Sample records for laboratory measured geophysical

  1. Phillips Laboratory Geophysics Scholar Program

    DTIC Science & Technology

    1993-09-30

    research at Phillips Laboratory . Research sponsored by Air Force Geophysics Laboratory ...Geophysics Laboratory (now the Phillips Laboratory , Geophysics Directorate), United States Air Force for its sponsorship of this research through the Air ...September 1993 Approved for public release; distribution unlimited PHILLIPS LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND

  2. Report on Operations of the Air Force Geophysics Laboratory Infrared Array Spectrometer

    DTIC Science & Technology

    1993-01-25

    AIR FORCE GEOPHYSICS LABORATORY INFRARED ARRAY... LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-3010 93-27655IEEE|EIIE1ENI This technical report has...ACKNOWLEDGMENT We are grateful to the Air Force Office of Scientific Research , especially Henry Radowski. for their financial corn- mitment to this project.

  3. Fracture induced electromagnetic emissions: extending laboratory findings by observations at the geophysical scale

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Kopanas, John; Kalimeris, Anastasios; Antonopoulos, George; Peratzakis, Athanasios; Eftaxias, Konstantinos; Nomicos, Constantinos

    2014-05-01

    is conducted at the geophysical scale. As a characteristic example, we discuss about the case of electromagnetic silence before the global rupture that was first observed in preseismic EME and recently was also observed in the EME measured during laboratory fracture experiments, completely revising the earlier views about the fracture-induced electromagnetic emissions.

  4. Geophysical Measurements of Basalt Intraflow Structures.

    DTIC Science & Technology

    1997-12-01

    COVERED Final 4. TITLE AND SUBTITLE Geophysical Measurements of Basalt Intraflow Structures 6. AUTHOR(S) William K. Hudson 7. PERFORMING...horm 29B (Hi ^ 29 ev. 5-88) by ANISE Sad Z39-18 Prescribed 298-102 GEOPHYSICAL MEASUREMENTS OF BASALT INTRAFLOW STRUCTURES by William K. Hudson A...region. The physical properties of basalt can change dramatically within a single flow and may be associated with changes in intraflow structure. The

  5. Air Force Geophysics Laboratory portable PCM ground station

    NASA Astrophysics Data System (ADS)

    Shaw, H.; Lawrence, F. A.

    The present paper is concerned with the development of a portable Pulse-Code Modulation (PCM) telemetry station for the Air Force Geophysics Laboratory (AFGL). A system description is provided, taking into account the system equipment, the interface, the decommutator (DECOM) section of the interface, the direct memory access (DMA) section, and system specifications and capabilities. In the context of selecting between two conflicting philosophies regarding software, it was decided to favor a small scale specialized approach. Attention is given to the operating system, aspects of setting up the software, the application software, and questions of portability.

  6. Virtual Geophysics Laboratory: Exploiting the Cloud and Empowering Geophysicsts

    NASA Astrophysics Data System (ADS)

    Fraser, Ryan; Vote, Josh; Goh, Richard; Cox, Simon

    2013-04-01

    Over the last five decades geoscientists from Australian state and federal agencies have collected and assembled around 3 Petabytes of geoscience data sets under public funding. As a consequence of technological progress, data is now being acquired at exponential rates and in higher resolution than ever before. Effective use of these big data sets challenges the storage and computational infrastructure of most organizations. The Virtual Geophysics Laboratory (VGL) is a scientific workflow portal addresses some of the resulting issues by providing Australian geophysicists with access to a Web 2.0 or Rich Internet Application (RIA) based integrated environment that exploits eResearch tools and Cloud computing technology, and promotes collaboration between the user community. VGL simplifies and automates large portions of what were previously manually intensive scientific workflow processes, allowing scientists to focus on the natural science problems, rather than computer science and IT. A number of geophysical processing codes are incorporated to support multiple workflows. For example a gravity inversion can be performed by combining the Escript/Finley codes (from the University of Queensland) with the gravity data registered in VGL. Likewise, tectonic processes can also be modeled by combining the Underworld code (from Monash University) with one of the various 3D models available to VGL. Cloud services provide scalable and cost effective compute resources. VGL is built on top of mature standards-compliant information services, many deployed using the Spatial Information Services Stack (SISS), which provides direct access to geophysical data. A large number of data sets from Geoscience Australia assist users in data discovery. GeoNetwork provides a metadata catalog to store workflow results for future use, discovery and provenance tracking. VGL has been developed in collaboration with the research community using incremental software development practices and open

  7. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR)more » and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP

  8. Near surface geophysical techniques on subsoil contamination: laboratory experiments

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo

    2016-04-01

    Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of

  9. Introduction of Special Physics Topics (Geophysics) Through the Use of Physics Laboratory Projects

    ERIC Educational Resources Information Center

    Parker, R. H.; Whittles, A. B. L.

    1970-01-01

    Describes the objectives and content of a physics laboratory program for freshman students at the British Columbia Institute of Technology. The first part of the program consists of basic physics experiments, while the second part emphasizes student work on projects in geophysics that have direct technical applications. (LC)

  10. The Virtual Geophysics Laboratory (VGL): Scientific Workflows Operating Across Organizations and Across Infrastructures

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Wyborn, L. A.; Fraser, R.; Rankine, T.; Woodcock, R.; Vote, J.; Evans, B.

    2012-12-01

    The Virtual Geophysics Laboratory (VGL) is web portal that provides geoscientists with an integrated online environment that: seamlessly accesses geophysical and geoscience data services from the AuScope national geoscience information infrastructure; loosely couples these data to a variety of gesocience software tools; and provides large scale processing facilities via cloud computing. VGL is a collaboration between CSIRO, Geoscience Australia, National Computational Infrastructure, Monash University, Australian National University and the University of Queensland. The VGL provides a distributed system whereby a user can enter an online virtual laboratory to seamlessly connect to OGC web services for geoscience data. The data is supplied in open standards formats using international standards like GeoSciML. A VGL user uses a web mapping interface to discover and filter the data sources using spatial and attribute filters to define a subset. Once the data is selected the user is not required to download the data. VGL collates the service query information for later in the processing workflow where it will be staged directly to the computing facilities. The combination of deferring data download and access to Cloud computing enables VGL users to access their data at higher resolutions and to undertake larger scale inversions, more complex models and simulations than their own local computing facilities might allow. Inside the Virtual Geophysics Laboratory, the user has access to a library of existing models, complete with exemplar workflows for specific scientific problems based on those models. For example, the user can load a geological model published by Geoscience Australia, apply a basic deformation workflow provided by a CSIRO scientist, and have it run in a scientific code from Monash. Finally the user can publish these results to share with a colleague or cite in a paper. This opens new opportunities for access and collaboration as all the resources (models

  11. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    NASA Astrophysics Data System (ADS)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including

  12. Geophysical monitoring of solute transport in dual-domain environments through laboratory experiments, field-scale solute tracer tests, and numerical simulation

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan David

    The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to

  13. Introduction to the JEEG Agricultural Geophysics Special Issue

    USGS Publications Warehouse

    Allred, Barry J.; Smith, Bruce D.

    2010-01-01

    Near-surface geophysical methods have become increasingly important tools in applied agricultural practices and studies. The great advantage of geophysical methods is their potential rapidity, low cost, and spatial continuity when compared to more traditional methods of assessing agricultural land, such as sample collection and laboratory analysis. Agricultural geophysics investigations commonly focus on obtaining information within the soil profile, which generally does not extend much beyond 2 meters beneath the ground surface. Although the depth of interest oftentimes is rather shallow, the area covered by an agricultural geophysics survey can vary widely in scale, from experimental plots (10 s to 100 s of square meters), to farm fields (10 s to 100 s of hectares), up to the size of watersheds (10 s to 100 s of square kilometers). To date, three predominant methods—resistivity, electromagnetic induction (EMI), and ground-penetrating radar (GPR)—have been used to obtain surface-based geophysical measurements within agricultural settings. However, a recent conference on agricultural geophysics (Bouyoucos Conference on Agricultural Geophysics, September 8–10, 2009, Albuquerque, New Mexico; www.ag-geophysics.org) illustrated that other geophysical methods are being applied or developed. These include airborne electromagnetic induction, magnetometry, seismic, and self-potential methods. Agricultural geophysical studies are also being linked to ground water studies that utilize deeper penetrating geophysical methods than normally used.

  14. Use of laboratory geophysical and geotechnical investigation methods to characterize gypsum rich soils

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Raghava A.

    Gypsum rich soils are found in many parts of the world, particularly in arid and semi-arid regions. Most gypsum occurs in the form of evaporites, which are minerals that precipitate out of water due to a high rate of evaporation and a high mineral concentration. Gypsum rich soils make good foundation material under dry conditions but pose major engineering hazards when exposed to water. Gypsum acts as a weak cementing material and has a moderate solubility of about 2.5 g/liter. The dissolution of gypsum causes the soils to undergo unpredictable collapse settlement leading to severe structural damages. The damages incur heavy financial losses every year. The objective of this research was to use geophysical methods such as free-free resonant column testing and electrical resistivity testing to characterize gypsum rich soils based on the shear wave velocity and electrical resistivity values. The geophysical testing methods could provide quick, non-intrusive and cost-effective methodologies to screen sites known to contain gypsum deposits. Reconstituted specimens of ground gypsum and quartz sand were prepared in the laboratory with varying amounts of gypsum and tested. Additionally geotechnical tests such as direct shear strength tests and consolidation tests were conducted to estimate the shear strength parameters (drained friction angle and cohesion) and the collapse potential of the soils. The effect of gypsum content on the geophysical and geotechnical parameters of soil was of particular interest. It was found that gypsum content had an influence on the shear wave velocity but had minimal effect on electrical resistivity. The collapsibility and friction angle of the soil increased with increase in gypsum. The information derived from the geophysical and geotechnical tests was used to develop statistical design equations and correlations to estimate gypsum content and soil collapse potential.

  15. Geophysical Model Research and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasyanos, M; Walter, W; Tkalcic, H

    2004-07-07

    Geophysical models constitute an important component of calibration for nuclear explosion monitoring. We will focus on four major topics: (1) a priori geophysical models, (2) surface wave models, (3) receiver function derived profiles, and (4) stochastic geophysical models. The first, a priori models, can be used to predict a host of geophysical measurements, such as body wave travel times, and can be derived from direct regional studies or even by geophysical analogy. Use of these models is particularly important in aseismic regions or regions without seismic stations, where data of direct measurements might not exist. Lawrence Livermore National Laboratory (LLNL)more » has developed the Western Eurasia and North Africa (WENA) model which has been evaluated using a number of data sets, including travel times, surface waves, receiver functions, and waveform analysis (Pasyanos et al., 2004). We have joined this model with our Yellow Sea - Korean Peninsula (YSKP) model and the Los Alamos National Laboratory (LANL) East Asia model to construct a model for all of Eurasia and North Africa. Secondly, we continue to improve upon our surface wave model by adding more paths. This has allowed us to expand the region to all of Eurasia and into Africa, increase the resolution of our model, and extend results to even shorter periods (7 sec). High-resolution models exist for the Middle East and the YSKP region. The surface wave results can be inverted either alone, or in conjunction with other data, to derive models of the crust and upper mantle structure. We are also using receiver functions, in joint inversions with the surface waves, to produce profiles directly under seismic stations throughout the region. In a collaborative project with Ammon, et al., they have been focusing on stations throughout western Eurasia and North Africa, while we have been focusing on LLNL deployments in the Middle East, including Kuwait, Jordan, and the United Arab Emirates. Finally, we have

  16. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    three components: (1) A literature study to find relevant, existing theoretical models, (2) laboratory determinations to confirm their validity for Icelandic rocks of interest and (3) a field campaign to obtain in-situ, shallow rock properties from seismic and resistivity tomography surveys over a fossilized and exhumed geothermal system. Theoretical models describing physical behavior for rocks with strong inhomogeneities, complex pore structure and complicated fluid-rock interaction mechanisms are often poorly constrained and require the knowledge about a wide range of parameters that are difficult to quantify. Therefore we calibrate the theoretical models by laboratory measurements on samples of rocks, forming magmatic geothermal reservoirs. Since the samples used in the laboratory are limited in size, and laboratory equipment operates at much higher frequency than the instruments used in the field, the results need to be up-scaled from the laboratory scale to field scale. This is not a simple process and entails many uncertainties.

  17. Cross-polarization microwave radar return at severe wind conditions: laboratory model and geophysical model function.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Abramov, Victor; Ermoshkin, Alexey; Zuikova, Emma; Kazakov, Vassily; Sergeev, Daniil; Kandaurov, Alexandr

    2014-05-01

    Satellite remote sensing is one of the main techniques of monitoring severe weather conditions over the ocean. The principal difficulty of the existing algorithms of retrieving wind based on dependence of microwave backscattering cross-section on wind speed (Geophysical Model Function, GMF) is due to its saturation at winds exceeding 25 - 30 m/s. Recently analysis of dual- and quad-polarization C-band radar return measured from satellite Radarsat-2 suggested that the cross-polarized radar return has much higher sensitivity to the wind speed than co-polarized back scattering [1] and conserved sensitivity to wind speed at hurricane conditions [2]. Since complete collocation of these data was not possible and time difference in flight legs and SAR images acquisition was up to 3 hours, these two sets of data were compared in [2] only statistically. The main purpose of this paper is investigation of the functional dependence of cross-polarized radar cross-section on the wind speed in laboratory experiment. Since cross-polarized radar return is formed due to scattering at small-scale structures of the air-sea interface (short-crested waves, foam, sprays, etc), which are well reproduced in laboratory conditions, then the approach based on laboratory experiment on radar scattering of microwaves at the water surface under hurricane wind looks feasible. The experiments were performed in the Wind-wave flume located on top of the Large Thermostratified Tank of the Institute of Applied Physics, where the airflow was produced in the flume with the straight working part of 10 m and operating cross section 0.40?0.40 sq. m, the axis velocity can be varied from 5 to 25 m/s. Microwave measurements were carried out by a coherent Doppler X-band (3.2 cm) scatterometer with the consequent receive of linear polarizations. Experiments confirmed higher sensitivity to the wind speed of the cross-polarized radar return. Simultaneously parameters of the air flow in the turbulent boundary layer

  18. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  19. A geophysical perspective on mantle water content and melting: Inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles

    NASA Astrophysics Data System (ADS)

    Khan, A.; Shankland, T. J.

    2012-02-01

    This paper applies electromagnetic sounding methods for Earth's mantle to constrain its thermal state, chemical composition, and "water" content. We consider long-period inductive response functions in the form of C-responses from four stations distributed across the Earth (Europe, North America, Asia and Australia) covering a period range from 3.9 to 95.2 days and sensitivity to ~ 1200 km depth. We invert C-responses directly for thermo-chemical state using a self-consistent thermodynamic method that computes phase equilibria as functions of pressure, temperature, and composition (in the Na2O-CaO-FeO-MgO-Al2O3-SiO2 model system). Computed mineral modes are combined with recent laboratory-based electrical conductivity models from independent experimental research groups (Yoshino (2010) and Karato (2011)) to compute bulk conductivity structure beneath each of the four stations from which C-responses are estimated. To reliably allocate water between the various mineral phases we include laboratory-measured water partition coefficients for major upper mantle and transition zone minerals. This scheme is interfaced with a sampling-based algorithm to solve the resulting non-linear inverse problem. This approach has two advantages: (1) It anchors temperatures, composition, electrical conductivities, and discontinuities that are in laboratory-based forward models, and (2) At the same time it permits the use of geophysical inverse methods to optimize conductivity profiles to match geophysical data. The results show lateral variations in upper mantle temperatures beneath the four stations that appear to persist throughout the upper mantle and parts of the transition zone. Calculated mantle temperatures at 410 and 660 km depth lie in the range 1250-1650 °C and 1500-1750 °C, respectively, and generally agree with the experimentally-determined temperatures at which the measured phase reactions olivine → β-spinel and γ-spinel → ferropericlase + perovskite occur. The

  20. Soil and groundwater VOCs contamination: How can electrical geophysical measurements help assess post-bioremediation state?

    NASA Astrophysics Data System (ADS)

    Kessouri, P.; Johnson, T. C.; Day-Lewis, F. D.; Slater, L. D.; Ntarlagiannis, D.; Johnson, C. D.

    2016-12-01

    The former Brandywine MD (Maryland, USA) Defense Reutilization and Marketing Office (DRMO) was designated a hazardous waste Superfund site in 1999. The site was used as a storage area for waste and excess government equipment generated by several U.S. Navy and U.S. Air Force installations, leading to soil and groundwater contamination by volatile organic compounds (VOCs). Active bioremediation through anaerobic reductive dehalogenation was used to treat the groundwater and the aquifer unconsolidated materials in 2008, with electrical geophysical measurements employed to track amendment injections. Eight years later, we used spectral induced polarization (SIP) and time domain induced polarization (TDIP) on 2D surface lines and borehole electrical arrays to assess the long term impact of active remediation on physicochemical properties of the subsurface. Within the aquifer, the treated zone is more electrically conductive, and the phase shift describing the polarization effects is higher than in the untreated zone. Bulk conductivity and phase shift are also locally elevated close to the treatment injection well, possibly due to biogeochemical transformations associated with prolonged bacterial activity. Observed SIP variations could be explained by the presence of biofilms coating the pore space and/or by-products of the chemical reactions catalyzed by the bacterial activity (e.g. iron sulfide precipitation). To investigate these possibilities, we conducted complementary well logging measurements (magnetic susceptibility [MS], nuclear magnetic resonance [NMR], gamma-ray) using 5 boreholes installed at both treated and untreated locations of the site. We also collected water and soil samples on which we conducted microbiological and chemical analyses, along with geophysical observations (SIP, MS and NMR), in the laboratory. These measurements provide further insights into the physicochemical transformations in the subsurface resulting from the treatment and highlight

  1. Geophysical Fluid Dynamics Laboratory Open Days at the Woods Hole Oceanographic Institution

    NASA Astrophysics Data System (ADS)

    Hyatt, Jason; Cenedese, Claudia; Jensen, Anders

    2015-11-01

    This event was hosted for one week for two consecutive years in 2013 and 2014. It targeted postdocs, graduate students, K-12 students and local community participation. The Geophysical Fluid Dynamics Laboratory at the Woods Hole Oceanographic Institution hosted 10 hands-on demonstrations and displays, with something for all ages, to share the excitement of fluid mechanics and oceanography. The demonstrations/experiments spanned as many fluid mechanics problems as possible in all fields of oceanography and gave insight into using fluids laboratory experiments as a research tool. The chosen experiments were `simple' yet exciting for a 6 year old child, a high school student, a graduate student, and a postdoctoral fellow from different disciplines within oceanography. The laboratory is a perfect environment in which to create excitement and stimulate curiosity. Even what we consider `simple' experiments can fascinate and generate interesting questions from both a 6 year old child and a physics professor. How does an avalanche happen? How does a bath tub vortex form? What happens to waves when they break? How does a hurricane move? Hands-on activities in the fluid dynamics laboratory helped students of all ages in answering these and other intriguing questions. The laboratory experiments/demonstrations were accompanied by `live' videos to assist in the interpretation of the demonstrations. Posters illustrated the oceanographic/scientific applicability and the location on Earth where the dynamics in the experiments occur. Support was given by the WHOI Doherty Chair in Education.

  2. Spatial scale analysis in geophysics - Integrating surface and borehole geophysics in groundwater studies

    USGS Publications Warehouse

    Paillet, Frederick L.; Singhroy, V.H.; Hansen, D.T.; Pierce, R.R.; Johnson, A.I.

    2002-01-01

    Integration of geophysical data obtained at various scales can bridge the gap between localized data from boreholes and site-wide data from regional survey profiles. Specific approaches to such analysis include: 1) comparing geophysical measurements in boreholes with the same measurement made from the surface; 2) regressing geophysical data obtained in boreholes with water-sample data from screened intervals; 3) using multiple, physically independent measurements in boreholes to develop multivariate response models for surface geophysical surveys; 4) defining subsurface cell geometry for most effective survey inversion methods; and 5) making geophysical measurements in boreholes to serve as independent verification of geophysical interpretations. Integrated analysis of surface electromagnetic surveys and borehole geophysical logs at a study site in south Florida indicates that salinity of water in the surficial aquifers is controlled by a simple wedge of seawater intrusion along the coast and by a complex pattern of upward brine seepage from deeper aquifers throughout the study area. This interpretation was verified by drilling three additional test boreholes in carefully selected locations.

  3. Subterranean gravity and other deep hole geophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, F.D.

    1983-01-01

    The early history of the determination of the Newtonian gravitational constant, G, was closely linked with the developments of geodesy and gravity surveying. The current search for non-Newtonian effects that may provide an experimental guide to unification theories has led to our retracting some of this history. Modern geophysical techniques and facilities, using especially mines and deep ocean probes, permit absolute measurements of G for distance scales up to a few kilometers. Although the accuracy of the very long range determinations cannot equal that of the best laboratory measurements, they are crucial to assessment of the possibility of a scalemore » dependence of G. Preliminary data give values of G on a scale 100-1000 m biased about 1% higher than the laboratory value. Possibilities of systematic error compel us to question this apparently significant bias but it provides the incentive for better controlled large scale experiments. Several are in progress or under development. A particular difficulty concerns the measurement of in situ density. Even for hard rock, release from overburden pressure causes microcracks and pores to open. Natural pore closure is effective only with deep burial and for this reason there are advantages in deep instrument placement for several geophysical studies.« less

  4. Geophysics in INSPIRE

    NASA Astrophysics Data System (ADS)

    Sőrés, László

    2013-04-01

    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  5. A rain splash transport equation assimilating field and laboratory measurements

    USGS Publications Warehouse

    Dunne, T.; Malmon, D.V.; Mudd, S.M.

    2010-01-01

    Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment. Copyright 2010 by the American Geophysical Union. Copyright 2010 by the American Geophysical Union.

  6. Prospect of Continuous VLBI Measurement of Earth Rotation in Monitoring Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Ma, Chopo; Clark, Thomas

    1998-01-01

    Large-scale mass transports in the geophysical fluids of the Earth system excite Earth's rotational variations in both length-of-day and polar motion. The excitation process is via the conservation of angular momentum. Therefore Earth rotation observations contain information about the integrated angular momentum (consisting of both the mass term and the motion term) of the geophysical fluids, which include atmosphere, hydrosphere, mantle, and the outer and inner cores. Such global information is often important and otherwise unattainable depending on the nature of the mass transport, its magnitude and time scale. The last few years have seen great advances in VLBI measurement of Earth rotation in precision and temporal resolution. These advances have opened new. areas in geophysical fluid studies, such as oceanic tidal angular momentum, atmospheric tides, Earth librations, and rapid atmospheric angular momentum fluctuations. Precision of 10 microseconds in UTI and 200 microarcseconds in polar motion can now be achieved on hourly basis. Building upon this heritage, the multi-network geodetic VLBI project, Continuous Observation of the Rotation of the Earth (CORE), promises to further these studies and to make possible studies on elusive but tell-tale geophysical processes such as oscillatory modes in the core and in the atmosphere. Currently the early phase of CORE is underway. Within a few years into the new mellinnium, the upcoming space gravity missions (such as GRACE) will measure the temporal variations in Earth's gravitational field, thus providing complementary information to that from Earth rotation study for a better understanding of global geophysical fluid processes.

  7. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    NASA Astrophysics Data System (ADS)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  8. Publications - GMC 1 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications GMC 1 main content Itkillik #1 well Authors: Amerada Hess Corporation, and Chemical and Geological Laboratories of Alaska

  9. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  10. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  11. The Evolving Role of Field and Laboratory Seismic Measurements in Geotechnical Engineering

    NASA Astrophysics Data System (ADS)

    Stokoe, K. H.

