Sample records for laboratory materials laboratory

  1. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  2. Thermal Storage Materials Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar

  3. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  4. Laboratories | NREL

    Science.gov Websites

    | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced Thermal Laboratory Structural Testing Laboratory Surface Analysis Laboratory Systems Performance Laboratory T Thermal Storage Materials Laboratory Thermal Storage Process and Components Laboratory Thin-Film Deposition

  5. Preferences for paper bedding material of the laboratory mice.

    PubMed

    Ago, Akio; Gonda, Tatuo; Takechi, Mayumi; Takeuchi, Takashi; Kawakami, Kohei

    2002-04-01

    In order to identify indicators of the preferences for bedding materials, the paper bedding material preferences of laboratory mice were investigated in the present study. Four cages, each containing a different structure of paper bedding material were connected to allow free access to each cage. The preferences for paper bedding materials of laboratory mice were judged by the differences in the length of stay and sleep in each cage. The mice preferred the bedding material that allowed them to easily hide and build nests and was soft. We conclude that the comfort and well-being of laboratory mice can be increased through the appropriate selection of bedding material.

  6. High Vacuum Creep Facility in the Materials Processing Laboratory

    NASA Image and Video Library

    1973-01-21

    Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.

  7. Long-term pavement performance project laboratory materials testing and handling guide

    DOT National Transportation Integrated Search

    2007-09-01

    The Long Term Pavement Performance (LTPP) Laboratory Material Testing Guide was originally prepared for laboratory material handling and testing of material specimens and samples of asphalt materials, portland cement concrete, aggregates, and soils u...

  8. MDOT Materials Laboratories : Environmental Management Plan

    DOT National Transportation Integrated Search

    2012-06-01

    The goal of this EMP was to develop and implement a comprehensive Environmental : Management Plan for MDOT Materials Laboratories. This goal was achieved through : perfonnance of environmental audits to identify potential environmental impacts, and b...

  9. Our Story | Materials Research Laboratory at UCSB: an NSF MRSEC

    Science.gov Websites

    this site Materials Research Laboratory at UCSB: an NSF MRSEC logo Materials Research Laboratory at & Workshops Visitor Info Research IRG-1: Magnetic Intermetallic Mesostructures IRG 2: Polymeric Seminars Publications MRL Calendar Facilities Computing Energy Research Facility Microscopy &

  10. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydraulic laboratories, and to the Inter-Agency Sedimentation Project. (c) References. (1) AR 37-20. (2) AR... ordinary business channels. (3) Performance of the work will not interfere with provisions of services... with the same procedures as apply to Division Materials Laboratories. (3) Inter-Agency Sedimentation...

  11. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydraulic laboratories, and to the Inter-Agency Sedimentation Project. (c) References. (1) AR 37-20. (2) AR... ordinary business channels. (3) Performance of the work will not interfere with provisions of services... with the same procedures as apply to Division Materials Laboratories. (3) Inter-Agency Sedimentation...

  12. Graphing techniques for materials laboratory using Excel

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1994-01-01

    Engineering technology curricula stress hands on training and laboratory practices in most of the technical courses. Laboratory reports should include analytical as well as graphical evaluation of experimental data. Experience shows that many students neither have the mathematical background nor the expertise for graphing. This paper briefly describes the procedure and data obtained from a number of experiments such as spring rate, stress concentration, endurance limit, and column buckling for a variety of materials. Then with a brief introduction to Microsoft Excel the author explains the techniques used for linear regression and logarithmic graphing.

  13. Sediment laboratory quality-assurance project: studies of methods and materials

    USGS Publications Warehouse

    Gordon, J.D.; Newland, C.A.; Gray, J.R.

    2001-01-01

    In August 1996 the U.S. Geological Survey initiated the Sediment Laboratory Quality-Assurance project. The Sediment Laboratory Quality Assurance project is part of the National Sediment Laboratory Quality-Assurance program. This paper addresses the fmdings of the sand/fme separation analysis completed for the single-blind reference sediment-sample project and differences in reported results between two different analytical procedures. From the results it is evident that an incomplete separation of fme- and sand-size material commonly occurs resulting in the classification of some of the fme-size material as sand-size material. Electron microscopy analysis supported the hypothesis that the negative bias for fme-size material and the positive bias for sand-size material is largely due to aggregation of some of the fine-size material into sand-size particles and adherence of fine-size material to the sand-size grains. Electron microscopy analysis showed that preserved river water, which was low in dissolved solids, specific conductance, and neutral pH, showed less aggregation and adhesion than preserved river water that was higher in dissolved solids and specific conductance with a basic pH. Bacteria were also found growing in the matrix, which may enhance fme-size material aggregation through their adhesive properties. Differences between sediment-analysis methods were also investigated as pan of this study. Suspended-sediment concentration results obtained from one participating laboratory that used a total-suspended solids (TSS) method had greater variability and larger negative biases than results obtained when this laboratory used a suspended-sediment concentration method. When TSS methods were used to analyze the reference samples, the median suspended sediment concentration percent difference was -18.04 percent. When the laboratory used a suspended-sediment concentration method, the median suspended-sediment concentration percent difference was -2

  14. Chemistry-Materials Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Chemistry-Materials Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or substituting material related to class interests; as a guide book for…

  15. Preparation for microgravity: The role of the microgravity materials science laboratory

    NASA Technical Reports Server (NTRS)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    A laboratory dedicated to ground based materials processing in preparation for space flight was established at the NASA Lewis Research Center. Experiments are performed to delineate the effects of gravity on processes of both scientific and commercial interest. Processes are modeled physically and mathematically. Transport model systems are used where possible to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymers reactions. The laboratory contains apparatus which functionally duplicates apparatus available for flight experiments and other pieces instrumented specifically to allow process characterization. Materials addressed include metals, alloys, salts, glasses, ceramics, and polymers. The Microgravity Materials Science Laboratory is staffed by engineers and technicians from a variety of disciplines and is open to users from industry and academia as well as the government. Examples will be given of the laboratory apparatus typical experiments and results.

  16. Materials and Nondestructive Evaluation Laboratoriers: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Schaschl, Leslie

    2011-01-01

    The Materials and Nondestructive Evaluation Laboratory process, milestones and inputs are unknowns to first-time users. The Materials and Nondestructive Evaluation Laboratory Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware developers. It is intended to assist their project engineering personnel in materials analysis planning and execution. Material covered includes a roadmap of the analysis process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define scope of analysis, cost, and schedule are included as an appendix to the guide.

  17. Iodine Standard Materials: Preparation and Inter-Laboratory Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D D Jenson; M L Adamic; J E Olson

    The Idaho National Laboratory is preparing to enter the community of AMS practioners who analyze for 129Iodine. We expect to take delivery of a 0.5 MV compact accelerator mass spectrometry system, built by NEC, in the early summer of 2014. The primary mission for this instrument is iodine; it is designed to analyze iodine in the +3 charge state. As part of the acceptance testing for this instrument, both at NEC and on-site in our laboratory, some sort of standard or reference material is needed to verify performance. Appropriate standard materials are not readily available in the commercial marketplace. Smallmore » quantities can sometimes be acquired from other laboratories already engaged in iodine analyses. In the longer-term, meaningful quantities of standard materials are needed for routine use in analyses, and for quality control functions1. We have prepared some standard materials, starting with elemental Woodward iodine and NIST SRM 3231 [Iodine-129 Isotopic Standard (high level)] 10-6 solution. The goal was to make mixtures at the 5x10-10, 5x10-11, 5x10-12 ratio levels, along with some unmodified Woodward, in the chemical form of silver iodide. Approximately twenty grams of each of these mixtures were prepared. The elemental Woodward iodine was dissolved in chloroform, then reduced to iodide using sodium bisulfite in water. At this point the NIST spike material was added, in the form of sodium iodide. The mixed iodides were oxidized back to iodine in chloroform using hydrogen peroxide. This oxidation step was essential for isotopic equilibration of the 127 and 129 atoms. The iodine was reduced to iodide using sodium bisulfite as before. Excess sulfites and sulfates were precipitated with barium nitrate. After decanting, silver nitrate was used to precipitate the desired silver iodide. Once the silver iodide was produced, the material was kept in darkness as much as possible to minimize photo-oxidation. The various mixtures were synthesized independently

  18. MATERIALS AND TECHNIQUES FOR THE LANGUAGE LABORATORY.

    ERIC Educational Resources Information Center

    NAJAM, EDWARD W.

    THE PROCEEDINGS OF THE SECOND ANNUAL INDIANA-PURDUE LANGUAGE LABORATORY CONFERENCE ARE ORGANIZED, AFTER INTRODUCTORY STATEMENTS BY NAJAM AND LARSEN ON CONTEMPORARY TRENDS IN LANGUAGE INSTRUCTION, UNDER THREE GENERAL HEADINGS PLUS APPENDIXES. IN THE FIRST SECTION DEVOTED TO MATERIALS AND TECHNIQUES ARE ARTICLES BY HYER, GARIMALDI, EDDY, AND SMITH…

  19. 40 CFR 262.208 - Removing containers of unwanted material from the laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Laboratories Owned by Eligible Academic Entities § 262.208 Removing containers of unwanted material from the laboratory. (a) Removing containers of unwanted material on a regular schedule. An eligible academic entity... months of each container's accumulation start date. (b) The eligible academic entity must specify in Part...

  20. 40 CFR 262.208 - Removing containers of unwanted material from the laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Laboratories Owned by Eligible Academic Entities § 262.208 Removing containers of unwanted material from the laboratory. (a) Removing containers of unwanted material on a regular schedule. An eligible academic entity... months of each container's accumulation start date. (b) The eligible academic entity must specify in Part...

  1. 40 CFR 262.208 - Removing containers of unwanted material from the laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Laboratories Owned by Eligible Academic Entities § 262.208 Removing containers of unwanted material from the laboratory. (a) Removing containers of unwanted material on a regular schedule. An eligible academic entity... months of each container's accumulation start date. (b) The eligible academic entity must specify in Part...

  2. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  3. Commissioning a materials research laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAVAGE,GERALD A.

    2000-03-28

    This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented inmore » a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.« less

  4. Laboratory performance in the Sediment Laboratory Quality-Assurance Project, 1996-98

    USGS Publications Warehouse

    Gordon, John D.; Newland, Carla A.; Gagliardi, Shane T.

    2000-01-01

    Analytical results from all sediment quality-control samples are compiled and statistically summarized by the USGS, Branch of Quality Systems, both on an intra- and interlaboratory basis. When evaluating these data, the reader needs to keep in mind that every measurement has an error component associated with it. It is premature to use the data from the first five SLQA studies to judge any of the laboratories as performing in an unacceptable manner. There were, however, some notable differences in the results for the 12 laboratories that participated in the five SLQA studies. For example, the overall median percent difference for suspended-sediment concentration on an individual laboratory basis ranged from –18.04 to –0.33 percent. Five of the 12 laboratories had an overall median percent difference for suspended-sediment concentration of –2.02 to –0.33 percent. There was less variability in the median difference for the measured fine-size material mass. The overall median percent difference for fine-size material mass ranged from –10.11 to –4.27 percent. Except for one laboratory, the median difference for fine-size material mass was within a fairly narrow range of –6.76 to –4.27 percent. The median percent difference for sand-size material mass differed among laboratories more than any other physical sediment property measured in the study. The overall median percent difference for the sand-size material mass ranged from –1.49 percent to 26.39 percent. Five of the nine laboratories that do sand/fine separations had overall median percent differences that ranged from –1.49 to 2.98 percent for sand-size material mass. Careful review of the data reveals that certain laboratories consistently produced data within statistical control limits for some or all of the physical sediment properties measured in this study, whereas other laboratories occasionally produced data that exceeded the control limits.

  5. The Effect of Jigsaw Technique on the Students' Laboratory Material Recognition and Usage Skills in General Physics Laboratory-I Course

    ERIC Educational Resources Information Center

    Aydin, Abdullah; Biyikli, Filiz

    2017-01-01

    This research aims to compare the effects of Jigsaw technique from the cooperative learning methods and traditional learning method on laboratory material recognition and usage skills of students in General Physics Lab-I Course. This study was conducted with 63 students who took general physics laboratory-I course in the department of science…

  6. Dr. William Tumas - Associate Laboratory Director, Materials and Chemical

    Science.gov Websites

    Chemical Science and Technology Dr. William Tumas - Associate Laboratory Director, Materials and Chemical , technical direction, and workforce development of the materials and chemical science and technology , program management, and program execution. He joined NREL in December 2009 as Director of the Chemical and

  7. Thermal-Structures and Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    1997-01-01

    Since its inception and successful implementation in 1997 at James Madison University, the Thermal Structures and Materials Testing Laboratory (T-SaMTL) funded by the NASA Langley Research Center is evolving into one of the University's premier and exemplary efforts to increase minority representation in the sciences and mathematics. Serving ten (10) students and faculty directly and almost fifty (50) students indirectly, T-SAMTL, through its recruitment efforts, workshops, mentoring program, tutorial services and its research and computational laboratories has marked the completion of the first year with support from NASA totaling $ 100,000. Beginning as an innovative academic research and mentoring program for underrepresented minority science and mathematics students, the program now boasts a constituency which consists of 50% graduating seniors in the spring of 1998 with 50% planning to go to graduate school. The program's intent is to increase the number of underrepresented minorities who receive doctoral degrees in the sciences by initiating an academically enriched research program aimed at strengthening the academic and self actualization skills of undergraduate students with the potential to pursue doctoral study in the sciences. The program provides financial assistance, academic enrichment, and professional and personal development support for minority students who demonstrate the potential and strong desire to pursue careers in the sciences and mathematics. James Madison University was awarded the first $100,000, in April 1997, by The NASA Langley Research Center for establishment and support of its Thermal Structures and Materials Testing

  8. Laboratory safety handbook

    USGS Publications Warehouse

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  9. Trackless tack coat materials : a laboratory evaluation performance acceptance.

    DOT National Transportation Integrated Search

    2012-06-01

    The purpose of this study was to develop, demonstrate, and document laboratory procedures that could be used by the : Virginia Department of Transportation (VDOT) to evaluate non-tracking tack coat materials. The procedures would be used to : qualify...

  10. Laboratory investigations into fracture propagation characteristics of rock material

    NASA Astrophysics Data System (ADS)

    Prasad, B. N. V. Siva; Murthy, V. M. S. R.

    2018-04-01

    After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.

  11. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema

    Carpenter, John

    2018-02-14

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  12. Automation software for a materials testing laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Bonacuse, Peter J.

    1990-01-01

    The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.

  13. Mice examined in Animal Laboratory of Lunar Receiving Laboratory

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Landrum Young (seated), Brown and Root-Northrup, and Russell Stullken, Manned Spacecraft Center, examine mice in the Animal laboratory of the Lunar Receiving Laboratory which have been inoculated with lunar sample material. wish for peace for all mankind. astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  14. A Shallow Underground Laboratory for Low-Background Radiation Measurements and Materials Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Bonicalzi, Ricco; Cantaloub, Michael G.

    Abstract: Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths worldwide houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This manuscript describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. Wemore » conclude by presenting measurement targets and future opportunities.« less

  15. Preparation for microgravity - The role of the Microgravity Material Science Laboratory

    NASA Technical Reports Server (NTRS)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    Experiments at the NASA Lewis Research Center's Microgravity Material Science Laboratory using physical and mathematical models to delineate the effects of gravity on processes of scientific and commercial interest are discussed. Where possible, transparent model systems are used to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymer reactions. Materials studied include metals, alloys, salts, glasses, ceramics, and polymers. Specific technologies discussed include the General Purpose furnace used in the study of metals and crystal growth, the isothermal dendrite growth apparatus, the electromagnetic levitator/instrumented drop tube, the high temperature directional solidification furnace, the ceramics and polymer laboratories and the center's computing facilities.

  16. Artificial intelligence in the materials processing laboratory

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  17. Laboratory Ventilation and Safety.

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1965-01-01

    In order to meet the needs of both safety and economy, laboratory ventilation systems must effectively remove air-borne toxic and flammable materials and at the same time exhaust a minimum volume of air. Laboratory hoods are the most commonly used means of removing gases, dusts, mists, vapors, and fumed from laboratory operations. To be effective,…

  18. Inter-laboratory comparison measurements of radiochemical laboratories in Slovakia.

    PubMed

    Meresová, J; Belanová, A; Vrsková, M

    2010-01-01

    The first inter-laboratory comparison organized by the radiochemistry laboratory of Water Research Institute (WRI) in Bratislava was carried out in 1993 and since then is it realized on an annual basis and about 10 radiochemical laboratories from all over Slovakia are participating. The gross alpha and gross beta activities, and the activity concentrations of (222)Rn, tritium, and (226)Ra, and U(nat) concentration in synthetic water samples are compared. The distributed samples are covering the concentration range prevailing in potable and surface waters and are prepared by dilution of certified reference materials. Over the course of the years 1993-2008, we observed the improvement in the quality of results for most of the laboratories. However, the success rate of the gross alpha determination activity is not improving as much as the other parameters. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  20. An Efficient Procedure for Removal and Inactivation of Alpha-Synuclein Assemblies from Laboratory Materials.

    PubMed

    Bousset, Luc; Brundin, Patrik; Böckmann, Anja; Meier, Beat; Melki, Ronald

    2016-01-01

    Preformed α-synuclein fibrils seed the aggregation of soluble α-synuclein in cultured cells and in vivo. This, and other findings, has kindled the idea that α-synuclein fibrils possess prion-like properties. As α-synuclein fibrils should not be considered as innocuous, there is a need for decontamination and inactivation procedures for laboratory benches and non-disposable laboratory material. We assessed the effectiveness of different procedures designed to disassemble α-synuclein fibrils and reduce their infectivity. We examined different commercially available detergents to remove α-synuclein assemblies adsorbed on materials that are not disposable and that are most found in laboratories (e.g. plastic, glass, aluminum or stainless steel surfaces). We show that methods designed to decrease PrP prion infectivity neither effectively remove α-synuclein assemblies adsorbed to different materials commonly used in the laboratory nor disassemble the fibrillar form of the protein with efficiency. In contrast, both commercial detergents and SDS detached α-synuclein assemblies from contaminated surfaces and disassembled the fibrils. We describe three cleaning procedures that effectively remove and disassemble α-synuclein seeds. The methods rely on the use of detergents that are compatible with most non-disposable tools in a laboratory. The procedures are easy to implement and significantly decrease any potential risks associated to handling α-synuclein assemblies.

  1. The Mars Science Laboratory Organic Check Material

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  2. An Efficient Procedure for Removal and Inactivation of Alpha-Synuclein Assemblies from Laboratory Materials

    PubMed Central

    Bousset, Luc; Brundin, Patrik; Böckmann, Anja; Meier, Beat; Melki, Ronald

    2015-01-01

    Background: Preformed α-synuclein fibrils seed the aggregation of soluble α-synuclein in cultured cells and in vivo. This, and other findings, has kindled the idea that α-synuclein fibrils possess prion-like properties. Objective: As α-synuclein fibrils should not be considered as innocuous, there is a need for decontamination and inactivation procedures for laboratory benches and non-disposable laboratory material. Methods: We assessed the effectiveness of different procedures designed to disassemble α-synuclein fibrils and reduce their infectivity. We examined different commercially available detergents to remove α-synuclein assemblies adsorbed on materials that are not disposable and that are most found in laboratories (e.g. plastic, glass, aluminum or stainless steel surfaces). Results: We show that methods designed to decrease PrP prion infectivity neither effectively remove α-synuclein assemblies adsorbed to different materials commonly used in the laboratory nor disassemble the fibrillar form of the protein with efficiency. In contrast, both commercial detergents and SDS detached α-synuclein assemblies from contaminated surfaces and disassembled the fibrils. Conclusions: We describe three cleaning procedures that effectively remove and disassemble α-synuclein seeds. The methods rely on the use of detergents that are compatible with most non-disposable tools in a laboratory. The procedures are easy to implement and significantly decrease any potential risks associated to handling α-synuclein assemblies. PMID:26639448

  3. 46 CFR 164.009-21 - Laboratory report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Laboratory report. 164.009-21 Section 164.009-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-21 Laboratory report. The laboratory report of the test...

  4. 46 CFR 164.009-21 - Laboratory report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Laboratory report. 164.009-21 Section 164.009-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-21 Laboratory report. The laboratory report of the test...

  5. 46 CFR 164.009-21 - Laboratory report.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Laboratory report. 164.009-21 Section 164.009-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-21 Laboratory report. The laboratory report of the test...

  6. 46 CFR 164.009-21 - Laboratory report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Laboratory report. 164.009-21 Section 164.009-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-21 Laboratory report. The laboratory report of the test...

  7. Safety in laboratories: Indian scenario.

    PubMed

    Mustafa, Ajaz; Farooq, A Jan; Qadri, Gj; S A, Tabish

    2008-07-01

    Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. Seventy three percent of laboratories had safety education program regarding hazards. In 91% of laboratories staff is using protective clothing while working in laboratories. Hazardous material regulations are followed in 78% of laboratories. Regular health check ups are carried among laboratory staff in 43.4% of laboratories.Safety manual is available in 56.5% of laboratories. 73.9% of laboratories are equipped with fire extinguishers. Fume cupboards are provided in 34.7% of laboratories and they are regularly checked in 87.5% of these laboratories. In 78.26% of laboratories suitable measures are taken to minimize formation of aerosols.In 95.6% of laboratories waste is disposed off as per bio-medical waste management handling rules. Laboratory of one private medical college was accredited with NABL and safety parameters were better in that laboratory. Installing safety engineered devices apparently contributes to significant decrease in injuries in laboratories; laboratory safety has to be a part of overall quality assurance programme in hospitals. Accreditation has to be made necessary for all laboratories.

  8. Preservice laboratory education strengthening enhances sustainable laboratory workforce in Ethiopia

    PubMed Central

    2013-01-01

    Background There is a severe healthcare workforce shortage in sub Saharan Africa, which threatens achieving the Millennium Development Goals and attaining an AIDS-free generation. The strength of a healthcare system depends on the skills, competencies, values and availability of its workforce. A well-trained and competent laboratory technologist ensures accurate and reliable results for use in prevention, diagnosis, care and treatment of diseases. Methods An assessment of existing preservice education of five medical laboratory schools, followed by remedial intervention and monitoring was conducted. The remedial interventions included 1) standardizing curriculum and implementation; 2) training faculty staff on pedagogical methods and quality management systems; 3) providing teaching materials; and 4) procuring equipment for teaching laboratories to provide practical skills to complement didactic education. Results A total of 2,230 undergraduate students from the five universities benefitted from the standardized curriculum. University of Gondar accounted for 252 of 2,230 (11.3%) of the students, Addis Ababa University for 663 (29.7%), Jimma University for 649 (29.1%), Haramaya University for 429 (19.2%) and Hawassa University for 237 (10.6%) of the students. Together the universities graduated 388 and 312 laboratory technologists in 2010/2011 and 2011/2012 academic year, respectively. Practical hands-on training and experience with well-equipped laboratories enhanced and ensured skilled, confident and competent laboratory technologists upon graduation. Conclusions Strengthening preservice laboratory education is feasible in resource-limited settings, and emphasizing its merits (ample local capacity, country ownership and sustainability) provides a valuable source of competent laboratory technologists to relieve an overstretched healthcare system. PMID:24164781

  9. Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.

    2000-08-01

    Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.

  10. 40 CFR 262.206 - Labeling and management standards for containers of unwanted material in the laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Labeling and management standards for containers of unwanted material in the laboratory. 262.206 Section 262.206 Protection of Environment... the laboratory to assure safe storage of the unwanted material, to prevent leaks, spills, emissions to...

  11. Medical Laboratory Assistant. Laboratory Occupations Cluster.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for medical laboratory assistant is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a task list. Each…

  12. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  13. The Impact of Differentiated Instructional Materials on English Language Learner (ELL) Students' Comprehension of Science Laboratory Tasks

    ERIC Educational Resources Information Center

    Manavathu, Marian; Zhou, George

    2012-01-01

    Through a qualitative research design, this article investigates the impacts of differentiated laboratory instructional materials on English language learners' (ELLs) laboratory task comprehension. The factors affecting ELLs' science learning experiences are further explored. Data analysis reveals a greater degree of laboratory task comprehension…

  14. Viability testing of material derived from Mycobacterium tuberculosis prior to removal from a Containment Level-III Laboratory as part of a Laboratory Risk Assessment Program

    PubMed Central

    Blackwood, Kym S; Burdz, Tamara V; Turenne, Christine Y; Sharma, Meenu K; Kabani, Amin M; Wolfe, Joyce N

    2005-01-01

    Background In the field of clinical mycobacteriology, Mycobacterium tuberculosis (MTB) can be a difficult organism to manipulate due to the restrictive environment of a containment level 3 (CL3) laboratory. Tests for rapid diagnostic work involving smears and molecular methods do not require CL3 practices after the organism has been rendered non-viable. While it has been assumed that after organism deactivation these techniques can be performed outside of a CL3, no conclusive study has consistently confirmed that the organisms are noninfectious after the theoretical 'deactivation' steps. Previous studies have shown that initial steps (such as heating /chemical fixation) may not consistently kill MTB organisms. Methods An inclusive viability study (n = 226) was undertaken to determine at which point handling of culture extraction materials does not necessitate a CL3 environment. Four different laboratory protocols tested for viability included: standard DNA extractions for IS6110 fingerprinting, crude DNA preparations for PCR by boiling and mechanical lysis, protein extractions, and smear preparations. For each protocol, laboratory staff planted a proportion of the resulting material to Bactec 12B medium that was observed for growth for 8 weeks. Results Of the 208 isolates initially tested, 21 samples grew within the 8-week period. Sixteen (7.7%) of these yielded positive results for MTB that included samples of: deactivated culture resuspensions exposed to 80°C for 20 minutes, smear preparations and protein extractions. Test procedures were consequently modified and tested again (n = 18), resulting in 0% viability. Conclusions This study demonstrates that it cannot be assumed that conventional practices (i.e. smear preparation) or extraction techniques render the organism non-viable. All methodologies, new and existing, should be examined by individual laboratories to validate the safe removal of material derived from MTB to the outside of a CL3 laboratory. This

  15. Viability testing of material derived from Mycobacterium tuberculosis prior to removal from a containment level-III laboratory as part of a Laboratory Risk Assessment Program.

    PubMed

    Blackwood, Kym S; Burdz, Tamara V; Turenne, Christine Y; Sharma, Meenu K; Kabani, Amin M; Wolfe, Joyce N

    2005-01-24

    In the field of clinical mycobacteriology, Mycobacterium tuberculosis (MTB) can be a difficult organism to manipulate due to the restrictive environment of a containment level 3 (CL3) laboratory. Tests for rapid diagnostic work involving smears and molecular methods do not require CL3 practices after the organism has been rendered non-viable. While it has been assumed that after organism deactivation these techniques can be performed outside of a CL3, no conclusive study has consistently confirmed that the organisms are noninfectious after the theoretical 'deactivation' steps. Previous studies have shown that initial steps (such as heating/chemical fixation) may not consistently kill MTB organisms. An inclusive viability study (n = 226) was undertaken to determine at which point handling of culture extraction materials does not necessitate a CL3 environment. Four different laboratory protocols tested for viability included: standard DNA extractions for IS6110 fingerprinting, crude DNA preparations for PCR by boiling and mechanical lysis, protein extractions, and smear preparations. For each protocol, laboratory staff planted a proportion of the resulting material to Bactec 12B medium that was observed for growth for 8 weeks. Of the 208 isolates initially tested, 21 samples grew within the 8-week period. Sixteen (7.7%) of these yielded positive results for MTB that included samples of: deactivated culture resuspensions exposed to 80 degrees C for 20 minutes, smear preparations and protein extractions. Test procedures were consequently modified and tested again (n = 18), resulting in 0% viability. This study demonstrates that it cannot be assumed that conventional practices (i.e. smear preparation) or extraction techniques render the organism non-viable. All methodologies, new and existing, should be examined by individual laboratories to validate the safe removal of material derived from MTB to the outside of a CL3 laboratory. This process is vital to establish in

  16. Progress of applied superconductivity research at Materials Research Laboratories, ITRI (Taiwan)

    NASA Technical Reports Server (NTRS)

    Liu, R. S.; Wang, C. M.

    1995-01-01

    A status report based on the applied high temperature superconductivity (HTS) research at Materials Research Laboratories (MRL), Industrial Technology Research Institute (ITRI) is given. The aim is to develop fabrication technologies for the high-TC materials appropriate to the industrial application requirements. To date, the majorities of works have been undertaken in the areas of new materials, wires/tapes with long length, prototypes of magnets, large-area thin films, SQUID's and microwave applications.

  17. Multiyear Program Plan for the High Temperature Materials Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly,more » the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.« less

  18. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  19. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    ERIC Educational Resources Information Center

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  20. 46 CFR 164.019-17 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 164.019-17 Section 164.019-17...: SPECIFICATIONS AND APPROVAL MATERIALS Personal Flotation Device Components § 164.019-17 Recognized laboratory. (a) General. A laboratory may be designated as a recognized laboratory under this subpart if it is— (1...

  1. 46 CFR 164.019-17 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 164.019-17 Section 164.019-17...: SPECIFICATIONS AND APPROVAL MATERIALS Personal Flotation Device Components § 164.019-17 Recognized laboratory. (a) General. A laboratory may be designated as a recognized laboratory under this subpart if it is— (1...

  2. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China

    PubMed Central

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun

    2015-01-01

    Introduction To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. Materials and methods 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. Results The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479 / 1307), 38% (228 / 598), and 36% (449 / 1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Conclusions Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them. PMID:26110033

  3. Science Laboratory Environment and Academic Performance

    NASA Astrophysics Data System (ADS)

    Aladejana, Francisca; Aderibigbe, Oluyemisi

    2007-12-01

    The study determined how students assess the various components of their science laboratory environment. It also identified how the laboratory environment affects students' learning outcomes. The modified ex-post facto design was used. A sample of 328 randomly selected students was taken from a population of all Senior Secondary School chemistry students in a state in Nigeria. The research instrument, Science Laboratory Environment Inventory (SLEI) designed and validated by Fraser et al. (Sci Educ 77:1-24, 1993) was administered on the selected students. Data analysis was done using descriptive statistics and Product Moment Correlation. Findings revealed that students could assess the five components (Student cohesiveness, Open-endedness, Integration, Rule clarity, and Material Environment) of the laboratory environment. Student cohesiveness has the highest assessment while material environment has the least. The results also showed that the five components of the science laboratory environment are positively correlated with students' academic performance. The findings are discussed with a view to improving the quality of the laboratory environment, subsequent academic performance in science and ultimately the enrolment and retaining of learners in science.

  4. Using experimental design modules for process characterization in manufacturing/materials processes laboratories

    NASA Technical Reports Server (NTRS)

    Ankenman, Bruce; Ermer, Donald; Clum, James A.

    1994-01-01

    Modules dealing with statistical experimental design (SED), process modeling and improvement, and response surface methods have been developed and tested in two laboratory courses. One course was a manufacturing processes course in Mechanical Engineering and the other course was a materials processing course in Materials Science and Engineering. Each module is used as an 'experiment' in the course with the intent that subsequent course experiments will use SED methods for analysis and interpretation of data. Evaluation of the modules' effectiveness has been done by both survey questionnaires and inclusion of the module methodology in course examination questions. Results of the evaluation have been very positive. Those evaluation results and details of the modules' content and implementation are presented. The modules represent an important component for updating laboratory instruction and to provide training in quality for improved engineering practice.

  5. Standard Specification for Language Laboratory.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Administration, Raleigh.

    This specification covers the components of electronic and electromechanical equipment, nonelectronic materials for the teacher-student positions, and other items of a miscellaneous nature to provide for a complete and workable language laboratory facility. Language laboratory facilities covered by this specification are of two types: (1)…

  6. Laboratory Manual, Electrical Engineering 25.

    ERIC Educational Resources Information Center

    Syracuse Univ., NY. Dept. of Electrical Engineering.

    Developed as part of a series of materials in the electrical engineering sequence developed under contract with the United States Office of Education, this laboratory manual provides nine laboratory projects suitable for a second course in electrical engineering. Dealing with resonant circuits, electrostatic fields, magnetic devices, and…

  7. Good Laboratory Practices of Materials Testing at NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, James H.

    2005-01-01

    An approach to good laboratory practices of materials testing at NASA White Sands Test Facility is presented. The contents include: 1) Current approach; 2) Data analysis; and 3) Improvements sought by WSTF to enhance the diagnostic capability of existing methods.

  8. Testing Plastic Deformations of Materials in the Introductory Undergraduate Mechanics Laboratory

    ERIC Educational Resources Information Center

    Romo-Kroger, C. M.

    2012-01-01

    Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for…

  9. Laboratory requirements for in-situ and remote sensing of suspended material

    NASA Technical Reports Server (NTRS)

    Kuo, C. Y.; Cheng, R. Y. K.

    1978-01-01

    Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.

  10. Laboratory requirements for in-situ and remote sensing of suspended material

    NASA Technical Reports Server (NTRS)

    Kuo, C. Y.; Cheng, R. Y. K.

    1976-01-01

    Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.

  11. Writing Material in Chemical Physics Research: The Laboratory Notebook as Locus of Technical and Textual Integration

    ERIC Educational Resources Information Center

    Wickman, Chad

    2010-01-01

    This article, drawing on ethnographic study in a chemical physics research facility, explores how notebooks are used and produced in the conduct of laboratory science. Data include written field notes of laboratory activity; visual documentation of "in situ" writing processes; analysis of inscriptions, texts, and material artifacts produced in the…

  12. A precise laboratory goniometer system to collect spectral BRDF data of materials

    NASA Astrophysics Data System (ADS)

    Jiao, Guangping; Jiao, Ziti; Wang, Jie; Zhang, Hu; Dong, Yadong

    2014-11-01

    This paper presents a precise laboratory goniometer system to quickly collect bidirectional reflectance distribution factor(BRDF)of typical materials such soil, canopy and artificial materials in the laboratory. The system consists of the goniometer, SVC HR1024 spectroradiometer, and xenon long-arc lamp as light source. the innovation of cantilever slab can reduce the shadow of the goniometer in the principle plane. The geometric precision of the footprint centre is better than +/-4cm in most azimuth directions, and the angle-controlling accuracy is better than 0.5°. The light source keeps good stability, with 0.8% irradiance decrease in 3 hours. But the large areal heterogeneity of the light source increase the data processing difficulty to capture the accurate BRDF. First measurements are taken from soil in a resolution of 15° and 30° in zenith and azimuth direction respectively, with the +/-50° biggest view angle. More observations are taken in the hot-spot direction. The system takes about 40 minutes to complete all measurements. A spectralon panel is measured at the beginning and end of the whole period. A simple interactive interface on the computer can automatically control all operations of the goniometer and data-processing. The laboratory experiment of soil layer and grass lawn shows that the goniometer can capture the the multi-angle variation of BRDF.

