continuous injection of approximately 0.1 gal/min of LGP, diluted 1:3 in water, for a period of eight hours. The apparatus operated smoothly over the course of the eight hour run during which 144 kg of solution was processed, containing 36 kg of LGP. Continuous on-line gas analysis was invaluable in tracking the progress of the experiment and quantifying the decomposition products. The reactor was operated in two modes, a {open_quotes}Pyrolysis{close_quotes} mode, where decomposition products were removed from the moving bed reactor exit, passing through condensers to a flare, and in a {open_quotes}Combustion{close_quotes} mode, where the products were oxidized in air lift pipe prior to exiting the system. In the {open_quotes}Pyrolysis{close_quotes} mode, driver gases were recycled producing a small, concentrated stream of decomposition products. In the {open_quotes}Combustion mode{close_quotes}, the driver gases were not recycled, resulting in 40 times higher gas flow rates and correspondingly lower concentrations of nitrogen bearing gases.« less

  7. Malignant melanoma slide review project: Patients from non-Kaiser hospitals in the San Francisco Bay Area. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, P.

    This project was initiated, in response to concerns that the observed excess of malignant melanoma among employees of Lawrence Livermore National Laboratory (LLNL) might reflect the incidence of disease diagnostically different than that observed in the general population. LLNL sponsored a slide review project, inviting leading dermatopathology experts to independently evaluate pathology slides from LLNL employees diagnosed with melanoma and those from a matched sample of Bay Area melanoma patients who did not work at the LLNL. The study objectives were to: Identify all 1969--1984 newly diagnosed cases of malignant melanoma among LLNL employees resident in the San Francisco-Oakland Metropolitanmore » Statistical Area, and diagnosed at facilities other than Kaiser Permanente; identify a comparison series of melanoma cases also diagnosed between 1969--1984 in non-Kaiser facilities, and matched as closely as possible to the LLNL case series by gender, race, age at diagnosis, year of diagnosis, and hospital of diagnosis; obtain pathology slides for the identified (LLNL) case and (non-LLNL) comparison patients for review by the LLNL-invited panel of dermatopathology experts; and to compare the pathologic characteristics of the case and comparison melanoma patients, as recorded by the dermatopathology panel.« less

  8. Wide Area Recovery and Resiliency Program (WARRP) Knowledge Enhancement Events: CBR Workshop After Action Report

    DTIC Science & Technology

    2012-01-01

    Laboratories Walker Ray Walker Engineering Solutions, LLC Williams Patricia Denver Office of Emergency Management Wood- Zika Annmarie Lawrence Livermore...llnl.gov AnnMarie Wood- Zika woodzika1@llnl.gov Pacific Northwest National Laboratory Ann Lesperance ann.lesperance@pnnl.gov Jessica Sandusky

  9. Predictive Model and Methodology for Heat Treatment Distortion Final Report CRADA No. TC-298-92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikkel, D. J.; McCabe, J.

    This project was a multi-lab, multi-partner CRADA involving LLNL, Los Alamos National Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, Martin Marietta Energy Systems and the industrial partner, The National Center of Manufacturing Sciences (NCMS). A number of member companies of NCMS participated including General Motors Corporation, Ford Motor Company, The Torrington Company, Gear Research, the Illinois Institute of Technology Research Institute, and Deformation Control Technology •. LLNL was the lead laboratory for metrology technology used for validation of the computational tool/methodology. LLNL was also the lead laboratory for the development of the software user interface , for the computationalmore » tool. This report focuses on the participation of LLNL and NCMS. The purpose of the project was to develop a computational tool/methodology that engineers would use to predict the effects of heat treatment on the _size and shape of industrial parts made of quench hardenable alloys. Initially, the target application of the tool was gears for automotive power trains.« less

  10. Energy and technology review

    NASA Astrophysics Data System (ADS)

    Johnson, K. C.

    1991-04-01

    This issue of Energy and Technology Review discusses the various educational programs in which Lawrence Livermore National Laboratory (LLNL) participates or sponsors. LLNL has a long history of fostering educational programs for students from kindergarten through graduate school. A goal is to enhance the teaching of science, mathematics, and technology and thereby assist educational institutions to increase the pool of scientists, engineers, and technicians. LLNL programs described include: (1) contributions to the improvement of U.S. science education; (2) the LESSON program; (3) collaborations with Bay Area Science and Technology Education; (4) project HOPES; (5) lasers and fusion energy education; (6) a curriculum on global climate change; (7) computer and technology instruction at LLNL's Science Education Center; (8) the National Education Supercomputer Program; (9) project STAR; (10) the American Indian Program; (11) LLNL programs with historically Black colleges and Universities; (12) the Undergraduate Summer Institute on Contemporary Topics in Applied Science; (13) the National Physical Science Consortium: A Fellowship Program for Minorities and Women; (14) LLNL's participation with AWU; (15) the apprenticeship programs at LLNL; and (16) the future of LLNL's educational programs. An appendix lists all of LLNL's educational programs and activities. Contacts and their respective telephone numbers are given for all these programs and activities.

  11. Michael M. May: Working toward solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M.M.

    1993-07-01

    As part of LLNL's 40th anniversary celebration held during 1992, the six former Directors were asked to participate in a lecture series. Each of these men contributed in important ways toward making the Lawrence Livermore National Laboratory (LLNL) what it has become today. Each was asked to comment on some of the Laboratory's accomplishments, his career here, his view of the changing world, and where he sees the Laboratory going in the future. Michael M. May, LLNL's fifth Director and now a Director Emeritus, comments on a broad range of issues including arms control, nonproliferation, cooperative security, and the futuremore » role of the Laboratory.« less

  12. Environmental Report 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Bertoldo, N A; Campbell, C G

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2008 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and ismore » available at https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2008: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special

  13. ISCR Annual Report: Fical Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGraw, J R

    2005-03-03

    Large-scale scientific computation and all of the disciplines that support and help to validate it have been placed at the focus of Lawrence Livermore National Laboratory (LLNL) by the Advanced Simulation and Computing (ASC) program of the National Nuclear Security Administration (NNSA) and the Scientific Discovery through Advanced Computing (SciDAC) initiative of the Office of Science of the Department of Energy (DOE). The maturation of computational simulation as a tool of scientific and engineering research is underscored in the November 2004 statement of the Secretary of Energy that, ''high performance computing is the backbone of the nation's science and technologymore » enterprise''. LLNL operates several of the world's most powerful computers--including today's single most powerful--and has undertaken some of the largest and most compute-intensive simulations ever performed. Ultrascale simulation has been identified as one of the highest priorities in DOE's facilities planning for the next two decades. However, computers at architectural extremes are notoriously difficult to use efficiently. Furthermore, each successful terascale simulation only points out the need for much better ways of interacting with the resulting avalanche of data. Advances in scientific computing research have, therefore, never been more vital to LLNL's core missions than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, LLNL must engage researchers at many academic centers of excellence. In Fiscal Year 2004, the Institute for Scientific Computing Research (ISCR) served as one of LLNL's main bridges to the academic community with a program of collaborative subcontracts, visiting faculty, student internships, workshops, and an active seminar series. The ISCR identifies researchers from the academic community for computer science and computational science collaborations with LLNL and hosts them for short

  14. ISCR FY2005 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, D E; McGraw, J R

    2006-02-02

    Large-scale scientific computation and all of the disciplines that support and help validate it have been placed at the focus of Lawrence Livermore National Laboratory (LLNL) by the Advanced Simulation and Computing (ASC) program of the National Nuclear Security Administration (NNSA) and the Scientific Discovery through Advanced Computing (SciDAC) initiative of the Office of Science of the Department of Energy (DOE). The maturation of simulation as a fundamental tool of scientific and engineering research is underscored in the President's Information Technology Advisory Committee (PITAC) June 2005 finding that ''computational science has become critical to scientific leadership, economic competitiveness, and nationalmore » security''. LLNL operates several of the world's most powerful computers--including today's single most powerful--and has undertaken some of the largest and most compute-intensive simulations ever performed, most notably the molecular dynamics simulation that sustained more than 100 Teraflop/s and won the 2005 Gordon Bell Prize. Ultrascale simulation has been identified as one of the highest priorities in DOE's facilities planning for the next two decades. However, computers at architectural extremes are notoriously difficult to use in an efficient manner. Furthermore, each successful terascale simulation only points out the need for much better ways of interacting with the resulting avalanche of data. Advances in scientific computing research have, therefore, never been more vital to the core missions of LLNL than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, LLNL must engage researchers at many academic centers of excellence. In FY 2005, the Institute for Scientific Computing Research (ISCR) served as one of LLNL's main bridges to the academic community with a program of collaborative subcontracts, visiting faculty, student internships, workshops, and an

  15. Laboratory Directed Research and Development FY2010 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less

  16. Addressing Transportation Energy and Environmental Impacts: Technical and Policy Research Directions

    DOT National Transportation Integrated Search

    1995-08-10

    The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental...

  17. Environmental Report 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, S; Gallegos, G; Berg, L L

    2008-09-24

    The purposes of the 'Lawrence Livermore National Laboratory Environmental Report 2007' are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites--the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available atmore » https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2007: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special

  18. Reform of the National Security Science and Technology Enterprise

    DTIC Science & Technology

    2008-10-01

    still attract the very best S&E talent.54 Table 1. National Academy Membership (Source: National Academies Website) ANL BNL JPL LANL LL LLNL IBM...ANL BNL JPL LANL LLNL NIH NIST NRL Articles 1023 761 705 1526 1038 4305 350 957 Government S&E Workforce—Tomorrow With the significant exception...ANL), Brookhaven National Laboratory ( BNL ), Jet Propulsion Laboratory (JPL), Lincoln Laboratory (LL), Los Alamos National Laboratory (LANL

  19. Demonstration of Laser Plasma X-Ray Source with X-Ray Collimator Final Report CRADA No. TC-1564-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, S. M.; Forber, R. A.

    2017-09-28

    This collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and JMAR Research, Inc. (JRI), was to demonstrate that LLNL x-ray collimators can effectively increase the wafer throughput of JRI's laser based x-ray lithography systems. The technical objectives were expected to be achieved by completion of the following tasks, which are separated into two task lists by funding source. The organization (LLNL or JMAR) having primary responsibility is given parenthetically for each task.

  20. FY 2008 Next Generation Safeguards Initiative International Safeguards Education and Training Pilot Progerams Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreicer, M; Anzelon, G; Essner, J

    2008-10-17

    Key component of the Next Generation Safeguards Initiative (NGSI) launched by the National Nuclear Security Administration is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. Two pilot programs at university level, involving 44 students, were initiated and implemented in spring-summer 2008 and linked to hands-on internships at LANL or LLNL. During the internships, students worked on specific safeguards-related projects with a designated Laboratory Mentor to provide broader exposure tomore » nuclear materials management and information analytical techniques. The Safeguards and Nuclear Material Management pilot program was a collaboration between the Texas A&M University (TAMU), Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). It included a 16-lecture course held during a summer internship program. The instructors for the course were from LANL together with TAMU faculty and LLNL experts. The LANL-based course was shared with the students spending their internship at LLNL via video conference. A week-long table-top (or hands-on) exercise on was also conducted at LANL. The student population was a mix of 28 students from a 12 universities participating in a variety of summer internship programs held at LANL and LLNL. A large portion of the students were TAMU students participating in the NGSI pilot. The International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at the Monterey Institute for International Studies (MIIS) in cooperation with LLNL. It included a two-week intensive course consisting of 20 lectures and two exercises. MIIS, LLNL, and speakers from other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of

  1. International Safeguards Technology and Policy Education and Training Pilot Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreicer, M; Anzelon, G A; Essner, J T

    2009-06-16

    A major focus of the National Nuclear Security Administration-led Next Generation Safeguards Initiative (NGSI) is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. NNSA launched two pilot programs in 2008 to develop university level courses and internships in association with James, Martin Center for Nonproliferation Studies (CNS) at the Monterey Institute of International Studies (MIIS) and Texas A&M University (TAMU). These pilot efforts involved 44 students in total andmore » were closely linked to hands-on internships at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). The Safeguards and Nuclear Material Management pilot program was a collaboration between TAMU, LANL, and LLNL. The LANL-based coursework was shared with the students undertaking internships at LLNL via video teleconferencing. A weeklong hands-on exercise was also conducted at LANL. A second pilot effort, the International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at MIIS in cooperation with LLNL. Speakers from MIIS, LLNL, and other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. The two pilots programs concluded with an NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The value of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of the two programs in the coming years.« less

  2. Spherical harmonic results for the 3D Kobayashi Benchmark suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P N; Chang, B; Hanebutte, U R

    1999-03-02

    Spherical harmonic solutions are presented for the Kobayashi benchmark suite. The results were obtained with Ardra, a scalable, parallel neutron transport code developed at Lawrence Livermore National Laboratory (LLNL). The calculations were performed on the IBM ASCI Blue-Pacific computer at LLNL.

  3. Environmental Report 1993-1996

    DOT National Transportation Integrated Search

    2002-08-16

    These reports are prepared for the U.S. Department of Energy (DOE), as required by DOE Order 5400.1 and DOE Order 231.1, by the Environmental Protection Department (EPD) at the Lawrence Livermore National Laboratory (LLNL). The results of LLNL's envi...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Robert C.

    Following the January 1980 earthquake that was felt at Lawrence Livermore National Laboratory (LLNL), a network of strong-motion accelerographs was installed at LLNL. Prior to the 1980 earthquake, there were no accelerographs installed. The ground motion from the 1980 earthquake was estimated from USGS instruments around the Laboratory to be between 0.2 – 0.3 g horizontal peak ground acceleration. These instruments were located at the Veterans Hospital, 5 miles southwest of LLNL, and in San Ramon, about 12 miles west of LLNL. In 2011, the Department of Energy (DOE) requested to know the status of our seismic instruments. We conductedmore » a survey of our instrumentation systems and responded to DOE in a letter. During this survey, it was found that the recorders in Buildings 111 and 332 were not operational. The instruments on Nova had been removed, and only three of the 10 NIF instruments installed in 2005 were operational (two were damaged and five had been removed from operation at the request of the program). After the survey, it was clear that the site seismic instrumentation had degraded substantially and would benefit from an overhaul and more attention to ongoing maintenance. LLNL management decided to update the LLNL seismic instrumentation system. The updated system is documented in this report.« less

  5. 2004 Environmental Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althouse, P E; Bertoldo, N A; Brown, R A

    2005-09-28

    The Lawrence Livermore National Laboratory (LLNL) annual Environmental Report, prepared for the Department of Energy (DOE) and made available to the public, presents summary environmental data that characterizes site environmental management performance, summarizes environmental occurrences and responses reported during the calendar year, confirms compliance with environmental standards and requirements, and highlights significant programs and efforts. By explaining the results of effluent and environmental monitoring, mentioning environmental performance indicators and performance measure programs, and assessing the impact of Laboratory operations on the environment and the public, the report also demonstrates LLNL's continuing commitment to minimize any potentially adverse impact of itsmore » operations. The combination of environmental and effluent monitoring, source characterization, and dose assessment showed that radiological doses to the public caused by LLNL operations in 2004 were less than 0.26% of regulatory standards and more than 11,000 times smaller than dose from natural background. Analytical results and evaluations generally showed continuing low levels of most contaminants; remediation efforts further reduced the concentrations of contaminants of concern in groundwater and soil vapor. In addition, LLNL's extensive environmental compliance activities related to water, air, endangered species, waste, wastewater, and waste reduction controlled or reduced LLNL's effects on the environment. LLNL's environmental program clearly demonstrates a commitment to protecting the environment from operational impacts.« less

  6. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory J.

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).« less

  7. Development of Operational Free-Space-Optical (FSO) Laser Communication Systems Final Report CRADA No. TC02093.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggiero, A.; Orgren, A.

    This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan formore » the customer.« less

  8. Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1364-96: Phase I SBIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrobek, A. J.; Dunlay, R. T.

    This project was a relationship between Lawrence Livermore National Laboratory (LLNL) and Biological Detection, Inc. (now known as Cellomics, Inc.) It was funded as a Phase I SBIR from the National Institutes of Health (NIH) awarded to Cellomics, Inc. with a subcontract to LLNL.

  9. Fixatives Application for Risk Mitigation Following Contamination with a Biological Agent

    DTIC Science & Technology

    2011-11-02

    PRES-  Gruinard Island 5% formaldehyde  Sverdlosk Release UNKNOWN: but washing, chloramines , soil disposal believed to have been used...507816 Lawrence Livermore National Laboratory LLNL-PRES- 4 Disinfectant >6 Log Reduction on Materials (EPA, 2010a,b; Wood et al., 2011...LL L-PRES-507816 Lawrence Livermore National Laboratory LLNL-PRES-  High disinfectant concentrations increase operational costs and risk

  10. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less

  11. Educational Revolution on the Reservation: A Working Model.

    ERIC Educational Resources Information Center

    Murphy, Pete

    1993-01-01

    Since 1986, Navajo Community College (NCC) and Lawrence Livermore National Laboratory (LLNL) have collaborated to improve science and technical education on the Navajo Reservation through equipment loans, faculty exchanges, summer student work at LLNL, scholarships for NCC students, summer workshops for elementary science teachers, and classroom…

  12. Lawrence Livermore National Laboratory Site Seismic Safety Program: Summary of Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savy, J B; Foxall, W

    The Lawrence Livermore National Laboratory (LLNL) Site Seismic Safety Program was conceived in 1979 during the preparation of the site Draft Environmental Impact Statement. The impetus for the program came from the development of new methodologies and geologic data that affect assessments of geologic hazards at the LLNL site; it was designed to develop a new assessment of the seismic hazard to the LLNL site and LLNL employees. Secondarily, the program was also intended to provide the technical information needed to make ongoing decisions about design criteria for future construction at LLNL and about the adequacy of existing facilities. Thismore » assessment was intended to be of the highest technical quality and to make use of the most recent and accepted hazard assessment methodologies. The basic purposes and objectives of the current revision are similar to those of the previous studies. Although all the data and experience assembled in the previous studies were utilized to their fullest, the large quantity of new information and new methodologies led to the formation of a new team that includes LLNL staff and outside consultants from academia and private consulting firms. A peer-review panel composed of individuals from academia (A. Cornell, Stanford University), the Department of Energy (DOE; Jeff Kimball), and consulting (Kevin Coppersmith), provided review and guidance. This panel was involved from the beginning of the project in a ''participatory'' type of review. The Senior Seismic Hazard Analysis Committee (SSHAC, a committee sponsored by the U.S. Nuclear Regulatory Commission, DOE, and the Electric Power Research Institute) strongly recommends the use of participatory reviews, in which the reviewers follow the progress of a project from the beginning, rather than waiting until the end to provide comments (Budnitz et al., 1997). Following the requirements for probabilistic seismic hazard analysis (PSHA) stipulated in the DOE standard DOE-STD-1023-95, a

  13. Biological and Chemical Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defensemore » Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.« less

  14. Final Report for the Arroyo Las Positas Maintenance Impact Study, Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Hattem, M; Paterson, L

    2006-01-12

    In 2000, the Lawrence Livermore National Laboratory's (LLNL) Environmental Protection Department, in coordination with Plant Engineering (PE), began dredging sections of the Arroyo Las Positas (ALP) to alleviate concerns about flooding of sensitive facilities within the mainsite of Lawrence Livermore National Laboratory. In order to reduce potential impacts on the federally threatened California red-legged frog (Rana aurora draytonii), LLNL proposed to dredge sections of the ALP in a ''checkerboard pattern'', resulting in a mosaic of open water habitat and vegetated sections (Figure 1). The Arroyo Las Positas Management Plan (Plan) was coordinated with both state and federal agencies including themore » U.S. Fish and Wildlife Service (USFWS), California Department of Fish and Game (CDF&G), San Francisco Regional Water Quality Control Board (SFRWQCB), and the Army Corp of Engineers (ACOE). Water Discharge Requirements (WDRs) were issued for this project on December 30, 1999 (Order No. 99-086) by the SFRWQCB. Provision 19 of the WDRs outlined a five-year (2000 through 2004) Maintenance Impact Study (MIS) that LLNL began in coordination with dredging work that was conducted as part of the Arroyo Las Positas Management Plan. Provision 20 of these WDRs requires LLNL to submit a final report of the results of the Maintenance Impact Study for this project to the SFRWQCB. The purpose of this report is to present the results of the Maintenance Impact Study for Arroyo Las Positas and meet the requirements of Provision 20. A description of the annual monitoring included in this Maintenance Impact Study is included in the methods section of this report. Initially the Plan called for dredging the entire length of the Arroyo Las Positas (approximately 6,981 linear feet) over a 5-year period to minimize temporal impacts on the California red-legged frog. Dredging occurred in 2000 ({approx}1,300 ft.), 2001 ({approx}800 ft.), and 2002 ({approx}1,200 ft.), which constituted

  15. Hyperspectral Sensors Final Report CRADA No. TC02173.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priest, R. E.; Sauvageau, J. E.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Science Applications International Corporation (SAIC), National Security Space Operations/SRBU, to develop longwave infrared (LWIR) hyperspectral imaging (HSI) sensors for airborne and potentially ground and space, platforms. LLNL has designed and developed LWIR HSI sensors since 1995. The current generation of these sensors has applications to users within the U.S. Department of Defense and the Intelligence Community. User needs are for multiple copies provided by commercial industry. To gain the most benefit from the U.S. Government’s prior investments inmore » LWIR HSI sensors developed at LLNL, transfer of technology and know-how from LLNL HSI experts to commercial industry was needed. The overarching purpose of the CRADA project was to facilitate the transfer of the necessary technology from LLNL to SAIC thereby allowing the U.S. Government to procure LWIR HSI sensors from this company.« less

  16. Lawrence Livermore National Laboratory and Sandia National Laboratory Nuclear Accident Dosimetry Support of IER 252 and the Dose Characterization of the Flattop Reactor at the DAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickman, D. P.; Jeffers, K. L.; Radev, R. P.

    In support of IER 252 “Characterization of the Flattop Reactor at the NCERC”, LLNL performed ROSPEC measurements of the neutron spectrum and deployed 129 Personnel Nuclear Accident Dosimeters (PNAD) to establish the need for height corrections and verification of neutron spectrum evaluation of the fluences and dose. A very limited number of heights (typically only one or two heights) can be measured using neutron spectrometers, therefore it was important to determine if any height correction would be needed in future intercomparisons and studies. Specific measurement positions around the Flatttop reactor are provided in Figure 1. Table 1 provides run andmore » position information for LLNL measurements. The LLNL ROSPEC (R2) was used for run numbers 1 – 7, and vi. PNADs were positioned on trees during run numbers 9, 11, and 13.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, C.; Arsenlis, T.; Bailey, A.

    Lawrence Livermore National Laboratory Campus Capability Plan for 2018-2028. Lawrence Livermore National Laboratory (LLNL) is one of three national laboratories that are part of the National Nuclear Security Administration. LLNL provides critical expertise to strengthen U.S. security through development and application of world-class science and technology that: Ensures the safety, reliability, and performance of the U.S. nuclear weapons stockpile; Promotes international nuclear safety and nonproliferation; Reduces global danger from weapons of mass destruction; Supports U.S. leadership in science and technology. Essential to the execution and continued advancement of these mission areas are responsive infrastructure capabilities. This report showcases each LLNLmore » capability area and describes the mission, science, and technology efforts enabled by LLNL infrastructure, as well as future infrastructure plans.« less

  18. Edge Simulation Laboratory Progress and Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R

    The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began inmore » fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.« less

  19. Demonstration of Regional Discrimination of Eurasian Seismic Events Using Observations at Soviet IRIS and CDSN Stations

    DTIC Science & Technology

    1992-03-01

    Propagation of Lg Waves Across Eastern Europe and Asia, Lawrence Livermore National Laboratory Report, LLNL Report No. UCRL -52494. Press, F., and M. Ewing...the Nuclear Testing Ground in Eastern Kazakhstan, Lawrence Livermore National Laboratory Report, LLNL Report No. UCRL -52856. Ruzaikin, A., I. Nersesov...Derring Hall University Park, PA 16802 Blacksburg, VA 24061 Dr. Ralph Alewine, III Dr. Stephen Bratt DARPAftMRO Center for Seismic Studies 3701 North Fairax

  20. IGPP 1999-2000 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J; Cook, K; Hitchcock, B

    2003-01-27

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and related fields. The Institute now has branches at UC campuses in Irvine, Los Angeles, San Diego, Santa Cruz and Riverside, and at Los Alamos National Laboratory and Lawrence Livermore National Laboratory. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields ofmore » physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important inter-institutional consortia in the earth and planetary sciences. Each of the seven branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in tectonics, geochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL was directed by Charles Alcock during this period and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics

  1. Gas Atomization Equipment Statement of Work and Specification for Engineering design, Fabrication, Testing, and Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutaleb, T.; Pluschkell, T. P.

    The Gas Atomization Equipment will be used to fabricate metallic powder suitable for Powder Bed Fusion additive Manufacturing material to support Lawrence Livermore National Laboratory (LLNL) research and development. The project will modernize our capabilities to develop spherical reactive, refractory, and radioactive powders in the 10-75 μm diameter size range at LLNL.

  2. ALPHA SMP SYSTEM(S) Final Report CRADA No. TC-1404-97

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seager, M.; Beaudet, T.

    Within the scope of this subcontract, Digital Equipment Corporation (DIGITAL) and the University, through the Lawrence Livermore National Laboratory (LLNL), engaged in joint research and development activities of mutual interest and benefit. The primary objectives of these activities were, for LLNL to improve its capability to perform its mission, and for DIGITAL to develop technical capability complimentary to this mission. The collaborative activities had direct manpower investments by DIGITAL and LLNL. The project was divided into four areas of concern, which were handled concurrently. These areas included Gang Scheduling, Numerical Methods, Applications Development and Code Development Tools.

  3. Development of Plastic Substrate Technology for Active Matrix Liquid Crystal Displays Final Report CRADA No. TC-761-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, P.; Kamath, H.

    Raychem Corporation (RYC) and the Lawrence Livermore National Laboratory (LLNL) conducted a development program with the goal to make rugged, low-cost., high-resolution flat panel displays based on RYC's proprietary Nematic Curvilinear Aligned Phase (NCAP) liquid crystal and LLNL's patented processes for the formation and doping of polycrystalline silicon on low-temperature, flexible, plastic substrates.

  4. LINC Modeling of August 19, 2004 Queen City Barrel Company Fire In Cincinnati, OH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, M B; Nasstrom, J S; Baskett, R L

    This report details the information received, assumptions made, actions taken, and products delivered by the Lawrence Livermore National Laboratory (LLNL) during the August 19, 2004 fire at the Queen City Barrel Company (QCB) in Cincinnati, OH. During the course of the event, LLNL provided four sets of plume model products to various Cincinnati emergency response organizations.

  5. The Next Linear Collider Program

    Science.gov Websites

    Navbar Other Address Books: Laboratory Phone/Email Web Directory SLAC SLAC Phonebook Entire SLAC Web FNAL Telephone Directory Fermilab Search LLNL Phone Book LLNL Web Servers LBNL Directory Services Web Search: A-Z Index KEK E-mail Database Research Projects NLC Website Search: Entire SLAC Web | Help

  6. Final Report Bald and Golden Eagle Territory Surveys for the Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fratanduono, M. L.

    2014-11-25

    Garcia and Associates (GANDA) was contracted by the Lawrence Livermore National Laboratory (LLNL) to conduct surveys for bald eagles (Haliaeetus leucocephalus) and golden eagles (Aquila chrysaetos) at Site 300 and in the surrounding area out to 10-miles. The survey effort was intended to document the boundaries of eagle territories by careful observation of eagle behavior from selected viewing locations throughout the study area.

  7. Applying Science and Technology to Combat WMD Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuest, C R; Werne, R W; Colston, B W

    2006-05-04

    Lawrence Livermore National Laboratory (LLNL) is developing and fielding advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical, biological, radiological, nuclear, and explosive (CBRNE) weapons. The science, technology, and integrated systems we provide are informed by and developed with key partners and end users. LLNL's long-standing role as one of the two principle U.S. nuclear weapons design laboratories has led to significant resident expertise for health effects of exposure to radiation, radiation detection technologies, characterization of radioisotopes, and assessment and response capabilities for terrorist nuclear weapons use. This papermore » provides brief overviews of a number of technologies developed at LLNL that are being used to address national security needs to confront the growing threats of CBRNE terrorism.« less

  8. Applying science and technology to combat WMD terrorism

    NASA Astrophysics Data System (ADS)

    Wuest, Craig R.; Werne, Roger W.; Colston, Billy W.; Hartmann-Siantar, Christine L.

    2006-05-01

    Lawrence Livermore National Laboratory (LLNL) is developing and fielding advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical, biological, radiological, nuclear, and explosive (CBRNE) weapons. The science, technology, and integrated systems we provide are informed by and developed with key partners and end users. LLNL's long-standing role as one of the two principle U.S. nuclear weapons design laboratories has led to significant resident expertise for health effects of exposure to radiation, radiation detection technologies, characterization of radioisotopes, and assessment and response capabilities for terrorist nuclear weapons use. This paper provides brief overviews of a number of technologies developed at LLNL that are being used to address national security needs to confront the growing threats of CBRNE terrorism.

  9. LLNL: Science in the National Interest

    ScienceCinema

    George Miller

    2017-12-09

    This is Lawrence Livermore National Laboratory. located in the Livermore Valley about 50 miles east of San Francisco, the Lab is where the nations topmost science, engineering and technology come together. National security, counter-terrorism, medical technologies, energy, climate change our researchers are working to develop solutions to these challenges. For more than 50 years, we have been keeping America strong.

  10. Ghostly events: A review of the namesakes of LLNL nuclear tests of the past few years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, C.W.

    1993-02-01

    Beginning in Fiscal Year 1986, the LLNL named its tests at the Nevada Test Site for ghost towns and other historical place names in California and Nevada. The first test so named was GOLDSTONE conducted on December 28, 1985. The list of names was used until recently when a new set of names was adopted for use in FY-93 and later. The locations used for event names often had interesting histories of their own. Some sites have virtually disappeared, some are still identifiable ghost towns, some never were towns, and others are relatively recent or still inhabited locations. This papermore » is a compilation of brief histories of the locations for which tests were named. The towns mostly, but not entirely, date from the mining booms of about 1850 to the early twentieth century. Many of these communities had brief existences; populations ranged from a few hardy souls to several thousand, and amenities ranged from primitive to, in a few rare cases, opulent. The development tended to follow a similar pattern based on size and duration of activity, usually starting with a collection of tents, commonly known as rag-towns''. Generally even the small communities soon had a store, some sort of lodging, and a saloon and gambling hall. As towns grew, if they lasted long enough, they would often acquire a post office, more saloons and stores, better water supplies and transportation, more permanent hotels, sometimes a newspaper, and often a red-light district. This was followed finally by permanent residences and by churches and schools, possibly even a library, and the other trappings of a real community; the ultimate goal was to have a court house. Most sites, of course, went through boom and bust before the full cycle could be realized. These places are the remains of a fascinating and important part of our heritage.« less

  11. Ghostly events: A review of the namesakes of LLNL nuclear tests of the past few years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, C.W.

    1993-02-01

    Beginning in Fiscal Year 1986, the LLNL named its tests at the Nevada Test Site for ghost towns and other historical place names in California and Nevada. The first test so named was GOLDSTONE conducted on December 28, 1985. The list of names was used until recently when a new set of names was adopted for use in FY-93 and later. The locations used for event names often had interesting histories of their own. Some sites have virtually disappeared, some are still identifiable ghost towns, some never were towns, and others are relatively recent or still inhabited locations. This papermore » is a compilation of brief histories of the locations for which tests were named. The towns mostly, but not entirely, date from the mining booms of about 1850 to the early twentieth century. Many of these communities had brief existences; populations ranged from a few hardy souls to several thousand, and amenities ranged from primitive to, in a few rare cases, opulent. The development tended to follow a similar pattern based on size and duration of activity, usually starting with a collection of tents, commonly known as ``rag-towns``. Generally even the small communities soon had a store, some sort of lodging, and a saloon and gambling hall. As towns grew, if they lasted long enough, they would often acquire a post office, more saloons and stores, better water supplies and transportation, more permanent hotels, sometimes a newspaper, and often a red-light district. This was followed finally by permanent residences and by churches and schools, possibly even a library, and the other trappings of a real community; the ultimate goal was to have a court house. Most sites, of course, went through boom and bust before the full cycle could be realized. These places are the remains of a fascinating and important part of our heritage.« less

  12. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-01-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  13. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-02-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  14. Electron-Beam Vapor Deposition of Mold Inserts Final Report CRADA No. TSB-777-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepp, T.; Feeley, T.

    Lawrence Livermore National Laboratory and H.G.G. Laser Fare, Inc. studied the application of electron-beam vapor deposition technology to the production of mold inserts for use in an injection molding machine by Laser Fare. Laser Fare provided LLNL with the requirements of the mold inserts as well as sample inserts. LLNL replicated the mold insert(s) to Laser Fare for testing by Laser Fare.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, T; Sparkman, D; Storch, N

    ''The LLNL Site-Specific Advanced Simulation and Computing (ASCI) Software Quality Engineering Recommended Practices VI.I'' document describes a set of recommended software quality engineering (SQE) practices for ASCI code projects at Lawrence Livermore National Laboratory (LLNL). In this context, SQE is defined as the process of building quality into software products by applying the appropriate guiding principles and management practices. Continual code improvement and ongoing process improvement are expected benefits. Certain practices are recommended, although projects may select the specific activities they wish to improve, and the appropriate time lines for such actions. Additionally, projects can rely on the guidance ofmore » this document when generating ASCI Verification and Validation (VSrV) deliverables. ASCI program managers will gather information about their software engineering practices and improvement. This information can be shared to leverage the best SQE practices among development organizations. It will further be used to ensure the currency and vitality of the recommended practices. This Overview is intended to provide basic information to the LLNL ASCI software management and development staff from the ''LLNL Site-Specific ASCI Software Quality Engineering Recommended Practices VI.I'' document. Additionally the Overview provides steps to using the ''LLNL Site-Specific ASCI Software Quality Engineering Recommended Practices VI.I'' document. For definitions of terminology and acronyms, refer to the Glossary and Acronyms sections in the ''LLNL Site-Specific ASCI Software Quality Engineering Recommended Practices VI.I''.« less

  16. Finite element analysis of constrained total Condylar Knee Prosthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-13

    Exactech, Inc., is a prosthetic joint manufacturer based in Gainesville, FL. The company set the goal of developing a highly effective prosthetic articulation, based on scientific principles, not trial and error. They developed an evolutionary design for a total knee arthroplasty system that promised improved performance. They performed static load tests in the laboratory with similar previous designs, but dynamic laboratory testing was both difficult to perform and prohibitively expensive for a small business to undertake. Laboratory testing also cannot measure stress levels in the interior of the prosthesis where failures are known to initiate. To fully optimize their designsmore » for knee arthroplasty revisions, they needed range-of-motion stress/strain data at interior as well as exterior locations within the prosthesis. LLNL developed computer software (especially NIKE3D) specifically designed to perform stress/strain computations (finite element analysis) for complex geometries in large displacement/large deformation conditions. Additionally, LLNL had developed a high fidelity knee model for other analytical purposes. The analysis desired by Exactech could readily be performed using NIKE3D and a modified version of the high fidelity knee that contained the geometry of the condylar knee components. The LLNL high fidelity knee model was a finite element computer model which would not be transferred to Exactech during the course of this CRADA effort. The previously performed laboratory studies by Exactech were beneficial to LLNL in verifying the analytical capabilities of NIKE3D for human anatomical modeling. This, in turn, gave LLNL further entree to perform work-for-others in the prosthetics field. There were two purposes to the CRADA (1) To modify the LLNL High Fidelity Knee Model to accept the geometry of the Exactech Total Knee; and (2) To perform parametric studies of the possible design options in appropriate ranges of motion so that an optimum design

  17. An Archive of Downscaled WCRP CMIP3 Climate Projections for Planning Applications in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Pruitt, T.; Maurer, E. P.; Duffy, P. B.