    2017-12-01

    The geotechnical engineering has been faced with the problem of characterizing geological materials for site-specific design in the built environment since the profession began. When one of the design requirements included determining the dynamic response of important and critical facilities to earthquake shaking or other types of dynamic loads, seismically-based measurements in the field and laboratory became important tools for direct characterization of the stiffnesses and energy dissipation (material damping) of these materials. In the 1960s, field seismic measurements using small-strain body waves were adapted from exploration geophysics. At the same time, laboratory measurements began using dynamic, torsional, resonant-column devices to measure shear stiffness and material damping in shear. The laboratory measurements also allowed parameters such as material type, confinement state, and nonlinear straining to be evaluated. Today, seismic measurements are widely used and evolving because: (1) the measurements have a strong theoretical basis, (2) they can be performed in the field and laboratory, thus forming an important link between these measurements, and (3) in recent developments in field testing involving surface waves, they are noninvasive which makes them cost effective in comparison to other methods. Active field seismic measurements are used today over depths ranging from about 5 to 1000 m. Examples of shear-wave velocity (VS) profiles evaluated using boreholes, penetrometers, suspension logging, and Rayleigh-type surface waves are presented. The VS measurements were performed in materials ranging from uncemented soil to unweathered rock. The coefficients of variation (COVs) in the VS profiles are generally less than 0.15 over sites with surface areas of 50 km2 or more as long as material types are not laterally mixed. Interestingly, the largest COVs often occur around layer boundaries which vary vertically. It is also interesting to observe how the

  12. Laboratory electrical resistivity analysis of geologic samples from Fort Irwin, California: Chapter E in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Bloss, Benjamin R.; Bedrosian, Paul A.; Buesch, David C.

    2015-01-01

    Correlating laboratory resistivity measurements with geophysical resistivity models helps constrain these models to the geology and lithology of an area. Throughout the Fort Irwin National Training Center area, 111 samples from both cored boreholes and surface outcrops were collected and processed for laboratory measurements. These samples represent various lithologic types that include plutonic and metamorphic (basement) rocks, lava flows, consolidated sedimentary rocks, and unconsolidated sedimentary deposits that formed in a series of intermountain basins. Basement rocks, lava flows, and some lithified tuffs are generally resistive (≥100 ohm-meters [Ω·m]) when saturated. Saturated unconsolidated samples are moderately conductive to conductive, with resistivities generally less than 100 Ω·m, and many of these samples are less than 50 Ω·m. The unconsolidated samples can further be separated into two broad groups: (1) younger sediments that are moderately conductive, owing to their limited clay content, and (2) older, more conductive sediments with a higher clay content that reflects substantial amounts of originally glassy volcanic ash subsequently altered to clay. The older sediments are believed to be Tertiary. Time-domain electromagnetic (TEM) data were acquired near most of the boreholes, and, on the whole, close agreements between laboratory measurements and resistivity models were found. 

  13. Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.

    2016-12-01

    Within the unsaturated zone a constant downward gravity-driven flux of water commonly exists at depths ranging from a few meters to tens of meters depending on climate, medium, and vegetation. In this case a steady-state application of Darcy's law can provide recharge rate estimates.We have applied an integrated approach that combines field geophysical measurements with laboratory hydraulic property measurements on core samples to produce accurate estimates of steady-state aquifer recharge, or, in cases where episodic recharge also occurs, the steady component of recharge. The method requires (1) measurement of the water content existing in the deep unsaturated zone at the location of a core sample retrieved for lab measurements, and (2) measurement of the core sample's unsaturated hydraulic conductivity over a range of water content that includes the value measured in situ. Both types of measurements must be done with high accuracy. Darcy's law applied with the measured unsaturated hydraulic conductivity and gravitational driving force provides recharge estimates.Aquifer recharge was estimated using Darcian and geophysical methods at a deep porous rock (calcarenite) experimental site in Canosa, southern Italy. Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) profiles were collected from the land surface to water table to provide data for Darcian recharge estimation. Volumetric water content was estimated from resistivity profiles using a laboratory-derived calibration function based on Archie's law for rock samples from the experimental site, where electrical conductivity of the rock was related to the porosity and water saturation. Multiple-depth core samples were evaluated using the Quasi-Steady Centrifuge (QSC) method to obtain hydraulic conductivity (K), matric potential (ψ), and water content (θ) estimates within this profile. Laboratory-determined unsaturated hydraulic conductivity ranged from 3.90 x 10-9 to 1.02 x 10-5 m

  14. Geophysics

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Cassen, P.

    1976-01-01

    Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.

  15. A survey of the geophysical properties of chlorinated DNAPLs

    NASA Astrophysics Data System (ADS)

    Ajo-Franklin, Jonathan B.; Geller, Jil T.; Harris, Jerry M.

    2006-07-01

    Dense Non Aqueous Phase Liquids (DNAPLs) are a family of fluids often encountered as industrial contaminants. Some of the most problematic DNAPLs are chlorinated solvents such as trichloroethylene (TCE) and tetrachloroethylene (PCE). While many DNAPLs have been extensively studied from a hydrology perspective, documentation of DNAPL properties relevant to geophysical detection is far from complete. We present a short survey of acoustic velocity, density, and dielectric constant measurements for an important subset of commonly encountered dense chlorinated contaminants. Viscosity and surface tension data are included to allow exploration of contaminant signatures within the context of poroelastic or contact theory models. Where available, the temperature dependence of solvent properties are also provided. Densities for the listed DNAPLs range from 1253 to 1622 kg/m 3 at 20 °C. All are effectively non-polar with dielectric constants between 2.2 and 10.9 and have relatively low compressional wave velocities ranging from 938 to 1217 m/s. We conclude with documentation of a small collection of recent experiments investigating the properties of soils partially saturated with similar fluids. Current laboratory evidence demonstrates that DNAPLs can produce changes in geophysically measurable properties. We hope that this survey will facilitate further studies of the feasibility and effectiveness of geophysical techniques for detection of DNAPLs in the subsurface.

  16. Acceleration to failure in geophysical signals prior to laboratory rock failure and volcanic eruptions (Invited)

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Bell, A. F.; Greenhough, J.; Heap, M. J.; Meredith, P. G.

    2010-12-01

    The nucleation processes that ultimately lead to earthquakes, volcanic eruptions, rock bursts in mines, and landslides from cliff slopes are likely to be controlled at some scale by brittle failure of the Earth’s crust. In laboratory brittle deformation experiments geophysical signals commonly exhibit an accelerating trend prior to dynamic failure. Similar signals have been observed prior to volcanic eruptions, including volcano-tectonic earthquake event and moment release rates. Despite a large amount of effort in the search, no such statistically robust systematic trend is found prior to natural earthquakes. Here we describe the results of a suite of laboratory tests on Mount Etna Basalt and other rocks to examine the nature of the non-linear scaling from laboratory to field conditions, notably using laboratory ‘creep’ tests to reduce the boundary strain rate to conditions more similar to those in the field. Seismic event rate, seismic moment release rate and rate of porosity change show a classic ‘bathtub’ graph that can be derived from a simple damage model based on separate transient and accelerating sub-critical crack growth mechanisms, resulting from separate processes of negative and positive feedback in the population dynamics. The signals exhibit clear precursors based on formal statistical model tests using maximum likelihood techniques with Poisson errors. After correcting for the finite loading time of the signal, the results show a transient creep rate that decays as a classic Omori law for earthquake aftershocks, and remarkably with an exponent near unity, as commonly observed for natural earthquake sequences. The accelerating trend follows an inverse power law when fitted in retrospect, i.e. with prior knowledge of the failure time. In contrast the strain measured on the sample boundary shows a less obvious but still accelerating signal that is often absent altogether in natural strain data prior to volcanic eruptions. To test the

  17. Introduction to the geologic and geophysical studies of Fort Irwin, California: Chapter A in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Buesch, David C.

    2014-01-01

    Geologic and geophysical investigations in the vicinity of Fort Irwin National Training Center, California, have been completed in support of groundwater investigations, and are presented in eight chapters of this report. A generalized surficial geologic map along with field and borehole investigations conducted during 2010–11 provide a lithostratigraphic and structural framework for the area during the Cenozoic. Electromagnetic properties of resistivity were measured in the laboratory on hand and core samples, and compared to borehole geophysical resistivity data. These data were used in conjunction with ground-based time-domain and airborne data and interpretations to provide a framework for the shallow lithologic units and structure. Gravity and aeromagnetic maps cover areas ~4 to 5 times that of Fort Irwin. Each chapter includes hydrogeologic applications of the data or model results.

  18. Environmental Geophysics

    EPA Pesticide Factsheets

    The Environmental Geophysics website features geophysical methods, terms and references; forward and inverse geophysical models for download; and a decision support tool to guide geophysical method selection for a variety of environmental applications.

  19. Merging information in geophysics: the triumvirat of geology, geophysics, and petrophysics

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2016-12-01

    We know that geophysical inversion is non-unique and that many classical regularization techniques are unphysical. Despite this, we like to use them because of their simplicity and because geophysicists are often afraid to bias the inverse problem by introducing too much prior information (in a broad sense). It is also clear that geophysics is done on geological objects that are not random structures. Spending some time with a geologist in the field, before organizing a field geophysical campaign, is always an instructive experience. Finally, the measured properties are connected to physicochemical and textural parameters of the porous media and the interfaces between the various phases of a porous body. .Some fundamental parameters may control the geophysical observtions or their time variations. If we want to improve our geophysical tomograms, we need to be risk-takers and acknowledge, or rather embrqce, the cross-fertilization arising by coupling geology, geophysics, and ptrophysics. In this presentation, I will discuss various techniques to do so. They will include non-stationary geostatistical descriptors, facies deformation, cross-coupled petrophysical properties using petrophysical clustering, and image-guided inversion. I will show various applications to a number of relevant cases in hydrogeophysics. From these applications, it may become clear that there are many ways to address inverse or time-lapse inverse problems and geophysicists have to be pragmatic regarding the methods used depending on the degree of available prior information.

  20. Geophysical examination of coal deposits

    NASA Astrophysics Data System (ADS)

    Jackson, L. J.

    1981-04-01

    Geophysical techniques for the solution of mining problems and as an aid to mine planning are reviewed. Techniques of geophysical borehole logging are discussed. The responses of the coal seams to logging tools are easily recognized on the logging records. Cores for laboratory analysis are cut from selected sections of the borehole. In addition, information about the density and chemical composition of the coal may be obtained. Surface seismic reflection surveys using two dimensional arrays of seismic sources and detectors detect faults with throws as small as 3 m depths of 800 m. In geologically disturbed areas, good results have been obtained from three dimensional surveys. Smaller faults as far as 500 m in advance of the working face may be detected using in seam seismic surveying conducted from a roadway or working face. Small disturbances are detected by pulse radar and continuous wave electromagnetic methods either from within boreholes or from underground. Other geophysical techniques which explicit the electrical, magnetic, gravitational, and geothermal properties of rocks are described.

  1. Agricultural geophysics: Past/present accomplishments and future advancements

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods have become an increasingly valuable tool for application within a variety of agroecosystems. Agricultural geophysics measurements are obtained at a wide range of scales and often exhibit significant variability both temporally and spatially. The three geophysical methods predomi...

  2. Detecting Underground Mine Voids Using Complex Geophysical Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, V. F.; Harbert, W. P.; Hammack, R. W.

    2006-12-01

    In July 2006, the National Energy Technology Laboratory in collaboration with Department of Geology and Planetary Science, University of Pittsburgh conducted complex ground geophysical surveys of an area known to be underlain by shallow coal mines. Geophysical methods including electromagnetic induction, DC resistivity and seismic reflection were conducted. The purpose of these surveys was to: 1) verify underground mine voids based on a century-old mine map that showed subsurface mine workings georeferenced to match with present location of geophysical test-site located on the territory of Bruceton research center in Pittsburgh, PA, 2) deliniate mine workings that may be potentially filledmore » with electrically conductive water filtrate emerging from adjacent groundwater collectors and 3) establish an equipment calibration site for geophysical instruments. Data from electromagnetic and resistivity surveys were further processed and inverted using EM1DFM, EMIGMA or Earthimager 2D capablilities in order to generate conductivity/depth images. Anomaly maps were generated, that revealed the locations of potential mine openings.« less

  3. Evolution of Neural Networks for the Prediction of Hydraulic Conductivity as a Function of Borehole Geophysical Logs: Shobasama Site, Japan

    NASA Astrophysics Data System (ADS)

    Reeves, P.; McKenna, S. A.; Takeuchi, S.; Saegusa, H.

    2003-12-01

    occurring at the extreme measurement values. Results of these simulations indicate that the most informative geophysical measurements for the prediction of transmissivity are depth and sonic velocity. The long normal resistivity and self potential geophysical measurements are moderately informative. In addition, it was found that porosity and crack counts (clear, open, or hairline) do not inform predictions of transmissivity. This work was funded by the Japan Nuclear Cycle Development Institute. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94-AL-85000

  4. Drilling, construction, geophysical log data, and lithologic log for boreholes USGS 142 and USGS 142A, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Hodges, Mary K.V.; Schusler, Kyle; Mudge, Christopher

    2017-07-27

    Starting in 2014, the U.S. Geological Survey in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 142 and USGS 142A for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 142 initially was cored to collect rock and sediment core, then re-drilled to complete construction as a screened water-level monitoring well. Borehole USGS 142A was drilled and constructed as a monitoring well after construction problems with borehole USGS 142 prevented access to upper 100 feet (ft) of the aquifer. Boreholes USGS 142 and USGS 142A are separated by about 30 ft and have similar geology and hydrologic characteristics. Groundwater was first measured near 530 feet below land surface (ft BLS) at both borehole locations. Water levels measured through piezometers, separated by almost 1,200 ft, in borehole USGS 142 indicate upward hydraulic gradients at this location. Following construction and data collection, screened water-level access lines were placed in boreholes USGS 142 and USGS 142A to allow for recurring water level measurements.Borehole USGS 142 was cored continuously, starting at the first basalt contact (about 4.9 ft BLS) to a depth of 1,880 ft BLS. Excluding surface sediment, recovery of basalt, rhyolite, and sediment core at borehole USGS 142 was approximately 89 percent or 1,666 ft of total core recovered. Based on visual inspection of core and geophysical data, material examined from 4.9 to 1,880 ft BLS in borehole USGS 142 consists of approximately 45 basalt flows, 16 significant sediment and (or) sedimentary rock layers, and rhyolite welded tuff. Rhyolite was encountered at approximately 1,396 ft BLS. Sediment layers comprise a large percentage of the borehole between 739 and 1,396 ft BLS with grain sizes ranging from clay and silt to cobble size. Sedimentary rock layers had calcite cement. Basalt flows

  5. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  6. Calibration of a geophysically based model using soil moisture measurements in mountainous terrains

    NASA Astrophysics Data System (ADS)

    Pellet, Cécile; Hilbich, Christin; Marmy, Antoine; Hauck, Christian

    2016-04-01

    The use of geophysical methods in the field of permafrost research is well established and crucial since it is the only way to infer the composition of the subsurface material. Since geophysical measurements are indirect, ambiguities in the interpretation of the results can arise, hence the simultaneous use of several methods (e.g. electrical resistivity tomography and refraction seismics) is often necessary. The so-called four-phase model, 4PM (Hauck et al., 2011) constitutes a further step towards clarification of interpretation from geophysical measurements. It uses two well-known petrophysical relationships, namely Archie's law and an extension of Timur's time-averaged equation for seismic P-wave velocities, to quantitatively estimate the different phase contents (air, water and ice) in the ground from tomographic electric and seismic measurements. In this study, soil moisture measurements were used to calibrate the 4PM in order to assess the spatial distribution of water, ice and air content in the ground at three high elevation sites with different ground properties and thermal regimes. The datasets used here were collected as part of the SNF-project SOMOMOUNT. Within the framework of this project a network of six entirely automated soil moisture stations was installed in Switzerland along an altitudinal gradient ranging from 1'200 m. a.s.l. to 3'400 m. a.s.l. The standard instrumentation of each station comprises the installation of Frequency Domain Reflectometry (FDR) and Time Domain Reflectometry (TDR) sensors for long term monitoring coupled with repeated Electrical Resistivity Tomography (ERT) and Refraction Seismic Tomography (RST) as well as spatial FDR (S-FDR) measurements. The use of spatially distributed soil moisture data significantly improved the 4PM calibration process and a semi-automatic calibration scheme was developed. This procedure was then tested at three different locations, yielding satisfactory two dimensional distributions of water

  7. Geophysical Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  8. Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.

    2002-05-01

    Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive

  9. Coupled geophysical-hydrological modeling of controlled NAPL spill

    NASA Astrophysics Data System (ADS)

    Kowalsky, M. B.; Majer, E.; Peterson, J. E.; Finsterle, S.; Mazzella, A.

    2006-12-01

    Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data interpretation. Combining multiple geophysical data types and incorporating constraints from hydrological models will potentially decrease the non-uniqueness in data interpretation and aid in site characterization. Large-scale laboratory experiments have been conducted over several years to evaluate the use of various geophysical methods, including ground-penetrating radar (GPR), seismic, and electrical methods, for monitoring controlled spills of tetrachloroethylene (PCE), a hazardous industrial solvent that is pervasive in the subsurface. In the current study, we consider an experiment in which PCE was introduced into a large tank containing a heterogeneous distribution of sand and clay mixtures, and allowed to migrate while time-lapse geophysical data were collected. We consider two approaches for interpreting the surface GPR and crosswell seismic data. The first approach involves (a) waveform inversion of the surface GPR data using a non-gradient based optimization algorithm to estimate the dielectric constant distributions and (b) conversion of crosswell seismic travel times to acoustic velocity distributions; the dielectric constant and acoustic velocity distributions are then related to NAPL saturation using appropriate petrophysical models. The second approach takes advantage of a recently developed framework for coupled hydrological-geophysical modeling, providing a hydrological constraint on interpretation of the geophysical data and additionally resulting in quantitative estimates of the most relevant hydrological parameters that determine NAPL behavior in the system. Specifically, we simulate NAPL migration using the multiphase multicomponent flow simulator TOUGH2 with a 2-D radial

  10. Geophysics From Terrestrial Time-Variable Gravity Measurements

    NASA Astrophysics Data System (ADS)

    Van Camp, Michel; de Viron, Olivier; Watlet, Arnaud; Meurers, Bruno; Francis, Olivier; Caudron, Corentin

    2017-12-01

    In a context of global change and increasing anthropic pressure on the environment, monitoring the Earth system and its evolution has become one of the key missions of geosciences. Geodesy is the geoscience that measures the geometric shape of the Earth, its orientation in space, and gravity field. Time-variable gravity, because of its high accuracy, can be used to build an enhanced picture and understanding of the changing Earth. Ground-based gravimetry can determine the change in gravity related to the Earth rotation fluctuation, to celestial body and Earth attractions, to the mass in the direct vicinity of the instruments, and to vertical displacement of the instrument itself on the ground. In this paper, we review the geophysical questions that can be addressed by ground gravimeters used to monitor time-variable gravity. This is done in relation to the instrumental characteristics, noise sources, and good practices. We also discuss the next challenges to be met by ground gravimetry, the place that terrestrial gravimetry should hold in the Earth observation system, and perspectives and recommendations about the future of ground gravity instrumentation.

  11. Geophysical Measurements at Merseburg Cathedral

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Erkul, Ercan; Schulte-Kortnack, Detlef; Sobott, Robert; Hilbert, Helene; Esel, Yunus; Tesch, Marcel; Wiemann, Timo

    2017-04-01

    Merseburg Cathedral has been founded in 1015 by Bishop Thietmar von Merseburg and has been converted into a gothic cathedral from 1510 to 1517 by Bishop Thilo von Trotha. The cathedral together with the cloister, the castle and several appurtenant buildings are well preserved. The entire complex represents one of the most complete examples of medieval royal palaces and bishop's sees in Germany northeast of the Roman Limes. Here we present examples of geophysical measurements at the cathedral namely ultrasonic surface measurements, ground penetrating radar (GPR) as well as thermographic measurements. Ultrasonic surface measurements have been carried out at epitaphs made of sandstone to quantify changes in stone properties due to weathering. The 95 measurements reveal a strong variability in Rayleigh wave velocities ranging from about 800 m/s to 2000 m/s. Unweathered parts of the sandstone epitaphs show Rayleigh wave velocities of about 1500 m/s. A reduction in Rayleigh wave velocities hints at loosening of the rock surface whereas an increase is due to surficial black crusts with pores filled mainly by gypsum. Waveform inversion of the dispersed Rayleigh waveform yields depth profiles of the shear-wave velocity indicating the thickness of altered surficial layers. Also a loosening below the black crust may be detected non-destructively. A number of measurements have been repeated after one year and after a rainy day. Statistical analysis shows that random errors in Rayleigh wave velocities are less than about 3 %. Increase of moisture in porous sandstones leads to stronger damping of the Rayleigh wave and consequently to a reduction in Rayleigh wave velocities by up to about 10 %. At strongly altered epitaphs a reduction in Rayleigh wave velocity by up to 20 % has been observed within one year. Within one day an increase of up to about 7 % may indicate stiffening of black crusts due to moisture absorption. GPR measurements have been performed at several locations

  12. A German Geophysics School Project First steps to bring geophysical topics to schoolclasses

    NASA Astrophysics Data System (ADS)

    Schneider, S.

    2002-12-01

    In Germany Geophysics is a science with almost none or a bad reputation. People do not know to distinguish between Geophysics, Geography and Geology. In order to change the public view on Geosciences, a,School Project Geophysics' is going to be created at the Institute of Meteorology and Geophysics, Johann Wolfgang Goethe University, Frankfurt, which will offer geophysical ideas, methodes and scientific results to schoolclasses. After researches like PISA or TIMSS (third international Math and Nature-Science test) new concepts in education will be required. Interdisciplinary tasks are demanded by national and international commissions.\\The,School Project Geophysics' will be created to bring geophysical themes and results of scientific research into schools. One Day- or one Week-Workshops will help to publish geophysical contents in close cooperation with Physics - and Geography - teachers.\\Hands-on experiments (for advanced pupils) like refraction-Seismics or Magnetic measurements will lead students closer to scientific work and will help to establish personal interests in Earthsciences. Working with personally produced datasets will show the basics of inversion theory and point out the difficulties in creating models. Boundaries of data interpretation (the plurality of variables needed) will teach the school children to see scientific and statistic predictions and declarations more criticaly. Animations and Videos will present global examples (for example of volcanoes or Earthquakes) and lead over to regional sites. Excursions to these sites will help to show fieldwork methods and its problems and will convince to take a different look on topography and landscapes.\\All necessary utilities (Animations, Videos, Pictures and foils) will be offered to teachers in an online-data base which will be installed and managed by the project. Teachers and pupils might get easily into contact with Scientists to discuss geoscientific items. Further on extensions to geographic

  13. The Geophysical Fluid Flow Cell Experiment

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.

    1999-01-01

    The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.

  14. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    NASA Astrophysics Data System (ADS)

    Koppenjan, S.,; Martinez, M.

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE's Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a 'chirped' FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site.

  15. 2002 Airborne Geophysical Survey at Pueblo of Isleta Bombing Targets, New Mexico, April 10 May 6, 2002 (Rev 1)

    DTIC Science & Technology

    2005-12-01

    helicopter geophysical survey performed by US Army Engineering Support Center, Huntsville (USAESCH) and Oak Ridge National Laboratory ( ORNL ) over areas...Array Detection System NAD North American Datum ORAGS Oak Ridge Airborne Geophysical System ORNL Oak Ridge National Laboratory RMS Root...used by ORNL in 1999 for.....................5 Figure 2.4 ORAGS-Hammerhead airborne magnetometer system used at Badlands Bombing Range in FY2000

  16. Oceanic crustal velocities from laboratory and logging measurements of Integrated Ocean Drilling Program Hole 1256D

    NASA Astrophysics Data System (ADS)

    Gilbert, Lisa A.; Salisbury, Matthew H.

    2011-09-01

    Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.

  17. Continuous monitoring of the lunar or Martian subsurface using on-board pattern recognition and neural processing of Rover geophysical data

    NASA Technical Reports Server (NTRS)

    Glass, Charles E.; Boyd, Richard V.; Sternberg, Ben K.

    1991-01-01

    The overall aim is to provide base technology for an automated vision system for on-board interpretation of geophysical data. During the first year's work, it was demonstrated that geophysical data can be treated as patterns and interpreted using single neural networks. Current research is developing an integrated vision system comprising neural networks, algorithmic preprocessing, and expert knowledge. This system is to be tested incrementally using synthetic geophysical patterns, laboratory generated geophysical patterns, and field geophysical patterns.