  13. Influence of Decontaminating Agents and Swipe Materials on Laboratory Simulated Working Surfaces Wet Spilled with Sodium Pertechnetate

    PubMed Central

    Akchata, Suman; Lavanya, K; Shivanand, Bhushan

    2017-01-01

    Context: Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. Aim: To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Settings and Design: Lab-simulated working surface materials. Experimental study design. Materials and Methods: Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Statistical Analysis: Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Results: Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Conclusions: Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the

  14. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  15. 46 CFR 164.012-12 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 164.012-12 Section 164.012-12...: SPECIFICATIONS AND APPROVAL MATERIALS Interior Finishes for Merchant Vessels § 164.012-12 Recognized laboratory. A recognized laboratory is one which is operated as a nonprofit public service and is regularly...

  16. 46 CFR 164.012-12 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 164.012-12 Section 164.012-12...: SPECIFICATIONS AND APPROVAL MATERIALS Interior Finishes for Merchant Vessels § 164.012-12 Recognized laboratory. A recognized laboratory is one which is operated as a nonprofit public service and is regularly...

  17. Quality assurance program for molecular medicine laboratories.

    PubMed

    Hajia, M; Safadel, N; Samiee, S Mirab; Dahim, P; Anjarani, S; Nafisi, N; Sohrabi, A; Rafiee, M; Sabzavi, F; Entekhabi, B

    2013-01-01

    Molecular diagnostic methods have played and continuing to have a critical role in clinical laboratories in recent years. Therefore, standardization is an evolutionary process that needs to be upgrade with increasing scientific knowledge, improvement of the instruments and techniques. The aim of this study was to design a quality assurance program in order to have similar conditions for all medical laboratories engaging with molecular tests. We had to design a plan for all four elements; required space conditions, equipments, training, and basic guidelines. Necessary guidelines was prepared and confirmed by the launched specific committee at the Health Reference Laboratory. Several workshops were also held for medical laboratories directors and staffs, quality control manager of molecular companies, directors and nominees from universities. Accreditation of equipments and molecular material was followed parallel with rest of program. Now we are going to accredit medical laboratories and to evaluate the success of the program. Accreditation of medical laboratory will be succeeding if its basic elements are provided in advance. Professional practice guidelines, holding training and performing accreditation the molecular materials and equipments ensured us that laboratories are aware of best practices, proper interpretation, limitations of techniques, and technical issues. Now, active external auditing can improve the applied laboratory conditions toward the defined standard level.

  18. Influence of Decontaminating Agents and Swipe Materials on Laboratory Simulated Working Surfaces Wet Spilled with Sodium Pertechnetate.

    PubMed

    Akchata, Suman; Lavanya, K; Shivanand, Bhushan

    2017-01-01

    Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Lab-simulated working surface materials. Experimental study design. Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the most suitable and recommended laboratory surface material compared to PVC and resin in nuclear medicine

  19. Overview of Materials R&D at Oak Ridge National Laboratory

    DTIC Science & Technology

    2010-08-23

    Titanium - 6Al - 4V 970 1.5 Boron Carbide (B4C) 350-550 (Flexural) 3.0+ Longstanding Achievements in Ceramic Science and Development 23 Baseline...Powders Front and back of V50-tested vacuum- hot-pressed Ti- 6Al - 4V • Oak Ridge National Laboratory Is Collaborating with Industry to Develop...Present and future growth areas – Lightweight materials ( titanium , magnesium, aluminum, carbon fibers and composites) with superior properties

  20. Organic Laboratory Experiments.

    ERIC Educational Resources Information Center

    Smith, Sherrel

    1990-01-01

    Detailed is a method in which short pieces of teflon tubing may be used for collection tubes for collecting preparative fractions from gas chromatographs. Material preparation, laboratory procedures, and results of this method are discussed. (CW)

  1. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  2. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    NASA Astrophysics Data System (ADS)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  3. 10 CFR 431.18 - Testing laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... EQUIPMENT Electric Motors Test Procedures, Materials Incorporated and Methods of Determining Efficiency... Technology/National Voluntary Laboratory Accreditation Program (NIST/NVLAP); or (2) A laboratory... of the National Institute of Standards and Technology (NIST) which is part of the U.S. Department of...

  4. 48 CFR 1523.303-72 - Care of laboratory animals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Care of laboratory animals... Material and Material Safety Data 1523.303-72 Care of laboratory animals. Contracting officers shall insert the clause at 1552.223-72, Care of Laboratory Animals, in all contracts involving the use of...

  5. 48 CFR 1523.303-72 - Care of laboratory animals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Care of laboratory animals... Material and Material Safety Data 1523.303-72 Care of laboratory animals. Contracting officers shall insert the clause at 1552.223-72, Care of Laboratory Animals, in all contracts involving the use of...

  6. 48 CFR 1523.303-72 - Care of laboratory animals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Care of laboratory animals... Material and Material Safety Data 1523.303-72 Care of laboratory animals. Contracting officers shall insert the clause at 1552.223-72, Care of Laboratory Animals, in all contracts involving the use of...

  7. 48 CFR 1523.303-72 - Care of laboratory animals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Care of laboratory animals... Material and Material Safety Data 1523.303-72 Care of laboratory animals. Contracting officers shall insert the clause at 1552.223-72, Care of Laboratory Animals, in all contracts involving the use of...

  8. State of laboratory manual instruction in California community college introductory (non-majors) biology laboratory instruction

    NASA Astrophysics Data System (ADS)

    Priest, Michelle

    College students must complete a life science course prior to graduation for a bachelor's degree. Generally, the course has lecture and laboratory components. It is in the laboratory where there are exceptional opportunities for exploration, challenge and application of the material learned. Optimally, this would utilize the best of inquiry based approaches. Most community colleges are using a home-grown or self written laboratory manual for the direction of work in the laboratory period. Little was known about the motivation, development and adaptation of use. It was also not known about the future of the laboratory manuals in light of the recent learning reform in California Community Colleges, Student Learning Outcomes. Extensive interviews were conducted with laboratory manual authors to determine the motivation, process of development, who was involved and learning framework used in the creation of the manuals. It was further asked of manual authors their ideas about the future of the manual, the development of staff and faculty and finally, the role Student Learning Outcomes would play in the manual. Science faculty currently teaching the non-majors biology laboratories for at least two semesters were surveyed on-line about actual practice of the manual, assessment, manual flexibility, faculty training and incorporation of Student Learning Outcomes. Finally, an evaluation of the laboratory manual was done using an established Laboratory Task Analysis Instrument. Laboratory manuals were evaluated on a variety of categories to determine the level of inquiry instruction done by students in the laboratory section. The results were that the development of homegrown laboratory manuals was done by community colleges in the Los Angeles and Orange Counties in an effort to minimize the cost of the manual to the students, to utilize all the exercises in a particular lab and to effectively utilize the materials already owned by the department. Further, schools wanted to

  9. Statistical Analysis Tools for Learning in Engineering Laboratories.

    ERIC Educational Resources Information Center

    Maher, Carolyn A.

    1990-01-01

    Described are engineering programs that have used automated data acquisition systems to implement data collection and analyze experiments. Applications include a biochemical engineering laboratory, heat transfer performance, engineering materials testing, mechanical system reliability, statistical control laboratory, thermo-fluid laboratory, and a…

  10. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  11. Quality Assurance Program for Molecular Medicine Laboratories

    PubMed Central

    Hajia, M; Safadel, N; Samiee, S Mirab; Dahim, P; Anjarani, S; Nafisi, N; Sohrabi, A; Rafiee, M; Sabzavi, F; Entekhabi, B

    2013-01-01

    Background: Molecular diagnostic methods have played and continuing to have a critical role in clinical laboratories in recent years. Therefore, standardization is an evolutionary process that needs to be upgrade with increasing scientific knowledge, improvement of the instruments and techniques. The aim of this study was to design a quality assurance program in order to have similar conditions for all medical laboratories engaging with molecular tests. Methods: We had to design a plan for all four elements; required space conditions, equipments, training, and basic guidelines. Necessary guidelines was prepared and confirmed by the launched specific committee at the Health Reference Laboratory. Results: Several workshops were also held for medical laboratories directors and staffs, quality control manager of molecular companies, directors and nominees from universities. Accreditation of equipments and molecular material was followed parallel with rest of program. Now we are going to accredit medical laboratories and to evaluate the success of the program. Conclusion: Accreditation of medical laboratory will be succeeding if its basic elements are provided in advance. Professional practice guidelines, holding training and performing accreditation the molecular materials and equipments ensured us that laboratories are aware of best practices, proper interpretation, limitations of techniques, and technical issues. Now, active external auditing can improve the applied laboratory conditions toward the defined standard level. PMID:23865028

  12. Quality assurance of laboratory work and clinical use of laboratory tests in general practice in norway: a survey.

    PubMed

    Thue, Geir; Jevnaker, Marianne; Gulstad, Guri Andersen; Sandberg, Sverre

    2011-09-01

    Virtually all the general practices in Norway participate in the Norwegian Quality Improvement of Laboratory Services in Primary Care, NOKLUS. In order to assess and develop NOKLUS's services, it was decided to carry out an investigation in the largest participating group, general practices. In autumn 2008 a questionnaire was sent to all Norwegian general practices asking for feedback on different aspects of NOKLUS's main services: contact with medical laboratory technologists, sending of control materials, use and maintenance of practice-specific laboratory binders, courses, and testing of laboratory equipment. In addition, attitudes were elicited towards possible new services directed at assessing other technical equipment and clinical use of tests. Responses were received from 1290 of 1552 practices (83%). The great majority thought that the frequency of sending out control material should continue as at present, and they were pleased with the feedback reports and follow-up by the laboratory technologists in the counties. Even after many years of practical experience, there is still a need to update laboratory knowledge through visits to practices, courses, and written information. Practices also wanted quality assurance of blood pressure meters and spirometers, and many doctors wanted feedback on their use of laboratory tests. Services regarding quality assurance of point-of-care tests, guidance, and courses should be continued. Quality assurance of other technical equipment and of the doctor's clinical use of laboratory tests should be established as part of comprehensive quality assurance.

  13. LABORATORY STUDIES ON THE STABILITY AND TRANSPORT OF INORGANIC COLLOIDS THROUGH NATURAL AQUIFER MATERIAL

    EPA Science Inventory

    The stability and transport of radio-labeled Fe2O3 particles were studied using laboratory batch and column techniques. Core material collected from shallow sand and gravel aquifer was used as the immobile column matrix material. Variables in the study included flow rate, pH, i...

  14. Marshall Space Flight Center Materials and Processes Laboratory

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.

    2012-01-01

    Marshall?s Materials and Processes Laboratory has been a core capability for NASA for over fifty years. MSFC has a proven heritage and recognized expertise in materials and manufacturing that are essential to enable and sustain space exploration. Marshall provides a "systems-wise" capability for applied research, flight hardware development, and sustaining engineering. Our history of leadership and achievements in materials, manufacturing, and flight experiments includes Apollo, Skylab, Mir, Spacelab, Shuttle (Space Shuttle Main Engine, External Tank, Reusable Solid Rocket Motor, and Solid Rocket Booster), Hubble, Chandra, and the International Space Station. MSFC?s National Center for Advanced Manufacturing, NCAM, facilitates major M&P advanced manufacturing partnership activities with academia, industry and other local, state and federal government agencies. The Materials and Processes Laborato ry has principal competencies in metals, composites, ceramics, additive manufacturing, materials and process modeling and simulation, space environmental effects, non-destructive evaluation, and fracture and failure analysis provide products ranging from materials research in space to fully integrated solutions for large complex systems challenges. Marshall?s materials research, development and manufacturing capabilities assure that NASA and National missions have access to cutting-edge, cost-effective engineering design and production options that are frugal in using design margins and are verified as safe and reliable. These are all critical factors in both future mission success and affordability.

  15. Development of the Global Measles Laboratory Network.

    PubMed

    Featherstone, David; Brown, David; Sanders, Ray

    2003-05-15

    The routine reporting of suspected measles cases and laboratory testing of samples from these cases is the backbone of measles surveillance. The Global Measles Laboratory Network (GMLN) has developed standards for laboratory confirmation of measles and provides training resources for staff of network laboratories, reference materials and expertise for the development and quality control of testing procedures, and accurate information for the Measles Mortality Reduction and Regional Elimination Initiative. The GMLN was developed along the lines of the successful Global Polio Laboratory Network, and much of the polio laboratory infrastructure was utilized for measles. The GMLN has developed as countries focus on measles control activities following successful eradication of polio. Currently more than 100 laboratories are part of the global network and follow standardized testing and reporting procedures. A comprehensive laboratory accreditation process will be introduced in 2002 with six quality assurance and performance indicators.

  16. A Self-Paced Physical Geology Laboratory.

    ERIC Educational Resources Information Center

    Watson, Donald W.

    1983-01-01

    Describes a self-paced geology course utilizing a diversity of instructional techniques, including maps, models, samples, audio-visual materials, and a locally developed laboratory manual. Mechanical features are laboratory exercises, followed by unit quizzes; quizzes are repeated until the desired level of competence is attained. (Author/JN)

  17. 21 CFR 211.173 - Laboratory animals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Laboratory animals. 211.173 Section 211.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory animals. Animals used in testing components, in-process materials, or drug products for compliance...

  18. 21 CFR 211.173 - Laboratory animals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Laboratory animals. 211.173 Section 211.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory animals. Animals used in testing components, in-process materials, or drug products for compliance...

  19. 21 CFR 211.173 - Laboratory animals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Laboratory animals. 211.173 Section 211.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory animals. Animals used in testing components, in-process materials, or drug products for compliance...

  20. 21 CFR 211.173 - Laboratory animals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Laboratory animals. 211.173 Section 211.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory animals. Animals used in testing components, in-process materials, or drug products for compliance...

  1. 21 CFR 211.173 - Laboratory animals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Laboratory animals. 211.173 Section 211.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory animals. Animals used in testing components, in-process materials, or drug products for compliance...

  2. Medical Laboratory Technician (Chemistry and Urinalysis). (AFSC 92470).

    ERIC Educational Resources Information Center

    Thompson, Joselyn H.

    This four-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for medical laboratory technicians. Covered in the individual volumes are medical laboratory administration and clinical chemistry (career opportunities, general laboratory safety and materials, general medical laboratory…

  3. The role of total laboratory automation in a consolidated laboratory network.

    PubMed

    Seaberg, R S; Stallone, R O; Statland, B E

    2000-05-01

    In an effort to reduce overall laboratory costs and improve overall laboratory efficiencies at all of its network hospitals, the North Shore-Long Island Health System recently established a Consolidated Laboratory Network with a Core Laboratory at its center. We established and implemented a centralized Core Laboratory designed around the Roche/Hitachi CLAS Total Laboratory Automation system to perform the general and esoteric laboratory testing throughout the system in a timely and cost-effective fashion. All remaining STAT testing will be performed within the Rapid Response Laboratories (RRLs) at each of the system's hospitals. Results for this laboratory consolidation and implementation effort demonstrated a decrease in labor costs and improved turnaround time (TAT) at the core laboratory. Anticipated system savings are approximately $2.7 million. TATs averaged 1.3 h within the Core Laboratory and less than 30 min in the RRLs. When properly implemented, automation systems can reduce overall laboratory expenses, enhance patient services, and address the overall concerns facing the laboratory today: job satisfaction, decreased length of stay, and safety. The financial savings realized are primarily a result of labor reductions.

  4. Guidelines to Language Teaching in Classroom and Laboratory.

    ERIC Educational Resources Information Center

    Iodice, Don R.

    Guidelines for evaluating, establishing, and administrating classroom and laboratory language programs are offered in this report. Attention is focused on the language laboratory, with sections on its use, scheduling, materials and texts, preparation of audio materials, preparation of tests, supervision, discipline, and maintenance. Briefer…

  5. 19 CFR 151.54 - Testing by Customs laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Testing by Customs laboratory. 151.54 Section 151... Other Metal-Bearing Materials § 151.54 Testing by Customs laboratory. Samples taken in accordance with § 151.52 shall be promptly forwarded to the appropriate Customs laboratory for testing in accordance...

  6. Laboratory analysis and airborne detection of materials stimulated to luminesce by the sun

    USGS Publications Warehouse

    Hemphill, W.R.; Theisen, A.F.; Tyson, R.M.

    1984-01-01

    The Fraunhofer line discriminator (FLD) is an airborne electro-optical device used to image materials which have been stimulated to luminesce by the Sun. Such materials include uranium-bearing sandstone, sedimentary phosphate rock, marine oil seeps, and stressed vegetation. Prior to conducting an airborne survey, a fluorescence spectrometer may be used in the laboratory to determine the spectral region where samples of the target material exhibit maximum luminescence, and to select the optimum Fraunhofer line. ?? 1984.

  7. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2018-01-16

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  8. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  9. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  10. Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addleman, Raymond S.; Naes, Benjamin E.; McNamara, Bruce K.

    The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmentalmore » sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to

  11. Laboratory comparison of four iron-based filter materials for water treatment of trace element contaminants

    USDA-ARS?s Scientific Manuscript database

    A laboratory investigation was conducted to evaluate four iron-based filter materials for trace element contaminant water treatment. The iron-based filter materials evaluated were zero valent iron (ZVI), porous iron composite (PIC), sulfur modified iron (SMI), and iron oxide/hydroxide (IOH). Only fi...

  12. Laboratory test methods for evaluating the fire response of aerospace materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1979-01-01

    The test methods which were developed or evaluated were intended to serve as means of comparing materials on the basis of specific responses under specific sets of test conditions, using apparatus, facilities, and personnel that would be within the capabilities of perhaps the majority of laboratories. Priority was given to test methods which showed promise of addressing the pre-ignition state of a potential fire. These test methods were intended to indicate which materials may present more hazard than others under specific test conditions. These test methods are discussed and arranged according to the stage of a fire to which they are most relevant. Some observations of material performance which resulted from this work are also discussed.

  13. The Mars Science Laboratory Organic Check Material

    NASA Astrophysics Data System (ADS)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  14. Development of a laboratory niche Web site.

    PubMed

    Dimenstein, Izak B; Dimenstein, Simon I

    2013-10-01

    This technical note presents the development of a methodological laboratory niche Web site. The "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) Web site is used as an example. Although common steps in creation of most Web sites are followed, there are particular requirements for structuring the template's menu on methodological laboratory Web sites. The "nested doll principle," in which one object is placed inside another, most adequately describes the methodological approach to laboratory Web site design. Fragmentation in presenting the Web site's material highlights the discrete parts of the laboratory procedure. An optimally minimal triad of components can be recommended for the creation of a laboratory niche Web site: a main set of media, a blog, and an ancillary component (host, contact, and links). The inclusion of a blog makes the Web site a dynamic forum for professional communication. By forming links and portals, cloud computing opens opportunities for connecting a niche Web site with other Web sites and professional organizations. As an additional source of information exchange, methodological laboratory niche Web sites are destined to parallel both traditional and new forms, such as books, journals, seminars, webinars, and internal educational materials. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The total laboratory solution: a new laboratory E-business model based on a vertical laboratory meta-network.

    PubMed

    Friedman, B A

    2001-08-01

    Major forces are now reshaping all businesses on a global basis, including the healthcare and clinical laboratory industries. One of the major forces at work is information technology (IT), which now provides the opportunity to create a new economic and business model for the clinical laboratory industry based on the creation of an integrated vertical meta-network, referred to here as the "total laboratory solution" (TLS). Participants at the most basic level of such a network would include a hospital-based laboratory, a reference laboratory, a laboratory information system/application service provider/laboratory portal vendor, an in vitro diagnostic manufacturer, and a pharmaceutical/biotechnology manufacturer. It is suggested that each of these participants would add value to the network primarily in its area of core competency. Subvariants of such a network have evolved over recent years, but a TLS comprising all or most of these participants does not exist at this time. Although the TLS, enabled by IT and closely akin to the various e-businesses that are now taking shape, offers many advantages from a theoretical perspective over the current laboratory business model, its success will depend largely on (a) market forces, (b) how the collaborative networks are organized and managed, and (c) whether the network can offer healthcare organizations higher quality testing services at lower cost. If the concept is successful, new demands will be placed on hospital-based laboratory professionals to shift the range of professional services that they offer toward clinical consulting, integration of laboratory information from multiple sources, and laboratory information management. These information management and integration tasks can only increase in complexity in the future as new genomic and proteomics testing modalities are developed and come on-line in clinical laboratories.

  16. In plastico: laboratory material newness affects growth and reproduction of Daphnia magna reared in 50-ml polypropylene tubes

    PubMed Central

    Cuhra, Marek; Bøhn, Thomas; Cuhra, Petr

    2017-01-01

    Plastic laboratory materials are found to affect vital parameters of the waterflea Daphnia magna. The main responsible factor is defined as “newness” of the materials. Juvenile D. magna were raised individually in; a) new laboratory-standard 50 ml polypropylene tubes, and; b) identical tubes which had been washed and aerated for several weeks. Newness had significant effects on growth and fecundity of D. magna. New tubes caused delayed maturation, reduced reproduction and reduced growth when compared to washed and re-used tubes of the same commercial brand. The findings indicate that newness of tubes has inhibiting or toxic effects on D. magna. Often laboratory plastics are intended for single-use due to sterility demands. Newness might be an important confounding factor in research results and should not be disregarded. Disposable plastic utensils may come with a seemingly ignored cost and induce adverse effects in biological test-organisms and systems. The presented findings accentuate continued need for general awareness concerning confounding factors stemming from material laboratory environment. Based on the present findings the authors suggest that plastics intended for use in sensitive research may need to be washed and aerated prior to use. PMID:28425469

  17. Physics Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Physics Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is an extension of the Chemistry-Materials Laboratory Project Book (see note) and is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or…

  18. 40 CFR 262.214 - Laboratory management plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Eligible Academic Entities § 262.214 Laboratory management plan. An eligible academic entity must develop and retain a... a site-specific document that describes how the eligible academic entity will manage unwanted...

  19. 40 CFR 262.214 - Laboratory management plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Eligible Academic Entities § 262.214 Laboratory management plan. An eligible academic entity must develop and retain a... a site-specific document that describes how the eligible academic entity will manage unwanted...

  20. 40 CFR 262.214 - Laboratory management plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Eligible Academic Entities § 262.214 Laboratory management plan. An eligible academic entity must develop and retain a... a site-specific document that describes how the eligible academic entity will manage unwanted...

  1. Cardiopulmonary Laboratory Specialist, 10-6. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These instructor and student materials for a postsecondary level course for cardiopulmonary laboratory specialist training comprise one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose stated for the course is to train students to…

  2. Errors in clinical laboratories or errors in laboratory medicine?

    PubMed

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  3. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2015-06-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  5. Roles of laboratories and laboratory systems in effective tuberculosis programmes.

    PubMed

    Ridderhof, John C; van Deun, Armand; Kam, Kai Man; Narayanan, P R; Aziz, Mohamed Abdul

    2007-05-01

    Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB.

  6. Commercialization of a DOE Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, Barry A.

    2008-01-15

    On April 1, 1998, Materials and Chemistry Laboratory, Inc. (MCLinc) began business as an employee-owned, commercial, applied research laboratory offering services to both government and commercial clients. The laboratory had previously been a support laboratory to DoE's gaseous diffusion plant in Oak Ridge (K-25). When uranium enrichment was halted at the site, the laboratory was expanded to as an environmental demonstration center and served from 1992 until 1997 as a DOE Environmental User Facility. In 1997, after the laboratory was declared surplus, it was made available to the employee group who operated the laboratory for DOE as a government-owned, contractor-operatedmore » facility. This paper describes briefly the process of establishing the business. Attributes that contributed to the success of MCLinc are described. Some attention is given to lessons learned and to changes that could facilitate future attempts to make similar transitions. Lessons learnt: as with any business venture, operation over time has revealed that some actions taken by the laboratory founders have contributed to its successful operation while others were not so successful. Observations are offered in hopes that lessons learned may suggest actions that will facilitate future attempts to make similar transitions. First, the decision to vest significant ownership of the business in the core group of professionals operating the business is key to its success. Employee-owners of the laboratory have consistently provided a high level of service to its customers while conducting business in a cost-efficient manner. Secondly, an early decision to provide business support services in-house rather than purchasing them from support contractors on site have proven cost-effective. Laboratory employees do multiple tasks and perform overhead tasks in addition to their chargeable technical responsibilities. Thirdly, assessment of technical capabilities in view of market needs and a decision to

  7. Remote Sensing Laboratory - RSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip,more » maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.« less

  8. Guidelines on Good Clinical Laboratory Practice

    PubMed Central

    Ezzelle, J.; Rodriguez-Chavez, I. R.; Darden, J. M.; Stirewalt, M.; Kunwar, N.; Hitchcock, R.; Walter, T.; D’Souza, M. P.

    2008-01-01

    A set of Good Clinical Laboratory Practice (GCLP) standards that embraces both the research and clinical aspects of GLP were developed utilizing a variety of collected regulatory and guidance material. We describe eleven core elements that constitute the GCLP standards with the objective of filling a gap for laboratory guidance, based on IND sponsor requirements, for conducting laboratory testing using specimens from human clinical trials. These GCLP standards provide guidance on implementing GLP requirements that are critical for laboratory operations, such as performance of protocol-mandated safety assays, peripheral blood mononuclear cell processing and immunological or endpoint assays from biological interventions on IND-registered clinical trials. The expectation is that compliance with the GCLP standards, monitored annually by external audits, will allow research and development laboratories to maintain data integrity and to provide immunogenicity, safety, and product efficacy data that is repeatable, reliable, auditable and that can be easily reconstructed in a research setting. PMID:18037599

  9. Establishment of National Laboratory Standards in Public and Private Hospital Laboratories

    PubMed Central

    ANJARANI, Soghra; SAFADEL, Nooshafarin; DAHIM, Parisa; AMINI, Rana; MAHDAVI, Saeed; MIRAB SAMIEE, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12th benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors. PMID:23514840

  10. Mesoscale Laboratory Models of the Biodegradation of Municipal Landfill Materials

    NASA Astrophysics Data System (ADS)

    Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.; Zawislanski, P. T.

    2001-12-01

    Stabilization of municipal landfills is a critical issue involving land reuse, leachate treatment, and odor control. In an effort to increase landfill stabilization rates and decrease leachate treatment costs, municipal landfills can be operated as active aerobic or anaerobic bioreactors. Rates of settling and biodegradation were compared in three different treatments of municipal landfill materials in laboratory-scale bioreactors. Each of the three fifty-five-gallon clear acrylic tanks was fitted with pressure transducers, thermistors, neutron probe access tubes, a leachate recirculation system, gas vents, and air injection ports. The treatments applied to the tanks were (a) aerobic (air injection with leachate recirculation and venting from the top), (b) anaerobic (leachate recirculation with passive venting from the top), and (c) a control tank (passive venting from the top and no leachate recirculation). All tanks contained a 10-cm-thick layer of pea gravel at the bottom, overlain by a mixture of fresh waste materials on the order of 5-10 cm in size to an initial height of 0.55 m. Concentrations of O2, CO2 and CH4 were measured at the gas vent, and leachate was collected at the bottom drain. The water saturation in the aerobic and anaerobic tanks averaged 17 % and the control tank averaged 1 %. Relative degradation rates between the tanks were monitored by CO2 and CH4 production rates and O2 respiration rates. Respiration tests on the aerobic tank show a decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 300 days, indicating usable organics are being depleted. The anaerobic tank produced measurable methane after 300 days that increased to 41% by volume after 370 days. Over the test period, the aerobic tank settled 30 %, the anaerobic tank 18.5 %, and the control tank 11.1 %. The concentrations of metals, nitrate, phosphate, and total organic carbon in the aerobic tank leachate are an order of magnitude lower than in the anaerobic

  11. Bioterrorism: a Laboratory Who Does It?

    PubMed Central

    Lee, Philip A.; Rowlinson, Marie-Claire

    2014-01-01

    In October 2001, the first disseminated biological warfare attack was perpetrated on American soil. Initially, a few clinical microbiology laboratories were testing specimens from acutely ill patients and also being asked to test nasal swabs from the potentially exposed. Soon after, a significant number of clinical microbiology and public health laboratories received similar requests to test the worried well or evaluate potentially contaminated mail or environmental materials, sometimes from their own break rooms. The role of the clinical and public health microbiology laboratory in response to a select agent event or act of bioterrorism is reviewed. PMID:24648550

  12. Facilities to Support Beamed Energy Launch Testing at the Laser Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.

    2003-05-01

    The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.

  13. SRB Materials and Processes Assessment from Laboratory and Ocean Environmental Tests

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Materials and Processes Laboratory evaluation of Solid Rocket Boosters (SRB) and Solid Rocket Motors (SRM) candidate material, both in-house and with ocean exposure tests at Panama City and Kennedy Space Center (KSC), Florida is presented. Early sample tests showed excellent seawater corrosion resistance for inconel 718 and titanium 6A1-4V alloys. Considerable corrosion and biofouling occurred with bare 2219-T87 aluminum. Subsequent tests conclusively demonstrated that epoxy coatings prevented corrosion of 2219-T87 aluminum as long as the coatings stays intact. The results and assessment of the series of ocean environmental tests that were conducted are also presented.

  14. The Language Laboratory.

    ERIC Educational Resources Information Center

    Hughes, John P.

    Concepts pertaining to the language laboratory are clarified for the layman unfamiliar with recent educational developments in foreign language instruction. These include discussion of: (1) language laboratory components and functions, (2) techniques used in the laboratory, (3) new linguistic methods, (4) laboratory exercises, (5) traditional…

  15. Thermocouple Calibration and Accuracy in a Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Nathal, M. V.; Keller, D. J.

    2002-01-01

    A consolidation of information has been provided that can be used to define procedures for enhancing and maintaining accuracy in temperature measurements in materials testing laboratories. These studies were restricted to type R and K thermocouples (TCs) tested in air. Thermocouple accuracies, as influenced by calibration methods, thermocouple stability, and manufacturer's tolerances were all quantified in terms of statistical confidence intervals. By calibrating specific TCs the benefits in accuracy can be as great as 6 C or 5X better compared to relying on manufacturer's tolerances. The results emphasize strict reliance on the defined testing protocol and on the need to establish recalibration frequencies in order to maintain these levels of accuracy.

  16. Validation of a laboratory and hospital information system in a medical laboratory accredited according to ISO 15189

    PubMed Central

    Biljak, Vanja Radisic; Ozvald, Ivan; Radeljak, Andrea; Majdenic, Kresimir; Lasic, Branka; Siftar, Zoran; Lovrencic, Marijana Vucic; Flegar-Mestric, Zlata

    2012-01-01

    Introduction The aim of the study was to present a protocol for laboratory information system (LIS) and hospital information system (HIS) validation at the Institute of Clinical Chemistry and Laboratory Medicine of the Merkur University Hospital, Zagreb, Croatia. Materials and methods: Validity of data traceability was checked by entering all test requests for virtual patient into HIS/LIS and printing corresponding barcoded labels that provided laboratory analyzers with the information on requested tests. The original printouts of the test results from laboratory analyzer(s) were compared with the data obtained from LIS and entered into the provided template. Transfer of data from LIS to HIS was examined by requesting all tests in HIS and creating real data in a finding generated in LIS. Data obtained from LIS and HIS were entered into a corresponding template. The main outcome measure was the accuracy of transfer obtained from laboratory analyzers and results transferred from LIS and HIS expressed as percentage (%). Results: The accuracy of data transfer from laboratory analyzers to LIS was 99.5% and of that from LIS to HIS 100%. Conclusion: We presented our established validation protocol for laboratory information system and demonstrated that a system meets its intended purpose. PMID:22384522

  17. [Current biosafety in clinical laboratories in Japan: report of questionnaires' data obtained from clinical laboratory personnel in Japan].

    PubMed

    Goto, Mieko; Yamashita, Tomonari; Misawa, Shigeki; Komori, Toshiaki; Okuzumi, Katsuko; Takahashi, Takashi

    2007-01-01

    To determine the status of biosafety in clinical laboratories in Japan, we conducted a survey using questionnaires on the biosafety of laboratory personnel in 2004. We obtained data from 431 hospitals (response: 59.5%). Respondents were 301 institutions (70%) having biological safety cabinets (BSCs). BSCs were held in 78% of microbiological laboratories, 7.9% of genetic laboratories, 2.7% of histopathological laboratories, and 1% or less at other laboratories. A clean bench in examination rooms for acid-fast bacilli was applied at 20 hospitals. We found 28 cases of possible laboratory-associated tuberculosis infection, 25 of which were associated with lack of BSC. Other risk factors were immature skills and insufficiently skilled eguipment operation. The frequency of rupture accidents during specimen centrifugation was 67% in dealing with blood and 9.7% in collecting acid-fast bacilli. Half or more accidents were related to inadequate sample tube materials. Technologists were shown to be working on blood collection in many hospitals (75%), and 1,534 events of self-inflicted needle puncture developed in the last 5 years. These results suggest that biosafety systems are woefully lacking or inadequate in clinical laboratories in Japan and must be established at the earliest possible opportunity.

  18. Roles of laboratories and laboratory systems in effective tuberculosis programmes

    PubMed Central

    van Deun, Armand; Kam, Kai Man; Narayanan, PR; Aziz, Mohamed Abdul

    2007-01-01

    Abstract Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories’ functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB. PMID:17639219

  19. 46 CFR 160.052-9 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.052-9 Section 160.052-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS..., Adult and Child § 160.052-9 Recognized laboratory. (a) A manufacturer seeking Coast Guard approval of a...

  20. 46 CFR 160.060-9 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.060-9 Section 160.060-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS..., Adult and Child § 160.060-9 Recognized laboratory. (a) A manufacturer seeking Coast Guard approval of a...