    2007-12-01

    Incorporating climate change information into long-term evaluations of water and energy resources requires analysts to have access to climate projection data that have been spatially downscaled to "basin-relevant" resolution. This is necessary in order to develop system-specific hydrology and demand scenarios consistent with projected climate scenarios. Analysts currently have access to "climate model" resolution data (e.g., at LLNL PCMDI), but not spatially downscaled translations of these datasets. Motivated by a common interest in supporting regional and local assessments, the U.S. Bureau of Reclamation and LLNL (through support from the DOE National Energy Technology Laboratory) have teamed to develop an archive of downscaled climate projections (temperature and precipitation) with geographic coverage consistent with the North American Land Data Assimilation System domain, encompassing the contiguous United States. A web-based information service, hosted at LLNL Green Data Oasis, has been developed to provide Reclamation, LLNL, and other interested analysts free access to archive content. A contemporary statistical method was used to bias-correct and spatially disaggregate projection datasets, and was applied to 112 projections included in the WCRP CMIP3 multi-model dataset hosted by LLNL PCMDI (i.e. 16 GCMs and their multiple simulations of SRES A2, A1b, and B1 emissions pathways).

  18. Ultra-trace analysis of 41Ca in urine by accelerator mass spectrometry: an inter-laboratory comparison

    PubMed Central

    Jackson, George S.; Hillegonds, Darren J.; Muzikar, Paul; Goehring, Brent

    2013-01-01

    A 41Ca interlaboratory comparison between Lawrence Livermore National Laboratory (LLNL) and the Purdue Rare Isotope Laboratory (PRIME Lab) has been completed. Analysis of the ratios assayed by accelerator mass spectrometry (AMS) shows that there is no statistically significant difference in the ratios. Further, Bayesian analysis shows that the uncertainties reported by both facilities are correct with the possibility of a slight under-estimation by one laboratory. Finally, the chemistry procedures used by the two facilities to produce CaF2 for the cesium sputter ion source are robust and don't yield any significant differences in the final result. PMID:24179312

  19. 10 CFR 850 Implementation of Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S

    2012-01-05

    10 CFR 850 defines a contractor as any entity, including affiliated entities, such as a parent corporation, under contract with DOE, including a subcontractor at any tier, with responsibility for performing work at a DOE site in furtherance of a DOE mission. The Chronic Beryllium Disease Prevention Program (CBDPP) applies to beryllium-related activities that are performed at the Lawrence Livermore National Laboratory (LLNL). The CBDPP or Beryllium Safety Program is integrated into the LLNL Worker Safety and Health Program and, thus, implementation documents and responsibilities are integrated in various documents and organizational structures. Program development and management of the CBDPPmore » is delegated to the Environment, Safety and Health (ES&H) Directorate, Worker Safety and Health Functional Area. As per 10 CFR 850, Lawrence Livermore National Security, LLC (LLNS) periodically submits a CBDPP to the National Nuclear Security Administration/Livermore Site Office (NNSA/LSO). The requirements of this plan are communicated to LLNS workers through ES&H Manual Document 14.4, 'Working Safely with Beryllium.' 10 CFR 850 is implemented by the LLNL CBDPP, which integrates the safety and health standards required by the regulation, components of the LLNL Integrated Safety Management System (ISMS), and incorporates other components of the LLNL ES&H Program. As described in the regulation, and to fully comply with the regulation, specific portions of existing programs and additional requirements are identified in the CBDPP. The CBDPP is implemented by documents that interface with the workers, principally through ES&H Manual Document 14.4. This document contains information on how the management practices prescribed by the LLNL ISMS are implemented, how beryllium hazards that are associated with LLNL work activities are controlled, and who is responsible for implementing the controls. Adherence to the requirements and processes described in the ES&H Manual ensures

  20. Centers for Disease Control and Prevention (CDC) Radiation Hazard Scale Data Product Review Feedback Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askin, A.; Buddemeier, B.; Alai, M.

    In support of the Department of Energy (DOE) National nuclear Security Administration (NNSA) and the Centers for Disease Control and Prevention (CDC), Lawrence Livermore National Laboratory (LLNL) assisted in the development of new data templates for disseminating and communicating FRMAC1 data products using the CDC Radiation Hazard Scale communication tool. To ensure these data products will be useful to stakeholders during a radiological emergency, LLNL facilitated opportunities for product socialization and review.

  1. Special-Status Plant Species Surveys and Vegetation Mapping at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, R E

    This report presents the results of Jones & Stokes special-status plant surveys and vegetation mapping for the University of California, Lawrence Livermore National Laboratory (LLNL). Special-status plant surveys were conducted at Site 300 in April to May 1997 and in March to April 2002. Eight special-status plants were identified at Site 300: large-flowered fiddleneck, big tarplant, diamond-petaled poppy, round-leaved filaree, gypsum-loving larkspur, California androsace, stinkbells, and hogwallow starfish. Maps identifying the locations of these species, a discussion of the occurrence of these species at Site 300, and a checklist of the flora of Site 300 are presented. A reconnaissance surveymore » of the LLNL Livermore Site was conducted in June 2002. This survey concluded that no special-status plants occur at the Livermore Site. Vegetation mapping was conducted in 2001 at Site 300 to update a previous vegetation study done in 1986. The purpose of the vegetation mapping was to update and to delineate more precisely the boundaries between vegetation types and to map vegetation types that previously were not mapped. The vegetation map is presented with a discussion of the vegetation classification used.« less

  2. Emergency Response Capability Baseline Needs Assessment - Compliance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharry, John A.

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by LLNL Emergency Management Department Head, James Colson. This document is the second of a two-part analysis on Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2016 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2016more » BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. The 2013 BNA was approved by NNSA’s Livermore Field Office on January 22, 2014.« less

  3. Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Potable Water System Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, Ruben P.; Bellah, Wendy

    The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less

  4. 2011 Computation Directorate Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D L

    2012-04-11

    From its founding in 1952 until today, Lawrence Livermore National Laboratory (LLNL) has made significant strategic investments to develop high performance computing (HPC) and its application to national security and basic science. Now, 60 years later, the Computation Directorate and its myriad resources and capabilities have become a key enabler for LLNL programs and an integral part of the effort to support our nation's nuclear deterrent and, more broadly, national security. In addition, the technological innovation HPC makes possible is seen as vital to the nation's economic vitality. LLNL, along with other national laboratories, is working to make supercomputing capabilitiesmore » and expertise available to industry to boost the nation's global competitiveness. LLNL is on the brink of an exciting milestone with the 2012 deployment of Sequoia, the National Nuclear Security Administration's (NNSA's) 20-petaFLOP/s resource that will apply uncertainty quantification to weapons science. Sequoia will bring LLNL's total computing power to more than 23 petaFLOP/s-all brought to bear on basic science and national security needs. The computing systems at LLNL provide game-changing capabilities. Sequoia and other next-generation platforms will enable predictive simulation in the coming decade and leverage industry trends, such as massively parallel and multicore processors, to run petascale applications. Efficient petascale computing necessitates refining accuracy in materials property data, improving models for known physical processes, identifying and then modeling for missing physics, quantifying uncertainty, and enhancing the performance of complex models and algorithms in macroscale simulation codes. Nearly 15 years ago, NNSA's Accelerated Strategic Computing Initiative (ASCI), now called the Advanced Simulation and Computing (ASC) Program, was the critical element needed to shift from test-based confidence to science-based confidence. Specifically, ASCI

  5. Development of Diagnostics for the Livermore DPF Devices

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Prasad, Rahul R.; Podpaly, Yuri A.; Cooper, Christopher M.; Chapman, Steven F.; Shaw, Brian H.; Povilus, Alexander P.; Schmidt, Andrea

    2017-10-01

    LLNL is commissioning several new diagnostics to understand and optimize ion and neutron production in their dense plasma focus (DPF) systems. Gas fills used in DPF devices at LLNL are Deuterium (D2) and He accelerated onto a Be target, for production of neutrons. Neutron yields are currently measured with Helium-3 tubes, and development of yttrium-based activation detectors is currently underway. Neutron time-of-flight (nTOF) signals from prompt neutrons will be measured with gadolinium-doped liquid scintillators. An ion energy analyzer will be used to diagnose energy distribution of D + and He +2 ions. Additionally, a fast frame ICCD camera has been applied to image the plasma sheath during the rundown and pinch phases. Sheath velocity will be measured with an array of discrete photodiodes with ns time responses. A discussion of our results will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344, and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL and the Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy.

  6. Purple Computational Environment With Mappings to ACE Requirements for the General Availability User Environment Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barney, B; Shuler, J

    2006-08-21

    Purple is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Lawrence Livermore National Laboratory (LLNL). The Purple Computational Environment documents the capabilities and the environment provided for the FY06 LLNL Level 1 General Availability Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratories, but also documents needs of the LLNL and Alliance users working in the unclassified environment. Additionally,more » the Purple Computational Environment maps the provided capabilities to the Trilab ASC Computing Environment (ACE) Version 8.0 requirements. The ACE requirements reflect the high performance computing requirements for the General Availability user environment capabilities of the ASC community. Appendix A lists these requirements and includes a description of ACE requirements met and those requirements that are not met for each section of this document. The Purple Computing Environment, along with the ACE mappings, has been issued and reviewed throughout the Tri-lab community.« less

  7. Laboratory Data for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Chen, H.; Gu, M.-F.; Kahn, S. M.; Lepson, J. K.; Savin, D. W.; Utter, S. B.

    2000-01-01

    Laboratory facilities have made great strides in producing large sets of reliable data for X-ray astronomy, which include ionization and recombination cross sections needed for charge balance calculations as well as the atomic data needed for interpreting X-ray line formation. We discuss data from the new generation sources and pay special attention to the LLNL electron beam ion trap experiment, which is unique in its ability to provide direct laboratory access to spectral data under precisely controlled conditions that simulate those found in many astrophysical plasmas. Examples of spectral data obtained in the 1-160 A wavelength range are given illustrating the type of laboratory X-ray data produced in support of such missions as Chandra, X-Ray Multi-Mirror telescope (XMM), Advanced Satellite for Cosmology and Astrophysics (ASCA) and Extreme Ultraviolet Explorer Satellite (EUVE).

  8. Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainer, R.; Duarte, J.

    1993-07-01

    The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work;more » therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.« less

  9. A Monte Carlo Simulation of the in vivo measurement of lung activity in the Lawrence Livermore National Laboratory torso phantom.

    PubMed

    Acha, Robert; Brey, Richard; Capello, Kevin

    2013-02-01

    A torso phantom was developed by the Lawrence Livermore National Laboratory (LLNL) that serves as a standard for intercomparison and intercalibration of detector systems used to measure low-energy photons from radionuclides, such as americium deposited in the lungs. DICOM images of the second-generation Human Monitoring Laboratory-Lawrence Livermore National Laboratory (HML-LLNL) torso phantom were segmented and converted into three-dimensional (3D) voxel phantoms to simulate the response of high purity germanium (HPGe) detector systems, as found in the HML new lung counter using a Monte Carlo technique. The photon energies of interest in this study were 17.5, 26.4, 45.4, 59.5, 122, 244, and 344 keV. The detection efficiencies at these photon energies were predicted for different chest wall thicknesses (1.49 to 6.35 cm) and compared to measured values obtained with lungs containing (241)Am (34.8 kBq) and (152)Eu (10.4 kBq). It was observed that no statistically significant differences exist at the 95% confidence level between the mean values of simulated and measured detection efficiencies. Comparisons between the simulated and measured detection efficiencies reveal a variation of 20% at 17.5 keV and 1% at 59.5 keV. It was found that small changes in the formulation of the tissue substitute material caused no significant change in the outcome of Monte Carlo simulations.

  10. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Oxides within DOE-STD-3013-2000 Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mount, M E; O'Connell, W J

    2005-06-03

    Lawrence Livermore National Laboratory (LLNL) uses the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. In June 2002, at the 43rd Annual Meeting of the Institute of Nuclear Material Management, LLNL reported on an extensive effort to calibrate this shuffler, based on standards measurements and extensive simulations, for HEU oxides and mixed U-Pu oxides in thin-walled primary and secondary containers. In August 2002, LLNL began to also use DOE-STD-3013-2000 containers for HEU oxide and mixed U-Pu oxide. These DOE-STD-3013-2000 containers are comprised ofmore » a stainless steel convenience can enclosed in welded stainless steel primary and secondary containers. Compared to the double thin-walled containers, the DOE-STD-3013-2000 containers have substantially thicker walls, and the density of materials in these containers was found to extend over a greater range (1.35 g/cm{sup 3} to 4.62 g/cm{sup 3}) than foreseen for the double thin-walled containers. Further, the DOE-STD-3013-2000 Standard allows for oxides containing at least 30 wt% Pu plus U whereas the calibration algorithms for thin-walled containers were derived for virtually pure HEU or mixed U-Pu oxides. An initial series of Monte Carlo simulations of the PAN shuffler response to given quantities of HEU oxide and mixed U-Pu oxide in DOE-STD-3013-2000 containers was generated and compared with the response predicted by the calibration algorithms for thin-walled containers. Results showed a decrease on the order of 10% in the count rate, and hence a decrease in the calculated U mass for measured unknowns, with some varying trends versus U mass. Therefore a decision was made to develop a calibration algorithm for the PAN shuffler unique to the DOE-STD-3013-2000 container. This paper describes that effort and selected unknown item measurement results.« less

  11. ARGUS/LLNL IR Camera Calibration and Characterization

    DTIC Science & Technology

    1989-11-01

    122 of the 244 rows, once every 1/60 second. The even-numbered detector rows, beginning with row zero , are read out in one field; the odd-numbered...Radiometrically, a very cold reference scene is desirable because the absolute signal level of the reference scene is subtracted from all subsequent...to have effectively zero radiant energy within the spectral passband of the sensor, and so may be ignored. 1.3 LABORATORY EQUIPMENT CONFIGURATION The

  12. Hydrologic Resources Management Program and Underground Tests Area Project FY 2003 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J., B C; F., E G; K., E B

    This report describes FY 2003 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security.more » UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The present report is organized on a topical basis and contains five chapters that reflect the range of technical work performed by LLNL-CBND during FY 2003. Although we have emphasized investigations that were led by CBND, we also participated in a variety of collaborative studies with other UGTA and HRMP contract organizations including the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and Bechtel Nevada (BN).« less

  13. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments Database

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  14. Lawrence Livermore National Laboratory Environmental Report 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  15. Lawrence Livermore National Laboratory Environmental Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosene, C. A.; Jones, H. E.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  16. Not ''just'' pump and treat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angleberger, K; Bainer, R W

    2000-12-12

    The Lawrence Livermore National Laboratory (LLNL) has been consistently improving the site cleanup methods by adopting new philosophies, strategies and technologies to address constrained or declining budgets, lack of useable space due to a highly industrialized site, and significant technical challenges. As identified in the ROD, the preferred remedy at the LLNL Livermore Site is pump and treat, although LLNL has improved this strategy to bring the remediation of the ground water to closure as soon as possible. LLNL took the logical progression from a pump and treat system to the philosophy of ''Smart Pump and Treat'' coupled with themore » concepts of ''Hydrostratigraphic Unit Analysis,'' ''Engineered Plume Collapse,'' and ''Phased Source Remediation,'' which led to the development of new, more cost-effective technologies which have accelerated the attainment of cleanup goals significantly. Modeling is also incorporated to constantly develop new, cost-effective methodologies to accelerate cleanup and communicate the progress of cleanup to stakeholders. In addition, LLNL improved on the efficiency and flexibility of ground water treatment facilities. Ground water cleanup has traditionally relied on costly and obtrusive fixed treatment facilities. LLNL has designed and implemented various portable ground water treatment units to replace the fixed facilities; the application of each type of facility is determined by the amount of ground water flow and contaminant concentrations. These treatment units have allowed for aggressive ground water cleanup, increased cleanup flexibility, and reduced capital and electrical costs. After a treatment unit has completed ground water cleanup at one location, it can easily be moved to another location for additional ground water cleanup.« less

  17. 2009 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2010-04-14

    During the 2009 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. LLNL also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2009, there were 159 person-trips that required dose monitoring of the U.S. monitors. Of the 159 person-trips, 149 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 4 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. LLNL's Hazard Control Departmentmore » laboratories provided the dosimetry services for the HEU Transparency monitors. In 2009, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency Program now has over fifteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  18. An Approach to Industrial Stormwater Benchmarks: Establishing and Using Site-Specific Threshold Criteria at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, C G; Mathews, S

    2006-09-07

    Current regulatory schemes use generic or industrial sector specific benchmarks to evaluate the quality of industrial stormwater discharges. While benchmarks can be a useful tool for facility stormwater managers in evaluating the quality stormwater runoff, benchmarks typically do not take into account site-specific conditions, such as: soil chemistry, atmospheric deposition, seasonal changes in water source, and upstream land use. Failing to account for these factors may lead to unnecessary costs to trace a source of natural variation, or potentially missing a significant local water quality problem. Site-specific water quality thresholds, established upon the statistical evaluation of historic data take intomore » account these factors, are a better tool for the direct evaluation of runoff quality, and a more cost-effective trigger to investigate anomalous results. Lawrence Livermore National Laboratory (LLNL), a federal facility, established stormwater monitoring programs to comply with the requirements of the industrial stormwater permit and Department of Energy orders, which require the evaluation of the impact of effluent discharges on the environment. LLNL recognized the need to create a tool to evaluate and manage stormwater quality that would allow analysts to identify trends in stormwater quality and recognize anomalous results so that trace-back and corrective actions could be initiated. LLNL created the site-specific water quality threshold tool to better understand the nature of the stormwater influent and effluent, to establish a technical basis for determining when facility operations might be impacting the quality of stormwater discharges, and to provide ''action levels'' to initiate follow-up to analytical results. The threshold criteria were based on a statistical analysis of the historic stormwater monitoring data and a review of relevant water quality objectives.« less

  19. Infrared Imaging Camera Final Report CRADA No. TC02061.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, E. V.; Nebeker, S.

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cordin Company (Cordin) to enhance the U.S. ability to develop a commercial infrared camera capable of capturing high-resolution images in a l 00 nanoseconds (ns) time frame. The Department of Energy (DOE), under an Initiative for Proliferation Prevention (IPP) project, funded the Russian Federation Nuclear Center All-Russian Scientific Institute of Experimental Physics (RFNC-VNIIEF) in Sarov. VNIIEF was funded to develop a prototype commercial infrared (IR) framing camera and to deliver a prototype IR camera to LLNL. LLNL and Cordin were partners with VNIIEF onmore » this project. A prototype IR camera was delivered by VNIIEF to LLNL in December 2006. In June of 2007, LLNL and Cordin evaluated the camera and the test results revealed that the camera exceeded presently available commercial IR cameras. Cordin believes that the camera can be sold on the international market. The camera is currently being used as a scientific tool within Russian nuclear centers. This project was originally designated as a two year project. The project was not started on time due to changes in the IPP project funding conditions; the project funding was re-directed through the International Science and Technology Center (ISTC), which delayed the project start by over one year. The project was not completed on schedule due to changes within the Russian government export regulations. These changes were directed by Export Control regulations on the export of high technology items that can be used to develop military weapons. The IR camera was on the list that export controls required. The ISTC and Russian government, after negotiations, allowed the delivery of the camera to LLNL. There were no significant technical or business changes to the original project.« less

  20. Studies of Short Time Response Options for Potentially Hazardous Objects: Current and Forthcoming Results

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Greenaugh, Kevin C.; Seery, Bernard D.; Bambacus, Myra; Leung, Ronald Y.; Finewood, Lee; Dearborn, David S. P.; Miller, Paul L.; Weaver, Robert P.; Plesko, Catherine; hide

    2017-01-01

    NASA's Goddard Space Flight Center (GSFC) and the National Nuclear Security Administration (NNSA), Department of Energy (DOE) National Laboratories, Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory(LANL), and Sandia National Laboratory (SNL) are collaborating on Planetary Defense Research. The research program is organized around three case studies: 1. Deflection of the Potentially Hazardous Asteroid (PHA) 101955 Bennu (1999 RQ36)[OSIRIS-REx mission target], 2. Deflection of the secondary member of the PHA 65803 Didymos (1996 GT) [DART mission target], 3. Deflection of a scaled-down version of the comet 67PChuryumov-Gerasimenko [Rosetta mission target]. NASAGSFC is providing astrodynamics and spacecraft mission design expertise, while NNSA, DOE, LLNL, LANL and SNL are providing expertise in modeling the effects of kinetic impactor spacecraft and nuclear explosive devices on the target objects.

  1. Transient plasma estimation: a noise cancelling/identification approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J.V.; Casper, T.; Kane, R.

    1985-03-01

    The application of a noise cancelling technique to extract energy storage information from sensors occurring during fusion reactor experiments on the Tandem Mirror Experiment-Upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is examined. We show how this technique can be used to decrease the uncertainty in the corresponding sensor measurements used for diagnostics in both real-time and post-experimental environments. We analyze the performance of algorithm on the sensor data and discuss the various tradeoffs. The algorithm suggested is designed using SIG, an interactive signal processing package developed at LLNL.

  2. Recent results and future plans for a 45 actuator adaptive x-ray optics experiment at the advanced light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brejnholt, Nicolai F., E-mail: brejnholt1@llnl.gov; Poyneer, Lisa A.; Hill, Randal M.

    2016-07-27

    We report on the current status of the Adaptive X-ray Optics project run by Lawrence Livermore National Laboratory (LLNL). LLNL is collaborating with the Advanced Light Source (ALS) to demonstrate a near real-time adaptive X-ray optic. To this end, a custom-built 45 cm long deformable mirror has been installed at ALS beamline 5.3.1 (end station 2) for a two-year period that started in September 2014. We will outline general aspects of the instrument, present results from a recent experimental campaign and touch on future plans for the project.

  3. The Effect of Interchanging the Polarity of the Dense Plasma Focus on Neutron Yield

    NASA Astrophysics Data System (ADS)

    Jiang, Sheng; Higginson, Drew; Link, Anthony; Schmidt, Andrea

    2017-10-01

    The dense plasma focus (DPF) Z-pinch devices can serve as portable neutron sources when deuterium is used as the filling gas. DPF devices are normally operated with the inner electrode as the anode. It has been found that interchanging the polarity of the electrodes can cause orders of magnitude decrease in the neutron yield. Here we use the particle-in-cell (PIC) code LSP to model a DPF with both polarities. We have found the difference in the shape of the sheath, the voltage and current traces, and the electric and magnetic fields in the pinch region due to different polarities. A detailed comparison will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  4. High-Energy Neutron Imaging Development at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, J M; Rusnak, B; Shen, S

    2005-02-16

    We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear device components. The final production-line system will be relatively compact (suitable for use in existing facilities within the DOE complex) and capable of acquiring both radiographic and tomographic (CT) images. In this report, we will review our recent programmatic accomplishments, focusing primarily on progress made in FY04. Themore » design status of the high-intensity, accelerator-driven neutron source and large-format imaging detector associated with the system will be discussed and results from a recent high-energy neutron imaging experiment conducted at the Ohio University Accelerator Laboratory (OUAL) will also be presented.« less

  5. Instructor qualification for radiation safety training at a national laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trinoskey, P.A.

    1994-10-01

    Prior to 1993, Health Physics Training (HPT) was conducted by the Lawrence Livermore National Laboratory (LLNL) health physics group. The job requirements specified a Masters Degree and experience. In fact, the majority of Health Physicists in the group were certified by the American Board of Health Physics. Under those circumstances, it was assumed that individuals in the group were technically qualified and the HPT instructor qualification stated that. In late 1993, the Health Physics Group at the LLNL was restructured and the training function was assigned to the training group. Additional requirements for training were mandated by the Department ofmore » Energy (DOE), which would necessitate increasing the existing training staff. With the need to hire, and the policy of reassignment of employees during downsizing, it was imperative that formal qualification standards be developed for technical knowledge. Qualification standards were in place for instructional capability. In drafting the new training qualifications for instructors, the requirements of a Certified Health Physicists had to be modified due to supply and demand. Additionally, for many of the performance-based training courses, registration by the National Registry of Radiation Protection Technologists is more desirable. Flexibility in qualification requirements has been incorporated to meet the reality of ongoing training and the compensation for desirable skills of individuals who may not meet all the criteria. The qualification requirements for an instructor rely on entry-level requirements and emphasis on goals (preferred) and continuing development of technical and instructional capabilities.« less

  6. Modern Chemistry Techniques Applied to Metal Behavior and Chelation in Medical and Environmental Systems ? Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, M; Andresen, B; Burastero, S R

    2005-02-03

    This report details the research and findings generated over the course of a 3-year research project funded by Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development (LDRD). Originally tasked with studying beryllium chemistry and chelation for the treatment of Chronic Beryllium Disease and environmental remediation of beryllium-contaminated environments, this work has yielded results in beryllium and uranium solubility and speciation associated with toxicology; specific and effective chelation agents for beryllium, capable of lowering beryllium tissue burden and increasing urinary excretion in mice, and dissolution of beryllium contamination at LLNL Site 300; {sup 9}Be NMR studies previously unstudied atmore » LLNL; secondary ionization mass spec (SIMS) imaging of beryllium in spleen and lung tissue; beryllium interactions with aerogel/GAC material for environmental cleanup. The results show that chelator development using modern chemical techniques such as chemical thermodynamic modeling, was successful in identifying and utilizing tried and tested beryllium chelators for use in medical and environmental scenarios. Additionally, a study of uranium speciation in simulated biological fluids identified uranium species present in urine, gastric juice, pancreatic fluid, airway surface fluid, simulated lung fluid, bile, saliva, plasma, interstitial fluid and intracellular fluid.« less

  7. Laser Materials Processing Final Report CRADA No. TC-1526-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, J.; Lehane, C. J.

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to bemore » developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.« less

  8. Estimated use of explosives in the mining industries of Algeria, Iran, Iraq, and Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilburn, D.R.; Russell, J.A.; Bleiwas, D.I.

    1995-09-01

    This work was performed under Memorandum of Agreement B291534 Between the Lawrence Livermore National Laboratory (LLNL) and the United States Bureau of Mines. The Bureau of Mines authors are members of the Minerals Availability Field Office (MAFO) in Denver, CO, which uses an extensive network of information sources to develop and maintain the Minerals Availability database concerning mining and minerals properties worldwide. This study was initiated and directed by F. Heuze at LLNL. A previous study on the same subject had been commissioned by LLNL from the Mining Journal Research Services (MJRS) in London ,UK. Its results were integrated intomore » this report. MJRS is shown as one of the numerous sources which were used for this work. All sources are listed in the report. This document is arranged in four sections, one for each country, in alphabetical order. Thie outline is the same for each country.« less

  9. Gold Spectra Measurements from LLNL EBIT Plasmas

    NASA Astrophysics Data System (ADS)

    May, M.; Brown, G. V.; Chen, H.; Chung, H. K.; Gu, M.; Hansen, S. B.; Schneider, M. B.; Widmann, K.; Beiersdorfer, P.

    2008-11-01

    Spectra have been recorded from gold that has been injected into the Lawrence Livermore Electron Beam Ion Trap (EBIT-II). Both mono-energetic and experimentally simulated Maxwell-Boltzmann (MB) plasmas were created for these measurements. The beam plasmas had energies of 2.75, 3.0, 3.6, 4.6, 5.5, 6.0, 6.5 keV. The MB plasmas had electron temperatures of 2.0, 2.5 and 3.0 keV. M-band gold spectra (n = 4-3, 5-3, 6-3 and 7-3 transitions) were recorded between 1 - 8 keV from K-like to Kr-like ions in the x-ray. The emission of gold was recorded by crystal spectrometers and a micro-calorimeter from the Goddard Space Flight Center. A full survey of the recorded spectra will be presented along with line emission and charge state modeling from the flexible atomic code (FAC). Some comparisons with laser produced plasmas will be made. *This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Institute of Geophyics and Planetary Physics. Annual report for FY 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F.J.

    1995-09-29

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, Riverside, and Irvine and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography andmore » space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the six branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, high-pressure sciences, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and is structured around three research centers. The Center for Geosciences, headed by George Zandt and Frederick Ryerson, focuses on research in geophysics and geochemistry. The Center for High-Pressure Sciences, headed by William Nellis, sponsors research on the properties of planetary materials and on the synthesis and preparation of new materials using high-pressure processing.« less

  11. Non-Invasive Pneumothorax Detector Final Report CRADA No. TC02110.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J. T.; Purcell, R.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ElectroSonics Medical Inc. (formerly known as BIOMEC, Inc.), to develop a non-invasive pneumothorax detector based upon the micropower impulse radar technology invented at LLNL. Under a Work for Others Subcontract (L-9248), LLNL and ElectroSonics successfully demonstrated the feasibility of a novel device for non-invasive detection of pneumothorax for emergency and long-term monitoring. The device is based on Micropower Impulse Radar (MIR) Ultra Wideband (UWB) technology. Phase I experimental results were promising, showing that a pneumothorax volume even asmore » small as 30 ml was clearly detectable from the MIR signals. Phase I results contributed to the award of a National Institute of Health (NIH) SBIR Phase II grant to support further research and development. The Phase II award led to the establishment of a LLNL/ElectroSonics CRADA related to Case No. TC02045.0. Under the subsequent CRADA, LLNL and ElectroSonics successfully demonstrated the feasibility of the pneumothorax detection in human subject research trials. Under this current CRADA TC02110.0, also referred to as Phase II Type II, the project scope consisted of seven tasks in Project Year 1; five tasks in Project Year 2; and four tasks in Project Year 3. Year 1 tasks were aimed toward the delivery of the pneumothorax detector design package for the pre-production of the miniaturized CompactFlash dockable version of the system. The tasks in Project Years 2 and 3 critically depended upon the accomplishments of Task 1. Since LLNL’s task was to provide subject matter expertise and performance verification, much of the timeline of engagement by the LLNL staff depended upon the overall project milestones as determined by the lead organization ElectroSonics. The scope of efforts were subsequently adjusted accordingly to commensurate with funding

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhardt, A. F.; Smith, P. M.

    This project was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and FlexICs, Inc. to develop thin film transistor (TFT) electronics for active matrix displays.

  13. ARC-2010-ACD10-0020-034

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. LLNL's test piece is being installed on truck.

  14. Criteria evaluation for cleanliness testing phase 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meltzer, Michael; Koester, Carolyn; Stefanni, Chris

    1999-02-04

    The Boeing Company (Boeing) contracted with Lawrence Livermore National Laboratory (LLNL) to develop criteria for evaluating the efficacy of its parts cleaning processes. In particular, LLNL and Boeing are attempting to identify levels of contamination that lead to parts failures. Sufficient contamination to cause impairment of anodizing, alodining, painting, or welding operations is considered a "part failure." In the "Phase 0" part of the project that was recently completed, preliminary analyses of aluminum substrates were performed as a first step in determining suitable cleanliness criteria for actual Boeing parts made from this material. A wide spread of contamination levels wasmore » specified for the Phase 0 test coupons, in the hopes of finding a range in which an appropriate cleanliness specification might lie. It was planned that, based on the results of the Phase 0 testing, further more detailed analyses ("Phase 1 testing") would be performed in order to more accurately identify the most appropriate criteria. For the Phase 0 testing, Boeing supplied LLNL with 3" x 6" and 3" x 10" aluminum test panels which LLNL contaminated with measured amounts of typical hydrocarbon substances encountered in Boeing' s fabrication operations. The panels were then subjected by Boeing to normal cleaning procedures, after which they went through one of the following sets of operations: l anodizing and primer painting . alodining (chromating) and primer painting l welding The coatings or welds were then examined by both Boeing and LLNL to determine whether any of the operations were impaired, and whether there was a correlation between contamination level and damage to the parts. The experimental approach and results are described in detail.« less

  15. Fabrication Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success ismore » changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.« less

  16. Fabrication technology

    NASA Astrophysics Data System (ADS)

    Blaedel, K. L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to do the following: (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the U.S. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  17. Thrust Area Report, Engineering Research, Development and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less

  18. Small Optics Laser Damage Test Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Justin

    2017-10-19

    This specification defines the requirements and procedure for laser damage testing of coatings and bare surfaces designated for small optics in the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL).

  19. Waste Isolation Pilot Plant Technical Assessment Team Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  20. Emergency Response Capability Baseline Needs Assessment - Requirements Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharry, John A.

    This document was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by LLNL Emergency Management Department Head James Colson. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only addresses emergency response.

  1. ICP-MS Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carman, April J.; Eiden, Gregory C.

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  2. Interventional Application of Shape Memory Polymer Foam Final Report CRADA No. TC-02067-03

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitland, D.; Metzger, M. F.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Sierra Interventions, LLC, to develop shape memory polymer foam devices for treating hemorrhagic stroke.

  3. Magnesium, Iron and Aluminum in LLNL Air Particulate and Rain Samples with Reference to Magnesium in Industrial Storm Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esser, Bradley K.; Bibby, Richard K.; Fish, Craig

    Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevatedmore » Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with

  4. An ultra-compact processor module based on the R3000

    NASA Astrophysics Data System (ADS)

    Mullenhoff, D. J.; Kaschmitter, J. L.; Lyke, J. C.; Forman, G. A.