  18. Publications - GMC 216 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a report of the U.S. Navy Fish Creek # 1 well Authors: Core Laboratories Publication Date: 1993 Publisher Fish Creek # 1 well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center

  19. Publications - GMC 28 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 28 Publication Details Title: Geochemical analysis (total organic carbon, rock-eval pyrolysis Reference Brown and Ruth Laboratories, Inc., 1985, Geochemical analysis (total organic carbon, rock-eval Organic Carbon Top of Page Department of Natural Resources, Division of Geological & Geophysical

  20. Geophysical and physical measurements applied to characterize an area prone to quick clay landslides in SW Sweden

    NASA Astrophysics Data System (ADS)

    Salas-Romero, Silvia; Malehmir, Alireza; Snowball, Ian; Lougheed, Bryan C.; Hellqvist, Magnus

    2014-05-01

    The study of quick clay landslides in Nordic countries, such as Sweden and Norway, is wide and varied. However, the occurrence of catastrophes like those in Munkedal, Sweden, in 2006, demands a more complete characterization of these materials and their extensiveness. The objectives of this research are mainly focused on obtaining information about the properties and behavior of quick clays in an area prone to landslides in southwestern Sweden. Two fieldwork campaigns were carried out in 2011 and 2013, using methods such as 2D and 3D P-wave and S-wave seismic, geoelectrics, controlled-source and radio-magnetotellurics, ground gravity, as well as downhole geophysics (measuring fluid temperature and conductivity, gamma radiation, sonic velocity and resistivity) performed in three boreholes located in the study area. Drill cores recovered using the SONIC technique provided samples for paleontological information, as well as laboratory measurements of physical properties of the subsurface materials to a maximum subsurface depth of about 60 m. The laboratory measurements included grain size analysis, mineral magnetic properties, electric conductivity, pH, salinity, total dissolved solids, x-ray fluorescence (XRF), and a reconnaissance study of the fossil content. A correlation study of the downhole geophysical measurements, 2D seismic sections located at the intersection with the boreholes and the sample observations indicated that the presence of quick clays is associated with contacts with coarse-grained materials. Although the PVC casing of the boreholes interferes with the sonic and resistivity measurements, the perforated parts of the PVC casing show significant changes. The most important variations in magnetic susceptibility and conductivity mostly coincide with these coarse-grained layers, supporting the seismic data. Coarse-grained layers are characterized by enhanced magnetic susceptibility and conductivity. Grain size analysis results on subsamples from the

  1. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koppenjan, S,; Martinez, M.

    1994-06-01

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteriamore » for the development of geophysical technologies and techniques. The US DOE`s Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ``chirped`` FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site.« less

  2. Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 126a, 126b, 127, 128, 129, 130, 131, 132, 133, and 134, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Hodges, Mary K.V.; Orr, Stephanie

    2008-01-01

    This report summarizes construction, geophysical, and lithologic data collected from ten U.S. Geological Survey (USGS) boreholes completed between 1999 nd 2006 at the Idaho National Laboratory (INL): USGS 126a, 126b, 127, 128, 129, 130, 131, 132, 133, and 134. Nine boreholes were continuously cored; USGS 126b had 5 ft of core. Completion depths range from 472 to 1,238 ft. Geophysical data were collected for each borehole, and those data are summarized in this report. Cores were photographed and digitally logged using commercially available software. Digital core logs are in appendixes A through J. Borehole descriptions summarize location, completion date, and amount and type of core recovered. This report was prepared by the USGS in cooperation with the U.S. Department of Energy (DOE).

  3. FY97 Geophysics Technology Area Plan.

    DTIC Science & Technology

    1997-03-01

    example, Seeker and Missile Simulations technology will be developed to make theater (DISAMS). This plan has been reviewed by all Air Force laboratory ...INDUSTRIAL RESEARCH AND Geophysics is a pervasive technology that directly DEVELOPMENT (IRAD): A comparison of the interacts with all of the other Air Force ...radiation belt models roadmaps that contain research programs underway has been halted. and planned by the Air Force and National Aeronau- 0 The design of

  4. Geophysical background and as-built target characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.W.

    1994-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas inmore » Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ``very easy to detect`` to ``challenging to the most advanced systems.`` Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets.« less

  5. Integrated Geophysical Analysis at a Legacy Test Site

    NASA Astrophysics Data System (ADS)

    Yang, X.; Mellors, R. J.; Sweeney, J. J.; Sussman, A. J.

    2015-12-01

    We integrate magnetic, electromagnetic (EM), gravity, and seismic data to develop a unified and consistent model of the subsurface at the U20ak site on Pahute Mesa at the Nevada National Nuclear Security Site (NNSS). The 1985 test, conducted in tuff at a depth of approximately 600 m did not collapse to the surface or produce a crater. The purpose of the geophysical measurements is to characterize the subsurface above and around the presumed explosion cavity. The magnetic data are used to locate steel borehole casings and pipes and are correlated with surface observations. The EM data show variation in lithology at depth and clear signatures from borehole casings and surface cables. The gravity survey detects a clear gravity low in the area of the explosion. The seismic data indicates shallow low velocity zone and indications of a deeper low velocity zones. In this study, we conduct 2D inversion of EM data for better characterization of site geology and use a common 3D density model to jointly interpret both the seismic and gravity data along with constraints on lithology boundaries from the EM. The integration of disparate geophysical datasets allows improved understanding of the non-prompt physical signatures of an underground nuclear explosion (UNE). LLNL Release Number: LLNL-ABS-675677. The authors express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, and the Comprehensive Inspection Technologies and UNESE working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was performed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory under award number DE-AC52-06NA25946.

  6. Fundamentals of Geophysics

    NASA Astrophysics Data System (ADS)

    Lowrie, William

    1997-10-01

    This unique textbook presents a comprehensive overview of the fundamental principles of geophysics. Unlike most geophysics textbooks, it combines both the applied and theoretical aspects to the subject. The author explains complex geophysical concepts using abundant diagrams, a simplified mathematical treatment, and easy-to-follow equations. After placing the Earth in the context of the solar system, he describes each major branch of geophysics: gravitation, seismology, dating, thermal and electrical properties, geomagnetism, paleomagnetism and geodynamics. Each chapter begins with a summary of the basic physical principles, and a brief account of each topic's historical evolution. The book will satisfy the needs of intermediate-level earth science students from a variety of backgrounds, while at the same time preparing geophysics majors for continued study at a higher level.

  7. About well-posed definition of geophysical fields'

    NASA Astrophysics Data System (ADS)

    Ermokhine, Konstantin; Zhdanova, Ludmila; Litvinova, Tamara

    2013-04-01

    We introduce a new approach to the downward continuation of geophysical fields based on approximation of observed data by continued fractions. Key Words: downward continuation, continued fraction, Viskovatov's algorithm. Many papers in geophysics are devoted to the downward continuation of geophysical fields from the earth surface to the lower halfspace. Known obstacle for the method practical use is a field's breaking-down phenomenon near the pole closest to the earth surface. It is explained by the discrepancy of the studied fields' mathematical description: linear presentation of the field in the polynomial form, Taylor or Fourier series, leads to essential and unremovable instability of the inverse problem since the field with specific features in the form of poles in the lower halfspace principally can't be adequately described by the linear construction. Field description by the rational fractions is closer to reality. In this case the presence of function's poles in the lower halfspace corresponds adequately to the denominator zeros. Method proposed below is based on the continued fractions. Let's consider the function measured along the profile and represented it in the form of the Tchebishev series (preliminary reducing the argument to the interval [-1, 1]): There are many variants of power series' presentation by continued fractions. The areas of series and corresponding continued fraction's convergence may differ essentially. As investigations have shown, the most suitable mathematical construction for geophysical fields' continuation is so called general C-fraction: where ( , z designates the depth) For construction of C-fraction corresponding to power series exists a rather effective and stable Viskovatov's algorithm (Viskovatov B. "De la methode generale pour reduire toutes sortes des quantitees en fraction continues". Memoires de l' Academie Imperiale des Sciences de St. Petersburg, 1, 1805). A fundamentally new algorithm for Downward Continuation

  8. Unleashing Geophysics Data with Modern Formats and Services

    NASA Astrophysics Data System (ADS)

    Ip, Alex; Brodie, Ross C.; Druken, Kelsey; Bastrakova, Irina; Evans, Ben; Kemp, Carina; Richardson, Murray; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    . The first geophysical data collection selected for transformation by GA was Airborne ElectroMagnetics (AEM) data which was held in proprietary-format files, with associated ISO 19115 metadata held in a separate relational database. Existing NetCDF-CF metadata profiles were enhanced to cover AEM and other geophysical data types, and work is underway to formalise the new geophysics vocabulary as a proposed extension to the Climate & Forecasting conventions. The richness and flexibility of HDF5's internal indexing mechanisms has allowed lossless restructuring of the AEM data for efficient storage, subsetting and access via either the NetCDF4/HDF5 APIs or Open-source Project for a Network Data Access Protocol (OPeNDAP) data services. This approach not only supports large-scale HPC processing, but also interactive access to a wide range of geophysical data in user-friendly environments such as iPython notebooks and more sophisticated cloud-enabled portals such as the Virtual Geophysics Laboratory (VGL). As multidimensional AEM datasets are relatively complex compared to other geophysical data types, the general approach employed in this project for modernizing AEM data is likely to be applicable to other geophysics data types. When combined with the use of standards-based data services and APIs, a coordinated, systematic modernisation will result in vastly improved accessibility to, and usability of, geophysical data in a wide range of computational environments both within and beyond the geophysics community.

  9. Publications - GMC 96 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Corp.) North cook Inlet Unit A-12 (A-15) well Authors: Core Laboratories Publication Date: 1988 Unit A-12 (A-15) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials

  10. Bayesian inference of spectral induced polarization parameters for laboratory complex resistivity measurements of rocks and soils

    NASA Astrophysics Data System (ADS)

    Bérubé, Charles L.; Chouteau, Michel; Shamsipour, Pejman; Enkin, Randolph J.; Olivo, Gema R.

    2017-08-01

    Spectral induced polarization (SIP) measurements are now widely used to infer mineralogical or hydrogeological properties from the low-frequency electrical properties of the subsurface in both mineral exploration and environmental sciences. We present an open-source program that performs fast multi-model inversion of laboratory complex resistivity measurements using Markov-chain Monte Carlo simulation. Using this stochastic method, SIP parameters and their uncertainties may be obtained from the Cole-Cole and Dias models, or from the Debye and Warburg decomposition approaches. The program is tested on synthetic and laboratory data to show that the posterior distribution of a multiple Cole-Cole model is multimodal in particular cases. The Warburg and Debye decomposition approaches yield unique solutions in all cases. It is shown that an adaptive Metropolis algorithm performs faster and is less dependent on the initial parameter values than the Metropolis-Hastings step method when inverting SIP data through the decomposition schemes. There are no advantages in using an adaptive step method for well-defined Cole-Cole inversion. Finally, the influence of measurement noise on the recovered relaxation time distribution is explored. We provide the geophysics community with a open-source platform that can serve as a base for further developments in stochastic SIP data inversion and that may be used to perform parameter analysis with various SIP models.

  11. Multiscale geophysical imaging of the critical zone

    USGS Publications Warehouse

    Parsekian, Andy; Singha, Kamini; Minsley, Burke J.; Holbrook, W. Steven; Slater, Lee

    2015-01-01

    Details of Earth's shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the environment. Geophysical methods provide a means for remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we present a review highlighting the application of geophysical methods to CZ science research questions. In particular, we consider the application of geophysical methods to map the geometry of structural features such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones. Combined with knowledge of structure, we discuss how geophysical observations are used to understand CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere have been studied using geophysical methods in wetland areas. Indirect geophysical methods are a natural and necessary complement to direct observations obtained by drilling or field mapping. Direct measurements should be used to calibrate geophysical estimates, which can then be used to extrapolate interpretations over larger areas or to monitor changing processes over time. Advances in geophysical instrumentation and computational approaches for integrating different types of data have great potential to fill gaps in our understanding of the shallow subsurface portion of the CZ and should be integrated where possible in future CZ research.

  12. Joint Measurements Of Acoustic And Mechanical Properties For Methane Hydrate-Bearing Unconsolidated Sediments Synthesized In Laboratory

    NASA Astrophysics Data System (ADS)

    Yang, Z.; He, T.

    2017-12-01

    To more accurately explain geophysical exploration data of natural gas hydrate reservoir and to better assess the formation stability for geological or engineering hazards, it is important to comprehensively understand the geophysical and mechanical properties of hydrate-bearing unconsolidated marine sediments, which are significantly different from sea-water saturated ones. Compared to hard-to-control in-situ measurement, laboratory methods are important and feasible to investigate the parameter effects. With the new designed experimental apparatus, we measured ultrasonic velocity, resistivity and stress-strain relation of methane hydrate-bearing unconsolidated sediments. The experimental mineral mixture is prepared as the composition of sample HY-3 of core SH-7 from Shenhu area, South China Sea. It composed of 0.4 wt. % kaolinite, 23.5 wt. % silt (4 - 63 μm), 32.1 wt. % fine sand (63 - 250 μm), 29.2 wt. % medium sand (250 - 500 μm) and 14.8 wt. % coarse sand (500 - 2000 μm). The pure methane enters into the brine (NaCl salinity of 3.5%) saturated sample all around to synthesis methane hydrate. The methane hydrate saturation was calculated by methane consumption amount, which was in turn calculated by gas state equation using the measured methane pressure drop in high pressure reactor. The ultrasonic velocities and resistivity were measured frequently during methane hydrate saturation increasing to examine the velocity varying pattern, especially for S-wave velocities, which may reflect different hydrate occurrence states in sediment pores: load-bearing or not. The stress - strain curves of methane hydrate - bearing sediments showed typical elastic - plastic characteristics and were used to obtain Young's modulus, Poisson's ratio, failure strength and other mechanical parameters. With these results, we can know better about the hydrate reservoir at Shenhu area.

  13. A field test of electromagnetic geophysical techniques for locating simulated in situ mining leach solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.

    1994-01-01

    The US Bureau of Mines, The University of Arizona, Sandia National Laboratories, and Zonge Engineering and Research Organization, Inc., conducted cooperative field tests of six electromagnetic (EM) geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 m below the surface. The testsite was the University's San Xavier experimental mine near Tucson, AZ. Geophysical surveys using surface and surface-borehole, time-domain electromagnetic (TEM) induction; surface controlled-source audiofrequency magnetotellurics (CSAMT); surface-borehole, frequency-domain electromagnetic (FEM) induction; crosshole FEM; and surface magnetic field ellipticity were conducted beforemore » and during brine injection. The surface TEM data showed a broad decrease in resistivity. CSAMT measurements with the conventional orientation did not detect the brine, but measurements with another orientation indicated some decrease in resistivity. The surface-borehole and crosshole methods located a known fracture and other fracture zones inferred from borehole induction logs. Surface magnetic field ellipticity data showed a broad decrease in resistivity at depth following brine injection.« less

  14. Sustainable urban development and geophysics

    NASA Astrophysics Data System (ADS)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    investigated [2]. The first objective of urban geophysics is to study systematically the geophysical fields in cities, searching for principles and processes governing the intensity and patterns of variation of the geophysical properties, as well as the potential consequences on the biosphere. Secondly, geophysics has already been found to be a useful tool for subsurface detection and investigation, hazard mitigation, and assessment of environmental contamination. Geophysicists have documented numerous cases of successful applications of geophysical techniques to solve problems related to hazard mitigation, safeguarding of lifeline infrastructure and urban gateways (air- and sea-ports, railway and highway terminals), archaeological and heritage surveys, homeland security, urban noise control, water supplies, sanitation and solid waste management etc. In contrast to conventional geophysical exploration, the undertaking of geophysical surveys in an urban setting faces many new challenges and difficulties. First of all, the ambient cultural noise in cities caused by traffic, electromagnetic radiation and electrical currents often produce undesirably strong interference with geophysical measurements. Secondly, subsurface surveys in an urban area are often targeted at the uppermost several metres of the ground, which are the most heterogeneous layers with many man-made objects. Thirdly, unlike conventional geophysical exploration which requires resolution in the order of metres, many urban geophysical surveys demand a resolution and precision in the order of centimetres or even millimetres. Finally restricted site access and limited time for conducting geophysical surveys, regulatory constraints, requirements for traffic management and special logistical arrangements impose additional difficulties. All of these factors point to the need for developing innovative research methods and geophysical instruments suitable for use in urban settings. This special issue on 'Sustainable urban

  15. Producing Martian Lithologies with Geophysically-Constrained Martian Mantle Compositions

    NASA Astrophysics Data System (ADS)

    Minitti, M. E.; Fei, Y.; Bertka, C. M.

    2008-12-01

    The Martian meteorites, rocks measured by the Mars Exploration Rovers (MER) and lithologies detected by orbital assets represent a diversity of igneous rocks that collectively provide insight into the formation and evolution of Mars. Experimental studies aimed at reproducing the observed igneous lithologies have met with varying degrees of success [e.g., 1,2,3], No study has yet been able to reproduce both Martian meteorite parent magmas and the basalts measured by MER at Gusev Crater [e.g., 1,3]. We attempted a different approach to successfully reproducing Martian igneous lithologies by using geophysical constraints on Martian bulk Fe (wt.%), Fe/Si and mantle Mg# [4,5] to identify mixtures of chondrite compositions that formed plausible Martian mantle compositions. We identified two candidate chondrite mixtures for Mars, CM+L and H+L. We synthesized the CM+L and H+L compositions from oxide, carbonate and phosphate powders and fixed them at an oxygen fugacity below the magnetite-wüstite buffer (MW-1). We conducted experiments at 2 GPa (corresponding to ~150 km in the Martian mantle) between 1300-1600 °C for 4-48 hours in the end-loaded piston cylinder apparatus at the Geophysical Laboratory. Thusfar, we have also conducted experiments at 4 GPa (corresponding to ~320 km in the Martian mantle) between 1425-1475 °C for 210-240 minutes in a Walker-type multi-anvil apparatus at the Geophysical Laboratory. We utilized an 18/11 (octahedron edge length/truncated edge length, in mm) assembly. In both assembly types, the sample was contained within a graphite capsule welded into a Pt tube. We analyzed the experiment products in electron probes at either the Geophysical Laboratory or Arizona State University. Fe and Mg contents of olivine, orthopyroxene and melt were used to assess the attainment of equilibrium for each run product. No significant difference exists between the CM+L and H+L experiment products. The near-solidus phase assemblage of the 2-GPa experiments is

  16. Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift. Calvin T.

    1995-01-01

    This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data.

  17. The remote sensing needs of Arctic geophysics

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.

    1970-01-01

    The application of remote sensors for obtaining geophysical information of the Arctic regions is discussed. Two significant requirements are to acquire sequential, synoptic imagery of the Arctic Ocean during all weather and seasons and to measure the strains in the sea ice canopy and the heterogeneous character of the air and water stresses acting on the canopy. The acquisition of geophysical data by side looking radar and microwave sensors in military aircraft is described.

  18. Geophysical methods

    USDA-ARS?s Scientific Manuscript database

    Near-surface geophysical methods have become have become important tools for agriculture. Geophysics employed for agriculture tends to be heavily focused on a 2 m zone directly beneath the ground surface, which includes the crop root zone and all, or at least most, of the soil profile. Resistivity...

  19. The Himalayas of Nepal, a natural laboratory for the search and measurement of CO2 discharge

    NASA Astrophysics Data System (ADS)

    Girault, Frédéric; Koirala, Bharat P.; Bhattarai, Mukunda; Rajaure, Sudhir; Richon, Patrick; Perrier, Frédéric

    2010-05-01

    Large CO2 flux has been found in the Trisuli Valley, North of Kathmandu, Central Nepal, in 2005. This leakage zone is located in the vicinity of the Syabru-Bensi hot springs, and is characterized by an average flux of CO2 of 6500±1100 g m-2 day-1 over an area of 15 m × 15 m (Perrier et al., Earth and Planetary Science Letters, 2009). The site is also located close to the Main Central Thrust Zone (MCT Zone), one of the large Himalayan thrust, connected at depth to the Main Himalayan Thrust, the main thrust currently accommodating the India-Tibet collision (Bollinger et al., Journal of Geophysical Research, 2004). Isotopic carbon ratios (δ13C) indicate that this CO2 may come from metamorphic reactions at about 15 km of depth (Becker et al., Earth and Planetary Science Letters, 2008; Evans et al., Geochemistry Geophysics Geosystems, 2008). Actually, this zone was originally found because of the large δ13C found in the water of the hot springs suggesting degassing (Evans et al., Geochemistry Geophysics Geosystems, 2008). In 2007, another zone of CO2 discharge was discovered 250 m away from the main Syabru-Bensi hot springs. This new zone, located next to the road and easy to access all over the year, was intensely studied, from the end of 2007 to the beginning of 2009. In this zone, an average value of CO2 flux of 1700±300 g m-2 d-1 was obtained over an area of about 40 m × 10 m. Using CO2 flux data from repeated measurements, similar flux values were observed during the dry winter season and the wet summer period (monsoon) (Girault et al., Journal of Environmental Radioactivity, 2009). Thus, in addition to fundamental issues related to global CO2 balance in orogenic belts and tectonically active zones, these small scale (100-meter) CO2 discharge sites emerge as a potentially useful laboratory for detailed methodological studies of diffusive and advective gas transport. Recently, the search for further gas discharge zones has been carried out using various clues

  20. Effects of borehole design on complex electrical resistivity measurements: laboratory validation and numerical experiments

    NASA Astrophysics Data System (ADS)

    Treichel, A.; Huisman, J. A.; Zhao, Y.; Zimmermann, E.; Esser, O.; Kemna, A.; Vereecken, H.

    2012-12-01

    Geophysical measurements within a borehole are typically affected by the presence of the borehole. The focus of the current study is to quantify the effect of borehole design on broadband electrical impedance tomography (EIT) measurements within boreholes. Previous studies have shown that effects on the real part of the electrical resistivity are largest for boreholes with large diameters and for materials with a large formation factor. However, these studies have not considered the effect of the well casing and the filter gravel on the measurement of the real part of the electrical resistivity. In addition, the effect of borehole design on the imaginary part of the electrical resistivity has not been investigated yet. Therefore, the aim of this study is to investigate the effect of borehole design on the complex electrical resistivity using laboratory measurements and numerical simulations. In order to do so, we developed a high resolution two dimensional axisymmetric finite element model (FE) that enables us to simulate the effects of several key borehole design parameters (e.g. borehole diameter, thickness of PVC well casing) on the measurement process. For the material surrounding the borehole, realistic values for complex resistivity were obtained from a database of laboratory measurements of complex resistivity from the test site Krauthausen (Germany). The slotted PVC well casing is represented by an effective resistivity calculated from the water-filled slot volume and the PVC volume. Measurements with and without PVC well casing were made with a four-electrode EIT logging tool in a water-filled rain barrel. The initial comparison for the case that the logging tool was inserted in the PVC well casing showed a considerable mismatch between measured and modeled values. It was required to consider a complete electrode model instead of point electrodes to remove this mismatch. This validated model was used to investigate in detail how complex resistivity

  1. Basic exploration geophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, E.S.

    1988-01-01

    An introduction to geophysical methods used to explore for natural resources and to survey earth's geology is presented in this volume. It is suitable for second-and third-year undergraduate students majoring in geology or engineering and for professional engineering and for professional engineers and earth scientists without formal instruction in geophysics. The author assumes the reader is familiar with geometry, algebra, and trigonometry. Geophysical exploration includes seismic refraction and reflection surveying, electrical resistivity and electromagnetic field surveying, and geophysical well logging. Surveying operations are described in step-by-step procedures and are illustrated by practical examples. Computer-based methods of processing and interpreting datamore » as well as geographical methods are introduced.« less

  2. Handbook of Agricultural Geophysics

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  3. Immersive, hands-on, team-based geophysical education at the University of Texas Marine Geology and Geophysics Field Course

    NASA Astrophysics Data System (ADS)

    Saustrup, S.; Gulick, S. P.; Goff, J. A.; Davis, M. B.; Duncan, D.; Reece, R.