  1. 46 CFR 160.047-7 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.047-7 Section 160.047-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... and Child § 160.047-7 Recognized laboratory. (a) A manufacturer seeking Coast Guard approval of a...

  2. Aeroshell for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver.

    This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested.

    The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent.

    The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet.

    In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell.

    The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in

  3. An analysis of laboratory activities found in "Applications In Biology/Chemistry: A Contextual Approach to Laboratory Science"

    NASA Astrophysics Data System (ADS)

    Haskins, Sandra Sue

    The purpose of this study was to quantitatively determine whether the material found in ABC promotes scientific inquiry through the inclusion of science process skills, and to quantitatively determine the type (experimental, comparative, or descriptive) and character (wet-lab, paper and pencil, model, or computer) of laboratory activities. The research design allowed for an examination of the frequency and type of science process skills required of students in 79 laboratory activities sampled from all 12 units utilizing a modified 33-item laboratory analysis inventory (LAI) (Germane et al, 1996). Interrater reliability for the science process skills was completed on 19 of the laboratory activities with a mean score of 86.1%. Interrater reliability for the type and character of the laboratory, on the same 19 laboratory activities, was completed with mean scores of 79.0% and 96.5%, respectively. It was found that all laboratory activities provide a prelaboratory activity. In addition, the science process skill category of student performance is required most often of students with the skill of learning techniques or manipulating apparatus occurring 99% of the time. The science process skill category observed the least was student planning and design, occurring only 3% of the time. Students were rarely given the opportunity to practice science process skills such as developing and testing hypotheses through experiments they have designed. Chi-square tests, applied at the .05 level of significance, revealed that there was a significant difference in the type of laboratory activities; comparative laboratory activities appeared more often (59%). In addition the character of laboratory activities, "wet-lab" activities appeared more often (90%) than any of the others.

  4. Revitalizing chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  5. Ecosystems in the Laboratory

    ERIC Educational Resources Information Center

    Madders, M.

    1975-01-01

    Describes the materials and laboratory techniques for the study of food chains and food webs, pyramids of numbers and biomass, energy pyramids, and oxygen gradients. Presents a procedure for investigating the effects of various pollutants on an entire ecosystem. (GS)

  6. 49 CFR 40.51 - What materials are used to send urine specimens to the laboratory?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What materials are used to send urine specimens to the laboratory? 40.51 Section 40.51 Transportation Office of the Secretary of Transportation... and Supplies Used in DOT Urine Collections § 40.51 What materials are used to send urine specimens to...

  7. 49 CFR 40.51 - What materials are used to send urine specimens to the laboratory?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What materials are used to send urine specimens to the laboratory? 40.51 Section 40.51 Transportation Office of the Secretary of Transportation... and Supplies Used in DOT Urine Collections § 40.51 What materials are used to send urine specimens to...

  8. 49 CFR 40.51 - What materials are used to send urine specimens to the laboratory?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false What materials are used to send urine specimens to the laboratory? 40.51 Section 40.51 Transportation Office of the Secretary of Transportation... and Supplies Used in DOT Urine Collections § 40.51 What materials are used to send urine specimens to...

  9. 49 CFR 40.51 - What materials are used to send urine specimens to the laboratory?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false What materials are used to send urine specimens to the laboratory? 40.51 Section 40.51 Transportation Office of the Secretary of Transportation... and Supplies Used in DOT Urine Collections § 40.51 What materials are used to send urine specimens to...

  10. 49 CFR 40.51 - What materials are used to send urine specimens to the laboratory?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false What materials are used to send urine specimens to the laboratory? 40.51 Section 40.51 Transportation Office of the Secretary of Transportation... and Supplies Used in DOT Urine Collections § 40.51 What materials are used to send urine specimens to...

  11. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  12. Skylab mobile laboratory

    NASA Technical Reports Server (NTRS)

    Primeaux, G. R.; Larue, M. A.

    1975-01-01

    The Skylab mobile laboratory was designed to provide the capability to obtain necessary data on the Skylab crewmen 30 days before lift-off, within 1 hour after recovery, and until preflight physiological baselines were reattained. The mobile laboratory complex consisted of six laboratories that supported cardiovascular, metabolic, nutrition and endocrinology, operational medicine, blood, and microbiology experiments; a utility package; and two shipping containers. The objectives and equipment requirements of the Skylab mobile laboratory and the data acquisition systems are discussed along with processes such as permanently mounting equipment in the individual laboratories and methods of testing and transporting the units. The operational performance, in terms of amounts of data collected, and the concept of mobile laboratories for medical and scientific experiments are evaluated. The Skylab mobile laboratory succeeded in facilitating the data collection and sample preservation associated with the three Skylab manned flights.

  13. Teaching laboratory neuroscience at bowdoin: the laboratory instructor perspective.

    PubMed

    Hauptman, Stephen; Curtis, Nancy

    2009-01-01

    Bowdoin College is a small liberal arts college that offers a comprehensive Neuroscience major. The laboratory experience is an integral part of the major, and many students progress through three stages. A core course offers a survey of concepts and techniques. Four upper-level courses function to give students more intensive laboratory research experience in neurophysiology, molecular neurobiology, social behavior, and learning and memory. Finally, many majors choose to work in the individual research labs of the Neuroscience faculty. We, as laboratory instructors, are vital to the process, and are actively involved in all aspects of the lab-based courses. We provide student instruction in state of the art techniques in neuroscience research. By sharing laboratory teaching responsibilities with course professors, we help to prepare students for careers in laboratory neuroscience and also support and facilitate faculty research programs.

  14. National and international veterinary reference laboratories for infectious diseases.

    PubMed

    Edwards, S; Alexander, D

    1998-08-01

    Reference laboratories play an increasingly important role in the harmonisation of laboratory diagnostic tests and the standardisation of veterinary vaccines. This is particularly important in building confidence between international trading partners. The authors review aspects of the organisation, designation and support of reference laboratories for infectious diseases of animals and discuss the principal activities which such laboratories would normally perform. These activities include advice and consultancy, publications and communication, training, research, disease surveillance, maintenance of culture collections, evaluation of reference methods, preparation of reference materials and organisation of inter-laboratory comparisons.

  15. Annual report: Purchasing and Materials Management Organization, Sandia National Laboratories, fiscal year 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaeh, R.A.

    1993-04-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1992. Activities for both the New Mexico and California locations are included. Topics covered in this report include highlights for fiscal year 1992, personnel, procurements (small business procurements, disadvantaged business procurements, woman-owned business procurements, New Mexico commercial business procurements, Bay area commercial business procurements), commitments by states and foreign countries, and transportation activities. Also listed are the twenty-five commercial contractors receiving the largest dollar commitments, commercial contractors receiving commitments of $1,000 or more, integrated contractor and federal agency commitments of $1,000 ormore » more from Sandia National Laboratories/New Mexico and California, and transportation commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California.« less

  16. Performance evaluation for screening laboratories of the Asia-Pacific region.

    PubMed

    Hannon, W Harry

    2003-01-01

    The Centers for Disease Control and Prevention (CDC) has a long history of involvement in quality assurance (QA) activities for support of newborn screening laboratories. Since 1978, CDC's Newborn Screening Quality Assurance Program (NSQAP), has distributed dried-blood spot (DBS) materials for external QA and has maintained related projects to serve newborn screening laboratories. The first DBS materials were distributed for congenital hypothyroidism screening in 1978 and by 2001, NSQAP had expanded to over 30 disorders and performance monitoring for all filter paper production lots from approved commercial sources. In 2001, there were 250 active NSQAP participants, 167 laboratories from 45 countries and 83 laboratories in the United States. Of these laboratories, 31 are from the Asia Pacific Region representing nine countries primarily for two disorders. In 1999, US laboratories had more errors for Performance Evaluation (PE) specimens than other laboratories; but in 2000, US laboratories had fewer errors. International laboratories reported 0.3% false-negative PE clinical assessments for congenital hypothyroidism and 0.5% for phenylketonuria (0.5%) in 2000. Paperless PE data-reporting operation using an Internet website has recently been implemented.

  17. Laboratory Modelling of Volcano Plumbing Systems: a review

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to

  18. Laboratory issues: use of nutritional biomarkers.

    PubMed

    Blanck, Heidi Michels; Bowman, Barbara A; Cooper, Gerald R; Myers, Gary L; Miller, Dayton T

    2003-03-01

    Biomarkers of nutritional status provide alternative measures of dietary intake. Like the error and variation associated with dietary intake measures, the magnitude and impact of both biological (preanalytical) and laboratory (analytical) variability need to be considered when one is using biomarkers. When choosing a biomarker, it is important to understand how it relates to nutritional intake and the specific time frame of exposure it reflects as well as how it is affected by sampling and laboratory procedures. Biological sources of variation that arise from genetic and disease states of an individual affect biomarkers, but they are also affected by nonbiological sources of variation arising from specimen collection and storage, seasonality, time of day, contamination, stability and laboratory quality assurance. When choosing a laboratory for biomarker assessment, researchers should try to make sure random and systematic error is minimized by inclusion of certain techniques such as blinding of laboratory staff to disease status and including external pooled standards to which laboratory staff are blinded. In addition analytic quality control should be ensured by use of internal standards or certified materials over the entire range of possible values to control method accuracy. One must consider the effect of random laboratory error on measurement precision and also understand the method's limit of detection and the laboratory cutpoints. Choosing appropriate cutpoints and reducing error is extremely important in nutritional epidemiology where weak associations are frequent. As part of this review, serum lipids are included as an example of a biomarker whereby collaborative efforts have been put forth to both understand biological sources of variation and standardize laboratory results.

  19. Laboratory Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  20. Typing: Creating a Laboratory Atmosphere

    ERIC Educational Resources Information Center

    Leonard, Jane A.

    1976-01-01

    Using materials clipped from newspapers, students in a Typing I laboratory learn how to tabulate, proofread, type letters, and reports, etc., and work independently and evaluate other students' work. (TA)

  1. Determining the hydraulic properties of saturated, low-permeability geological materials in the laboratory: Advances in theory and practice

    USGS Publications Warehouse

    Zhang, M.; Takahashi, M.; Morin, R.H.; Endo, H.; Esaki, T.; ,

    2002-01-01

    The accurate hydraulic characterization of low-permeability subsurface environments has important practical significance. In order to examine this issue from the perspective of laboratory-based approaches, we review some recent advancements in the theoretical analyses of three different laboratory techniques specifically applied to low-permeability geologic materials: constant-head, constant flow-rate and transient-pulse permeability tests. Some potential strategies for effectively decreasing the time required to confidently estimate the permeability of these materials are presented. In addition, a new and versatile laboratory system is introduced that can implement any of these three test methods while simultaneously subjecting a specimen to high confining pressures and pore pressures, thereby simulating in situ conditions at great depths. The capabilities and advantages of this innovative system are demonstrated using experimental data derived from Shirahama sandstone and Inada granite, two rock types widely encountered in Japan.

  2. Virtual Laboratory "vs." Traditional Laboratory: Which Is More Effective for Teaching Electrochemistry?

    ERIC Educational Resources Information Center

    Hawkins, Ian; Phelps, Amy J.

    2013-01-01

    The use of virtual laboratories has become an increasing issue regarding science laboratories due to the increasing cost of hands-on laboratories, and the increase in distance education. Recent studies have looked at the use of virtual tools for laboratory to be used as supplements to the regular hands-on laboratories but many virtual tools have…

  3. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon D.

    1991-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  4. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Buhler, Melanie; Valett, Jon

    1989-01-01

    An annotated bibliography is presented of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. The bibliography was updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials were grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  5. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  6. Calgary Laboratory Services

    PubMed Central

    2015-01-01

    Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million) and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context. PMID:28725754

  7. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  8. Thermal comfort of aeroplane seats: influence of different seat materials and the use of laboratory test methods.

    PubMed

    Bartels, Volkmar T

    2003-07-01

    This study determined the influence of different cover and cushion materials on the thermal comfort of aeroplane seats. Different materials as well as ready made seats were investigated by the physiological laboratory test methods Skin Model and seat comfort tester. Additionally, seat trials with human test subjects were performed in a climatic chamber. Results show that a fabric cover produces a considerably higher sweat transport than leather. A three-dimensional knitted spacer fabric turns out to be the better cushion alternative in comparison to a moulded foam pad. Results from the physiological laboratory test methods nicely correspond to the seat trials with human test subjects.

  9. The Influence of Laboratory Safety on Capital Planning.

    ERIC Educational Resources Information Center

    Francis, Robert A.

    1980-01-01

    Discusses state and federal legislation concerning the handling of dangerous materials and its impact on the design of college and university buildings. Lists federal legislation affecting laboratory safety, the objectives of each act, and the influence of each act on laboratory safety. (IRT)

  10. Digital material laboratory: Considerations on high-porous volcanic rock

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Stöckhert, Ferdinand; Duda, Mandy; Fischer, Laura; Osorno, Maria; Steeb, Holger

    2017-04-01

    Digital material methodology combines modern microscopic imaging with advanced numerical simulations of the physical properties of materials. One goal is to complement physical laboratory investigations for a deeper understanding of relevant physical processes. Large-scale numerical modeling of elastic wave propagation directly from the microstructure of the porous material is integral to this technology. The parallelized finite-difference-based Stokes solver is suitable for the calculation of effective hydraulic parameters for low and high porous materials. Reticulite is formed in very high Hawaiian fire fountaining events. Hawaiian fire fountaining eruptions produce columns or fountains of lava, which can last for a few hours to days. Reticulite was originally thought to have formed from further expanded hot scoria foam. However, some researchers believe reticulite forms from magma that formed vesicles instantly, which expanded rapidly and uniformly to produce the polyhedral vesicle walls. These walls then ruptured and cooled rapidly. The (open) honeycomb network of bubbles is held together by glassy threads and forms a structure with a porosity higher than 80%. The fragile rock sample is difficult to characterize with classical experimental methods and we show how to determine porosity, effective elastic properties and Darcy permeability by using digital material methodology. A technical challenge will be to image with the CT technique the thin skin between the glassy threads visible on the microscopy image. A numerical challenge will be determination of effective material properties and viscous fluid effects on wave propagation in such a high porous material.

  11. Clinical laboratory waste management in Shiraz, Iran.

    PubMed

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  12. Laboratory Governance: Issues for the Study Group on Regional Laboratories.

    ERIC Educational Resources Information Center

    Schultz, Thomas; Dominic, Joseph

    Background information and an analysis of issues involved in the governance of new regional educational laboratories are presented. The new laboratories are to be established through a 1984 competition administered by the National Institute of Education (NIE). The analysis is designed to assist the Study Group on Regional Laboratories to advise…

  13. Economic Education Laboratory: Initiating a Meaningful Economic Learning through Laboratory

    ERIC Educational Resources Information Center

    Noviani, Leny; Soetjipto, Budi Eko; Sabandi, Muhammad

    2015-01-01

    Laboratory is considered as one of the resources in supporting the learning process. The laboratory can be used as facilities to deepen the concepts, learning methods and enriching students' knowledge and skills. Learning process by utilizing the laboratory facilities can help lecturers and students in grasping the concept easily, constructing the…

  14. A comprehensive Laboratory Services Survey of State Public Health Laboratories.

    PubMed

    Inhorn, Stanley L; Wilcke, Burton W; Downes, Frances Pouch; Adjanor, Oluwatosin Omolade; Cada, Ronald; Ford, James R

    2006-01-01

    In November 2004, the Association of Public Health Laboratories (APHL) conducted a Comprehensive Laboratory Services Survey of State Public Health Laboratories (SPHLs) in order to establish the baseline data necessary for Healthy People 2010 Objective 23-13. This objective aims to measure the increase in the proportion of health agencies that provide or assure access to comprehensive laboratory services to support essential public health services. This assessment addressed only SPHLs and served as a baseline to periodically evaluate the level of improvement in the provision of laboratory services over the decade ending 2010. The 2004 survey used selected questions that were identified as key indicators of provision of comprehensive laboratory services. The survey was developed in consultation with the Centers for Disease Control and Prevention National Center for Health Statistics, based on newly developed data sources. Forty-seven states and one territory responded to the survey. The survey was based on the 11 core functions of SPHLs as previously defined by APHL. The range of performance among individual laboratories for the 11 core functions (subobjectives) reflects the challenging issues that have confronted SPHLs in the first half of this decade. APHL is now working on a coordinated effort with other stakeholders to create seamless state and national systems for the provision of laboratory services in support of public health programs. These services are necessary to help face the threats raised by the specter of terrorism, emerging infections, and natural disasters.

  15. Laboratory Astrochemistry: Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  16. Inter-laboratory analysis of selected genetically modified plant reference materials with digital PCR.

    PubMed

    Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana

    2018-01-01

    Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.

  17. Radioactivity decontamination of materials commonly used as surfaces in general-purpose radioisotope laboratories.

    PubMed

    Leonardi, Natalia M; Tesán, Fiorella C; Zubillaga, Marcela B; Salgueiro, María J

    2014-12-01

    In accord with as-low-as-reasonably-achievable and good-manufacturing-practice concepts, the present study evaluated the efficiency of radioactivity decontamination of materials commonly used in laboratory surfaces and whether solvent spills on these materials affect the findings. Four materials were evaluated: stainless steel, a surface comprising one-third acrylic resin and two-thirds natural minerals, an epoxy cover, and vinyl-based multipurpose flooring. Radioactive material was eluted from a (99)Mo/(99m)Tc generator, and samples of the surfaces were control-contaminated with 37 MBq (100 μL) of this eluate. The same procedure was repeated with samples of surfaces previously treated with 4 solvents: methanol, methyl ethyl ketone, acetone, and ethanol. The wet radioactive contamination was allowed to dry and then was removed with cotton swabs soaked in soapy water. The effectiveness of decontamination was defined as the percentage of activity removed per cotton swab, and the efficacy of decontamination was defined as the total percentage of activity removed, which was obtained by summing the percentages of activity in all the swabs required to complete the decontamination. Decontamination using our protocol was most effective and most efficacious for stainless steel and multipurpose flooring. Moreover, treatment with common organic solvents seemed not to affect the decontamination of these surfaces. Decontamination of the other two materials was less efficient and was interfered with by the organic solvents; there was also great variability in the overall results obtained for these other two materials. In expanding our laboratory, it is possible for us to select those surface materials on which our decontamination protocol works best. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Development of hemoglobin typing control materials for laboratory investigation of thalassemia and hemoglobinopathies.

    PubMed

    Pornprasert, Sakorn; Tookjai, Monthathip; Punyamung, Manoo; Pongpunyayuen, Panida; Jaiping, Kanokwan

    2016-01-01

    To date, the hemoglobin (Hb) typing control materials for laboratory investigation of thalassemia with low (1.8%-3.2%) and high (4%-6%) levels of HbA2 are available but there are no Hb typing quality control materials for analysis of thalassemia and hemoglobinopathies which are highly prevalent in South-East Asian countries. The main aim of the present study was to develop the lyophilized Hb typing control materials for laboratory investigation of thalassemia and hemoglobinopathies that are commonly found in South-East Asia. Erythrocytes of blood samples containing Hb Bart's, HbH, HbE, HbF, Hb Constant Spring (CS), Hb Hope, and Hb Q-Thailand were washed and dialysed with 0.85% saline solution. The erythrocytes were then lysed in 5% sucrose solution. The lyophilized Hb typing control materials were prepared by using a freeze drying (lyophilization) method. The high performance liquid chromatography (HPLC) analysis of lyophilized Hb was performed after the storage at -20 °C for 1 year and also after reconstitution and storage at 4 or -20 °C for 30 days. In addition, the Hb analysis was compared between the three different methods of HPLC, low pressure liquid chromatography (LPLC) and capillary electrophoresis (CE). Following a year of storage at -20 °C, the HPLC chromatograms of lyophilized Hb typing control materials showed similar patterns to the equivalent fresh whole blood. The stability of reconstituted Hb typing control materials was also observed through 30 days after reconstitution and storage at -20 °C. Moreover, the Hb typing control materials could be analyzed by three methods, HPLC, LPLC and CE. Even a degraded peak of HbCS was found on CE electropherogram. The lyophilized Hb typing control materials could be developed and used as control materials for investigation of thalassemia and hemoglobinopathies.

  19. AV Instructional Materials Manual; A Sslf-Instructional Guide to AV Laboratory Experiences. Third Edition.

    ERIC Educational Resources Information Center

    Brown, James W., Ed.; Lewis, Richard B., Ed.

    This self-instructional guide to audiovisual laboratory experiences contains 50 exercises designed to give the user active experiences in the practical problems of choosing, using, and inventing instructional materials and in operating and audiovisual equipment. With the exception of the first four exercises (which introduce the user to the manual…

  20. Creep Laboratory manual

    NASA Astrophysics Data System (ADS)

    Osgerby, S.; Loveday, M. S.

    1992-06-01

    A manual for the NPL Creep Laboratory, a collective name given to two testing laboratories, the Uniaxial Creep Laboratory and the Advanced High Temperature Mechanical Testing Laboratory, is presented. The first laboratory is devoted to uniaxial creep testing and houses approximately 50 high sensitivity creep machines including 10 constant stress cam lever machines. The second laboratory houses a low cycle fatigue testing machine of 100 kN capacity driven by a servo-electric actuator, five machines for uniaxial tensile creep testing of engineering ceramics at temperatures up to 1600C, and an electronic creep machine. Details of the operational procedures for carrying out uniaxial creep testing are given. Calibration procedures to be followed in order to comply with the specifications laid down by British standards, and to provide traceability back to the primary standards are described.

  1. A laboratory silicone for preclinical training in ear prosthesis.

    PubMed

    Anand, Vijay; Haribabu; Vimala; Gnanasamband, Vimala

    2013-07-01

    This article describes an industrial elastic silicone as a material for the laboratory fabrication of ear prosthesis. It has been tested for toxicity in lab animals by the SGS India Pvt. Ltd and approved as a material to pass the parameter of abnormal toxicity. This material therefore can be safely recommended for laboratory exercise to fabricate facial prosthesis. The high cost of the maxillo facial silicone materials prohibits their use for facial prosthesis in pre-clinical training of post-graduate students in maxillofacial prosthodontics. For this reason, pre-clinical laboratory exercise in facial prosthesis is inadequate. A few institutions use polymethyl methacrylate resins which are rigid and do not have elastic characteristics of silicone, which is used for facial defects. This cost-effective industrial silicone material which mimics the elastic and color characteristics of the conventional silicones can be recommended for preclinical exercises.

  2. Secondary School Chemistry Teacher's Current Use of Laboratory Activities and the Impact of Expense on Their Laboratory Choices

    ERIC Educational Resources Information Center

    Boesdorfer, Sarah B.; Livermore, Robin A.

    2018-01-01

    In the United States with the Next Generation Science Standards (NGSS)'s emphasis on learning science while doing science, laboratory activities in the secondary school chemistry continues to be an important component of a strong curriculum. Laboratory equipment and consumable materials create a unique expense which chemistry teachers and schools…

  3. In-flight and laboratory vacuum-friction test results

    NASA Technical Reports Server (NTRS)

    Devine, E. J.; Evans, H. E.; Leasure, W. A.

    1973-01-01

    Coefficient of friction measurements were made for six unlubricated metal couples exposed to the space environment aboard the OV-1-13 spacecraft and exposed to laboratory vacuum. Materials studied included mutually soluble, partially soluble, and insoluble metal combinations. Two samples of each material couple were tested in space and in the laboratory using the disk and rider technique. Linear velocity was 0.10 cm/s (2.5 in/min) and rider normal load was 4.45 N (1 lb) for the gold versus silver couples and 8.90 N (2lb) for the other combinations. Results showed that friction data obtained in a clean ion-pumped laboratory vacuum of 10 to the minus 10 power materials with low mutual solubility can be correlated to operation in the vicinity of a typical scientific spacecraft that is exposed to an ambient pressure as low as 10 to the minus 12 power torr. The expected increase in coefficient of friction with solubility was shown. Material couples with high mutual solubility present the hazard of unpredictable drastic friction increase in orbit which may not be evident in laboratory testing at levels down to 10 to the minus 10 power torr. It was also shown that gross cold welding of unlubricated metals exposed to a satellite environment does not occur.

  4. Current practice in laboratory diagnostics of autoimmune diseases in Croatia. 
Survey of the Working group for laboratory diagnostics of autoimmune diseases of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Kuna, Andrea Tešija; Đerek, Lovorka; Kozmar, Ana; Drvar, Vedrana

    2016-01-01

    Introduction With the trend of increasing incidence of autoimmune diseases, laboratories are faced with exponential growth of the requests for tests relating the diagnosis of these diseases. Unfortunately, the lack of laboratory personnel experienced in this specific discipline of laboratory diagnostic, as well as an unawareness of a method limitation often results in confusion for clinicians. The aim was to gain insight into number and type of Croatian laboratories that perform humoral diagnostics with the final goal to improve and harmonize laboratory diagnostics of autoimmune diseases in Croatia. Materials and methods In order to get insight into current laboratory practice two questionnaires, consisting of 42 questions in total, were created. Surveys were conducted using SurveyMonkey application and were sent to 88 medical biochemistry laboratories in Croatia for the first survey. Out of 33 laboratories that declared to perform diagnostic from the scope, 19 were selected for the second survey based on the tests they pleaded to perform. The survey comprised questions regarding autoantibody hallmarks of systemic autoimmune diseases while regarding organ-specific autoimmune diseases was limited to diseases of liver, gastrointestinal and nervous system. Results Response rate was high with 80 / 88 (91%) laboratories which answered the first questionnaire, and 19 / 19 (1.0) for the second questionnaire. Obtained results of surveys indicate high heterogeneity in the performance of autoantibody testing among laboratories in Croatia. Conclusions Results indicate the need of creating recommendations and algorithms in order to harmonize the approach to laboratory diagnostics of autoimmune diseases in Croatia. PMID:27812306

  5. [Quality Management System in Pathological Laboratory].

    PubMed

    Koyatsu, Junichi; Ueda, Yoshihiko

    2015-07-01

    Even compared to other clinical laboratories, the pathological laboratory conducts troublesome work, and many of the work processes are also manual. Therefore, the introduction of the systematic management of administration is necessary. It will be a shortcut to use existing standards such as ISO 15189 for this purpose. There is no standard specialized for the pathological laboratory, but it is considered to be important to a pathological laboratory in particular. 1. Safety nianagement of the personnel and environmental conditions. Comply with laws and regulations concerning the handling of hazardous materials. 2. Pre-examination processes. The laboratory shall have documented procedures for the proper collection and handling of primary samples. Developed and documented criteria for acceptance or rejection of samples are applied. 3. Examination processes. Selection, verification, and validation of the examination procedures. Devise a system that can constantly monitor the traceability of the sample. 4. Post-examination processes. Storage, retention, and disposal of clinical samples. 5. Release of results. When examination results fall within established alert or critical intervals, immediately notify the physicians. The important point is to recognize the needs of the client and be aware that pathological diagnoses are always "the final diagnoses".

  6. Medical Laboratory Technician--Microbiology, 10-3. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the second of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  7. Liability of Science Educators for Laboratory Safety. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2007

    2007-01-01

    Laboratory investigations are essential for the effective teaching and learning of science. A school laboratory investigation ("lab") is an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data…

  8. Professor Created On-line Biology Laboratory Course

    NASA Technical Reports Server (NTRS)

    Bowman, Arthur W.

    2010-01-01

    This paper will share the creation, implementation, and modification of an online college level general biology laboratory course offered for non-science majors as a part of a General Education Curriculum. The ability of professors to develop quality online laboratories will address a growing need in Higher Education as more institutions combine course sections and look for suitable alternative course delivery formats due to declining departmental budgets requiring reductions in staffing, equipment, and supplies. Also, there is an equal or greater need for more professors to develop the ability to create online laboratory experiences because many of the currently available online laboratory course packages from publishers do not always adequately parallel on-campus laboratory courses, or are not as aligned with the companion lecture sections. From a variety of scientific simulation and animation web sites, professors can easily identify material that closely fit the specific needs of their courses, instructional environment, and students that they serve. All too often, on-campus laboratory courses in the sciences provide what are termed confirmation experiences that do NOT allow students to experience science as would be carried out by scientists. Creatively developed online laboratory experiences can often provide the type of authentic investigative experiences that are not possible on-campus due to the time constraints of a typical two-hour, once-per-week-meeting laboratory course. In addition, online laboratory courses can address issues related to the need for students to more easily complete missing laboratory assignments, and to have opportunities to extend introductory exercises into more advanced undertakings where a greater sense of scientific discovery can be experienced. Professors are strongly encourages to begin creating online laboratory exercises for their courses, and to consider issues regarding assessment, copyrights, and Intellectual Property

  9. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  10. Medical Laboratory Technician--Chemical Chemistry & Urinalysis, 10-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication, the last of three course materials in the medical laboratory technician field adapted from the Military Curriculum Materials for Use in Technical and Vocational Education series, was designed as a refresher course for student self-study and evaluation. It can be used by advanced students or beginning students participating in a…

  11. Laboratory Spectroscopy of Astrophysically-Relevant Materials: Developing Dust as a Diagnostic

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    Over forty years ago, observations in the new field of infrared astronomy showed a broad spectral feature at 10 microns; the feature was quickly associated with the presence of silicate-rich dust. Since that time, improvements in infrared astronomy have led to the discovery of a plethora of additional spectral features attributable to dust. By combining these observations with spectroscopic data acquired in the laboratory, astronomers have a diagnostic tool that can be used to explore underlying astronomical phenomena. As the laboratory data improves, so does our ability to interpret the astronomical observations. Here, we discuss some recent progress in laboratory spectroscopy and attempt to identify future research directions.

  12. Laboratory Equipment Criteria.

    ERIC Educational Resources Information Center

    State Univ. Construction Fund, Albany, NY.

    Requirements for planning, designing, constructing and installing laboratory furniture are given in conjunction with establishing facility criteria for housing laboratory equipment. Furniture and equipment described include--(1) center tables, (2) reagent racks, (3) laboratory benches and their mechanical fixtures, (4) sink and work counters, (5)…

  13. 42 CFR 493.1355 - Condition: Laboratories performing PPM procedures; laboratory director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing PPM procedures; laboratory director. 493.1355 Section 493.1355 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS...

  14. 42 CFR 493.1355 - Condition: Laboratories performing PPM procedures; laboratory director.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing PPM procedures; laboratory director. 493.1355 Section 493.1355 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS...

  15. External quality control for embryology laboratories.

    PubMed

    Castilla, Jose Antonio; Ruiz de Assín, Rafael; Gonzalvo, Maria Carmen; Clavero, Ana; Ramírez, Juan Pablo; Vergara, Francisco; Martínez, Luis

    2010-01-01

    Participation in external quality control (EQC) programmes is recommended by various scientific societies. Results from an EQC programme for embryology laboratories are presented. This 5-year programme consisted of the annual delivery of (i) materials to test toxicity and (ii) a DVD/CD-ROM with images of zygotes and embryos on days 2 and 3, on the basis of which the participants were asked to judge the embryo quality and to take a clinical decision. A high degree of agreement was considered achieved when over 75% of the laboratories produced similar classifications. With respect to the materials analysed, the specificity was 68% and the sensitivity was 83%. Concerning embryo classification, the proportion of embryos on which a high degree of agreement was achieved increased during this period from 35% to 55%. No improvement was observed in the degree of agreement on the clinical decision to be taken. Day-3 embryos produced a higher degree of agreement (58%) than did day-2 embryos (32%) (P<0.05). Participation in EQC increased the degree of inter-laboratory agreement on embryo classification, but not the corresponding agreement on clinical decision taking. It is necessary to introduce measures aimed at standardizing decision taking procedures in embryology laboratories. Copyright (c) 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. 21 CFR 211.194 - Laboratory records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... specific component, drug product container, closure, in-process material, or drug product, and lot tested... product container, closure, in-process material, or drug product tested. (7) The initials or signature of... of any testing and standardization of laboratory reference standards, reagents, and standard...

  17. Theme: Laboratory Instruction.

    ERIC Educational Resources Information Center

    Bruening, Thomas H.; And Others

    1992-01-01

    A series of theme articles discuss setting up laboratory hydroponics units, the school farm at the Zuni Pueblo in New Mexico, laboratory experiences in natural resources management and urban horticulture, the development of teaching labs at Derry (PA) High School, management of instructional laboratories, and industry involvement in agricultural…

  18. Effects of Various Dental Materials on Alkaline Phosphatase Extracted from Pulp: An Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Thompson, Lorin R.

    1980-01-01

    A laboratory experiment that demonstrates the effects of various dental materials on a representative enzyme from the pulp is outlined. The experiment encourages students to consider the effects that various restorative materials and techniques might have on enzymes in the living pulp. (Author/MLW)

  19. Cometary Materials Originating from Interstellar Ices: Clues from Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Fresneau, A.; Abou Mrad, N.; d'Hendecourt, L. LS; Duvernay, F.; Flandinet, L.; Orthous-Daunay, F.-R.; Vuitton, V.; Thissen, R.; Chiavassa, T.; Danger, G.

    2017-03-01

    We use laboratory experiments to derive information on the chemistry occurring during the evolution of astrophysical ices from dense molecular clouds to interplanetary objects. Through a new strategy that consists of coupling very high resolution mass spectrometry and infrared spectroscopy (FT-IR), we investigate the molecular content of the organic residues synthesized from different initial ice compositions. We also obtain information on the evolution of the soluble part of the residues after their over-irradiation. The results give insight into the role of water ice as a trapping and diluting agent during the chemical evolution. They also give information about the importance of the amount of ammonia in such ices, particularly regarding its competition with the carbon chemistry. All of these results allow us to build a first mapping of the evolution of soluble organic matter based on its chemical and physical history. Furthermore, our results suggest that interstellar ices should lead to organic materials enriched in heteroatoms that present similarities with cometary materials but strongly differ from meteoritic organic material, especially in their C/N ratios.

  20. Safety in the Chemical Laboratory: Procedures for Laboratory Destruction of Chemicals.

    ERIC Educational Resources Information Center

    McKusick, Blaine C.

    1984-01-01

    Discusses a National Research Council report which summarizes what laboratories need to know about Environmental Protection Agency and Department of Transportation regulations that apply to laboratory waste. The report provides guidelines for establishing and operating waste management systems for laboratories and gives specific advice on waste…

  1. 46 CFR 164.009-21 - Laboratory report.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Description of the specimens tested if the specimens are prepared from composite material. (i) If the test was... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-21 Laboratory...