    1992-08-01

    Viable high density packaging is of critical importance for future military systems, particularly space borne systems which require minimum weight and size and high mechanical integrity. A leading, emerging technology for high density packaging is multi-chip modules (MCM). During the 1980's, a number of different MCM technologies have emerged. In support of Strategic Defense Initiative Organization (SDIO) programs, Lawrence Livermore National Laboratory (LLNL) has developed, utilized, and evaluated several different MCM technologies. Prior LLNL efforts include modules developed in 1986, using hybrid wafer scale packaging, which are still operational in an Air Force satellite mission. More recent efforts have included very high density cache memory modules, developed using laser pantography. As part of the demonstration effort, LLNL and Phillips Laboratory began collaborating in 1990 in the Phase 3 Multi-Chip Module (MCM) technology demonstration project. The goal of this program was to demonstrate the feasibility of General Electric's (GE) High Density Interconnect (HDI) MCM technology. The design chosen for this demonstration was the processor core for a MIPS R3000 based reduced instruction set computer (RISC), which has been described previously. It consists of the R3000 microprocessor, R3010 floating point coprocessor and 128 Kbytes of cache memory.

  5. Inertial Confinement Fusion Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change providedmore » a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications

  6. Creating a Tiny Human Body on a Chip

    ScienceCinema

    Hunsberger, Maren; Soscia, Dave; Moya, Monica

    2018-06-21

    LLNL science communicator Maren Hunsberger takes us "Inside the Lab" to learn about the iChip (In-vitro Chip-based Human Investigational Platform) project at Lawrence Livermore National Laboratory. "One application of the iChip system would be to develop new pharmaceutical drugs," explains Dave Soscia, LLNL postdoc. "When you test in a mouse for example, it's not as close to the human system as you can get. If we can take human cells and put them on devices and actually mimic the structure and function of the organ systems in the human, we can actually replace animal testing and even make a better system for testing pharmaceutical drugs."

  7. Development of a Commercial Prototype of the Autonomous Pathogen Detection System Final Report CRADA No. TC-02077-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzenitis, J. M.; Haigh, P.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), and GE Ion Track, Inc. (GEIT) to develop a commercial prototype of the Autonomous Pathogen Detection System (APDS), an instrument that monitors the air for all three biological threat agents (bacteria, viruses and toxins). This was originally a one year CRADA project, with the cost of the work at LLNL being funded by the Department of Homeland Security's Office of National Laboratories. The original project consisted of five major tasks and deliverables. The CRADA was then amended, converting the CRADA from amore » programmatically funded CRADA to a funds-in CRADA, extending the project for an additional 14 months, and adding four new tasks and deliverable to the project.« less

  8. 2007 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2008-04-09

    During the 2007 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection and technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2007, there were 172 person-trips that required dose monitoring of the U.S. monitors. Of the 172 person-trips, 160 person-trips were SMVs and 12 person-trips were Transparency Monitoring Office (TMO) trips. There were 12 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. There were two monitoring visits (sourcemore » changes) that were back to back with 14 monitors. LLNL's Hazard Control Division laboratories provided the dosimetry services for the HEU Transparency monitors.« less

  9. The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion

    NASA Astrophysics Data System (ADS)

    Miller, J. D.

    1986-11-01

    One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions.

  10. Fiscal Year 2012 United States Air Force Agency Financial Report

    DTIC Science & Technology

    2012-01-01

    Air Force Research Laboratory (AFRL) and Lawrence Livermore National Laboratory (LLNL) aggressively designed and tested an advanced warhead to...Reaper procurement & RPA capabilities, Light Attack Armed Reconnaissance buys, Joint Strike Fighter, satellites). Research , Development, Test and...Military Personnel Operations, Readiness & Support Procurement Research , Development, Test & Evaluation

  11. Environmental Report 1996 Volume 2

    DOT National Transportation Integrated Search

    1997-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  12. Environmental Report 1994

    DOT National Transportation Integrated Search

    1995-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  13. Environmental Report 1996 Volume 1

    DOT National Transportation Integrated Search

    1997-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  14. Environmental Report 1995

    DOT National Transportation Integrated Search

    1996-09-03

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  15. Environmental Report 1993

    DOT National Transportation Integrated Search

    1994-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  16. Environmental Report 1995, Volume 2

    DOT National Transportation Integrated Search

    1996-09-03

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  17. Site 300 Spill Prevention, Control, and Countermeasures (SPCC) Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, D.; Mertesdorf, E.

    This Spill Prevention, Control, and Countermeasure (SPCC) Plan describes the measures that are taken at Lawrence Livermore National Laboratory’s (LLNL) Experimental Test Site (Site 300) near Tracy, California, to prevent, control, and handle potential spills from aboveground containers that can contain 55 gallons or more of oil. This SPCC Plan complies with the Oil Pollution Prevention regulation in Title 40 of the Code of Federal Regulations, Part 112 (40 CFR 112) and with 40 CFR 761.65(b) and (c), which regulates the temporary storage of polychlorinated biphenyls (PCBs). This Plan has also been prepared in accordance with Division 20, Chapter 6.67more » of the California Health and Safety Code (HSC 6.67) requirements for oil pollution prevention (referred to as the Aboveground Petroleum Storage Act [APSA]), and the United States Department of Energy (DOE) Order No. 436.1. This SPCC Plan establishes procedures, methods, equipment, and other requirements to prevent the discharge of oil into or upon the navigable waters of the United States or adjoining shorelines for aboveground oil storage and use at Site 300. This SPCC Plan has been prepared for the entire Site 300 facility and replaces the three previous plans prepared for Site 300: LLNL SPCC for Electrical Substations Near Buildings 846 and 865 (LLNL 2015), LLNL SPCC for Building 883 (LLNL 2015), and LLNL SPCC for Building 801 (LLNL 2014).« less

  18. Site 300 SPCC Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, D.

    This Spill Prevention, Control, and Countermeasure (SPCC) Plan describes the measures that are taken at Lawrence Livermore National Laboratory’s (LLNL) Experimental Test Site (Site 300) near Tracy, California, to prevent, control, and handle potential spills from aboveground containers that can contain 55 gallons or more of oil. This SPCC Plan complies with the Oil Pollution Prevention regulation in Title 40 of the Code of Federal Regulations, Part 112 (40 CFR 112) and with 40 CFR 761.65(b) and (c), which regulates the temporary storage of polychlorinated biphenyls (PCBs). This Plan has also been prepared in accordance with Division 20, Chapter 6.67more » of the California Health and Safety Code (HSC 6.67) requirements for oil pollution prevention (referred to as the Aboveground Petroleum Storage Act [APSA]), and the United States Department of Energy (DOE) Order No. 436.1. This SPCC Plan establishes procedures, methods, equipment, and other requirements to prevent the discharge of oil into or upon the navigable waters of the United States or adjoining shorelines for aboveground oil storage and use at Site 300. This SPCC Plan has been prepared for the entire Site 300 facility and replaces the three previous plans prepared for Site 300: LLNL SPCC for Electrical Substations Near Buildings 846 and 865 (LLNL 2015), LLNL SPCC for Building 883 (LLNL 2015), and LLNL SPCC for Building 801 (LLNL 2014).« less

  19. Environmental safety & health requirements for a federal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, G.; Wong, J.

    1995-09-01

    I would like to take this opportunity to discuss the challenges that face an environmental, safety, and health (ES&H) manager at a federal facility situated in California. The challenges are, in many aspects, similar to those facing ES&H professionals all over this country: dwindling resources and increasing regulatory demands. The Laboratory (LLNL) is under closer scrutiny than other R&D facilities located in California because some of its research activities involve nuclear weapon design. Today I would like to talk about two actions we, the ES&H management at LLNL, have taken to decrease the impact of dwindling resources and increasing regulatorymore » demands: (1) Institution of a performance-based contract, which the University of California negotiated with the Department of Energy (DOE) to reduce the impact of special mandates required of federal facilities. Under this contract, ES&H performance is measured by results rather than by process; (2) Redesign of the LLNL Hazards Control Department to a flat organization that incorporates employee empowerment and Self-Managed Work Teams (SMWTs).« less

  20. Toward the virtual classroom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pihlman, M.; Dirks, D.H.

    1990-01-03

    The Lawrence Livermore National Laboratory (LLNL) encourages its employees to remotely attend classes given by Stanford University, University of California at Davis, and the National Technological University (NTU). To improve the quality of education for LLNL employees, we are cooperating with Stanford University in upgrading the Stanford Instructional Television Network (SITN). A dedicated high-speed communication link (Tl) between Stanford and LLNL will be used for enhanced services such as videoconferencing, real time classnotes distribution, and electronic distribution of homework assignments. The new network will also allow students to take classes from their offices with the ability to ask the professormore » questions via an automatically dialed telephone call. As part of this upgrade, we have also proposed a new videoconferencing based classroom environment where students taking remote classes would feel as though they are attending the live class. All paperwork would be available in near real time and students may converse normally with, and see, other remote students as though they were all in the same physical location. We call this the Virtual Classroom.'' 1 ref., 6 figs.« less

  1. Load Designs For MJ Dense Plasma Foci

    NASA Astrophysics Data System (ADS)

    Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.

    2017-10-01

    Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, Lee; Gowardhan, Akshay; Lennox, Kristin

    In the interest of promoting the international exchange of technical expertise, the US Department of Energy’s Office of Emergency Operations (NA-40) and the French Commissariat à l'Energie Atomique et aux énergies alternatives (CEA) requested that the National Atmospheric Release Advisory Center (NARAC) of Lawrence Livermore National Laboratory (LLNL) in Livermore, California host a joint table top exercise with experts in emergency management and atmospheric transport modeling. In this table top exercise, LLNL and CEA compared each other’s flow and dispersion models. The goal of the comparison is to facilitate the exchange of knowledge, capabilities, and practices, and to demonstrate themore » utility of modeling dispersal at different levels of computational fidelity. Two modeling approaches were examined, a regional scale modeling approach, appropriate for simple terrain and/or very large releases, and an urban scale modeling approach, appropriate for small releases in a city environment. This report is a summary of LLNL and CEA modeling efforts from this exercise. Two different types of LLNL and CEA models were employed in the analysis: urban-scale models (Aeolus CFD at LLNL/NARAC and Parallel- Micro-SWIFT-SPRAY, PMSS, at CEA) for analysis of a 5,000 Ci radiological release and Lagrangian Particle Dispersion Models (LODI at LLNL/NARAC and PSPRAY at CEA) for analysis of a much larger (500,000 Ci) regional radiological release. Two densely-populated urban locations were chosen: Chicago with its high-rise skyline and gridded street network and Paris with its more consistent, lower building height and complex unaligned street network. Each location was considered under early summer daytime and nighttime conditions. Different levels of fidelity were chosen for each scale: (1) lower fidelity mass-consistent diagnostic, intermediate fidelity Navier-Stokes RANS models, and higher fidelity Navier-Stokes LES for urban-scale analysis, and (2) lower-fidelity single

  3. Micromagnetic Code Development of Advanced Magnetic Structures Final Report CRADA No. TC-1561-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, Charles J.; Shi, Xizeng

    The specific goals of this project were to: Further develop the previously written micromagnetic code DADIMAG (DOE code release number 980017); Validate the code. The resulting code was expected to be more realistic and useful for simulations of magnetic structures of specific interest to Read-Rite programs. We also planned to further the code for use in internal LLNL programs. This project complemented LLNL CRADA TC-840-94 between LLNL and Read-Rite, which allowed for simulations of the advanced magnetic head development completed under the CRADA. TC-1561-98 was effective concurrently with LLNL non-exclusive copyright license (TL-1552-98) to Read-Rite for DADIMAG Version 2 executablemore » code.« less

  4. Newberry Seismic Deployment Fieldwork Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Templeton, D C

    2012-03-21

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquakemore » detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.« less

  5. Engineering Research and Development and Technology thrust area report FY92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less

  6. Cross Domain Deterrence: Livermore Technical Report, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Peter D.; Bahney, Ben; Matarazzo, Celeste

    2016-08-03

    Lawrence Livermore National Laboratory (LLNL) is an original collaborator on the project titled “Deterring Complex Threats: The Effects of Asymmetry, Interdependence, and Multi-polarity on International Strategy,” (CDD Project) led by the UC Institute on Global Conflict and Cooperation at UCSD under PIs Jon Lindsay and Erik Gartzke , and funded through the DoD Minerva Research Initiative. In addition to participating in workshops and facilitating interaction among UC social scientists, LLNL is leading the computational modeling effort and assisting with empirical case studies to probe the viability of analytic, modeling and data analysis concepts. This report summarizes LLNL work on themore » CDD Project to date, primarily in Project Years 1-2, corresponding to Federal fiscal year 2015. LLNL brings two unique domains of expertise to bear on this Project: (1) access to scientific expertise on the technical dimensions of emerging threat technology, and (2) high performance computing (HPC) expertise, required for analyzing the complexity of bargaining interactions in the envisioned threat models. In addition, we have a small group of researchers trained as social scientists who are intimately familiar with the International Relations research. We find that pairing simulation scientists, who are typically trained in computer science, with domain experts, social scientists in this case, is the most effective route to developing powerful new simulation tools capable of representing domain concepts accurately and answering challenging questions in the field.« less

  7. Numerical Simulations of 3D Seismic Data Final Report CRADA No. TC02095.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, S. J.; Kostov, C.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of Califomia)/Lawrence-Livermore National Laboratory (LLNL) and Schlumberger Cambridge Research (SCR), to develop synthetic seismic data sets and supporting codes.

  8. ARC-2010-ACD10-0029-027

    NASA Image and Video Library

    2010-02-16

    Lawrence Livermore National Laboratories media Day for their LLNL project aimed at aerodynamic truck and trailer devices. Tests are being preformed in the Ames Full-Scale Aerodynamic Complex 80x120 foot wind tunnel. Gabriel and Sharon Lozano.

  9. EBIT - Electronic Beam Ion Trap: N Divison experimental physics annual report 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, D.

    1996-10-01

    The multi-faceted research effort of the EBIT (Electron Beam Ion Trap) program in N-Division of the Physics and Space Technology Department at Lawrence Livermore National Laboratory (LLNL) continues to contribute significant results to the physical sciences from studies with low energy very highly charged heavy ions. The EBIT program attracts a number of collaborators from the US and abroad for the different projects. The collaborations are partly carried out through participating graduate students demonstrating the excellent educational capabilities at the LLNL EBIT facilities. Moreover, participants from Historically Black Colleges and Universities are engaged in the EBIT project. This report describesmore » EBIT work for 1995 in atomic structure measurements and radiative transition probabilities, spectral diagnostics for laboratory and astrophysical plasmas, ion/surface interaction studies, electron-ion interactions studies, retrap and ion collisions, and instrumental development.« less

  10. Chance Favors Only the Prepared Mind: The Proper Role for U.S. Department of Defense Science and Engineering Workforce

    DTIC Science & Technology

    2013-08-01

    establishments staffed by private sector S&Es (Argonne National Laboratory (ANL), Brookhaven National Laboratory ( BNL ), Jet Propulsion Laboratory...21 Table 1 Academy ANL BNL JPL LANL LL LLNL NIH NIST NRL NAE 2 1 4 1 1 1 1 7 8 NAS 4 7 1 3 0 1 52 7 3 IOM 0 0 0 0

  11. Women's technical and professional symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budil, K; Mack, L

    1999-10-01

    This is the fourth LLNL-sponsored Women's Technical and Professional Symposium. This year's theme: ''Excellence through the Millennium,'' focuses on the cutting edge work being done at LLNL and the many contributions of women to our science and technology mission. We hope this Symposium gives each person attending a better idea of the broad scope of the Laboratory's mission and their place within the organization. It is easy to lose sight of the fact that we all work in support of science and technology despite the diversity of our experience. This Symposium provides an opportunity to reflect on our past andmore » to begin to plan our future.« less

  12. 2004 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2005-04-01

    During the 2004 calendar year, LLNL provided health physics support for the Highly Enriched Uranium Transparency Implementation Program (HEU-TIP) in external and internal radiation protection and technical expertise into matters related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2004, there were 200 person-trips that required dose monitoring of the U.S. monitors. Of the 200 person-trips, 183 person-trips were SMVs and 17 person-trips were Transparency Monitoring Office (TMO) trips. Eight person-trips from the SMV trips were continuation trips of TMO monitors to facilities other than UEIP. The LLNL Safety Laboratories' Division provided the dosimetrymore » services for the HEU-TIP monitors.« less

  13. Mosaic Transparent Armor System Final Report CRADA No. TC02162.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntz, J. D.; Breslin, M.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and The Protective Group, Inc. (TPG) to improve the performance of the mosaic transparent armor system (MTAS) for transparent armor applications, military and civilian. LLNL was to provide the unique MTAS technology and designs to TPG for innovative construction and ballistic testing of improvements needed for current and near future application of the armor windows on vehicles and aircraft. The goal of the project was to advance the technology of MTAS to the point that these mosaic transparent windowsmore » would be introduced and commercially manufactured for military vehicles and aircraft.« less

  14. Creating a Tiny Human Body on a Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsberger, Maren; Soscia, Dave; Moya, Monica

    LLNL science communicator Maren Hunsberger takes us "Inside the Lab" to learn about the iChip (In-vitro Chip-based Human Investigational Platform) project at Lawrence Livermore National Laboratory. "One application of the iChip system would be to develop new pharmaceutical drugs," explains Dave Soscia, LLNL postdoc. "When you test in a mouse for example, it's not as close to the human system as you can get. If we can take human cells and put them on devices and actually mimic the structure and function of the organ systems in the human, we can actually replace animal testing and even make a bettermore » system for testing pharmaceutical drugs."« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, J. F.; Berner, J. K.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Contained Energy, Inc. (CEI), to conduct necessary research and to develop, fabricate and test a multi-cell carbon fuel cell.

  16. 360 Video Tour of 3D Printing Labs at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.

  17. Development of DNA Pillar Chip Final Report CRADA No. TSB-2035-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, K. D.; Long, G. W.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Tetracore, to demonstrate a proof of principal device for the capture and controlled release of DNA moving within a flow stream.

  18. Counter Trafficking System Development "Analysis Training Program"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Dennis C.

    This document will detail the training curriculum for the Counter-Trafficking System Development (CTSD) Analysis Modules and Lesson Plans are derived from the United States Military, Department of Energy doctrine and Lawrence Livermore National Laboratory (LLNL), Global Security (GS) S Program.

  19. How to Read an LLNL Energy Flow Chart (Sankey Diagram)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, A. J.

    Each year, the Lawrence Livermore National Laboratory releases energy flow charts that illustrate the nation's consumption and use of energy. A.J. Simon, group leader for LLNL’s energy program, breaks the 2015 chart down in this video, describing how to read the chart and what year-to-year trends he sees.

  20. How to Read an LLNL Energy Flow Chart (Sankey Diagram)

    ScienceCinema

    Simon, A. J.

    2018-01-16

    Each year, the Lawrence Livermore National Laboratory releases energy flow charts that illustrate the nation's consumption and use of energy. A.J. Simon, group leader for LLNL’s energy program, breaks the 2015 chart down in this video, describing how to read the chart and what year-to-year trends he sees.

  1. 360 Video Tour of 3D Printing Labs at LLNL

    ScienceCinema

    None

    2018-01-16

    Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.

  2. Level-2 Milestone 6007: Sierra Early Delivery System Deployed to Secret Restricted Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, A. D.

    This report documents the delivery and installation of Shark, a CORAL Sierra early delivery system deployed on the LLNL SRD network. Early ASC program users have run codes on the machine in support of application porting for the final Sierra system which will be deployed at LLNL in CY2018. In addition to the SRD resource, Shark, unclassified resources, Rzmanta and Ray, have been deployed on the LLNL Restricted Zone and Collaboration Zone networks in support of application readiness for the Sierra platform.

  3. Development of a Dynamic Time Sharing Scheduled Environment Final Report CRADA No. TC-824-94E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jette, M.; Caliga, D.

    Massively parallel computers, such as the Cray T3D, have historically supported resource sharing solely with space sharing. In that method, multiple problems are solved by executing them on distinct processors. This project developed a dynamic time- and space-sharing scheduler to achieve greater interactivity and throughput than could be achieved with space-sharing alone. CRI and LLNL worked together on the design, testing, and review aspects of this project. There were separate software deliverables. CFU implemented a general purpose scheduling system as per the design specifications. LLNL ported the local gang scheduler software to the LLNL Cray T3D. In this approach, processorsmore » are allocated simultaneously to aU components of a parallel program (in a “gang”). Program execution is preempted as needed to provide for interactivity. Programs are also reIocated to different processors as needed to efficiently pack the computer’s torus of processors. In phase one, CRI developed an interface specification after discussions with LLNL for systemlevel software supporting a time- and space-sharing environment on the LLNL T3D. The two parties also discussed interface specifications for external control tools (such as scheduling policy tools, system administration tools) and applications programs. CRI assumed responsibility for the writing and implementation of all the necessary system software in this phase. In phase two, CRI implemented job-rolling on the Cray T3D, a mechanism for preempting a program, saving its state to disk, and later restoring its state to memory for continued execution. LLNL ported its gang scheduler to the LLNL T3D utilizing the CRI interface implemented in phases one and two. During phase three, the functionality and effectiveness of the LLNL gang scheduler was assessed to provide input to CRI time- and space-sharing, efforts. CRI will utilize this information in the development of general schedulers suitable for other sites and future

  4. Enhanced verification test suite for physics simulation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.

    2008-09-01

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.

  5. Exploring Model Assumptions Through Three Dimensional Mixing Simulations Using a High-order Hydro Option in the Ares Code

    NASA Astrophysics Data System (ADS)

    White, Justin; Olson, Britton; Morgan, Brandon; McFarland, Jacob; Lawrence Livermore National Laboratory Team; University of Missouri-Columbia Team

    2015-11-01

    This work presents results from a large eddy simulation of a high Reynolds number Rayleigh-Taylor instability and Richtmyer-Meshkov instability. A tenth-order compact differencing scheme on a fixed Eulerian mesh is utilized within the Ares code developed at Lawrence Livermore National Laboratory. (LLNL) We explore the self-similar limit of the mixing layer growth in order to evaluate the k-L-a Reynolds Averaged Navier Stokes (RANS) model (Morgan and Wickett, Phys. Rev. E, 2015). Furthermore, profiles of turbulent kinetic energy, turbulent length scale, mass flux velocity, and density-specific-volume correlation are extracted in order to aid the creation a high fidelity LES data set for RANS modeling. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. Commercialization of Ultra-Hard Ceramics for Cutting Tools Final Report CRADA No. TC0279.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landingham, R.; Neumann, T.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Greenleaf Corporation (Greenleaf) to develop the technology for forming unique precursor nano-powders process that can be consolidated into ceramic products for industry. LLNL researchers have developed a solgel process for forming nano-ceramic powders. The nano powders are highly tailorable, allowing the explicit design of desired properties that lead to ultra hard materials with fine grain size. The present CRADA would allow the two parties to continue the development of the sol-gel process and the consolidation process in ordermore » to develop an industrially sound process for the manufacture of these ultra-hard materials.« less

  7. 2002 Small Mammal Inventory at Lawrence Livermore National Laboratory, Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, E; Woollett, J

    2004-11-16

    To assist the University of California in obtaining biological assessment information for the ''2004 Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory (LLNL)'', Jones & Stokes conducted an inventory of small mammals in six major vegetation communities at Site 300. These communities were annual grassland, native grassland, oak savanna, riparian corridor, coastal scrub, and seep/spring wetlands. The principal objective of this study was to assess the diversity and abundance of small mammal species in these communities, as well as the current status of any special-status small mammal species found in these communities. Surveys in the native grasslandmore » community were conducted before and after a controlled fire management burn of the grasslands to qualitatively evaluate any potential effects of fire on small mammals in the area.« less

  8. Bibliographic Post-Processing with the TIS Intelligent Gateway: Analytical and Communication Capabilities.

    ERIC Educational Resources Information Center

    Burton, Hilary D.

    TIS (Technology Information System) is an intelligent gateway system capable of performing quantitative evaluation and analysis of bibliographic citations using a set of Process functions. Originally developed by Lawrence Livermore National Laboratory (LLNL) to analyze information retrieved from three major federal databases, DOE/RECON,…

  9. LLNL - WRF-LES - Neutral - TTU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosovic, Branko

    This dataset includes large-eddy simulation (LES) output from a neutrally stratified atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on Aug. 17, 2012. The dataset was used to assess LES models for simulation of canonical neutral ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs.

  10. LLNL/Lion Precision LVDT amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D.J.

    1994-04-01

    A high-precision, low-noise, LVDT amplifier has been developed which is a significant advancement on the current state of the art in contact displacement measurement. This amplifier offers the dynamic range of a typical LVDT probe but with a resolution that rivals that of non contact displacement measuring systems such as capacitance gauges and laser interferometers. Resolution of 0.1 {mu} in with 100 Hz bandwidth is possible. This level of resolution is over an order of magnitude greater than what is now commercially available. A front panel switch can reduce the bandwidth to 2.5 Hz and attain a resolution of 0.025more » {mu} in. This level of resolution meets or exceeds that of displacement measuring laser interferometry or capacitance gauge systems. Contact displacement measurement offers high part spatial resolution and therefore can measure not only part contour but surface finish. Capacitance gauges and displacement laser interferometry offer poor part spatial resolution and can not provide good surface finish measurements. Machine tool builders, meteorologists and quality inspection departments can immediately utilize the higher accuracy and capabilities that this amplifier offers. The precision manufacturing industry can improve as a result of improved capability to measure parts that help reduce costs and minimize material waste.« less

  11. LLNL/LANS mission committee meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Michael J

    2010-12-06

    Recent events continue to show the national security imperative of the global security mission: (1) Fighting Proliferation - (a) At Yongbyon, 'a modern, industrial-scale U-enrichment facility w/2000 centrifuges' seen Nov. 2010, (b) In Iran, fueling began at Bushehr while P5+1/lran talks delayed to Dec. 2010; (2) Continuing need to support the warfighter and IC - (a) tensions on the Korean peninsula, (b) primitative IEDs a challenge in Afghanistan, (c) cyber command, (d)another Georgian smuggling event; and (3) Countering terrorisms on US soil - (a) toner cartridge bomb, (b) times square bomb, (c) christmas tree bomb. Joint Technical Operations Team (JTOT)more » and Accident Response Group (ARG) elements deployed to two East Coast locations in November to work a multi-weapon scenario. LANL provided 70% of on-duty field and reconstitution teams for both Marble Challenge 11-01 and JD 11-01. There were a total of 14 deployments in FY10.« less

  12. Final Report on X-ray Yields from OMEGA II Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K B; May, M J; MacLaren, S A

    2007-06-20

    We present details about X-ray yields measured with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields are accurate to 10-15%. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the sub-keV range. Themore » PCD and HENWAY and DANTE numbers are compared. The time histories of the moderately hard (h{nu} > 4 keV) X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtration. There is general agreement between the H11 PCD and SNL PCD measured FWHM except for two of the shorter-laser-pulse shots, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope. X-ray waveforms from target emission in two softer spectral bands are also shown; the X-ray emissions have increasing duration as the spectral content gets softer.« less

  13. "TIS": An Intelligent Gateway Computer for Information and Modeling Networks. Overview.

    ERIC Educational Resources Information Center

    Hampel, Viktor E.; And Others

    TIS (Technology Information System) is being used at the Lawrence Livermore National Laboratory (LLNL) to develop software for Intelligent Gateway Computers (IGC) suitable for the prototyping of advanced, integrated information networks. Dedicated to information management, TIS leads the user to available information resources, on TIS or…

  14. Rapid Assessment of Individual Soldier Operational Readiness Final Report CRADA No. TC02104.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turteltaub, K.; Mapes, J.

    This was a collaborative effort between Lawrence Livermore National Security (LLNS) (formerly The Regents of the University of California), Lawrence Livermore National Laboratory (LLNL) and Rules Based Medicine, Inc. {RBM), to identify markers in blood that would be candidates for determining the combat readiness of troops.

  15. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. Thismore » work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).« less

  16. 2010 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, Radoslav

    2011-05-16

    During the 2010 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. LLNL also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2010, there were 141 person-trips that required dose monitoring of the U.S. monitors. Of the 141 person-trips, 129 person-trips were Special Monitoring Visits (SMVs) and 12 person-trips were Transparency Monitoring Office (TMO) trips. In 8 of these TMO trips the TMO monitors participated also in the UEIE SMVs and in 2 TMOmore » trips the TMO monitors participated in UEIE and MPA SMVs. There were three monitoring visits (source changes) that were back-to-back SMVs with a total of 25 monitors. LLNL’s Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors.« less

  17. Needs Differing: Personality Dynamics for Peer Ombuds in a Research Setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolford, Jr., J K

    The peer ombuds program at University of California's Lawrence Livermore National Laboratory (LLNL) is unique in many respects, and the challenges it poses for its practitioners are likewise unique. The ombuds themselves are members of the workforce they serve, and must constantly fulfill a dual role. Cases range from conflict with supervisors or co-workers to medical leave issues. Mismatched expectations and poor communication skills obviously underlie many problems. The interplay of personality type affects conflict (and its resolution) more subtly, principally through its role in shaping client needs. Through a hypothetical case description, the author highlights the dynamics of personalitymore » type involved in the ombuds process at LLNL. The implications of temperamental difference argue for an awareness of, and sensitivity to, type differences in the population served.« less

  18. Development of a Bio-Equivalent Ultraviolet Dosimeter to Monitor the Capacity for Vitamin D Synthesis of Sunlight Final Report CRADA No. TC02086.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C. F.; Wood, D.

    This project represents a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Rhyolite Technology Group, Inc. (Rhyolite) to develop concepts and designs for a consumer ultraviolet (UV) biodosimeter based on the human biochemistry of Vitamin D synthesis. Rhyolite was established to engage in product development, licensing and consulting for the manufacture and supply of new products worldwide. Rhyolite worked jointly with LLNL and the Kiev Institute of Physics (KIP) in Ukraine to leverage previously developed UV sensor technologies by extending the previous work into commercially viable products. The projectmore » consisted primarily of the scientific, engineering and business activities needed to develop the UV bio-dosimeter for applications that include health and industrial measurement of ultraviolet radiation.« less

  19. Fission in R-processes Elements (FIRE) - Annual Report: Fiscal Year 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunck, Nicolas

    The goal of the FIRE topical collaboration in nuclear theory is to determine the astrophysical conditions of the rapid neutron capture process (r-process), which is responsible for the formation of heavy elements. This will be achieved by including in r-process simulations the most advanced models of fission (spontaneous, neutron-induced, beta-delayed) that have been developed at LLNL and LANL. The collaboration is composed of LLNL (lead) and LANL for work on nuclear data (ground-state properties, fission, beta-decay), BNL for nuclear data management, and the university of Notre Dame and North Carolina State University for r-process simulations. Under DOE/NNSA agreement, both universitiesmore » receive funds from the DOE Office of Science, while national laboratories receive funds directly from NA221.« less

  20. B827 Chemical Synthhesis Project - Industrial Control System Integration - Statement of Work & Specification with Attachments 1-14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, F. E.

    The Chemical Synthesis Pilot Process at the Lawrence Livermore National Laboratory (LLNL) Site 300 827 Complex will be used to synthesize small quantities of material to support research and development. The project will modernize and increase current capabilities for chemical synthesis at LLNL. The primary objective of this project is the conversion of a non-automated hands-on process to a remoteoperation process, while providing enhanced batch process step control, stored recipe-specific parameter sets, process variable visibility, monitoring, alarm and warning handling, and comprehensive batch record data logging. This Statement of Work and Specification provides the industrial-grade process control requirements for themore » chemical synthesis batching control system, hereafter referred to as the “Control System” to be delivered by the System Integrator.« less

  1. Computational Meso-Scale Study of Representative Unit Cubes for Inert Spheres Subject to Intense Shocks

    NASA Astrophysics Data System (ADS)

    Stewart, Cameron; Najjar, Fady; Stewart, D. Scott; Bdzil, John

    2012-11-01

    Modern-engineered high explosive (HE) materials can consist of a matrix of solid, inert particles embedded into an HE charge. When this charge is detonated, intense shock waves are generated. As these intense shocks interact with the inert particles, large deformations occur in the particles while the incident shock diffracts around the particle interface. We will present results from a series of 3-D DNS of an intense shock interacting with unit-cube configurations of inert particles embedded into nitromethane. The LLNL multi-physics massively parallel hydrodynamics code ALE3D is used to carry out high-resolution (4 million nodes) simulations. Three representative unit-cube configurations are considered: primitive cubic, face-centered and body-centered cubic for two particle material types of varying impedance ratios. Previous work has only looked at in-line particles configurations. We investigate the time evolution of the unit cell configurations, vorticity being generated by the shock interaction, as well as the velocity and acceleration of the particles until they reach the quasi-steady regime. LLNL-ABS-567694. CSS was supported by a summer internship through the HEDP program at LLNL. FMN's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Numerical Modeling of Buried Mine Explosions

    DTIC Science & Technology

    2001-03-01

    Lawrence Livermore Laboratory Report, UCRL -50108, Rev. 1, June 1977. 12. Dobratz, B. M., and P. C. Crawford. “LLNL Explosives Handbook.” Lawrence...Livermore National Laboratory Report, UCRL -52997, January 1985. 13. Kerley, G. I. “Multiphase Equation of State for Iron.” Sandia National Laboratories...BOX 202797 AUSTIN TX 78720-2797 1 DARPA B KASPAR 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 1 US MILITARY ACADEMY MATH SCI

  3. Modeling Multi-Bunch X-band Photoinjector Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, R A; Anderson, S G; Gibson, D J

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray technology at LLNL. The test station will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. Of critical import to the functioning of the LLNL X-band system with multiple electron bunches is the performance of the photoinjector. In depth modeling of the Mark 1 LLNL/SLAC X-band rf photoinjector performance will be presented addressing important challenges that must be addressed in order to fabricate a multi-bunch Mark 2 photoinjector. Emittance performance is evaluated under different nominal electronmore » bunch parameters using electrostatic codes such as PARMELA. Wake potential is analyzed using electromagnetic time domain simulations using the ACE3P code T3P. Plans for multi-bunch experiments and implementation of photoinjector advances for the Mark 2 design will also be discussed.« less

  4. Los Alamos and Lawrence Livermore National Laboratories Code-to-Code Comparison of Inter Lab Test Problem 1 for Asteroid Impact Hazard Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Robert P.; Miller, Paul; Howley, Kirsten

    The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, includingmore » MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.« less

  5. Sperm Scoring Using Multi-Spectral Flow Imaging and FISH-IS Final Report CRADA No. TC02088.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F.; Morrissey, P. J.

    This was to be a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Amnis Corporation, to develop an automated system for scoring sperm interphase cells for the presence of chromosomal abnormalities using fluorescence in situ hybridization and the Amnis ImageStream technology platform.