    2013-12-01

    The University of Texas Institute for Geophysics (UTIG), part of the Jackson School of Geosciences, annually offers a unique and intensive three-week marine geology and geophysics field course during the spring/summer semester intersession. Now entering its seventh year, the course transitions students from a classroom environment through real-world, hands-on field acquisition, on to team-oriented data interpretation, culminating in a professional presentation before academic and industry employer representatives. The course is available to graduate students and select upper-division undergraduates, preparing them for direct entry into the geoscience workforce or for further academic study. Geophysical techniques used include high-resolution multichannel seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, data processing, and laboratory analysis of sediments. Industry-standard equipment, methods, software packages, and visualization techniques are used throughout the course, putting students ahead of many of their peers in this respect. The course begins with a 3-day classroom introduction to the field area geology, geophysical methods, and computing resources used. The class then travels to the Gulf Coast for a week of hands-on field and lab work aboard two research vessels: UTIG's 22-foot, aluminum hulled Lake Itasca; and NOAA's 82-foot high-speed catamaran R/V Manta. The smaller vessel handles primarily shallow, inshore targets using multibeam bathymetry, sidescan sonar, and grab sampling. The larger vessel is used both inshore and offshore for multichannel seismic, CHIRP profiling, multibeam bathymetry, gravity coring, and vibracoring. Field areas to date have included Galveston and Port Aransas, Texas, and Grand Isle, Louisiana, with further work in Grand Isle scheduled for 2014. In the field, students work in teams of three, participating in survey design, instrument set-up, field deployment

  4. Geophysical surveys combined with laboratory soil column experiments to identify and explore risk areas for soil and water pollution in feedlots

    NASA Astrophysics Data System (ADS)

    Espejo-Pérez, Antonio Jesus; Sainato, Claudia Mabel; Jairo Márquez-Molina, John; Giráldez, Juan Vicente; Vanderlinden, Karl

    2014-05-01

    Changes of land use without a correct planning may produce its deterioration with their social, economical and environmental irreversible consequences over short to medium time range. In Argentina, the expansion of soybean fields induced a reduction of the area of pastures dedicated to stockbreeding. As cattle activity is being progressively concentrated on small pens, at feedlots farms, problems of soil and water pollution, mainly by nitrate, have been detected. The characterization of the spatial and temporal variability of soil water content is very important because the mostly advective transport of solutes. To avoid intensive soil samplings, very expensive, one has to recur to geophysical exploration methods. The objective of this work was to identify risk areas within a feedlot of the NW zone of Buenos Aires Province, in Argentina through geophysical methods. The surveys were carried out with an electromagnetic induction profiler EMI-400 (GSSI) and a Time domain Reflectometry (TDR) survey of depth 0-0.10 m with soil sampling and measurement of moisture content with gravimetric method (0-1.0 m). Several trenches were dug inside the pens and also at a test site, where texture, apparent density, saturated hydraulic conductivity (Ks), electrical conductivity of the saturation paste extract and organic matter content (OM) were measured. The water retention curves for these soils were also determined. At one of the pens undisturbed soil columns were extracted at 3 locations. Laboratory analysis for 0-1.0 m indicated that soil texture was classified as sandy loam, average organic matter content (OM) was greater than 2.3% with low values of apparent density in the first 10 cm. The range of spatial dependence of data suggested that the number of soil samples could be reduced. Soil apparent electrical conductivity (ECa) and soil moisture were well correlated and indicated a clear spatial pattern in the corrals. TDR performance was acceptable to identify the spatial

  5. Broadband geophysical time series data from a stressed environment

    NASA Astrophysics Data System (ADS)

    Pun, W.; Saleh, R.; Zwaan, D.; Milkereit, B.; Valley, B.; Pilz, M.; Milkereit, C.; Milkereit, R.

    2011-12-01

    As classical exploration geophysical tools and techniques find new application in time lapse and monitoring studies, a fresh look at the performance and repeatability of various geophysical techniques is worth to take a closer look. We used an active, deep mine site close to Sudbury (Canada) for 3D deployment of broadband geophysical sensors for passive monitoring and detecting anomalous regions in the earth based on physical rock properties. In addition, we conducted controlled source experiments to evaluate repeatability of geophysical sources. To extend from detection to monitoring, continuous repeated measurements are necessary over a long period of time. If a controlled source is stable, the convolution problem is simplified such that any variation in the geophysical data is an effect of the earth's response. Repeated measurements are important for in-mine use to provide a better insight of stress and strain changes due to natural events and mining processes. The development, build-up and redistribution of stress lead to rock failures that can have disastrous consequences if they occur in an uncontrolled manner. In this project, different continuous and repeated in-situ geophysical measurements from a deep underground mine were analyzed to validate the feasibility of in-mine monitoring. Data acquisition tests covered both active and passive methods: gravity meter, fibre optic strain meters, fixed and portable three-component seismic arrays, EM induction coils and borehole based DC/IP resistivity sensors. The newly acquired data cover a wide range of frequencies which allow the study of short- and long-period events, ranging from 10-5 Hz to 10 kHz. Earth tides, global seismic events, tremors, acoustic emissions (microseismic events) and blasts were recorded within a 3D volume.

  6. Historians probe geophysics in Seattle

    NASA Astrophysics Data System (ADS)

    Fleming, James R.

    The history of geophysics is becoming a “hot topic” among historians of science and technology. While previous annual meetings of the History of Science Society had few papers on the topic, the latest meeting of the society on October 25-28, 1990, in Seattle featured three sessions with a total of 11 papers. Two “works in progress” papers were also on geophysical topics.The first session on the history of geophysics was Climate Change in Historical Perspective. In spite of all the recent attention given to global warming, it is important to remember that climatic change is not a new issue. Indeed, measured over the course of centuries, approaches to the study of climate and ideas about climatic change have been changing more rapidly than the climate itself. In addition to being interesting in its own right, the history of climatic change is beginning to play a crucial role in global change education, research, and policy decisions. Papers in this session spanned 200 years of the history of climatology as a science and climatic change as an issue.

  7. Geophysical methods for road construction and maintenance

    NASA Astrophysics Data System (ADS)

    Rasul, Hedi; Karlson, Caroline; Jamali, Imran; Earon, Robert; Olofsson, Bo

    2015-04-01

    Infrastructure, such as road transportation, is a vital in civilized societies; which need to be constructed and maintained regularly. A large part of the project cost is attributed to subsurface conditions, where unsatisfactory conditions could increase either the geotechnical stabilization measures needed or the design cost itself. A way to collect information of the subsurface and existing installations which can lead to measures reducing the project cost and damage is to use geophysical methods during planning, construction and maintenance phases. The moisture in road layers is an important factor, which will affect the bearing capacity of the construction as well as the maintenances. Moisture in the road is a key factor for a well-functioning road. On the other hand the excessive moisture is the main reason of road failure and problems. From a hydrological point of view geophysical methods could help road planners identify the water table, geological strata, pollution arising from the road and the movement of the pollution before, during and after construction. Geophysical methods also allow road planners to collect valuable data for a large area without intrusive investigations such as with boreholes, i.e. minimizing the environmental stresses and costs. However, it is important to specify the investigation site and to choose the most appropriate geophysical method based on the site chosen and the objective of the investigation. Currently, numerous construction and rehabilitation projects are taking places around the world. Many of these projects are focused on infrastructural development, comprising both new projects and expansion of the existing infrastructural network. Geophysical methods can benefit these projects greatly during all phases. During the construction phase Ground Penetrating radar (GPR) is very useful in combination with Electrical Resistivity (ER) for detecting soil water content and base course compaction. However, ER and Electromagnetic

  8. Repeated Geophysical Surface Measurements to Estimate the Dynamics of Underground Coalfires

    NASA Astrophysics Data System (ADS)

    Wuttke, M. W.; Kessels, W.; Han, J.; Halisch, M.; Rüter, H.; Lindner, H.

    2009-04-01

    Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. For the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) two firezones, namely the so called fire zone 18 of the coal mining area of Wuda (Inner Mongolia, PR China) and the firezone of Queergou (Xinjiang, PR China) are currently monitored by geophysical measurements. For the geothermal and geochemical mapping 25 up to 1m deep boreholes with a diameter of approx. 30 mm are distributed over the particular firezone. To avoid highly dynamic gas flow processes in fire induced fractures caused by weather conditions, all boreholes were situated in the undisturbed rock compartments. In these boreholes, plastic tubes of 12 mm diameter provide access to the borehole ground filled with highly permeable gravel. The boreholes are otherwise sealed by clay. The geothermal observations consist of measurements of temperature profiles in the boreholes and thermal conductivity measurement on rock samples in the lab. The derived heat flow with maximum values of 80 W/m2 (Wuda) is more than three orders of magnitude higher than the natural undisturbed heat flow. The high heat flow suggests that the dominant heat transport is gas convection through the system of porous rock and fractures. The geochemical soil gas probing is performed by gas extraction from the boreholes. Measured are the concentrations of O2, CO, CO2, H2S and CH4. The O2 deficit in the soil air and the concentrations of the other combustion products compared to the concentrations in the free atmosphere are related to the combustion area. A magnetic mapping has only been performed in Wuda with point distances of 2 m and profile-distances of 3 to 4 m covered an area of 350  300m with 7913 points. The detected anomalies lie

  9. The 1990 Western Pacific Geophysics meeting

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The 1990 Western Pacific Geophysics Meeting was held in Kanazawa, Japan from 15-21 Aug. 1990. This was the first meeting of a new series of meetings for the American Geophysical Union, and it proved to be very successful in terms of the scientific program and attendance, which included over 1,000 participants. The intent of this meeting was an effort on the part of the American Geophysical Union (AGU) and several Japanese geophysical societies to gather individual Earth and space scientists at a major scientific meeting to focus on geophysical problems being studied in the western Pacific rim. The meeting was organized along the lines of a typical AGU annual meeting with some invited talks, many contributed talks, poster sessions, and with emphasis on presentations and informal discussions. The program committee consisted of scientists from both the U.S. and Japan. This meeting provided ample opportunities for U.S. and Japanese scientists to get to know each other and their works on a one-to-one basis. It was also a valuable opportunity for students studying geophysics to get together and interact with each other and with scientists from both the U.S. and Japan. There were 939 abstracts submitted to the conference and a total of 102 sessions designed as a result of the abstracts received. The topics of interest are as follows: space geodetic and observatory measurements for earthquake and tectonic studies; gravity, sea level, and vertical motion; variations in earth rotation and earth dynamics; sedimentary magnetism; global processes and precipitation; subsurface contaminant transport; U.S. Western Pacific Rim initiatives in hydrology; shelf and coastal circulation; tectonics, magmatism, and hydrothermal processes; earthquake prediction and hazard assessment; seismic wave propagation in realistic media; and dynamics and structure of plate boundaries and of the Earth's deep interior.

  10. SIAM conference on inverse problems: Geophysical applications. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devotedmore » to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.« less

  11. In-Situ Lithospheric Rheology Measurement Using Isostatic Response and Geophysical State

    NASA Astrophysics Data System (ADS)

    Lowry, A. R.; Becker, T. W.; Buehler, J. S.; ma, X.; Miller, M. S.; Perez-Gussinye, M.; Ravat, D.; Schutt, D.

    2013-12-01

    Measurements of effective elastic thickness, Te, from flexural isostatic modeling are sensitive to flow rheology of the lithosphere. Nevertheless, Te has not been widely used to estimate in-situ rheology. Past methodological controversies regarding Te measurement are partly to blame for under-utilization of isostatic response in rheology studies, but these controversies are now largely resolved. The remaining hurdles include uncertainties in properties of geophysical state such as temperature, lithology, and water content. These are ambiguous in their relative contributions to total strength, and the unknown state-of-stress adds to ambiguity in the rheology. Dense seismic and other geophysical arrays such as EarthScope's USArray are providing a wealth of new information about physical state of the lithosphere, however, and these data promise new insights into rheology and deformation processes. For example, new estimates of subsurface mass distributions derived from seismic data enable us to examine controversial assumptions about the nature of lithospheric loads. Variations in crustal lithology evident in bulk crustal velocity ratio, vP/vS, contribute a surprisingly large fraction of total loading. Perhaps the most interesting new information on physical state derives from imaging of uppermost mantle velocities using refracted mantle phases, Pn and Sn, and depths to negative velocity gradients imaged as converted phases in receiver functions (so-called seismic lithosphere-asthenosphere boundary, 'LAB', and mid-lithosphere discontinuity, 'MLD'). Imaging of the ~580°C isotherm associated with the phase transition from alpha- to beta-quartz affords another exciting new avenue for investigation, in part because the transition closely matches the Curie temperature thought to control magnetic bottom in some continental crust. Reconciling seismic estimates of temperature variations with measurements of Te and upper-mantle negative velocity gradients in the US requires

  12. Looking Forward to the electronic Geophysical Year

    NASA Astrophysics Data System (ADS)

    Kamide, Y.; Baker, D. N.; Thompson, B.; Barton, C.; Kihn, E.

    2004-12-01

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We discuss plans to aggregate measurements into a readily accessible database along with analysis, visualization, and display tools that will make information available and useful to the scientific community, to the user community, and to the general public. We are examining the possibilities for near-realtime acquisition of data and utilization of forecast tools in order to provide users with advanced space weather capabilities. This program will provide powerful tools for education and public outreach concerning the connected Sun-Earth System.

  13. Smartphones - the Geophysics Lab in Your Students' Pocket

    NASA Astrophysics Data System (ADS)

    Salaree, A.; Stein, S.; Saloor, N.; Elling, R. P.

    2017-12-01

    Many interesting topics are hard to demonstrate in geophysics classes without costly equipment and logistic hassles. For instance, the speed of P-waves in the Earth's crust is usually calculated using printed seismic sections from published studies, giving students little insight into the recording process. This is mainly due to the complex, costly, and weather-dependent logistics of conducting seismic reflection experiments using arrays of - either purchased or borrowed - expensive seismometers and recording units. Smartphones, which students own and are (perhaps unduly) comfortable with, have many otherwise expensive instruments as built-in sensors. These instruments are nifty tools that make labs easier, faster, and more fun. We use smartphones in several labs in an introductory geophysics class. In one, students use their phones to measure the latitude and longitude of a point on campus. Combining the data shows a nice spread of positions illustrating the precision of measurements, spatial trends in the scatter, and even differences between Android and iPhone data. Hence concepts about data that are often presented with ideal theoretical examples emerge from the students' measurements. Another uses the phones' accelerometers and available software to measure the speed of P-waves using a linear array of smartphones/seismometers along a table, similar to the procedure used in reflection seismology. In a third, students used their smartphones in an elevator to measure the acceleration of gravity in a moving reference frame, and thus explore key concepts that arise in many geophysical applications. These three applications illustrate the potential for using smartphones in a wide variety of geophysics teaching, much as their value is being increasingly recognized in other educational applications. Here are some links to an instructions document and a video from the seismic experiment: Instructions: http://www.earth.northwestern.edu/ amir/202/smartphone

  14. The Environmental Geophysics Web Site and Geophysical Decision Support System (GDSS)

    EPA Science Inventory

    This product provides assistance to project managers, remedial project managers, stakeholders, and anyone interested in on-site investigations or environmental geophysics. The APM is the beta version of the new U.S. EPA Environmental Geophysics Web Site which includes the Geophys...

  15. Preparation of Geophysical Fluid Flow Experiments ( GeoFlow ) in the Fluid Science Laboratory on ISS

    NASA Astrophysics Data System (ADS)

    Egbers, C.

    The ,,GeoFlow" is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluidmechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field similar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment requires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth's liquid core the exp eriment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heating the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number. Results of preparatory experiments and numerical simulation of the space experiment will be presented. Funding from DLR under grant 50 WM 0122 is greatfully ackwnoledged.

  16. Experimental Measurement of In Situ Stress

    NASA Astrophysics Data System (ADS)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  17. Student Research Projects in Geophysics Through a Consortium of Undergraduate Geology Departments

    NASA Astrophysics Data System (ADS)

    Kroeger, G. C.

    2003-12-01

    Beginning in 1987, and continuing to the present, the Keck Geology Consortium, a group of 12 undergraduate institutions, has sponsored a series of summer research projects. These projects typically involve from 9 to 12 students and 3 to 4 faculty members and consist of a 4 to 5 week summer research program followed by continuation of the research at the students' home institutions, often as a senior thesis. Many of these projects have included extensive field and laboratory geophysical components. In order for students to carry out successful research projects in geophysics, several hurdles have to be cleared. Frequently these students have not had a formal course in geophysics, so although they may have strong geologic and quantitative skills, there is usually the need for a concentrated classroom immersion in the geophysical theory and methods related to the project. Field geophysics projects are labor intensive, so it is common for a group of three or more students to produce only one or two complete data sets in the course of the summer program. Generating individualized projects so that students feel ownership of their thesis research can be challenging. Most of the departments do not have a geophysicist on the faculty, so follow-up support for the student research involves continued long-distance collaboration between project directors, students and sponsoring faculty. The impact of the internet on this collaboration cannot be overstated. Finally, diverse computing environments at the participating institutions were a significant problem in the early years. Migration of geophysical software to Windows from Unix, and the widespread availability of Linux has mitigated these problems in recent years. The geophysical components of these projects have been largely successful. A series of vignettes is presented showing the range and nature of geophysical projects that have been carried out. In addition to anecdotal evidence of student satisfaction, there is

  18. Polarimetric Remote Sensing of Geophysical Medium Structures

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Nguyen, D. T.

    1993-01-01

    Polarimetric remote sensing of structures in geophysical media is studied in this paper based on their symmetry properties. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is defined to study scattering structures in geophysical media. Experimental observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented to illustrate the use of symmetry properties. For forests, the coniferous forest in Mount Shasta area and mixed forests neir Presque Isle show evidence of the centrical symmetry at C band. In sea ice from the Beaufort Sea, multiyear sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. For first-year sea ice, e is much smaller than e(sub 0) as a result of preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering sea, it is observed that e and e(sub 0) are increasing with incident angle and e is greater than e(sub 0) at L band because of the directional feature of sea surface waves. Use of symmetry properties of geophysical media for polarimetric radar calibration is also suggested.

  19. Integrating auxiliary data and geophysical techniques for the estimation of soil clay content using CHAID algorithm

    NASA Astrophysics Data System (ADS)

    Abbaszadeh Afshar, Farideh; Ayoubi, Shamsollah; Besalatpour, Ali Asghar; Khademi, Hossein; Castrignano, Annamaria

    2016-03-01

    This study was conducted to estimate soil clay content in two depths using geophysical techniques (Ground Penetration Radar-GPR and Electromagnetic Induction-EMI) and ancillary variables (remote sensing and topographic data) in an arid region of the southeastern Iran. GPR measurements were performed throughout ten transects of 100 m length with the line spacing of 10 m, and the EMI measurements were done every 10 m on the same transect in six sites. Ten soil cores were sampled randomly in each site and soil samples were taken from the depth of 0-20 and 20-40 cm, and then the clay fraction of each of sixty soil samples was measured in the laboratory. Clay content was predicted using three different sets of properties including geophysical data, ancillary data, and a combination of both as inputs to multiple linear regressions (MLR) and decision tree-based algorithm of Chi-Squared Automatic Interaction Detection (CHAID) models. The results of the CHAID and MLR models with all combined data showed that geophysical data were the most important variables for the prediction of clay content in two depths in the study area. The proposed MLR model, using the combined data, could explain only 0.44 and 0.31% of the total variability of clay content in 0-20 and 20-40 cm depths, respectively. Also, the coefficient of determination (R2) values for the clay content prediction, using the constructed CHAID model with the combined data, was 0.82 and 0.76 in 0-20 and 20-40 cm depths, respectively. CHAID models, therefore, showed a greater potential in predicting soil clay content from geophysical and ancillary data, while traditional regression methods (i.e. the MLR models) did not perform as well. Overall, the results may encourage researchers in using georeferenced GPR and EMI data as ancillary variables and CHAID algorithm to improve the estimation of soil clay content.

  20. SQUID use for Geophysics: finding billions of dollars

    NASA Astrophysics Data System (ADS)

    Foley, Catherine

    2014-03-01

    Soon after their discovery, Jim Zimmerman saw the potential of using Superconducting Quantum Interference Devices, SQUIDs, for the study of Geophysics and undertook experiments to understand the magnetic phenomena of the Earth. However his early experiments were not successful. Nevertheless up to the early 1980's, some research effort in the use of SQUIDs for geophysics continued and many ideas of how you could use SQUIDs evolved. Their use was not adopted by the mining industry at that time for a range of reasons. The discovery of high temperature superconductors started a reinvigoration in the interest to use SQUIDs for mineral exploration. Several groups around the world worked with mining companies to develop both liquid helium and nitrogen cooled systems. The realisation of the achievable sensitivity that contributed to successful mineral discoveries and delineation led to real financial returns for miners. By the mid 2000's, SQUID systems for geophysics were finally being offered for sale by several start-up companies. This talk will tell the story of SQUID use in geophysics. It will start with the early work of the SQUID pioneers including that of Jim Zimmerman and John Clarke and will also cover the development since the early 1990's up to today of a number of magnetometers and gradiometers that have been successfully commercialised and used to create significant impact in the global resources industry. The talk will also cover some of the critical technical challenges that had to be overcome to succeed. It will focus mostly on magnetically unshielded systems used in the field although some laboratory-based systems will be discussed.

  1. Purdue Rare Isotope Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Caffee, M.; Elmore, D.; Granger, D.; Muzikar, P.

    2002-12-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is a dedicated research and service facility for accelerator mass spectrometry. AMS is an ultra-sensitive analytical technique used to measure low levels of long-lived cosmic-ray-produced and anthropogenic radionuclides, and rare trace elements. We measure 10Be (T1/2 = 1.5 My), 26Al (.702 My), 36Cl (.301 My), and 129I (16 My), in geologic samples. Applications include dating the cosmic-ray-exposure time of rocks on Earth's surface, determining rock and sediment burial ages, measuring the erosion rates of rocks and soils, and tracing and dating ground water. We perform sample preparation and separation chemistries for these radio-nuclides for our internal research activities and for those external researchers not possessing this capability. Our chemical preparation laboratories also serve as training sites for members of the geoscience community developing these techniques at their institutions. Research at Purdue involves collaborators among members of the Purdue Departments of Physics, Earth and Atmospheric Sciences, Chemistry, Agronomy, and Anthropology. We also collaborate and serve numerous scientists from other institutions. We are currently in the process of modernizing the facility with the goals of higher precision for routinely measured radio-nuclides, increased sample throughput, and the development of new measurement capabilities for the geoscience community.

  2. Development of Geophysical Ideas and Institutions in Ottoman Empire

    NASA Astrophysics Data System (ADS)

    Ozcep, Ferhat; Ozcep, Tazegul

    2015-04-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  3. Geophysical methods in Geology. Second edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, P.V.

    This book presents an introduction to the methods of geophysics and their application to geological problems. The text emphasizes the broader aspects of geophysics, including the way in which geophysical methods help solve structural, correlational, and geochromological problems. Stress is laid on the principles and applications of methods rather than on instrumental techniques. This edition includes coverage of recent developments in geophysics and geology. New topics are introduced, including paleomagnetic methods, electromagnetic methods, microplate tectronics, and the use of multiple geophysical techniques.

  4. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  5. Marine Magnetic Data Holdings of World Data Center-a for Marine Geology and Geophysics

    NASA Technical Reports Server (NTRS)

    Sharman, George F.; Metzger, Dan

    1992-01-01

    The World Data Center-A for Marine Geology and Geophysics is co-located with the Marine Geology & Geophysical Data Center, Boulder, CO. Fifteen million digital marine magnetic trackline measurements are managed within the GEOphysical DAta System (GEODAS). The bulk of these data were collected with proton precision magnetometers under Transit Satellite navigational control. Along-track sampling averages about 1 sample per kilometer, while spatial density, a function of ship's track and survey pattern, range from 4 to 0.02 data points/sq. km. In the near future, the entire geophysical data set will be available on CD-ROM. The Marine Geology and Geophysics Division (World Data Center-A for MGG), of the National Geophysical Data Center, handles a broad spectrum of marine geophysical data, including measurements of bathymetry, magnetics, gravity, seismic reflection subbottom profiles, and side-scan images acquired by ships throughout the world's oceans. Digital data encompass the first three, while the latter two are in analog form, recorded on 35mm microfilm. The marine geophysical digital trackline data are contained in the GEODAS data base which includes 11.6 million nautical miles of cruise trackline coverage contributed by more than 70 organizations worldwide. The inventory includes data from 3206 cruises with 33 million digital records and indexing to 5.3 million track miles of analog data on microfilm.

  6. Field Geophysics at SAGE: Strategies for Effective Education

    NASA Astrophysics Data System (ADS)

    Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.