  2. Investigation of laboratory test procedures for assessing the structural capacity of geogrid-reinforced aggregate base materials.

    DOT National Transportation Integrated Search

    2015-04-01

    The objective of this research was to identify a laboratory test method that can be used to quantify improvements in structural capacity of aggregate base materials reinforced with geogrid. For this research, National Cooperative Highway Research Pro...

  3. Laboratory experiment of seismic cycles using compliant viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.

    2016-12-01

    It is well known that surface asperities at fault interfaces play an essential role in stick-slip friction. There have been many laboratory experiments conducted using rocks and some analogue materials to understand the effects of asperities and the underlying mechanisms. Among such materials, soft polymer gels have great advantages of slowing down propagating rupture front speed as well as shear wave speed: it facilitates observation of the dynamic rupture behavior. However, most experiments were done with bimaterial interfaces (combination of soft and hard materials) and there are few experiments with an identical (gel on gel) setup. Furthermore, there have been also few studies mentioning the link between local asperity contact and macroscopic dynamic rupture behavior. In this talk, we report our experimental studies on stick-slip friction between gels having controlled artificial asperities. We show that, depending on number density and configuration randomness of the asperities, the rupture behavior greatly changes: when the asperities are located periodically with optimum number densities, fast rupture propagation occurs, while slow and heterogeneous slip behavior is observed for samples having randomly located asperities. We discuss the importance of low frequency (large wavelength) excitation of the normal displacement contributing to weakening the fault interface. We also discuss the observed regular to slow slip transition with a simple model.

  4. A professional development model for medical laboratory scientists working in the microbiology laboratory.

    PubMed

    Amerson, Megan H; Pulido, Lila; Garza, Melinda N; Ali, Faheem A; Greenhill, Brandy; Einspahr, Christopher L; Yarsa, Joseph; Sood, Pramilla K; Hu, Peter C

    2012-01-01

    The University of Texas M.D. Anderson Cancer Center, Division of Pathology and Laboratory Medicine is committed to providing the best pathology and medicine through: state-of-the art techniques, progressive ground-breaking research, education and training for the clinical diagnosis and research of cancer and related diseases. After surveying the laboratory staff and other hospital professionals, the Department administrators and Human Resource generalists developed a professional development model for Microbiology to support laboratory skills, behavior, certification, and continual education within its staff. This model sets high standards for the laboratory professionals to allow the labs to work at their fullest potential; it provides organization to training technologists based on complete laboratory needs instead of training technologists in individual areas in which more training is required if the laboratory needs them to work in other areas. This model is a working example for all microbiology based laboratories who want to set high standards and want their staff to be acknowledged for demonstrated excellence and professional development in the laboratory. The PDM model is designed to focus on the needs of the laboratory as well as the laboratory professionals.

  5. [Study of quality of a branch laboratory--an opinion of a laboratory manager].

    PubMed

    Yazawa, Naoyuki

    2006-11-01

    At the stage of establishing a branch laboratory, quality evaluation is extremely difficult. Even the results of a control survey by the headquarters of the branch laboratory are unhelpful. For a clinical laboratory, the most important function is to provide reliable data all the time, and to maintain the reliability of clinical doctors with informed responses. We mostly refer to control surveys and daily quality control data to evaluate a clinical laboratory, but we rarely check its fundamental abilities, such as planning events, preserving statistical data about the standard range, using the right method for quality control and others. This is generally disregarded and it is taken for granted that they will be correct the first time. From my six years of experience working with X's branch laboratory, I realized that there might be some relation between the quality of a branch laboratory and the fundamental abilities of the company itself. I would never argue that all branch laboratories are ineffective, but they should be conscious of fundamental activities. The referring laboratory, not the referral laboratory, should be responsible for ensuring that the referral laboratory's examination results and findings are correct.

  6. Cleaning Aged EPDM Rubber Roofing Membrane Material for Patching: Laboratory Investigations and Recommendations

    DTIC Science & Technology

    1992-08-01

    Cleaning Aged EPDM Rubber Roofing Membrane Material for Patching: Laboratory Investigations and Recommendations Walter J. Rossiter, Jr. T N n-’T ic...condition of the aged EPDM rubber before bonding. This study assessed the effectiveness of different cleaning methods for preparing aged EPDM membranes for...REPORT DATE 3. REPORT TYPE AND DATES COVERED August 1992 Final 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cleaning Aged EPDM Rubber Roofing Membrane

  7. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Groves, Paula; Valett, Jon

    1990-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author.

  8. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1993-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory: software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. This document contains an index of these publications classified by individual author.

  9. Predicting Material Performance in the Space Environment from Laboratory Test Data, Static Design Environments, and Space Weather Models

    NASA Technical Reports Server (NTRS)

    Minow, Josep I.; Edwards, David L.

    2008-01-01

    Qualifying materials for use in the space environment is typically accomplished with laboratory exposures to simulated UV/EUV, atomic oxygen, and charged particle radiation environments with in-situ or subsequent measurements of material properties of interest to the particular application. Choice of environment exposure levels are derived from static design environments intended to represent either mean or extreme conditions that are anticipated to be encountered during a mission. The real space environment however is quite variable. Predictions of the on orbit performance of a material qualified to laboratory environments can be done using information on 'space weather' variations in the real environment. This presentation will first review the variability of space environments of concern for material degradation and then demonstrate techniques for using test data to predict material performance in a variety of space environments from low Earth orbit to interplanetary space using historical measurements and space weather models.

  10. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... materials, and finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written...

  11. New Brunswick Laboratory progress report, October 1994--September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL`s assigned missions.

  12. Teaching Laboratory Renovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Zuhairi, Ali Jassim; Al-Dahhan, Wedad; Hussein, Falah

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. The improvement of students’ understanding of concepts in science and its applications, practical scientific skills and understanding of how science and scientists work in laboratory experiences have been considered key aspects of education in science for over 100 years. Facility requirements for the necessary level of safety and security combined with specific requirementsmore » relevant to the course to be conducted dictate the structural design of a particular laboratory, and the design process must address both. This manuscript is the second in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. We summarize the process used to guide a major renovation of the chemistry instructional laboratory facilities at Al-Nahrain University and discuss lessons learned from the project.« less

  13. New Brunswick Laboratory: Progress report, October 1993 through September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The mission of the New Brunswick Laboratory of the US Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards and non-proliferation functions in support of multiple program sponsors. During FY 94 New Brunswick Laboratory (NBL) completed development of a Strategic Plan which will aid in better defining performance oriented laboratory goals and objectives in each functional area consistent with the changing needs of the global nuclear community. This annual report describes accomplishments achieved in carrying out NBL`smore » assigned missions. Details of completed projects are reported in separate topical reports or as open-literature publications. Programs discussed here are: (1) safeguards assistance; (2) reference materials program; (3) measurement evaluation; (4) measurement services; and (5) measurement development.« less

  14. Quality and safety aspects in histopathology laboratory

    PubMed Central

    Adyanthaya, Soniya; Jose, Maji

    2013-01-01

    Histopathology is an art of analyzing and interpreting the shapes, sizes and architectural patterns of cells and tissues within a given specific clinical background and a science by which the image is placed in the context of knowledge of pathobiology, to arrive at an accurate diagnosis. To function effectively and safely, all the procedures and activities of histopathology laboratory should be evaluated and monitored accurately. In histopathology laboratory, the concept of quality control is applicable to pre-analytical, analytical and post-analytical activities. Ensuring safety of working personnel as well as environment is also highly important. Safety issues that may come up in a histopathology lab are primarily those related to potentially hazardous chemicals, biohazardous materials, accidents linked to the equipment and instrumentation employed and general risks from electrical and fire hazards. This article discusses quality management system which can ensure quality performance in histopathology laboratory. The hazards in pathology laboratories and practical safety measures aimed at controlling the dangers are also discussed with the objective of promoting safety consciousness and the practice of laboratory safety. PMID:24574660

  15. Implementing a laboratory automation system: experience of a large clinical laboratory.

    PubMed

    Lam, Choong Weng; Jacob, Edward

    2012-02-01

    Laboratories today face increasing pressure to automate their operations as they are challenged by a continuing increase in workload, need to reduce expenditure, and difficulties in recruitment of experienced technical staff. Was the implementation of a laboratory automation system (LAS) in the Clinical Biochemistry Laboratory at Singapore General Hospital successful? There is no simple answer, so the following topics comparing and contrasting pre- and post-LAS have been explored: turnaround time (TAT), laboratory errors, and staff satisfaction. The benefits and limitations of LAS from the laboratory experience were also reviewed. The mean TAT for both stat and routine samples decreased post-LAS (30% and 13.4%, respectively). In the 90th percentile TAT chart, a 29% reduction was seen in the processing of stat samples on the LAS. However, no significant difference in the 90th percentile TAT was observed with routine samples. It was surprising to note that laboratory errors increased post-LAS. Considerable effort was needed to overcome the initial difficulties associated with adjusting to a new system, new software, and new working procedures. Although some of the known advantages and limitations of LAS have been validated, the claimed benefits such as improvements in TAT, laboratory errors, and staff morale were not evident in the initial months.

  16. A senior manufacturing laboratory for determining injection molding process capability

    NASA Technical Reports Server (NTRS)

    Wickman, Jerry L.; Plocinski, David

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This subject material is directed at an upper level undergraduate/graduate student in an Engineering or Engineering Technology program. It is assumed that the student has a thorough understanding of the process and quality control. The format of this laboratory does not follow that which is normally recommended because of the nature of process capability and that of the injection molding equipment and tooling. This laboratory is instead developed to be used as a point of departure for determining process capability for any process in either a quality control laboratory or a manufacturing environment where control charts, process capability, and experimental or product design are considered important topics.

  17. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Laboratory date of service for clinical laboratory... AND OTHER HEALTH SERVICES Payment for New Clinical Diagnostic Laboratory Tests § 414.510 Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a...

  18. Burner Rig Laboratory

    NASA Image and Video Library

    2015-05-12

    The Fuel Burner Rig is a test laboratory at NASA Glenn, which subjects new jet engine materials, treated with protective coatings, to the hostile, high temperature, high velocity environment found inside aircraft turbine engines. These samples face 200-mile per hour flames to simulate the temperatures of aircraft engines in flight. The rig can also simulate aircraft carrier and dusty desert operations where salt and sand can greatly reduce engine life and performance.

  19. RUNNING A LANGUAGE LABORATORY.

    ERIC Educational Resources Information Center

    REES, ALUN L.W.

    THIS ARTICLE DESCRIBES THE LANGUAGE LABORATORY AT THE NATIONAL UNIVERSITY OF TRUJILLO AS IT IS USED IN THE FIVE-YEAR ENGLISH TEACHER TRAINING PROGRAM. THE FIRST TWO YEARS OF THIS COURSE ARE INTENSIVE, BASED ON A STUDY OF ENGLISH USING LADO-FRIES MATERIALS (FOR LATIN AMERICAN LEARNERS) WHICH REQUIRE FIVE HOURS OF CLASSWORK A WEEK SUPPLEMENTED BY…

  20. Can post-eradication laboratory containment of wild polioviruses be achieved?

    PubMed Central

    Dowdle, Walter R.; Gary, Howard E.; Sanders, Raymond; van Loon, Anton M.

    2002-01-01

    The purpose of containment is to prevent reintroduction of wild polioviruses from laboratories into polio-free communities. In order to achieve global commitment to laboratory containment the rationale should be clear and compelling; the biosafety levels should be justified by the risks; and the objectives should be realistic. Absolute containment can never be assured. Questions of intentional or unintentional non-compliance can never be wholly eliminated. Effective laboratory containment is, however, a realistic goal. Prevention of virus transmission through contaminated laboratory materials is addressed by WHO standards for biosafety. The principal challenge is to prevent transmission through unrecognized infectious laboratory workers. Such transmission is possible only if the following conditions occur: infectious and potentially infectious materials carrying wild poliovirus are present in the laboratory concerned; a laboratory operation exposes a worker to poliovirus; a worker is susceptible to an infection that results in the shedding of poliovirus; and the community is susceptible to poliovirus infections. At present it is difficult to envisage the elimination of any of these conditions. However, the risks of the first three can be greatly reduced so as to create a formidable barrier against poliovirus transmission to the community. Final biosafety recommendations must await post-eradication immunization policies adopted by the international community. PMID:12075368

  1. [Accreditation of medical laboratories].

    PubMed

    Horváth, Andrea Rita; Ring, Rózsa; Fehér, Miklós; Mikó, Tivadar

    2003-07-27

    In Hungary, the National Accreditation Body was established by government in 1995 as an independent, non-profit organization, and has exclusive rights to accredit, amongst others, medical laboratories. The National Accreditation Body has two Specialist Advisory Committees in the health care sector. One is the Health Care Specialist Advisory Committee that accredits certifying bodies, which deal with certification of hospitals. The other Specialist Advisory Committee for Medical Laboratories is directly involved in accrediting medical laboratory services of health care institutions. The Specialist Advisory Committee for Medical Laboratories is a multidisciplinary peer review group of experts from all disciplines of in vitro diagnostics, i.e. laboratory medicine, microbiology, histopathology and blood banking. At present, the only published International Standard applicable to laboratories is ISO/IEC 17025:1999. Work has been in progress on the official approval of the new ISO 15189 standard, specific to medical laboratories. Until the official approval of the International Standard ISO 15189, as accreditation standard, the Hungarian National Accreditation Body has decided to progress with accreditation by formulating explanatory notes to the ISO/IEC 17025:1999 document, using ISO/FDIS 15189:2000, the European EC4 criteria and CPA (UK) Ltd accreditation standards as guidelines. This harmonized guideline provides 'explanations' that facilitate the application of ISO/IEC 17025:1999 to medical laboratories, and can be used as a checklist for the verification of compliance during the onsite assessment of the laboratory. The harmonized guideline adapted the process model of ISO 9001:2000 to rearrange the main clauses of ISO/IEC 17025:1999. This rearrangement does not only make the guideline compliant with ISO 9001:2000 but also improves understanding for those working in medical laboratories, and facilitates the training and education of laboratory staff. With the

  2. Potential of Laboratory Execution Systems (LESs) to Simplify the Application of Business Process Management Systems (BPMSs) in Laboratory Automation.

    PubMed

    Neubert, Sebastian; Göde, Bernd; Gu, Xiangyu; Stoll, Norbert; Thurow, Kerstin

    2017-04-01

    Modern business process management (BPM) is increasingly interesting for laboratory automation. End-to-end workflow automation and improved top-level systems integration for information technology (IT) and automation systems are especially prominent objectives. With the ISO Standard Business Process Model and Notation (BPMN) 2.X, a system-independent and interdisciplinary accepted graphical process control notation is provided, allowing process analysis, while also being executable. The transfer of BPM solutions to structured laboratory automation places novel demands, for example, concerning the real-time-critical process and systems integration. The article discusses the potential of laboratory execution systems (LESs) for an easier implementation of the business process management system (BPMS) in hierarchical laboratory automation. In particular, complex application scenarios, including long process chains based on, for example, several distributed automation islands and mobile laboratory robots for a material transport, are difficult to handle in BPMSs. The presented approach deals with the displacement of workflow control tasks into life science specialized LESs, the reduction of numerous different interfaces between BPMSs and subsystems, and the simplification of complex process modelings. Thus, the integration effort for complex laboratory workflows can be significantly reduced for strictly structured automation solutions. An example application, consisting of a mixture of manual and automated subprocesses, is demonstrated by the presented BPMS-LES approach.

  3. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    ERIC Educational Resources Information Center

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  4. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Kistler, David; Bristow, John; Smith, Don

    1994-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  5. 42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY...

  6. 42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY...

  7. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  8. The International Microgravity Laboratory, a Spacelab for materials and life sciences

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    1992-01-01

    The material science experiments performed on the International Microgravity Laboratory (IML-1), which is used to perform investigations which require the low gravity environment of space, are discussed. These experiments, the principal investigator, and associated organization are listed. Whether the experiment was a new development or was carried on an earlier space mission, such as the third Spacelab (SL-3) or the Shuttle Middeck, is also noted. The two major disciplines of materials science represented on IML-1 were the growth of crystals from the melt, solution, or vapor and the study of fluids (liquids and gases) in a reduced gravity environment. The various facilities on board IML-1 and their related experiments are described. The facilities include the Fluids Experiment System (FES) Vapor Crystal Growth System (VCGS) Organic Crystal Growth Facility (OCGF), Cryostat (CRY), and the Critical Point Facility (CPF).

  9. Integrating the ChE Curriculum via a Recurring Laboratory

    ERIC Educational Resources Information Center

    Kubilius, Matthew B.; Tu, Raymond S.; Anderson, Ryan

    2014-01-01

    A recurring framework has been integrated throughout the curriculum via a Continuously Stirred Tank Reactor (CSTR) platform. This laboratory is introduced during the material and energy balance course, and subsequent courses can use these results when explaining more advanced concepts. Further, this laboratory gives students practical experience…

  10. Laboratory Studies of Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  11. Laboratory Scale Electrodeposition. Practice and Applications.

    ERIC Educational Resources Information Center

    Bruno, Thomas J.

    1986-01-01

    Discusses some aspects of electrodeposition and electroplating. Emphasizes the materials, techniques, and safety precautions necessary to make electrodeposition work reliably in the chemistry laboratory. Describes some problem-solving applications of this process. (TW)

  12. General Motors and the University of Michigan smart materials and structures collaborative research laboratory

    NASA Astrophysics Data System (ADS)

    Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.

    2007-04-01

    The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.

  13. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China.

    PubMed

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun; Wang, Zhiguo

    2015-01-01

    To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479/1307), 38% (228/598), and 36% (449/1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them.

  14. Laboratory security and emergency response guidance for laboratories working with select agents. Centers for Disease Control and Prevention.

    PubMed

    Richmond, Jonathan Y; Nesby-O'Dell, Shanna L

    2002-12-06

    In recent years, concern has increased regarding use of biologic materials as agents of terrorism, but these same agents are often necessary tools in clinical and research microbiology laboratories. Traditional biosafety guidelines for laboratories have emphasized use of optimal work practices, appropriate containment equipment, well-designed facilities, and administrative controls to minimize risk of worker injury and to ensure safeguards against laboratory contamination. The guidelines discussed in this report were first published in 1999 (U.S. Department of Health and Human Services/CDC and National Institutes of Health. Biosafety in microbiological and biomedical laboratories [BMBL]. Richmond JY, McKinney RW, eds. 4th ed. Washington, DC: US Department of Health and Human Services, 1999 [Appendix F]). In that report, physical security concerns were addressed, and efforts were focused on preventing unauthorized entry to laboratory areas and preventing unauthorized removal of dangerous biologic agents from the laboratory. Appendix F of BMBL is now being revised to include additional information regarding personnel risk assessments, and inventory controls. The guidelines contained in this report are intended for laboratories working with select agents under biosafety-level 2, 3, or 4 conditions as described in Sections II and III of BMBL. These recommendations include conducting facility risk assessments and developing comprehensive security plans to minimize the probability of misuse of select agents. Risk assessments should include systematic, site-specific reviews of 1) physical security; 2) security of data and electronic technology systems; 3) employee security; 4) access controls to laboratory and animal areas; 5) procedures for agent inventory and accountability; 6) shipping/transfer and receiving of select agents; 7) unintentional incident and injury policies; 8) emergency response plans; and 9) policies that address breaches in security. The security plan

  15. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  16. Implementation of 5S Method for Ergonomic Laboratory

    NASA Astrophysics Data System (ADS)

    Dila Sari, Amarria; Ilma Rahmillah, Fety; Prabowo Aji, Bagus

    2017-06-01

    This article discusses 5S implementation in Work System Design and Ergonomic Laboratory, Department of Industrial Engineering, Islamic University of Indonesia. There are some problems related to equipment settings for activity involving students such as files which is accumulated over the previous year practicum, as well as the movement of waste in the form of time due to the placement of goods that do not fit. Therefore, this study aims to apply the 5S method in DSK & E laboratory to facilitate the work processes and reduce waste. The project is performed by laboratory management using 5S methods in response to continuous improvement (Kaizen). Moreover, some strategy and suggestions are promoted to impose 5S system within the laboratory. As a result, the tidiness and cleanliness can be achieved that lead to the great performance of laboratory users. Score assessment before implementing 5S DSKE laboratory is at 64 (2.56) while the score after implementation is 32 (1.28) and shows an improvement of 50%. This has implications for better use in the laboratory area, save time when looking for tools and materials due to its location and good visual control, as well as improving the culture and spirit of ‘5S’ on staff regarding better working environment

  17. A professional development model for medical laboratory scientists working in the immunohematology laboratory.

    PubMed

    Garza, Melinda N; Pulido, Lila A; Amerson, Megan; Ali, Faheem A; Greenhill, Brandy A; Griffin, Gary; Alvarez, Enrique; Whatley, Marsha; Hu, Peter C

    2012-01-01

    Transfusion medicine, a section of the Department of Laboratory Medicine at The University of Texas MD Anderson Cancer Center is committed to the education and advancement of its health care professionals. It is our belief that giving medical laboratory professionals a path for advancement leads to excellence and increases overall professionalism in the Immunohematology Laboratory. As a result of this strong commitment to excellence and professionalism, the Immunohematology laboratory has instituted a Professional Development Model (PDM) that aims to create Medical Laboratory Scientists (MLS) that are not only more knowledgeable, but are continually striving for excellence. In addition, these MLS are poised for advancement in their careers. The professional development model consists of four levels: Discovery, Application, Maturation, and Expert. The model was formulated to serve as a detailed path to the mastery of all process and methods in the Immunohematology Laboratory. Each level in the professional development model consists of tasks that optimize the laboratory workflow and allow for concurrent training. Completion of a level in the PDM is rewarded with financial incentive and further advancement in the field. The PDM for Medical Laboratory Scientists in the Immunohematology Laboratory fosters personal development, rewards growth and competency, and sets high standards for all services and skills provided. This model is a vital component of the Immunohematology Laboratory and aims to ensure the highest quality of care and standards in their testing. It is because of the success of this model and the robustness of its content that we hope other medical laboratories aim to reach the same level of excellence and professionalism, and adapt this model into their own environment.

  18. [Biosafety in laboratories concerning exposure to biological agents].

    PubMed

    Vonesch, N; Tomao, P; Di Renzi, S; Vita, S; Signorini, S

    2006-01-01

    Laboratory workers are exposed to a variety of potential occupational health hazards including those deriving from infectious materials and cultures, radiations, toxic and flammable chemicals, as well as mechanical and electrical hazard. Although all of them are significant, this paper will focus on biological hazards present in clinical and research laboratories. In fact, in spite of numerous publications, guidelines and regulations, laboratory workers are still subject to infections acquired in the course of their researches. This paper describes some aspects that include good microbiological practices (GMPs), appropriate containment equipment, practices and operational procedures to minimize workers' risk of injury or illness.

  19. Multiprog virtual laboratory applied to PLC programming learning

    NASA Astrophysics Data System (ADS)

    Shyr, Wen-Jye

    2010-10-01

    This study develops a Multiprog virtual laboratory for a mechatronics education designed to teach how to programme a programmable logic controller (PLC). The study was carried out with 34 students in the Department of Industry Education and Technology at National Changhua University of Education in Taiwan. In total, 17 students were assigned to each group, experimental and control. Two laboratory exercises were designed to provide students with experience in PLC programming. The results show that the experiments supported by Multiprog virtual laboratory user-friendly control interfaces generate positive meaningful results in regard to students' knowledge and understanding of the material.

  20. Horizontal and vertical integration in hospital laboratories and the laboratory information system.

    PubMed

    Friedman, B A; Mitchell, W

    1990-09-01

    An understanding of horizontal and vertical integration and their quasi-integration variants is important for pathologists to formulate a competitive strategy for hospital clinical laboratories. These basic organizational concepts, in turn, are based on the need to establish control over critical laboratory inputs and outputs. The pathologist seeks greater control of mission-critical system inputs and outputs to increase the quality and efficiency of the laboratory operations. The LIS produces horizontal integration of the various hospital laboratories by integrating them vertically. Forward vertical quasi-integration of the laboratories is mediated primarily by the LIS through front-end valued-added features such as reporting of results and creating a long-term on-line test result archive. These features increase the value of the information product of pathology for clinicians and increase the cost of switching to another system. The LIS can also serve as a means for customizing the information product of the laboratories to appeal to new market segments such as hospital administrators.

  1. The Effect of the Laboratory Specimen on Fatigue Crack Growth Rate

    NASA Technical Reports Server (NTRS)

    Forth, S. C.; Johnston, W. M.; Seshadri, B. R.

    2006-01-01

    Over the past thirty years, laboratory experiments have been devised to develop fatigue crack growth rate data that is representative of the material response. The crack growth rate data generated in the laboratory is then used to predict the safe operating envelope of a structure. The ability to interrelate laboratory data and structural response is called similitude. In essence, a nondimensional term, called the stress intensity factor, was developed that includes the applied stresses, crack size and geometric configuration. The stress intensity factor is then directly related to the rate at which cracks propagate in a material, resulting in the material property of fatigue crack growth response. Standardized specimen configurations and experimental procedures have been developed for laboratory testing to generate crack growth rate data that supports similitude of the stress intensity factor solution. In this paper, the authors present laboratory fatigue crack growth rate test data and finite element analyses that show similitude between standard specimen configurations tested using the constant stress ratio test method is unobtainable.

  2. Laboratory medicine education in Lithuania.

    PubMed

    Kucinskiene, Zita Ausrele; Bartlingas, Jonas

    2011-01-01

    In Lithuania there are two types of specialists working in medical laboratories and having a university degree: laboratory medicine physicians and medical biologists. Both types of specialists are officially being recognized and regulated by the Ministry of Health of Lithuania. Laboratory medicine physicians become specialists in laboratory medicine after an accredited 4-year multidisciplinary residency study program in Laboratory Medicine. The residency program curriculum for laboratory medicine physicians is presented. On December 9, 2009 the Equivalence of Standards for medical specialists was accepted and Lithuanian medical specialists in Clinical Chemistry and Laboratory Medicine can now apply for EC4 registration. Medical biologists become specialists in laboratory medicine after an accredited 2-year master degree multidisciplinary study program in Medical Biology, consisting of 80 credits. Various postgraduate advanced training courses for the continuous education of specialists in laboratory medicine were first introduced in 1966. Today it covers 1-2-week courses in different subspecialties of laboratory medicine. They are obligatory for laboratory medicine physicians for the renewal of their license. It is not compulsory for medical biologists to participate in these courses. The Centre of Laboratory Diagnostics represents a place for the synthesis and application of the basic sciences, the performance of research in various fields of laboratory medicine, as well as performance of thousands of procedures daily and provision of specific teaching programs.

  3. Designing easy DNA extraction: Teaching creativity through laboratory practice.

    PubMed

    Susantini, Endang; Lisdiana, Lisa; Isnawati; Tanzih Al Haq, Aushia; Trimulyono, Guntur

    2017-05-01

    Subject material concerning Deoxyribose Nucleic Acid (DNA) structure in the format of creativity-driven laboratory practice offers meaningful learning experience to the students. Therefore, a laboratory practice in which utilizes simple procedures and easy-safe-affordable household materials should be promoted to students to develop their creativity. This study aimed to examine whether designing and conducting DNA extraction with household materials could foster students' creative thinking. We also described how this laboratory practice affected students' knowledge and views. A total of 47 students participated in this study. These students were grouped and asked to utilize available household materials and modify procedures using hands-on worksheet. Result showed that this approach encouraged creative thinking as well as improved subject-related knowledge. Students also demonstrated positive views about content knowledge, social skills, and creative thinking skills. This study implies that extracting DNA with household materials is able to develop content knowledge, social skills, and creative thinking of the students. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):216-225, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  4. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berger, Spencer Granett

    This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the

  5. Phillips Laboratory Geophysics Scholar Program

    DTIC Science & Technology

    1993-09-30

    research at Phillips Laboratory . Research sponsored by Air Force Geophysics Laboratory ...Geophysics Laboratory (now the Phillips Laboratory , Geophysics Directorate), United States Air Force for its sponsorship of this research through the Air ...September 1993 Approved for public release; distribution unlimited PHILLIPS LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND

  6. Blended learning within an undergraduate exercise physiology laboratory.

    PubMed

    Elmer, Steven J; Carter, Kathryn R; Armga, Austin J; Carter, Jason R

    2016-03-01

    In physiological education, blended course formats (integration of face-to-face and online instruction) can facilitate increased student learning, performance, and satisfaction in classroom settings. There is limited evidence on the effectiveness of using blending course formats in laboratory settings. We evaluated the impact of blended learning on student performance and perceptions in an undergraduate exercise physiology laboratory. Using a randomized, crossover design, four laboratory topics were delivered in either a blended or traditional format. For blended laboratories, content was offloaded to self-paced video demonstrations (∼15 min). Laboratory section 1 (n = 16) completed blended laboratories for 1) neuromuscular power and 2) blood lactate, whereas section 2 (n = 17) completed blended laboratories for 1) maximal O2 consumption and 2) muscle electromyography. Both sections completed the same assignments (scored in a blinded manner using a standardized rubric) and practicum exams (evaluated by two independent investigators). Pre- and postcourse surveys were used to assess student perceptions. Most students (∼79%) watched videos for both blended laboratories. Assignment scores did not differ between blended and traditional laboratories (P = 0.62) or between sections (P = 0.91). Practicum scores did not differ between sections (both P > 0.05). At the end of the course, students' perceived value of the blended format increased (P < 0.01) and a greater percentage of students agreed that learning key foundational content through video demonstrations before class greatly enhanced their learning of course material compared with a preassigned reading (94% vs. 78%, P < 0.01). Blended exercise physiology laboratories provided an alternative method for delivering content that was favorably perceived by students and did not compromise student performance. Copyright © 2016 The American Physiological Society.

  7. [How do hospital clinical laboratories and laboratory testing companies cooperate and build reciprocal relations?].

    PubMed

    Kawano, Seiji

    2014-12-01

    As the 2nd Joint Symposium of the Japanese Society of Laboratory Medicine and the Japanese Association of Laboratory Pathologists, the symposium on clinical test out-sourcing and branch laboratories was held at the 60th General Meeting of the Japanese Society of Laboratory Medicine on November 2nd, 2013 in Kobe. For the symposium, we conducted a questionnaire survey on the usage of clinical test out-sourcing and the introduction of branch laboratories to clinical laboratories of Japanese university hospitals, both private and public, between July 25th and August 20th, 2013. Seventy-two hospitals responded to the questionnaire survey, consisting of 41 public medical school hospitals and 31 private ones. According to the survey, the selection of each clinical test for out-sourcing was mainly determined by the capacities of hospital clinical laboratories and their equipment, as well as the profitability of each test. The main concerns of clinical laboratory members of university hospitals involved the continuity of measurement principles, traceability, and standardization of reference values for each test. They strongly requested the interchangeability and computerization of test data between laboratory testing companies. A branch laboratory was introduced to six hospitals, all of which were private medical college hospitals, out of 72 university hospitals, and eight of the other hospitals were open to its introduction. The merits and demerits of introducing a branch laboratory were also discussed. (Review).

  8. From Laboratory Research to a Clinical Trial

    PubMed Central

    Michels, Harold T.; Keevil, C. William; Salgado, Cassandra D.; Schmidt, Michael G.

    2015-01-01

    Objective: This is a translational science article that discusses copper alloys as antimicrobial environmental surfaces. Bacteria die when they come in contact with copper alloys in laboratory tests. Components made of copper alloys were also found to be efficacious in a clinical trial. Background: There are indications that bacteria found on frequently touched environmental surfaces play a role in infection transmission. Methods: In laboratory testing, copper alloy samples were inoculated with bacteria. In clinical trials, the amount of live bacteria on the surfaces of hospital components made of copper alloys, as well as those made from standard materials, was measured. Finally, infection rates were tracked in the hospital rooms with the copper components and compared to those found in the rooms containing the standard components. Results: Greater than a 99.9% reduction in live bacteria was realized in laboratory tests. In the clinical trials, an 83% reduction in bacteria was seen on the copper alloy components, when compared to the surfaces made from standard materials in the control rooms. Finally, the infection rates were found to be reduced by 58% in patient rooms with components made of copper, when compared to patients' rooms with components made of standard materials. Conclusions: Bacteria die on copper alloy surfaces in both the laboratory and the hospital rooms. Infection rates were lowered in those hospital rooms containing copper components. Thus, based on the presented information, the placement of copper alloy components, in the built environment, may have the potential to reduce not only hospital-acquired infections but also patient treatment costs. PMID:26163568

  9. Laboratory and software applications for clinical trials: the global laboratory environment.

    PubMed

    Briscoe, Chad

    2011-11-01

    The Applied Pharmaceutical Software Meeting is held annually. It is sponsored by The Boston Society, a not-for-profit organization that coordinates a series of meetings within the global pharmaceutical industry. The meeting generally focuses on laboratory applications, but in recent years has expanded to include some software applications for clinical trials. The 2011 meeting emphasized the global laboratory environment. Global clinical trials generate massive amounts of data in many locations that must be centralized and processed for efficient analysis. Thus, the meeting had a strong focus on establishing networks and systems for dealing with the computer infrastructure to support such environments. In addition to the globally installed laboratory information management system, electronic laboratory notebook and other traditional laboratory applications, cloud computing is quickly becoming the answer to provide efficient, inexpensive options for managing the large volumes of data and computing power, and thus it served as a central theme for the meeting.

  10. A qualitative case study of instructional support for web-based simulated laboratory exercises in online college chemistry laboratory courses

    NASA Astrophysics Data System (ADS)

    Schulman, Kathleen M.