  6. Characterization of Jets From Exploding Bridge Wire Detonators

    DTIC Science & Technology

    2005-05-01

    Laboratories: Albuquerque, NM, 1992. 8. Lee, E. L; Hornig, H. C.; Kury, J. W. Adiabatic Expansion of High Explosive Detonation Products; UCRL ...Dobratz, B. M. LLNL Explosives Handbook; UCRL -5299; Lawrence Livermore Laboratory, University of California: Livermore, CA 1981. 22...ATTN AFATL DLJR D LAMBERT EGLIN AFB FL 32542-6810 2 DARPA ATTN W SNOWDEN S WAX 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 2 LOS

  7. The Pyramid Liner Concept

    DTIC Science & Technology

    2003-06-01

    Albuquerque, NM, 1992. Dobratz, B. M. LLNL Explosives Handbook; UCRL -5299; Lawrence Livermore Laboratory: Livermore, CA, 1981 Geiger, W.; Honcia, G...L.; Hornig, H. C.; Kury, J. W. Adiabatic Expansion of High Explosive Detonation Products; UCRL -50422; Lawrence Livermore National Laboratory...ARMAMENT LAB AFATL DLJR J FOSTER D LAMBERT EGLIN AFB FL 32542-6810 2 DARPA W SNOWDEN S WAX 3701 N FAIRFAX DR ARLINGTON VA

  8. Environmental Report 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, Gretchen M.; Bertoldo, Nicholas A.; Campbell, Christopher G.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2009 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available atmore » https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL’s compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL’s compliance with environmental regulations; and Chapter 3 is a description of LLNL’s environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL’s environmental monitoring programs and monitoring data for 2009: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation

  9. California Tribal Nations Technical Water Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben, C; Coty, J

    2005-08-15

    This research focused on identifying the key technical water issues of federally recognized California Native American tribes, the context within which these water issues arise for the tribes, and an appropriate format for potentially opening further dialogue on water research issues between the tribes and Lawrence Livermore National Laboratory (LLNL) scientists. At LLNL, a Water Quality and Resource Management Issues Workshop held in January of 2003 resulted in multiple recommendations, one proposing a LLNL dialogue with California tribes to further inform LLNL's prioritization of water issues based on identified needs across national sectors. The focus of this aforementioned Water Qualitymore » and Resource Management Issues Workshop was to identify national and international priority water research issues with which LLNL may align their research efforts and contribute to resolving these needs. LLNL staff researched various sectors to delineate the key water issues associated with each. This preliminary water issue research included diverse entities such as international water agencies, federal and state agencies, industry, non-governmental agencies, and private organizations. The key (identified) water issues across these sectors were presented to workshop attendees and used during workshop debates and sessions. However, the key water issues of federally recognized Native American tribes remained less understood, resulting in a workshop proposal for additional research and LLNL potentially hosting a dialog with representatives of these tribes. Federally recognized Native American tribes have a unique government-to-government relationship with the United States (U.S.) government, in contrast to other sectors researched for the workshop. Within the U.S., the number of federally recognized tribes currently stands at 562 and, in addition to this large number of tribes, much diversity across these tribes exists. For the purposes of this preliminary research and

  10. HCCI Combustion Engines Final Report CRADA No. TC02032.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aceves, S.; Lyford-Pike, E.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Cummins Engine Company (Cwnmins), to advance the state of the art on HomogeneousCharge Compression-Ignition (HCCI) engines, resulting in a clean, high-efficiency alternative to diesel engines.

  11. 2015 Cross-Domain Deterrence Seminar Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez, A.

    2016-01-11

    Lawrence Livermore National Laboratory (LLNL) hosted the 2nd Annual Cross-Domain Deterrence Seminar on November 17th, 2015 in Livermore, CA. The seminar was sponsored by LLNL’s Center for Global Security Research (CGSR), National Security Office (NSO), and Global Security program. This summary covers the seminar’s panels and subsequent discussions.

  12. Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, R.; Davis, J. A.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).

  13. Rarefaction Shock Wave Cutter for Offshore Oil-Gas Platform Removal Final Report CRADA No. TC02009.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn, L. A.; Barker, J.

    This was a collaborative effort between Lawrence Livermore National Security, LLC/Lawrence Livermore National Laboratory (LLNL) (formerly the University of California) and Jet Research Center, a wholly owned division of Halliburton Energy Services, Inc. to design and prototype an improved explosive cutter for cutting the support legs of offshore oil and gas platforms.

  14. Attenuation and Transport Mechanisms of Depleted Uranium in Groundwater at Lawrence Livermore National Laboratory Site 300

    NASA Astrophysics Data System (ADS)

    Danny, K. R.; Taffet, M. J.; Brusseau, M. L. L.; Chorover, J.

    2015-12-01

    Lawrence Livermore National Laboratory (LLNL) Site 300 was established in 1955 to support weapons research and development. Depleted uranium was used as a proxy for fissile uranium-235 (235U) in open-air explosives tests conducted at Building 812. As a result, oxidized depleted uranium was deposited on the ground, eventually migrating to the underlying sandstone aquifer. Uranium (U) groundwater concentrations exceed the California and Federal Maximum Contaminant Level of 20 pCi L-1 (30 ug L-1). However, the groundwater plume appears to attenuate within 60 m of the source, beyond which no depleted U is detected. This study will determine the relative contribution of physical (e.g. dilution), chemical (e.g. surface adsorption, mineral precipitation), and biological (e.g. biotransformation) processes that contribute to the apparent attenuation of U, which exists as uranyl (UO22+) complexes, at the site. Methods of investigation include evaluating 15 yr of hydrogeologic and chemical data, creating a site conceptual model, and applying equilibrium (e.g. aqueous species complexation, mineral saturation indices) and reactive transport models using Geochemist's WorkbenchTM. Reactive transport results are constrained by direct field observations, including U major ion, and dissolved O2 concentrations, pH, and others, under varying chemical and hydraulic conditions. Aqueous speciation calculations indicate that U primarily exists as anionic CaUO2(CO3)32- or neutral Ca2UO2(CO3)30 species. Additionally, nucleation and growth of Ca/Mg uranyl carbonate solids are predicted to affect attenuation. Initial reactive transport results suggest surface adsorption (e.g. ion exchange, surface complexation) to layer silicate clays is limited under the aqueous geochemical conditions of the site. Current and future work includes XRD analysis of aquifer solids to constrain iron and aluminum (oxy)hydroxides, and coupling advective-dispersive transport with the chemical and physical processes

  15. Conceptual design of a laser fusion power plant. Part I. An integrated facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be requiredmore » for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost.« less

  16. Running SW4 On New Commodity Technology Systems (CTS-1) Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Arthur J.; Petersson, N. Anders; Pitarka, Arben

    We have recently been running earthquake ground motion simulations with SW4 on the new capacity computing systems, called the Commodity Technology Systems - 1 (CTS-1) at Lawrence Livermore National Laboratory (LLNL). SW4 is a fourth order time domain finite difference code developed by LLNL and distributed by the Computational Infrastructure for Geodynamics (CIG). SW4 simulates seismic wave propagation in complex three-dimensional Earth models including anelasticity and surface topography. We are modeling near-fault earthquake strong ground motions for the purposes of evaluating the response of engineered structures, such as nuclear power plants and other critical infrastructure. Engineering analysis of structures requiresmore » the inclusion of high frequencies which can cause damage, but are often difficult to include in simulations because of the need for large memory to model fine grid spacing on large domains.« less

  17. ARC-2010-ACD10-0020-073

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo.

  18. ARC-2010-ACD10-0020-065

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo.

  19. National Ignition Facility project acquisition plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaghan, R.W.

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertialmore » Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.« less

  20. Trip Report United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, K; Rodgers, A

    2004-10-06

    Keith Nakanishi and Arthur Rodgers traveled to the United Arab Emirates in February, 2004 to continue an on-going technical collaboration with UAE University and to service the two temporary LLNL seismic stations. Nakanishi and Rodgers then participated in the Gulf Seismic Forum, which was organized by LLNL and sponsored by the University of Sharjah.

  1. Critical Homeland Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    talent. Examples include: * Detection of surveillance activities; * Stand-off detection of chemical, biological, nuclear, radiation and explosive ...Manager Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Mr. Don Prosnitz LLNL Protection Sandia National...FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team CIA Central

  2. Conversion of municipal solid waste to hydrogen

    NASA Astrophysics Data System (ADS)

    Richardson, J. H.; Rogers, R. S.; Thorsness, C. B.

    1995-04-01

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL's focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

  3. Collaborative, Nondestructive Analysis of Contaminated Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, K. B.; Dai, Z.; Davidson, L.

    This report summarizes a joint nondestructive analysis exercise that LLNL, LANL, and COMENA discussed through a collaborative meeting in July 2017. This work was performed as one part of a collaboration with Algeria under Action Sheet 7: “Technical Cooperation and Assistance in Nuclear Forensics”. The primary intent of this exercise was for US and Algerian participants to jointly share results of nondestructive analyses (NDA) of a contaminated soil sample provided by the Algerians and to discuss key observations and analytical approaches. While the two samples were analyzed blind at LLNL and LANL, the soil samples were revealed after the exercisemore » to have a common origin, and to have originated as an IAEA soil sample (IAEA-326, Bojanowski et al., 2001) provided to COMENA as part of a previous exercise. Comparative analysis revealed common findings between the laboratories, and also emphasized the need for standardized operating procedures to improve inter-comparability and confidence in conclusions. Recommended handling practices in the presence of sample heterogeneities were also discussed. This exercise provided an opportunity to demonstrate nuclear forensics analytical capabilities at COMENA, LANL, and LLNL, and identified areas that could benefit from future technical exchanges. Plans were made for a follow-on joint exercise in 2018, involving destructive analyses of the CUP-2 uranium ore concentrate standard.« less

  4. Helping Teachers Teach Plasma Physics

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2008-11-01

    Lawrence Livermore National Laboratory's E/O program in Fusion Science and Plasma Physics now includes both `pre-service' as well as `in-service' high school science teacher professional development activities. Teachers are instructed and mentored by `master teachers' and LLNL plasma researchers working in concert. The Fusion/Plasma E/O program exploits a unique science education partnership that exists between LLNL's Science Education Program and the UC Davis Edward Teller Education Center. For `in-service' teachers, the Fusion & Astrophysics Teacher Research Academy (TRA) has four levels of workshops that are designed to give in-service high school science teachers experience in promoting and conducting research, most notably in the filed of plasma spectroscopy. Participating teachers in all four TRA levels may earn up to ten units of graduate credit from Cal-State University East Bay, and may apply these units toward a Masters of Science in Education. For `pre-service' teachers, the Science Teacher and Researcher (STAR) program, as a partnership with the California State University System, includes attracting undergraduate science majors to teaching careers by allowing them to pursue professional identities as both a research scientist as well as a science teacher. Participating `pre-service' STAR students are provided research internships at LLNL and work closely with the `in-service' TRA teachers. Results from the continuum `pre-service' to `in-service' science teacher professional development programs will be presented.

  5. ARC-2010-ACD10-0020-013

    NASA Image and Video Library

    2010-01-14

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Cab being lifted into the tunnel.

  6. ARC-2010-ACD10-0020-023

    NASA Image and Video Library

    2010-02-03

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Trailer being lifted into the tunnel.

  7. ARC-2010-ACD10-0020-082

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo with Ron Schoon, Navistar.

  8. ARC-2010-ACD10-0020-079

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo with Ron Schoon, Navistar.

  9. FY2007 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W W; Sketchley, J A; Kotta, P R

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted frommore » the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.« less

  10. Fusion/Astrophysics Teacher Research Academy

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2005-10-01

    In order to engage California high school science teachers in the area of plasma physics and fusion research, LLNL's Fusion Energy Program has partnered with the UC Davis Edward Teller Education Center, ETEC (http://etec.ucdavis.edu), the Stanford University Solar Center (http://solar-center.stanford.edu) and LLNL's Science / Technology Education Program, STEP (http://education.llnl.gov). A four-level ``Fusion & Astrophysics Research Academy'' has been designed to give teachers experience in conducting research using spectroscopy with their students. Spectroscopy, and its relationship to atomic physics and electromagnetism, provides for an ideal plasma `bridge' to the CA Science Education Standards (http://www.cde.ca.gov/be/st/ss/scphysics.asp). Teachers attend multiple-day professional development workshops to explore new research activities for use in the high school science classroom. A Level I, 3-day program consists of two days where teachers learn how plasma researchers use spectrometers followed by instructions on how to use a research grade spectrometer for their own investigations. A 3rd day includes touring LLNL's SSPX (http://www.mfescience.org/sspx/) facility to see spectrometry being used to measure plasma properties. Spectrometry classroom kits are made available for loaning to participating teachers. Level I workshop results (http://education.llnl.gov/fusion&_slash;astro/) will be presented along with plans being developed for Level II (one week advanced SKA's), Level III (pre-internship), and Level IV (summer internship) research academies.

  11. Algorithms and Architectures for Elastic-Wave Inversion Final Report CRADA No. TC02144.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, S.; Lindtjorn, O.

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Schlumberger Technology Corporation (STC), to perform a computational feasibility study that investigates hardware platforms and software algorithms applicable to STC for Reverse Time Migration (RTM) / Reverse Time Inversion (RTI) of 3-D seismic data.

  12. SAN/CXFS test report to LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruwart, T M; Eldel, A

    2000-01-01

    The primary objectives of this project were to evaluate the performance of the SGI CXFS File System in a Storage Area Network (SAN) and compare/contrast it to the performance of a locally attached XFS file system on the same computer and storage subsystems. The University of Minnesota participants were asked to verify that the performance of the SAN/CXFS configuration did not fall below 85% of the performance of the XFS local configuration. There were two basic hardware test configurations constructed from the following equipment: Two Onyx 2 computer systems each with two Qlogic-based Fibre Channel/XIO Host Bus Adapter (HBA); Onemore » 8-Port Brocade Silkworm 2400 Fibre Channel Switch; and Four Ciprico RF7000 RAID Disk Arrays populated Seagate Barracuda 50GB disk drives. The Operating System on each of the ONYX 2 computer systems was IRIX 6.5.6. The first hardware configuration consisted of directly connecting the Ciprico arrays to the Qlogic controllers without the Brocade switch. The purpose for this configuration was to establish baseline performance data on the Qlogic controllers / Ciprico disk raw subsystem. This baseline performance data would then be used to demonstrate any performance differences arising from the addition of the Brocade Fibre Channel Switch. Furthermore, the performance of the Qlogic controllers could be compared to that of the older, Adaptec-based XIO dual-channel Fibre Channel adapters previously used on these systems. It should be noted that only raw device tests were performed on this configuration. No file system testing was performed on this configuration. The second hardware configuration introduced the Brocade Fibre Channel Switch. Two FC ports from each of the ONYX2 computer systems were attached to four ports of the switch and the four Ciprico arrays were attached to the remaining four. Raw disk subsystem tests were performed on the SAN configuration in order to demonstrate the performance differences between the direct-connect and the switched configurations. After this testing was completed, the Ciprico arrays were formatted with an XFS file system and performance numbers were gathered to establish a File System Performance Baseline. Finally, the disks were formatted with CXFS and further tests were run to demonstrate the performance of the CXFS file system. A summary of the results of these tests is given.« less

  13. LLNL Scientist is Passionate About Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butlin, Becky

    With a lifelong passion for problem-solving and a love of production, Becky Butlin has helped lead the National Ignition Facility Target Fabrication Team through obstacles and challenges for the past six years.

  14. FY17 LLNL Omega Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Albert, F.; Ali, S. J.

    The Capseed campaign goal is to measure shock front velocity non-uniformities in Inertial Confinement Fusion (ICF) ablator materials and quantify the level of non-uniformity caused by intrinsic effects. This is done using the Omega High Resolution Velocimeter (OHRV) to obtain velocity maps of the optically reflecting shock front following release of the ablator material into either PMMA for the warm experiments or cryogenic deuterium for the cryo experiments. For the three half-days in FY17 the focus was twofold: complete measurements on the impact of oxygen heterogeneity and oxygen mitigation layers for glow discharge polymer (GDP), and begin measuring velocity non-uniformitiesmore » on deep release from Be, GDP, and highdensity carbon (HDC) into D2 with improved velocity sensitivity.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitner, M.; Bieniosek, F.; Kwan, J.

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL's decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration 'schedule' that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30more » nC of Li{sup +} are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.« less

  16. The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattem, M V; Paterson, L; Woollett, J

    2008-08-20

    65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Ranamore » catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.« less

  17. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46more » Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verce, M. F.; Schwartz, L. I.

    This was a collaborative effort between LLNL and STE to investigate the use of vaporized hydrogen peroxide (VHP®) to decontaminate spore-contaminated heating, ventilation, and cooling (HV AC) systems in a trailer sized room. LLNL's effort under this CRADA was funded by DOE's Chemical and Biological National Security Program (CBNP), which later became part of Department of Homeland Security in 2004.

  19. Report of the Defense Science Board Task Force on Critical Homeland Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    nuclear, radiation and explosive hazards; • Monitoring “people of interest” while protecting civil liberties; • Detection of hostile intent; • Detect...Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Protection Mr. Don Prosnitz LLNL Sandia National...Mechanical Engineers AT/FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team

  20. Silicon microelectronic field-emissive devices for advanced display technology

    NASA Astrophysics Data System (ADS)

    Morse, J. D.

    1993-03-01

    Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.

  1. Advanced Analog Signal Processing for Fuzing Final Report CRADA No. TC-1306-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, C. Y.; Spencer, D.

    The purpose of this CRADA between LLNL and Kaman Aerospace/Raymond Engineering Operations (Raymond) was to demonstrate the feasibility of using Analog/Digital Neural Network (ANN) Technology for advanced signal processing, fuzing, and other applications. This cooperation sought to Ieverage the expertise and capabilities of both parties--Raymond to develop the signature recognition hardware system, using Raymond’s extensive experience in the area of system development plus Raymond’s knowledge of military applications, and LLNL to apply ANN and related technologies to an area of significant interest to the United States government. This CRADA effort was anticipated to be a three-year project consisting of threemore » phases: Phase I, Proof-of-Principle Demonstration; Phase II, Proof-of-Design, involving the development of a form-factored integrated sensor and ANN technology processo~ and Phase III, Final Design and Release of the integrated sensor and ANN fabrication process: Under Phase I, to be conducted during calendar year 1996, Raymond was to deliver to LLNL an architecture (design) for an ANN chip. LLNL was to translate the design into a stepper mask and to produce and test a prototype chip from the Raymond design.« less

  2. Institutional Computing Executive Group Review of Multi-programmatic & Institutional Computing, Fiscal Year 2005 and 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, S; Rotman, D; Schwegler, E

    The Institutional Computing Executive Group (ICEG) review of FY05-06 Multiprogrammatic and Institutional Computing (M and IC) activities is presented in the attached report. In summary, we find that the M and IC staff does an outstanding job of acquiring and supporting a wide range of institutional computing resources to meet the programmatic and scientific goals of LLNL. The responsiveness and high quality of support given to users and the programs investing in M and IC reflects the dedication and skill of the M and IC staff. M and IC has successfully managed serial capacity, parallel capacity, and capability computing resources.more » Serial capacity computing supports a wide range of scientific projects which require access to a few high performance processors within a shared memory computer. Parallel capacity computing supports scientific projects that require a moderate number of processors (up to roughly 1000) on a parallel computer. Capability computing supports parallel jobs that push the limits of simulation science. M and IC has worked closely with Stockpile Stewardship, and together they have made LLNL a premier institution for computational and simulation science. Such a standing is vital to the continued success of laboratory science programs and to the recruitment and retention of top scientists. This report provides recommendations to build on M and IC's accomplishments and improve simulation capabilities at LLNL. We recommend that institution fully fund (1) operation of the atlas cluster purchased in FY06 to support a few large projects; (2) operation of the thunder and zeus clusters to enable 'mid-range' parallel capacity simulations during normal operation and a limited number of large simulations during dedicated application time; (3) operation of the new yana cluster to support a wide range of serial capacity simulations; (4) improvements to the reliability and performance of the Lustre parallel file system; (5) support for the new GDO

  3. Multiple Independent File Parallel I/O with HDF5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M. C.

    2016-07-13

    The HDF5 library has supported the I/O requirements of HPC codes at Lawrence Livermore National Labs (LLNL) since the late 90’s. In particular, HDF5 used in the Multiple Independent File (MIF) parallel I/O paradigm has supported LLNL code’s scalable I/O requirements and has recently been gainfully used at scales as large as O(10 6) parallel tasks.

  4. Tech Transfer Webinar: Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2018-01-16

    A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  5. California Energy Systems for the 21st Century 2016 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Randwyk, J.; Boutelle, A.; McClelland, C.

    The California Energy Systems for the 21st Century (CES-21) Program is a public-private collaborative research and development program between the California Joint Utilities1 and Lawrence Livermore National Laboratory (LLNL). The purpose of this annual report is to provide the California Public Utilities Commission (CPUC or Commission) with a summary of the 2016 progress of the CES-21 Program.

  6. Microstructure and Dynamic Failure Properties of Freeze-Cast Materials for Thermobaric Warhead Cases

    DTIC Science & Technology

    2012-12-01

    Function LLNL Lawrence Livermore National Laboratory PDF Probability Density Function PMMA Poly(Methyl Methacrylate) RM Reactive Materials SEM...FREEZE CAST MATERIALS Freeze casting technology combines compounds such as aluminum oxide and poly(methyl methacrylate) ( PMMA ) to develop a...Subsequently, the porous structure can be infiltrated with a variety of materials, such as a standard polymer like PMMA . This hybrid material is believed

  7. The High-Repetition-Rate Advanced Petawatt Laser System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haefner, Constantin; Jarboe, Jeff; Koubikova, Luci

    2017-02-02

    The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), being developed at Lawrence Livermore National Laboratory (LLNL), recently completed a significant milestone: demonstration of continuous operation of an all diode-pumped, high-energy femtosecond petawatt laser system. The system is now ready for delivery and integration at the European Extreme Light Infrastructure Beamlines facility project (ELI Beamlines) in the Czech Republic.

  8. Breast Cancer Diagnostic System Final Report CRADA No. TC02098.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubenchik, A. M.; DaSilva, L. B.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Liver more National Laboratory (LLNL) and BioTelligent, Inc. together with a Russian Institution (BioFil, Ltd.), to develop a new system ( diagnostic device, operating procedures, algorithms and software) to accurately distinguish between benign and malignant breast tissue (Breast Cancer Diagnostic System, BCDS).

  9. Laser Shot Peening Final Report CRADA No. TC-02059-03

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart, B. C.; Hackel, L.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Metal Improvement Company, Inc. (MIC), to further develop the laser shot peening technology. This project had an emphasis on laser development and government and military applications including DOE’s natural gas and oil technology program (NGOTP), Yucca Mountain Project (YMP), F-22 Fighter, etc.

  10. Performance Analysis: Work Control Events Identified January - August 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Grange, C E; Freeman, J W; Kerr, C E

    2011-01-14

    . In 2009, training of the workforce began and as of the time of this report more than 50% of authorized Integration Work Sheets (IWS) use the activity-based planning process. In 2010, LSO independently reviewed the work planning and control process and confirmed to the Laboratory that the Integrated Safety Management (ISM) System was implemented. LLNL conducted a cross-directorate management self-assessment of work planning and control and is developing actions to respond to the issues identified. Ongoing efforts to strengthen the work planning and control process and to improve the quality of LLNL work packages are in progress: completion of remaining actions in response to the 2009 DOE Office of Health, Safety, and Security (HSS) evaluation of LLNL's ISM System; scheduling more than 14 work planning and control self-assessments in FY11; continuing to align subcontractor work control with the Institutional work planning and control system; and continuing to maintain the electronic IWS application. The 24 events included in this analysis were caused by errors in the first four of the five ISMS functions. The most frequent cause was errors in analyzing the hazards (Function 2). The second most frequent cause was errors occurring when defining the work (Function 1), followed by errors during the performance of work (Function 4). Interestingly, very few errors in developing controls (Function 3) resulted in events. This leads one to conclude that if improvements are made to defining the scope of work and analyzing the potential hazards, LLNL may reduce the frequency or severity of events. Analysis of the 24 events resulted in the identification of ten common causes. Some events had multiple causes, resulting in the mention of 39 causes being identified for the 24 events. The most frequent cause was workers, supervisors, or experts believing they understood the work and the hazards but their understanding was incomplete. The second most frequent cause was unclear

  11. From elementary school science to graduate school textbooks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanier, R.G.

    1990-09-01

    The Nuclear Chemistry Division (NCD) at the Lawrence Livermore National Laboratory (LLNL) has a long history of using its resources to enhance the scientific literacy of students at virtually all educational levels, as well as providing for the continued scholarly development of its own staff. The Division has shown a particularly deep concern for motivating young scientific talent, and has a strong record of commitment toward educating and increasing the scientific skills of minorities and women. These activities are carried out by individual, group, or Division initiative and range from simple community involvement and classroom teaching to highly structured andmore » specialized technical training. This report collects and describes the official and unofficial educational activities that have been conducted in the Nuclear Chemistry Division at LLNL during the recent past. These activities serve as a model of what a few dedicated individuals and an enlightened management can contribute to the education of a new generation of scientists and engineers.« less

  12. Interacting with a security system: The Argus user interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrin, E.; Davis, G.E.

    1993-12-31

    In the mid-1980s the Lawrence Livermore National Laboratory (LLNL) developed the Argus Security System. Key requirements were to eliminate the telephone as a verification device for opening and closing alarm stations and to allow need-to-know access through local enrollment at alarm stations. Resulting from these requirements was an LLNL-designed user interface called the Remote Access Panel (RAP). The Argus RAP interacts with Argus field processors to allow secure station mode changes and local station enrollment, provides user direction and response, and assists station maintenance personnel. It consists of a tamper-detecting housing containing a badge reader, a keypad with sight screen,more » special-purpose push buttons and a liquid-crystal display. This paper discusses Argus system concepts, RAP design, functional characteristics and its physical configurations. The paper also describes the RAP`s use in access-control booths, it`s integration with biometrics and its operation for multi-person-rule stations and compartmented facilities.« less

  13. Development, Manufacturing, and Preparation for Serial Production of Low Noise Seismometers Final Report CRADA No. TC02096.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergino, E. S.; Passmore, P. R.

    2012-01-23

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Refraction Technology, Inc. (REF TEK), to collaborate on the development of a broadband, competitive low-noise seismometer, rugged and easy to use for field deployments. The work involved collaborative work between LLNL, REF TEK and a group led by Federal State Unitary Enterprise, Research Institute of Pulse Technique (RIPT), Moscow, Russia. The proposed work focused on bringing an improved version of the Russian SDSE seismometer from development phase to production in two versions. The first was a very lowmore » cost, rugged, broadband seismometer for field deployment that would achieve noise levels comparable to the standard earth low noise model (LNM) of the USGS. All three components were integrated into one case, and have sensitivity near 2000 v/m/s, and analog output with bandwidth of .01 to 40 Hz with high coherence.« less

  14. Laser program annual report 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, C.D.; Rufer, M.L.; Murphy, P.W.

    1984-06-01

    In the 1983 Laser Program Annual Report we present the accomplishments and unclassified activities of the Laser Program at Lawrence Livermore National laboratory (LLNL) for the year 1983. It should be noted that the report, of necessity, is a summary, and more detailed expositions of the research can be found in the many publications and reports authored by staff members in the Laser Program. The purpose of this report is to present our work in a brief form, but with sufficient depth to provide an overview of the analytical and experimental aspects of the LLNL Inertial-Confinement Fusion (ICF) Program. Themore » format of this report is basically the same as that of previous years. Section 1 is an overview and highlights the important accomplishments and directions of the Program. Sections 2 through 7 provide the detailed information on the various major parts of the Program: Laser Systems and Operations, Target Design, Target Fabrication, Fusion Experiments, Laser Research and Development, and Energy Applications.« less

  15. 2005 Annual Health Physics Report for HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2006-04-21

    During the 2005 calendar year, LLNL provided health physics support for the Highly Enriched Uranium Transparency Program (HEU-TP) in external and internal radiation protection and technical expertise into matters related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2005, there were 161 person-trips that required dose monitoring of the U.S. monitors. Of the 161 person-trips, 149 person-trips were SMVs and 12 person-trips were Transparency Monitoring Office (TMO) trips. Additionally, there were 11 monitoring visits by TMO monitors to facilities other than UEIE and 3 to UEIE itself. There were two monitoring visits (source changes)more » that were back to back with 16 monitors. Each of these concurring visits were treated as single person-trips for dosimetry purposes. Counted individually, there were 191 individual person-visits in 2005. The LLNL Safety Laboratories Division provided the dosimetry services for the HEU-TP monitors.« less

  16. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  17. Department of Homeland Security Summer Internship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Erika J.

    2010-07-30

    My time at Lawrence Livermore National Laboratory (LLNL) has been one of the most rewarding and exciting experiences of my life. When I first applied for a Department of Homeland Security (DHS) internship I was concerned that my major in Mass Communications and Emergency Management would not be suited for the hard science environment. Thankfully DHS and my mentor, Brooke Buddemeier, demonstrated that the skills and knowledge I possess are critical for the successful integration of good science into Homeland Security and emergency response, and allowed me the opportunity to work on an exciting project. This paper intends to givemore » an overview of my experiences while at LLNL, explain the project I have been a part of, explain my specific role within that project, discuss my achievements, explain how my internship has changed where I plan to take my career path, and, finally, discuss how I believe DHS can enhance their future internship programs.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, R

    The Physics and Advanced Technologies (PAT) Directorate was created in July 2000 by Bruce Tarter, Director of Lawrence Livermore National Laboratory (LLNL). The Director called for the new organization to execute and support programs that apply cutting-edge physics and advanced technology to develop integrated solutions to problems in national security, fusion energy, information science, health care, and other national grand challenges. When I was appointed a year later as the PAT Directorate's first Associate Director, I initiated a strategic planning project to develop a vision, mission, and long-term goals for the Directorate. We adopted the goal of becoming a leadermore » in frontier physics and technology for twenty-first-century national security missions: Stockpile Stewardship, homeland security, energy independence, and the exploration of space. Our mission is to: (1) Help ensure the scientific excellence and vitality of the major LLNL programs through its leadership role in performing basic and applied multidisciplinary research and development with programmatic impact, and by recruiting and retaining science and technology leaders; (2) Create future opportunities and directions for LLNL and its major programs by growing new program areas and cutting-edge capabilities that are synergistic with, and supportive of, its national security mission; (3) Provide a direct conduit to the academic and high-tech industrial sectors for LLNL and its national security programs, through which the Laboratory gains access to frontier science and technology, and can impact the science and technology communities; (4) Leverage unique Laboratory capabilities, to advance the state universe. This inaugural PAT Annual Report begins a series that will chronicle our progress towards fulfilling this mission. I believe the report demonstrates that the PAT Directorate has a strong base of capabilities and accomplishments on which to build in meeting its goals. Some of the

  19. Science & Technology Review October/November 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, R. L.; Meissner, C. N.; Kotta, P. R.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. The Laboratory is operated by Lawrence Livermore National Security, LLC (LLNS), for the Department of Energy’smore » National Nuclear Security Administration. LLNS is a partnership involving Bechtel National, University of California, Babcock & Wilcox, Washington Division of URS Corporation, and Battelle in affiliation with Texas A&M University. More information about LLNS is available online at www.llnsllc.com. Please address any correspondence (including name and address changes) to S&TR, Mail Stop L-664, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, or telephone (925) 423-3893. Our e-mail address is str-mail@llnl.gov. S&TR is available on the Web at str.llnl.gov.« less

  20. GROWTH AND METABOLISM OF INDIVIDUAL BACTERIAL CELLS UTILIZING NANOSIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NEALSON, H. K.

    This work involved the use of the Nano-SIMS Instrument at Lawrence Livermore Laboratory, in an effort to utilize this unique tool for experiments in Biology. The work consisted primarily of experiments to measure in real time, C and N fixation in cyanobacteria. The work revealed a number of the difficulties in using the nano-SIMS approach with biological material, but with collaboration from a number of individuals at USC and LLNL, major progress was made. The collaborators from LLNL were from the Chemistry Group (Dr. Peter Weber), and the Biology Group (Dr. Jennifer Pett-Ridge). In addition, there were a number ofmore » other scientists involved from LLNL. The USC group consisted of Dr. K.H. Nealson, the PI on the grant, Dr. R. Popa, a postdoctoral fellow and research associate at USC, Professor Douglas Capone, and Juliet Finze, a graduate student in biology. Two major experiments were done, both of which yielded new and exciting data. (1) We studied nitrogen and carbon fixation in Anabaena, demonstrating that fixation ofN occurred rapidly in the heterocysts, and that the fixed N was transported rapidly and completely to the vegetative cells. C fixation occurred in the vegetative cells, with labeled C remaining in these cells in support of their growth and metabolism. This work was accepted in the ISME Journal (Nature Publication), and published last month. (2) We studied nitrogen and carbon fixation in Trichodesmium, a non-heterocystous cyanobacterium that also fixes nitrogen. Interestingly, the nitrogen fixation was confined to regions within the filaments that seem to be identical to the so-called cyanophycaen granules. The fixed N is then transported to other parts of the cyanobacterium, as judged by movement of the heavy N throughout the filaments. On the basis of these very exciting results, we have applied for funding from the NSF to continue the collaboration with LLNL. The results of both studies were presented in the summer of 2007 at the Gordon

  1. Radiochemical Analyses of the Filter Cake, Granular Activated Carbon, and Treated Ground Water from the DTSC Stringfellow Superfund Site Pretreatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esser, B K; McConachie, W; Fischer, R

    2005-09-16

    The Department of Toxic Substance Control (DTSC) requested that Lawrence Livermore National Laboratory (LLNL) evaluate the treatment process currently employed at the Department's Stringfellow Superfund Site Pretreatment Plant (PTP) site to determine if wastes originating from the site were properly managed with regards to their radioactivity. In order to evaluate the current management strategy, LLNL suggested that DTSC characterize the effluents from the waste treatment system for radionuclide content. A sampling plan was developed; samples were collected and analyzed for radioactive constituents. Following is brief summary of those results and what implications for waste characterization may be made. (1) Themore » sampling and analysis provides strong evidence that the radionuclides present are Naturally Occurring Radioactive Material (NORM). (2) The greatest source of radioactivity in the samples was naturally occurring uranium. The sample results indicate that the uranium concentration in the filter cake is higher than the Granular Activated Carbon (GAC) samples. (11 -14 and 2-6 ppm respectively). (3) No radiologic background for geologic materials has been established for the Stringfellow site, and comprehensive testing of the process stream has not been conducted. Without site-specific testing of geologic materials and waste process streams, it is not possible to conclude if filter cake and spent GAC samples contain radioactivity concentrated above natural background levels, or if radionuclides are being concentrated by the waste treatment process. Recommendation: The regulation of Technologically Enhanced, Naturally Occurring Radioactive Materials (T-NORM) is complex. Since the results of this study do not conclusively demonstrate that natural radioactive materials have not been concentrated by the treatment process it is recommended that the DTSC consult with the Department of Health Services (DHS) Radiological Health Branch to determine if any further

  2. Deflection by Kinetic Impact or Nuclear Ablation: Sensitivity to Asteroid Properties

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.