    2011-12-01

    issues - safety, constraints, data quality/quantity, research objective, educational experience, survey parameters, why multidisciplinary?, etc.; 6. knowledge of multiple geophysical field methods (each student works with all methods); 7. information on geophysics careers and networking provided by industry visitors; 8. measures of success of the program include high rate of continuation to graduate school and careers in geophysics, support and feedback from industry participants and visitors, student evaluations at end of program, presentations at professional meetings, publications, and faculty evaluation of student work.

  7. Synchrotron sheds new light on geophysical materials

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    On December 20,1996, scientists working with the Advanced Photon Source (APS) at Argonne National Laboratory in Illinois conducted “first light” experiments in a new laboratory for synchrotron radiation research in the geosciences. The demonstration marks the dawn of a new era in rock and mineral physics when, as geophysicist Thomas Duffy of Princeton University notes, researchers will be able to 'shine a bright new light on some of our planet's deepest and darkest secrets.”The new light is from the APS, a particle accelerator dedicated to the production of brilliant X rays for research, and it shone on the GeoSoilEnviroCARS (GSECARS) experimental facility. The purpose of GSECARS is to develop X-ray beamlines at the APS and make them available to scientists for frontier research in Earth, planetary, geophysics, soil, and environmental sciences.

  8. Geophysical imaging of root-zone, trunk, and moisture heterogeneity.

    PubMed

    Attia Al Hagrey, Said

    2007-01-01

    The most significant biotic and abiotic stress agents of water extremity, salinity, and infection lead to wood decay and modifications of moisture and ion content, and density. This strongly influences the (di-)electrical and mechanical properties and justifies the application of geophysical imaging techniques. These are less invasive and have high resolution in contrast to classical methods of destructive, single-point measurements for inspecting stresses in trees and soils. This review presents some in situ and in vivo applications of electric, radar, and seismic methods for studying water status and movement in soils, roots, and tree trunks. The electrical properties of a root-zone are a consequence of their moisture content. Electrical imaging discriminates resistive, woody roots from conductive, soft roots. Both types are recognized by low radar velocities and high attenuation. Single roots can generate diffraction hyperbolas in radargrams. Pedophysical relationships of water content to electrical resistivity and radar velocity are established by diverse infiltration experiments in the field, laboratory, and in the full-scale 'GeoModel' at Kiel University. Subsurface moisture distributions are derived from geophysical attribute models. The ring electrode technique around trunks images the growth ring structure of concentric resistivity, which is inversely proportional to the fluid content. Healthy trees show a central high resistivity within the dry heartwood that strongly decreases towards the peripheral wet sapwood. Observed structural deviations are caused by infection, decay, shooting, or predominant light and/or wind directions. Seismic trunk tomography also differentiates between decayed and healthy woods.

  9. Anthropometric measures in cardiovascular disease prediction: comparison of laboratory-based versus non-laboratory-based model.

    PubMed

    Dhana, Klodian; Ikram, M Arfan; Hofman, Albert; Franco, Oscar H; Kavousi, Maryam

    2015-03-01

    Body mass index (BMI) has been used to simplify cardiovascular risk prediction models by substituting total cholesterol and high-density lipoprotein cholesterol. In the elderly, the ability of BMI as a predictor of cardiovascular disease (CVD) declines. We aimed to find the most predictive anthropometric measure for CVD risk to construct a non-laboratory-based model and to compare it with the model including laboratory measurements. The study included 2675 women and 1902 men aged 55-79 years from the prospective population-based Rotterdam Study. We used Cox proportional hazard regression analysis to evaluate the association of BMI, waist circumference, waist-to-hip ratio and a body shape index (ABSI) with CVD, including coronary heart disease and stroke. The performance of the laboratory-based and non-laboratory-based models was evaluated by studying the discrimination, calibration, correlation and risk agreement. Among men, ABSI was the most informative measure associated with CVD, therefore ABSI was used to construct the non-laboratory-based model. Discrimination of the non-laboratory-based model was not different than laboratory-based model (c-statistic: 0.680-vs-0.683, p=0.71); both models were well calibrated (15.3% observed CVD risk vs 16.9% and 17.0% predicted CVD risks by the non-laboratory-based and laboratory-based models, respectively) and Spearman rank correlation and the agreement between non-laboratory-based and laboratory-based models were 0.89 and 91.7%, respectively. Among women, none of the anthropometric measures were independently associated with CVD. Among middle-aged and elderly where the ability of BMI to predict CVD declines, the non-laboratory-based model, based on ABSI, could predict CVD risk as accurately as the laboratory-based model among men. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Laboratory Measurements of Cometary Photochemical Phenomena.

    DTIC Science & Technology

    1981-12-04

    PROGFIAM ELEMENT.PROJECT TASK Laser .Chemistry Division AREA & WORK UNIT NUMaZRS Department of Chemistry - Howard University NR.051-733 Wash’ ngtQn, D. C...William M. Jackson Laser Chemistry Division Department of Chemistry Howard University .Washington, D. C. 20059 / Published by Jet Propulsion Laboratory...MEASUREMENTS OF COMETARY PHOTOCHEMICAL PHENOMENA William M. Jackson Howard University Washington, DC 20059 Abstract Laboratory experiments are described

  11. Karst aquifer characterization using geophysical remote sensing of dynamic recharge events

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Bilek, S. L.; Luhmann, A. J.

    2017-12-01

    Geophysical monitoring techniques, long used to make significant advances in a wide range of deeper Earth science disciplines, are now being employed to track surficial processes such as landslide, glacier, and river flow. Karst aquifers are another important hydrologic resource that can benefit from geophysical remote sensing, as this monitoring allows for safe, noninvasive karst conduit measurements. Conduit networks are typically poorly constrained, let alone the processes that occur within them. Geophysical monitoring can also provide a regionally integrated analysis to characterize subsurface architecture and to understand the dynamics of flow and recharge processes in karst aquifers. Geophysical signals are likely produced by several processes during recharge events in karst aquifers. For example, pressure pulses occur when water enters conduits that are full of water, and experiments suggest seismic signals result from this process. Furthermore, increasing water pressure in conduits during recharge events increases the load applied to conduit walls, which deforms the surrounding rock to yield measureable surface displacements. Measureable deformation should also occur with mass loading, with subsidence and rebound signals associated with increases and decreases of water mass stored in the aquifer, respectively. Additionally, geophysical signals will likely arise with turbulent flow and pore pressure change in the rock surrounding conduits. Here we present seismic data collected during a pilot study of controlled and natural recharge events in a karst aquifer system near Bear Spring, near Eyota, MN, USA as well as preliminary model results regarding the processes described above. In addition, we will discuss an upcoming field campaign where we will use seismometers, tiltmeters, and GPS instruments to monitor for recharge-induced responses in a FL, USA karst system with existing cave maps, coupling these geophysical observations with hydrologic and

  12. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  13. Building Geophysics Talent and Opportunity in Africa: Experience from the AfricaArray/Wits Geophysics Field School

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Manzi, M.; Scheiber-Enslin, S. E.; Durrheim, R. J.; Jones, M. Q. W.; Nyblade, A.

    2015-12-01

    There are many challenges faced by geophysics students and academic staff in Africa that make it difficult to develop effective field and research programs. Challenges to conducting field work that have been identified, and that can be tackled are: lack of training on geophysical equipment and lack of exposure to field program design and implementation. To address these challenges, the AfricaArray/Wits Geophysics field school is designed to expose participants to a wide variety of geophysical instruments and the entire workflow of a geophysical project. The AA field school was initially developed for the geophysics students at the University of the Witwatersrand. However, by increasing the number of participants, we are able to make more effective use of a large pool of equipment, while addressing challenging geophysical problems at a remote field site. These additional participants are selected partially based on the likely hood of being able start a field school at their home institution. A good candidate would have access to geophysical equipment, but may not have knowledge of how to use it or how to effectively design surveys. These are frequently junior staff members or graduate students in leadership roles. The three week program introduces participants to the full geophysical field workflow. The first week is spent designing a geophysical survey, including determining the cost. The second week is spent collecting data to address a real geophysical challenge, such as determining overburden thickness, loss of ground features due to dykes in a mine, or finding water. The third week is spent interpreting and integrating the various data sets culminating in a final presentation. Participants are given all lecture material and much of the software is open access; this is done to encourage using the material at the home institution. One innovation has been to use graduate students as instructors, thus building a pool of talent that has developed the logistic and

  14. The relationship of geophysical measurements to engineering and construction parameters in the Straight Creek Tunnel pilot bore, Colorado

    USGS Publications Warehouse

    Scott, J.H.; Lee, F.T.; Carroll, R.D.; Robinson, C.S.

    1968-01-01

    Seismic-refraction and electrical-resistivity measurements made along the walls of the Straight Creek Tunnel pilot bore indicate that both a low-velocity and a high-resistivity layer exist in the disturbed rock surrounding the excavation. Seismic measurements were analyzed to obtain the thickness and seismic velocity of rock in the low-velocity layer, the velocity of rock behind the layer and the amplitude of seismic energy received at the detectors. Electrical-resistivity measurements were analyzed to obtain the thickness and electrical resistivity of the high-resistivity layer and the resistivity of rock behind the layer. The electrical resistivity and the seismic velocity of rock at depth, the thickness of rock in the low-velocity layer, and the relative amplitude of seismic energy were correlated against the following parameters, all of which are important in tunnel construction: height of the tension arch, stable vertical rock load, rock quality, rate of construction and cost per foot, percentage of lagging and blocking, set spacing, and type and amount of steel support required, The correlations were statistically meaningful, having correlation coefficients ranging in absolute value from about 0??7 to nearly 1??0. This finding suggests the possibility of predicting parameters of interest in tunnel construction from geophysical measurements made in feeler holes drilled ahead of a working face. Predictions might be based on correlations established either during the early stages of construction or from geophysical surveys in other tunnels of similar design in similar geologic environments. ?? 1968.

  15. Notes on the history of geophysics in the Ottoman Empire

    NASA Astrophysics Data System (ADS)

    Ozcep, F.; Ozcep, T.

    2014-09-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  16. Space debris measurement program at Phillips Laboratory

    NASA Technical Reports Server (NTRS)

    Dao, Phan D.; Mcnutt, Ross T.

    1992-01-01

    Ground-based optical sensing was identified as a technique for measuring space debris complementary to radar in the critical debris size range of 1 to 10 cm. The Phillips Laboratory is building a staring optical sensor for space debris measurement and considering search and track optical measurement at additional sites. The staring sensor is implemented in collaboration with Wright Laboratory using the 2.5 m telescope at Wright Patterson AFB, Dayton, Ohio. The search and track sensor is designed to detect and track orbital debris in tasked orbits. A progress report and a discussion of sensor performance and search and track strategies will be given.

  17. Dielectric property measurements in the Electromagnetic Properties Measurement Laboratory

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Tiemsin, Pacita I.; Bussell, Kerri; Dudley, Kenneth L.

    1995-01-01

    The capability to measure the dielectric properties of various materials has been developed in the Electromagnetic Properties Measurement Laboratory (EPML) of the Electromagnetics Research Branch (ERB). Two measurement techniques which have been implemented in the EPML to characterize materials are the dielectric probe and waveguide techniques. Several materials, including some for which the dielectric properties are well known, have been measured in an attempt to establish the capabilities of the EPML in determining dielectric properties. Brief descriptions of the two techniques are presented in this report, along with representative results obtained during these measurements.

  18. Reliability of laboratory measurement of human food intake.

    PubMed

    Laessle, R; Geiermann, L

    2012-02-01

    The universal eating monitor (UEM) of Kissileff for laboratory measurement of food intake was modified and used with a newly developed special software to compute cumulative intake data. To explore the measurement precision of the UEM an investigation of test-retest-reliability of food intake parameters was conducted. The intake characteristics of 125 males and females were measured repeatedly in the laboratory with a measurement interval of 1 week. Pudding of preferred flavour served as test meal. Test-retest-reliability of intake characteristics ranged from .49 (change of eating rate) to .89 (initial eating rate). All test-retest correlations were highly significant. Sex, BMI and eating habits according to TFEQ-factors had no significant effects on reliability of intake characteristics. The test-retest-reliability of the laboratory intake measures is as good as those of personality questionnaires, where it should be better than .80. Reliability coefficients are valid independent of sex, BMI or trait characteristics of eating behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Geophysical and solar activity indices

    NASA Astrophysics Data System (ADS)

    Bossy, L.; Lemaire, J.

    1984-04-01

    A large number of geophysicists try to correlate their observations with one or even a series of different geophysical or solar activity indices. Yet the right choice of the most appropriate index with which to correlate depends mainly on our understanding of the physical cause-effect relationship between the new set of observations and the index chosen. This best choice will therefore depend on our good understanding of the methods of measurement and derivation of the adopted index in such correlative studies. It relies also on our awareness of the range of applicability of the indices presently available as well as on our understanding of their limitations. It was to achieve these goals that a series of general lectures on geophysical and solar activity indices was organized by L. Bossy and J. Lemaire (Institut d'Aeronomie Spatiale de Belgique (IASB), Brussels), March 26-29, 1984 at Han-sur-Lesse, Belgium.

  20. Earth Rotational Variations Excited by Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Modern space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations". for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  1. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    PubMed Central

    2011-01-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4

  2. GRAIL at Mercury: Coherent Laser Tracking for Geophysics

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Goossens, S.; Genova, A.; Sun, X.; Yang, G.

    2018-05-01

    We present an instrument concept for satellite-to-satellite tracking at optical wavelength to measure the gravity field of Mercury with sufficient accuracy and resolution to significantly advance our understanding of its geophysical evolution.

  3. Harmonization in laboratory medicine: Requests, samples, measurements and reports.

    PubMed

    Plebani, Mario

    2016-01-01

    In laboratory medicine, the terms "standardization" and "harmonization" are frequently used interchangeably as the final goal is the same: the equivalence of measurement results among different routine measurement procedures over time and space according to defined analytical and clinical quality specifications. However, the terms define two distinct, albeit closely linked, concepts based on traceability principles. The word "standardization" is used when results for a measurement are equivalent and traceable to the International System of Units (SI) through a high-order primary reference material and/or a reference measurement procedure (RMP). "Harmonization" is generally used when results are equivalent, but neither a high-order primary reference material nor a reference measurement procedure is available. Harmonization is a fundamental aspect of quality in laboratory medicine as its ultimate goal is to improve patient outcomes through the provision of accurate and actionable laboratory information. Patients, clinicians and other healthcare professionals assume that clinical laboratory tests performed by different laboratories at different times on the same sample and specimen can be compared, and that results can be reliably and consistently interpreted. Unfortunately, this is not necessarily the case, because many laboratory test results are still highly variable and poorly standardized and harmonized. Although the initial focus was mainly on harmonizing and standardizing analytical processes and methods, the scope of harmonization now also includes all other aspects of the total testing process (TTP), such as terminology and units, report formats, reference intervals and decision limits as well as tests and test profiles, requests and criteria for interpretation. Several projects and initiatives aiming to improve standardization and harmonization in the testing process are now underway. Laboratory professionals should therefore step up their efforts to provide

  4. Regional-scale integration of hydrological and geophysical data using Bayesian sequential simulation: application to field data

    NASA Astrophysics Data System (ADS)

    Ruggeri, Paolo; Irving, James; Gloaguen, Erwan; Holliger, Klaus

    2013-04-01

    Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches to the regional scale still represents a major challenge, yet is critically important for the development of groundwater flow and contaminant transport models. To address this issue, we have developed a regional-scale hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure. The objective is to simulate the regional-scale distribution of a hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, our approach first involves linking the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. We present the application of this methodology to a pertinent field scenario, where we consider collocated high-resolution measurements of the electrical conductivity, measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, estimated from EM flowmeter and slug test measurements, in combination with low-resolution exhaustive electrical conductivity estimates obtained from dipole-dipole ERT meausurements.

  5. CO2 geosequestration at the laboratory scale: Combined geophysical and hydromechanical assessment of weakly-cemented shallow Sleipner-like reservoirs

    NASA Astrophysics Data System (ADS)

    Falcon-Suarez, I.; North, L. J.; Best, A. I.

    2017-12-01

    To date, the most promising mitigation strategy for reducing global carbon emissions is Carbon Capture and Storage (CCS). The storage technology (i.e., CO2 geosequestration, CGS) consists of injecting CO2 into deep geological formations, specifically selected for such massive-scale storage. To guarantee the mechanical stability of the reservoir during and after injection, it is crucial to improve existing monitoring techniques for controlling CGS activities. We developed a comprehensive experimental program to investigate the integrity of the Sleipner CO2 storage site in the North Sea - the first commercial CCS project in history where 1 Mtn/y of CO2 has been injected since 1996. We assessed hydro-mechanical effects and the related geophysical signatures of three synthetic sandstones and samples from the Utsira Sand formation (main reservoir at Sleipner), at realistic pressure-temperature (PT) conditions and fluid compositions. Our experimental approach consists of brine-CO2 flow-through tests simulating variable inflation/depletion scenarios, performed in the CGS-rig (Fig. 1; Falcon-Suarez et al., 2017) at the National Oceanography Centre (NOC) in Southampton. The rig is designed for simultaneous monitoring of ultrasonic P- and S-wave velocities and attenuations, electrical resistivity, axial and radial strains, pore pressure and flow, during the co-injection of up to two fluids under controlled PT conditions. Our results show velocity-resistivity and seismic-geomechanical relations of practical importance for the distinction between pore pressure and pore fluid distribution during CGS activities. By combining geophysical and thermo-hydro-mechano-chemical coupled information, we can provide laboratory datasets that complement in situ seismic, geomechanical and electrical survey information, useful for the CO2 plume monitoring in Sleipner site and other shallow weakly-cemented sand CCS reservoirs. Falcon-Suarez, I., Marín-Moreno, H., Browning, F., Lichtschlag, A

  6. Foundation integrity assessment using integrated geophysical and geotechnical techniques: case study in crystalline basement complex, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Olayanju, G. M.; Mogaji, K. A.; Lim, H. S.; Ojo, T. S.

    2017-06-01

    The determination of parameters comprising exact depth to bedrock and its lithological type, lateral changes in lithology, and detection of fractures, cracks, or faults are essential to designing formidable foundations and assessing the integrity of civil engineering structures. In this study, soil and site characterization in a typical hard rock geologic terrain in southwestern Nigeria were carried out employing integrated geophysical and geotechnical techniques to address tragedies in civil engineering infrastructural development. The deployed geophysical measurements involved running both very low frequency electromagnetic (VLF-EM) and electrical resistivity methods (dipole-dipole imaging and vertical electrical sounding (VES) techniques) along the established traverses, while the latter technique entailed conducting geological laboratory sieve analysis and Atterberg limit-index tests upon the collected soil samples in the area. The results of the geophysical measurement, based on the interpreted VLF-EM and dipole-dipole data, revealed conductive zones and linear features interpreted as fractures/faults which endanger the foundations of public infrastructures. The delineation of four distinct geoelectric layers in the area—comprised of topsoil, lateritic/clayey substratum, weathered layer, and bedrock—were based on the VES results. Strong evidence, including high degree of decomposition and fracturing of underlying bedrock revealed by the VES results, confirmed the VLF-EM and dipole-dipole results. Furthermore, values in the range of 74.2%-77.8%, 55%-62.5%, 23.4%-24.5%, 7.7%-8.2%, 19.5%-22.4%, and 31.65%-38.25% were obtained for these geotechnical parameters viz soil percentage passing 0.075 mm sieve size, liquid limit, plasticity index, linear shrinkage, natural moisture content, and plastic limit, respectively, resulting from the geotechnical analysis of the soil samples. The comparatively analyzed geophysical and geotechnical results revealed a high

  7. Publications - GPR 2016-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Fugro Airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical Surveys Geophysical

  8. Living microorganisms change the information (Shannon) content of a geophysical system.

    PubMed

    Tang, Fiona H M; Maggi, Federico

    2017-06-12

    The detection of microbial colonization in geophysical systems is becoming of interest in various disciplines of Earth and planetary sciences, including microbial ecology, biogeochemistry, geomicrobiology, and astrobiology. Microorganisms are often observed to colonize mineral surfaces, modify the reactivity of minerals either through the attachment of their own biomass or the glueing of mineral particles with their mucilaginous metabolites, and alter both the physical and chemical components of a geophysical system. Here, we hypothesise that microorganisms engineer their habitat, causing a substantial change to the information content embedded in geophysical measures (e.g., particle size and space-filling capacity). After proving this hypothesis, we introduce and test a systematic method that exploits this change in information content to detect microbial colonization in geophysical systems. Effectiveness and robustness of this method are tested using a mineral sediment suspension as a model geophysical system; tests are carried out against 105 experiments conducted with different suspension types (i.e., pure mineral and microbially-colonized) subject to different abiotic conditions, including various nutrient and mineral concentrations, and different background entropy production rates. Results reveal that this method can systematically detect microbial colonization with less than 10% error in geophysical systems with low-entropy background production rate.

  9. Critical zone architecture and processes: a geophysical perspective

    NASA Astrophysics Data System (ADS)

    Holbrook, W. S.

    2016-12-01

    The "critical zone (CZ)," Earth's near-surface layer that reaches from treetop to bedrock, sustains terrestrial life by storing water and producing nutrients. Despite is central importance, however, the CZ remains poorly understood, due in part to the complexity of interacting biogeochemical and physical processes that take place there, and in part due to the difficulty of measuring CZ properties and processes at depth. Major outstanding questions include: What is the architecture of the CZ? How does that architecture vary across scales and across gradients in climate, lithology, topography, biology and regional states of stress? What processes control the architecture of the CZ? At what depth does weathering initiate, and what controls the rates at which it proceeds? Based on recent geophysical campaigns at seven Critical Zone Observatory (CZO) sites and several other locations, a geophysical perspective on CZ architecture and processes is emerging. CZ architecture can be usefully divided into four layers, each of which has distinct geophysical properties: soil, saprolite, weathered bedrock and protolith. The distribution of those layers across landscapes varies depending on protolith composition and internal structure, topography, climate (P/T) and the regional state of stress. Combined observations from deep CZ drilling, geophysics and geochemistry demonstrate that chemical weathering initiates deep in the CZ, in concert with mechanical weathering (fracturing), as chemical weathering appears concentrated along fractures in borehole walls. At the Calhoun CZO, the plagioclase weathering front occurs at nearly 40 m depth, at the base of a 25-m-thick layer of weathered bedrock. The principal boundary in porosity, however, occurs at the saprolite/weathered bedrock boundary: porosity decreases over an order of magnitude, from 50% to 5% over an 8-m-thick zone at the base of saprolite. Porosity in weathered bedrock is between 2-5%. Future progress will depend on (1

  10. Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 103, 105, 108, 131, 135, NRF-15, and NRF-16, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Orr, Stephanie M.; Potter, Katherine E.; LeMaitre, Tynan

    2012-01-01

    This report, prepared in cooperation with the U.S. Department of Energy, summarizes construction, geophysical, and lithologic data collected from about 4,509 feet of core from seven boreholes deepened or drilled by the U.S. Geological Survey (USGS), Idaho National Laboratory (INL) Project Office, from 2006 to 2009 at the INL. USGS 103, 105, 108, and 131 were deepened and cored from 759 to 1,307 feet, 800 to 1,409 feet, 760 to 1,218 feet, and 808 to 1,239 feet, respectively. Boreholes USGS 135, NRF-15, and NRF-16 were drilled and continuously cored from land surface to 1,198, 759, and 425 feet, respectively. Cores were photographed and digitally logged by using commercially available software. Borehole descriptions summarize location, completion date, and amount and type of core recovered.

  11. South-Tibetan partially molten batholiths: geophysical characterization and petrological assessment of their origin

    NASA Astrophysics Data System (ADS)

    Hetényi, G.; Pistone, M.; Nabelek, P. I.; Baumgartner, L. P.