    This study fills a gap in the research literature regarding the types of instructional support provided by instructors in online introductory chemistry laboratory courses that employ chemistry simulations as laboratory exercises. It also provides information regarding students' perceptions of the effectiveness of that instructional support. A multiple case study methodology was used to carry out the research. Two online introductory chemistry courses were studied at two community colleges. Data for this study was collected using phone interviews with faculty and student participants, surveys completed by students, and direct observation of the instructional designs of instructional support in the online Blackboard web sites and the chemistry simulations used by the participating institutions. The results indicated that the instructors provided multiple types of instructional support that correlated with forms of effective instructional support identified in the research literature, such as timely detailed feedback, detailed instructions for the laboratory experiments, and consistency in the instructional design of lecture and laboratory course materials, including the chemistry lab simulation environment. The students in one of these courses identified the following as the most effective types of instructional support provided: the instructor's feedback, opportunities to apply chemistry knowledge in the chemistry lab exercises, detailed procedures for the simulated laboratory exercises, the organization of the course Blackboard sites and the chemistry lab simulation web sites, and the textbook homework web sites. Students also identified components of instructional support they felt were missing. These included a desire for more interaction with the instructor, more support for the simulated laboratory exercises from the instructor and the developer of the chemistry simulations, and faster help with questions about the laboratory exercises or experimental

  11. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  12. The Virtual Robotics Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Love, L.J.

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well asmore » many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.« less

  13. Designing Online Resources in Preparation for Authentic Laboratory Experiences

    PubMed Central

    Boulay, Rachel; Parisky, Alex; Leong, Peter

    2013-01-01

    Professional development for science teachers can be benefited through active learning in science laboratories. However, how online training materials can be used to complement traditional laboratory training is less understood. This paper explores the design of online training modules to teach molecular biology and user perception of those modules that were part of an intensive molecular biology “boot camp” targeting high school biology teachers in the State of Hawaii. The John A. Burns School of Medicine at the University of Hawaii had an opportunity to design and develop professional development that prepares science teachers with an introduction of skills, techniques, and applications for their students to conduct medical research in a laboratory setting. A group of 29 experienced teachers shared their opinions of the online materials and reported on how they used the online materials in their learning process or teaching. PMID:24319698

  14. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  15. Standard Specifications for Language Laboratory.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Administration, Raleigh.

    Specifications are presented covering the components of electronic and electro-mechanical equipment, non-electrical materials for the teacher-student positions, and other items of a miscellaneous nature to provide for a complete, workable language laboratory facility. Instructions for the use of specifications are included for the purchaser,…

  16. The Pond Is Our Laboratory

    ERIC Educational Resources Information Center

    Marchewka, Barbara Turco

    1978-01-01

    This science teacher's laboratory is a pond within walking distance of his school that provides a stimulating environment for exploring the natural world. With simple materials students practice making careful observations, taking measurements and compiling and graphing information for their science studies. They also extend their pond experiences…

  17. Harmonization in laboratory medicine: Requests, samples, measurements and reports.

    PubMed

    Plebani, Mario

    2016-01-01

    In laboratory medicine, the terms "standardization" and "harmonization" are frequently used interchangeably as the final goal is the same: the equivalence of measurement results among different routine measurement procedures over time and space according to defined analytical and clinical quality specifications. However, the terms define two distinct, albeit closely linked, concepts based on traceability principles. The word "standardization" is used when results for a measurement are equivalent and traceable to the International System of Units (SI) through a high-order primary reference material and/or a reference measurement procedure (RMP). "Harmonization" is generally used when results are equivalent, but neither a high-order primary reference material nor a reference measurement procedure is available. Harmonization is a fundamental aspect of quality in laboratory medicine as its ultimate goal is to improve patient outcomes through the provision of accurate and actionable laboratory information. Patients, clinicians and other healthcare professionals assume that clinical laboratory tests performed by different laboratories at different times on the same sample and specimen can be compared, and that results can be reliably and consistently interpreted. Unfortunately, this is not necessarily the case, because many laboratory test results are still highly variable and poorly standardized and harmonized. Although the initial focus was mainly on harmonizing and standardizing analytical processes and methods, the scope of harmonization now also includes all other aspects of the total testing process (TTP), such as terminology and units, report formats, reference intervals and decision limits as well as tests and test profiles, requests and criteria for interpretation. Several projects and initiatives aiming to improve standardization and harmonization in the testing process are now underway. Laboratory professionals should therefore step up their efforts to provide

  18. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Laboratory date of service for clinical laboratory and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... AND OTHER HEALTH SERVICES Payment for New Clinical Diagnostic Laboratory Tests § 414.510 Laboratory...

  19. Lipid and lipoprotein testing in resource-limited laboratories.

    PubMed

    Myers, Gary L

    2003-01-01

    The role of total cholesterol (TC) and lipoproteins in the assessment of coronary heart disease (CHD) is firmly established from population and intervention studies. Total and low-density lipoprotein cholesterol (LDLC) levels are positively associated with CHD, and high-density lipoprotein cholesterol (HDLC) levels are negatively associated with CHD. Efforts to identify and treat people at increased risk based on cholesterol and lipoprotein levels have led to more lipid testing and the need for very reliable test results. Thus, quality laboratory services are an essential component of healthcare delivery and play a vital role in any strategy to reduce morbidity and mortality from CHD. In laboratories with limited resources, establishing laboratory capability to measure CHD risk markers may be a considerable challenge. Laboratories face problems in selecting proper techniques, difficulties in equipment availability and maintenance, and shortage of supplies, staffing, and supervision. The Centers for Disease Control and Prevention (CDC) has been providing technical assistance for more than 30 years to laboratories that measure lipids and lipoproteins and is willing to provide technical assistance as needed for other laboratories to develop this capability. CDC can provide technical assistance to establish lipid and lipoprotein testing capability to support a CHD public health program in areas with limited laboratory resources. This assistance includes: selecting a suitable testing instrument; providing training for laboratory technicians; establishing a simple quality control plan; and instructing staff on how to prepare frozen serum control materials suitable for assessing accuracy of lipid and lipoprotein testing.

  20. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  1. Sandia National Laboratories: Research: Research Foundations: Radiation

    Science.gov Websites

    Effects and High Energy Density Science Sandia National Laboratories Exceptional service in the Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects & High Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy

  2. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  3. Particle Size Distribution of Serratia marcescens Aerosols Created During Common Laboratory Procedures and Simulated Laboratory Accidents

    PubMed Central

    Kenny, Michael T.; Sabel, Fred L.

    1968-01-01

    Andersen air samplers were used to determine the particle size distribution of Serratia marcescens aerosols created during several common laboratory procedures and simulated laboratory accidents. Over 1,600 viable particles per cubic foot of air sampled were aerosolized during blending operations. More than 98% of these particles were less than 5 μ in size. In contrast, 80% of the viable particles aerosolized by handling lyophilized cultures were larger than 5 μ. Harvesting infected eggs, sonic treatment, centrifugation, mixing cultures, and dropping infectious material produced aerosols composed primarily of particles in the 1.0- to 7.5-μ size range. Images Fig. 1 PMID:4877498

  4. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...

  5. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...

  6. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...

  7. 21 CFR 212.60 - What requirements apply to the laboratories where I test components, in-process materials, and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... I test components, in-process materials, and finished PET drug products? 212.60 Section 212.60 Food... finished PET drug products? (a) Testing procedures. Each laboratory used to conduct testing of components, in-process materials, and finished PET drug products must have and follow written procedures for the...

  8. [Laboratory accreditation and proficiency testing].

    PubMed

    Kuwa, Katsuhiko

    2003-05-01

    ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.

  9. Medical Laboratory Services. Student's Manual. Cluster Core for Health Occupations Education.

    ERIC Educational Resources Information Center

    Williams, Catherine

    This student's manual on medical laboratory services is one of a series of self-contained, individualized materials for students enrolled in training within the allied health field. It includes competencies that are associated with the performance of skills common to several occupations in the medical laboratory. The material is intended for use…

  10. The ideal laboratory information system.

    PubMed

    Sepulveda, Jorge L; Young, Donald S

    2013-08-01

    Laboratory information systems (LIS) are critical components of the operation of clinical laboratories. However, the functionalities of LIS have lagged significantly behind the capacities of current hardware and software technologies, while the complexity of the information produced by clinical laboratories has been increasing over time and will soon undergo rapid expansion with the use of new, high-throughput and high-dimensionality laboratory tests. In the broadest sense, LIS are essential to manage the flow of information between health care providers, patients, and laboratories and should be designed to optimize not only laboratory operations but also personalized clinical care. To list suggestions for designing LIS with the goal of optimizing the operation of clinical laboratories while improving clinical care by intelligent management of laboratory information. Literature review, interviews with laboratory users, and personal experience and opinion. Laboratory information systems can improve laboratory operations and improve patient care. Specific suggestions for improving the function of LIS are listed under the following sections: (1) Information Security, (2) Test Ordering, (3) Specimen Collection, Accessioning, and Processing, (4) Analytic Phase, (5) Result Entry and Validation, (6) Result Reporting, (7) Notification Management, (8) Data Mining and Cross-sectional Reports, (9) Method Validation, (10) Quality Management, (11) Administrative and Financial Issues, and (12) Other Operational Issues.

  11. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  12. Virtual Laboratories to Achieve Higher-Order Learning in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Gooseff, M. N.; Toto, R.

    2009-12-01

    Bloom’s higher-order cognitive skills (analysis, evaluation, and synthesis) are recognized as necessary in engineering education, yet these are difficult to achieve in traditional lecture formats. Laboratory components supplement traditional lectures in an effort to emphasize active learning and provide higher-order challenges, but these laboratories are often subject to the constraints of (a) increasing student enrollment, (b) limited funding for operational, maintenance, and instructional expenses and (c) increasing demands on undergraduate student credit requirements. Here, we present results from a pilot project implementing virtual (or online) laboratory experiences as an alternative to a traditional laboratory experience in Fluid Mechanics, a required third year course. Students and faculty were surveyed to identify the topics that were most difficult, and virtual laboratory and design components developed to supplement lecture material. Each laboratory includes a traditional lab component, requiring student analysis and evaluation. The lab concludes with a design exercise, which imposes additional problem constraints and allows students to apply their laboratory observations to a real-world situation.

  13. Plasma creatinine in dogs: intra- and inter-laboratory variation in 10 European veterinary laboratories

    PubMed Central

    2011-01-01

    Background There is substantial variation in reported reference intervals for canine plasma creatinine among veterinary laboratories, thereby influencing the clinical assessment of analytical results. The aims of the study was to determine the inter- and intra-laboratory variation in plasma creatinine among 10 veterinary laboratories, and to compare results from each laboratory with the upper limit of its reference interval. Methods Samples were collected from 10 healthy dogs, 10 dogs with expected intermediate plasma creatinine concentrations, and 10 dogs with azotemia. Overlap was observed for the first two groups. The 30 samples were divided into 3 batches and shipped in random order by postal delivery for plasma creatinine determination. Statistical testing was performed in accordance with ISO standard methodology. Results Inter- and intra-laboratory variation was clinically acceptable as plasma creatinine values for most samples were usually of the same magnitude. A few extreme outliers caused three laboratories to fail statistical testing for consistency. Laboratory sample means above or below the overall sample mean, did not unequivocally reflect high or low reference intervals in that laboratory. Conclusions In spite of close analytical results, further standardization among laboratories is warranted. The discrepant reference intervals seem to largely reflect different populations used in establishing the reference intervals, rather than analytical variation due to different laboratory methods. PMID:21477356

  14. Laboratory investigations of earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Xia, Kaiwen

    In this thesis this will be attempted through controlled laboratory experiments that are designed to mimic natural earthquake scenarios. The earthquake dynamic rupturing process itself is a complicated phenomenon, involving dynamic friction, wave propagation, and heat production. Because controlled experiments can produce results without assumptions needed in theoretical and numerical analysis, the experimental method is thus advantageous over theoretical and numerical methods. Our laboratory fault is composed of carefully cut photoelastic polymer plates (Homahte-100, Polycarbonate) held together by uniaxial compression. As a unique unit of the experimental design, a controlled exploding wire technique provides the triggering mechanism of laboratory earthquakes. Three important components of real earthquakes (i.e., pre-existing fault, tectonic loading, and triggering mechanism) correspond to and are simulated by frictional contact, uniaxial compression, and the exploding wire technique. Dynamic rupturing processes are visualized using the photoelastic method and are recorded via a high-speed camera. Our experimental methodology, which is full-field, in situ, and non-intrusive, has better control and diagnostic capacity compared to other existing experimental methods. Using this experimental approach, we have investigated several problems: dynamics of earthquake faulting occurring along homogeneous faults separating identical materials, earthquake faulting along inhomogeneous faults separating materials with different wave speeds, and earthquake faulting along faults with a finite low wave speed fault core. We have observed supershear ruptures, subRayleigh to supershear rupture transition, crack-like to pulse-like rupture transition, self-healing (Heaton) pulse, and rupture directionality.

  15. Laboratory Exercise to Evaluate Hay Preservatives.

    ERIC Educational Resources Information Center

    McGraw, R. L.; And Others

    1990-01-01

    Presented is a laboratory exercise designed to demonstrate the effects of moisture on hay preservation products in a manner that does not require large amounts of equipment or instructor time. Materials, procedures, and probable results are discussed. (CW)

  16. EPA Environmental Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  17. Facilitating Improvements in Laboratory Report Writing Skills with Less Grading: A Laboratory Report Peer-Review Process†

    PubMed Central

    Brigati, Jennifer R.; Swann, Jerilyn M.

    2015-01-01

    Incorporating peer-review steps in the laboratory report writing process provides benefits to students, but it also can create additional work for laboratory instructors. The laboratory report writing process described here allows the instructor to grade only one lab report for every two to four students, while giving the students the benefits of peer review and prompt feedback on their laboratory reports. Here we present the application of this process to a sophomore level genetics course and a freshman level cellular biology course, including information regarding class time spent on student preparation activities, instructor preparation, prerequisite student knowledge, suggested learning outcomes, procedure, materials, student instructions, faculty instructions, assessment tools, and sample data. T-tests comparing individual and group grading of the introductory cell biology lab reports yielded average scores that were not significantly different from each other (p = 0.13, n = 23 for individual grading, n = 6 for group grading). T-tests also demonstrated that average laboratory report grades of students using the peer-review process were not significantly different from those of students working alone (p = 0.98, n = 9 for individual grading, n = 6 for pair grading). While the grading process described here does not lead to statistically significant gains (or reductions) in student learning, it allows student learning to be maintained while decreasing instructor workload. This reduction in workload could allow the instructor time to pursue other high-impact practices that have been shown to increase student learning. Finally, we suggest possible modifications to the procedure for application in a variety of settings. PMID:25949758

  18. Facilitating improvements in laboratory report writing skills with less grading: a laboratory report peer-review process.

    PubMed

    Brigati, Jennifer R; Swann, Jerilyn M

    2015-05-01

    Incorporating peer-review steps in the laboratory report writing process provides benefits to students, but it also can create additional work for laboratory instructors. The laboratory report writing process described here allows the instructor to grade only one lab report for every two to four students, while giving the students the benefits of peer review and prompt feedback on their laboratory reports. Here we present the application of this process to a sophomore level genetics course and a freshman level cellular biology course, including information regarding class time spent on student preparation activities, instructor preparation, prerequisite student knowledge, suggested learning outcomes, procedure, materials, student instructions, faculty instructions, assessment tools, and sample data. T-tests comparing individual and group grading of the introductory cell biology lab reports yielded average scores that were not significantly different from each other (p = 0.13, n = 23 for individual grading, n = 6 for group grading). T-tests also demonstrated that average laboratory report grades of students using the peer-review process were not significantly different from those of students working alone (p = 0.98, n = 9 for individual grading, n = 6 for pair grading). While the grading process described here does not lead to statistically significant gains (or reductions) in student learning, it allows student learning to be maintained while decreasing instructor workload. This reduction in workload could allow the instructor time to pursue other high-impact practices that have been shown to increase student learning. Finally, we suggest possible modifications to the procedure for application in a variety of settings.

  19. Metrology Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    and artificial) Spectral reflectance and transmission of materials (functional check only , pyrheliometers,* pyranometers,* and pyrgeometers. The Metrology Laboratory provides National Institute of

  20. Procedures of Exercise Physiology Laboratories

    NASA Technical Reports Server (NTRS)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  1. Identifying and Dealing with Hazardous Materials and Procedures in the General Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Katz, David A.

    1982-01-01

    A survey of freshman chemistry laboratory manuals identified 15 questionable laboratory procedures, including the use of potentially hazardous chemicals. Alternatives are suggested for each hazard discussed (such as using a substitute solvent for benzene). (SK)

  2. Laboratory Astrophysics White Paper: Summary of Laboratory Astrophysics Needs

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Laboratory Astrophysics Workshop (NASA LAW) met at NASA Ames Research Center from 1-3 May 2002 to assess the role that laboratory astrophysics plays in the optimization of NASA missions, both at the science conception level and at the science return level. Space missions provide understanding of fundamental questions regarding the origin and evolution of galaxies, stars, and planetary systems. In all of these areas the interpretation of results from NASA's space missions relies crucially upon data obtained from the laboratory. We stress that Laboratory Astrophysics is important not only in the interpretation of data, but also in the design and planning of future missions. We recognize a symbiosis between missions to explore the universe and the underlying basic data needed to interpret the data from those missions. In the following we provide a summary of the consensus results from our Workshop, starting with general programmatic findings and followed by a list of more specific scientific areas that need attention. We stress that this is a 'living document' and that these lists are subject to change as new missions or new areas of research rise to the fore.

  3. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    PubMed

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed.

  4. Inter-Laboratory Comparison for Calibration of Relative Humidity Devices Among Accredited Laboratories in Malaysia

    NASA Astrophysics Data System (ADS)

    Hussain, F.; Khairuddin, S.; Othman, H.

    2017-01-01

    An inter-laboratory comparison in relative humidity measurements among accredited laboratories has been coordinated by the National Metrology Institute of Malaysia. It was carried out to determine the performance of the participating laboratories. The objective of the comparison was to acknowledge the participating laboratories competencies and to verify the level of accuracies declared in their scope of accreditation, in accordance with the MS ISO/IEC 17025 accreditation. The measurement parameter involved was relative humidity for the range of 30-90 %rh at a nominal temperature of 50°C. Eight accredited laboratories participated in the inter-laboratory comparison. Two units of artifacts have been circulated among the participants as the transfer standards.

  5. Reliability on intra-laboratory and inter-laboratory data of hair mineral analysis comparing with blood analysis.

    PubMed

    Namkoong, Sun; Hong, Seung Phil; Kim, Myung Hwa; Park, Byung Cheol

    2013-02-01

    Nowadays, although its clinical value remains controversial institutions utilize hair mineral analysis. Arguments about the reliability of hair mineral analysis persist, and there have been evaluations of commercial laboratories performing hair mineral analysis. The objective of this study was to assess the reliability of intra-laboratory and inter-laboratory data at three commercial laboratories conducting hair mineral analysis, compared to serum mineral analysis. Two divided hair samples taken from near the scalp were submitted for analysis at the same time, to all laboratories, from one healthy volunteer. Each laboratory sent a report consisting of quantitative results and their interpretation of health implications. Differences among intra-laboratory and interlaboratory data were analyzed using SPSS version 12.0 (SPSS Inc., USA). All the laboratories used identical methods for quantitative analysis, and they generated consistent numerical results according to Friedman analysis of variance. However, the normal reference ranges of each laboratory varied. As such, each laboratory interpreted the patient's health differently. On intra-laboratory data, Wilcoxon analysis suggested they generated relatively coherent data, but laboratory B could not in one element, so its reliability was doubtful. In comparison with the blood test, laboratory C generated identical results, but not laboratory A and B. Hair mineral analysis has its limitations, considering the reliability of inter and intra laboratory analysis comparing with blood analysis. As such, clinicians should be cautious when applying hair mineral analysis as an ancillary tool. Each laboratory included in this study requires continuous refinement from now on for inducing standardized normal reference levels.

  6. Carcinogen Control in the Chemical Laboratory.

    ERIC Educational Resources Information Center

    Johnson, James S.

    1981-01-01

    Presents general and specific guidelines for handling carcinogens. Additional topics include: definition of potential occupational carcinogens; classification of carcinogens; inventory requirements; signs and labels for materials and laboratories; decontamination and disposal procedures; medical surveillance for employees working with controlled…

  7. [ISO 15189 medical laboratory accreditation].

    PubMed

    Aoyagi, Tsutomu

    2004-10-01

    This International Standard, based upon ISO/IEC 17025 and ISO 9001, provides requirements for competence and quality that are particular to medical laboratories. While this International Standard is intended for use throughout the currently recognized disciplines of medical laboratory services, those working in other services and disciplines will also find it useful and appropriate. In addition, bodies engaged in the recognition of the competence of medical laboratories will be able to use this International Standard as the basis for their activities. The Japan Accreditation Board for Conformity Assessment (AB) and the Japanese Committee for Clinical Laboratory Standards (CCLS) are jointly developing the program of accreditation of medical laboratories. ISO 15189 requirements consist of two parts, one is management requirements and the other is technical requirements. The former includes the requirements of all parts of ISO 9001, moreover it includes the requirement of conformity assessment body, for example, impartiality and independence from any other party. The latter includes the requirements of laboratory competence (e.g. personnel, facility, instrument, and examination methods), moreover it requires that laboratories shall participate proficiency testing(s) and laboratories' examination results shall have traceability of measurements and implement uncertainty of measurement. Implementation of ISO 15189 will result in a significant improvement in medical laboratories management system and their technical competence. The accreditation of medical laboratory will improve medical laboratory service and be useful for patients.

  8. Laboratory Activities in Israel

    ERIC Educational Resources Information Center

    Mamlok-Naaman, Rachel; Barnea, Nitza

    2012-01-01

    Laboratory activities have long had a distinctive and central role in the science curriculum, and science educators have suggested that many benefits accrue from engaging students in science laboratory activities. Many research studies have been conducted to investigate the educational effectiveness of laboratory work in science education in…

  9. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  10. Clinical Laboratory Automation: A Case Study

    PubMed Central

    Archetti, Claudia; Montanelli, Alessandro; Finazzi, Dario; Caimi, Luigi; Garrafa, Emirena

    2017-01-01

    Background This paper presents a case study of an automated clinical laboratory in a large urban academic teaching hospital in the North of Italy, the Spedali Civili in Brescia, where four laboratories were merged in a unique laboratory through the introduction of laboratory automation. Materials and Methods The analysis compares the preautomation situation and the new setting from a cost perspective, by considering direct and indirect costs. It also presents an analysis of the turnaround time (TAT). The study considers equipment, staff and indirect costs. Results The introduction of automation led to a slight increase in equipment costs which is highly compensated by a remarkable decrease in staff costs. Consequently, total costs decreased by 12.55%. The analysis of the TAT shows an improvement of nonemergency exams while emergency exams are still validated within the maximum time imposed by the hospital. Conclusions The strategy adopted by the management, which was based on re-using the available equipment and staff when merging the pre-existing laboratories, has reached its goal: introducing automation while minimizing the costs. Significance for public health Automation is an emerging trend in modern clinical laboratories with a positive impact on service level to patients and on staff safety as shown by different studies. In fact, it allows process standardization which, in turn, decreases the frequency of outliers and errors. In addition, it induces faster processing times, thus improving the service level. On the other side, automation decreases the staff exposition to accidents strongly improving staff safety. In this study, we analyse a further potential benefit of automation, that is economic convenience. We study the case of the automated laboratory of one of the biggest hospital in Italy and compare the cost related to the pre and post automation situation. Introducing automation lead to a cost decrease without affecting the service level to patients

  11. USING THE LANGUAGE LABORATORY.

    ERIC Educational Resources Information Center

    LADU, TORA TUVE

    TO ENCOURAGE UTILIZATION OF THE LANGUAGE LABORATORY AS A TEACHING TECHNIQUE, THIS BULLETIN DESCRIBES SUCH POSSIBLE USES OF THE LABORATORY AS PROGRAMING LESSONS, RECORDING, AND TESTING LANGUAGE SKILL DEVELOPMENT. ONE OF THE MOST IMPORTANT FUNCTIONS OF THE LABORATORY IS THE PATTERN DRILL, DESCRIBED HERE FOR FRENCH, GERMAN, AND SPANISH. EXAMPLES ARE…

  12. The quality of veterinary in-clinic and reference laboratory biochemical testing.

    PubMed

    Rishniw, Mark; Pion, Paul D; Maher, Tammy

    2012-03-01

    Although evaluation of biochemical analytes in blood is common in veterinary practice, studies assessing the global quality of veterinary in-clinic and reference laboratory testing have not been reported. The aim of this study was to assess the quality of biochemical testing in veterinary laboratories using results obtained from analyses of 3 levels of assayed quality control materials over 5 days. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index to determine factors contributing to poor performance, and agreement between in-clinic and reference laboratory mean results. The suitability of in-clinic and reference laboratory instruments for statistical quality control was determined using adaptations from the computerized program, EZRules3. Reference laboratories were able to achieve desirable quality requirements more frequently than in-clinic laboratories. Across all 3 materials, > 50% of in-clinic analyzers achieved a sigma metric ≥ 6.0 for measurement of 2 analytes, whereas > 50% of reference laboratory analyzers achieved a sigma metric ≥ 6.0 for measurement of 6 analytes. Expanded uncertainty of measurement and ± total allowable error resulted in the highest mean percentages of analytes demonstrating agreement between in-clinic and reference laboratories. Owing to marked variation in bias and coefficient of variation between analyzers of the same and different types, the percentages of analytes suitable for statistical quality control varied widely. These findings reflect the current state-of-the-art with regard to in-clinic and reference laboratory analyzer performance and provide a baseline for future evaluations of the quality of veterinary laboratory testing. © 2012 American Society for Veterinary Clinical Pathology.

  13. Shock wave facilities at Pulter Laboratory of SRI international

    NASA Astrophysics Data System (ADS)

    Murri, W. J.

    1982-04-01

    Shock wave research in the Poulter Laboratory covers two broad areas: dynamic material response and dynamic structural response. Workers in both areas use common facilities. The Laboratory has several guns and the facilities to perform various types of high explosive loading experiments. The use of these facilities and experimental techniques is illustrated with examples from research projects.

  14. H. W. Laboratory manual: 100 Area section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1950-07-01

    The purpose of this manual is to present a Hazard Breakdown of all jobs normally encountered in the laboratory work of the three sections comprising the Analytic Section, Metallurgy and Control Division of the Technical Department. A Hazard Breakdown is a careful analysis of any job in which the source of possible dangers is clearly indicated for each particular step. The analysis is prepared by individuals who are thoroughly familiar with the specific job or procedure. It is felt that if the hazards herein outlined are recognized by the Laboratory personnel and the suggested safety cautions followed, the chance formore » injury will be minimized and the worker will become generally more safety conscious. The manual, which is prefaced by the general safety rules applying to all the laboratories, is divided into three main sections, one for each of the three sections into which the Laboratories Division is divided. These sections are as follows: Section 1 -- 200 Area Control; Section 2 -- 100 Area Control; Section 3 -- 300 Area Control, Essential Materials, and Methods Improvement.« less

  15. Good Laboratory Practice. Part 3. Implementing Good Laboratory Practice in the Analytical Lab

    ERIC Educational Resources Information Center

    Wedlich, Richard C.; Pires, Amanda; Fazzino, Lisa; Fransen, Joseph M.

    2013-01-01

    Laboratories submitting experimental results to the Food and Drug Administration (FDA) or the Environmental Protection Agency (EPA) in support of Good Laboratory Practice (GLP) nonclinical laboratory studies must conduct such work in compliance with the GLP regulations. To consistently meet these requirements, lab managers employ a "divide…

  16. Web-Based Virtual Laboratory for Food Analysis Course

    NASA Astrophysics Data System (ADS)

    Handayani, M. N.; Khoerunnisa, I.; Sugiarti, Y.

    2018-02-01

    Implementation of learning on food analysis course in Program Study of Agro-industrial Technology Education faced problems. These problems include the availability of space and tools in the laboratory that is not comparable with the number of students also lack of interactive learning tools. On the other hand, the information technology literacy of students is quite high as well the internet network is quite easily accessible on campus. This is a challenge as well as opportunities in the development of learning media that can help optimize learning in the laboratory. This study aims to develop web-based virtual laboratory as one of the alternative learning media in food analysis course. This research is R & D (research and development) which refers to Borg & Gall model. The results showed that assessment’s expert of web-based virtual labs developed, in terms of software engineering aspects; visual communication; material relevance; usefulness and language used, is feasible as learning media. The results of the scaled test and wide-scale test show that students strongly agree with the development of web based virtual laboratory. The response of student to this virtual laboratory was positive. Suggestions from students provided further opportunities for improvement web based virtual laboratory and should be considered for further research.

  17. Interactive virtual optical laboratories

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  18. Biotechnology Laboratory Methods.

    ERIC Educational Resources Information Center

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream…

  19. Laboratories | Energy Systems Integration Facility | NREL

    Science.gov Websites

    laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing

  20. Thai clinical laboratory responsible to economic crisis.

    PubMed

    Sirisali, K; Vattanaviboon, P; Manochiopinij, S; Ananskulwat, W

    1999-01-01

    Nowadays, Thailand encounters a serious economic crisis. A clear consensus has been made that a cost-saving system must be the important tool. Both private and government organizations are engaged in this situation. We studied the cost-saving in the clinical laboratory. A questionnaire was distributed to 45 hospital laboratories located in Bangkok. Results showed that efforts to control the cost are the essential policy. There was a variety of factors contributing to the cost-saving process. The usage of public utility, non-recycle material and unnecessary utility were reconsidered. Besides, capital cost (wages and salary) personnel incentive are assessed. Forty three of the 45 respondents had attempted to reduce the cost via curtailing the unnecessary electricity. Eliminating the needless usage of telephone-call. water and unnecessary material was also an effective strategy. A reduction of 86.9%, 80 % and 80.0% of the mentioned factors respectively, was reported. An inventory system of the reagent, chemical and supplies was focused. Most of the laboratories have a policy on cost-saving by decreased the storage. Twenty eight of the 45 laboratories considered to purchase the cheaper with similar quality reagents instead. And some one would purchase a bulky pack when it is the best bargain. A specific system "contact reagent with a free rent instrument" has been used widely (33.3%). Finally, a new personnel management system has been chosen. Workload has rearranged and unnecessary extra-hour work was abandoned.

  1. External quality assessment of medical laboratories in Croatia: preliminary evaluation of post-analytical laboratory testing.

    PubMed

    Krleza, Jasna Lenicek; Dorotic, Adrijana; Grzunov, Ana

    2017-02-15

    Proper standardization of laboratory testing requires assessment of performance after the tests are performed, known as the post-analytical phase. A nationwide external quality assessment (EQA) scheme implemented in Croatia in 2014 includes a questionnaire on post-analytical practices, and the present study examined laboratory responses in order to identify current post-analytical phase practices and identify areas for improvement. In four EQA exercises between September 2014 and December 2015, 145-174 medical laboratories across Croatia were surveyed using the Module 11 questionnaire on the post-analytical phase of testing. Based on their responses, the laboratories were evaluated on four quality indicators: turnaround time (TAT), critical values, interpretative comments and procedures in the event of abnormal results. Results were presented as absolute numbers and percentages. Just over half of laboratories (56.3%) monitored TAT. Laboratories varied substantially in how they dealt with critical values. Most laboratories (65-97%) issued interpretative comments with test results. One third of medical laboratories (30.6-33.3%) issued abnormal test results without confirming them in additional testing. Our results suggest that the nationwide post-analytical EQA scheme launched in 2014 in Croatia has yet to be implemented to the full. To close the gaps between existing recommendations and laboratory practice, laboratory professionals should focus on ensuring that TAT is monitored and lists of critical values are established within laboratories. Professional bodies/institutions should focus on clarify and harmonized rules to standardized practices and applied for adding interpretative comments to laboratory test results and for dealing with abnormal test results.

  2. Policies and practices in haemostasis testing among laboratories in Croatia: a survey on behalf of a Working Group for Laboratory Coagulation of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Bronić, Ana; Herak, Desiree Coen; Margetić, Sandra; Milić, Marija

    2017-01-01

    Introduction The objective of this survey was to assess current policies and practice in haemostasis testing among both hospital and outpatient laboratories in Republic of Croatia. Materials and methods A questionnaire with seventy questions divided into nine sections was created in May 2015. Participants were asked about their practice related to test request form, sample collection, prothrombin time (PT) and activated partial thromboplastin time assays, other individual haemostasis assays, point-of-care testing (POCT), reporting of coagulation tests results and quality assurance of procedures, the personnel and other laboratory resources, as well as on issues related to education and implementation of additional coagulation assays in their laboratory. The survey was administered and data were collected between June and September 2015. Results A total survey response rate was 104/170 (61.2%). Most respondents were faced with incomplete information on prescribed therapy and diagnosis on the test request or inappropriate samples withdrawn on distant locations, but also do not have protocols for handling samples with high haematocrit values. Reporting of PT-INR and D-dimer results was different between laboratories. Although almost all laboratories developed a critical value reporting system, reporting a value to general practitioners is still a problem. Result on coagulation POCT testing showed that not all devices were supervised by laboratories, which is not in compliance with Croatian Chamber of Medical Biochemistry acts. Conclusion Obtained results highlighted areas that need improvement and different practice patterns in particular field of haemostasis testing among laboratories. A harmonization of the overall process of haemostasis testing at national level should be considered and undertaken. PMID:28392741

  3. Building a Laboratory-Scale Biogas Plant and Verifying its Functionality

    NASA Astrophysics Data System (ADS)

    Boleman, Tomáš; Fiala, Jozef; Blinová, Lenka; Gerulová, Kristína

    2011-01-01

    The paper deals with the process of building a laboratory-scale biogas plant and verifying its functionality. The laboratory-scale prototype was constructed in the Department of Safety and Environmental Engineering at the Faculty of Materials Science and Technology in Trnava, of the Slovak University of Technology. The Department has already built a solar laboratory to promote and utilise solar energy, and designed SETUR hydro engine. The laboratory is the next step in the Department's activities in the field of renewable energy sources and biomass. The Department is also involved in the European Union project, where the goal is to upgrade all existed renewable energy sources used in the Department.

  4. Laboratory Information Management System (LIMS): A case study

    NASA Technical Reports Server (NTRS)

    Crandall, Karen S.; Auping, Judith V.; Megargle, Robert G.

    1987-01-01

    In the late 70's, a refurbishment of the analytical laboratories serving the Materials Division at NASA Lewis Research Center was undertaken. As part of the modernization efforts, a Laboratory Information Management System (LIMS) was to be included. Preliminary studies indicated a custom-designed system as the best choice in order to satisfy all of the requirements. A scaled down version of the original design has been in operation since 1984. The LIMS, a combination of computer hardware, provides the chemical characterization laboratory with an information data base, a report generator, a user interface, and networking capabilities. This paper is an account of the processes involved in designing and implementing that LIMS.