    2015-12-01

    Impulsive deflection of a threatening asteroid can be achieved by deploying either a kinetic impactor or a standoff nuclear device to impart a modest velocity change to the body. Response to each of these methods is sensitive to the individual asteroid's characteristics, some of which may not be well constrained before an actual deflection mission. Numerical simulations of asteroid deflection, using both hypervelocity impacts and nuclear ablation of the asteroid's surface, provide detailed information on asteroid response under a range of initial conditions. Here we present numerical results for the deflection of asteroids by both kinetic and nuclear methods, focusing on the roles of target body composition, strength, porosity, rotational state, shape, and internal structure. These results provide a framework for evaluating the planetary defense-related value of future asteroid characterization missions and capture some of the uncertainty that may be present in a real threat scenario. Part of this work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-005, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675914.

  3. 2011 Annual Health Physics Report for the HEU transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2012-04-30

    During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoringmore » visits (source changes) that were back-to-back with a total of 24 monitors. LLNL's Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  4. The Nova Upgrade Facility for ICF ignition and gain

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.

    1992-01-01

    Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.

  5. July 1999 working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, M; Browand, F; Flowers, D

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at University of Southern California, Los Angeles, California on July 30, 1999. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in obtaining experimental results, model developments, and simulations. The focus of the meeting was a review of University of Southern California's (USC) experimental plans and results and the computational results from Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) for the integrated tractor-trailer benchmark geometry called the Sandia Model. Much ofmore » the meeting discussion involved the NASA Ames 7 ft x 10 ft wind tunnel tests and the need for documentation of the results. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), LLNL, SNL, USC, and California Institute of Technology (Caltech). This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.« less

  6. Summary Report of Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, Gretchen M.; Terusaki, Stan H.

    2013-12-01

    An ecological risk assessment is required as part of the Resource Recovery and Conservation Act (RCRA) permit renewal process for Miscellaneous Units subject to 22 CCR 66270.23. This risk assessment is prepared in support of the RCRA permit renewal for the Explosives Waste Treatment Facility (EWTF) at Site 300 of the Lawrence Livermore National Laboratory (LLNL). LLNL collected soil samples and used the resulting data to produce a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. The scoping-levelmore » ecological risk assessment provides a framework to determine the potential interaction between ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF. A scoping-level ecological risk assessment includes the step of conducting soil sampling in the area of the treatment units. The Sampling Plan in Support of the Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory, (Terusaki, 2007), outlines the EWTF project-specific soil sampling requirements. Soil samples were obtained and analyzed for constituents from four chemical groups: furans, explosives, semi-volatiles and metals. Analytical results showed that furans, explosives and semi-volatiles were not detected; therefore, no further analysis was conducted. The soil samples did show the presence of metals. Soil samples analyzed for metals were compared to site-wide background levels, which had been developed for site -wide cleanup activities pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Total metal concentrations from 28 discrete soil samples obtained in the EWTF area were all below CERCLA-developed background levels. Therefore, following DTSC

  7. 2013 R&D 100 Award: New tech could mean more power for fiber lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Jay

    2014-04-03

    An LLNL team of six physicists has developed a new technology that is a stepping stone to enable some of the limitations on high-power fiber lasers to be overcome. Their technology, dubbed "Efficient Mode-Converters for High-Power Fiber Amplifiers," allows the power of fiber lasers to be increased while maintaining high beam quality. Currently, fiber lasers are used in machining, on factory floors and in a number of defense applications and can produce tens of kilowatts of power.The conventional fiber laser design features a circular core and has fundamental limitations that make it impractical to allow higher laser power unless themore » core area is increased. LLNL researchers have pioneered a design to increase the laser's core area along the axis of the ribbon fiber. Their design makes it difficult to use a conventional laser beam, so the LLNL team converted the beam into a profile that propagates into the ribbon fiber and is converted back once it is amplified. The use of this LLNL technology will permit the construction of higher power lasers for lower costs and increase the power of fiber lasers from tens of kilowatts of power to about 100 kilowatts and potentially even higher.« less

  8. 2013 R&D 100 Award: New tech could mean more power for fiber lasers

    ScienceCinema

    Dawson, Jay

    2018-01-16

    An LLNL team of six physicists has developed a new technology that is a stepping stone to enable some of the limitations on high-power fiber lasers to be overcome. Their technology, dubbed "Efficient Mode-Converters for High-Power Fiber Amplifiers," allows the power of fiber lasers to be increased while maintaining high beam quality. Currently, fiber lasers are used in machining, on factory floors and in a number of defense applications and can produce tens of kilowatts of power.The conventional fiber laser design features a circular core and has fundamental limitations that make it impractical to allow higher laser power unless the core area is increased. LLNL researchers have pioneered a design to increase the laser's core area along the axis of the ribbon fiber. Their design makes it difficult to use a conventional laser beam, so the LLNL team converted the beam into a profile that propagates into the ribbon fiber and is converted back once it is amplified. The use of this LLNL technology will permit the construction of higher power lasers for lower costs and increase the power of fiber lasers from tens of kilowatts of power to about 100 kilowatts and potentially even higher.

  9. CERT TST December 2015 Visit Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, Robert Currier; Bailey, Teresa S.; Gamblin, G. Todd

    2016-01-25

    The annual PSAAP II TST visit to Texas A&M’s CERT Center was held on December 1-3, 2015. The agenda for the visit is attached. Non-TAMU attendees were: TST Members – Teresa Bailey (LLNL), Todd Gamblin (LLNL), Bob Little (LANL) – Chair, Chad Olinger (LANL), Shawn Pautz (SNL), Alan Williams (SNL);Other Lab staff – Skip Kahler (LANL), Ana Kupresanin (LLNL), and Rob Lowrie (LANL); AST Members – Nelson Hoffman (LANL) and Bob Voigt (Leidos) The TST wishes to express our appreciation to all involved with CERT for the high-quality posters and presentations and for the attention to logistics that enabled amore » successful visit. We have broken our comments into four sections: (1) Kudos, (2) Recommendations, (3) Feedback on Priorities for April Review, and (4) Follow-Up Activities with Labs.« less

  10. Medical Isotope Program: O-18, C-13, and Xe-129 Final Report CRADA No. TC-2043-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheibner, K. F.; Fought, J.

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Spectra Gases, Inc., to develop new and cheaper sources of Oxgyen-18 (O-18), Carbon-13 (C-13), and Xenon-129 (Xe-129), and to develop new applications of these stable medical isotopes in medicine resulting in a substantial increase in stable isotopes that are important to human health sciences.

  11. Manufacturing Steps for Commercial Production of Nano-Structure Capacitors Final Report CRADA No. TC02159.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbee, T. W.; Schena, D.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and TroyCap LLC, to develop manufacturing steps for commercial production of nano-structure capacitors. The technical objective of this project was to demonstrate high deposition rates of selected dielectric materials which are 2 to 5 times larger than typical using current technology.

  12. Climate Change Planning for Military Installations: Findings and Implications

    DTIC Science & Technology

    2010-10-01

    Meridional Overturning Circulation ARFORGEN Army Force Generation BASH Bird Aircraft Strike Hazard BLM Bureau of Land Management BOR Bureau of Reclamation...Cover and Land Use Change LLNL Lawrence Livermore National Laboratory MOC Meridional Overturning Circulation NASA National Aeronautics and Space...to discern effects of climate change. D.7.9 Bureau of Land Management BLM is responsible for managing much of the federal land affected by

  13. Public Key-Based Need-to-Know Authorization Engine Final Report CRADA No. TSB-1553-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark, R.; Williams, R.

    The goals of this project were to develop a public key-based authentication service plug-in based on LLNL's requirements, integrate the public key-based authentication with the Intra Verse authorization service adn the LLNL NTK server by developing a full-featured version of the prototyped Intra Verse need-to-know plug in; and to test the authorization and need-to-know plug-in in a secured extranet prototype among selected national Labs.

  14. Upgrades to the LLNL flash x-ray induction linear accelerator (FXR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpetti, R. D., LLNL

    1997-06-30

    The FXR is an induction linear accelerator used for flash radiography at the Lawrence Livermore National Laboratory's Site 300 Test Facility. The FXR was originally completed in 1982 and has been in continuous use as a radiographic tool. At that time the FXR produced a 17MeV, 2.2 kA burst of electrons for a duration of 65 ns. An upgrade of the FXR was recently completed. The purpose of this upgrade was to improve the performance of the FXR by increasing the energy of the electron injector from 1.2 MeV to 2.5 MeV and the beam current from 2.2 kA tomore » 3 kA, improving the magnetic transport system by redesigning the solenoidal transport focus coils, reducing the rf coupling of the electron beam to the accelerator cells, and by adding additional beam diagnostics. We will describe the injector upgrades and performance as well as our efforts to tune the accelerator by minimizing beam corkscrew motion and the impact of Beam Breakup Instability on beam centroid motion throughout the beam line as the current is increased to 3 kA.« less

  15. Construction of an automated fiber pigtailing machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strand, O.T.

    1996-01-01

    At present, the high cost of optoelectronic (OE) devices is caused in part by the labor-intensive processes involved with packaging. Automating the packaging processes should result in a significant cost reduction. One of the most labor-intensive steps is aligning and attaching the fiber to the OE device, the so-called pigtailing process. Therefore, the goal of this 2-year ARPA-funded project is to design and build 3 low-cost machines to perform sub-micron alignments and attachments of single-mode fibers to different OE devices. These Automated Fiber Pigtailing Machines (AFPMS) are intended to be compatible with a manufacturing environment and have a modular designmore » for standardization of parts and machine vision for maximum flexibility. This work is a collaboration among Uniphase Telecommunications Products (formerly United Technologies Photonics, UTP), Ortel, Newport/Klinger, the Massachusetts Institute of Technology Manufacturing Institute (MIT), and Lawrence Livermore National Laboratory (LLNL). UTP and Ortel are the industrial partners for whom two of the AFPMs are being built. MIT and LLNL make up the design and assembly team of the project, while Newport/Klinger is a potential manufacturer of the AFPM and provides guidance to ensure that the design of the AFPM is marketable and compatible with a manufacturing environment. The AFPM for UTP will pigtail LiNbO{sub 3} waveguide devices and the AFPM for Ortel will pigtail photodiodes. Both of these machines will contain proprietary information, so the third AFPM, to reside at LLNL, will pigtail a non-proprietary waveguide device for demonstrations to US industry.« less

  16. KCAT, Xradia, ALS and APS Performance Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A; Martz, H; Brown, W

    2004-09-30

    At Lawrence Livermore National Laboratory (LLNL) particular emphasis is being placed on the nondestructive characterization (NDC) of components, subassemblies and assemblies of millimeter-size extent with micrometer-size features (mesoscale). These mesoscale objects include materials that vary widely in composition, density, geometry and embedded features. Characterizing these mesoscale objects is critical for corroborating the physics codes that underlie LLNL's Stockpile Stewardship mission. In this report we present results from our efforts to quantitatively characterize the performance of several x-ray systems in an effort to benchmark existing systems and to determine which systems may have the best potential for our mesoscale imaging needs.more » Several different x-ray digital radiography (DR) and computed tomography (CT) systems exist that may be applicable to our mesoscale object characterization requirements, including microfocus and synchrotron systems. The systems we have benchmarked include KCAT (LLNL developed) and Xradia {mu}XCT (Xradia, Inc., Concord, CA), both microfocus systems, and Beamline 1-ID at the Advance Photon Source (APS) and the Tomography Beamline at the Advanced Light Source (ALS), both synchrotron based systems. The ALS Tomography Beamline is a new installation, and the data presented and analyzed here is some of the first to be acquired at the facility. It is important to note that the ALS system had not yet been optimized at the time we acquired data. Results for each of these systems has been independently documented elsewhere. In this report we summarize and compare the characterization results for these systems.« less

  17. Description of the Process Model for the Technoeconomic Evaluation of MEA versus Mixed Amines for Carbon Dioxide Removal from Stack Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Dale A.

    This model description is supplemental to the Lawrence Livermore National Laboratory (LLNL) report LLNL-TR-642494, Technoeconomic Evaluation of MEA versus Mixed Amines for CO2 Removal at Near- Commercial Scale at Duke Energy Gibson 3 Plant. We describe the assumptions and methodology used in the Laboratory’s simulation of its understanding of Huaneng’s novel amine solvent for CO2 capture with 35% mixed amine. The results of that simulation have been described in LLNL-TR-642494. The simulation was performed using ASPEN 7.0. The composition of the Huaneng’s novel amine solvent was estimated based on information gleaned from Huaneng patents. The chemistry of the process wasmore » described using nine equations, representing reactions within the absorber and stripper columns using the ELECTNRTL property method. As a rate-based ASPEN simulation model was not available to Lawrence Livermore at the time of writing, the height of a theoretical plate was estimated using open literature for similar processes. Composition of the flue gas was estimated based on information supplied by Duke Energy for Unit 3 of the Gibson plant. The simulation was scaled at one million short tons of CO2 absorbed per year. To aid stability of the model, convergence of the main solvent recycle loop was implemented manually, as described in the Blocks section below. Automatic convergence of this loop led to instability during the model iterations. Manual convergence of the loop enabled accurate representation and maintenance of model stability.« less

  18. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  19. US Department of Energy High School Student Supercomputing Honors Program: A follow-up assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The US DOE High School Student Supercomputing Honors Program was designed to recognize high school students with superior skills in mathematics and computer science and to provide them with formal training and experience with advanced computer equipment. This document reports on the participants who attended the first such program, which was held at the National Magnetic Fusion Energy Computer Center at the Lawrence Livermore National Laboratory (LLNL) during August 1985.

  20. Development of a Laser for Landmine Destruction Final Report CRADA No. TC02126.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, R.; Sheppard, C.

    2017-08-31

    This was one of two CRADAs between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and First Alliance Technologies, LLC (First Alliance), to conduct research and development activity toward an integrated system for the detecting, locating, and destroying of landmines and unexploded ordinance using a laser to destroy landmines and unexploded ordinance and First Alliance’s Land Mine Locator (LML) system.

  1. Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messerly, M.; Cunningham, P.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.

  2. Extraction of Iodine from Source Rock and Oil for Radioiodine Dating Final Report CRADA No. TC-1550-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, J. E.; Summa, L.

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Exxon Production Research Company (EPR) to develop improved techniques for extracting, concentrating, and measuring iodine from large volumes of source rock and oil. The purpose of this project was to develop a technique for measuring total iodine extracted from rock, obtain isotopic ratios, and develop age models for samples provided by EPR.

  3. LLNL Small-Scale Friction sensitivity (BAM) Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, L.R.; Foltz, M.F.

    1996-06-01

    Small-scale safety testing of explosives, propellants and other energetic materials, is done to determine their sensitivity to various stimuli including friction, static spark, and impact. Testing is done to discover potential handling problems for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing {open_quotes}BAM{close_quotes} Small-Scale Friction Test, and the methods used to determine the friction sensitivity pertinent to handling energetic materials. The accumulated data for the materials tested is not listed here - that information is in a database. Included is, however, a short list ofmore » (1) materials that had an unusual response, and (2), a few {open_quotes}standard{close_quotes} materials representing the range of typical responses usually seen.« less

  4. Calorimetry exchange program amendment to 3rd quarter CY92 report LLNL isotopic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, T.M.

    1996-08-01

    This report is a series of ammendments to the Calorimetry Exchange Quarterly Data Report for third quarter CY1992. The ammendment is needed due to reporting errors encountered in the Lawrence Livermore National Laboratory isotopic data.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, Sandy; Miller, Russell B.

    This project evaluated the information security posture of QUALCOMM regarding its Internet connections. It also enhanced and refined the ability of LLNL to perform these evaluations and add to its body of knowledge concerning Internet threats, vulnerabilities, and countermeasures. The evaluations required a high degree of trust and cooperation between the assessors (LLNL) and the target organization (QUALCOMM). Without this high level of cooperation, the activity could easily have become an adversarial audit type situation and counterproductive to all parties.

  6. Insensitive Munitions Modeling Improvement Efforts

    DTIC Science & Technology

    2010-10-01

    LLNL) ALE3D . Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to...codes most commonly used by munition designers are CTH and the SIERRA suite of codes produced by Sandia National Labs (SNL) and ALE3D produced by... ALE3D , a LLNL developed code, is also used by various DoD participants. It was however, designed differently than either CTH or Sierra. ALE3D is a

  7. MRT 5711 - Scope Radiochemical Analysis Comparison: Joint LANL-LLNL FY17 L-2 Milestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, S. D.; Lee, A. S.

    A 2016 Level-1 milestone highlighted surprising differences in fundamental data used by the two US design laboratories. To better understand and ultimately resolve those differences, two Level-2 milestones were developed for execution in FY-17 and FY-18.

  8. Results of Surveys for Special Status Reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woollett, J J

    2008-09-18

    The purpose of this report is to present the results of a live-trapping and visual surveys for special status reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory (LLNL). The survey was conducted under the authority of the Federal recovery permit of Swaim Biological Consulting (PRT-815537) and a Memorandum of Understanding issued from the California Department of Fish and Game. Site 300 is located between Livermore and Tracy just north of Tesla road (Alameda County) and Corral Hollow Road (San Joaquin County) and straddles the Alameda and San Joaquin County line (Figures 1 and 2). It encompasses portionsmore » of the USGS 7.5 minute Midway and Tracy quadrangles (Figure 2). Focused surveys were conducted for four special status reptiles including the Alameda whipsnake (Masticophis lateralis euryxanthus), the San Joaquin Whipsnake (Masticophis Hagellum ruddock), the silvery legless lizard (Anniella pulchra pulchra), and the California horned lizard (Phrynosoma coronanum frontale).« less

  9. Probabilistic seismic hazard characterization and design parameters for the Pantex Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernreuter, D. L.; Foxall, W.; Savy, J. B.

    1998-10-19

    The Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) updated the seismic hazard and design parameters at the Pantex Plant. The probabilistic seismic hazard (PSH) estimates were first updated using the latest available data and knowledge from LLNL (1993, 1998), Frankel et al. (1996), and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity and for the system of potentially active faults associated with the Amarillo-Wichita uplift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was taken from results of similar studies. Special attentionmore » was given to soil amplification factors for the site. Horizontal Peak Ground Acceleration (PGA) and 5% damped uniform hazard spectra were calculated for six return periods (100 yr., 500 yr., 1000 yr., 2000 yr., 10,000 yr., and 100,000 yr.). The design parameters were calculated following DOE standards (DOE-STD-1022 to 1024). Response spectra for design or evaluation of Performance Category 1 through 4 structures, systems, and components are presented.« less

  10. Hazardous and Medical Waste Destruction Using the AC Plasmatron Final Report CRADA No. TC-1560-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caplan, M.; Bucher, K.; Tulupov, A.

    The goal of this project was to develop a prototype medical waste destruction facility based on the AC plasma torch capable of processing 150 kg of waste per hour while satisfying US EPA emission standards. The project was to provide the first opportunity for a joint U.S.-Russian project using an AC Plasma Torch in a hazardous waste destruction system to be assembled and operated in the U.S. thus promoting the commercialization in the U.S. of this joint U.S.-Russian developed technology. This project was a collaboration between the Russian Institute Soliton- NTT, the U.S industrial partner Scientific Utilization Inc. (SUI) andmore » Lawrence Livermore National Laboratory ( LLNL). The project was funded by DOE for a total of $1.2 million with $600K for allocated for Phase I and $600K for Phase II. The Russian team received about $800K over the two (2) year period while LLNL received $400K. SUI was to provide in kind matching funds totaling $1.2 million.« less

  11. CASKS (Computer Analysis of Storage casKS): A microcomputer based analysis system for storage cask design review. User`s manual to Version 1b (including program reference)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.F.; Gerhard, M.A.; Trummer, D.J.

    CASKS (Computer Analysis of Storage casKS) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent-fuel storage casks. The bulk of the complete program and this user`s manual are based upon the SCANS (Shipping Cask ANalysis System) program previously developed at LLNL. A number of enhancements and improvements were added to the original SCANS program to meet requirements unique to storage casks. CASKS is an easy-to-use system that calculates global response of storage casks to impact loads, pressure loads and thermal conditions. This provides reviewers withmore » a tool for an independent check on analyses submitted by licensees. CASKS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.« less

  12. EUV multilayer coatings for the Atmospheric Imaging Assembly instrument aboard the Solar Dynamics Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Windt, D L; Robinson, J C

    2006-02-09

    Multilayer coatings for the 7 EUV channels of the AIA have been developed and completed successfully on all AIA flight mirrors. Mo/Si coatings (131, 171, 193.5, 211 {angstrom}) were deposited at Lawrence Livermore National Laboratory (LLNL). Mg/SiC (304, 335 {angstrom}) and Mo/Y (94 {angstrom}) coatings were deposited at Columbia University. EUV reflectance of the 131/335 {angstrom}, 171 {angstrom}, 193.5/211 {angstrom} primary and secondary flight mirrors and the 94/304 {angstrom} secondary flight mirror was measured at beamline 6.3.2. of the Advanced Light Source (ALS) at LBNL. EUV reflectance of the 94/304 {angstrom} primary and secondary flight mirrors was measured at beamlinemore » X24C of the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. Preliminary EUV reflectance measurements of the 94, 304 and 335 {angstrom} coatings were performed with a laser plasma source reflectometer located at Columbia University. Prior to multilayer coating, Atomic Force Microscopy (AFM) characterization and cleaning of all flight substrates was performed at LLNL.« less

  13. Recent Progress on the Conversion of Surplus Picric Acid/Explosive D to Higher Value Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.Mitchell, A; Hsu, P C; Coburn, M D

    2004-07-06

    The global demilitarization of nuclear and conventional munitions is producing millions of pounds of surplus energetic materials. Historically, energetic materials (high explosives, propellants, and pyrotechnics) have been disposed of by open burning/open detonation (OB/OD). The use of OB/OD is becoming unacceptable due to public concerns and increasingly stringent environmental regulations. Clearly, there is a great need to develop environmentally sound and cost-effective alternatives to OB/OD. The conversion of surplus picric acid and/or ammonium picrate (Explosive D) to1,3,5-triamino-2,4,6- trinitrobenzene (TATB) has been subject of extensive process development studies at Lawrence Livermore National Laboratory (LLNL). LLNL, under the direction and sponsorship ofmore » the U.S. Army Defense Ammunition Center (DAC), is developing a process for the conversion of picric acid to TATB on a larger scale. In FY 03, a 10 g per batch process was developed with good results. Development for a one pound per batch system is required as part of overall scale up process for producing TATB from the surplus feedstocks.« less

  14. Multi-Organization Multi-Discipline Effort Developing a Mitigation Concept for Planetary Defense

    NASA Technical Reports Server (NTRS)

    Leung, Ronald Y.; Barbee, Brent W.; Seery, Bernard D.; Bambacus, Myra; Finewood, Lee; Greenaugh, Kevin C.; Lewis, Anthony; Dearborn, David; Miller, Paul L.; Weaver, Robert P.; hide

    2017-01-01

    There have been significant recent efforts in addressing mitigation approaches to neutralize Potentially Hazardous Asteroids (PHA). One such research effort was performed in 2015 by an integrated, inter-disciplinary team of asteroid scientists, energy deposition modeling scientists, payload engineers, orbital dynamist engineers, spacecraft discipline engineers, and systems architecture engineer from NASAs Goddard Space Flight Center (GSFC) and the Department of Energy (DoE) National Nuclear Security Administration (NNSA) laboratories (Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratories (LLNL) and Sandia National Laboratories). The study team collaborated with GSFCs Integrated Design Centers Mission Design Lab (MDL) which engaged a team of GSFC flight hardware discipline engineers to work with GSFC, LANL, and LLNL NEA-related subject matter experts during a one-week intensive concept formulation study in an integrated concurrent engineering environment. This team has analyzed the first of several distinct study cases for a multi-year NASA research grant. This Case 1 study references the Near-Earth Asteroid (NEA) named Bennu as the notional target due to the availability of a very detailed Design Reference Asteroid (DRA) model for its orbit and physical characteristics (courtesy of the Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission team). The research involved the formulation and optimization of spacecraft trajectories to intercept Bennu, overall mission and architecture concepts, and high-fidelity modeling of both kinetic impact (spacecraft collision to change a NEAs momentum and orbit) and nuclear detonation effects on Bennu, for purposes of deflecting Bennu.

  15. Shallow 3-D vertical seismic profiling around a contaminant withdrawal well on the Lawrence Livermore National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rector, J.; Bainer, R.; Milligan, P.

    1997-01-30

    One of the major problems associated with ground water contaminant remediation is well placement. Optimal-placement of wells requires an accurate knowledge of geologic structure and stratigraphy in the near surface sediments and rock (0 to 100 m). Without the development of remote imaging provided by geophysical techniques, the required spacing between treatment wells may be less than 2 m in order to be confident that all contaminant reservoirs had been remediated. One method for characterizing geologic structure and stratigraphy in the near surface is vertical seismic profiling (VSP), a technique often used on deep exploration wells to calibrate surface seismicmore » reflection data. For near-surface applications, VSP data can be acquired efficiently using an array of hydrophones lowered into a fluid-filled borehole (Milligan et al, 1997). In this paper we discuss the acquisition and processing of a 3-D VSP collected at a shallow remediation site located on the grounds of the Lawrence Livermore National Laboratory (LLNL) near Livermore, California. The site was used by the United States Navy as an air training base. At this time, initial releases of hazardous materials to the environment occurred in the form of solvents [volatile organic compounds (VOCs)] that were used for the cleaning of airplanes and their parts. Gasoline, diesel and other petroleum-based compounds are also known to have leaked into the ground. California Research and Development Company, a subsidy of Standard Oil, occupied the southeastern portion of the site from 1950 to 1954. The first releases of radioactive materials to the environment occurred at this time, with the beginning of testing of radioactive materials at the site. In 1952, LLNL acquired the site. Additional releases of VOCS, polychlorinated biphenyls (PCBs), metals, radionuclides (primarily tritium), gasoline and pesticides have occurred since. These releases were due to localized spills, landfills, surface impoundments

  16. SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2011-04-02

    This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators andmore » stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge

  17. Proceedings of the 5. joint Russian-American computational mathematics conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    These proceedings contain a record of the talks presented and papers submitted by participants. The conference participants represented three institutions from the United States, Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and two from Russia, Russian Federal Nuclear Center--All Russian Research Institute of Experimental Physics (RFNC-VNIIEF/Arzamas-16), and Russian Federal Nuclear Center--All Russian Research Institute of Technical Physics (RFNC-VNIITF/Chelyabinsk-70). The presentations and papers cover a wide range of applications from radiation transport to materials. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. Development of Carbon-14 Waste Destruction and Recovery System Using AC Plasma Torch Technology Final Report CRADA No. TC02108.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althouse, P.; McKannay, R. H.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ISOFLEX USA (ISOFLEX), to 1) develop and test a prototype waste destruction system ("System") using AC plasma torch technology to break down and drastically reduce the volume of Carbon-14 (C-14) contaminated medical laboratory wastes while satisfying all environmental regulations, and 2) develop and demonstrate methods for recovering 99%+ of the carbon including the C-14 allowing for possible re-use as a tagging and labeling tool in the biomedical industry.

  19. Rapidly Deployable Security System Final Report CRADA No. TC-2030-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohlhepp, V.; Whiteman, B.; McKibben, M. T.

    The ultimate objective of the LEADER and LLNL strategic partnership was to develop and commercialize_a security-based system product and platform for the use in protecting the substantial physical and economic assets of the government and commerce of the United States. The primary goal of this project was to integrate video surveillance hardware developed by LLNL with a security software backbone developed by LEADER. Upon completion of the project, a prototype hardware/software security system that is highly scalable was to be demonstrated.

  20. UI Review Results and NARAC Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, J.; Eme, B.; Kim, S.

    2017-03-08

    This report describes the results of an inter-program design review completed February 16th, 2017, during the second year of a FY16-FY18 NA-84 Technology Integration (TI) project to modernize the core software system used in DOE/NNSA's National Atmospheric Release Advisory Center (NARAC, narac.llnl.gov). This review focused on the graphical user interfaces (GUI) frameworks. Reviewers (described in Appendix 2) were selected from multiple areas of the LLNL Computation directorate, based on their expertise in GUI and Web technologies.

  1. Accelerator-Detector Complex for Photonuclear Detection of Hidden Explosives Final Report CRADA No. TC2065.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowdermilk, W. H.; Brothers, L. J.

    This was a collaborative effort by Lawrence Livermore National Security (formerly the University of California)/Lawrence Livermore National Laboratory (LLNL), Valley Forge Composite Technologies, Inc., and the following Russian Institutes: P. N. Lebedev Physical Institute (LPI), Innovative Technologies Center.(AUO CIT), Central Design Bureau-Almas (CDB Almaz), Moscow Instrument Automation Research Institute, and Institute for High Energy Physics (IBEP) to develop equipment and procedures for detecting explosive materials concealed in airline checked baggage and cargo.

  2. Unified EDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2007-06-18

    UEDGE is an interactive suite of physics packages using the Python or BASIS scripting systems. The plasma is described by time-dependent 2D plasma fluid equations that include equations for density, velocity, ion temperature, electron temperature, electrostatic potential, and gas density in the edge region of a magnetic fusion energy confinement device. Slab, cylindrical, and toroidal geometries are allowed, and closed and open magnetic field-line regions are included. Classical transport is assumed along magnetic field lines, and anomalous transport is assumed across field lines. Multi-charge state impurities can be included with the corresponding line-radiation energy loss. Although UEDGE is written inmore » Fortran, for efficient execution and analysis of results, it utilizes either Python or BASIS scripting shells. Python is easily available for many platforms (http://www.Python.org/). The features and availability of BASIS are described in "Basis Manual Set" by P.F. Dubois, Z.C. Motteler, et al., Lawrence Livermore National Laboratory report UCRL-MA-1 18541, June, 2002 and http://basis.llnl.gov. BASIS has been reviewed and released by LLNL for unlimited distribution. The Python version utilizes PYBASIS scripts developed by D.P. Grote, LLNL. The Python version also uses MPPL code and MAC Perl script, available from the public-domain BASIS source above. The Forthon version of UEDGE uses the same source files, but utilizes Forthon to produce a Python-compatible source. Forthon has been developed by D.P. Grote at LBL (see http://hifweb.lbl.gov/Forthon/ and Grote et al. in the references below), and it is freely available. The graphics can be performed by any package importable to Python, such as PYGIST.« less

  3. Laboratory Measurements Of Charge-exchange Produced X-ray Emission From K-shell Transitions In Hydrogenic And Helium-like Fe

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, P.; Boyce, K. R.; Chen, H.; Gu, M. F.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Thorn, D.; Wargelin, B.

    2006-09-01

    We have used a microcalorimeter and solid state detectors to measure x-ray emission produced by charge exchange reactions between bare and hydrogenic Fe colliding with neutral helium, hydrogen, and nitrogen gas. We show the measured spectral signature produced by different neutral donors and compare our results to theory where available. We also compare our results to measurements of the Fe K line emission from the Galactic Center measured by the XIS on the Suzaku x-ray observatory. This comparison shows that charge exchange recombination between highly charged ions (either cosmic rays or thermal ions) and neutral gas is probably not the dominant source of diffuse line emission in the Galactic Center. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, and is also supported by NASA APRA grants to LLNL, GSFC, Harvard-Smithsonian CfA, and Stanford University.

  4. Plutonium Decontamination of Uranium using CO2 Cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, M

    A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pitsmore » for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology

  5. Preliminary Authorization Basis Documentation for the Proposed Bio Safety Level 3 (BSl-3) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altenbach, T J; Nguyen, S N

    2003-09-20

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct a biosafety level (BSL-3) facility at Site 200 in Livermore, California. Biosafety level 3 (BSL-3) is a designation assigned by the Centers for Disease Control and Prevention (CDC) and National Institutes Health (NIH) for handling infectious organisms based on the specific microorganisms and associated operations. Biosafety levels range from BSL-1 (lowest hazard) to BSL-4 (highest hazard). Details about the BSL-3 criteria are described in the Center of Disease Control and Prevention (CDC)/National Institutes of Health (NIH)'s publication ''Biosafety Microbiological and Biomedical Laboratories'' (BMBL), 4th edition (CDC 1999): The BSL-3 facility willmore » be built in accordance with the required BMBL guidelines. This Preliminary Authorization Basis Documentation (PABD) for the proposed BSL-3 facility has been prepared in accordance with the current contractual requirements at LLNL. This includes the LLNL Environment, Safety, and Health Manual (ES&H Manual) and applicable Work Smart Standards, including the biosafety standards, such as the aforementioned BMBL and the NIH Guidelines for Research Involving Recombinant DNA Molecules: The proposed BSL-3 facility is a 1,100 ft{sup 2}, one-story permanent prefabricated facility, which will have three individual BSL-3 laboratory rooms (one of which is an animal biosafety level-3 [ABSL-3] laboratory to handle rodents), a mechanical room, clothes-change and shower rooms, and small storage space (Figure 3.1). The BSL-3 facility will be designed and operated accordance with guidelines for BSL-3 laboratories established by the CDC and the NIH. No radiological, high explosives, fissile, or propellant material will be used or stored in the proposed BSL-3 facility. The BSL-3 facility will be used to develop scientific tools to identify and understand the pathogens of medical, environmental, and forensic importance. Microorganisms that are to be handled in

  6. Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, W E

    2000-12-05

    The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is tomore » take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have

  7. Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiments)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, W.E.

    2000-09-29

    The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is tomore » take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have

  8. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adel Ghanem, Ph D

    2007-03-30

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  9. Summary of the Atmospheric Test Data (Film Scanning and Re-Analysis) Project at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, S. D.