    2017-12-01

    Zones of partial melt in the middle crust of Lhasa Block, Southern Tibet, have been geophysically observed as seismically reflective "bright spots" in the past 20 years. These batholiths bear important relevance for geodynamics as they serve as the principal observation at depth supporting channel-flow models in the Himalaya-Tibet orogen. Here we assess the spatial abundance of and partial melt volume fraction within these crustal batholiths, and establish lower and upper estimate bounds using a joint geophysical-petrological approach.Geophysical imaging constrains the abundance of partial melt zones to 5.6 km3 per surface-km2 on average (minimum: 3.1 km3/km2, maximum: 7.6 km3/km2 over the mapped area). Physical properties detected by field geophysics and interpreted by laboratory measurements constrain the amount of partial melt to be between 5 and 26 percent.We evaluate the compatibility of these estimates with petrological modeling based on geotherms, crustal bulk rock compositions and water contents consistent with the Lhasa Block. These simulations determine: (a) the physico-chemical conditions of melt generation at the base of the Tibetan crust and its transport and emplacement in the middle crust; (b) the melt percentage produced at the source, transported and emplaced to form the observed "bright spots". Two main mechanisms are considered: (1) melting induced by fluids produced during mineral dehydration reactions in the underthrusting Indian lower crust; (2) dehydration-melting reactions caused by heating within the Tibetan crust. We find that both mechanisms demonstrate first-order match in explaining the formation of the partially molten "bright spots". Thermal modelling shows that the Lhasa Block batholiths have only small amounts of melt and only for geologically short times (<4.5 Myr), if not continuously fed. This, together with their small size compared to the Tibetan Plateau, suggests that these partially molten zones are ephemeral and local

  12. Leachate recirculation: moisture content assessment by means of a geophysical technique.

    PubMed

    Guérin, Roger; Munoz, Marie Laure; Aran, Christophe; Laperrelle, Claire; Hidra, Mustapha; Drouart, Eric; Grellier, Solenne

    2004-01-01

    Bioreactor technology is a waste treatment concept consisting in speeding up the biodegradation of landfilled waste by optimizing its moisture content through leachate recirculation. The measurement of variations in waste moisture content is critical in the design and control of bioreactors. Conventional methods such as direct physical sampling of waste reach their limits due to the interference with the waste matrix. This paper reviews geophysical measurements such as electrical direct current and electromagnetic slingram methods for measuring the electrical conductivity. Electrical conductivity is a property, which is linked to both moisture and temperature and can provide useful indications on the biodegradation environment in the waste mass. The study reviews three site experiments: a first experimentation shows the advantages (correlation between conductive anomaly and water seepage) but also the limits of geophysical interpretation; the two other sites allow the leachate recirculation to be tracked by studying the relative resistivity variation versus time from electrical 2D imaging. Even if some improvements are necessary to consider geophysical measurements as a real bioreactor monitoring tool, results are promising and could lead to the use of electrical 2D imaging in bioreactor designing.

  13. Archaeogeophysical tests in water saturated and under water scenarios at the Hydrogeosite Laboratory

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; De Martino, Gregory; Giampaolo, Valeria; Perciante, Felice; Rizzo, Enzo

    2016-04-01

    The growing interest in underwater archaeology as witnessed by numerous archaeological campaigns carried out in the Mediterranean region in marine and lacustrine environments involves a challenge of great importance for archaeogeophysical discipline. Through a careful use of geophysical techniques it is possible support archaeological research to identify and analyse the undiscovered cultural heritage placed under water located near rivers and sea. Over the past decades, geophysical methods were applied successfully in the field of archaeology: an integrated approach based on the use of electric, electromagnetic and magnetic techniques have showed the ability to individuate and reconstruct the presence of archaeological remains in the subsoil allowing to define their distribution in the space limiting the excavation activities. Moreover the capability of geophysics could be limited cause the low geophysical contrasts occurring between archaeological structures and surrounding environment; in particular problems of resolution, depth of investigation and sensitivity related to each adopted technique can result in a distorted reading of the subsurface behaviour preventing the identification of archaeological remains. This problem is amplified when geophysical approach is applied in very humid environments such as in lacustrine and marine scenarios, or in soils characterized by high clay content that make more difficult the propagation of geophysical signals. In order to improve our geophysical knowledge in lacustrine and coastal scenarios a complex and innovative research project was realized at the CNR laboratory of Hydrogeosite which permitted to perform an archaeogeophysical experiment in controlled conditions. The designed archaeological context was focused on the Roman age and various elements characterized by different shapes and materials were placed at different depths in the sub-soil. The preliminary project activities with some scenarios were presented last

  14. Application of geotechnical and geophysical field measurements in an active alpine environment

    NASA Astrophysics Data System (ADS)

    Lucas, D. R.; Fankhauser, K.; Springman, S. M.

    2015-09-01

    Rainfall can trigger landslides, rockfalls and debris flow events. When rainfall infiltrates into the soil, the suction (if there is any) is reduced, until positive water pressure can be developed, decreasing the effective stresses and leading to a potential failure. A challenging site for the study of mass movement is the Meretschibach catchment, a location in the Swiss Alps in the vicinity of Agarn, Canton of Valais. To study the effect of rainfall on slope stabilities, the soil characterization provides valuable insight on soil properties, necessary to establish a realistic ground model. This model, together with an effective long term-field monitoring, deliver the essential information and boundary conditions for predicting and validating rainfall- induced slope instabilities using numerical and physical modelling. Geotechnical monitoring, including soil temperature and volumetric water content measurements, has been performed on the study site together with geophysical measurements (ERT) to study the effect of rainfall on the (potential) triggering of landslides on a scree slope composed of a surficial layer of gravelly soil. These techniques were combined to provide information on the soil characteristics and depth to the bedrock. Seasonal changes of precipitation and temperature were reflected in corresponding trends in all measurements. A comparison of volumetric water content records was obtained from decagons, time domain reflectometry (TDR) and electrical resistivity tomography (ERT) conducted throughout the spring and summer months of 2014, yielding a reasonable agreement.

  15. Geophysical Parameter Estimation of Near Surface Materials Using Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Keating, K.

    2017-12-01

    Proton nuclear magnetic resonance (NMR), a mature geophysical technology used in petroleum applications, has recently emerged as a promising tool for hydrogeophysicists. The NMR measurement, which can be made in the laboratory, in boreholes, and using a surface based instrument, are unique in that it is directly sensitive to water, via the initial signal magnitude, and thus provides a robust estimate of water content. In the petroleum industry rock physics models have been established that relate NMR relaxation times to pore size distributions and permeability. These models are often applied directly for hydrogeophysical applications, despite differences in the material in these two environments (e.g., unconsolidated versus consolidated, and mineral content). Furthermore, the rock physics models linking NMR relaxation times to pore size distributions do not account for partially saturated systems that are important for understanding flow in the vadose zone. In our research, we are developing and refining quantitative rock physics models that relate NMR parameters to hydrogeological parameters. Here we highlight the limitations of directly applying established rock physics models to estimate hydrogeological parameters from NMR measurements, and show some of the successes we have had in model improvement. Using examples drawn from both laboratory and field measurements, we focus on the use of NMR in partial saturated systems to estimate water content, pore-size distributions, and the water retention curve. Despite the challenges in interpreting the measurements, valuable information about hydrogeological parameters can be obtained from NMR relaxation data, and we conclude by outlining pathways for improving the interpretation of NMR data for hydrogeophysical investigations.

  16. EVALUATION OF GEOPHYSICAL METHODS FOR THE DETECTION OF SUBSURFACE TETRACHLOROETHYLENE IN CONTROLLED SPILL EXPERIMENTS

    EPA Science Inventory

    The purpose of the work was to determine the capability of various geophysical methods to detect PCE in the subsurface. Measurements were made with ten different geophysical techniques before, during, and after the PCE injection. This approach provided a clear identification of a...

  17. AfricaArray International Geophysics Field School: Applications of Near Surface Geophysics to challenges encountered in mine planning

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.

    2012-12-01

    Hard rock exploration and mining presents many opportunities for the effective use of near surface geophysics. For over 10 years the AfricaArray international geophysics field school has been hosted at a variety of mines in South Africa. While the main objective of the field school is practical training for the next generation of geophysicists, being hosted at a mine has allowed us to investigate applications of near surface geophysics in the early stages of mine planning and development as geophysics is often cheaper and faster than drilling. Several applications include: detailed delineation of dykes and stringer dykes, physical property measurements on drill core for modeling and marker horizons, determination of overburden thickness, locations of water and faults. Dolerite dykes are usually magnetic and are associated with loss of ground (i.e. where the dyke replaces the ore and thus reduces the amount of ore available) and safety/stability concerns. Thus the accurate mapping of dykes and narrow stringers that are associated with them are crucial to the safe planning of a mine. We have acquired several case studies where ground magnetic surveys have greatly improved on the resolution and detail of airborne magnetic surveys in regions of complicated dyke swarms. In many cases, thin stringer dykes of less than 5 cm have been detected. Physical property measurements of these dykes can be used to distinguish between different ages of dykes. It is important to accurately determine overburden thickness when planning an open pit mine as this directly affects the cost of development. Depending on the nature of the overburden, both refraction seismic and or DC resistivity can provide continuous profiling in the area of interest that fills in gaps between boreholes. DC resistivity is also effective for determining water associated with dykes and structures that may affect mine planning. The field school mainly addresses the training of a variety of students. The core

  18. The International Geophysical Month: Short periods of cooperative study can consolidate the gains of the International Geophysical Year.

    PubMed

    Helliwell, R A; Martin, L H

    1961-12-01

    For convenience, we summarize below some of the main advantages of the IGM concept. 1) Most organizations can mount and support intensive field operations for short periods. 2) High-quality data would be obtained, and the data could be processed more promptly than in long-term projects. 3) Laboratory equipment could in many instances be mnade available for field operations. 4) Top-caliber researchers would be available for field operations. 5) The participation of small research groups and of research workers from government and industry would be fostered. 6) Student participation would improve educational programs in, and attract needed talent to, the geophysical sciences. 7) Ship, satellite, and rocket observations could be scheduled for IGM's. 8) International scientific conferences scheduled to follow IGM's would attract working scientists. It is not suggested that these short-term exercises should replace the long synoptic programs characteristic of the IGY. Rather it is proposed that they supplement and guide any such future long-term program. If adopted, they would produce many data of value for the planning and timing of the International Year of the Quiet Sun. To bring emphasis on special observations during the IQSY, International Geophysical Months might well be scheduled to coincide with the June and December solstices, to be followed by an IGM at an equinoctial period. This would provide periods for concentrated sampling-periods in somewhat the same category as the Regular World Intervals adopted during the IGY. The more elaborate experiments could be confined to the International Geophysical Months, so that only those studies for which continuous observations are essential would be scheduled for the entire period. The duration of an International Geophysical Month would be sufficient for carrying out experiments requiring moving platforms such as ships, rockets, or satellites. It is recommended that every effort be made to schedule the first IGM

  19. Laboratory Measurements of Celestial Solids

    NASA Technical Reports Server (NTRS)

    Sievers, A. J.; Beckwith, S. V. W.

    1997-01-01

    Our experimental study has focused on laboratory measurements of the low temperature optical properties of a variety of astronomically significant materials in the infrared and mm-wave region of the spectrum. Our far infrared measurements of silicate grains with an open structure have produced a variety of unusual results: (1) the low temperature mass opacity coefficient of small amorphous 2MgO(central dot)SiO2 and MgO(central dot)2SiO2 grains are many times larger than the values previously used for interstellar grain material; (2) all of the amorphous silicate grains studied possess the characteristic temperature dependent signature associated with two level systems in bulk glass; and (3) a smaller but nonzero two level temperature dependence signature is also observed for crystalline particles, its physical origin is unclear. These laboratory measurements yield surprisingly large and variable values for the mm-wave absorption coefficients of small silicate particles similar to interstellar grains, and suggest that the bulk absorptivity of interstellar dust at these long wavelengths will not be well known without such studies. Furthermore, our studies have been useful to better understand the physics of the two level absorption process in amorphous and crystalline grains to gain confidence in the wide applicability of these results.

  20. Geophysical fingerprints of shallow cultural structures from microgravity and GPR measurements in the Church of St. George, Svätý Jur, Slovakia

    NASA Astrophysics Data System (ADS)

    Panisova, Jaroslava; Murín, Igor; Pašteka, Roman; Haličková, Jana; Brunčák, Peter; Pohánka, Vladimír; Papčo, Juraj; Milo, Peter

    2016-04-01

    Recording of the historic edifice using the state-of-the-art geodetic and geophysical techniques brings easier visualisation in form of a three-dimensional (3D) model, thus allowing better understanding of its historical construction by the public and non-experts. We have applied this approach at the Church of St. George, one of the most significant religious buildings in south-western Slovakia, which dominates a silhouette of the town Svätý Jur. The geodetic survey allowed to record the actual state of the church. The church exterior was surveyed using a total station. Due to the intricate shape of the interior components of the church, it was decided to use a terrestrial laser scanner to generate the point cloud data, which were processed into floor plan, elevations, sectional 2D drawings and 3D model. The geophysical survey was carried out in the interior of the church in order to identify potential subsurface anthropogenic structures. Microgravity and ground penetrating radar (GPR) methods were selected as the most effective geophysical tools for such task. In microgravity data processing we focused on the calculation and removal of the gravitational effects of the building masses. The main negative gravity anomalies of interest in the nave, which also have been confirmed by GPR measurements, are interpreted as medieval crypts. Another very important outcome of the geophysical survey is the discovery of the west wall foundations of the oldest Romanesque construction. From each geophysical data acquired we derived 3D polygonal models, which are compared to achieve more realistic picture of the subsurface structures. Verification of these structures by means of archaeological excavation has not been carried out yet.

  1. Laboratory ginning and blending impacts on cotton fiber micronaire measurements

    USDA-ARS?s Scientific Manuscript database

    Micronaire, a critical cotton quality parameter, is normally measured in a conditioned laboratory, but increasing interest has been shown in new technologies that can measure micronaire both in and outside of the laboratory. Near Infrared (NIR) technology has demonstrated its ability to measure cot...

  2. Parameterization of strombolian explosions: constraint from simultaneous physical and geophysical measurements (Invited)

    NASA Astrophysics Data System (ADS)

    gurioli, L.; Harris, A. J.

    2013-12-01

    Stromboli, and other volcanoes like it, are to plot in the strombolian fields of deposit-based classifications. We also quenched a number of bombs soon explosion at Stromboli. This enabled us to quantify the degassing history and rheology of the magma(s) resident in the shallow, near-surface, system. The different textural facies observed in these bombs showed that fresh magma, mingled with partially or completely degassed, oxidized, re-crystallized, evolved and high viscosity magma, was ejected. The degassed magma appears to sit at the top of the conduit, playing only a passive role in the explosive process. Our best model, is that the degassed, oxidized magma forms a plug, or rheologically defined layer, at the top of the conduit, through which the fresh magma bursts. Integration of geophysical measurements with sample analyses, indicates that popular (bubble-bursting) models may not fit this case, thus also changeling the model-based definition of this eruption type.

  3. Electromagnetic geophysical observation with controlled source

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg

    2016-04-01

    In the paper the new theoretical and methodical approaches are examined for detailed investigations of the structure and state of the geological medium, and its behavior as a dynamic system in reaction to external man-made influences. To solve this problem it is necessary to use geophysical methods that have sufficient resolution and that are built on more complicated models than layered or layered-block models. One of these methods is the electromagnetic induction frequency-geometrical method with controlled sources. Here we consider new approaches using this method for monitoring rock shock media by means of natural experiments and interpretation of the practical results. That method can be used by oil production in mines, where the same events of non stability can occur. The key ideas of twenty first century geophysics from the point of view of geologist academician A.N. Dmitrievskiy [Dmitrievskiy, 2009] are as follows. "The geophysics of the twenty first century is an understanding that the Earth is a self-developing, self-supporting geo-cybernetic system, in which the role of the driving mechanism is played by the field gradients; the evolution of geological processes is a continuous chain of transformations and the interaction of geophysical fields in the litho- hydro- and atmosphere. The use of geophysical principles of a hierarchical quantum of geophysical space, non-linear effects, and the effects of reradiating geophysical fields will allow the creation of a new geophysics. The research, in which earlier only pure geophysical processes and technologies were considered, nowadays tends to include into consideration geophysical-chemical processes and technologies. This transformation will allow us to solve the problems of forecasting geo-objects and geo-processes in previously unavailable geological-technological conditions." The results obtained allow us to make the following conclusions, according to the key ideas of academician A.N. Dmitrievskiy: the rock

  4. Geophysical Institute. Biennial report, 1993-1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  5. Publications - GPR 2015-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey airborne geophysical survey data compilation Authors: Burns, L.E., Geoterrex-Dighem, Stevens Exploration airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical Surveys

  6. Publications - GPR 2015-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Fugro Airborne magnetic airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical

  7. Ground geophysical study of the Buckeye mine tailings, Boulder watershed, Montana

    USGS Publications Warehouse

    McDougal, Robert R.; Smith, Bruce D.

    2000-01-01

    The Buckeye mine site is located in the Boulder River watershed along Basin Creek, in northern Jefferson County, Montana. This project is part of the Boulder River watershed Abandoned Mine Lands Initiative, and is a collaborative effort between the U.S. Geological Survey and Bureau of Land Management in the U.S. Department of the Interior, and the U.S. Forest Service in the U.S. Department of Agriculture. The site includes a large flotation milltailing deposit, which extends to the stream and meadows below the mine. These tailings contain elevated levels of metals, such as silver, cadmium, copper, lead, and zinc. Metal-rich fluvial tailings containing these metals, are possible sources of ground and surface water contamination. Geophysical methods were used to characterize the sediments at the Buckeye mine site. Ground geophysical surveys, including electromagnetics, DC resistivity, and total field magnetic methods, were used to delineate anomalies that probably correlate with subsurface metal contamination. Subsurface conductivity was mapped using EM-31 and EM-34 terrain conductivity measuring systems. The conductivity maps represent variation of concentration of dissolved solids in the subsurface from a few meters, to an approximate depth of 30 meters. Conductive sulfides several centimeters thick were encountered in a shallow trench, dug in an area of very high conductivity, at a depth of approximately 1 to1.5 meters. Laboratory measurements of samples of the sulfide layers show the conductivity is on the order of 1000 millisiemens. DC resistivity soundings were used to quantify subsurface conductivity variations and to estimate the depth to bedrock. Total field magnetic measurements were used to identify magnetic metals in the subsurface. The EM surveys identified several areas of relatively high conductivity and detected a conductive plume extending to the southwest, toward the stream. This plume correlates well with the potentiometric surface and direction of

  8. Geophysical anatomy of counter-slope scarps in sedimentary flysch rocks (Outer Western Carpathians)

    NASA Astrophysics Data System (ADS)

    Tábořík, P.; Lenart, J.; Blecha, V.; Vilhelm, J.; Turský, O.

    2017-01-01

    A multidisciplinary geophysical survey, consisting of electrical resistivity tomography (ERT), ground penetrating radar (GPR), shallow seismic refraction (SSR) and gravity survey (GS), was used to investigate the counter-slope scarps, one of the typical manifestations of the relaxed zones of rock massifs, and the possible initial stages of deep-seated landslides (DSLs). Two upper parts of the extensive DSLs within the Moravskoslezské Beskydy Mountains (Outer Western Carpathians - OWC) built by the sedimentary flysch rock were chosen as the testing sites. A combined geophysical survey on the flysch rocks was performed on both localities to enhance our present findings. The survey revealed that the ERT is able to reliably detect underground discontinuities, which are manifested at the ground surface by one of the typical landforms (tension cracks, trenches, pseudokarst sinkholes, double-crested ridges and counter-slope scarps). Previous studies suggested that bedrock discontinuities should be depicted by high-resistivity features within ERT surveying. According to SSR and GS, expected zones of weakened rock massif were not confirmed directly underneath the superficial landforms, but they were shifted. Based on the SSR and GS measurements, the depicted high-contrast transitions between high- and low-resistivity domains within the ERT profiles were newly identified as possible manifestation of bedrock discontinuities. The results of GPR measurements give only limited information on the sedimentary flysch rocks, due to shallow penetrating depth and locally strong signal attenuation. The combined results of multidisciplinary geophysical surveying confirmed an importance of employing more than one geophysical technique for integrated interpretations of measured data. Integrated interpretations of the measured geophysical data provided a new insight into massif disintegration and the geomorphic origin of the landforms related to the DSL.

  9. Foundations of geophysics. [College textbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheidegger, A.E.

    1976-01-01

    The following subjects are covered/: geography, geodesy, and geology; seismology, gravity, and the Earth's interior; magnetic and electrical properties of the earth; thermicity of the earth and related subjects; tectonophysics; geophysical exploration; geohydrology; physical oceanography; physical meteorology; and engineering geophysics. (MHR)

  10. Spacecraft contamination programs within the Air Force Systems Command Laboratories

    NASA Technical Reports Server (NTRS)

    Murad, Edmond

    1990-01-01

    Spacecraft contamination programs exist in five independent AFSC organizations: Geophysics Laboratory (GL), Arnold Engineering and Development Center (AEDC), Rome Air Development Center (RADC/OSCE), Wright Research and Development Center (MLBT), Armament Laboratory (ATL/SAI), and Space Systems Division (SSD/OL-AW). In addition, a sizable program exists at Aerospace Corp. These programs are complementary, each effort addressing a specific area of expertise: GL's effort is aimed at addressing the effects of on-orbit contamination; AEDC's effort is aimed at ground simulation and measurement of optical contamination; RADC's effort addresses the accumulation, measurement, and removal of contamination on large optics; MLBT's effort is aimed at understanding the effect of contamination on materials; ATL's effort is aimed at understanding the effect of plume contamination on systems; SSD's effort is confined to the integration of some contamination experiments sponsored by SSD/CLT; and Aerospace Corp.'s effort is aimed at supporting the needs of the using System Program Offices (SPO) in specific areas, such as contamination during ground handling, ascent phase, laboratory measurements aimed at understanding on-orbit contamination, and mass loss and mass gain in on-orbit operations. These programs are described in some detail, with emphasis on GL's program.

  11. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  12. Coulombic faulting from the grain scale to the geophysical scale: lessons from ice

    NASA Astrophysics Data System (ADS)

    Weiss, Jérôme; Schulson, Erland M.

    2009-11-01

    Coulombic faulting, a concept formulated more than two centuries ago, still remains pertinent in describing the brittle compressive failure of various materials, including rocks and ice. Many questions remain, however, about the physical processes underlying this macroscopic phenomenology. This paper reviews the progress made in these directions during the past few years through the study of ice and its mechanical behaviour in both the laboratory and the field. Fault triggering is associated with the formation of specific features called comb-cracks and involves frictional sliding at the micro(grain)-scale. Similar mechanisms are observed at geophysical scales within the sea ice cover. This scale-independent physics is expressed by the same Coulombic phenomenology from laboratory to geophysical scales, with a very similar internal friction coefficient (μ ≈ 0.8). On the other hand, the cohesion strongly decreases with increasing spatial scale, reflecting the role of stress concentrators on fault initiation. Strong similarities also exist between ice and other brittle materials such as rocks and minerals and between faulting of the sea ice cover and Earth's crust, arguing for the ubiquitous nature of the underlying physics.

  13. Integration and Improvement of Geophysical Root Biomass Measurements for Determining Carbon Credits

    NASA Astrophysics Data System (ADS)

    Boitet, J. I.

    2013-12-01

    Carbon trading schemes fundamentally rely on accurate subsurface carbon quantification in order for governing bodies to grant carbon credits inclusive of root biomass (What is Carbon Credit. 2013). Root biomass makes up a large chunk of the subsurface carbon and is difficult, labor intensive, and costly to measure. This paper stitches together the latest geophysical root measurement techniques into site-dependent recommendations for technique combinations and modifications that maximize large-scale root biomass measurement accuracy and efficiency. "Accuracy" is maximized when actual root biomass is closest to measured root biomass. "Efficiency" is maximized when time, labor, and cost of measurement is minimized. Several combinations have emerged which satisfy both criteria under different site conditions. Use of ground penetrating radar (GPR) and/or electrical resistivity tomography (ERT) allow for large tracts of land to be surveyed under appropriate conditions. Among other characteristics, GPR does best with detecting coarse roots in dry soil. ERT does best in detecting roots in moist soils, but is especially limited by electrode configuration (Mancuso, S. 2012). Integration of these two technologies into a baseline protocol based on site-specific characteristics, especially soil moisture and plants species heterogeneity, will drastically theoretically increase efficiency and accuracy of root biomass measurements. Modifications of current measurement protocols using these existing techniques will also theoretically lead to drastic improvements in both accuracy and efficiency. These modifications, such as efficient 3D imaging by adding an identical electrode array perpendicular to the first array used in the Pulled Array Continuous Electrical Profiling (PACEP) technique for ERT, should allow for more widespread application of these techniques for understanding root biomass. Where whole-site measurement is not feasible either due to financial, equipment, or

  14. Exploration Geophysics

    ERIC Educational Resources Information Center

    Espey, H. R.