  5. Laboratory Waste Management. A Guidebook.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  6. Aseptic laboratory techniques: plating methods.

    PubMed

    Sanders, Erin R

    2012-05-11

    Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: Perform plating procedures without contaminating media. Isolate single bacterial colonies by the streak

  7. Aseptic Laboratory Techniques: Plating Methods

    PubMed Central

    Sanders, Erin R.

    2012-01-01

    Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the

  8. Activities of the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Work accomplished by the Jet Propulsion Laboratory (JPL) under contract to NASA in 1985 is described. The work took place in the areas of flight projects, space science, geodynamics, materials science, advanced technology, defense and civil programs, telecommunications systems, and institutional activities.

  9. Post-Baccalaureate Laboratory Specialist Certifications and Master’s Degrees in Laboratory Medicine

    PubMed Central

    Johnson, Susan T.

    2013-01-01

    Opportunities to advance one’s knowledge and position are available within the clinical laboratory arena. By obtaining a specialist credential in chemistry, hematology or microbiology, a laboratorian has demonstrated advance knowledge and ability in their respective discipline. These specialist certifications open doors within and outside the laboratory profession and may lead to promotion. The specialist in blood banking credential is unique in that accredited training programs are available, some of which are affiliated with universities and graduate credit is granted for program completion. Other avenues available include pathologist assistants programs, diplomats in laboratory management and Master of Science degrees in clinical laboratory science. There are a number of choices available to achieve your professional goal. PMID:27683434

  10. Development of the laboratory prototype "CavyPool" for assessing treatments and materials for swimming pools.

    PubMed

    Valeriani, F; Gianfranceschi, G; Vitali, M; Protano, C; Romano Spica, V

    2017-01-01

    Hygiene and surveillance in swimming pools are established by WHO Guidelines and national laws. Progress in water management and pool construction is revolutionizing the field, introducing new materials, systems, disinfection procedures or monitoring markers. Innovation advances challenge the upgrading of safety and quality in pools and the appropriate implementation of guidelines. In order to provide a device for laboratory test, a prototype was realized and applied to study and compare swimming pool materials and treatments. A pool scale-model was engineered and evaluated by computational fluid dynamics algorithms. An automated real time monitoring assured steady state. Critical control points along the water circuit were made accessible to allow the placing of different biocides or water sampling. Simulations were safely performed in a standard hood. Materials for pool surfaces and pipelines were evaluated for biofilm formation under different disinfection conditions. Adherent microorganisms were assayed by mfDNA analysis using real time PCR. The prototype reached the steady state within 5-25 hours under different conditions, showing chemical, physical and fluid-dynamic stability. A method was optimized for testing materials showing their different response to biofilm induction. Several innovative PVC samples displayed highest resistance to bacterial adhesion. A device and method was developed for testing swimming pool hygienic parameters in laboratory. It allowed to test materials for pools hygiene and maintenance, including biofilm formation. It can be applied to simulate contaminations under different water treatments or disinfection strategies. It may support technical decisions and help policymakers in acquiring evidences for comparing or validating innovative solutions.

  11. The Case for Laboratory Developed Procedures

    PubMed Central

    Sabatini, Linda M.; Tsongalis, Gregory J.; Caliendo, Angela M.; Olsen, Randall J.; Ashwood, Edward R.; Bale, Sherri; Benirschke, Robert; Carlow, Dean; Funke, Birgit H.; Grody, Wayne W.; Hayden, Randall T.; Hegde, Madhuri; Lyon, Elaine; Pessin, Melissa; Press, Richard D.; Thomson, Richard B.

    2017-01-01

    An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories. PMID:28815200

  12. Guidelines for biosafety laboratory competency: CDC and the Association of Public Health Laboratories.

    PubMed

    Delany, Judy R; Pentella, Michael A; Rodriguez, Joyce A; Shah, Kajari V; Baxley, Karen P; Holmes, David E

    2011-04-15

    These guidelines for biosafety laboratory competency outline the essential skills, knowledge, and abilities required for working with biologic agents at the three highest biosafety levels (BSLs) (levels 2, 3, and 4). The competencies are tiered to a worker's experience at three levels: entry level, midlevel (experienced), and senior level (supervisory or managerial positions). These guidelines were developed on behalf of CDC and the Association of Public Health Laboratories (APHL) by an expert panel comprising 27 experts representing state and federal public health laboratories, private sector clinical and research laboratories, and academic centers. They were then reviewed by approximately 300 practitioners representing the relevant fields. The guidelines are intended for laboratorians working with hazardous biologic agents, obtained from either samples or specimens that are maintained and manipulated in clinical, environmental, public health, academic, and research laboratories.

  13. 75 FR 3245 - Accreditation and Approval of King Laboratories, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... King Laboratories, Inc., as a Commercial Gauger and Laboratory AGENCY: U.S. Customs and Border... Laboratories, Inc., as a commercial gauger and laboratory. SUMMARY: Notice is hereby given that, pursuant to 19 CFR 151.12 and 19 CFR 151.13, King Laboratories, Inc., 1300 E. 223rd St., 401, Carson, CA 90745, has...

  14. 75 FR 57478 - Accreditation and Approval of King Laboratories, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... King Laboratories, Inc., as a Commercial Gauger and Laboratory AGENCY: U.S. Customs and Border... Laboratories, Inc., as a commercial gauger and laboratory. SUMMARY: Notice is hereby given that, pursuant to 19 CFR 151.12 and 19 CFR 151.13, King Laboratories, Inc., 5009 S. MacDill Ave., Tampa, FL 33611, has been...

  15. The role of light microscopy in aerospace analytical laboratories

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.

    1977-01-01

    Light microscopy has greatly reduced analytical flow time and added new dimensions to laboratory capability. Aerospace analytical laboratories are often confronted with problems involving contamination, wear, or material inhomogeneity. The detection of potential problems and the solution of those that develop necessitate the most sensitive and selective applications of sophisticated analytical techniques and instrumentation. This inevitably involves light microscopy. The microscope can characterize and often identify the cause of a problem in 5-15 minutes with confirmatory tests generally less than one hour. Light microscopy has and will make a very significant contribution to the analytical capabilities of aerospace laboratories.

  16. VIEW OF THE INTERIOR OF BUILDING 125, THE STANDARDS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE INTERIOR OF BUILDING 125, THE STANDARDS LABORATORY. THE PRIMARY FUNCTION OF THE STANDARDS LABORATORY WAS TO ENSURE AND IMPLEMENT A SYSTEM OF QUALITY CONTROL FOR INCOMING MATERIALS USED IN MANUFACTURING PROCESSES. SEVERAL ENGINEERING CONTROLS WERE USED TO ASSURE ACCURACY OF THE CALIBRATION PROCESSES INCLUDING: FLEX-FREE GRANITE TABLES, AIR LOCKED DOORS, TEMPERATURE CONTROLS, AND A SUPER-CLEAN ENVIRONMENT - Rocky Flats Plant, Standards Laboratory, Immediately north of 215A water tower & adjacent to Third Street, Golden, Jefferson County, CO

  17. Evaluation of the Effect of Laboratory-Oriented Science Curriculum Materials on the Attitudes of Students with Reading Difficulties.

    ERIC Educational Resources Information Center

    Milson, James L.

    1979-01-01

    Investigated how the use of laboratory-oriented science curriculum materials affected the attitudes of students with reading difficulties. Both the ninth grade experimental and control classes used a six-week instructional unit on heat and temperature. (HM)

  18. Evaluation of Calibration Laboratories Performance

    NASA Astrophysics Data System (ADS)

    Filipe, Eduarda

    2011-12-01

    One of the main goals of interlaboratory comparisons (ILCs) is the evaluation of the laboratories performance for the routine calibrations they perform for the clients. In the frame of Accreditation of Laboratories, the national accreditation boards (NABs) in collaboration with the national metrology institutes (NMIs) organize the ILCs needed to comply with the requirements of the international accreditation organizations. In order that an ILC is a reliable tool for a laboratory to validate its best measurement capability (BMC), it is needed that the NMI (reference laboratory) provides a better traveling standard—in terms of accuracy class or uncertainty—than the laboratories BMCs. Although this is the general situation, there are cases where the NABs ask the NMIs to evaluate the performance of the accredited laboratories when calibrating industrial measuring instruments. The aim of this article is to discuss the existing approaches for the evaluation of ILCs and propose a basis for the validation of the laboratories measurement capabilities. An example is drafted with the evaluation of the results of mercury-in-glass thermometers ILC with 12 participant laboratories.

  19. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  20. Biosafety in the Laboratory: Prudent Practices for the Handling and Disposal of Infectious Materials

    DTIC Science & Technology

    1989-03-01

    EPIDEMIOLOGY OF OCCUPATI(NAL INFECTIONS OF LABORATORY WORKERS / 8 A . IN TRO D U CT IO N ............................................... 8 B. THE EPIDEM... Infections of Laboratory and maiae.rs, project directors, and laboratory su- Workers pervisors; it is also addressed to the individual labo- ratory workers ...iaboratory workers , it is necessary them. to know both the number of actual infections over a Although we have tried to be comprehensive in given

  1. ISO 15189 accreditation: Requirements for quality and competence of medical laboratories, experience of a laboratory I.

    PubMed

    Guzel, Omer; Guner, Ebru Ilhan

    2009-03-01

    Medical laboratories are the key partners in patient safety. Laboratory results influence 70% of medical diagnoses. Quality of laboratory service is the major factor which directly affects the quality of health care. The clinical laboratory as a whole has to provide the best patient care promoting excellence. International Standard ISO 15189, based upon ISO 17025 and ISO 9001 standards, provides requirements for competence and quality of medical laboratories. Accredited medical laboratories enhance credibility and competency of their testing services. Our group of laboratories, one of the leading institutions in the area, had previous experience with ISO 9001 and ISO 17025 Accreditation at non-medical sections. We started to prepared for ISO 15189 Accreditation at the beginning of 2006 and were certified in March, 2007. We spent more than a year to prepare for accreditation. Accreditation scopes of our laboratory were as follows: clinical chemistry, hematology, immunology, allergology, microbiology, parasitology, molecular biology of infection serology and transfusion medicine. The total number of accredited tests is 531. We participate in five different PT programs. Inter Laboratory Comparison (ILC) protocols are performed with reputable laboratories. 82 different PT Program modules, 277 cycles per year for 451 tests and 72 ILC program organizations for remaining tests have been performed. Our laboratory also organizes a PT program for flow cytometry. 22 laboratories participate in this program, 2 cycles per year. Our laboratory has had its own custom made WEB based LIS system since 2001. We serve more than 500 customers on a real time basis. Our quality management system is also documented and processed electronically, Document Management System (DMS), via our intranet. Preparatory phase for accreditation, data management, external quality control programs, personnel related issues before, during and after accreditation process are presented. Every laboratory has

  2. The Language Laboratory.

    ERIC Educational Resources Information Center

    Hocking, Elton

    This condensed article on the language laboratory describes educational and financial possibilities and limitations, often citing the foreign language program at Purdue University as an example. The author discusses: (1) costs and amortization, (2) preventive maintenance, (3) laboratory design, (4) the multichannel recorder, and (5) visuals. Other…

  3. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2014-09-01

    Flat samples from various PMMA formulations subjected to accelerated laboratory weathering in an "Atlas Xenotest Alpha +" weathering device operating at 3 Sun irradiance remain transparent after 6.48GJ/m2 radiant exposure (300 - 400nm). Transmittance is reduced and yellowness index increases. However, the amount of change depends largely on the PMMA formulation. Higher UV absorber concentrations lead to smaller changes in optical properties. Based on a model of CPV efficiency for a particular power train, relative losses of efficiency are between 1 and 28%. Performance regarding these properties can be linked to the UV absorber type and concentrations used.

  4. Measuring laboratory-based influenza surveillance capacity: development of the 'International Influenza Laboratory Capacity Review' Tool.

    PubMed

    Muir-Paulik, S A; Johnson, L E A; Kennedy, P; Aden, T; Villanueva, J; Reisdorf, E; Humes, R; Moen, A C

    2016-01-01

    The 2005 International Health Regulations (IHR 2005) emphasized the importance of laboratory capacity to detect emerging diseases including novel influenza viruses. To support IHR 2005 requirements and the need to enhance influenza laboratory surveillance capacity, the Association of Public Health Laboratories (APHL) and the Centers for Disease Control and Prevention (CDC) Influenza Division developed the International Influenza Laboratory Capacity Review (Tool). Data from 37 assessments were reviewed and analyzed to verify that the quantitative analysis results accurately depicted a laboratory's capacity and capabilities. Subject matter experts in influenza and laboratory practice used an iterative approach to develop the Tool incorporating feedback and lessons learnt through piloting and implementation. To systematically analyze assessment data, a quantitative framework for analysis was added to the Tool. The review indicated that changes in scores consistently reflected enhanced or decreased capacity. The review process also validated the utility of adding a quantitative analysis component to the assessments and the benefit of establishing a baseline from which to compare future assessments in a standardized way. Use of the Tool has provided APHL, CDC and each assessed laboratory with a standardized analysis of the laboratory's capacity. The information generated is used to improve laboratory systems for laboratory testing and enhance influenza surveillance globally. We describe the development of the Tool and lessons learnt. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Are There Feasible Alternatives to Laboratory Animals?

    ERIC Educational Resources Information Center

    Rowan, A. N.

    1976-01-01

    Discusses several alternatives to the use of laboratory animals in investigating biomedical problems. Alternatives include tissue culture, use of plant and bacterial material, redesigning experiments, and construction of mathematical and computer models. (CS)

  6. Harmonization of good laboratory practice requirements and laboratory accreditation programs.

    PubMed

    Royal, P D

    1994-09-01

    Efforts to harmonize Good Laboratory Practice (GLP) requirements have been underway through the Organization for Economic Cooperation and Development (OECD) since 1981. In 1985, a GLP panel was established to facilitate the practical implementation of the OECD/GLP program. Through the OECD/GLP program, Memoranda of Understanding (MOU) agreements which foster requirements for reciprocal data and study acceptance and unified GLP standards have been developed among member countries. Three OECD Consensus Workshops and three inspectors training workshops have been held. In concert with these efforts, several OECD countries have developed GLP accreditation programs, managed by local health and environmental ministries. In addition, Canada and the United States are investigating Laboratory Accreditation programs for environmental monitoring assessment and GLP-regulated studies. In the European Community (EC), the need for quality standards specifying requirements for production and international trade has promoted International Standards Organization (ISO) certification for certain products. ISO-9000 standards identify requirements for certification of quality systems. These certification programs may affect the trade and market of laboratories conducting GLP studies. Two goals identified by these efforts are common to both programs: first, harmonization and recognition of requirements, and second, confidence in the rigor of program components used to assess the integrity of data produced and study activities. This confidence can be promoted, in part, through laboratory inspection and screening processes. However, the question remains, will data produced by sanctioned laboratories be mutually accepted on an international basis?(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Educational ultrasound nondestructive testing laboratory.

    PubMed

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006).

  8. Medical Service Clinical Laboratory Procedures--Bacteriology.

    ERIC Educational Resources Information Center

    Department of the Army, Washington, DC.

    This manual presents laboratory procedures for the differentiation and identification of disease agents from clinical materials. Included are procedures for the collection of specimens, preparation of culture media, pure culture methods, cultivation of the microorganisms in natural and simulated natural environments, and procedures in…

  9. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    PubMed

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  10. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    PubMed Central

    Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  11. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  12. [Quality use of commercial laboratory for clinical testing services - considering laboratory's role].

    PubMed

    Ogawa, Shinji

    2014-12-01

    The number of commercial laboratories for clinical testing in Japan run privately has decreased to about 30 companies, and their business is getting tougher. Branch Lab. and FMS businesses have not expanded recently due to the new reimbursement system which adds an additional sample management fee, becoming effective in 2010. This presentation gives an outline of each role for hospital and commercial laboratories, and their pros & cons considering the current medical situation. Commercial laboratories have investigated how to utilize ICT systems for sharing test information between hospitals and our facilities. It would be very helpful to clarify issues for each hospital. We will develop and create new values for clinical laboratory testing services and forge mutually beneficial relationships with medical institutions. (Review).

  13. Creative Report Writing in Undergraduate Organic Chemistry Laboratory Inspires Nonmajors

    ERIC Educational Resources Information Center

    Henary, Maged; Owens, Eric A.; Tawney, Joseph G.

    2015-01-01

    Laboratory-based courses require students to compose reports based on the performed experiments to assess their overall understanding of the presented material; unfortunately, the sterile and formulated nature of the laboratory report disinterests most students. As a result, the outcome is a lower-quality product that does not reveal full…

  14. An expanded safeguards role for the DOE safeguards analytical laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, C.D.

    The New Brunswick Laboratory (NBL) is a Government-owned, Government-operated (GOGO) laboratory, with the mission to provide and maintain a nuclear material measurements and standards laboratory. The functional responsibilities of NBL serve as a technical response to the statutory responsibility of the Department of Energy (DOE) to assure the safeguarding of nuclear materials. In the execution of its mission, NBL carries out activities in six safeguards-related programs: measurement development, measurement evaluation, measurement services, safeguards assessment, reference and calibration materials and site-specific assistance. These program activities have been implemented by NBL for many years; their relative emphases, however, have been changed recentlymore » to address the priorities defined by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP). As a consequence, NBL operations are in the ''mainstream'' of domestic safeguards activities. This expanded safeguards role for NBL is discussed in this paper.« less

  15. Dental Laboratory Technology.

    ERIC Educational Resources Information Center

    Department of the Air Force, Washington, DC.

    The Air Force dental laboratory technology manual is designed as a basic training text as well as a reference source for dental laboratory technicians, a specialty occupation concerned with the design, fabrication, and repair of dental prostheses. Numerous instructive diagrams and photographs are included throughout the manual. The comprehensive…

  16. Student research laboratory for optical engineering

    NASA Astrophysics Data System (ADS)

    Tolstoba, Nadezhda D.; Saitgalina, Azaliya; Abdula, Polina; Butova, Daria

    2015-10-01

    Student research laboratory for optical engineering is comfortable place for student's scientific and educational activity. The main ideas of laboratory, process of creation of laboratory and also activity of laboratory are described in this article. At ITMO University in 2013-2014 were formed a lot of research laboratories. SNLO is a student research (scientific) laboratory formed by the Department of Applied and computer optics of the University ITMO (Information Technologies of Mechanics and Optics). Activity of laboratory is career guidance of entrants and students in the field of optical engineering. Student research laboratory for optical engineering is a place where student can work in the interesting and entertaining scientific atmosphere.

  17. Radiation control program at the Donald W. Douglas Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.L.; Willis, C.A.

    1972-01-01

    From third Health Physics Society midyear topical symposium; Los Angeles, California, USA (29 Jan 1969). See CONF-690103P1. The McDonnell Douglas Astronautics Company built and operates the Donald W. Douglas Laboratories at Richland, Washington. The 57,600 ft/sup 2/ facility is located on a 112 acre site. One wing of this multipurpose laboratory houses a radioisotope laboratory and a composite fuels laboratory. The problem of two years of operation of the hot laboratory and fuels research laboratory is discussed. To limit the accident potertial, a radioactive storage building is utilized. Materials are stored in sealed containers. The procedural control of the inventorymore » is illustrated. Disposal of high specific activity waste has posed some unique problems. Single swabs can contain more than 100 curies. An agreement with the State of Washington licensing agency and the waste disposal company permits shipment of waste. Radiation dosimetry for /sup 147/Pm and its associated 66 KeV gamma has been difficult. The angular dependence of the film dosimeter is shown where there is a distributed source causing an error of a factor 3 in the dosimetry. The solution to this problem is shown. (auth)« less

  18. Homogeneity study of a corn flour laboratory reference material candidate for inorganic analysis.

    PubMed

    Dos Santos, Ana Maria Pinto; Dos Santos, Liz Oliveira; Brandao, Geovani Cardoso; Leao, Danilo Junqueira; Bernedo, Alfredo Victor Bellido; Lopes, Ricardo Tadeu; Lemos, Valfredo Azevedo

    2015-07-01

    In this work, a homogeneity study of a corn flour reference material candidate for inorganic analysis is presented. Seven kilograms of corn flour were used to prepare the material, which was distributed among 100 bottles. The elements Ca, K, Mg, P, Zn, Cu, Fe, Mn and Mo were quantified by inductively coupled plasma optical emission spectrometry (ICP OES) after acid digestion procedure. The method accuracy was confirmed by analyzing the rice flour certified reference material, NIST 1568a. All results were evaluated by analysis of variance (ANOVA) and principal component analysis (PCA). In the study, a sample mass of 400mg was established as the minimum mass required for analysis, according to the PCA. The between-bottle test was performed by analyzing 9 bottles of the material. Subsamples of a single bottle were analyzed for the within-bottle test. No significant differences were observed for the results obtained through the application of both statistical methods. This fact demonstrates that the material is homogeneous for use as a laboratory reference material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Anthropometric measures in cardiovascular disease prediction: comparison of laboratory-based versus non-laboratory-based model.

    PubMed

    Dhana, Klodian; Ikram, M Arfan; Hofman, Albert; Franco, Oscar H; Kavousi, Maryam

    2015-03-01

    Body mass index (BMI) has been used to simplify cardiovascular risk prediction models by substituting total cholesterol and high-density lipoprotein cholesterol. In the elderly, the ability of BMI as a predictor of cardiovascular disease (CVD) declines. We aimed to find the most predictive anthropometric measure for CVD risk to construct a non-laboratory-based model and to compare it with the model including laboratory measurements. The study included 2675 women and 1902 men aged 55-79 years from the prospective population-based Rotterdam Study. We used Cox proportional hazard regression analysis to evaluate the association of BMI, waist circumference, waist-to-hip ratio and a body shape index (ABSI) with CVD, including coronary heart disease and stroke. The performance of the laboratory-based and non-laboratory-based models was evaluated by studying the discrimination, calibration, correlation and risk agreement. Among men, ABSI was the most informative measure associated with CVD, therefore ABSI was used to construct the non-laboratory-based model. Discrimination of the non-laboratory-based model was not different than laboratory-based model (c-statistic: 0.680-vs-0.683, p=0.71); both models were well calibrated (15.3% observed CVD risk vs 16.9% and 17.0% predicted CVD risks by the non-laboratory-based and laboratory-based models, respectively) and Spearman rank correlation and the agreement between non-laboratory-based and laboratory-based models were 0.89 and 91.7%, respectively. Among women, none of the anthropometric measures were independently associated with CVD. Among middle-aged and elderly where the ability of BMI to predict CVD declines, the non-laboratory-based model, based on ABSI, could predict CVD risk as accurately as the laboratory-based model among men. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Clinical laboratory accreditation in India.

    PubMed

    Handoo, Anil; Sood, Swaroop Krishan

    2012-06-01

    Test results from clinical laboratories must ensure accuracy, as these are crucial in several areas of health care. It is necessary that the laboratory implements quality assurance to achieve this goal. The implementation of quality should be audited by independent bodies,referred to as accreditation bodies. Accreditation is a third-party attestation by an authoritative body, which certifies that the applicant laboratory meets quality requirements of accreditation body and has demonstrated its competence to carry out specific tasks. Although in most of the countries,accreditation is mandatory, in India it is voluntary. The quality requirements are described in standards developed by many accreditation organizations. The internationally acceptable standard for clinical laboratories is ISO15189, which is based on ISO/IEC standard 17025. The accreditation body in India is the National Accreditation Board for Testing and Calibration Laboratories, which has signed Mutual Recognition Agreement with the regional cooperation the Asia Pacific Laboratory Accreditation Cooperation and with the apex cooperation the International Laboratory Accreditation Cooperation.

  1. [Safety in the Microbiology laboratory].

    PubMed

    Rojo-Molinero, Estrella; Alados, Juan Carlos; de la Pedrosa, Elia Gómez G; Leiva, José; Pérez, José L

    2015-01-01

    The normal activity in the laboratory of microbiology poses different risks - mainly biological - that can affect the health of their workers, visitors and the community. Routine health examinations (surveillance and prevention), individual awareness of self-protection, hazard identification and risk assessment of laboratory procedures, the adoption of appropriate containment measures, and the use of conscientious microbiological techniques allow laboratory to be a safe place, as records of laboratory-acquired infections and accidents show. Training and information are the cornerstones for designing a comprehensive safety plan for the laboratory. In this article, the basic concepts and the theoretical background on laboratory safety are reviewed, including the main legal regulations. Moreover, practical guidelines are presented for each laboratory to design its own safety plan according its own particular characteristics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  2. 42 CFR 493.1850 - Laboratory registry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Laboratory registry. 493.1850 Section 493.1850... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Enforcement Procedures § 493.1850 Laboratory... laboratories, including the following: (1) A list of laboratories that have been convicted, under Federal or...

  3. 42 CFR 493.1850 - Laboratory registry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Laboratory registry. 493.1850 Section 493.1850... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Enforcement Procedures § 493.1850 Laboratory... laboratories, including the following: (1) A list of laboratories that have been convicted, under Federal or...

  4. Medical Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of medical laboratory technician, lists technical competencies and competency builders for 18 units pertinent to the health technologies cluster in general and 8 units specific to the occupation of medical laboratory technician. The following…

  5. A comparative study for radiological decontamination of laboratory fume hood materials.

    PubMed

    Thomas, Elizabeth; Sweet, Lucas; MacFarlan, Paul; McNamara, Bruce; Kerschner, Harrison

    2012-08-01

    The efficacy for radiological decontamination of the laboratory standard fume hood as constructed of stainless steel, compared to that of powder-coated carbon steel is described. While the chemical inertness of powder-coated surfaces is good, faced with everyday abrasion, aggressive inorganic solutions and vapors, and penetrating organics commonly employed in government laboratory fume hoods, radiological decontamination of powder-coated steel surfaces was found to be similar to those made of stainless steel for easily solubilized or digestible radionuclides. Plutonium was difficult to remove from stainless steel and powder-coated surfaces, especially after prolonged contact times.

  6. Frederick National Laboratory Collaboration Success Stories | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory, that helps fine-tune nano

  7. Experience of maintaining laboratory educational website's sustainability

    PubMed Central

    Dimenstein, Izak B.

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular “niche of knowledge.” This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining “Grossing Technology in Surgical Pathology” (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal. PMID:27688928

  8. Experience of maintaining laboratory educational website's sustainability.

    PubMed

    Dimenstein, Izak B

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.

  9. 27 CFR 22.108 - Other laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Other laboratories. 22.108... Other laboratories. Laboratories, other than pathological laboratories specified in § 22.107, may... products resulting from the use of tax-free alcohol shall be confined strictly to the laboratory premises...

  10. 27 CFR 22.108 - Other laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Other laboratories. 22.108... Other laboratories. Laboratories, other than pathological laboratories specified in § 22.107, may... products resulting from the use of tax-free alcohol shall be confined strictly to the laboratory premises...

  11. Laboratory assessment of novel oral anticoagulants: method suitability and variability between coagulation laboratories.

    PubMed

    Helin, Tuukka A; Pakkanen, Anja; Lassila, Riitta; Joutsi-Korhonen, Lotta

    2013-05-01

    Laboratory tests to assess novel oral anticoagulants (NOACs) are under evaluation. Routine monitoring is unnecessary, but under special circumstances bioactivity assessment becomes crucial. We analyzed the effects of NOACs on coagulation tests and the availability of specific assays at different laboratories. Plasma samples spiked with dabigatran (Dabi; 120 and 300 μg/L) or rivaroxaban (Riva; 60, 146, and 305 μg/L) were sent to 115 and 38 European laboratories, respectively. International normalized ratio (INR) and activated partial thromboplastin time (APTT) were analyzed for all samples; thrombin time (TT) was analyzed specifically for Dabi and calibrated anti-activated factor X (anti-Xa) activity for Riva. We compared the results with patient samples. Results of Dabi samples were reported by 73 laboratories (13 INR and 9 APTT reagents) and Riva samples by 22 laboratories (5 INR and 4 APTT reagents). Both NOACs increased INR values; the increase was modest, albeit larger, for Dabi, with higher CV, especially with Quick (vs Owren) methods. Both NOACs dose-dependently prolonged the APTT. Again, the prolongation and CVs were larger for Dabi. The INR and APTT results varied reagent-dependently (P < 0.005), with less prolongation in patient samples. TT results (Dabi) and calibrated anti-Xa results (Riva) were reported by only 11 and 8 laboratories, respectively. The screening tests INR and APTT are suboptimal in assessing NOACs, having high reagent dependence and low sensitivity and specificity. They may provide information, if laboratories recognize their limitations. The variation will likely increase and the sensitivity differ in clinical samples. Specific assays measure NOACs accurately; however, few laboratories applied them. © 2013 American Association for Clinical Chemistry.

  12. Effects of Water Bottle Materials and Filtration on Bisphenol A Content in Laboratory Animal Drinking Water.

    PubMed

    Honeycutt, Jennifer A; Nguyen, Jenny Q T; Kentner, Amanda C; Brenhouse, Heather C

    2017-05-01

    Bisphenol A (BPA) is widely used in the polycarbonate plastics and epoxy resins that are found in laboratory animal husbandry materials including cages and water bottles. Concerns about BPA exposure in humans has led to investigations that suggest physiologic health risks including disruptions to the endocrine system and CNS. However, the extent of exposure of laboratory animals to BPA in drinking water is unclear. In the first study, we compared the amount of BPA contamination in water stored in plastic bottles used in research settings with that in glass bottles. The amount of BPA that leached into water was measured across several time points ranging from 24 to 96 h by using a BPA ELISA assay. The results showed that considerable amounts of BPA (approximately 0.15 μg/L) leached from polycarbonate bottles within the first 24 h of storage. In the second study, BPA levels were measured directly from water taken from filtered compared with unfiltered taps. We observed significantly higher BPA levels in water from unfiltered taps (approximately 0.40 μg/L) compared with taps with filtration systems (approximately 0.04 μg/L). Taken together, our findings indicate that the use of different types of water bottles and water sources, combined with the use of different laboratory products (food, caging systems) between laboratories, likely contribute to decreased rigor and reproducibility in research. We suggest that researchers consider reporting the types of water bottles used and that animal care facilities educate staff regarding the importance of flushing nonfiltered water taps when filling animal water bottles.

  13. Effects of Water Bottle Materials and Filtration on Bisphenol A Content in Laboratory Animal Drinking Water

    PubMed Central

    Honeycutt, Jennifer A; Nguyen, Jenny Q T; Kentner, Amanda C; Brenhouse, Heather C

    2017-01-01

    Bisphenol A (BPA) is widely used in the polycarbonate plastics and epoxy resins that are found in laboratory animal husbandry materials including cages and water bottles. Concerns about BPA exposure in humans has led to investigations that suggest physiologic health risks including disruptions to the endocrine system and CNS. However, the extent of exposure of laboratory animals to BPA in drinking water is unclear. In the first study, we compared the amount of BPA contamination in water stored in plastic bottles used in research settings with that in glass bottles. The amount of BPA that leached into water was measured across several time points ranging from 24 to 96 h by using a BPA ELISA assay. The results showed that considerable amounts of BPA (approximately 0.15 μg/L) leached from polycarbonate bottles within the first 24 h of storage. In the second study, BPA levels were measured directly from water taken from filtered compared with unfiltered taps. We observed significantly higher BPA levels in water from unfiltered taps (approximately 0.40 μg/L) compared with taps with filtration systems (approximately 0.04 μg/L). Taken together, our findings indicate that the use of different types of water bottles and water sources, combined with the use of different laboratory products (food, caging systems) between laboratories, likely contribute to decreased rigor and reproducibility in research. We suggest that researchers consider reporting the types of water bottles used and that animal care facilities educate staff regarding the importance of flushing nonfiltered water taps when filling animal water bottles. PMID:28535862

  14. Safety in the Chemical Laboratory. Chemical Laboratory Safety: The Academic Anomaly.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1990-01-01

    Discussed are accidents that occur in the laboratories of highly trained chemists. Four examples are provided to illustrate potential hazards that are often overlooked in chemistry laboratories, molten inorganic salt baths, the reaction of acetone and hydrogen peroxide, halogenated acetylene compounds, and the reaction of hydrogen peroxide and…

  15. Intelligent Performance Assessment of Students' Laboratory Work in a Virtual Electronic Laboratory Environment

    ERIC Educational Resources Information Center

    Achumba, I. E.; Azzi, D.; Dunn, V. L.; Chukwudebe, G. A.

    2013-01-01

    Laboratory work is critical in undergraduate engineering courses. It is used to integrate theory and practice. This demands that laboratory activities are synchronized with lectures to maximize their derivable learning outcomes, which are measurable through assessment. The typical high costs of the traditional engineering laboratory, which often…

  16. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  17. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  18. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... Laboratory date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  19. Dental Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of dental laboratory technician, lists technical competencies and competency builders for 13 units pertinent to the health technologies cluster in general and 8 units to the occupation of dental laboratory technician. The following skill areas…

  20. Laboratory for Oceans

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A review is made of the activities of the Laboratory for Oceans. The staff and the research activities are nearly evenly divided between engineering and scientific endeavors. The Laboratory contributes engineering design skills to aircraft and ground based experiments in terrestrial and atmospheric sciences in cooperation with scientists from labs in Earth sciences.

  1. Laboratory Reference Spectroscopy of Icy Satellite Candidate Surface Materials (Invited)

    NASA Astrophysics Data System (ADS)

    Dalton, J. B.; Jamieson, C. S.; Shirley, J. H.; Pitman, K. M.; Kariya, M.; Crandall, P.