    2017-03-21

    The goal of the Atmospheric Test Data (ATD) Project is to preserve and make better use of scientific-quality films that were taken during the era of above ground nuclear testing. The project is being done in collaboration with Los Alamos National Laboratory, which is the custodian of the films. Our primary points of contact at LANL have been Alan Carr, Carla Breiner, and Randy Drake.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robison, W L; Hamilton, T F; Martinelli, R E

    Lawrence Livermore National Laboratory (LLNL) personnel have supported US Air Force (USAF) ballistic missile flight tests for about 15 years for Peacekeeper and Minuteman missiles launched at Vandenberg Air Force Base (VAFB). Associated re-entry vehicles (RV's) re-enter at Regan Test Site (RTS) at the US Army base at Kwajalein Atoll (USAKA) where LLNL has supported scoring, recovery operations for RV materials, and environmental assessments. As part of ongoing USAF ballistic missile flight test programs, LLNL is participating in an updated EA being written for flights originating at VFAB. Marine fauna and sediments (beach-sand samples) were collected by US Fish andmore » Wildlife Service (USFWS), National Marine Fisheries Service (NMFS), and LLNL at Illeginni Island and Boggerik Island (serving as a control site) at Kwajalein Atoll. Data on the concentration of DU (hereafter, U) and Be in collected samples was requested by USFWS and NMFS to determine whether or not U and Be in RV's entering the Illeginni area are increasing U and Be concentrations in marine fauna and sediments. LLNL agreed to do the analyses for U and Be in support of the EA process and provide a report of the results. There is no statistically significant difference in the concentration of U and Be in six species of marine fauna from Illeginni and Boggerik Islands (p - 0.14 for U and p = 0.34 for Be). Thus, there is no evidence that there has been any increase in U and Be concentrations in marine fauna as a result of the missile flight test program. Concentration of U in beach sand at Illeginni is the same as soil and beach sand in the rest of the Marshall Islands and again reflects an insignificant impact from the flight test program. Beach sand from Illeginni has a mean concentration of Be higher than that from the control site, Boggeik Island. Seven of 21 samples from Ileginni had detectable Be. Four samples had a concentration of Be ranging from 4 to 7 ng g {sup -1} (4 to 7 parts per billion

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, C. V.; Mendez, A. J.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Mendez R & D Associates (MRDA) to develop and demonstrate a reconfigurable and cost effective design for optical code division multiplexing (O-CDM) with high spectral efficiency and throughput, as applied to the field of distributed computing, including multiple accessing (sharing of communication resources) and bidirectional data distribution in fiber-to-the-premise (FTTx) networks.

  12. Manufacturing and Characterization of Ultra Pure Ferrous Alloys Final Report CRADA No. TC02069.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.; McGreevy, T. E.

    This CRADA was a.collaborative effort between the Lawrence Livermore National Security LLC (formerly University of California)/Lawrence Livermore National Laboratory (LLNL),and Caterpillar Inc. (CaterpiHar), to further advance levitation casting techniques (developed at the Central Research Institute for Material (CRIM) in St. Petersburg, Russia) for use in manufacturing high purity metal alloys. This DOE Global Initiatives for Proliferation Prevention Program (IPP) project was to develop and demonstrate the levitation casting technology for producing ultra-pure alloys.

  13. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  14. Beam Research Program

    DTIC Science & Technology

    1984-04-01

    wavelengths. A direct application of such a laser is isotope separation. 2. For a brief status report of the Laboratory’s high- explosive flash...operation in the fall of 1982. in a 50-MeV Advanced Test Accelerator Facility (the ATA)1 that we are con- structing at our high- explosives test loca...chemical explosives in target-damage studies. Potential hazards associated with the ATA experiments were considered in choosing our site. LLNL’s

  15. Computation Directorate and Science& Technology Review Computational Science and Research Featured in 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alchorn, A L

    Thank you for your interest in the activities of the Lawrence Livermore National Laboratory Computation Directorate. This collection of articles from the Laboratory's Science & Technology Review highlights the most significant computational projects, achievements, and contributions during 2002. In 2002, LLNL marked the 50th anniversary of its founding. Scientific advancement in support of our national security mission has always been the core of the Laboratory. So that researchers could better under and predict complex physical phenomena, the Laboratory has pushed the limits of the largest, fastest, most powerful computers in the world. In the late 1950's, Edward Teller--one of themore » LLNL founders--proposed that the Laboratory commission a Livermore Advanced Research Computer (LARC) built to Livermore's specifications. He tells the story of being in Washington, DC, when John Von Neumann asked to talk about the LARC. He thought Teller wanted too much memory in the machine. (The specifications called for 20-30,000 words.) Teller was too smart to argue with him. Later Teller invited Von Neumann to the Laboratory and showed him one of the design codes being prepared for the LARC. He asked Von Neumann for suggestions on fitting the code into 10,000 words of memory, and flattered him about ''Labbies'' not being smart enough to figure it out. Von Neumann dropped his objections, and the LARC arrived with 30,000 words of memory. Memory, and how close memory is to the processor, is still of interest to us today. Livermore's first supercomputer was the Remington-Rand Univac-1. It had 5600 vacuum tubes and was 2 meters wide by 4 meters long. This machine was commonly referred to as a 1 KFlop machine [E+3]. Skip ahead 50 years. The ASCI White machine at the Laboratory today, produced by IBM, is rated at a peak performance of 12.3 TFlops or E+13. We've improved computer processing power by 10 orders of magnitude in 50 years, and I do not believe there's any reason to think

  16. Lawrence Livermore National Laboratory ULTRA-350 Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J; Wulff, T A; Carlisle, K

    2001-04-10

    LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-1 and PERL-11). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the

  17. Lawrence Livermore National Laboratory ULTRA-350 Test Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, D J; Wulff, T A; Carlisle, K

    2001-04-10

    LLNL has many in-house designed high precision machine tools. Some of these tools include the Large Optics Diamond Turning Machine (LODTM) [1], Diamond Turning Machine No.3 (DTM-3) and two Precision Engineering Research Lathes (PERL-I and PERL-II). These machines have accuracy in the sub-micron range and in most cases position resolution in the couple of nanometers range. All of these machines are built with similar underlying technologies. The machines use capstan drive technology, laser interferometer position feedback, tachometer velocity feedback, permanent magnet (PM) brush motors and analog velocity and position loop servo compensation [2]. The machine controller does not perform anymore » servo compensation it simply computes the differences between the commanded position and the actual position (the following error) and sends this to a D/A for the analog servo position loop. LLNL is designing a new high precision diamond turning machine. The machine is called the ULTRA 350 [3]. In contrast to many of the proven technologies discussed above, the plan for the new machine is to use brushless linear motors, high precision linear scales, machine controller motor commutation and digital servo compensation for the velocity and position loops. Although none of these technologies are new and have been in use in industry, applications of these technologies to high precision diamond turning is limited. To minimize the risks of these technologies in the new machine design, LLNL has established a test bed to evaluate these technologies for application in high precision diamond turning. The test bed is primarily composed of commercially available components. This includes the slide with opposed hydrostatic bearings, the oil system, the brushless PM linear motor, the two-phase input three-phase output linear motor amplifier and the system controller. The linear scales are not yet commercially available but use a common electronic output format. As of this writing, the

  18. 2005 White Paper on Institutional Capability Computing Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnes, B; McCoy, M; Seager, M

    This paper documents the need for a significant increase in the computing infrastructure provided to scientists working in the unclassified domains at Lawrence Livermore National Laboratory (LLNL). This need could be viewed as the next step in a broad strategy outlined in the January 2002 White Paper (UCRL-ID-147449) that bears essentially the same name as this document. Therein we wrote: 'This proposed increase could be viewed as a step in a broader strategy linking hardware evolution to applications development that would take LLNL unclassified computational science to a position of distinction if not preeminence by 2006.' This position of distinctionmore » has certainly been achieved. This paper provides a strategy for sustaining this success but will diverge from its 2002 predecessor in that it will: (1) Amplify the scientific and external success LLNL has enjoyed because of the investments made in 2002 (MCR, 11 TF) and 2004 (Thunder, 23 TF). (2) Describe in detail the nature of additional investments that are important to meet both the institutional objectives of advanced capability for breakthrough science and the scientists clearly stated request for adequate capacity and more rapid access to moderate-sized resources. (3) Put these requirements in the context of an overall strategy for simulation science and external collaboration. While our strategy for Multiprogrammatic and Institutional Computing (M&IC) has worked well, three challenges must be addressed to assure and enhance our position. The first is that while we now have over 50 important classified and unclassified simulation codes available for use by our computational scientists, we find ourselves coping with high demand for access and long queue wait times. This point was driven home in the 2005 Institutional Computing Executive Group (ICEG) 'Report Card' to the Deputy Director for Science and Technology (DDST) Office and Computation Directorate management. The second challenge is related to the

  19. DHS Summary Report -- Robert Weldon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Robert A.

    This summer I worked on benchmarking the Lawrence Livermore National Laboratory fission multiplicity capability used in the Monte Carlo particle transport code MCNPX. This work involved running simulations and then comparing the simulation results with experimental experiments. Outlined in this paper is a brief description of the work completed this summer, skills and knowledge gained, and how the internship has impacted my planning for the future. Neutron multiplicity counting is a neutron detection technique that leverages the multiplicity emissions of neutrons from fission to identify various actinides in a lump of material. The identification of individual actinides in lumps ofmore » material crossing our boarders, especially U-235 and Pu-239, is a key component for maintaining the safety of the country from nuclear threats. Several multiplicity emission options from spontaneous and induced fission already existed in MCNPX 2.4.0. These options can be accessed through use of the 6th entry on the PHYS:N card. Lawrence Livermore National Laboratory (LLNL) developed a physics model for the simulation of neutron and gamma ray emission from fission and photofission that was included in MCNPX 2.7.B as an undocumented feature and then was documented in MCNPX 2.7.C. The LLNL multiplicity capability provided a different means for MCNPX to simulate neutron and gamma-ray distributions for neutron induced, spontaneous and photonuclear fission reactions. The original testing on the model for implementation into MCNPX was conducted by Gregg McKinney and John Hendricks. The model is an encapsulation of measured data of neutron multiplicity distributions from Gwin, Spencer, and Ingle, along with the data from Zucker and Holden. One of the founding principles of MCNPX was that it would have several redundant capabilities, providing the means of testing and including various physics packages. Though several multiplicity sampling methodologies already existed within MCNPX, the

  20. Technical Review Report for the Mound 1KW Package Safety Analysis Report for Packaging Waiver for the Use of Modified Primary Containment Vessel (PCV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, M; Hafner, R

    2008-05-05

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the Waiver for the Use of Modified Primary Containment Vessels (PCV). The waiver is to be used to support a limited number of shipments of fuel for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Project in support of the National Aeronautics and Space Administration's (NASA's) Mars Science Laboratory (MSL) mission. Under the waiver, an inventory of existing national security PCVs will be converted to standard PCVs. Both types of PCVs are currently approvedmore » for use by the Office of Nuclear Energy. LLNL has previously reviewed the national security PCVs under Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision c, dated June 2007 (Addendum 1). The safety analysis of the package is documented in the Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package (i.e., the Mound 1KW SARP, or the SARP) where the standard PCVs have been reviewed by LLNL. The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The waiver requests an exemption, claiming safety equivalent to the requirements specified in 10 CFR 71.12, Specific Exemptions, and will lead to a letter amendment to the CoC. Under the waiver, the Office of Radioisotope Power Systems, NE-34, is seeking an exemption from 10 CFR 71.19(d)(1), Previously Approved Package,[5] which states: '(d) NRC will approve modifications to the design and authorized contents of a Type B package, or a fissile material package, previously approved by NRC, provided--(1) The modifications of a Type B package are not significant with respect to the design, operating characteristics, or safe performance of the containment system, when the package is subjected to the tests

  1. Programming for 1.6 Millon cores: Early experiences with IBM's BG/Q SMP architecture

    NASA Astrophysics Data System (ADS)

    Glosli, James

    2013-03-01

    With the stall in clock cycle improvements a decade ago, the drive for computational performance has continues along a path of increasing core counts on a processor. The multi-core evolution has been expressed in both a symmetric multi processor (SMP) architecture and cpu/GPU architecture. Debates rage in the high performance computing (HPC) community which architecture best serves HPC. In this talk I will not attempt to resolve that debate but perhaps fuel it. I will discuss the experience of exploiting Sequoia, a 98304 node IBM Blue Gene/Q SMP at Lawrence Livermore National Laboratory. The advantages and challenges of leveraging the computational power BG/Q will be detailed through the discussion of two applications. The first application is a Molecular Dynamics code called ddcMD. This is a code developed over the last decade at LLNL and ported to BG/Q. The second application is a cardiac modeling code called Cardioid. This is a code that was recently designed and developed at LLNL to exploit the fine scale parallelism of BG/Q's SMP architecture. Through the lenses of these efforts I'll illustrate the need to rethink how we express and implement our computational approaches. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D.L.; Rosen, M.D.

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widelymore » known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.« less

  3. Correlations of Platooning Track Test and Wind Tunnel Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, Michael P.; Kelly, Kenneth J.; Yanowitz, Janet

    In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 tomore » Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.« less

  4. Advances and Challenges In Uncertainty Quantification with Application to Climate Prediction, ICF design and Science Stockpile Stewardship

    NASA Astrophysics Data System (ADS)

    Klein, R.; Woodward, C. S.; Johannesson, G.; Domyancic, D.; Covey, C. C.; Lucas, D. D.

    2012-12-01

    Uncertainty Quantification (UQ) is a critical field within 21st century simulation science that resides at the very center of the web of emerging predictive capabilities. The science of UQ holds the promise of giving much greater meaning to the results of complex large-scale simulations, allowing for quantifying and bounding uncertainties. This powerful capability will yield new insights into scientific predictions (e.g. Climate) of great impact on both national and international arenas, allow informed decisions on the design of critical experiments (e.g. ICF capsule design, MFE, NE) in many scientific fields, and assign confidence bounds to scientifically predictable outcomes (e.g. nuclear weapons design). In this talk I will discuss a major new strategic initiative (SI) we have developed at Lawrence Livermore National Laboratory to advance the science of Uncertainty Quantification at LLNL focusing in particular on (a) the research and development of new algorithms and methodologies of UQ as applied to multi-physics multi-scale codes, (b) incorporation of these advancements into a global UQ Pipeline (i.e. a computational superstructure) that will simplify user access to sophisticated tools for UQ studies as well as act as a self-guided, self-adapting UQ engine for UQ studies on extreme computing platforms and (c) use laboratory applications as a test bed for new algorithms and methodologies. The initial SI focus has been on applications for the quantification of uncertainty associated with Climate prediction, but the validated UQ methodologies we have developed are now being fed back into Science Based Stockpile Stewardship (SSS) and ICF UQ efforts. To make advancements in several of these UQ grand challenges, I will focus in talk on the following three research areas in our Strategic Initiative: Error Estimation in multi-physics and multi-scale codes ; Tackling the "Curse of High Dimensionality"; and development of an advanced UQ Computational Pipeline to enable

  5. Pleiades Experiments on the NIF: Phase II-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benstead, James; Morton, John; Guymer, Thomas

    2015-06-08

    Pleiades was a radiation transport campaign fielded at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) between 2011 and 2014. The primary goals of the campaign were to develop and characterise a reproducible ~350eV x-ray drive and to constrain a number of material data properties required to successfully model the propagation of radiation through two low-density foam materials. A further goal involved the development and qualification of diagnostics for future radiation transport experiments at NIF. Pleiades was a collaborative campaign involving teams from both AWE and the Los Alamos National Laboratory (LANL).

  6. The National Ignition Facility: The Path to a Carbon-Free Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J

    2011-03-16

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  7. DHS-STEM Internship at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, B

    2008-08-18

    This summer I had the fortunate opportunity through the DHS-STEM program to attend Lawrence Livermore National Laboratories (LLNL) to work with Tom Slezak on the bioinformatics team. The bioinformatics team, among other things, helps to develop TaqMan and microarray probes for the identification of pathogens. My main project at the laboratory was to test such probe identification capabilities against metagenomic (unsequenced) data from around the world. Using various sequence analysis tools (Vmatch and Blastall) and several we developed ourselves, about 120 metagenomic sequencing projects were compared against a collection of all completely sequenced genomes and Lawrence Livermore National Laboratory's (LLNL)more » current probe database. For the probes, the Blastall algorithms compared each individual metagenomic project using various parameters allowing for the natural ambiguities of in vitro hybridization (mismatches, deletions, insertions, hairpinning, etc.). A low level cutoff was used to eliminate poor sequence matches, and to leave a large variety of higher quality matches for future research into the hybridization of sequences with mutations and variations. Any hits with at least 80% base pair conservation over 80% of the length of the match. Because of the size of our whole genome database, we utilized the exact match algorithm of Vmatch to quickly search and compare genomes for exact matches with varying lower level limits on sequence length. I also provided preliminary feasibility analyses to support a potential industry-funded project to develop a multiplex assay on several genera and species. Each genus and species was evaluated based on the amount of sequenced genomes, amount of near neighbor sequenced genomes, presence of identifying genes--metabolistic or antibiotic resistant genes--and the availability of research on the identification of the specific genera or species. Utilizing the bioinformatic team's software, I was able to develop and

  8. Requirements Doc for Refurb of JASPER Facility in B131HB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knittel, Kenn M.

    The Joint Actinide Shock Physics Experimental Research (JASPER) Program target fabrication facility is currently located in building 131 (B131) of the Lawrence Livermore National Laboratory (LLNL). A portion of this current facility has been committed to another program as part of a larger effort to consolidate LLNL capabilities into newer facilities. This facility assembles precision targets for scientific studies at the Nevada National Security Site (NNSS). B131 is also going through a modernization project to upgrade the infrastructure and abate asbestos. These activities will interrupt the continuous target fabrication efforts for the JASPER Program. Several options are explored to meetmore » the above conflicting requirements, with the final recommendation to prepare a new facility for JASPER target fabrication operations before modernization efforts begin in the current facility assigned to JASPER. This recommendation fits within all schedule constraints and minimizes the disruption to the JASPER Program. This option is not without risk, as it requires moving an aged, precision coordinate measuring machine, which is essential to the JASPER Program’s success. The selected option balances the risk to the machine with continuity of operations.« less

  9. The US-DOE ARM/ASR Effort in Quantifying Uncertainty in Ground-Based Cloud Property Retrievals (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Protat, A.; Zhao, C.

    2013-12-01

    One primary goal of the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program is to obtain and retrieve cloud microphysical properties from detailed cloud observations using ground-based active and passive remote sensors. However, there is large uncertainty in the retrieved cloud property products. Studies have shown that the uncertainty could arise from instrument limitations, measurement errors, sampling errors, retrieval algorithm deficiencies in assumptions, as well as inconsistent input data and constraints used by different algorithms. To quantify the uncertainty in cloud retrievals, a scientific focus group, Quantification of Uncertainties In Cloud Retrievals (QUICR), was recently created by the DOE Atmospheric System Research (ASR) program. This talk will provide an overview of the recent research activities conducted within QUICR and discuss its current collaborations with the European cloud retrieval community and future plans. The goal of QUICR is to develop a methodology for characterizing and quantifying uncertainties in current and future ARM cloud retrievals. The Work at LLNL was performed under the auspices of the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. LLNL-ABS-641258.

  10. Construction safety program for the National Ignition Facility, July 30, 1999 (NIF-0001374-OC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin, D W

    1999-07-30

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules-Code of Safe Practices shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S and H A-l that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Rules-Code of Safe Practices. (An interpreter must briefmore » those employees who do not speak or read English fluently.) In addition, all contractors and subcontractors shall adopt a written General Rules-Code of Safe Practices that relates to their operations. The General Rules-Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory employee who shall have it readily available. Copies of the General Rules-Code of Safe Practices can also be included in employee safety pamphlets.« less

  11. Remediation of ground water containing volatile organic compounds and tritium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water inmore » this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ``pump-and-treat`` technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations.« less

  12. National Ignition Facility, High-Energy-Density and Inertial Confinement Fusion, Peer-Review Panel (PRP) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keane, C. J.

    2014-01-28

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is operated as a National Nuclear Security Administration (NNSA) user facility in accordance with Department of Energy (DOE) best practices, including peer-reviewed experiments, regular external reviews of performance, and the use of a management structure that facilitates user and stakeholder feedback. NIF facility time is managed using processes similar to those in other DOE science facilities and is tailored to meet the mix of missions and customers that NIF supports. The NIF Governance Plan describes the process for allocating facility time on NIF and for creating the shot schedule.more » It also includes the flow of responsibility from entity to entity. The plan works to ensure that NIF meets its mission goals using the principles of scientific peer review, including transparency and cooperation among the sponsor, the NIF staff, and the various user communities. The NIF Governance Plan, dated September 28, 2012, was accepted and signed by LLNL Director Parney Albright, NIF Director Ed Moses, and Don Cook and Thomas D’Agostino of NNSA. Figure 1 shows the organizational structure for NIF Governance.« less

  13. Optical Encoding Technology for Viral Screening Panels Final Report CRADA No TC02132.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenhoff, R.; Haushalter, R.

    This was a collaborative effort between Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory (LLNL) and Parallel Synthesis Technologies, Inc. (PSTI), to develop Optical Encoding Technology for Viral Screening Panels. The goal for this effort was to prepare a portable bead reader system that would enable the development of viral and bacterial screening panels which could be used for the detection of any desired set of bacteria or viruses in any location. The main objective was to determine if the combination of a bead-based, PCR suspension array technology, formulated from Parallume encoded beads and PSTI’s multiplex assay reader systemmore » (MARS), could provide advantages in terms of the number of simultaneously measured samples, portability, ruggedness, ease of use, accuracy, precision or cost as compared to the Luminexbased system developed at LLNL. The project underwent several no cost extensions however the overall goal of demonstrating the utility of this new system was achieved. As a result of the project a significant change to the type of bead PSTI used for the suspension system was implemented allowing better performance than the commercial Luminex system.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchant, M.; Sesko, S.C.

    Objective was to examine the creative process, demonstrated by 5 student participants in a class at the Art Center College of Design in Pasadena CA, from the germ of the creative idea through the final creative product. The students, drawn from classes sponsored by LLNL, were assigned the problem of representing ``big`` science, as practiced at LLNL, in a graphic, artistic, or multimedia product. As a result of this study, it was discovered that the process of creativity with these students was not linear in nature, nor did it strictly follow the traditional creativity 5-step schema of preparation, incubation, insight,more » evaluation, and elaboration. Of particular interest were several emergent themes of the creative process: spontaneous use of metaphor to describe the Laboratory; a general lack of interest in ``school`` science or mathematics by the American art students; a well developed sense of conscience; and finally, the symbolism inherent in the repeated use of a single artistic element. This use of the circle revealed a continuity of thinking and design perhaps related to the idealistic bias mentioned above.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A.; Barnard, J. J.; Cohen, R. H.

    The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL,more » NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A; Barnard, J J; Cohen, R H

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Testmore » Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.« less

  17. Exploring Large-Scale Cross-Correlation for Teleseismic and Regional Seismic Event Characterization

    NASA Astrophysics Data System (ADS)

    Dodge, Doug; Walter, William; Myers, Steve; Ford, Sean; Harris, Dave; Ruppert, Stan; Buttler, Dave; Hauk, Terri

    2013-04-01

    The decrease in costs of both digital storage space and computation power invites new methods of seismic data processing. At Lawrence Livermore National Laboratory(LLNL) we operate a growing research database of seismic events and waveforms for nuclear explosion monitoring and other applications. Currently the LLNL database contains several million events associated with tens of millions of waveforms at thousands of stations. We are making use of this database to explore the power of seismic waveform correlation to quantify signal similarities, to discover new events not in catalogs, and to more accurately locate events and identify source types. Building on the very efficient correlation methodologies of Harris and Dodge (2011) we computed the waveform correlation for event pairs in the LLNL database in two ways. First we performed entire waveform cross-correlation over seven distinct frequency bands. The correlation coefficient exceeds 0.6 for more than 40 million waveform pairs for several hundred thousand events at more than a thousand stations. These correlations reveal clusters of mining events and aftershock sequences, which can be used to readily identify and locate events. Second we determine relative pick times by correlating signals in time windows for distinct seismic phases. These correlated picks are then used to perform very high accuracy event relocations. We are examining the percentage of events that correlate as a function of magnitude and observing station distance in selected high seismicity regions. Combining these empirical results and those using synthetic data, we are working to quantify relationships between correlation and event pair separation (in epicenter and depth) as well as mechanism differences. Our exploration of these techniques on a large seismic database is in process and we will report on our findings in more detail at the meeting.

  18. Exploring Large-Scale Cross-Correlation for Teleseismic and Regional Seismic Event Characterization

    NASA Astrophysics Data System (ADS)

    Dodge, D.; Walter, W. R.; Myers, S. C.; Ford, S. R.; Harris, D.; Ruppert, S.; Buttler, D.; Hauk, T. F.

    2012-12-01

    The decrease in costs of both digital storage space and computation power invites new methods of seismic data processing. At Lawrence Livermore National Laboratory (LLNL) we operate a growing research database of seismic events and waveforms for nuclear explosion monitoring and other applications. Currently the LLNL database contains several million events associated with tens of millions of waveforms at thousands of stations. We are making use of this database to explore the power of seismic waveform correlation to quantify signal similarities, to discover new events not in catalogs, and to more accurately locate events and identify source types. Building on the very efficient correlation methodologies of Harris and Dodge (2011) we computed the waveform correlation for event pairs in the LLNL database in two ways. First we performed entire waveform cross-correlation over seven distinct frequency bands. The correlation coefficient exceeds 0.6 for more than 40 million waveform pairs for several hundred thousand events at more than a thousand stations. These correlations reveal clusters of mining events and aftershock sequences, which can be used to readily identify and locate events. Second we determine relative pick times by correlating signals in time windows for distinct seismic phases. These correlated picks are then used to perform very high accuracy event relocations. We are examining the percentage of events that correlate as a function of magnitude and observing station distance in selected high seismicity regions. Combining these empirical results and those using synthetic data, we are working to quantify relationships between correlation and event pair separation (in epicenter and depth) as well as mechanism differences. Our exploration of these techniques on a large seismic database is in process and we will report on our findings in more detail at the meeting.

  19. Detectability of Wellbore CO2 Leakage using the Magnetotelluric Method

    NASA Astrophysics Data System (ADS)

    Yang, X.; Buscheck, T. A.; Mansoor, K.; Carroll, S.

    2016-12-01

    We assessed the effectiveness of the magnetotelluric (MT) method in detecting CO2 and brine leakage through a wellbore, which penetrates a CO2 storage reservoir, into overlying aquifers, 0 to 1720 m in depth, in support of the USDOE National Risk Assessment Partnership (NRAP) monitoring program. Synthetic datasets based on the Kimberlina site in the southern San Joaquin Basin, California were created using CO2 storage reservoir models, wellbore leakage models, and groundwater/geochemical models of the overlying aquifers. The species concentrations simulated with the groundwater/geochemical models were converted into bulk electrical conductivity (EC) distributions as the MT model input. Brine and CO2 leakage into the overlying aquifers increases ion concentrations, and thus results in an EC increase, which may be detected by the MT method. Our objective was to estimate and maximize the probability of leakage detection using the MT method. The MT method is an electromagnetic geophysical technique that images the subsurface EC distribution by measuring natural electric and magnetic fields in the frequency range from 0.01 Hz to 1 kHz with sensors on the ground surface. The ModEM software was used to predict electromagnetic responses from brine and CO2 leakage and to invert synthetic MT data for recovery of subsurface conductivity distribution. We are in the process of building 1000 simulations for ranges of permeability, leakage flux, and hydraulic gradient to study leakage detectability and to develop an optimization method to answer when, where and how an MT monitoring system should be deployed to maximize the probability of leakage detection. This work was sponsored by the USDOE Fossil Energy, National Energy Technology Laboratory, managed by Traci Rodosta and Andrea McNemar. This work was performed under the auspices of the USDOE by LLNL under contract DE-AC52-07NA27344. LLNL IM release number is LLNL-ABS-699276.

  20. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE PAGES

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  1. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  2. Coatings for high energy applications. The Nova laser

    NASA Astrophysics Data System (ADS)

    Wirtenson, G. R.

    The combined requirements of energy density, multiple wavelength, and aperture make the coatings for the Nova Inertial Confinement Fusion (ICF) laser unique. This ten beam neodymium glass laser system, built at the Lawrence Livermore National Laboratory (LLNL), has over a thousand major optical components; some larger than one meter in diameter and weighing 380 Kg. The laser operates at 1054 nm and can be frequency doubled to 527 nm or tripled to 351 nm by means of full aperture potassium dihydrogen phosphate (KDP) crystal arrays. The 1.0 nsec fluence varies along the laser chain, sometimes reaching values as high as 16 J/cm(2) at the input lens to one of the spatial filters. The design specifications of this massive optical system were changed several times as the state-of-the-art advanced. Each change required redesign of the optical coatings even as vendors were preparing for production runs. Frequency conversion to include shorter wavelengths mandated the first major coating redesign and was followed almost immediately by a second redesign to reduce solarization effects in borosilicate crown glass. The conventional thermal evaporation process although successful for the deposition of mirror coatings, was not able to produce antireflection coatings able to survive the locally high chain fluences. As a consequence it became necessary to develop another technique. Solution produced coatings were developed having transmissions exceeding 99% per part and damage threshold values equal to the bare substrate. The unique requirement of the Nova laser necessitated special deposition and metrology equipment. These programmatic developments will be reviewed in the context of the cooperative working relationship developed between LLNL and its vendors. It was this excellent relationship which has enabled LLNL to obtain these highly specialized coatings for the Nova laser.

  3. University of Rochester, Laboratory for Laser Energetics

    NASA Astrophysics Data System (ADS)

    1987-01-01

    In FY86 the Laboratory has produced a list of accomplishments in which it takes pride. LLE has met every laser-fusion program milestone to date in a program of research for direct-drive ultraviolet laser fusion originally formulated in 1981. LLE scientists authored or co-authored 135 scientific papers during 1985 to 1986. The collaborative experiments with NRL, LANL, and LLNL have led to a number of important ICF results. The cryogenic target system developed by KMS Fusion for LLE will be used in future high-density experiments on OMEGA to demonstrate the compression of thermonuclear fuel to 100 to 200 times that of solid (20 to 40 g/cm) in a test of the direct-drive concept, as noted in the National Academy of Sciences' report. The excellence of the advanced technology efforts at LLE is illustrated by the establishment of the Ultrafast Science Center by the Department of Defense through the Air Force Office of Scientific Research. Research in the Center will concentrate on bridging the gap between high-speed electronics and ultrafast optics by providing education, research, and development in areas critical to future communications and high-speed computer systems. The Laboratory for Laser Energetics continues its pioneering work on the interaction of intense radiation with matter. This includes inertial-fusion and advanced optical and optical electronics research; training people in the technology and applications of high-power, short-pulse lasers; and interacting with the scientific community, business, industry, and government to promote the growth of laser technology.

  4. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and

  5. Summary of EM launcher experiments performed at LLNL

    NASA Astrophysics Data System (ADS)

    Hawke, R. S.; Nellis, W. J.; Newman, G. H.; Rego, J.; Susoeff, A. R.

    1986-11-01

    Performance results for three railguns are summarized. The system used a helium gas-driven injector and railgun launcher to accelerate 1- and 4-g polycarbonate projectiles intact up to 6.6 and 3.0 km/sc, respectively. A 625 kJ capacitor bank powered the railgun, and an adjustable inductor provided pulse shaping and peak current control. Operation in hard and soft vacuum was reliably achieved. The diagnostic system measured the projectile position and launch velocity, verified that the projectile was launched intact in the desired direction, and identified system components where improvements could enhance performance. Flash X-ray radiography measured velocity and verified that projectiles were intact. Pre-launch projectile travel along the axis of the launcher without tilt was recorded with flash radiographs and impact impressions or holes in witness plates. The sysem performed as expected up to 4-5 km/sec but below expectations at higher velocities. Diagnostics suggest that the decreased performance was probably cuased by the restriking of a second arc in the breech of the railgun, which shunted the current from the propulsive arc.

  6. LLNL Mercury Project Trinity Open Science Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Shawn A.

    The Mercury Monte Carlo particle transport code is used to simulate the transport of radiation through urban environments. These challenging calculations include complicated geometries and require significant computational resources to complete. In the proposed Trinity Open Science calculations, I will investigate computer science aspects of the code which are relevant to convergence of the simulation quantities with increasing Monte Carlo particle counts.

  7. The AMTEX Partnership{trademark} mid year report, fiscal year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Complex (ITC), the US Department of Energy (DOE), the DOE national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. Three AMTEX projects funded in FY 1997 are Diamond Activated Manufacturing Architecture (DAMA), Computer-Aided Fabric Evaluation (CAFE), and Textile Resource Conservation (TReC). The five sites involved in AMTEX work are Sandia National Laboratory (SNL), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), the Oak Ridgemore » Y-12 Plant, and the Oak Ridge National Laboratory (ORNL) (the latter is funded through Y-12).« less

  8. Remote sensing, imaging, and signal engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J.M.

    1993-03-01

    This report discusses the Remote Sensing, Imaging, and Signal Engineering (RISE) trust area which has been very active in working to define new directions. Signal and image processing have always been important support for existing programs at Lawrence Livermore National Laboratory (LLNL), but now these technologies are becoming central to the formation of new programs. Exciting new applications such as high-resolution telescopes, radar remote sensing, and advanced medical imaging are allowing us to participate in the development of new programs.

  9. Operations Charioteer, Musketeer, Touchstone, Cornerstone, Aqueduct, Sculpin and Julin. Tests Mill Yard, Diamond Beech, Mighty Oak, Middle Note Mission Ghost, Mission Cyber, Misty Echo, Disko Elm, Mineral Quarry, Distant Zenith, Diamond Fortune, and Hunters Trophy

    DTIC Science & Technology

    1999-05-01

    2l.SU -Wf6e:uJfr-02tSU -V 69E ;W 9-2l IS« 0VS9 v 6se :w e"g(HSH ttWS:uJB-86SU ¥0l-8:uJ9"fr6SUOVW WW2 :lug-98SU U68l-:ujg-,£SSH — —VZL-VU61ZSU...and JAYCOR conducted infrared window material optical properties experiments; Lawrence Livermore National Laboratory (LLNL) conducted 146 device

  10. Fast Model Generalized Pseudopotential Theory Interatomic Potential Routine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-03-18

    MGPT is an unclassified source code for the fast evaluation and application of quantum-based MGPT interatomic potentials for mrtals. The present version of MGPT has been developed entirely at LLNL, but is specifically designed for implementation in the open-source molecular0dynamics code LAMMPS maintained by Sandia National Laboratories. Using MGPT in LAMMPS, with separate input potential data, one can perform large-scale atomistic simulations of the structural, thermodynamic, defeat and mechanical properties of transition metals with quantum-mechanical realism.