    1977-01-01

    Describes geophysical techniques such as seismic, gravity, and magnetic surveys of offshare acreage, and land-data gathering from a three-dimensional representation made from closely spaced seismic lines. (MLH)

  15. Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals.

    PubMed

    Cassiani, Giorgio; Binley, Andrew; Kemna, Andreas; Wehrer, Markus; Orozco, Adrian Flores; Deiana, Rita; Boaga, Jacopo; Rossi, Matteo; Dietrich, Peter; Werban, Ulrike; Zschornack, Ludwig; Godio, Alberto; JafarGandomi, Arash; Deidda, Gian Piero

    2014-01-01

    The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site's heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site's mechanisms.

  16. Extension of laboratory-measured soil spectra to field conditions

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Weismiller, R. A.; Biehl, L. L.; Robinson, B. F.

    1982-01-01

    Spectral responses of two glaciated soils, Chalmers silty clay loam and Fincastle silt loam, formed under prairie grass and forest vegetation, respectively, were measured in the laboratory under controlled moisture equilibria using an Exotech Model 20C spectroradiometer to obtain spectral data in the laboratory under artificial illumination. The same spectroradiometer was used outdoors under solar illumination to obtain spectral response from dry and moistened field plots with and without corn residue cover, representing the two different soils. Results indicate that laboratory-measured spectra of moist soil are directly proportional to the spectral response of that same field-measured moist bare soil over the 0.52 micrometer to 1.75 micrometer wavelength range. The magnitudes of difference in spectral response between identically treated Chalmers and Fincastle soils are greatest in the 0.6 micrometers to 0.8 micrometer transition region between the visible and near infrared, regardless of field condition or laboratory preparation studied.

  17. Relative velocity change measurement based on seismic noise analysis in exploration geophysics

    NASA Astrophysics Data System (ADS)

    Corciulo, M.; Roux, P.; Campillo, M.; Dubuq, D.

    2011-12-01

    Passive monitoring techniques based on noise cross-correlation analysis are still debated in exploration geophysics even if recent studies showed impressive performance in seismology at larger scale. Time evolution of complex geological structure using noise data includes localization of noise sources and measurement of relative velocity variations. Monitoring relative velocity variations only requires the measurement of phase shifts of seismic noise cross-correlation functions computed for successive time recordings. The existing algorithms, such as the Stretching and the Doublet, classically need great efforts in terms of computation time, making them not practical when continuous dataset on dense arrays are acquired. We present here an innovative technique for passive monitoring based on the measure of the instantaneous phase of noise-correlated signals. The Instantaneous Phase Variation (IPV) technique aims at cumulating the advantages of the Stretching and Doublet methods while proposing a faster measurement of the relative velocity change. The IPV takes advantage of the Hilbert transform to compute in the time domain the phase difference between two noise correlation functions. The relative velocity variation is measured through the slope of the linear regression of the phase difference curve as a function of correlation time. The large amount of noise correlation functions, classically available at exploration scale on dense arrays, allows for a statistical analysis that further improves the precision of the estimation of the velocity change. In this work, numerical tests first aim at comparing the IPV performance to the Stretching and Doublet techniques in terms of accuracy, robustness and computation time. Then experimental results are presented using a seismic noise dataset with five days of continuous recording on 397 geophones spread on a ~1 km-squared area.

  18. Safety in the Chemical Laboratory: Laboratory Air Quality: Part II. Measurements of Ventilation Rates.

    ERIC Educational Resources Information Center

    Butcher, Samuel S.; And Others

    1985-01-01

    Part I of this paper (SE 538 295) described a simple model for estimating laboratory concentrations of gas phase pollutants. In this part, the measurement of ventilation rates and applications of the model are discussed. The model can provide a useful starting point in planning for safer instructional laboratories. (JN)

  19. Measuring meaningful learning in the undergraduate chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Galloway, Kelli R.

    The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from

  20. SAGE celebrates 25 years of learning geophysics by doing geophysics

    USGS Publications Warehouse

    Jiracek, G.R.; Baldridge, W.S.; Sussman, A.J.; Biehler, S.; Braile, L.W.; Ferguson, J.F.; Gilpin, B.E.; McPhee, D.K.; Pellerin, L.

    2008-01-01

    The increasing world demand and record-high costs for energy and mineral resources, along with the attendant environmental and climate concerns, have escalated the need for trained geophysicists to unprecedented levels. This is not only a national need; it's a critical global need. As Earth scientists and educators we must seriously ask if our geophysics pipeline can adequately address this crisis. One program that has helped to answer this question in the affirmative for 25 years is SAGE (Summer of Applied Geophysical Experience). SAGE continues to develop with new faculty, new collaborations, and additional ways to support student participation during and after SAGE. ?? 2008 Society of Exploration Geophysicists.

  1. Geochemical Characterization Using Geophysical Data and Markov Chain Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hubbard, S.; Rubin, Y.; Murray, C.; Roden, E.; Majer, E.

    2002-12-01

    Although the spatial distribution of geochemical parameters is extremely important for many subsurface remediation approaches, traditional characterization of those parameters is invasive and laborious, and thus is rarely performed sufficiently to describe natural hydrogeological variability at the field-scale. This study is an effort to jointly use multiple sources of information, including noninvasive geophysical data, for geochemical characterization of the saturated and anaerobic portion of the DOE South Oyster Bacterial Transport Site in Virginia. Our data set includes hydrogeological and geochemical measurements from five boreholes and ground-penetrating radar (GPR) and seismic tomographic data along two profiles that traverse the boreholes. The primary geochemical parameters are the concentrations of extractable ferrous iron Fe(II) and ferric iron Fe(III). Since iron-reducing bacteria can reduce Fe(III) to Fe(II) under certain conditions, information about the spatial distributions of Fe(II) and Fe(III) may indicate both where microbial iron reduction has occurred and in which zone it is likely to occur in the future. In addition, as geochemical heterogeneity influences bacterial transport and activity, estimates of the geochemical parameters provide important input to numerical flow and contaminant transport models geared toward bioremediation. Motivated by our previous research, which demonstrated that crosshole geophysical data could be very useful for estimating hydrogeological parameters, we hypothesize in this study that geochemical and geophysical parameters may be linked through their mutual dependence on hydrogeological parameters such as lithofacies. We attempt to estimate geochemical parameters using both hydrogeological and geophysical measurements in a Bayesian framework. Within the two-dimensional study domain (12m x 6m vertical cross section divided into 0.25m x 0.25m pixels), geochemical and hydrogeological parameters were considered as data

  2. Solar-geophysical data number 499, March 1986, supplement

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This supplement contains the description and explanation of the data in the monthly publication Solar-Geophysical Data, compiled by the National Geophysical Data Center (NGDC) in Boulder, Colo., USA. Solar-Geophysical Data is intended to keep research workers informed on a timely schedule of the major events of solar activity and the associated interplanetary, ionospheric, radio propagation and other geophysical effects.

  3. Geophysical Monitoring Station (GEMS)

    NASA Astrophysics Data System (ADS)

    Banerdt, B.; Dehant, V. M.; Lognonne, P.; Smrekar, S. E.; Spohn, T.; GEMS Mission Team

    2011-12-01

    GEMS (GEophysical Monitoring Station) is one of three missions undergoing Phase A development for possible selection by NASA's Discovery Program. If selected, GEMS will perform the first comprehensive surface-based geophysical investigation of Mars, filling a longstanding gap in the scientific exploration of the solar system. It will illuminate the fundamental processes of terrestrial planet formation and evolution, providing unique and critical information about the initial accretion of the planet, the formation and differentiation of the core and crust, and the subsequent evolution of the interior. The scientific goals of GEMS are to understand the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars and to determine its present level of tectonic activity and impact flux. A straightforward set of scientific objectives address these goals: 1) Determine the size, composition and physical state of the core; 2) Determine the thickness and structure of the crust; 3) Determine the composition and structure of the mantle; 4) Determine the thermal state of the interior; 5) Measure the rate and distribution of internal seismic activity; and 6) Measure the rate of impacts on the surface. To accomplish these objectives, GEMS carries a tightly-focused payload consisting of 3 investigations: 1) SEIS, a 6-component, very-broad-band seismometer, with careful thermal compensation/control and a sensitivity comparable to the best terrestrial instruments across a frequency range of 1 mHz to 50 Hz; 2) HP3 (Heat Flow and Physical Properties Package), an instrumented self-penetrating mole system that trails a string of temperature sensors to measure the thermal gradient and conductivity of the upper several meters, and thus the planetary heat flux; and 3) RISE (Rotation and Interior Structure Experiment), which would use the spacecraft X-band communication system to provide precision tracking for planetary dynamical

  4. Young Geophysicists: `Know How' Tips to Nourish Them from Lectures and Seminars to Field Work and Conferences (Geology and Geophysics Department, Novosibirsk State University, GGD, NSU).

    NASA Astrophysics Data System (ADS)

    Rakhmenkulova, I. F.

    2016-12-01

    How to nourish young brilliant geophysicists? Here are the tips: We teach them as physicists (at the Department of Physics, together with students majoring in physics). Students have special facilities in field work, using most modern geophysical equipment. They can participate in real projects on applied geophysics during their studies. They attend special seminars and conferences for both young professionals and full-fledged scientists. Their English Language Program is focused on geophysical terminology. There are four specialties at Geology and Geophysics Department of Novosibirsk State University: Geophysics, Geochemistry, Geology, and Geochemistry of Oil and Gas. However, the curriculum for geophysicists is absolutely different from other specialties. Mathematics, physics and laboratory work are given at the Department of Physics (together with students majoring in physics). All the necessary geological subjects are also studied (including field work). During all period of their study the students work part time at many geophysical institutions. The equipment is both traditional and most modern, created at the Institute of Oil and Gas Geophysics. The students present the result of their field work and laboratory experiments in many seminars and conferences. For example, there is a traditional annual conference in Shira, Khakassia, for young professionals. Every year the Seminar in Geodynamics, Geophysics and Geomechanics is held in the Altay Mountains (Denisova Cave Camp). This Seminar was organized by the late Sergey Goldin, the Director of the Institute of Geophysics, the Head of the Chair of Geophysics, a Member of the Russian Academy of Sciences. In July 2016 this Seminar was devoted to 80's birth anniversary of Sergey Goldin. Several students of geophysics presented the results of their work there. Next year the seminar is supposed to be international. A special attention is given to the English course lasting for 5 years. The students learn general

  5. Practices to enable the geophysical research spectrum: from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.

    2016-12-01

    In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique

  6. Measuring preschool learning engagement in the laboratory.

    PubMed

    Halliday, Simone E; Calkins, Susan D; Leerkes, Esther M

    2018-03-01

    Learning engagement is a critical factor for academic achievement and successful school transitioning. However, current methods of assessing learning engagement in young children are limited to teacher report or classroom observation, which may limit the types of research questions one could assess about this construct. The current study investigated the validity of a novel assessment designed to measure behavioral learning engagement among young children in a standardized laboratory setting and examined how learning engagement in the laboratory relates to future classroom adjustment. Preschool-aged children (N = 278) participated in a learning-based Tangrams task and Story sequencing task and were observed based on seven behavioral indicators of engagement. Confirmatory factor analysis supported the construct validity for a behavioral engagement factor composed of six of the original behavioral indicators: attention to instructions, on-task behavior, enthusiasm/energy, persistence, monitoring progress/strategy use, and negative affect. Concurrent validity for this behavioral engagement factor was established through its associations with parent-reported mastery motivation and pre-academic skills in math and literacy measured in the laboratory, and predictive validity was demonstrated through its associations with teacher-reported classroom learning behaviors and performance in math and reading in kindergarten. These associations were found when behavioral engagement was observed during both the nonverbal task and the verbal story sequencing tasks and persisted even after controlling for child minority status, gender, and maternal education. Learning engagement in preschool appears to be successfully measurable in a laboratory setting. This finding has implications for future research on the mechanisms that support successful academic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A fractured rock geophysical toolbox method selection tool

    USGS Publications Warehouse

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  8. The new geophysical observatory in Northern Caucasus (Elbrus volcanic area) and results of studies of ULF magnetic variations preceding strong geodynamic events

    NASA Astrophysics Data System (ADS)

    Sobissevitch, Leonid E.; Sobissevitch, Alex L.; Kanonidi, Konstantin Kh.; Filippov, Ivan N.

    2010-05-01

    The new geophysical observatory for fundamental scientific studies of geophysical processes in the Elbrus volcanic area (Northern Caucasus) has been organized recently as a result of merging of five geophysical laboratories positioned round the Elbrus volcano and equipped with modern geophysical instruments including broadband tri-axial seismometers, quartz tilt-meters, magnetic variometers, geo-acoustic sensors, hi-precision distributed thermal sensors, gravimeters, and network-enabled data acquisition systems with precise GPS-timing and integrated monitoring of auxiliary parameters (variations on ambient humidity, atmospheric pressure etc). Two laboratories are located in the horizontal 4.3 km deep tunnel drilled under the mount Andyrchi, about 20 km from the Elbrus volcano. Analysis of multi-parameter streams of experimental data allows one to study the structure of geophysical wave fields induced by earthquakes and regional catastrophic events (including snow avalanches). On the basis of continuous observations carried out since 2007 there have been determined anomalous wave forms in ULF geomagnetic variations preceding strong seismic events with magnitude 7 or more. Mentioned wave forms may be natively related to processes of evolution of dilatational structures in a domain of forthcoming seismic event. Specific patterns in anomalous ULF wave forms are distinguished for undersea earthquakes and for earthquakes responsible for triggering tsunami events. Thus, it is possible to consider development of a future technology to suggest the possible area and the time frame of such class of catastrophic events with additional reference to forecast information (including acoustic, hydro-acoustic and geo-acoustic) being concurrently analyzed.

  9. Sensitivity, specificity, and reproducibility of four measures of laboratory turnaround time.

    PubMed

    Valenstein, P N; Emancipator, K

    1989-04-01

    The authors studied the performance of four measures of laboratory turnaround time: the mean, median, 90th percentile, and proportion of tests reported within a predetermined cut-off interval (proportion of acceptable tests [PAT]). Measures were examined with the use of turnaround time data from 11,070 stat partial thromboplastin times, 16,761 urine cultures, and 28,055 stat electrolyte panels performed by a single laboratory. For laboratories with long turnaround times, the most important quality of a turnaround time measure is high reproducibility, so that improvement in reporting speed can be distinguished from random variation resulting from sampling. The mean was found to be the most reproducible of the four measures, followed by the median. The mean achieved acceptable precision with sample sizes of 100-500 tests. For laboratories with normally rapid turnaround times, the most important quality of a measure is high sensitivity and specificity for detecting whether turnaround time has dropped below standards. The PAT was found to be the best measure of turnaround time in this setting but required sample sizes of at least 500 tests to achieve acceptable accuracy. Laboratory turnaround time may be measured for different reasons. The method of measurement should be chosen with an eye toward its intended application.

  10. Publications - GPR 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Geoterrex-Dighem Graham, G.R.C., 2015, Livengood mining district electromagnetic and magnetic airborne geophysical survey

  11. Remote sensing-a geophysical perspective.

    USGS Publications Warehouse

    Watson, K.

    1985-01-01

    In this review of developments in the field of remote sensing from a geophysical perspective, the subject is limited to the electromagnetic spectrum from 0.4 mu m to 25cm. Three broad energy categories are covered: solar reflected, thermal infrared, and microwave.-from Authorremote sensing electromagnetic spectrum solar reflected thermal infrared microwave geophysics

  12. Publications - GPR 2015-6 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey content DGGS GPR 2015-6 Click to enlarge Publication Details Title: Airborne magnetic geophysical survey ., Graham, Gina, and Goldak Airborne Surveys, 2015, Airborne magnetic geophysical survey of the Tanacross

  13. Agricultural Geophysics

    USDA-ARS?s Scientific Manuscript database

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  14. The AFGL (Air Force Geophysics Laboratory) Absolute Gravity System’s Error Budget Revisted.

    DTIC Science & Technology

    1985-05-08

    also be induced by equipment not associated with the system. A systematic bias of 68 pgal was observed by the Istituto di Metrologia "G. Colonnetti...Laboratory Astrophysics, Univ. of Colo., Boulder, Colo. IMGC: Istituto di Metrologia "G. Colonnetti", Torino, Italy Table 1. Absolute Gravity Values...measurements were made with three Model D and three Model G La Coste-Romberg gravity meters. These instruments were operated by the following agencies

  15. Methodological Developments in Geophysical Assimilation Modeling

    NASA Astrophysics Data System (ADS)

    Christakos, George

    2005-06-01

    This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to

  16. Evaluation of geophysical parameters measured by the Nimbus-7 microwave radiometer for the TOGA Heat Exchange Project

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Mock, Donald R.

    1986-01-01

    The data distributed by the National Space Science Data Center on the Geophysical parameters of precipitable water, sea surface temperature, and surface-level wind speed, measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, are evaluated with in situ measurements between Jan. 1980 and Oct. 1983 over the tropical oceans. In tracking annual cycles and the 1982-83 E1 Nino/Southern Oscillation episode, the radiometer measurements are coherent with sea surface temperatures and surface-level wind speeds measured at equatorial buoys and with precipitable water derived from radiosonde soundings at tropical island stations. However, there are differences between SMMR and in situ measurements. Corrections based on radiosonde and ship data were derived supplementing correction formulae suggested in the databook. This study is the initial evaluation of the data for quantitative description of the 1982-83 E1 Nino/Southern Oscillation episode. It paves the way for determination of the ocean-atmosphere moisture and latent heat exchanges, a priority of the Tropical Ocean and Global Atmosphere (TOGA) Heat Exchange Program.

  17. Development and implementation of the software for visualization and analysis of data geophysical loggers

    NASA Astrophysics Data System (ADS)

    Gordeev, V. F.; Malyshkov, S. Yu.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.

    2017-11-01

    The general trend of modern ecological geophysics is changing priorities towards rapid assessment, management and prediction of ecological and engineering soil stability as well as developing brand new geophysical technologies. The article describes researches conducted by using multi-canal geophysical logger MGR-01 (developed by IMCES SB RAS), which allows to measure flux density of very low-frequency electromagnetic radiation. It is shown that natural pulsed electromagnetic fields of the earthen lithosphere can be a source of new information on Earth's crust and processes in it, including earthquakes. The device is intended for logging electromagnetic processes in Earth's crust, geophysical exploration, finding structural and lithological inhomogeneities, monitoring the geodynamic movement of Earth's crust, express assessment of seismic hazards. The data is gathered automatically from observation point network in Siberia

  18. Pitfalls and Limitations in the Interpretation of Geophysical Images for Hydrologic Properties and Processes

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.

    2014-12-01

    Geophysical imaging (e.g., electrical, radar, seismic) can provide valuable information for the characterization of hydrologic properties and monitoring of hydrologic processes, as evidenced in the rapid growth of literature on the subject. Geophysical imaging has been used for monitoring tracer migration and infiltration, mapping zones of focused groundwater/surface-water exchange, and verifying emplacement of amendments for bioremediation. Despite the enormous potential for extraction of hydrologic information from geophysical images, there also is potential for misinterpretation and over-interpretation. These concerns are particularly relevant when geophysical results are used within quantitative frameworks, e.g., conversion to hydrologic properties through petrophysical relations, geostatistical estimation and simulation conditioned to geophysical inversions, and joint inversion. We review pitfalls to interpretation associated with limited image resolution, spatially variable image resolution, incorrect data weighting, errors in the timing of measurements, temporal smearing resulting from changes during data acquisition, support-volume/scale effects, and incorrect assumptions or approximations involved in modeling geophysical or other jointly inverted data. A series of numerical and field-based examples illustrate these potential problems. Our goal in this talk is to raise awareness of common pitfalls and present strategies for recognizing and avoiding them.

  19. 36 CFR 902.59 - Geological and geophysical information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical information. 902.59 Section 902.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Geological and geophysical information. Any geological or geophysical information and data (including maps...

  20. NOAA's Van-Based Mobile Atmospheric Emissions Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dube, W. P.; Peischl, J.; Neuman, J. A.; Eilerman, S. J.; Holloway, M.; Roberts, O.; Aikin, K. C.; Ryerson, T. B.

    2015-12-01

    The Chemical Science Division (CSD) mobile atmospheric emissions measurement laboratory is the second and latest of two mobile measurement vans outfitted for atmospheric sampling by the NOAA Earth System Research Laboratory. In this presentation we will describe the modifications made to this vehicle to provide a versatile and relatively inexpensive instrument platform including: the 2 kW 120 volt instrument power system; battery back-up system; data acquisition system; real-time display; meteorological, directional, and position sensor package; and the typical atmospheric emissions instrument package. The van conversion uses commercially available, off-the-shelf components from the marine and RV industries, thus keeping the costs quite modest.

  1. Publications - AR 2006 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2006 main content DGGS AR 2006 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  2. Publications - AR 2000 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2000 main content DGGS AR 2000 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  3. Publications - AR 2003 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2003 main content DGGS AR 2003 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  4. Publications - AR 2004 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2004 main content DGGS AR 2004 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual

  5. Geophysical characteristics and crustal structure of greenstone terranes: Canadian Shield

    NASA Technical Reports Server (NTRS)

    Thomas, M. D.; Losier, L.; Thurston, P. C.; Gupta, V. K.; Gibb, R. A.; Grieve, R. A. F.

    1986-01-01

    Geophysical studies in the Canadian Shield have provided some insights into the tectonic setting of greenstone belts. Greenstone belts are not rooted in deep crustal structures. Geophysical techniques consistently indicate that greenstones are restricted to the uppermost 10 km or so of crust and are underlain by geophysically normal crust. Gravity models suggest that granitic elements are similarly restricted, although magnetic modelling suggests possible downward extension to the intermediate discontinuity around approx. 18 km. Seismic evidence demonstrates that steeply-dipping structure, which can be associated with the belts in the upper crust, is not present in the lower crust. Horizontal intermediate discontinuities mapped under adjacent greenstone and granitic components are not noticeably disrupted in the boundary zone. Geophysical evidence points to the presence of discontinuities between greenhouse-granite and adjacent metasedimentary erranes. Measured stratigraphic thicknesses of greenstone belts are often twice or more the vertical thicknesses determined from gravity modelling. Explantations advanced for the discrepancy include stratigraphy repeated by thrust faulting and/or listric normal faulting, mechanisms which are consistent with certain aspects of conceptual models of greenstone development. Where repetition is not a factor the gravity evidence points to removal of the root zones of greenstone belts. For one region, this has been attributed to magmatic stopping during resurgent caldera activity.

  6. Agricultural Geophysics: Past, present, and future

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...

  7. New Improvements in Magnetic Measurements Laboratory of the ALBA Synchrotron Facility

    NASA Astrophysics Data System (ADS)

    Campmany, Josep; Marcos, Jordi; Massana, Valentí

    ALBA synchrotron facility has a complete insertion devices (ID) laboratory to characterize and produce magnetic devices needed to satisfy the requirements of ALBA's user community. The laboratory is equipped with a Hall-probe bench working in on-the-fly measurement mode allowing the measurement of field maps of big magnetic structures with high accuracy, both in magnetic field magnitude and position. The whole control system of this bench is based on TANGO. The Hall probe calibration range extends between sub-Gauss to 2 Tesla with an accuracy of 100 ppm. Apart from the Hall probe bench, the ID laboratory has a flipping coil bench dedicated to measuring field integrals and a Helmholtz coil bench specially designed to characterize permanent magnet blocks. Also, a fixed stretched wire bench is used to measure field integrals of magnet sets. This device is specifically dedicated to ID construction. Finally, the laboratory is equipped with a rotating coil bench, specially designed for measuring multipolar devices used in accelerators, such as quadrupoles, sextupoles, etc. Recent improvements of the magnetic measurements laboratory of ALBA synchrotron include the design and manufacturing of very thin 3D Hall probe heads, the design and manufacturing of coil sensors for the Rotating coil bench based on multilayered PCB, and the improvement of calibration methodology in order to improve the accuracy of the measurements. ALBA magnetic measurements laboratory is open for external contracts, and has been widely used by national and international institutes such as CERN, ESRF or CIEMAT, as well as magnet manufacturing companies, such as ANTEC, TESLA and I3 M. In this paper, we will present the main features of the measurement benches as well as improvements made so far.