    2013-12-01

    The bulk of our knowledge of icy satellite composition continues to be derived from ultraviolet, visible and infrared remote sensing observations. Interpretation of remote sensing observations relies on availability of laboratory reference spectra of candidate surface materials. These are compared directly to observations, or incorporated into models to generate synthetic spectra representing mixtures of the candidate materials. Spectral measurements for the study of icy satellites must be taken under appropriate conditions (cf. Dalton, 2010; also http://mos.seti.org/icyworldspectra.html for a database of compounds) of temperature (typically 50 to 150 K), pressure (from 10-9 to 10-3 Torr), viewing geometry, (i.e., reflectance), and optical depth (must manifest near infrared bands but avoid saturation in the mid-infrared fundamentals). The Planetary Ice Characterization Laboratory (PICL) is being developed at JPL to provide robust reference spectra for icy satellite surface materials. These include sulfate hydrates, hydrated and hydroxylated minerals, and both organic and inorganic volatile ices. Spectral measurements are performed using an Analytical Spectral Devices FR3 portable grating spectrometer from .35 to 2.5 microns, and a Thermo-Nicolet 6500 Fourier-Transform InfraRed (FTIR) spectrometer from 1.25 to 20 microns. These are interfaced with the Basic Extraterrestrial Environment Simulation Testbed (BEEST), a vacuum chamber capable of pressures below 10-9 Torr with a closed loop liquid helium cryostat with custom heating element capable of temperatures from 30-800 Kelvins. To generate optical constants (real and imaginary index of refraction) for use in nonlinear mixing models (i.e., Hapke, 1981 and Shkuratov, 1999), samples are ground and sieved to six different size fractions or deposited at varying rates to provide a range of grain sizes for optical constants calculations based on subtractive Kramers-Kronig combined with Hapke forward modeling (Dalton and

  2. An Innovative Multimedia Approach to Laboratory Safety

    NASA Technical Reports Server (NTRS)

    Anderson, M. B.; Constant, K. P.

    1996-01-01

    A new approach for teaching safe laboratory practices has been developed for materials science laboratories at Iowa State university. Students are required to complete a computerized safety tutorial and pass an exam before working in the laboratory. The safety tutorial includes sections on chemical, electrical, radiation, and high temperature safety. The tutorial makes use of a variety of interactions, including 'assembly' interactions where a student is asked to drag and drop items with the mouse (either labels or pictures) to an appropriate place on the screen (sometimes in a specific order). This is extremely useful for demonstrating safe lab practices and disaster scenarios. Built into the software is a record tracking scheme so that a professor can access a file that records which students have completed the tutorial and their scores on the exam. This paper will describe the development and assessment of the safety tutorials.

  3. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 100 publications are summarized. These publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials are grouped into five general subject areas for easy reference: (1) the software engineering laboratory; (2) software tools; (3) models and measures; (4) technology evaluations; and (5) data collection. An index further classifies these documents by specific topic.

  4. Environmental Response Laboratory Network (ERLN) Laboratory Requirements

    EPA Pesticide Factsheets

    The Environmental Response Laboratory Network requires its member labs follow specified quality systems, sample management, data reporting, and general, in order to ensure consistent analytical data of known and documented quality.

  5. New Brunswick Laboratory progress report for the period October 1988--September 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The mission of the New Brunswick Laboratory (NBL) of the US Department of Energy (DOE) is to provide and maintain a nuclear material measurements and standards laboratory as a technical response to DOE's statutory responsibility to assure the safeguarding of nuclear materials. This report summarizes the mission-fulfilling activities of NBL for the period October 1988 through September 1989.

  6. Practical Laboratory Planning.

    ERIC Educational Resources Information Center

    Ferguson, W. R.

    This book is intended as a guide for people who are planning chemistry and physics research laboratories. It deals with the importance of effective communication between client and architect, the value of preliminary planning, and the role of the project officer. It also discusses the size and layout of individual laboratories, the design of…

  7. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 3: Laboratory descriptions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.

  8. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  9. Factors influencing biosafety level and LAI among the staff of medical laboratories.

    PubMed

    Kozajda, Anna; Bródka, Karolina; Szadkowska-Stańczyk, Irena

    2013-01-01

    The aim of the study was to assess the biological risks of medical laboratory employees with particular focus on laboratory acquired infection (LAI), activities having the greatest risk, accidents with biological material, post exposure procedure, preventive measures and workers' knowledge about biological exposure. The study involved 9 laboratories. A questionnaire survey was attended by 123 employees and 9 heads of these units with the use of two questionnaires for laboratory workers and the managers. 32.5% of the respondents (40 persons) had an accident at least once. Needlestick or a broken glass injury covered 18.7% respondents (23 persons), while splashing the skin, mucous membranes or conjunctivae related to 22.8% (28 persons). Among the employees who had an accident, only 45% of the respondents (18 persons) reported this to the manager. Microbes dominant in the biological material were known only to 57 respondents (46.3%), less than half could correctly give an example of a disease (57 persons, 46.3%). More than half of the respondents admitted that they do not know all of the possible routes of infection while working in the laboratory (68 persons, 55.3%). In the study population, a high incidence of accidents was observed, usually during blood sampling and transfer of biological material. Condition of the workers' equipment with personal protective measures and laboratory facilities in devices to reduce the risk of infection and procedures for handling the potentially infectious material should be considered as insufficient. Lack of basic knowledge of the employees about biohazards at workplaces was shown.

  10. Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop ...ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory...Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section 5a. CONTRACT NUMBER

  11. Oak Ridge National Laboratory Core Competencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competencymore » represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.« less

  12. Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…

  13. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  14. Laboratory Assessment of Potential Impacts to Dungeness Crabs from Disposal of Dredged Material from the Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrinec, John; Pearson, Walter H.; Kohn, Nancy P.

    2007-05-07

    Dredging of the Columbia River navigation channel has raised concerns about dredging-related impacts on Dungeness crabs (Cancer magister) in the estuary, mouth of the estuary, and nearshore ocean areas adjacent to the Columbia River. The Portland District, U.S. Army Corps of Engineers engaged the Marine Sciences Laboratory (MSL) of the U.S. Department of Energy’s Pacific Northwest National Laboratory to review the state of knowledge and conduct studies concerning impacts on Dungeness crabs resulting from disposal during the Columbia River Channel Improvement Project and annual maintenance dredging in the mouth of the Columbia River. The present study concerns potential effects onmore » Dungeness crabs from dredged material disposal specific to the mouth of the Columbia River.« less

  15. 76 FR 4710 - Accreditation and Approval of Laboratory Service, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Laboratory Service, Inc., as a Commercial Gauger and Laboratory AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: Notice of accreditation and approval of Laboratory Service, Inc., as a commercial gauger and laboratory. SUMMARY: Notice is hereby given that, pursuant to 19 CFR 151.12...

  16. Biosafety and biosecurity in veterinary laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Melissa R.; Astuto-Gribble, Lisa M.; Brass, Van Hildren

    Here, with recent outbreaks of MERS-Cov, Anthrax, Nipah, and Highly Pathogenic Avian Influenza, much emphasis has been placed on rapid identification of infectious agents globally. As a result, laboratories are building capacity, conducting more advanced and sophisticated research, increasing laboratory staff, and establishing collections of dangerous pathogens in an attempt to reduce the impact of infectious disease outbreaks and characterize disease causing agents. With this expansion, the global laboratory community has started to focus on laboratory biosafety and biosecurity to prevent the accidental and/or intent ional release o f these agents. Laboratory biosafety and biosecurity systems are used around themore » world to help mit igate the risks posed by dangerous pathogens in the laboratory. Veterinary laboratories carry unique responsibilities to workers and communities to safely and securely handle disease causing microorganisms. Many microorganisms studied in veterinary laboratories not only infect animals, but also have the potential to infect humans. This paper will discuss the fundamentals of laboratory biosafety and biosecurity.« less

  17. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  18. Development of the Design Laboratory.

    ERIC Educational Resources Information Center

    Silla, Harry

    1986-01-01

    Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)

  19. Laboratory evaluation of polychlorinated biphenyls encapsulation methods

    EPA Science Inventory

    Effectiveness and limitations of the encapsulation method for reducing polychlorinated biphenyls (PCBs) concentrations in indoor air and contaminated surface have been evaluated in the laboratory study. Ten coating materials such as epoxy and polyurethane coatings, latex paint, a...

  20. Monitoring laboratory data across manufacturers and laboratories--A prerequisite to make "Big Data" work.

    PubMed

    Goossens, Kenneth; Van Uytfanghe, Katleen; Twomey, Patrick J; Thienpont, Linda M

    2015-05-20

    "The Percentiler" project provides quasi real-time access to patient medians across laboratories and manufacturers. This data can serve as "clearinghouse" for electronic health record applications, e.g., use of laboratory data for global health-care research. Participants send their daily outpatient medians to the Percentiler application. After 6 to 8weeks, the laboratory receives its login information, which gives access to the user interface. Data is assessed by peer group, i.e., 10 or more laboratories using the same test system. Participation is free of charge. Participation is global with, to date, >120 laboratories and >250 instruments. Up to now, several reports have been produced that address i) the general features of the project, ii) peer group observations; iii) synergisms between "The Percentiler" and dedicated external quality assessment surveys. Reasons for long-term instability and bias (calibration- or lot-effects) have been observed for the individual laboratory and manufacturers. "The Percentiler" project has the potential to build a continuous, global evidence base on in vitro diagnostic test comparability and stability. As such, it may be beneficial for all stakeholders and, in particular, the patient. The medical laboratory is empowered for contributing to the development, implementation, and management of global health-care policies. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Maui Space Surveillance System Satellite Categorization Laboratory

    NASA Astrophysics Data System (ADS)

    Deiotte, R.; Guyote, M.; Kelecy, T.; Hall, D.; Africano, J.; Kervin, P.

    The MSSS satellite categorization laboratory is a fusion of robotics and digital imaging processes that aims to decompose satellite photometric characteristics and behavior in a controlled setting. By combining a robot, light source and camera to acquire non-resolved images of a model satellite, detailed photometric analyses can be performed to extract relevant information about shape features, elemental makeup, and ultimately attitude and function. Using the laboratory setting a detailed analysis can be done on any type of material or design and the results cataloged in a database that will facilitate object identification by "curve-fitting" individual elements in the basis set to observational data that might otherwise be unidentifiable. Currently the laboratory has created, an ST-Robotics five degree of freedom robotic arm, collimated light source and non-focused Apogee camera have all been integrated into a MATLAB based software package that facilitates automatic data acquisition and analysis. Efforts to date have been aimed at construction of the lab as well as validation and verification of simple geometric objects. Simple tests on spheres, cubes and simple satellites show promising results that could lead to a much better understanding of non-resolvable space object characteristics. This paper presents a description of the laboratory configuration and validation test results with emphasis on the non-resolved photometric characteristics for a variety of object shapes, spin dynamics and orientations. The future vision, utility and benefits of the laboratory to the SSA community as a whole are also discussed.

  2. Field Verification Program (Aquatic Disposal): Comparison of Field and Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material

    DTIC Science & Technology

    1988-05-01

    include poly- chlorinated biphenyls (PCBs) and related chlorinated pesticides of similar polarity in addition to the petroleum hydrocarbons . The...Ui It tILL (JV: FIELD VERIFICATION PROGRAM (AQUATIC DISPOSAL).’Wh TECHNICAL REPORT D-87-6 COMPARISON OF FIELD AND LABORATORY BIOACCUMULATION OF...Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material 12 PERSONAL AUTHOR(S) Lake, James L.; Galloway

  3. Offgassing Characterization of the Columbus Laboratory Module

    NASA Technical Reports Server (NTRS)

    Rampini, riccardo; Lobascio, Cesare; Perry, Jay L.; Hinderer, Stephan

    2005-01-01

    Trace gaseous contamination in the cabin environment is a major concern for manned spacecraft, especially those designed for long duration missions, such as the International Space Station (ISS). During the design phase, predicting the European-built Columbus laboratory module s contribution to the ISS s overall trace contaminant load relied on "trace gas budgeting" based on material level and assembled article tests data. In support of the Qualification Review, a final offgassing test has been performed on the complete Columbus module to gain cumulative system offgassing data. Comparison between the results of the predicted offgassing load based on the budgeted material/assembled article-level offgassing rates and the module-level offgassing test is presented. The Columbus module offgassing test results are also compared to results from similar tests conducted for Node 1, U.S. Laboratory, and Airlock modules.

  4. 42 CFR 493.1403 - Condition: Laboratories performing moderate complexity testing; laboratory director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing moderate complexity testing; laboratory director. 493.1403 Section 493.1403 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  5. 42 CFR 493.1403 - Condition: Laboratories performing moderate complexity testing; laboratory director.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing moderate complexity testing; laboratory director. 493.1403 Section 493.1403 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  6. A Laboratory Exercise with Related Rates.

    ERIC Educational Resources Information Center

    Sworder, Steven C.

    A laboratory experiment, based on a simple electric circuit that can be used to demonstrate the existence of real-world "related rates" problems, is outlined and an equation for voltage across the capacitor terminals during discharge is derived. The necessary materials, setup methods, and experimental problems are described. A student laboratory…

  7. Laboratory hematology in the history of Clinical Chemistry and Laboratory Medicine.

    PubMed

    Hoffmann, Johannes J M L

    2013-01-01

    For the occasion of the 50th anniversary of the journal Clinical Chemistry and Laboratory Medicine (CCLM), an historic overview of papers that the journal has published in the field of laboratory hematology (LH) is presented. All past volumes of CCLM were screened for papers on LH and these were categorized. Bibliographic data of these papers were also analyzed. CCLM published in total 387 LH papers. The absolute number of LH papers published annually showed a significant increase over the years since 1985. Also the share of LH papers demonstrated a steady increase (overall mean 5%, but mean 8% over the past 4 years). The most frequent category was coagulation and fibrinolysis (23.5%). Authors from Germany contributed the most LH papers to the journal (22.7%), followed by the Netherlands and Italy (16.3 and 13.2%, respectively). Recent citation data indicated that other publications cited LH review papers much more frequently than other types of papers. The history of the journal reflects the emergence and development of laboratory hematology as a separate discipline of laboratory medicine.

  8. Laboratory errors and patient safety.

    PubMed

    Miligy, Dawlat A

    2015-01-01

    Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that

  9. The State Public Health Laboratory System.

    PubMed

    Inhorn, Stanley L; Astles, J Rex; Gradus, Stephen; Malmberg, Veronica; Snippes, Paula M; Wilcke, Burton W; White, Vanessa A

    2010-01-01

    This article describes the development since 2000 of the State Public Health Laboratory System in the United States. These state systems collectively are related to several other recent public health laboratory (PHL) initiatives. The first is the Core Functions and Capabilities of State Public Health Laboratories, a white paper that defined the basic responsibilities of the state PHL. Another is the Centers for Disease Control and Prevention National Laboratory System (NLS) initiative, the goal of which is to promote public-private collaboration to assure quality laboratory services and public health surveillance. To enhance the realization of the NLS, the Association of Public Health Laboratories (APHL) launched in 2004 a State Public Health Laboratory System Improvement Program. In the same year, APHL developed a Comprehensive Laboratory Services Survey, a tool to measure improvement through the decade to assure that essential PHL services are provided.

  10. Internal audit in a microbiology laboratory.

    PubMed Central

    Mifsud, A J; Shafi, M S

    1995-01-01

    AIM--To set up a programme of internal laboratory audit in a medical microbiology laboratory. METHODS--A model of laboratory based process audit is described. Laboratory activities were examined in turn by specimen type. Standards were set using laboratory standard operating procedures; practice was observed using a purpose designed questionnaire and the data were analysed by computer; performance was assessed at laboratory audit meetings; and the audit circle was closed by re-auditing topics after an interval. RESULTS--Improvements in performance scores (objective measures) and in staff morale (subjective impression) were observed. CONCLUSIONS--This model of process audit could be applied, with amendments to take local practice into account, in any microbiology laboratory. PMID:7665701

  11. Improving quality management systems of laboratories in developing countries: an innovative training approach to accelerate laboratory accreditation.

    PubMed

    Yao, Katy; McKinney, Barbara; Murphy, Anna; Rotz, Phil; Wafula, Winnie; Sendagire, Hakim; Okui, Scolastica; Nkengasong, John N

    2010-09-01

    The Strengthening Laboratory Management Toward Accreditation (SLMTA) program was developed to promote immediate, measurable improvement in laboratories of developing countries. The laboratory management framework, a tool that prescribes managerial job tasks, forms the basis of the hands-on, activity-based curriculum. SLMTA is implemented through multiple workshops with intervening site visits to support improvement projects. To evaluate the effectiveness of SLMTA, the laboratory accreditation checklist was developed and subsequently adopted by the World Health Organization Regional Office for Africa (WHO AFRO). The SLMTA program and the implementation model were validated through a pilot in Uganda. SLMTA yielded observable, measurable results in the laboratories and improved patient flow and turnaround time in a laboratory simulation. The laboratory staff members were empowered to improve their own laboratories by using existing resources, communicate with clinicians and hospital administrators, and advocate for system strengthening. The SLMTA program supports laboratories by improving management and building preparedness for accreditation.

  12. Biomedical laboratory science education: standardising teaching content in resource-limited countries.

    PubMed

    Arneson, Wendy; Robinson, Cathy; Nyary, Bryan

    2013-01-01

    There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA). Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS) lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  13. Introductory Archaeology: The Inexpensive Laboratory.

    ERIC Educational Resources Information Center

    Rice, Patricia C.

    1990-01-01

    Describes a number of student-focused laboratory exercises that are inexpensive, yet show the scientific character of archaeology. Describes the environmental laboratory exercise which includes the following analysis topics: (1) pollen; (2) earth core; (3) microfaunal; and (4) microwear. Describes the ceramic laboratory which involves…

  14. Chemistry laboratory safety manual available

    NASA Technical Reports Server (NTRS)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  15. Undergraduate Organic Chemistry Laboratory Safety

    NASA Astrophysics Data System (ADS)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  16. LANGUAGE ARTS LABORATORY.

    ERIC Educational Resources Information Center

    ROBERTS, HERMESE E.

    THE LANGUAGE ARTS LABORATORY WAS ESTABLISHED TO IMPROVE READING ABILITY AND OTHER LANGUAGE ARTS SKILLS AS AN AID IN THE PREVENTION OF DROPOUTS. THE LABORATORY WAS OPERATED ON A SUMMER SCHEDULE WITH A FLEXIBLE PROGRAM OF FROM 45 MINUTES TO 2 1/2 HOURS DAILY. ALL PUPILS WERE 14 YEARS OF AGE OR OLDER, AND EXPRESSED A DESIRE TO IMPROVE THEIR READING…

  17. Superfund Contract Laboratory Program

    EPA Pesticide Factsheets

    The Contract Laboratory Program (CLP) is a national network of EPA personnel, commercial laboratories, and support contractors whose primary mission is to provide data of known and documented quality to the Superfund program.

  18. Laboratory automation: total and subtotal.

    PubMed

    Hawker, Charles D

    2007-12-01

    Worldwide, perhaps 2000 or more clinical laboratories have implemented some form of laboratory automation, either a modular automation system, such as for front-end processing, or a total laboratory automation system. This article provides descriptions and examples of these various types of automation. It also presents an outline of how a clinical laboratory that is contemplating automation should approach its decision and the steps it should follow to ensure a successful implementation. Finally, the role of standards in automation is reviewed.

  19. The Gran Sasso Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Coccia, Eugenio

    2012-12-01

    Thirty years have passed since, thanks to Antonino Zichichi, the project for the largest underground laboratory in the world was conceived and brought to the attention of Italian authorities. The Gran Sasso National Laboratories of INFN have become a scientific reality of worldwide pre-eminence, in an expanding area of research where elementary particle physics, astrophysics and cosmology overlap. I briefly present here the main scientific challenges of underground laboratories and the activity and future perspectives of the INFN Gran Sasso Laboratory.

  20. Laboratory medicine: challenges and opportunities.

    PubMed

    Bossuyt, Xavier; Verweire, Kurt; Blanckaert, Norbert

    2007-10-01

    Technologic innovations have substantially improved the productivity of clinical laboratories, but the services provided by clinical laboratories are increasingly becoming commoditized. We reflect on how current developments may affect the future of laboratory medicine and how to deal with these changes. We argue that to be prepared for the future, clinical laboratories should enhance efficiency and reduce costs by forming alliances and networks; consolidating, integrating, or outsourcing; and more importantly, create additional value by providing knowledge services related to in vitro diagnostics.

  1. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-06-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual student contributions to collaborative group/teamwork throughout the processes of experimental design, data analysis, display and communication of their outcomes in relation to their research question(s). Traditional assessments in the form of laboratory notebooks or experimental reports provide limited insight into the processes of collaborative inquiry-based activities. A wiki environment offers a collaborative domain that can potentially support collaborative laboratory processes and scientific record keeping. In this study, the effectiveness of the wiki in supporting laboratory learning and assessment has been evaluated through analysis of the content and histories for three consenting, participating groups of students. The conversational framework has been applied to map the relationships between the instructor, tutor, students and laboratory activities. Analytics that have been applied to the wiki platform include: character counts, page views, edits, timelines and the extent and nature of the contribution by each student to the wiki. Student perceptions of both the role and the impact of the wiki on their experiences and processes have also been collected. Evidence has emerged from this study that the wiki environment has enhanced co-construction of understanding of both the experimental process and subsequent communication of outcomes and data. A number of features are identified to support success in the use of the wiki platform for laboratory notebooks.

  2. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  3. SYSTEMATISCHER AUSSPRACHEUNTERRICHT IM SPRACHLABORATORIUM (SYSTEMATIC PRONUNCIATION INSTRUCTION IN THE LANGUAGE LABORATORY).

    ERIC Educational Resources Information Center

    BOEDDINGHAUS, WALTER

    THE APPARENT DISAPPOINTMENT AND SLACKENING OF ENTHUSIASTIC INTEREST IN LANGUAGE LABORATORY INSTRUCTION IS MOST PROBABLY NOT DUE TO A FUNDAMENTAL LACK OF EFFECTIVENESS, BUT TO METHODOLOGICAL AND ORGANIZATIONAL PROBLEMS YET TO BE SOLVED. MOST IMPORTANT, THE RESTRICTIVE DEPENDENCE OF LABORATORY MATERIAL ON CLASSROOM LESSONS MUST BE ABANDONED. ONLY…

  4. An Evaluation of the Instruction Carried out with Printed Laboratory Materials Designed in Accordance with 5E Model: Reflection of Light and Image on a Plane Mirror

    ERIC Educational Resources Information Center

    Ayvaci, Hakan Sevki; Yildiz, Mehmet; Bakirci, Hasan

    2015-01-01

    This study employed a print laboratory material based on 5E model of constructivist learning approach to teach reflection of light and Image on a Plane Mirror. The effect of the instruction which conducted with the designed print laboratory material on academic achievements of prospective science and technology teachers and their attitudes towards…

  5. The Los Alamos universe: Using multimedia to promote laboratory capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kindel, J.

    2000-03-01

    This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists ofmore » three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.« less

  6. [Errors in laboratory daily practice].

    PubMed

    Larrose, C; Le Carrer, D

    2007-01-01

    Legislation set by GBEA (Guide de bonne exécution des analyses) requires that, before performing analysis, the laboratory directors have to check both the nature of the samples and the patients identity. The data processing of requisition forms, which identifies key errors, was established in 2000 and in 2002 by the specialized biochemistry laboratory, also with the contribution of the reception centre for biological samples. The laboratories follow a strict criteria of defining acceptability as a starting point for the reception to then check requisition forms and biological samples. All errors are logged into the laboratory database and analysis report are sent to the care unit specifying the problems and the consequences they have on the analysis. The data is then assessed by the laboratory directors to produce monthly or annual statistical reports. This indicates the number of errors, which are then indexed to patient files to reveal the specific problem areas, therefore allowing the laboratory directors to teach the nurses and enable corrective action.

  7. Laboratory quality improvement in Tanzania.

    PubMed

    Andiric, Linda R; Massambu, Charles G

    2015-04-01

    The article describes the implementation and improvement in the first groups of medical laboratories in Tanzania selected to participate in the training program on Strengthening Laboratory Management Toward Accreditation (SLMTA). As in many other African nations, the selected improvement plan consisted of formalized hands-on training (SLMTA) that teaches the tasks and skills of laboratory management and provides the tools for implementation of best laboratory practice. Implementation of the improvements learned during training was verified before and after SLMTA with the World Health Organization African Region Stepwise Laboratory Improvement Process Towards Accreditation checklist. During a 4-year period, the selected laboratories described in this article demonstrated improvement with a range of 2% to 203% (cohort I) and 12% to 243% (cohort II) over baseline scores. The article describes the progress made in Tanzania's first cohorts, the obstacles encountered, and the lessons learned during the pilot and subsequent implementations. Copyright© by the American Society for Clinical Pathology.

  8. Cost analysis in the toxicology laboratory.

    PubMed

    Travers, E M

    1990-09-01

    The process of determining laboratory sectional and departmental costs and test costs for instrument-generated and manually generated reportable results for toxicology laboratories has been outlined in this article. It is hoped that the basic principles outlined in the preceding text will clarify and elucidate one of the most important areas needed for laboratory fiscal integrity and its survival in these difficult times for health care providers. The following general principles derived from this article are helpful aids for managers of toxicology laboratories. 1. To manage a cost-effective, efficient toxicology laboratory, several factors must be considered: the laboratory's instrument configuration, test turnaround time needs, the test menu offered, the analytic methods used, the cost of labor based on time expended and the experience and educational level of the staff, and logistics that determine specimen delivery time and costs. 2. There is a wide variation in costs for toxicologic methods, which requires that an analysis of capital (equipment) purchase and operational (test performance) costs be performed to avoid waste, purchase wisely, and determine which tests consume the majority of the laboratory's resources. 3. Toxicologic analysis is composed of many complex steps. Each step must be individually cost-accounted. Screening test results must be confirmed, and the cost for both steps must be included in the cost per reportable result. 4. Total costs will vary in the same laboratory and between laboratories based on differences in salaries paid to technical staff, differences in reagent/supply costs, the number of technical staff needed to operate the analyzer or perform the method, and the inefficient use of highly paid staff to operate the analyzer or perform the method. 5. Since direct test costs vary directly with the type and number of analyzers or methods and are dependent on the operational mode designed by the manufacturer, laboratory managers

  9. Good laboratory practices guarantee biosafety in the Sierra Leone-China friendship biosafety laboratory.

    PubMed

    Wang, Qin; Zhou, Wei-Min; Zhang, Yong; Wang, Huan-Yu; Du, Hai-Jun; Nie, Kai; Song, Jing-Dong; Xiao, Kang; Lei, Wen-Wen; Guo, Jian-Qiang; Wei, He-Jiang; Cai, Kun; Wang, Yan-Hai; Wu, Jiang; Kamara, Gerard; Kamara, Idrissa; Wei, Qiang; Liang, Mi-Fang; Wu, Gui-Zhen; Dong, Xiao-Ping

    2016-06-23

    The outbreak of Ebola virus disease (EVD) in West Africa between 2014 and 2015 was the largest EDV epidemic since the identification of Ebola virus (EBOV) in 1976, and the countries most strongly affected were Sierra Leone, Guinea, and Liberia. The Sierra Leone-China Friendship Biological Safety Laboratory (SLE-CHN Biosafety Lab), a fixed Biosafety Level 3 laboratory in the capital city of Sierra Leone, was established by the Chinese government and has been active in EBOV detection since 11 March 2015. Complete management and program documents were created for the SLE-CHN Biosafety Lab, and it was divided into four zones (the green, yellow, brown, and red zones) based on the risk assessment. Different types of safe and appropriate personnel protection equipment (PPE) are used in different zones of the laboratory, and it fully meets the Biosafety Level 3 laboratory standards of the World Health Organization. Good preparedness, comprehensive risk assessment and operation documents, appropriate PPE, effective monitoring and intensive training, together with well-designed and reasonable laboratory sectioning are essential for guaranteeing biosafety.

  10. 27 CFR 22.107 - Pathological laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Pathological laboratories... Pathological laboratories. (a) Pathological laboratories, not operated by a hospital or sanitarium, may... sanitariums. If a pathological laboratory does not exclusively conduct analyses or tests for hospitals or...

  11. 27 CFR 22.107 - Pathological laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Pathological laboratories... Pathological laboratories. (a) Pathological laboratories, not operated by a hospital or sanitarium, may... sanitariums. If a pathological laboratory does not exclusively conduct analyses or tests for hospitals or...

  12. 19 CFR 151.12 - Accreditation of commercial laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., published by such organizations as the American Society for Testing and Materials (ASTM) and the American... American Society for Testing and Materials (ASTM) E548 (Standard Guide for General Criteria Used for... bachelor's degree in science or have two years related experience in an analytical laboratory. (g) How will...

  13. 19 CFR 151.12 - Accreditation of commercial laboratories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., published by such organizations as the American Society for Testing and Materials (ASTM) and the American... American Society for Testing and Materials (ASTM) E548 (Standard Guide for General Criteria Used for... bachelor's degree in science or have two years related experience in an analytical laboratory. (g) How will...

  14. 19 CFR 151.12 - Accreditation of commercial laboratories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., published by such organizations as the American Society for Testing and Materials (ASTM) and the American... American Society for Testing and Materials (ASTM) E548 (Standard Guide for General Criteria Used for... bachelor's degree in science or have two years related experience in an analytical laboratory. (g) How will...

  15. 19 CFR 151.12 - Accreditation of commercial laboratories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., published by such organizations as the American Society for Testing and Materials (ASTM) and the American... American Society for Testing and Materials (ASTM) E548 (Standard Guide for General Criteria Used for... bachelor's degree in science or have two years related experience in an analytical laboratory. (g) How will...

  16. 19 CFR 151.12 - Accreditation of commercial laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., published by such organizations as the American Society for Testing and Materials (ASTM) and the American... American Society for Testing and Materials (ASTM) E548 (Standard Guide for General Criteria Used for... bachelor's degree in science or have two years related experience in an analytical laboratory. (g) How will...

  17. The Pitfalls of Companion Diagnostics: Evaluation of Discordant EGFR Mutation Results from a Clinical Laboratory and a Central Laboratory.

    PubMed

    Turner, Scott A; Peterson, Jason D; Pettus, Jason R; de Abreu, Francine B; Amos, Christopher I; Dragnev, Konstantin H; Tsongalis, Gregory J

    2016-05-01

    Accurate identification of somatic mutations in formalin-fixed, paraffin-embedded tumor tissue is required for enrollment into clinical trials for many novel targeted therapeutics, including trials requiring EGFR mutation status in non-small-cell lung carcinomas. Central clinical trial laboratories contracted to perform this analysis typically rely on US Food and Drug Administration-approved targeted assays to identify these mutations. We present two cases in which central laboratories inaccurately reported EGFR mutation status because of improper identification and isolation of tumor material and failure to accurately report assay limitations, resulting in enrollment denial. Such cases highlight the need for increased awareness by clinical trials of the limitation of these US Food and Drug Administration-approved assays and the necessity for a mechanism to reevaluate discordant results by alternative laboratory-developed procedures, including clinical next-generation sequencing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  18. Preparation of Unconsolidated Sands for Microscopy Laboratory Exercises.

    ERIC Educational Resources Information Center

    Cameron, Barry; Jones, J. Richard

    1988-01-01

    Describes a technique of impregnating small amounts of sandy sediment in a quick curing resin for microscopic examination. Details the preparation of materials. Suggests laboratory exercises based on this preparation. (CW)

  19. 42 CFR 493.645 - Additional fee(s) applicable to approved State laboratory programs and laboratories issued a...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS General Administration § 493.645 Additional fee(s) applicable to approved State laboratory programs and... laboratory programs and laboratories issued a certificate of accreditation, certificate of waiver, or...

  20. New Brunswick Laboratory. Progress report, October 1995--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL`s interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group,more » Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL`s status among DOE laboratories and facilities. Noteworthy are the facts that NBL`s small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide.« less

  1. Challenges in small screening laboratories: implementing an on-demand laboratory information management system.

    PubMed

    Lemmon, Vance P; Jia, Yuanyuan; Shi, Yan; Holbrook, S Douglas; Bixby, John L; Buchser, William

    2011-11-01

    The Miami Project to Cure Paralysis, part of the University of Miami Miller School of Medicine, includes a laboratory devoted to High Content Analysis (HCA) of neurons. The goal of the laboratory is to uncover signaling pathways, genes, compounds, or drugs that can be used to promote nerve growth. HCA permits the quantification of neuronal morphology, including the lengths and numbers of axons. HCA of various libraries on primary neurons requires a team-based approach, a variety of process steps and complex manipulations of cells and libraries to obtain meaningful results. HCA itself produces vast amounts of information including images, well-based data and cell-based phenotypic measures. Documenting and integrating the experimental workflows, library data and extensive experimental results is challenging. For academic laboratories generating large data sets from experiments involving thousands of perturbagens, a Laboratory Information Management System (LIMS) is the data tracking solution of choice. With both productivity and efficiency as driving rationales, the Miami Project has equipped its HCA laboratory with an On Demand or Software As A Service (SaaS) LIMS to ensure the quality of its experiments and workflows. The article discusses how the system was selected and integrated into the laboratory. The advantages of a SaaS based LIMS over a client-server based system are described. © 2011 Bentham Science Publishers

  2. 7 CFR 996.21 - USDA laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false USDA laboratory. 996.21 Section 996.21 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.21 USDA laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing...

  3. 7 CFR 996.21 - USDA laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false USDA laboratory. 996.21 Section 996.21 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.21 USDA laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing...

  4. 7 CFR 996.21 - USDA laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false USDA laboratory. 996.21 Section 996.21 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.21 USDA laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing...

  5. 7 CFR 996.21 - USDA laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false USDA laboratory. 996.21 Section 996.21 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.21 USDA laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing...

  6. 30 CFR 795.10 - Qualified laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Qualified laboratories. 795.10 Section 795.10... laboratories. (a) Basic qualifications. To be designated a qualified laboratory, a firm shall demonstrate that... necessary field samples and making hydrologic field measurements and analytical laboratory determinations by...

  7. 7 CFR 802.1 - Qualified laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Qualified laboratories. 802.1 Section 802.1... REQUIREMENTS FOR GRAIN WEIGHING EQUIPMENT AND RELATED GRAIN HANDLING SYSTEMS § 802.1 Qualified laboratories. (a) Metrology laboratories. (1) Any State metrology laboratory currently approved by the NBS ongoing...

  8. 21 CFR 606.140 - Laboratory controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Laboratory controls. 606.140 Section 606.140 Food... CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Laboratory Controls § 606.140 Laboratory controls. Laboratory control procedures shall include: (a) The establishment of scientifically...

  9. 21 CFR 606.140 - Laboratory controls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Laboratory controls. 606.140 Section 606.140 Food... CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Laboratory Controls § 606.140 Laboratory controls. Laboratory control procedures shall include: (a) The establishment of scientifically...