  11. Hydrologic resources management program and underground test area FY 1999 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D K; Eaton, G F; Rose, T P

    2000-07-01

    This report presents the results from fiscal year (FY) 1999 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) work-for-others project. This report is the latest in a series of annual reports published by LLNL to document the migration of radionuclides and controls of radionuclide movement at the Nevada Test Site. The FY 1999 studies highlighted in this report are: (1) Chapter 1 provides the results from flow-through leaching of nuclear melt glasses at 25 C and near-neutral pH using dilute bicarbonate groundwaters. (2) Chaptermore » 2 reports on a summary of the size and concentration of colloidal material in NTS groundwaters. (3) Chapter 3 discusses the collaboration between LLNL/ANCD (Analytical and Nuclear Chemistry Division) and the Center for Accelerator Mass Spectrometry (CAMS) to develop a technique for analyzing NTS groundwater for 99-Technicium ({sup 99}Tc) using accelerator mass spectrometry (AMS). Since {sup 99}Tc is conservative like tritium in groundwater systems, and is not sorbed to geologic material, it has the potential for being an important tool for radionuclide migration studies. (4) Chapter 4 presents the results of secondary ion mass spectrometry measurements of the in-situ distribution of radionuclides in zeolitized tuffs from cores taken adjacent to nuclear test cavities and chimneys. In-situ measurements provide insight to the distribution of specific radionuclides on a micro-scale, mineralogical controls of radionuclide sorption, and identification of migration pathways (i.e., matrix diffusion, fractures). (5) Chapter 5 outlines new analytical techniques developed in LLNL/ANCD to study hydrologic problems at the NTS using inductively coupled plasma mass spectrometry (ICP-MS). With costs for thermal-ionization mass spectrometry (TIMS) increasing relative to sample preparation time and facility support, ICP

  12. Preservation Study for Ultra-Dilute VX Standards | Science ...

    EPA Pesticide Factsheets

    Report Lawrence Livermore National Laboratory (LLNL) supplies ultra-dilute (10 µg/mL) chemical warfare agent (CWA) standards to the Environmental Response Laboratory Network (ERLN) laboratories to allow the use of authentic standards to assist in analyses required for a remediation event involving CWAs. For this reason, it is important to collect data regarding the shelf-lives of these standards. The instability has the potential to impact quality control in regional ERLN laboratories, resulting in data that are difficult to interpret. Thus, this study investigated the use of chemical stabilizers to increase the shelf-life of VX standards. VX standards with long shelf-lives are desirable, as long shelf-life would significantly reduce the costs associated with synthesizing and resupplying the ERLN laboratories with VX.

  13. Overview of the National Ignition Campaign (NIC)

    NASA Astrophysics Data System (ADS)

    Moses, Edward

    2010-11-01

    The 192-beam National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is now operational. NIF has conducted 192-beam implosion experiments with energies as high as 1.2 MJ and has also demonstrated the unprecedented energy and pulse shaping control required for ignition experiments. The successful commissioning of the NIF laser is the first step in demonstrating inertial confinement fusion (ICF) ignition in the laboratory. The NIF ignition program is executed via the National Ignition Campaign (NIC)---a partnership between Los Alamos National Laboratory, Lawrence Berkeley Laboratory, LLNL, General Atomics, the University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories, the Massachusetts Institute of Technology, and other national and international partners. The NIC relies on a novel integrated experimental and computational program to tune the target to the conditions required for indirect-drive ignition. This approach breaks the tuning process into four phases. The first two phases involve tuning of the hohlraum and capsule to produce the correct radiation drive, symmetry, and shock timing conditions. The third phase consists of layered cryogenic implosions conducted with a 50%/49%/1% mixture of tritium, hydrogen, and deuterium (THD) respectively. The reduced yield from these THD targets allows the full diagnostic suite to be employed and the presence of the required temperature and fuel areal density to be verified. The final step is DT ignition implosions with expected gains of 10-20. DT ignition experiments will be conducted with Elaser ˜1.2 MJ. Laser energies of 1.8 MJ should be available for subsequent experiments. This talk will review the multi-phase tuning approach to the ignition effort, including the physics issues associated with the various steps, and current and future plans for the NIF ignition program.

  14. Crashworthiness analysis using advanced material models in DYNA3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, R.W.; Burger, M.J.; McMichael, L.D.

    1993-10-22

    As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber compositesmore » being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.« less

  15. Characterization of Proxy Application Performance on Advanced Architectures. UMT2013, MCB, AMG2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, Louis H.; Gunney, Brian T.; Bhatele, Abhinav

    2015-10-09

    Three codes were tested at LLNL as part of a Tri-Lab effort to make detailed assessments of several proxy applications on various advanced architectures, with the eventual goal of extending these assessments to codes of programmatic interest running more realistic simulations. Teams from Sandia and Los Alamos tested proxy apps of their own. The focus in this report is on the LLNL codes UMT2013, MCB, and AMG2013. We present weak and strong MPI scaling results and studies of OpenMP efficiency on a large BG/Q system at LLNL, with comparison against similar tests on an Intel Sandy Bridge TLCC2 system. Themore » hardware counters on BG/Q provide detailed information on many aspects of on-node performance, while information from the mpiP tool gives insight into the reasons for the differing scaling behavior on these two different architectures. Results from three more speculative tests are also included: one that exploits NVRAM as extended memory, one that studies performance under a power bound, and one that illustrates the effects of changing the torus network mapping on BG/Q.« less

  16. Simulation of Deformation, Momentum and Energy Coupling Particles Deformed by Intense Shocks

    NASA Astrophysics Data System (ADS)

    Lieberthal, B.; Stewart, D. S.; Bdzil, J. B.; Najjar, F. M.; Balachandar, S.; Ling, Y.

    2011-11-01

    Modern energetic materials have embedded solids and inerts in an explosive matrix. A detonation in condensed phase materials, generates intense shocks that deform particles as the incident shock diffracts around them. The post-shock flow generates a wake behind the particle that is influenced by the shape changes of the particle. The gasdynamic flow in the explosive products and its interaction with the deformation of the particle must be treated simultaneously. Direct numerical simulations are carried out that vary the particle-to-surrounding density and impedance ratios to consider heavier and lighter particle. The vorticity deposited on the interface due to shock interaction with the particle, the resulting particle deformation and the net momentum and energy transferred to the particle, on the acoustic and longer viscous time scale are considered. The LLNL multi-physics hydrodynamic code ALE3D is used to carry out the simulations. BL, DSS and JBB supported by AFRL/RW AF FA8651-10-1-0004 & DTRA, HDTRA1-10-1-0020 Off Campus. FMN's work supported by the U.S. DOE/ LLNL, Contract DE-AC52-07NA27344. LLNL-ABS-491794.

  17. Technical Report: Benchmarking for Quasispecies Abundance Inference with Confidence Intervals from Metagenomic Sequence Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLoughlin, K.

    2016-01-22

    The software application “MetaQuant” was developed by our group at Lawrence Livermore National Laboratory (LLNL). It is designed to profile microbial populations in a sample using data from whole-genome shotgun (WGS) metagenomic DNA sequencing. Several other metagenomic profiling applications have been described in the literature. We ran a series of benchmark tests to compare the performance of MetaQuant against that of a few existing profiling tools, using real and simulated sequence datasets. This report describes our benchmarking procedure and results.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, Harry

    Each time you step on a commercial flight, you can feel safer because of a researcher you've probably never heard of. His name is Harry Martz. He's a veteran scientist at the Lawrence Livermore National Laboratory (LLNL) who wakes up every day thinking how his research can advance X-ray imaging technology to thwart the next terrorist attack. "My job is to improve national security" Martz said. "That's why my research team exists. We have to outsmart the terrorists. It's a constant battle."

  19. Uncrackable code for nuclear weapons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Mark

    Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."

  20. Issues Identified During September 2016 IBM OpenMP 4.5 Hackathon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, David F.

    In September, 2016 IBM hosted an OpenMP 4.5 Hackathon at the TJ Watson Research Center. Teams from LLNL, ORNL, SNL, LANL, and LBNL attended the event. As with the 2015 hackathon, IBM produced an extremely useful and successful event with unmatched support from compiler team, applications staff, and facilities. Approximately 24 IBM staff supported 4-day hackathon and spent significant time 4-6 weeks out to prepare environment and become familiar with apps. This hackathon was also the first event to feature LLVM & XL C/C++ and Fortran compilers. This report records many of the issues encountered by the LLNL teams duringmore » the hackathon.« less

  1. Underground Test Area Fiscal Year 2013 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krenzien, Susan; Marutzky, Sam

    This report is required by the Underground Test Area (UGTA) Quality Assurance Plan (QAP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2013. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2013. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, and publishing documents. In addition, integrated UGTA required reading and correctivemore » action tracking was instituted.« less

  2. Analysis of Alternatives (AoA) of Open Colllaboration and Research Capabilities Collaboratipon in Research and Engineering in Advanced Technology and Education and High-Performance Computing Innovation Center (HPCIC) on the LVOC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrieling, P. Douglas

    2016-01-01

    The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNLmore » and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalk, D. M., LLNL

    When we first requested to speak at the American Society of Safety Engineer`s Professional Development Conference in Seattle, Washington, the theme we had in mind for this program paper was quite different. It definitely was not anything like our title, `Heart to Heart` implies. It was more formal and traditional. Give you figures, diagrams and the like. But two years later, we have come to another conclusion, to tell you the story about how a group of custodians and health & safety professionals dreamed big dreams and they came true. In order to understand what occurred, we first need tomore » start at the very beginning with the Custodian Quality Improvement Team (CQIT). This group had been formed by the Plant Engineering Department at the Lawrence Livermore National Laboratory (LLNL) located in Livermore, California. LLNL is operated by the University of California for The U.S.Department of Energy. It is the premier applied physics research laboratory in the world. Plant Engineering (PE) is much like a Public Works Department. PE has all of the crafts, such as plumbers and electricians, who do maintenance-type work, as well as the engineering and construction employees. PE maintain the utilities, constructs new buildings and takes care of old ones. They take of the roads and clean the buildings and landscape the campus. So the Custodian Shop and its some 150 employees is a member of the PE family so to speak. The CQIT had decided to investigate ways they could reduce the number of injuries they were having. They invited health and safety professionals, David Zalk (an Industrial Hygienist) and Jack Tolley (Safety Engineer) to consult with them about this. They are both Hazards Control Team 4 members at LLNL. They were both interested in ergonomics and suggested that an approach to reducing their injuries might lie in studying how the custodians actually do their work. David has extensive training in ergonomics, and Jack simply had a long-time interest in

  4. Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S M; Danganan, L; Tammero, L

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed candidate multiplexed assays that may potentially be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the ability to improve our nation's capability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect food and agricultural resources with a diagnosticmore » test which could enhance the nation's capabilities for early detection of a foreign animal disease. In FY2005 with funding from the DHS, LLNL developed the first version (Version 1.0) of a multiplexed (MUX) nucleic-acid-based RT-PCR assay that included signatures for foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases (FADs) of swine, Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease Virus (SVDV), and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus [BPSV], Orf of sheep, and Pseudocowpox). In FY06, LLNL has developed Bovine and Porcine species-specific panel which included existing signatures from Version 1.0 panel as well as new signatures. The MUX RT-PCR porcine assay for detection of FMDV includes the FADs, VESV and SVD in addition to vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome (PRRS). LLNL has also developed a MUX RT-PCR bovine assay for detection of FMDV with rule out tests for the two bovine FADs malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis

  5. September 2002 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, R

    2002-09-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at NASA Ames Research Center on September 23, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Freightliner, and Portland State Universitymore » participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items. The meeting began with an introduction by the Project Lead Rose McCallen of LLNL, where she emphasized that the world energy consumption is predicted to relatively soon exceed the available resources (i.e., fossil, hydro, non-breeder fission). This short fall is predicted to begin around the year 2050. Minimizing vehicle aerodynamic drag will significantly reduce our Nation's dependence on foreign oil resources and help with our world-wide fuel shortage. Rose also mentioned that educating the populace and researchers as to our world energy issues is important and that our upcoming United Engineering Foundation (UEF) Conference on ''The Aerodynamics of Heavy Vehicles: Trucks, Busses, and Trains'' was one way our DOE Consortium was doing this. Mentioned were the efforts of Fred Browand from USC in organizing and attracting internationally recognized speakers to the Conference. Rose followed with an overview of the DOE project goals, deliverables, and FY03 activities. The viewgraphs are attached at the end of this report. Sid Diamond

  6. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory Volume 1: Report of Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2006-04-24

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling

  7. The CAWMSET Report: A Framework for Change

    NASA Astrophysics Data System (ADS)

    Budil, Kimberly S.

    2001-04-01

    In October 1998 the Commission on the Advancement of Women and Minorities in Science, Engineering and Technology Development (CAWMSET) was established by Congress through legislation developed and sponsored by Congresswomen Constance A. Morella (R-MD). The CAWMSET became a focal point for a grass-roots organization of women at the Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), California in collaboration with the Society of Women Engineers seeking to improve the environment in our workplaces. With the encouragement of our Congresswoman, Ellen Tauscher (D-CA), we embarked on an effort to provide input to the Commission regarding the recruitment, advancement and retention of women in the technical workforce since the input they received was primarily focused on the educational pipeline. The release of the CAWMSET's final report this summer provided a framework to begin to work toward the overarching goal of an inclusive, supportive, and diverse scientific community and to help us devise strategies for our home organizations that will allow us to achieve this in the near future. The Commission's final recommendation was to create a follow-on organization to carry their work forward. Professional organizations like the American Physical Society can play a key role in helping to ensure that the CAWMSET report is acted upon, not filed and forgotten. I will discuss the findings of the CAWMSET as well as past and ongoing activities at LLNL and SNL in support of this effort.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartke, T.C.

    Under the US Department of Energy's Underground-Coal-Conversion program, four field tests were completed in 1979 and preparations were begun in 1980 for two additional field tests to be operated in 1981. The Laramie Energy Technology Center (LETC) and Sandia National Laboratories (SNL) completed Hanna IV, an air gasification test in Wyoming subbituminous coal. The Morgantown Energy Technology Center (METC) completed Pricetown 1, an air gasification test in West Virginia bituminous coal. Lawrence Livermore National Laboratory (LLNL) completed Hoe Creek 3, a steam-oxygen gasification test in Wyoming subbituminous coal. Gulf Research and Development Co. completed Steeply Dipping Beds (SDB) Test 1,more » primarily an air gasification test in Wyoming subbituminous coal and the first SDB test in the US. In 1980, Gulf R and D Co. began preparation of SDB Test 2, scheduled for operation in the fall of 1981. The DOE project teams at LETC, METC, LLNL, and SNL, in association with the Washington Irrigation and Development Co. (WIDCo), Washington Water Power (WWP), and the State of Washington, are preparing a field test site in the Centralia-Chehalis coal district of Washington. A series of large coal block tests will be completed prior to the field test, scheduled for operation in 1982 or 1983. This field test will utilize a directionally drilled link and steam-oxygen gasification system. This paper summarizes the results of the four recently completed field tests and the plans for additional tests.« less

  9. Good Models Gone Bad: Quantifying and Predicting Parameter-Induced Climate Model Simulation Failures

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Brandon, S.; Covey, C. C.; Domyancic, D.; Ivanova, D. P.

    2012-12-01

    Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Statistical analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation failures of the Parallel Ocean Program (POP2). About 8.5% of our POP2 runs failed for numerical reasons at certain combinations of parameter values. We apply support vector machine (SVM) classification from the fields of pattern recognition and machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. The SVM classifiers readily predict POP2 failures in an independent validation ensemble, and are subsequently used to determine the causes of the failures via a global sensitivity analysis. Four parameters related to ocean mixing and viscosity are identified as the major sources of POP2 failures. Our method can be used to improve the robustness of complex scientific models to parameter perturbations and to better steer UQ ensembles. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013 (UCRL LLNL-ABS-569112).

  10. Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape

    NASA Astrophysics Data System (ADS)

    Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.

    2014-10-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  11. Facilities and Techniques for X-Ray Diagnostic Calibration in the 100-eV to 100-keV Energy Range

    NASA Astrophysics Data System (ADS)

    Gaines, J. L.; Wittmayer, F. J.

    1986-08-01

    The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.

  12. Development of a Landmine Detection Sensor Final Report CRADA No. TC02133.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, C. E.; Sheppard, C.

    2017-09-06

    This was one of two CRADAs between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and First Alliance Technologies, LLC (First Alliance), to conduct research and development activity toward an integrated system for the detecting, locating, and destroying of landmines and unexploded ordinance using a laser to destroy landmines and unexploded ordinance and First Alliance’s Land Mine Locator (LML) system. The focus of this CRADA was on developing a sensor system that accurately detects landmines, and provides exact location information in a timely manner with extreme reliability.

  13. Next-generation laser for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C.D.; Deach, R.J.; Bibeau, C.

    1997-09-29

    We report on the progress in developing and building the Mercury laser system as the first in a series of a new generation of diode- pumped solid-state Inertial Confinement Fusion (ICF) lasers at Lawrence Livermore National Laboratory (LLNL). Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1 omega energies of 100 J and with 2 omega/3 omega frequency conversion.

  14. Uncrackable code for nuclear weapons

    ScienceCinema

    Hart, Mark

    2018-05-11

    Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."

  15. Development of Personal Decontamination System Final Report CRADA No. TC-02078-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W. J.; O'Dell, P.

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and O’Dell Engineering, Ltd. (O’Dell) to develop an improved low-cost personal decontamination system for Toxic Industrial Chemicals (TICs) and chemical agents. The significant change to the project was that COTS (Commercial Off-the Shelf Components) were identified that performed as well, or better than, the proprietary materials created and tested as part of this CRADA. These COTS components were combined to create a new LPDS (low-cost personal decontamination system) that met all specifications.

  16. M4SF-17LL010302072: The Roles of Diffusion and Corrosion in Radionuclide Retardation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavarin, Mavrik; Balboni, E.; Atkins-Duffin, Cindy

    This progress report (Level 4 Milestone Number M4SF-17LL010302072) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Crystalline Disposal R&D Activity Number M4SF-17LL01030207 and Crystalline International Collaborations Activity Number M4SF-17LL01030208. The focus of this research is the interaction of radionuclides with Engineered Barrier System (EBS) and host rock materials at various physicochemical conditions relevant to subsurface repository environments. They include both chemical and physical processes such as solubility, sorption, and diffusion.

  17. MFTF-. cap alpha. + T progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.D.

    1985-04-01

    Early in FY 1983, several upgrades of the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) were proposed to the fusion community. The one most favorably received was designated MFTF-..cap alpha..+T. The engineering design of this device, guided by LLNL, has been a principal activity of the Fusion Engineering Design Center during FY 1983. This interim progress report represents a snapshot of the device design, which was begun in FY 1983 and will continue for several years. The report is organized as a complete design description. Because it is an interim report, some parts are incomplete; theymore » will be supplied as the design study proceeds. As described in this report, MFTF-..cap alpha..+T uses existing facilities, many MFTF-B components, and a number of innovations to improve on the physics parameters of MFTF-B. It burns deuterium-tritium and has a central-cell Q of 2, a wall loading GAMMA/sub n/ of 2 MW/m/sup 2/ (with a central-cell insert module), and an availability of 10%. The machine is fully shielded, allows hands-on maintenance of components outside the vacuum vessel 24 h after shutdown, and has provisions for repair of all operating components.« less

  18. Spherical Harmonic Solutions to the 3D Kobayashi Benchmark Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.N.; Chang, B.; Hanebutte, U.R.

    1999-12-29

    Spherical harmonic solutions of order 5, 9 and 21 on spatial grids containing up to 3.3 million cells are presented for the Kobayashi benchmark suite. This suite of three problems with simple geometry of pure absorber with large void region was proposed by Professor Kobayashi at an OECD/NEA meeting in 1996. Each of the three problems contains a source, a void and a shield region. Problem 1 can best be described as a box in a box problem, where a source region is surrounded by a square void region which itself is embedded in a square shield region. Problems 2more » and 3 represent a shield with a void duct. Problem 2 having a straight and problem 3 a dog leg shaped duct. A pure absorber and a 50% scattering case are considered for each of the three problems. The solutions have been obtained with Ardra, a scalable, parallel neutron transport code developed at Lawrence Livermore National Laboratory (LLNL). The Ardra code takes advantage of a two-level parallelization strategy, which combines message passing between processing nodes and thread based parallelism amongst processors on each node. All calculations were performed on the IBM ASCI Blue-Pacific computer at LLNL.« less

  19. Radiological Operations Support Specialist (ROSS) Pilot Course Summary and Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alai, M.; Askin, A.; Buddemeier, B.

    In support of the Department of Homeland Security / Science and Technology Directorate’s (DHS/S&T) creation of a new position called the Radiological Operations Support Specialist (ROSS), Lawrence Livermore National Laboratory (LLNL) in Sub-task 1.1 and 1.2 has assisted in the development of the ROSS skills, knowledge, and abilities (SKAs); identified potentially relevant training; cross-mapped the training to the SKAs; and identified gaps in the training related to the SKAs, as well as their respective level of training knowledge - current versus desired. In the follow on task, Sub-task 1.3, a 5 day ROSS Pilot Training course was developed to fillmore » the priority gaps identified in Sub-Task 1.2. Additionally, in Sub-Task 1.5, LLNL has performed a gap analysis of electronic tools, handbooks, and job-aides currently available to the ROSS and developed recommendations for additional and next generation tools to ensure the operational effectiveness of the ROSS position. This document summarizes the feedback received from the instructors and pilot course observers on what worked in the course and what could be improved as well as an assessment of the Pre- and Post-Test administered to the students.« less

  20. Investigation of Weibel-filament growth in the nonlinear regime using laser-irradiated foils of different materials

    NASA Astrophysics Data System (ADS)

    Manuel, Mario

    2017-10-01

    M.J.-E. MANUEL GENERAL ATOMICS, C.M. HUNTINGTON, D.P. HIGGINSON, B.B. POLLOCK, B.A. REMINGTON, H. RINDERKNECHT, J.S. ROSS, D. RYUTOV, G. SWADLING, S. WILKS, A.B. ZYLSTRA, H.-S. PARK LLNL, F. FIUZA, S. TOTORICASLAC, G. GREGORIOXFORD, J. PARK, A. SPITKOVSKYPRINCETON, Y. SAKAWA, H. TAKABEOSAKA, H. SIOMIT, A.B. ZYLSTRALANL. The Weibel instability is presently the leading mechanism proposed to amplify magnetic fields necessary to form `collisionless' shocks in weakly magnetized astrophysical systems, including young supernova remnants and gamma-ray bursts. These systems rely on the presence of strong self-generated magnetic fields to mediate shock formation since the typical collisional mean-free-path is much larger than the system size. The work presented here investigates the development of the Weibel instability in the nonlinear regime through experimental variation of plasma parameters using different ion species and separation distances. Our goal is to investigate the underlying physical mechanism that may allow the formation of collisionless shocks in astrophysical objects. Recent experimental and computational results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and in collaboration with LLNL under contract DE-AC52-07NA27344.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T.; Jones, H.; Wong, K.

    The Marshall Islands Environmental Characterization and Dose Assessment Program has recently implemented waste minimization measures to reduce low level radioactive (LLW) and low level mixed (LLWMIXED) waste streams at the Lawrence Livermore National Laboratory (LLNL). Several thousand environmental samples are collected annually from former US nuclear test sites in the Marshall Islands, and returned to LLNL for processing and radiometric analysis. In the past, we analyzed coconut milk directly by gamma-spectrometry after adding formaldehyde (as preservative) and sealing the fluid in metal cans. This procedure was not only tedious and time consuming but generated storage and waste disposal problems. Wemore » have now reduced the number of coconut milk samples required for analysis from 1500 per year to approximately 250, and developed a new analytical procedure which essentially eliminates the associated mixed radioactive waste stream. Coconut milk samples are mixed with a few grams of ammonium-molydophosphate (AMP) which quantitatively scavenges the target radionuclide cesium 137 in an ion-exchange process. The AMP is then separated from the mixture and sealed in a plastic container. The bulk sample material can be disposed of as a non- radioactive non-hazardous waste, and the relatively small amount of AMP conveniently counted by gamma-spectrometry, packaged and stored for future use.« less

  2. Study of job burnout in technical writers and technical illustrators/designers at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, J A

    According to the American Institute of Stress, job stress is estimated to cost American industry more than $200 billion a year. These costs are, in part, related to the estimated 1 million employees that will be absent on an average workday because of stress; 75 percent of visits to primary care physicians are for stress-related problems. California workers' compensation claims for stress cost $1 billion for medical and legal fees alone (Murphy, 1997). But, there is another dimension to stress that needs to be addressed. Job stress can be a precursor to job burnout. Burnout is a loss of motivation,more » and antidotes for job stress will not necessarily alleviate or stop job burnout. Job burnout is experienced as exhaustion on physical, emotional, and cognitive levels. Burnout can include withdrawal and decreasing involvement on the job, seriously affecting job satisfaction, turnover, absenteeism, and productivity (Dwyer & Ganster, 1991; Erickson & Gunderson, 1972; Spector & Jex, 1991). The research project described in this paper examined whether job burnout exists in the technical writer and technical illustrator/designer occupations in the Technical Information Department at Lawrence Livermore National Laboratory. This study also determined at what age and after how many years of service these employees were most likely to experience job burnout, whether it affects men or women most, and if writers in a technical organization experience job burnout more than illustrators/designers in that organization.« less

  3. 2011 Presidential Early Career Awards for Scientists and Engineers: the PECASE Awards Ceremony

    ScienceCinema

    Poneman, Daniel

    2018-05-31

    The winners for 2011 of the DOE PECASE Awards were recognized in a ceremony held August 01, 2012. Dr. Bill Brinkman, Director of the Office of Science introduced the main speaker, DOE Deputy Secretary Daniel B. Poneman. Leaders from across the Department and the fields of energy research and technology presented the 2011 winners. They are: Dr. Stanley Atcitty (SNL); Dr. Jeffrey W. Banks (LLNL); Dr. Amy J. Clarke (LANL); Derek R. Gaston (INL); Dr. Christopher Hirata (California Institute of Technology); Dr. Heileen Hsu-Kim (Duke University); Dr. Thomas Francisco (Jaramillo Stanford University); Dr.Pablo Jarillo-Herrero (MIT); Dr. Peter Mueller (ANL); Dr. Daniel B. Sinars (SNL); Dr. Jesse Thaler (MIT); and Dr. Heather Whitley (LLNL).

  4. Reasons for 2011 Release of the Evaluated Nuclear Data Library (ENDL2011.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.; Escher, J.; Hoffman, R.

    LLNL's Computational Nuclear Physics Group and Nuclear Theory and Modeling Group have collaborated to create the 2011 release of the Evaluated Nuclear Data Library (ENDL2011). ENDL2011 is designed to sup- port LLNL's current and future nuclear data needs. This database is currently the most complete nuclear database for Monte Carlo and deterministic transport of neutrons and charged particles, surpassing ENDL2009.0 [1]. The ENDL2011 release [2] contains 918 transport-ready eval- uations in the neutron sub-library alone. ENDL2011 was assembled with strong support from the ASC program, leveraged with support from NNSA science campaigns and the DOE/Offce of Science US Nuclear Datamore » Pro- gram.« less

  5. Second Preliminary Report on X-ray Yields from OMEGA II Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K B; May, M J; MacLaren, S A

    2006-08-28

    We present details about X-ray yields measured with LLNL and SNL diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields may be 35-40% too large. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the nearly sub-keV range. The PCD and HENWAY and DANTEmore » numbers are compared. The time histories of the X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtering. There is a persistent disagreement between the H11 PCD and SNL PCD measured FWHM, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope, and which are not plotted here.« less

  6. LIBMAKER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-08-01

    Version 00 COG LibMaker contains various utilities to convert common data formats into a format usable by the COG - Multi-particle Monte Carlo Code System package, (C00777MNYCP01). Utilities included: ACEtoCOG - ACE formatted neutron data: Currently ENDFB7R0.BNL, ENDFB7R1.BNL, JEFF3.1, JEFF3.1.1, JEFF3.1.2, MCNP.50c, MCNP.51c, MCNP.55c, MCNP.66c, and MCNP.70c. ACEUtoCOG - ACEU formatted photonuclear data: Currently PN.MCNP.30c and PN.MCNP.70u. ACTLtoCOG - Creates a COG library from ENDL formatted activation data COG library. EDDLtoCOG - Creates a COG library from ENDL formatted LLNL deuteron data. ENDLtoCOG - Creates a COG library from ENDL formatted LLNL neutron data. EPDLtoCOG - Creates a COG librarymore » from ENDL formatted LLNL photon data. LEX - Creates a COG dictionary file. SAB.ACEtoCOG - Creates a COG library from ACE formatted S(a,b) data. SABtoCOG - Creates a COG library from ENDF6 formatted S(a,b) data. URRtoCOG - Creates a COG library from ACE formatted probability table data. This package also includes library checking and bit swapping capability.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A J; Petersson, N A; Morency, C E

    The California Academy of Sciences (CAS) Morrison Planetarium is producing a 'full-dome' planetarium show on earthquakes and asked LLNL to produce content for the show. Specifically the show features numerical ground motion simulations of the M 7.9 1906 San Francisco and a possible future M 7.05 Hayward fault scenario earthquake. The show also features concepts of plate tectonics and mantle convection using images from LLNL's G3D global seismic tomography. This document describes the data that was provided to the CAS in support of production of the 'Earthquake' show. The CAS is located in Golden Gate Park, San Francisco and hostsmore » over 1.6 million visitors. The Morrison Planetarium, within the CAS, is the largest all digital planetarium in the world. It features a 75-foot diameter spherical section projection screen tilted at a 30-degree angle. Six projectors cover the entire field of view and give a three-dimensional immersive experience. CAS shows strive to use scientifically accurate digital data in their productions. The show, entitled simply 'Earthquake', will debut on 26 May 2012. They are working on graphics and animations based on the same data sets for display on LLNL powerwalls and flat-screens as well as for public release.« less

  8. Fire tests to evaluate the potential fire threat and its effects on HEPA filter integrity in cell ventilation at the Oak Ridge National Laboratory, Building 7920

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.

    1992-12-01

    As a result of a DOE (Tiger Team) Technical Safety Appraisal (November 1990) of the Radiochemical Engineering Development Center (REDC), ORNL Building 7920, a number of fire protection concerns were identified. The primary concern was the perceived loss of ventilation system containment due to the thermal destruction and/or breaching of the prefilters and/or high-efficiency particulate air filters (HEPA `s) and the resultant radioactive release to the external environment. The following report describes the results of an extensive fire test program performed by the Fire Research Discipline (FRD) of the Special Projects Division of Lawrence Livermore National Lab (LLNL) and fundedmore » by ORNL to address these concerns. Full scale mock-ups of a REDC hot cell tank pit, adjacent cubicle pit, and associated ventilation system were constructed at LLNL and 13 fire experiments were conducted to specifically answer the questions raised by the Tiger Team. Our primary test plan was to characterize the burning of a catastrophic solvent spill (kerosene) of 40 liters and its effect on the containment ventilation system prefilters and HEPA filters. In conjunction with ORNL and Lockwood Greene we developed a test matrix that assessed the fire performance of the prefilters and HEPA filters; evaluated the fire response of the fiber reinforced plastic (FRP) epoxy ventilation duct work; the response and effectiveness of the fire protection system, the effect of fire in a cubicle on the vessel off-gas (VOG) elbow, and other fire safety questions.« less

  9. T-REX: Thomson-Radiated Extreme X-rays Moving X-Ray Science into the ''Nuclear'' Applications Space with Thompson Scattered Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C P; Hartemann, F V

    2004-09-21

    The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive abilitymore » to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer

  10. Welding of Vanadium, Tantalum, 304L and 21-6-9 Stainless Steels, and Titanium Alloys at Lawrence Livermore National Laboratory using a Fiber Delivered 2.2 kW Diode Pumped CW Nd:YAG Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, T; Elmer, J; Pong, R

    This report summarizes the results of a series of laser welds made between 2003 and 2005 at Lawrence Livermore National Laboratory (LLNL). The results are a compilation of several, previously unpublished, internal LLNL reports covering the laser welding of vanadium, tantalum, 304L stainless steel, 21-6-9 (Nitronic 40) steel, and Ti-6Al-4V. All the welds were made using a Rofin Sinar DY-022 diode pumped continuous wave Nd:YAG laser. Welds are made at sharp focus on each material at various power levels and travel speeds in order to provide a baseline characterization of the performance of the laser welder. These power levels aremore » based on measurements of the output power of the laser system, as measured by a power meter placed at the end of the optics train. Based on these measurements, it appears that the system displays a loss of approximately 10% as the beam passes through the fiber optic cable and laser optics. Since the beam is delivered to the fixed laser optics through a fiber optic cable, the effects of fiber diameter are also briefly investigated. Because the system utilizes 1:1 focusing optics, the laser spot size at sharp focus generally corresponds to the diameter of the fiber with which the laser is delivered. Differences in the resulting weld penetration in the different materials system are prevalent, with the welds produced on the Nitronic 40 material displaying the highest depths (> 5 mm) and minimal porosity. A Primes focusing diagnostic has also been installed on this laser system and used to characterize the size and power density distribution of the beams as a function of both power and focus position. Further work is planned in which this focusing diagnostic will be used to better understand the effects of changes in beam properties on the resulting weld dimensions in these and other materials systems.« less

  11. Arroyo Mocho Boulder Removal Project: Lawrence Livermore National Laboratory Hetch Hetchy Pump Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, L; Kato, T; Van Hattem, M

    2007-06-28

    The purpose of this biological assessment is to review the proposed Arroyo Mocho Boulder Removal Project in sufficient detail to determine to what extent the proposed action may affect any of the threatened, endangered, proposed, or sensitive species and designated or proposed critical habitats listed below. In addition, the following information is provided to comply with statutory requirements to use the best scientific and commercial information available when assessing the risks posed to listed and/or proposed species and designated and/or proposed critical habitat by proposed federal actions. This biological assessment is prepared in accordance with legal requirements set forth undermore » regulations implementing Section 7 of the Endangered Species Act (50 CFR 402; 16 U.S.C 1536 (c)). It is our desire for the Arroyo Mocho Boulder Removal Project to receive incidental take coverage for listed species and critical habitat within the greater project area by means of amending the previous formal Section 7 consultation (1-1-04-F-0086) conducted a few hundred meters downstream by Lawrence Livermore National Laboratory (LLNL) in 2002. All conservation measures, terms and conditions, and reporting requirements from the previous Biological Opinion (1-1-04-F-0086) have been adopted for this Biological Assessment and/or amendment.« less

  12. SULTAN measurement and qualification: ITER-US-LLNL-NMARTOVETSKY- 092008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martovetsky, N N

    2006-09-21

    Measuring the characteristics of full scale ITER CICC at SULTAN is the critical qualification test. If volt-ampere characteristic (VAC) or volt-temperature characteristic (VTC) are distorted, the criterion of 10 uV/m may not be a valid criterion to judge the conductor performance. Only measurements with a clear absence or low signals from the current distribution should be considered as quantitatively representative, although in some obvious circumstances one can judge if a conductor will meet or fail ITER requirements. SULTAN full scale ITER CICC testing should be done with all measures taken to ensure uniform current redistribution. A full removal of Crmore » plating in the joint area and complete solder filling of the joints (with provision of the central channel for helium flow) should be mandatory for DC qualification samples for ITER. Also, T and I should be increased slowly that an equilibrium could be established for accurate measurement of Tcs, Ic and N. It is also desirable to go up in down in current and/or temperature (within stable range) to make sure that the equilibrium is reached.« less

  13. Detonation equation of state at LLNL, 1995. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P.C.; Wu, B.; Haselman, L.C. Jr.