  10. 21 CFR 606.140 - Laboratory controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Laboratory controls. 606.140 Section 606.140 Food... CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Laboratory Controls § 606.140 Laboratory controls. Laboratory control procedures shall include: (a) The establishment of scientifically...

  11. 21 CFR 606.140 - Laboratory controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Laboratory controls. 606.140 Section 606.140 Food... CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Laboratory Controls § 606.140 Laboratory controls. Laboratory control procedures shall include: (a) The establishment of scientifically...

  12. First International Microgravity Laboratory

    NASA Technical Reports Server (NTRS)

    Mcmahan, Tracy; Shea, Charlotte; Wiginton, Margaret; Neal, Valerie; Gately, Michele; Hunt, Lila; Graben, Jean; Tiderman, Julie; Accardi, Denise

    1990-01-01

    This colorful booklet presents capsule information on every aspect of the International Microgravity Laboratory (IML). As part of Spacelab, IML is divided into Life Science Experiments and Materials Science Experiments. Because the life and materials sciences use different Spacelab resources, they are logically paired on the IML missions. Life science investigations generally require significant crew involvement, and crew members often participate as test subjects or operators. Materials missions capitalize on these complementary experiments. International cooperation consists in participation by the European Space Agency, Canada, France, Germany, and Japan who are all partners in developing hardware and experiments of IML missions. IML experiments are crucial to future space ventures, like the development of Space Station Freedom, the establishment of lunar colonies, and the exploration of other planets. Principal investigators are identified for each experiment.

  13. Science laboratory behavior strategies of students relative to performance in and attitude to laboratory work

    NASA Astrophysics Data System (ADS)

    Okebukola, Peter Akinsola

    The relationship between science laboratory behavior strategies of students and performance in and attitude to laboratory work was investigated in an observational study of 160 laboratory sessions involving 600 class five (eleventh grade) biology students. Zero-order correlations between the behavior strategies and outcome measures reveal a set of low to strong relationships. Transmitting information, listening and nonlesson related behaviors exhibited low correlations with practical skills and the attitude measure. The correlations between manipulating apparatus and observation with practical skills measures were found to be strong. Multiple correlation analysis revealed that the behaviors of students in the laboratories observed accounted for a large percentage of the variance in the scores on manipulative skills and a low percentage on interpretation of data, responsibility, initiative, and work habits. One significant canonical correlation emerged. The loadings on this canonical variate indicate that the practical skills measures, i.e., planning and design, manipulative skills and conduct of experiments, observation and recording of data, and attitude to laboratory work made primary contributions to the canonical relationship. Suggestions as to how students can be encouraged to go beyond cookbook-like laboratories and develop a more favorable attitude to laboratory work are made.

  14. Preparation and Certification of Two New Bulk Welding Fume Reference Materials for Use in Laboratories Undertaking Analysis of Occupational Hygiene Samples

    PubMed Central

    Butler, Owen; Musgrove, Darren; Stacey, Peter

    2014-01-01

    Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories. PMID:24499055

  15. Preparation and certification of two new bulk welding fume reference materials for use in laboratories undertaking analysis of occupational hygiene samples.

    PubMed

    Butler, Owen; Musgrove, Darren; Stacey, Peter

    2014-01-01

    Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories.

  16. Managing the Occupational Education Laboratory.

    ERIC Educational Resources Information Center

    Storm, George

    This guide for occupational educators deals with laboratory and instructional management on an interdisciplinary basis within the broad field of occupational education. The principles discussed are intended to be applied at all levels and in all types of laboratories. The text suggests effective ways of organizing laboratories so that students can…

  17. Laboratory Characteristics in Technical Education.

    ERIC Educational Resources Information Center

    Ives, Quay D.

    The research reported is intended to provide a body of information on technical-scientific shop and laboratory education in the field of technological education. The study seeks to address the dearth of organized information on the utilization of laboratories in the technical education context. Various programs involving use of laboratories are…

  18. UK dental laboratory technicians' views on the efficacy and teaching of clinical-laboratory communication.

    PubMed

    Juszczyk, A S; Clark, R K F; Radford, D R

    2009-05-23

    The General Dental Council states that 'good dental care is delivered by a team' and restorative treatment is enhanced by communication between team members. Commercial dental laboratories are ideally placed to comment on effective communication. To investigate contemporary attitudes and communication between dentist and dental technician from the technician's perspective. Eight hundred and three dental laboratories were invited to take part in a postal survey covering dentist/laboratory communication and the dentist's understanding of technical procedures. Forty percent of laboratories responded. Only 9% scored communication as very good, 48% scored communication with newly qualified dentists better than with established dentists but only 26% considered that dental students were taught to communicate with dental laboratories effectively. The free comments that the respondents were invited to make identified three distinct themes, 'recognition within the dental team', 'effective communication between dentist and dental technician' and 'dentists lack of technical knowledge'. Effective communication between dentist and dental technician is often poor. It was the view of the dental technicians who responded that newly qualified dentists do not have an appropriate understanding of technical techniques. Dental schools are still not preparing new graduates to communicate effectively with dental laboratories.

  19. Effective Laboratory Experiences for Students with Disabilities: The Role of a Student Laboratory Assistant

    NASA Astrophysics Data System (ADS)

    Pence, Laura E.; Workman, Harry J.; Riecke, Pauline

    2003-03-01

    Two separate experiences with students whose disabilities significantly limited the number of laboratory activities they could accomplish independently has given us a general experience base for determining successful strategies for accommodating students facing these situatiuons. For a student who had substantially limited physical mobility and for a student who had no visual ability, employing a student laboratory assistant allowed the students with disabilities to have a productive and positive laboratory experience. One of the priorities in these situations should be to avoid depersonalizing the student with a disability. Interactions with the instructor and with other students should focus on the disabled student rather than the student laboratory assistant who may be carrying out specific tasks. One of the most crucial aspects of a successful project is the selection of a laboratory assistant who has excellent interpersonal skills and who will add his or her creativity to that of the student with a disability to meet unforeseen challenges. Other considerations are discussed, such as the importance of advance notification that a disabled student has enrolled in a course as well as factors that should contribute to choosing an optimum laboratory station for each situation.

  20. An Electronics "Unit Laboratory"

    ERIC Educational Resources Information Center

    Davies, E. R.; Penton, S. J.

    1976-01-01

    Describes a laboratory teaching technique in which a single topic (in this case, bipolar junction transistors) is studied over a period of weeks under the supervision of one staff member, who also designs the laboratory work. (MLH)

  1. Survey of laboratory-acquired infections around the world in biosafety level 3 and 4 laboratories.

    PubMed

    Wurtz, N; Papa, A; Hukic, M; Di Caro, A; Leparc-Goffart, I; Leroy, E; Landini, M P; Sekeyova, Z; Dumler, J S; Bădescu, D; Busquets, N; Calistri, A; Parolin, C; Palù, G; Christova, I; Maurin, M; La Scola, B; Raoult, D

    2016-08-01

    Laboratory-acquired infections due to a variety of bacteria, viruses, parasites, and fungi have been described over the last century, and laboratory workers are at risk of exposure to these infectious agents. However, reporting laboratory-associated infections has been largely voluntary, and there is no way to determine the real number of people involved or to know the precise risks for workers. In this study, an international survey based on volunteering was conducted in biosafety level 3 and 4 laboratories to determine the number of laboratory-acquired infections and the possible underlying causes of these contaminations. The analysis of the survey reveals that laboratory-acquired infections have been infrequent and even rare in recent years, and human errors represent a very high percentage of the cases. Today, most risks from biological hazards can be reduced through the use of appropriate procedures and techniques, containment devices and facilities, and the training of personnel.

  2. Accidental fires in clinical laboratories.

    PubMed

    Hoeltge, G A; Miller, A; Klein, B R; Hamlin, W B

    1993-12-01

    The National Fire Protection Association, Quincy, Mass, estimates that 169 fires have occurred annually in health care, medical, and chemical laboratories. On the average, there are 13 civilian injuries and $1.5 million per year in direct property damage. Most fires in which the cause or ignition source can be identified originate in malfunctioning electrical equipment (41.6%) or in the facility's electrical distribution system (14.7%). The prevalence of fire safety deficiencies was measured in the College of American Pathologists Laboratory Accreditation Program. Of the 1732 inspected laboratories, 5.5% lacked records of electrical receptacle polarity and ground checks in the preceding year. Of these inspected laboratories, 4.7% had no or incomplete documentation of electrical safety checks on laboratory instruments. There was no evidence of quarterly fire exit drills in 9% of the laboratories. Deficiencies were also found in precautionary labeling (6.8%), in periodic review of safe work practices (4.2%), in the use of safety cans (3.7%), and in venting of flammable liquid storage areas (2.8%). Fire preparedness would be improved if all clinical laboratories had smoke detectors and automatic fire-extinguishing systems. In-service training courses in fire safety should be targeted to the needs of specific service areas.

  3. Laboratory Activity on Sample Handling and Maintaining a Laboratory Notebook through Simple pH Measurements

    ERIC Educational Resources Information Center

    Erdmann, Mitzy A.; March, Joe L.

    2016-01-01

    Sample handling and laboratory notebook maintenance are necessary skills but can seem abstract if not presented to students in context. An introductory exercise focusing on proper sample handling, data collection and laboratory notebook keeping for the general chemistry laboratory was developed to emphasize the importance of keeping an accurate…

  4. Current safety practices in nano-research laboratories in China.

    PubMed

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  5. Physics Laboratory in UEC

    NASA Astrophysics Data System (ADS)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.

  6. 40 CFR 141.705 - Approved laboratories.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cryptosporidium analysis by an equivalent State laboratory certification program. (b) E. coli. Any laboratory... coliform or fecal coliform analysis under § 141.74 is approved for E. coli analysis under this subpart when the laboratory uses the same technique for E. coli that the laboratory uses for § 141.74. (c...

  7. 40 CFR 141.705 - Approved laboratories.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cryptosporidium analysis by an equivalent State laboratory certification program. (b) E. coli. Any laboratory... coliform or fecal coliform analysis under § 141.74 is approved for E. coli analysis under this subpart when the laboratory uses the same technique for E. coli that the laboratory uses for § 141.74. (c...

  8. 40 CFR 141.705 - Approved laboratories.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cryptosporidium analysis by an equivalent State laboratory certification program. (b) E. coli. Any laboratory... coliform or fecal coliform analysis under § 141.74 is approved for E. coli analysis under this subpart when the laboratory uses the same technique for E. coli that the laboratory uses for § 141.74. (c...

  9. 40 CFR 141.705 - Approved laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cryptosporidium analysis by an equivalent State laboratory certification program. (b) E. coli. Any laboratory... coliform or fecal coliform analysis under § 141.74 is approved for E. coli analysis under this subpart when the laboratory uses the same technique for E. coli that the laboratory uses for § 141.74. (c...

  10. 40 CFR 141.705 - Approved laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cryptosporidium analysis by an equivalent State laboratory certification program. (b) E. coli. Any laboratory... coliform or fecal coliform analysis under § 141.74 is approved for E. coli analysis under this subpart when the laboratory uses the same technique for E. coli that the laboratory uses for § 141.74. (c...

  11. The Evolving Role of Field and Laboratory Seismic Measurements in Geotechnical Engineering

    NASA Astrophysics Data System (ADS)

    Stokoe, K. H.

    2017-12-01

    The geotechnical engineering has been faced with the problem of characterizing geological materials for site-specific design in the built environment since the profession began. When one of the design requirements included determining the dynamic response of important and critical facilities to earthquake shaking or other types of dynamic loads, seismically-based measurements in the field and laboratory became important tools for direct characterization of the stiffnesses and energy dissipation (material damping) of these materials. In the 1960s, field seismic measurements using small-strain body waves were adapted from exploration geophysics. At the same time, laboratory measurements began using dynamic, torsional, resonant-column devices to measure shear stiffness and material damping in shear. The laboratory measurements also allowed parameters such as material type, confinement state, and nonlinear straining to be evaluated. Today, seismic measurements are widely used and evolving because: (1) the measurements have a strong theoretical basis, (2) they can be performed in the field and laboratory, thus forming an important link between these measurements, and (3) in recent developments in field testing involving surface waves, they are noninvasive which makes them cost effective in comparison to other methods. Active field seismic measurements are used today over depths ranging from about 5 to 1000 m. Examples of shear-wave velocity (VS) profiles evaluated using boreholes, penetrometers, suspension logging, and Rayleigh-type surface waves are presented. The VS measurements were performed in materials ranging from uncemented soil to unweathered rock. The coefficients of variation (COVs) in the VS profiles are generally less than 0.15 over sites with surface areas of 50 km2 or more as long as material types are not laterally mixed. Interestingly, the largest COVs often occur around layer boundaries which vary vertically. It is also interesting to observe how the

  12. Sandia National Laboratories: Research: Laboratory Directed Research &

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  13. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Collaboration Agreement | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A Collaboration Agreement is appropriate for research collaboration involving intellectual and material contributions by the Frederick National Laboratory and external partner(s). It is useful for proof-of-concept studies. Includes brief re

  15. Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017245 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  16. Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017246 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  17. Nespoli photographs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017237 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  18. Nespoli installs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017249 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  19. Nespoli photographs ALTEA-SHIELD Hardware in the US Laboratory

    NASA Image and Video Library

    2011-04-23

    ISS027-E-017236 (23 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with Anomalous Long Term Effects on Astronauts (ALTEA) Shield isotropic equipment in the Destiny laboratory of the International Space Station. ALTEA-Shield isotropic dosimetry uses existing ALTEA hardware to survey the radiation environment in the Destiny laboratory in 3D. It also measures the effectiveness and shielding properties of several materials with respect to the perception of anomalous light flashes.

  20. OSHA Laboratory Standard: Driving Force for Laboratory Safety!

    ERIC Educational Resources Information Center

    Roy, Kenneth R.

    2000-01-01

    Discusses the Occupational Safety and Health Administration's (OSHA's) Laboratory Safety Standards as the major driving force in establishing and maintaining a safe working environment for teachers and students. (Author)

  1. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    PubMed Central

    Robinson, Cathy; Nyary, Bryan

    2013-01-01

    Background There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Objectives Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA). Method Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS) lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. Results The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. Conclusions These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates. PMID:29043162

  2. Laboratory Manual (For Concrete Instruction Course); Instructor's Guide, Pilot Program Edition.

    ERIC Educational Resources Information Center

    Portland Cement Association, Cleveland, OH.

    This laboratory manual, prepared for a 2-year program in junior colleges and technical institutes, is designed to accompany the instructional materials to train persons for employment as technicians in the cement and concrete industries. Included are 16 laboratory assignments for each of the following: (1) Principles of Concrete, (2) Concrete in…

  3. 7 CFR 983.1 - Accredited laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Accredited laboratory. 983.1 Section 983.1 Agriculture..., ARIZONA, AND NEW MEXICO Definitions § 983.1 Accredited laboratory. An accredited laboratory is a laboratory that has been approved or accredited by the U.S. Department of Agriculture. [74 FR 56539, Nov. 2...

  4. A comparison of relative toxicity rankings by some small-scale laboratory tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Small-scale laboratory tests for fire toxicity, suitable for use in the average laboratory hood, are needed for screening and ranking materials on the basis of relative toxicity. The performance of wool, cotton, and aromatic polyamide under several test procedures is presented.

  5. Emotional intelligence in medical laboratory science

    NASA Astrophysics Data System (ADS)

    Price, Travis

    The purpose of this study was to explore the role of emotional intelligence (EI) in medical laboratory science, as perceived by laboratory administrators. To collect and evaluate these perceptions, a survey was developed and distributed to over 1,400 medical laboratory administrators throughout the U.S. during January and February of 2013. In addition to demographic-based questions, the survey contained a list of 16 items, three skills traditionally considered important for successful work in the medical laboratory as well as 13 EI-related items. Laboratory administrators were asked to rate each item for its importance for job performance, their satisfaction with the item's demonstration among currently working medical laboratory scientists (MLS) and the amount of responsibility college-based medical laboratory science programs should assume for the development of each skill or attribute. Participants were also asked about EI training in their laboratories and were given the opportunity to express any thoughts or opinions about EI as it related to medical laboratory science. This study revealed that each EI item, as well as each of the three other items, was considered to be very or extremely important for successful job performance. Administrators conveyed that they were satisfied overall, but indicated room for improvement in all areas, especially those related to EI. Those surveyed emphasized that medical laboratory science programs should continue to carry the bulk of the responsibility for the development of technical skills and theoretical knowledge and expressed support for increased attention to EI concepts at the individual, laboratory, and program levels.

  6. The Pathology Laboratory Act 2007 explained.

    PubMed

    Looi, Lai-Meng

    2008-06-01

    The past century has seen tremendous changes in the scope and practice of pathology laboratories in tandem with the development of the medical services in Malaysia. Major progress was made in the areas of training and specialization of pathologists and laboratory technical staff. Today the pathology laboratory services have entered the International arena, and are propelled along the wave of globalization. Many new challenges have emerged as have new players in the field. Landmark developments over the past decade include the establishment of national quality assurance programmes, the mushrooming of private pathology laboratories, the establishment of a National Accreditation Standard for medical testing laboratories based on ISO 15189, and the passing of the Pathology Laboratory Act in Parliament in mid-2007. The Pathology Laboratory Act 2007 seeks to ensure that the pathology laboratory is accountable to the public, meets required standards of practice, participates in Quality Assurance programmes, is run by qualified staff, complies with safety requirements and is subject to continuous audit. The Act is applicable to all private laboratories (stand alone or hospital) and laboratories in statutory bodies (Universities, foundations). It is not applicable to public laboratories (established and operated by the government) and side-room laboratories established in clinics of registered medical or dental practitioners for their own patients (tests as in the First and Second Schedules respectively). Tests of the Third Schedule (home test blood glucose, urine glucose, urine pregnancy test) are also exempted. The Act has 13 Parts and provides for control of the pathology laboratory through approval (to establish and maintain) and licensing (to operate or provide). The approval or license may only be issued to a sole proprietor, partnership or body corporate, and then only if the entity includes a registered medical practitioner. Details of personnel qualifications and

  7. An analytical chemistry laboratory's experiences under Department of Energy Order 5633. 3 - a status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, C.D.

    The U.S. Department of Energy (DOE) order 5633.3, Control and Accountability of Nuclear Materials, initiated substantial changes to the requirements for operations involving nuclear materials. In the opinion of this author, the two most significant changes are the clarification of and the increased emphasis on the concept of graded safeguards and the implementation of performance requirements. Graded safeguards recognizes that some materials are more attractive than others to potential adversary actions and, thus, should be afforded a higher level of integrated safeguards effort. An analytical chemistry laboratory, such as the New Brunswick Laboratory (NBL), typically has a small total inventorymore » of special nuclear materials compared to, for example, a production or manufacturing facility. The NBL has a laboratory information management system (LIMS) that not only provides the sample identification and tracking but also incorporates the essential features of MC A required of NBL operations. As a consequence of order 5633.3, NBL had to modify LIMS to accommodate material attractiveness information for the logging process, to reflect changes in the attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness codes.« less

  8. Augmented Reality for the Improvement of Remote Laboratories: An Augmented Remote Laboratory

    ERIC Educational Resources Information Center

    Andujar, J. M.; Mejias, A.; Marquez, M. A.

    2011-01-01

    Augmented reality (AR) provides huge opportunities for online teaching in science and engineering, as these disciplines place emphasis on practical training and unsuited to completely nonclassroom training. This paper proposes a new concept in virtual and remote laboratories: the augmented remote laboratory (ARL). ARL is being tested in the first…

  9. 46 CFR 160.060-9 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 160.060-9 Section 160.060-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam...

  10. 46 CFR 160.052-9 - Recognized laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Recognized laboratory. 160.052-9 Section 160.052-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...

  11. 46 CFR 160.052-9 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 160.052-9 Section 160.052-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...

  12. 46 CFR 160.060-9 - Recognized laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Recognized laboratory. 160.060-9 Section 160.060-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam...

  13. 46 CFR 160.060-9 - Recognized laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Recognized laboratory. 160.060-9 Section 160.060-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam...

  14. 46 CFR 160.060-9 - Recognized laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Recognized laboratory. 160.060-9 Section 160.060-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Polyethylene Foam...

  15. 46 CFR 160.052-9 - Recognized laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Recognized laboratory. 160.052-9 Section 160.052-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...

  16. 46 CFR 160.052-9 - Recognized laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Recognized laboratory. 160.052-9 Section 160.052-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Unicellular Plastic Foam...

  17. Quality in the molecular microbiology laboratory.

    PubMed

    Wallace, Paul S; MacKay, William G

    2013-01-01

    In the clinical microbiology laboratory advances in nucleic acid detection, quantification, and sequence analysis have led to considerable improvements in the diagnosis, management, and monitoring of infectious diseases. Molecular diagnostic methods are routinely used to make clinical decisions based on when and how to treat a patient as well as monitor the effectiveness of a therapeutic regime and identify any potential drug resistant strains that may impact on the long term patient treatment program. Therefore, confidence in the reliability of the result provided by the laboratory service to the clinician is essential for patient treatment. Hence, suitable quality assurance and quality control measures are important to ensure that the laboratory methods and service meet the necessary regulatory requirements both at the national and international level. In essence, the modern clinical microbiology laboratory ensures the appropriateness of its services through a quality management system that monitors all aspects of the laboratory service pre- and post-analytical-from patient sample receipt to reporting of results, from checking and upholding staff competency within the laboratory to identifying areas for quality improvements within the service offered. For most European based clinical microbiology laboratories this means following the common International Standard Organization (ISO9001) framework and ISO15189 which sets out the quality management requirements for the medical laboratory (BS EN ISO 15189 (2003) Medical laboratories-particular requirements for quality and competence. British Standards Institute, Bristol, UK). In the United States clinical laboratories performing human diagnostic tests are regulated by the Centers for Medicare and Medicaid Services (CMS) following the requirements within the Clinical Laboratory Improvement Amendments document 1988 (CLIA-88). This chapter focuses on the key quality assurance and quality control requirements within the

  18. Critical Value Reporting at Egyptian Laboratories.

    PubMed

    Mosallam, Rasha; Ibrahim, Samaa Zenhom

    2015-06-12

    To examine critical value reporting policies and practices and to identify critical value ranges for selected common laboratory assays at inpatient division of laboratories of Alexandria hospitals. A cross-sectional descriptive study design was used. Subjects were from inpatient division of all laboratories of Alexandria hospitals (40 laboratories). Data were collected using a questionnaire composed of 4 sections. The first section explored hospital and laboratory characteristics. The second section assessed policies and procedures of critical value reporting. The third section explored the reporting process. The fourth section explored critical value ranges for selected common laboratory assays. Written procedure for reporting of critical values was present in 77.5% of laboratories and a comprehensive list of critical values in 72.55%. For laboratories having a critical value list, the number of tests in the list ranged from 7 to 40. Three-fifths of laboratories had a policy for assessing the timeliness of reporting and 3 quarters stated that the laboratory policy requires feedback (60.0% and 75.0%, respectively). The hospital laboratory physician was responsible for critical value reporting followed by the laboratory technician (75.0% and 50.0%, respectively). The call is received mainly by nurses and physicians ordering the test (67.5% and 55.0%, respectively) and the channel of reporting is mainly the telephone or through sending test report to the ward (67.5% and 50.0%, respectively). Wireless technologies are used in reporting in only 10.0% of hospitals. The cutoff limits for reporting different assays showed considerable interlaboratory variation. Critical value policies and practices showed interinstitutional variation with deficiencies in some reporting practices. Selection of critical assays for notification and setting the limits of notification exhibited wide variation as well.

  19. Laboratory and Space Plasma Studies

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1996-08-01

    The work performed by Science Applications International Corporation (SAIC), encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by sub-contracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.

  20. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    ERIC Educational Resources Information Center

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  1. Application of flipped classroom pedagogy to the human gross anatomy laboratory: Student preferences and learning outcomes.

    PubMed

    Fleagle, Timothy R; Borcherding, Nicholas C; Harris, Jennie; Hoffmann, Darren S

    2017-12-28

    To improve student preparedness for anatomy laboratory dissection, the dental gross anatomy laboratory was transformed using flipped classroom pedagogy. Instead of spending class time explaining the procedures and anatomical structures for each laboratory, students were provided online materials to prepare for laboratory on their own. Eliminating in-class preparation provided the opportunity to end each period with integrative group activities that connected laboratory and lecture material and explored clinical correlations. Materials provided for prelaboratory preparation included: custom-made, three-dimensional (3D) anatomy videos, abbreviated dissection instructions, key atlas figures, and dissection videos. Data from three years of the course (n = 241 students) allowed for analysis of students' preferences for these materials and detailed tracking of usage of 3D anatomy videos. Students reported spending an average of 27:22 (±17:56) minutes preparing for laboratory, similar to the 30 minutes previously allocated for in-class dissection preparation. The 3D anatomy videos and key atlas figures were rated the most helpful resources. Scores on laboratory examinations were compared for the three years before the curriculum change (2011-2013; n = 242) and three years after (2014-2016; n = 241). There was no change in average grades on the first and second laboratory examinations. However, on the final semi-cumulative laboratory examination, scores were significantly higher in the post-flip classes (P = 0.04). These results demonstrate an effective model for applying flipped classroom pedagogy to the gross anatomy laboratory and illustrate a meaningful role for 3D anatomy visualizations in a dissection-based course. Anat Sci Educ. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  2. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  3. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  4. Quality assurance practices in Europe: a survey of molecular genetic testing laboratories

    PubMed Central

    Berwouts, Sarah; Fanning, Katrina; Morris, Michael A; Barton, David E; Dequeker, Elisabeth

    2012-01-01

    In the 2000s, a number of initiatives were taken internationally to improve quality in genetic testing services. To contribute to and update the limited literature available related to this topic, we surveyed 910 human molecular genetic testing laboratories, of which 291 (32%) from 29 European countries responded. The majority of laboratories were in the public sector (81%), affiliated with a university hospital (60%). Only a minority of laboratories was accredited (23%), and 26% was certified. A total of 22% of laboratories did not participate in external quality assessment (EQA) and 28% did not use reference materials (RMs). The main motivations given for accreditation were to improve laboratory profile (85%) and national recognition (84%). Nearly all respondents (95%) would prefer working in an accredited laboratory. In accredited laboratories, participation in EQA (P<0.0001), use of RMs (P=0.0014) and availability of continuous education (CE) on medical/scientific subjects (P=0.023), specific tasks (P=0.0018), and quality assurance (P<0.0001) were significantly higher than in non-accredited laboratories. Non-accredited laboratories expect higher restriction of development of new techniques (P=0.023) and improvement of work satisfaction (P=0.0002) than accredited laboratories. By using a quality implementation score (QIS), we showed that accredited laboratories (average score 92) comply better than certified laboratories (average score 69, P<0.001), and certified laboratories better than other laboratories (average score 44, P<0.001), with regard to the implementation of quality indicators. We conclude that quality practices vary widely in European genetic testing laboratories. This leads to a potentially dangerous situation in which the quality of genetic testing is not consistently assured. PMID:22739339

  5. Aid for the Medical Laboratory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A process for separating chemical compounds in fluids resulted from a Jet Propulsion Laboratory (JPL)/LAPD project. The technique involves pouring a blood or urine sample into an extraction tube where packing material contained in a disposable tube called an "extraction column" absorbs water and spreads the specimen as a thin film, making it easy to identify specific components. When a solvent passes through the packing material, the desired compound dissolves and exits through the tube's bottom stem and is collected. Called AUDRI, Automated Drug Identification, it is commercially produced by Analytichem International which has successfully advanced the original technology.

  6. Laboratory Measurements of Celestial Solids

    NASA Technical Reports Server (NTRS)

    Sievers, A. J.; Beckwith, S. V. W.

    1997-01-01

    Our experimental study has focused on laboratory measurements of the low temperature optical properties of a variety of astronomically significant materials in the infrared and mm-wave region of the spectrum. Our far infrared measurements of silicate grains with an open structure have produced a variety of unusual results: (1) the low temperature mass opacity coefficient of small amorphous 2MgO(central dot)SiO2 and MgO(central dot)2SiO2 grains are many times larger than the values previously used for interstellar grain material; (2) all of the amorphous silicate grains studied possess the characteristic temperature dependent signature associated with two level systems in bulk glass; and (3) a smaller but nonzero two level temperature dependence signature is also observed for crystalline particles, its physical origin is unclear. These laboratory measurements yield surprisingly large and variable values for the mm-wave absorption coefficients of small silicate particles similar to interstellar grains, and suggest that the bulk absorptivity of interstellar dust at these long wavelengths will not be well known without such studies. Furthermore, our studies have been useful to better understand the physics of the two level absorption process in amorphous and crystalline grains to gain confidence in the wide applicability of these results.

  7. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less

  8. Laboratory automation: trajectory, technology, and tactics.

    PubMed

    Markin, R S; Whalen, S A

    2000-05-01

    Laboratory automation is in its infancy, following a path parallel to the development of laboratory information systems in the late 1970s and early 1980s. Changes on the horizon in healthcare and clinical laboratory service that affect the delivery of laboratory results include the increasing age of the population in North America, the implementation of the Balanced Budget Act (1997), and the creation of disease management companies. Major technology drivers include outcomes optimization and phenotypically targeted drugs. Constant cost pressures in the clinical laboratory have forced diagnostic manufacturers into less than optimal profitability states. Laboratory automation can be a tool for the improvement of laboratory services and may decrease costs. The key to improvement of laboratory services is implementation of the correct automation technology. The design of this technology should be driven by required functionality. Automation design issues should be centered on the understanding of the laboratory and its relationship to healthcare delivery and the business and operational processes in the clinical laboratory. Automation design philosophy has evolved from a hardware-based approach to a software-based approach. Process control software to support repeat testing, reflex testing, and transportation management, and overall computer-integrated manufacturing approaches to laboratory automation implementation are rapidly expanding areas. It is clear that hardware and software are functionally interdependent and that the interface between the laboratory automation system and the laboratory information system is a key component. The cost-effectiveness of automation solutions suggested by vendors, however, has been difficult to evaluate because the number of automation installations are few and the precision with which operational data have been collected to determine payback is suboptimal. The trend in automation has moved from total laboratory automation to a

  9. The virtual laboratory: a new on-line resource for the history of psychology.

    PubMed

    Schmidgen, Henning; Evans, Rand B

    2003-05-01

    The authors provide a description of the Virtual Laboratory at Department III of the Max Planck Institute for the History of Science in Berlin. The Virtual Laboratory currently provides Internet links to rooms that present texts, instruments, model organisms, research sites, and biographies. Existing links provide access to a library of journals, handbooks, monographs, and trade catalogues; research institutes and laboratories; biographies and bibliographic essays; and essays by contemporary researchers. Historians of psychology are encouraged to submit photographic material and essays to the Virtual Laboratory.

  10. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas... procedures required by nonclinical laboratory studies. [52 FR 33780, Sept. 4, 1987] ...

  11. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas... procedures required by nonclinical laboratory studies. [52 FR 33780, Sept. 4, 1987] ...

  12. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas... procedures required by nonclinical laboratory studies. [52 FR 33780, Sept. 4, 1987] ...

  13. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable formore » nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).« less

  14. Effective utilization of clinical laboratories.

    PubMed

    Murphy, J; Henry, J B

    1978-11-01

    Effective utilization of clinical laboratories requires that underutilization, overutilization, and malutilization be appreciated and eliminated or reduced. Optimal patient care service, although subjective to a major extent, is reflected in terms of outcome and cost. Increased per diem charges, reduced hospital stay, and increased laboratory workload over the past decade all require each laboratory to examine its internal operations to achieve economy and efficiency as well as maximal effectiveness. Increased research and development, an active managerial role on the part of pathologists, internal self-assessment, and an aggressive response to sophisticated scientific and clinical laboratory data base requirements are not only desirable but essential. The importance of undergraduate and graduate medical education in laboratory medicine to insure understanding as well as effective utilization is stressed. The costs and limitations as well as the accuracy, precision, sensitivity, specificity, and pitfalls of measurements and examinations must also be fully appreciated. Medical malpractice and defensive medicine and the use of critical values, emergency and routine services, and an active clinical role by the pathologist are of the utmost value in assuring effective utilization of the laboratory. A model for the optimal use of the laboratory including economy and efficiency has been achieved in the blood bank in regard to optimal hemotherapy for elective surgery, assuring superior patient care in a cost effective and safe manner.

  15. Laboratory Evaluation of Nitrile Fuel Tank Materials (Phase 2)

    DTIC Science & Technology

    2013-09-01

    NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated...by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use...thereof. Destroy this report when it is no longer needed. Do not return it to the originator. Army Research Laboratory Aberdeen Proving Ground, MD

  16. 7 CFR 996.21 - USDA laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.21 USDA laboratory. USDA laboratory means laboratories of the Science and Technology Programs, Agricultural Marketing...

  17. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    PubMed

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  18. Laboratory Automation and Middleware.

    PubMed

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. OB's high voltage laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1966-01-01

    The January issue of Hi-Tension News provides a detailed description of the advanced surge test facilities and procedures in daily operation at the OB High Voltage Laboratory in Barberton, Ohio. Technical competences achieved in this laboratory contribute to the essential factors of design confirmation to basic studies of ehv insulation systems, conductor and hardware performance, and optimum tower construction. Known throughout the industry for authenticity of its full scale, all weather outdoor testing, OB's High Voltage Laboratory is a full-fledged participant in the NEMA-sponsored program to make testing facilities available on a cooperative basis.

  20. Laboratory testing in hyperthyroidism.

    PubMed

    Grebe, Stefan K G; Kahaly, George J

    2012-09-01

    The clinical diagnosis of hypo- or hyperthyroidism is difficult (full text available online: http://education.amjmed.com/pp1/272). Clinical symptoms and signs are often non-specific, and there is incomplete correlation between structural and functional thyroid gland changes. Laboratory testing is therefore indispensible in establishing the diagnosis of thyrotoxicosis. Similar considerations apply to treatment monitoring. Laboratory testing also plays a crucial role in establishing the most likely cause for a patient's hyperthyroidism. Finally, during pregnancy, when isotopic scanning is relatively contraindicated and ultrasound is more difficult to interpret, laboratory testing becomes even more important. Copyright © 2012. Published by Elsevier Inc.