    1996-02-01

    JWL`s and 1-D Look-up tables are shown to work for ``one-track`` experiments like cylinder shots and the expanding sphere. They fail for ``many-track`` experiments like the compressed sphere. As long as the one-track experiment has dimensions larger than the explosive`s reaction zone and the explosive is near-ideal, a general JWL with R{sub 1} = 4.5 and R{sub 2} = 1.5 can be constructed, with both {omega} and E{sub o} being calculated from thermochemical codes. These general JWL`s allow comparison between various explosives plus recalculation of the JWL for different densities. The Bigplate experiment complements the cylinder test by providing continuousmore » oblique angles of shock incidence from 0{degrees} to 70{degrees}. Explosive reaction zone lengths are determined from metal plate thicknesses, extrapolated run-to-detonation distances, radius size effects and detonation front curvature. Simple theories of the cylinder test, Bigplate, the cylinder size effect and detonation front curvature are given. The detonation front lag at the cylinder edge is shown to be proportional to the half-power of the reaction zone length. By calibrating for wall blow-out, a full set of reaction zone lengths from PETN to ANFO are obtained. The 1800--2100 K freezing effect is shown to be caused by rapid cooling of the product gases. Compiled comparative data for about 80 explosives is listed. Ten Chapters plus an Appendix.« less

  14. Emergency Response Capability Baseline Needs Assessment Compliance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharry, John A.

    2013-09-16

    This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2013 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2009 BNA, the 2012 BNA document, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, firemore » department training records, and fire department policies and procedures.« less

  15. 2011 Presidential Early Career Awards for Scientists and Engineers: the PECASE Awards Ceremony

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poneman, Daniel

    2012-08-01

    The winners for 2011 of the DOE PECASE Awards were recognized in a ceremony held August 01, 2012. Dr. Bill Brinkman, Director of the Office of Science introduced the main speaker, DOE Deputy Secretary Daniel B. Poneman. Leaders from across the Department and the fields of energy research and technology presented the 2011 winners. They are: Dr. Stanley Atcitty (SNL); Dr. Jeffrey W. Banks (LLNL); Dr. Amy J. Clarke (LANL); Derek R. Gaston (INL); Dr. Christopher Hirata (California Institute of Technology); Dr. Heileen Hsu-Kim (Duke University); Dr. Thomas Francisco (Jaramillo Stanford University); Dr.Pablo Jarillo-Herrero (MIT); Dr. Peter Mueller (ANL); Dr.more » Daniel B. Sinars (SNL); Dr. Jesse Thaler (MIT); and Dr. Heather Whitley (LLNL).« less

  16. Science/art - art/science: case studies of the development of a professional art product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesko, S.C.; Marchant, M.

    1997-02-24

    Objective was to follow the cognitive and creative processes demonstrated by student research participants as they integrated a developing knowledge of ``big`` science, as practiced at LLNL, into a personal and idiosyncratic visual, graphical, or multimedia product. The participants, all non-scientists, involved in this process, attended a series of design classes, sponsored by LLNL at the Art Center College of Design in Pasadena CA. As a result of this study, we have become interested in the possibility of similar characteristics between scientists and artists. We have also become interested in the different processes that can be used to teach sciencemore » to non-scientists, so that they are able to understand and portray scientific information.« less

  17. Soil Sample Report in Support of the Site 300 EWTF Ecological Risk Assessment and Permit Renewal-September 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terusaki, Stanley; Gallegos, Gretchen; MacQueen, Donald

    2012-10-02

    LLNL Site 300 has applied to renew the permits for its Explosives Waste Treatment Facility (EWTF), Explosives Waste Storage Facility (EWSF) and Building 883 Storage Facility. As a part of the permit renewal process, the Department of Toxic Substances Control (DTSC) requested LLNL to obtain soil samples in order to conduct a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. As stated in the guidance document, the scoping-level ecological risk assessment provides a framework to determine the potentialmore » interaction ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF.« less

  18. LABLE: A Multi-Institutional, Student-Led, Atmospheric Boundary Layer Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, P.; Bonin, T. A.; Newman, J. F.

    This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, multi-agency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary-layer processes. The mainmore » objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including i) instruments deployed, ii) sampling strategies, iii) parameters observed, and iv) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE, namely the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.« less

  19. LIFE: a sustainable solution for developing safe, clean fusion power.

    PubMed

    Reyes, Susana; Dunne, Mike; Kramer, Kevin; Anklam, Tom; Havstad, Mark; Mazuecos, Antonio Lafuente; Miles, Robin; Martinez-Frias, Joel; Deri, Bob

    2013-06-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in California is currently in operation with the goal to demonstrate fusion energy gain for the first time in the laboratory-also referred to as "ignition." Based on these demonstration experiments, the Laser Inertial Fusion Energy (LIFE) power plant is being designed at LLNL in partnership with other institutions with the goal to deliver baseload electricity from safe, secure, sustainable fusion power in a time scale that is consistent with the energy market needs. For this purpose, the LIFE design takes advantage of recent advances in diode-pumped, solid-state laser technology and adopts the paradigm of Line Replaceable Units used on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, refueling, accountability, and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the in-process tritium inventory. This paper presents an overview of the delivery plan and the preconceptual design of the LIFE facility with emphasis on the key safety design principles being adopted. In order to illustrate the favorable safety characteristics of the LIFE design, some initial accident analysis results are presented that indicate potential for a more attractive licensing regime than that of current fission reactors.

  20. Energy and Technology Review, October 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.C.; de Vore, L.; Gleason, K.

    1990-10-01

    This report discuss the following topics: History of Cold Fusion Experiments; LLNL Experiments on Cold Fusion; Roundtable Discussion on Cold Fusion; and Using MeV Ions To Characterize and Modify Materials.

  1. Argentina-LLNL-LANL Comparative Sample Analysis on UO2 fuel pellet CRM-125A for Nuclear Forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kips, R.

    The recent workshop on analytical plan development provided context and background for the next step in this engagement, i.e. a comparative sample analysis on CRM 125-A. This is a commercially available certified low-enriched uranium oxide fuel pellet material from New Brunswick National Laboratory (NBL) (see certificate in Annex 1).

  2. Performance Analysis of Occurrences January 1, 2011-December 31, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwig, M

    2012-03-16

    This report documents the analysis of the occurrences during the period January 1, 2011 through December 31, 2011. The report compares LLNL occurrences by reporting criteria and significance category to see if LLNL is reporting occurrences along similar percentages as other DOE sites. The three-year trends are analyzed. It does not include the analysis of the causes or the lessons learned from the occurrences, as they are analyzed separately. The number and types of occurrences that LLNL reports to DOE varies over time. This variation can be attributed to normally occurring changes in frequency; DOE's or LLNL's heightened interest inmore » a particular subject area; changes in LLNL processes; or emerging problems. Since all of the DOE sites use the same reporting criteria, it is helpful to understand if LLNL is consistent with or diverging from reporting at other sites. This section compares the normalized number of occurrences reported by LLNL and other DOE sites. In order to compare LLNL occurrence reports to occurrence reports from other DOE sites, we normalized (or standardized) the data from the sites. DOE sites vary widely in their budgets, populations, and scope of work and these variations may affect reporting frequency. In addition, reports are required for a wide range of occurrence types, some of which may not be applicable to all DOE sites. For example, one occurrence reporting group is Group 3, Nuclear Safety Basis, and not all sites have nuclear operations. Because limited information is available for all sites, the sites were normalized based on best available information. Site effort hours were extracted from the DOE Computerized Accident Incident Reporting System (CAIRS) and used to normalize (or standardize) the number of occurrences by site. Effort hours are those hours that employees normally work and do not include vacation, holiday hours etc. Sites are responsible for calculating their effort hours and ensuring entry into CAIRS. Out of the

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fratanduono, M.

    Garcia and Associates (GANDA) was contracted by the Lawrence Livermore National Laboratory (LLNL) to collect information on golden eagle (Aquila chrysaetos) use of Site 300. During 2014, we conducted surveys at Site 300 and for an area including a 10-mile radius of Site 300. Those surveys documented 42 golden eagle territories including two territories that overlapped with Site 300. These were named ‘Tesla’ and ‘Linac Road’. In 2015, we conducted surveys to refine the territory boundaries of golden eagle territories that overlapped with Site 300 and to document eagle activity at Site 300.

  4. Modeling of ion orbit loss and intrinsic toroidal rotation with the COGENT code

    NASA Astrophysics Data System (ADS)

    Dorf, M.; Dorr, M.; Cohen, R.; Rognlien, T.; Hittinger, J.

    2014-10-01

    We discuss recent advances in cross-separatrix neoclassical transport simulations with COGENT, a continuum gyro-kinetic code being developed by the Edge Simulation Laboratory (ESL) collaboration. The COGENT code models the axisymmetric transport properties of edge plasmas including the effects of nonlinear (Fokker-Planck) collisions and a self-consistent electrostatic potential. Our recent work has focused on studies of ion orbit loss and the associated toroidal rotation driven by this mechanism. The results of the COGENT simulations are discussed and analyzed for the parameters of the DIII-D experiment. Work performed for USDOE at LLNL under Contract DE-AC52-07NA27344.

  5. AUTOCASK (AUTOmatic Generation of 3-D CASK models). A microcomputer based system for shipping cask design review analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard, M.A.; Sommer, S.C.

    1995-04-01

    AUTOCASK (AUTOmatic Generation of 3-D CASK models) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for the structural analysis of shipping casks for radioactive material. Model specification is performed on the microcomputer, and the analyses are performed on an engineering workstation or mainframe computer. AUTOCASK is based on 80386/80486 compatible microcomputers. The system is composed of a series of menus, input programs, display programs, a mesh generation program, and archive programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.

  6. 2016 FACET-II Science Workshop Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Mark J.

    The second in a series of FACET-II Science Workshops was held at SLAC National Accelerator Laboratory on October 17-19, 2016 [1]. The workshop drew thirty-five participants from eighteen different institutions including CERN, DESY, Ecole Polytechnique, FNAL, JAI, LBNL, LLNL, Radiabeam, Radiasoft, SLAC, Stony Brook, Strathclyde, Tech-X, Tsinghua, UC Boulder, UCLA and UT Austin. The 2015 workshop [2, 3] helped prioritize research directions for FACET-II. The 2016 workshop was focused on understanding what improvements are needed at the facility to support the next generation of experiments. All presentations are linked to the workshop website as a permanent record.

  7. Science & Technology Review September 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duoss, Eric B.; Kotta, Paul R.; Meissner, Caryn N.

    This is the September 2017 edition of the LLNL, Science and Technology Review. At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  8. M4FT-16LL080302052-Update to Thermodynamic Database Development and Sorption Database Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavarin, Mavrik; Wolery, T. J.; Atkins-Duffin, C.

    2016-08-16

    This progress report (Level 4 Milestone Number M4FT-16LL080302052) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Argillite Disposal R&D Work Package Number FT-16LL08030205. The focus of this research is the thermodynamic modeling of Engineered Barrier System (EBS) materials and properties and development of thermodynamic databases and models to evaluate the stability of EBS materials and their interactions with fluids at various physico-chemical conditions relevant to subsurface repository environments. The development and implementation of equilibrium thermodynamic models are intended to describe chemical and physical processes such as solubility, sorption, and diffusion.

  9. 322-R2U2 Engineering Assessment - August 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abri, M.; Griffin, D.

    This Engineering Assessment and Certification of Integrity of retention tank system 322-R2 has been prepared for tank systems that store and neutralizes hazardous waste and have secondary containment. The regulations require that this assessment be completed periodically and certified by an independent, qualified, California-registered professional engineer. Abri Environmental Engineering performed an inspection of the 322-R2 Tank system at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA. Mr. William W. Moore, P.E., conducted this inspection on March 16, 2015. Mr. Moore is a California Registered Civil Engineer, with extensive experience in civil engineering, and hazardous waste management.

  10. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2002-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory (LLNL) to study X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae. Progress made during the first year of the grant is described, as is work planned for the second year.

  11. High Temperature Catalytic Combustion Suppports Final Report CRADA No. TSB-0841-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hair, Lucy; Magno, Scott

    This Small Business CRADA between LLNL and Catalytica was executed on January 25, 1995. The total estimated cost of this project was 113K. LLNL's contribution was estimated at $50K funded under the DOE/Defense Program Small Business Initiative. Catalytica's in-kind contribution was estimated at 63K. Catalytic combusion catalyst systems operate at temperatures from 600°C to above 1300°C. Catalytica has developed technology that limits the catalyst temperature to below 1000°C. At temperatures in the range of 850 to 1000°C, the thermal stability of the catalyst is an important issue. Typical supports such as stabilized aluminas, hexaluminates, zirconia and stabilized zirconia supports aremore » typically used but lack either thermal stability or other desirable properties. Catalytica had developed a new concept for thermally stable mixed oxide supports but this concept required the preparation of molecularly uniform precursors; that is, prior to high temperature treatment of these materials, the elements that make up the mixed oxide must be as nearly uniform as possible on a molecular level. The technique of sol gel processing appeared to be the preferred technique to make these molecularly uniform precursors, and a cooperative program with LLNL was established to prepare and test the proposed compounds. Catalytica proposed the composition and concentration levels for the materials to be prepared.« less

  12. Line Emission and X-ray Line Polarization of Multiply Ionized Mo Ions

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Stafford, A.; Safronova, U. I.; Shrestha, I. K.; Schultz, K. A.; Childers, R.; Cooper, M. C.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2016-10-01

    We present a comprehensive experimental and theoretical study of the line emission from multiply ionized Mo ions produced by two different sets of experiments: at LLNL EBIT and the pulsed power generator Zebra at UNR. Mo line emission and polarization measurements were accomplished at EBIT for the first time. In particular, benchmarking experiments at the LLNL EBIT with Mo ions produced at electron beam energies from 2.75 keV up to 15 keV allowed us to break down these very complicated spectra into spectra with only few ionization stages and to select processes that influence them as well as to measure line polarization. The EBIT data were recorded using the EBIT Calorimeter Spectrometer and a crystal spectrometer with a Ge crystal. X-ray Mo spectra and pinhole images were collected from Z-pinch plasmas produced from various wire loads. Non-LTE modeling, high-precision relativistic atomic and polarization data were used to analyze L-shell Mo spectra. The influence of different plasma processes including electron beams on Mo line radiation is summarized. This work was supported by NNSA under DOE Grant DE-NA0002954. Experiments at the NTF/UNR were funded in part by DE-NA0002075. Work at LLNL was performed under the auspices of the U.S. DOE under contract DE-AC52-07NA27344.

  13. Level-2 Milestone 3504: Scalable Applications Preparations and Outreach for the Sequoia ID (Dawn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futral, W. Scott; Gyllenhaal, John C.; Hedges, Richard M.

    2010-07-02

    This report documents LLNL SAP project activities in anticipation of the ASC Sequoia system, ASC L2 milestone 3504: Scalable Applications Preparations and Outreach for the Sequoia ID (Dawn), due June 30, 2010.

  14. Nova Upgrade: A proposed ICF facility to demonstrate ignition and gain, revision 1

    NASA Astrophysics Data System (ADS)

    1992-07-01

    The present objective of the national Inertial Confinement Fusion (ICF) Program is to determine the scientific feasibility of compressing and heating a small mass of mixed deuterium and tritium (DT) to conditions at which fusion occurs and significant energy is released. The potential applications of ICF will be determined by the resulting fusion energy yield (amount of energy produced) and gain (ratio of energy released to energy required to heat and compress the DT fuel). Important defense and civilian applications, including weapons physics, weapons effects simulation, and ultimately the generation of electric power will become possible if yields of 100 to 1,000 MJ and gains exceeding approximately 50 can be achieved. Once ignition and propagating bum producing modest gain (2 to 10) at moderate drive energy (1 to 2 MJ) has been achieved, the extension to high gain (greater than 50) is straightforward. Therefore, the demonstration of ignition and modest gain is the final step in establishing the scientific feasibility of ICF. Lawrence Livermore National Laboratory (LLNL) proposes the Nova Upgrade Facility to achieve this demonstration by the end of the decade. This facility would be constructed within the existing Nova building at LLNL for a total cost of approximately $400 M over the proposed FY 1995-1999 construction period. This report discusses this facility.

  15. Development of Designer Diamond Anvils for High Pressure-High-Temperature Experiments in Support of the Stockpile Stewardship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogesh K. Vohra

    The focus of this program at the University of Alabama at Birmingham (UAB) is to develop the next generation of designer diamond anvils that can perform simultaneous joule heating and temperature profile measurements in a diamond anvil cell. A series of tungsten-rhenium thermocouples will be fabricated onto to the anvil and encapsulated by a chemical vapor deposited diamond layer to allow for a complete temperature profile measurement across the anvil. The tip of the diamond anvil will be engineered to reduce the thermal conductivity so that the tungsten-heating coils can be deposited on top of this layer. Several different approachesmore » will be investigated to engineer the tip of the diamond anvil for reduction in thermal conductivity (a) isotopic mixture of 12C and 13C in the diamond layer, (b) doping of diamond with impurities (nitrogen and/or boron), and (c) growing diamond in a higher concentration of methane in hydrogen plasma. Under this academic alliance with Lawrence Livermore National Laboratory (LLNL), PI and his graduate students will use the lithographic and diamond polishing facility at LLNL. This proposed next generation of designer diamond anvils will allow multi-tasking capability with the ability to measure electrical, magnetic, structural and thermal data on actinide materials with unparallel sensitivity in support of the stockpile stewardship program.« less

  16. A QM/MM Metadynamics Study of the Direct Decarboxylation Mechanism for Orotidine-5'-monophosphate Decarboxylase using Two Different QM Regions: Acceleration too Small to Explain Rate of Enzyme Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanton, Courtney; Kuo, I-F W.; Mundy, Christopher J.

    2007-11-01

    Despite decades of study, the mechanism of orotidine-5'-monophosphate decarboxylase (ODCase) remains unresolved. A computational investigation of the direct decarboxylation mechanism has been performed using mixed quantum mechanical/molecular mechanical (QM/MM) dynamics simulations. The study was performed with the program CP2K that integrates classical dynamics and ab initio dynamics based on the Born-Oppenheimer approach. Two different QM regions were explored. It was found that the size of the QM region has a dramatic effect on the calculated reaction barrier. The free energy barriers for decarboxylation of orotidine-5'-monophosphate (OMP) in solution and in the enzyme were determined with the metadynamics method to bemore » 40 kcal/mol and 33 kcal/mol, respectively. The calculated change in activation free energy (ΔΔG±) on going from solution to the enzyme is therefore -7 kcal/mol, far less than the experimental change of -23 kcal/mol (for kcat/kuncat Radzicka, A.; Wolfenden, R., Science. 1995, 267, 90-92). These results do not support the direct decarboxylation mechanism in the enzyme. Funding was provided by the University of California Lawrence Livermore National Laboratory (LLNL) and the National Institutes of Health (NIH). Part of this work was performed under the auspices of the U.S. Department of Energy by LLNL under contract No. W-7405-Eng-48. Computer resources were provided by Livermore Computing.« less

  17. Laser Science & Technology Program Annual Report - 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H-L

    2001-03-20

    The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journalsmore » in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.« less

  18. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P.

    1990-09-01

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literaturemore » survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.« less

  19. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system

    NASA Astrophysics Data System (ADS)

    Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E.; Wemple, Charles A.; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; DeNardo, Gerald

    2005-03-01

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4—2%, MCNP—10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of

  20. Bomb-Pulse Chlorine-36 At The Proposed Yucca Mountain Repository Horizon: An Investigation Of Previous Conflicting Results And Collection Of New Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Cizdziel

    2006-07-28

    Previous studies by scientists at Los Alamos National Laboratory (LANL) found elevated ratios of chlorine-36 to total chloride ({sup 36}Cl/Cl) in samples of rock collected from the Exploratory Studies Facility (ESF) and the Enhanced Characterization of the Repository Block (ECRB) at Yucca Mountain as the tunnels were excavated. The data were interpreted as an indication that fluids containing 'bomb-pulse' {sup 36}Cl reached the repository horizon in the {approx}50 years since the peak period of above-ground nuclear testing. Moreover, the data support the concept that so-called fast pathways for infiltration not only exist but are active, possibly through a combination ofmore » porous media, faults and/or other geologic features. Due to the significance of {sup 36}Cl data to conceptual models of unsaturated zone flow and transport, the United States Geological Survey (USGS) was requested by the Department of Energy (DOE) to design and implement a study to validate the LANL findings. The USGS chose to drill new boreholes at select locations across zones where bomb-pulse ratios had previously been identified. The drill cores were analyzed at Lawrence Livermore National Laboratory (LLNL) for {sup 36}Cl/Cl using both active and passive leaches, with the USGS/LLNL concluding that the active leach extracted too much rock-Cl and the passive leach did not show bomb-pulse ratios. Because consensus was not reached between the USGS/LLNL and LANL on several fundamental points, including the conceptual strategy for sampling, interpretation and use of tritium ({sup 3}H) data, and the importance and interpretation of blanks, in addition to the presence or absence of bomb-pulse {sup 36}Cl, an evaluation by an independent entity, the University of Nevada, Las Vegas (UNLV), using new samples was initiated. This report is the result of that study. The overall objectives of the UNLV study were to investigate the source or sources of the conflicting results from the previous

  1. A new gated x-ray detector for the Orion laser facility

    NASA Astrophysics Data System (ADS)

    Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal

    2012-10-01

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  2. May 2003 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, R; Salari, K; Ortega, J

    2003-05-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on May 29-30, 2003. The purpose of the meeting was to present and discuss suggested guidance and direction for the design of drag reduction devices determined from experimental and computational studies. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Clarkson University,more » and PACCAR participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, provides some highlighted items, and outlines the future action items.« less

  3. Electro-Thermal-Mechanical Simulation Capability Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D

    This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There aremore » numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R&D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems

  4. The High-Foot Implosion Campaign on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hurricane, Omar

    2013-10-01

    The `High-Foot' platform manipulates the laser pulse-shape coming from the National Ignition Facility (NIF) laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This tactic gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. This approach is generally consistent with the philosophy laid out in a recent international workshop on the topic of ignition science on NIF [``Workshop on the Science of Fusion Ignition on NIF,'' Lawrence Livermore National Laboratory Report, LLNL-TR-570412 (2012). Op cit. V. Gocharov and O.A. Hurricane, ``Panel 3 Report: Implosion Hydrodynamics,'' LLNL-TR-562104 (2012)]. Side benefits our the High-Foot pulse-shape modification appear to be improvements in hohlraum behavior--less wall motion achieved through higher pressure He gas fill and improved inner cone laser beam propagation. Another consequence of the `High-Foot' is a higher fuel adiabat, so there is some relation to direct-drive experiments performed at the Laboratory for Laser Energetics (LLE). In this talk, we will cover the various experimental and theoretical motivations for the High-Foot drive as well as cover the experimental results that have come out of the High-Foot experimental campaign. Most notably, at the time of this writing record DT layer implosion performance with record low levels of inferred mix and excellent agreement with one-dimensional implosion models without the aid of mix models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Fire-protection research for energy technology: Fy 80 year end report

    NASA Astrophysics Data System (ADS)

    Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.

    1981-05-01

    This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  6. Development of Rotational Accelerometers Final Report CRADA No. TSB-2008-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, S.; Crosson, R.

    One of the difficulties in fabricating an inexpensive angular rate or rotation sensor is producing a device that is insensitive to acceleration, including the constant acceleration of gravity. The majority of rate sensors are either tuning fork type devices sensing a relatively weak force (i.e., Coriolis effect) and thus not very sensitive, or gyroscopes (either rotating or fiber optic based) that are large, consume lots of power and are expensive. This project was a collaborative effort between LLNL and The Fredericks Company to develop a rotational sensor as a standardized, commercial product. The Fredericks Company possessed expertise and capabilities inmore » the technical aspects of manufacturing this type of sensor, and they were interested in collaborating with LLNL to manufacture the rotational rate sensors as a commercial product.« less

  7. Chromium removal from ground water by Ion exchange resins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiadas, P.

    1994-05-06

    The ground water at several monitoring wells at LLNL has been found to exceed the Surface Water Discharge Limits for Cr(VI). Ion exchange resins have been selected for its removal. A research study is underway to determine which commercial resin is preferred for LLNL`s ground water. The choice of an appropriate resin will be based on Cr(VI) exchange capacity, regeneration efficiency, and pH stabilization. A sequestering agent must also be selected to be used for the elimination of scaling at the treatment facilities. The chemistry of ion exchange resins, and instrumentation and procedures are explained and described in the followingmore » paper. Comparison of the different resins tested lead us to the selection of the most effective one to be used in the treatment facilities.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekoogar, F; Dowla, F; Wang, T

    Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable {sup 3}He basedmore » detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.« less

  9. Large Survey of Neutron Spectrum Moments Due to ICF Drive Asymmetry

    NASA Astrophysics Data System (ADS)

    Field, J. E.; Munro, D.; Spears, B.; Peterson, J. L.; Brandon, S.; Gaffney, J. A.; Hammer, J.; Langer, S.; Nora, R. C.; Springer, P.; ICF Workflow Collaboration Collaboration

    2016-10-01

    We have recently completed the largest HYDRA simulation survey to date ( 60 , 000 runs) of drive asymmetry on the new Trinity computer at LANL. The 2D simulations covered a large space of credible perturbations to the drive of ICF implosions on the NIF. Cumulants of the produced birth energy spectrum for DD and DT reaction neutrons were tallied using new methods. Comparison of the experimental spectra with our map of predicted spectra from simulation should provide a wealth of information about the burning plasma region. We report on our results, highlighting areas of agreement (and disagreement) with experimental spectra. We also identify features in the predicted spectra that might be amenable to measurement with improved diagnostics. Prepared by LLNL under Contract DE-AC52-07NA27344. IM release #: LLNL-PROC-697321.

  10. pF3D Simulations of SBS and SRS in NIF Hohlraum Experiments

    NASA Astrophysics Data System (ADS)

    Langer, Steven; Strozzi, David; Amendt, Peter; Chapman, Thomas; Hopkins, Laura; Kritcher, Andrea; Sepke, Scott

    2016-10-01

    We present simulations of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) for NIF experiments using high foot pulses in cylindrical hohlraums and for low foot pulses in rugby-shaped hohlraums. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles obtained from the radiation-hydrodynamics codes Lasnex and HYDRA. We compare the simulations to experimental data for SBS and SRS power and spectrum. We also show simulated SRS and SBS intensities at the target chamber wall and report the fraction of the backscattered light that passes through and misses the lenses. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-697482.

  11. Summary of Granulation Matrix Testing for the Plutonium Immobilization Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, C.C.

    2001-10-19

    In FY00, a matrix for process development testing was created to identify those items related to the ceramic process that had not been fully developed or tested and to help identify variables that needed to be tested. This matrix, NMTP/IP-99-003, was jointly created between LLNL and SRTC and was issued to all affected individuals. The matrix was also used to gauge the progress of the development activities. As part of this matrix, several series of tests were identified for the granulation process. This summary provides the data and results from the granulation testing. The results of the granulation matrix testingmore » were used to identify the baseline process for testing in the PuCTF with cold surrogates in B241 at LLNL.« less

  12. Pentaerythritol Tetranitrate (PETN) Surveillance by HPLC-MS: Instrumental Parameters Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, C A; Meissner, R

    Surveillance of PETN Homologs in the stockpile here at LLNL is currently carried out by high performance liquid chromatography (HPLC) with ultra violet (UV) detection. Identification of unknown chromatographic peaks with this detection scheme is severely limited. The design agency is aware of the limitations of this methodology and ordered this study to develop instrumental parameters for the use of a currently owned mass spectrometer (MS) as the detection system. The resulting procedure would be a ''drop-in'' replacement for the current surveillance method (ERD04-524). The addition of quadrupole mass spectrometry provides qualitative identification of PETN and its homologs (Petrin, DiPEHN,more » TriPEON, and TetraPEDN) using a LLNL generated database, while providing mass clues to the identity of unknown chromatographic peaks.« less

  13. High-pressure phase diagrams of liquid CO2 and N2

    NASA Astrophysics Data System (ADS)

    Boates, Brian; Bonev, Stanimir

    2011-06-01

    The phase diagrams of liquid CO2 and N2 have been investigated using first-principles theory. Both materials exhibit transitions to conducting liquids at high temperatures (T) and relatively modest pressures (P). Furthermore, both liquids undergo polymerization phase transitions at pressures comparable to their solid counterparts. The liquid phase diagrams have been divided into several regimes through a detailed analysis of changes in bonding, as well as structural and electronic properties for pressures and temperatures up to 200 GPa and 10 000 K, respectively. Similarities and differences between the high- P and T behavior of these fluids will be discussed. Calculations of the Hugoniot are in excellent agreement with available experimental data. Work supported by NSERC, LLNL, and the Killam Trusts. Prepared by LLNL under Contract DE-AC52-07NA27344.

  14. Numerical Parameter Optimization of the Ignition and Growth Model for HMX Based Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence

    2017-06-01

    We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.

  15. Mantis BT Cluster Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riot, V.

    2009-06-05

    The software is a modidication to the Mantis BT V1.5 open source application provided by the mantis BT group to support cluster web servers. It also provides various cosmetic modifications used a LLNL.

  16. Neutron and gamma-ray dose measurements at various distances from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntzinger, C.J.; Hankins, D.E.

    We measured neutron and gamma-ray dose rates at various distances from the Little Boy-Comet Critical Assembly at Los Alamos National Laboratory (LANL) in April of 1983. The Little Boy-Comet Assembly is a replica of the atomic weapon detonated over Hiroshima, designed to be operated at various steady-state power levels. The selected distances for measurement ranged from 107 m to 567 m. Gamma-ray measurements were made with a Reuter-Stokes environmental ionization chamber which has a sensitivity of 1.0 ..mu..R/hour. Neutron measurements were made with a pulsed-source remmeter which has a sensitivity of 0.1 ..mu..rem/hour, designed and built at Lawrence Livermore Nationalmore » Laboratory (LLNL). 12 references, 7 figures, 6 tables.« less

  17. GEOS. User Tutorials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Pengchen; Settgast, Randolph R.; Johnson, Scott M.

    2014-12-17

    GEOS is a massively parallel, multi-physics simulation application utilizing high performance computing (HPC) to address subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS enables coupling of di erent solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. Developed at the Lawrence Livermore National Laboratory (LLNL) as a part of a Laboratory-Directed Research and Development (LDRD) Strategic Initiative (SI) project, GEOS represents the culmination of a multi-year ongoing code development and improvement e ort that hasmore » leveraged existing code capabilities and sta expertise to design new computational geosciences software.« less

  18. Lawrence Livermore National Laboratory Pre-project Rare Plant and Wildlife Surveys For the Pit 7 Drainage Diversion and Groundwater Extraction and Treatment Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, L; Woollett, J

    In January 2007, the Department of Energy (DOE) released the final Environmental Assessment for the Proposed Environmental Remediation at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. At the same time, the Department of Toxic Substances Control (DTSC) released the final Negative Declaration and Initial Study covering the Pit 7 remediation. No substantial adverse effect on wildlife species of concern was anticipated from the project. However, it was proposed that wildlife surveys should be conducted prior to construction because species locations and breeding areas could potentially change by the time construction activities began. Although no known populationsmore » of rare or endangered/threatened plant species were known to occur within the project impact area at the time these documents were released, rare plants listed by the California Native Plant Society had been observed in the vicinity. As such, both DOE and DTSC proposed that plant surveys would be undertaken at the appropriate time of year to determine if rare plants would be impacted by project construction. This document provides the results of wildlife and rare plant surveys taken prior to the start of construction at the Pit 7 Complex.« less

  19. Impact response of US Army and National Football League helmet pad systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, W C; King, M J

    Lawrence Livermore National Laboratory [LLNL] was tasked to compare the impact response of NFL helmet pad systems and U.S. Army pad systems compatible with an Advanced Combat Helmet [ACH] at impact velocities up to 20 ft/s. This was a one-year study funded by the U.S. Army and JIEDDO. The Army/JIEDDO point of contact is COL R. Todd Dombroski, DO, JIEDDO Surgeon. LLNL was chosen by committee to perform the research based on prior published computational studies of the mechanical response of helmets and skulls to blast. Our collaborators include the U.S. Army Aeromedical Research Laboratory [USAARL] (a DoD laboratory responsiblemore » for impact testing helmets), Team Wendy and Oregon Aero (current and former ACH pad manufacturers), Riddell and Xenith (NFL pad manufacturers), and d3o (general purpose sports pad manufacturer). The manufacturer-supplied pad systems that were studied are shown in the figure below. The first two are the Army systems, which are bilayer foam pads with both hard and soft foam and a water-resistant airtight wrapper (Team Wendy) or a water-resistant airtight coating (Oregon Aero). The next two are NFL pad systems. The Xenith system consists of a thin foam pad and a hollow air-filled cylinder that elastically buckles under load. The Riddell system is a bilayer foam pad that is encased in an inflatable airbag with relief channels to neighboring pads in the helmet. The inflatable airbag is for comfort and provides no enhancement to impact mitigation. The d3o system consists of a rate-sensitive homogeneous dense foam. LLNL performed experiments to characterize the material properties of the individual foam materials and the response of the complete pad systems, to obtain parameters needed for the simulations. LLNL also performed X-ray CT scans of an ACH helmet shell that were used to construct a geometrically accurate computational model of the helmet. Two complementary sets of simulations were performed. The first set of simulations reproduced

  20. Technology Assessment for Powertrain Components Final Report CRADA No. TC-1124-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokarz, F.; Gough, C.

    LLNL utilized its defense technology assessment methodologies in combination with its capabilities in the energy; manufacturing, and transportation technologies to demonstrate a methodology that synthesized available but incomplete information on advanced automotive technologies into a comprehensive framework.