  8. Comparing Laboratory and Field Measured Bioaccumulation Endpoints

    EPA Science Inventory

    The report presents an approach that allows comparisons of all laboratory and field bioaccumulation endpoints measurements. The approach will enable the inclusion of large amounts of field data into evaluations of bioaccumulation potential for legacy chemicals. Currently, these...

  9. Laboratory measurements of gravel thermal properties. A methodology proposal

    NASA Astrophysics Data System (ADS)

    Cultrera, Matteo; Peron, Fabio; Bison, Paolo; Dalla Santa, Giorgia; Bertermann, David; Muller, Johannes; Bernardi, Adriana; Galgaro, Antonio

    2017-04-01

    Gravel thermal properties measurements at laboratory level is quite challenging due to several technical and logistic issues, mainly connected to the sediment sizes and the variability of their mineralogical composition. The direct measurement of gravel thermal properties usually are not able to involve a representative volume of geological material, consequently the thermal measurements performed produce much dispersed results and not consistent due to the large interstitial voids and the poor physical contact with the measuring sensors. With the aim of directly provide the measurement of the gravel thermal properties, a new methodology has been developed and some results are already available on several gravel deposits samples around Europe. Indeed, a single guarded hot plate Taurus Instruments TLP 800 measured the gravel thermal properties. Some instrumental adjustments were necessary to adapt the measuring devices and to finalize the thermal measurements on gravels at the IUAV FISTEC laboratory (Environmental Technical Physics Laboratory of Venice University). This device usually provides thermal measurements according to ISO 8302, ASTM C177, EN 1946-2, EN 12664, EN 12667 and EN 12939 for building materials. A preliminary calibration has been performed comparing the outcomes obtained with the single guarded hot plate with a needle probe of a portable thermal conductivity meter (ISOMET). Standard sand (ISO 67:2009) is used as reference material. This study is provided under the Cheap-GSHPs project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 657982

  10. Permeability from complex conductivity: an evaluation of polarization magnitude versus relaxation time based geophysical length scales

    NASA Astrophysics Data System (ADS)

    Slater, L. D.; Robinson, J.; Weller, A.; Keating, K.; Robinson, T.; Parker, B. L.

    2017-12-01

    Geophysical length scales determined from complex conductivity (CC) measurements can be used to estimate permeability k when the electrical formation factor F describing the ratio between tortuosity and porosity is known. Two geophysical length scales have been proposed: [1] the imaginary conductivity σ" normalized by the specific polarizability cp; [2] the time constant τ multiplied by a diffusion coefficient D+. The parameters cp and D+ account for the control of fluid chemistry and/or varying minerology on the geophysical length scale. We evaluated the predictive capability of two recently presented CC permeability models: [1] an empirical formulation based on σ"; [2] a mechanistic formulation based on τ;. The performance of the CC models was evaluated against measured permeability; this performance was also compared against that of well-established k estimation equations that use geometric length scales to represent the pore scale properties controlling fluid flow. Both CC models predict permeability within one order of magnitude for a database of 58 sandstone samples, with the exception of those samples characterized by high pore volume normalized surface area Spor and more complex mineralogy including significant dolomite. Variations in cp and D+ likely contribute to the poor performance of the models for these high Spor samples. The ultimate value of such geophysical models for permeability prediction lies in their application to field scale geophysical datasets. Two observations favor the implementation of the σ" based model over the τ based model for field-scale estimation: [1] the limited range of variation in cp relative to D+; [2] σ" is readily measured using field geophysical instrumentation (at a single frequency) whereas τ requires broadband spectral measurements that are extremely challenging and time consuming to accurately measure in the field. However, the need for a reliable estimate of F remains a major obstacle to the field

  11. Infrared Measurements of AFGL (Air Force Geophysics Laboratory) Sources.

    DTIC Science & Technology

    1983-06-07

    of sources brighter than magnitude [ X ] is plotted against [ X ] in figures 3 and 4. The LL source counts are plotted as dots in these two figu re s. From...radiation is from, a cir- cumstellar dust shell. The characteristic temperature of these shells 21 *~** * * ** X ...scale height. We find: N([4)) = 3 x 10 -7 pc -3 and N(L1Q]) = 9 x 10 .8 pc 3 . Kirton and Fitzgerald (1974) found the density of late M stars (M5-9) to

  12. MFGA-IDT2 workshop: Astrophysical and geophysical fluid mechanics: the impact of data on turbulence theories

    NASA Astrophysics Data System (ADS)

    Schertzer, D.; Falgarone, E.

    very large scale of the Universe. The presentations and the round table at the end of the workshop pointed out the following: - the necessity of this type of confrontation which makes intervene numerical simulations, laboratory experiments, phenomenology as well as a very large diversity of geophysical and astrophysical data, - presumably a relative need for new geophysical data, whereas there have been recent astrophysical experiments which yield interesting data and exciting questions; - the need to develop a closer intercomparison between various intermittency models (in particular Log-Poisson /Log Levy models). Two main questions were underlined, in particular during the round table: - the behaviour of the extremes of intermittency, in particular the question of divergence or convergence of the highest statistical moments (equivalently, do the probability distributions have algebraic or more rapid falloffs?); - the extension of scaling ranges; in other words do we need to divide geophysics and astrophysics in many small (nearly) isotropic subranges or is it sufficient to use anisotropic scaling notions over wider ranges? 4 The contributions in this special issue Recalling that some of the most useful insights into the nature of turbulence in fluids have come from observations of geophysical flows, Van Atta gives a review of the impacts of geophysical turbulence data into theories. His paper starts from Taylor's inference of the nearly isotropy of atmospheric turbulence and the corresponding elegant theoretical developments by von Karman of the theory of isotropic turbulence, up to underline the fact that the observed extremely large intermittency in geophysical turbulence also raised new fundamental questions for turbulence theory. The paper discusses the potential contribution to theoretical development from the available or currently being made geophysical turbulence measurements, as well as from some recent laboratory measurements and direct numerical

  13. Covariant Structure of Models of Geophysical Fluid Motion

    NASA Astrophysics Data System (ADS)

    Dubos, Thomas

    2018-01-01

    Geophysical models approximate classical fluid motion in rotating frames. Even accurate approximations can have profound consequences, such as the loss of inertial frames. If geophysical fluid dynamics are not strictly equivalent to Newtonian hydrodynamics observed in a rotating frame, what kind of dynamics are they? We aim to clarify fundamental similarities and differences between relativistic, Newtonian, and geophysical hydrodynamics, using variational and covariant formulations as tools to shed the necessary light. A space-time variational principle for the motion of a perfect fluid is introduced. The geophysical action is interpreted as a synchronous limit of the relativistic action. The relativistic Levi-Civita connection also has a finite synchronous limit, which provides a connection with which to endow geophysical space-time, generalizing Cartan (1923). A covariant mass-momentum budget is obtained using covariance of the action and metric-preserving properties of the connection. Ultimately, geophysical models are found to differ from the standard compressible Euler model only by a specific choice of a metric-Coriolis-geopotential tensor akin to the relativistic space-time metric. Once this choice is made, the same covariant mass-momentum budget applies to Newtonian and all geophysical hydrodynamics, including those models lacking an inertial frame. Hence, it is argued that this mass-momentum budget provides an appropriate, common fundamental principle of dynamics. The postulate that Euclidean, inertial frames exist can then be regarded as part of the Newtonian theory of gravitation, which some models of geophysical hydrodynamics slightly violate.

  14. Proficiency Tests for Environmental Radioactivity Measurement Organized by an Accredited Laboratory

    NASA Astrophysics Data System (ADS)

    Aubert, Cédric; Osmond, Mélanie

    2008-08-01

    For 40 years, STEME (Environmental Sample Processing and Metrology Department) organized international proficiency testing (PT) exercises formerly for WHO (World Health Organization) and EC (European Community) and currently for ASN (French Nuclear Safety Authority). Five PT exercises are organized each year for the measurement of radionuclides (alpha, beta and gamma) in different matrixes (water, soil, biological and air samples) at environmental levels. ASN can deliver a French ministerial agreement to participate on environmental radioactivity measurements French network for laboratories asking it [1]. Since 2006, November, STEME is the first French entity obtaining a COFRAC (French Committee of Accreditation) accreditation as "Interlaboratory Comparisons" for the organization of proficiency tests for environmental radioactivity measurement according to standard International Standard Organization (ISO) 17025 and guide ISO 43-1. STEME has in charge to find, as far as possible, real sample or to create, by radionuclide adding, an adapted sample. STEME realizes the sampling, the samples preparation and the dispatching. STEME is also accredited according to Standard 17025 for radioactivity measurements in environmental samples and determines homogeneity, stability and reference values. After the reception of participating laboratories results, STEME executes statistical treatments in order to verify the normal distribution, to eliminate outliers and to evaluate laboratories performance. Laboratories participate with several objectives, to obtain French agreement, to prove the quality of their analytical performance in regards to standard 17025 or to validate new methods or latest developments. For 2 years, in addition to usual PT exercises, new PT about alpha or beta measurement in air filters, radioactive iodine in carbon cartridges or measurement of environmental dosimeters are organized. These PT exercises help laboratories to improve radioactive measurements

  15. Proficiency Tests for Environmental Radioactivity Measurement Organized by an Accredited Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, Cedric; Osmond, Melanie

    2008-08-14

    For 40 years, STEME (Environmental Sample Processing and Metrology Department) organized international proficiency testing (PT) exercises formerly for WHO (World Health Organization) and EC (European Community) and currently for ASN (French Nuclear Safety Authority). Five PT exercises are organized each year for the measurement of radionuclides (alpha, beta and gamma) in different matrixes (water, soil, biological and air samples) at environmental levels. ASN can deliver a French ministerial agreement to participate on environmental radioactivity measurements French network for laboratories asking it. Since 2006, November, STEME is the first French entity obtaining a COFRAC (French Committee of Accreditation) accreditation as 'Interlaboratorymore » Comparisons' for the organization of proficiency tests for environmental radioactivity measurement according to standard International Standard Organization (ISO) 17025 and guide ISO 43-1. STEME has in charge to find, as far as possible, real sample or to create, by radionuclide adding, an adapted sample. STEME realizes the sampling, the samples preparation and the dispatching. STEME is also accredited according to Standard 17025 for radioactivity measurements in environmental samples and determines homogeneity, stability and reference values. After the reception of participating laboratories results, STEME executes statistical treatments in order to verify the normal distribution, to eliminate outliers and to evaluate laboratories performance.Laboratories participate with several objectives, to obtain French agreement, to prove the quality of their analytical performance in regards to standard 17025 or to validate new methods or latest developments. For 2 years, in addition to usual PT exercises, new PT about alpha or beta measurement in air filters, radioactive iodine in carbon cartridges or measurement of environmental dosimeters are organized. These PT exercises help laboratories to improve radioactive measurements

  16. Transport in zonal flows in analogous geophysical and plasma systems

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego

    1999-11-01

    Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.

  17. Assessment of highway condition using combined geophysical surveys

    NASA Astrophysics Data System (ADS)

    Dera, Abdallah Alhadi

    Four pavement sections were investigated using ground penetrating radar (GPR) and Ultrasonic Surface Wave (USW). The objective of this research was to compare the effectiveness of two non-destructive geophysical tools, GPR and the PSPA, in assessing the condition of the pavements, composed of different construction materials. The GPR data were acquired using a 1.5 GHz antenna along five traverses spaced at two ft. intervals approximately 1000 ft. long. On the other hand, the PSPA data were acquired at the stations spaced at 1000 ft. along the five GPR traverses. Core samples were collected at each site to constrain the interpretation of the acquired geophysical data. The sites include section US 63 about three miles north of Rolla, US 54 in Camdenton County, MO 179 in Jefferson City, and HWY U in Dent County. The types of pavement in these sites were, asphalt concrete overlaying portland cement concrete (AC/PCC), and full-depth asphalt concrete (AC) pavements or full depth bituminous mix (BM). Based on the acquired and analyzed data of the GPR and PSPA, the data of both tools correlated reasonably well. The PSPA technique successfully measured the elastic modulus and the thickness of pavement and detected horizontal flaws (e.g. debonding and delaminations). Similarly, the GPR technique successfully measured the thickness of pavement and detected horizontal flaws (e.g. debonding and delaminations) within the pavement. The research demonstrated that both non-destructive geophysical tools (GPR and PSPA) are effective in assessing the condition of different types of pavement.

  18. Solar flare emissions and geophysical disturbances

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1973-01-01

    Various geophysical phenomena are produced by both wave and particle emissions from solar flares. Using the observed data for these emissions, a review is given on the nature of solar flares and their development. Geophysical phenomena are discussed by referring to the results for solar flare phenomena.

  19. Rapid estimation of aquifer salinity structure from oil and gas geophysical logs

    NASA Astrophysics Data System (ADS)

    Shimabukuro, D.; Stephens, M.; Ducart, A.; Skinner, S. M.

    2016-12-01

    We describe a workflow for creating aquifer salinity maps using Archie's equation for areas that have geophysical data from oil and gas wells. We apply this method in California, where geophysical logs are available in raster format from the Division of Oil, Gas, and Geothermal Resource (DOGGR) online archive. This method should be applicable to any region where geophysical logs are readily available. Much of the work is controlled by computer code, allowing salinity estimates for new areas to be rapidly generated. For a region of interest, the DOGGR online database is scraped for wells that were logged with multi-tool suites, such as the Platform Express or Triple Combination Logging Tools. Then, well construction metadata, such as measured depth, spud date, and well orientation, is attached. The resultant local database allows a weighted criteria selection of wells that are most likely to have the shallow resistivity, deep resistivity, and density porosity measurements necessary to calculate salinity over the longest depth interval. The algorithm can be adjusted for geophysical log availability for older well fields and density of sampling. Once priority wells are identified, a student researcher team uses Neuralog software to digitize the raster geophysical logs. Total dissolved solid (TDS) concentration is then calculated in clean, wet sand intervals using the resistivity-porosity method, a modified form of Archie's equation. These sand intervals are automatically selected using a combination of spontaneous potential and the difference in shallow resistivity and deep resistivity measurements. Gamma ray logs are not used because arkosic sands common in California make it difficult to distinguish sand and shale. Computer calculation allows easy adjustment of Archie's parameters. The result is a semi-continuous TDS profile for the wells of interest. These profiles are combined and contoured using standard 3-d visualization software to yield preliminary salinity

  20. Microwave moisture measurement of cotton fiber moisture content in the laboratory

    USDA-ARS?s Scientific Manuscript database

    The moisture content of cotton fiber is an important fiber property, but it is often measured by a laborious, time-consuming laboratory oven drying method. A program was implemented to establish the capabilities of a laboratory microwave moisture measurement instrument to perform rapid, precise and...

  1. Radon Mitigation Approach in a Laboratory Measurement Room

    PubMed Central

    Blanco-Rodríguez, Patricia; Fernández-Serantes, Luis Alfonso; Otero-Pazos, Alberto; Calvo-Rolle, José Luis; de Cos Juez, Francisco Javier

    2017-01-01

    Radon gas is the second leading cause of lung cancer, causing thousands of deaths annually. It can be a problem for people or animals in houses, workplaces, schools or any building. Therefore, its mitigation has become essential to avoid health problems and to prevent radon from interfering in radioactive measurements. This study describes the implementation of radon mitigation systems at a radioactivity laboratory in order to reduce interferences in the different works carried out. A large set of radon concentration samples is obtained from measurements at the laboratory. While several mitigation methods were taken into account, the final applied solution is explained in detail, obtaining thus very good results by reducing the radon concentration by 76%. PMID:28492468

  2. Radon Mitigation Approach in a Laboratory Measurement Room.

    PubMed

    Blanco-Rodríguez, Patricia; Fernández-Serantes, Luis Alfonso; Otero-Pazos, Alberto; Calvo-Rolle, José Luis; de Cos Juez, Francisco Javier

    2017-05-11

    Radon gas is the second leading cause of lung cancer, causing thousands of deaths annually. It can be a problem for people or animals in houses, workplaces, schools or any building. Therefore, its mitigation has become essential to avoid health problems and to prevent radon from interfering in radioactive measurements. This study describes the implementation of radon mitigation systems at a radioactivity laboratory in order to reduce interferences in the different works carried out. A large set of radon concentration samples is obtained from measurements at the laboratory. While several mitigation methods were taken into account, the final applied solution is explained in detail, obtaining thus very good results by reducing the radon concentration by 76%.

  3. Geophysical Investigations in the Caucasus (1925 - 2012): Initial, Basic and Modern Stages

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.

    2012-04-01

    The Caucasian Mountains occupy an area of about 440,000 km2. A number of important mineral resources are concentrated there. Geophysical data on the geological structure of Caucasus can shed light on the basic principles of evolution of the Earth, the distribution of minerals and seismic activity. However, geophysical surveys under complex conditions are generally riddled by poor accessibility to certain mountainous regions, the unevenness of observation surfaces, as well as by a great variety and frequent changes of tectonic structures and geological bodies with variable physical properties. These factors either restrict geophysical surveys in difficult environments or confine the scope of useful information drawn from the results obtained. This has led to the development of special techniques in geophysical surveys, data processing and interpretation that draws heavily on the experience accumulated in the specific conditions of these mountainous regions. First applied geophysical observations in the Caucasus region - thermal measurements in boreholes - were carried out by Bazevich (1881) in the Absheron Peninsula. At the same time, start of the initial stage is usually referred to as the mid 20-s of the XX century, when the rare, but systematic geophysical observations (mainly gravity and magnetic) were begun in some Caucasian areas. Somewhat later began to apply the resistivity method. Mid 30-s is characterized by the beginning of application of borehole geophysics and seismic prospecting. The marine seismics firstly in the former Soviet Union was tested in the Caspian Sea. In general, the initial stage is characterized by slow, but steady rise (except during World War II) lasted until 1960. A basic stage (1960-1991) is characterized by very intensive employment of geophysical methods (apparently, any possible geophysical methods were tested in this region). At this time the Caucasus region is considered in the former Soviet Union as a geophysical polygon for

  4. Geophysical methods for determining the geotechnical engineering properties of earth materials.

    DOT National Transportation Integrated Search

    2010-03-01

    Surface and borehole geophysical methods exist to measure in-situ properties and structural : characteristics of earth materials. Application of such methods has demonstrated cost savings through : reduced design uncertainty and lower investigation c...

  5. Potential for geophysical experiments in large scale tests.

    USGS Publications Warehouse

    Dieterich, J.H.

    1981-01-01

    Potential research applications for large-specimen geophysical experiments include measurements of scale dependence of physical parameters and examination of interactions with heterogeneities, especially flaws such as cracks. In addition, increased specimen size provides opportunities for improved recording resolution and greater control of experimental variables. Large-scale experiments using a special purpose low stress (100MPa).-Author

  6. Karst system vadose zone hydrodynamics highlighted by an integrative geophysical and hydrogeological monitoring

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Rochez, G.; Kaufmann, O.

    2015-12-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of climate conditions, diminished evapotranspiration and differences of porosity relative to deeper layers. It is therefore crucial, but challenging, to separate the hydrological signature of the vadose zone from the one of the saturated zone for understanding hydrological processes that occur in the vadose zone. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside with various techniques. We present results covering two years of hydrogeological and geophysical monitoring at the Rochefort Cave Laboratory (RCL), located in the Variscan fold-and-thrust belt (Belgium), a region that shows many karstic networks within Devonian limestone units. Hydrogeological data such as flows and levels monitoring or tracer tests performed in both vadose and saturated zones bring valuable information on the hydrological context of the studied area. Combining those results with geophysical measurements allows validating and imaging them with more integrative techniques. A microgravimetric monitoring involves a superconducting gravimeter continuously measuring at the surface of the RCL. Early in 2015, a second relative gravimeter was installed in the underlying cave system located 35 meters below the surface. This set up allows highlighting vadose gravity changes. These relative measurements are calibrated using an absolute gravimeter. 12 additional stations (7 at the surface, 5 in the cave) are monitored on a monthly basis by a spring gravimeter. To complete these gravimetric measurements, the site has been equipped with a permanent Electrical Resistivity Tomography (ERT) monitoring system comprising an uncommon array of surface, borehole and cave electrodes. Although such

  7. Geophysical monitoring of organic contaminants in sediments

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Jennings, J.

    2016-12-01

    Soil and groundwater contamination pose threats to the health of human and the environment. Successful contaminant remediation requires effective in situ monitoring of physical, chemical, and biological processes in the subsurface. Minimally invasive geophysical methods have shown promise in characterizing organic contaminants in soil and groundwater and have been applied to monitor remediation processes. This study examines the sensitivity of low field proton nuclear magnetic resonance (NMR) and complex conductivity to the presence of organic contaminants in sediments. We aim to improve understanding of relationships between NMR and complex conductivity observables and hydrological properties of the sediments, as well as the amount and state of contaminants in porous media. We used toluene as a representative organic contaminant, and pure silica sands and montmorillonite clay as synthetic sediments. Sand-clay mixtures with various sand/clay ratios were prepared and saturated with different concentration of toluene. Relationships between the compositions of porous media, hydrocarbon concentration, and hydrological properties of sediments and geophysical response were investigated. The results from NMR relaxation time (T2) measurements reveal the dominant control of clay content on T2 relaxation, establish minimum toluene detectability, and demonstrate the effect of contaminant concentration on NMR signals. The diffusion-relaxation (D-T2) correlation measurement show toluene can be resolved from toluene-water mixture in sand-clay mixture. The results from ongoing complex conductivity measurements will also be presented and discussed.

  8. Integrated Approaches On Archaeo-Geophysical Data

    NASA Astrophysics Data System (ADS)

    Kucukdemirci, M.; Piro, S.; Zamuner, D.; Ozer, E.

    2015-12-01

    Key words: Ground Penetrating Radar (GPR), Magnetometry, Geophysical Data Integration, Principal Component Analyse (PCA), Aizanoi Archaeological Site An application of geophysical integration methods which often appealed are divided into two classes as qualitative and quantitative approaches. This work focused on the application of quantitative integration approaches, which involve the mathematical and statistical integration techniques, on the archaeo-geophysical data obtained in Aizanoi Archaeological Site,Turkey. Two geophysical methods were applied as Ground Penetrating Radar (GPR) and Magnetometry for archaeological prospection on the selected archaeological site. After basic data processing of each geophysical method, the mathematical approaches of Sums and Products and the statistical approach of Principal Component Analysis (PCA) have been applied for the integration. These integration approches were first tested on synthetic digital images before application to field data. Then the same approaches were applied to 2D magnetic maps and 2D GPR time slices which were obtained on the same unit grids in the archaeological site. Initially, the geophysical data were examined individually by referencing with archeological maps and informations obtained from archaeologists and some important structures as possible walls, roads and relics were determined. The results of all integration approaches provided very important and different details about the anomalies related to archaeological features. By using all those applications, integrated images can provide complementary informations as well about the archaeological relics under the ground. Acknowledgements The authors would like to thanks to Scientific and Technological Research Council of Turkey (TUBITAK), Fellowship for Visiting Scientists Programme for their support, Istanbul University Scientific Research Project Fund, (Project.No:12302) and archaeologist team of Aizanoi Archaeological site for their support

  9. A method for developing outcome measures in the clinical laboratory.

    PubMed

    Jones, J

    1996-01-01

    Measuring and reporting outcomes in health care is becoming more important for quality assessment, utilization assessment, accreditation standards, and negotiating contracts in managed care. How does one develop an outcome measure for the laboratory to assess the value of the services? A method is described which outlines seven steps in developing outcome measures for a laboratory service or process. These steps include the following: 1. Identify the process or service to be monitored for performance and outcome assessment. 2. If necessary, form an multidisciplinary team of laboratory staff, other department staff, physicians, and pathologists. 3. State the purpose of the test or service including a review of published data for the clinical pathological correlation. 4. Prepare a process cause and effect diagram including steps critical to the outcome. 5. Identify key process variables that contribute to positive or negative outcomes. 6. Identify outcome measures that are not process measures. 7. Develop an operational definition, identify data sources, and collect data. Examples, including a process cause and effect diagram, process variables, and outcome measures, are given using the Therapeutic Drug Monitoring service (TDM). A summary of conclusions and precautions for outcome measurement is then provided.

  10. HIGH RESOLTUION GEOELECTRICAL MEASUREMENTS OF BIODEGRADATION AND SURFACTANT REMEDIATION: LAB AND FIELD STUDES AND A NEW CHARACTERIZATION TEST CELL FIELD RESEARCH SITE

    EPA Science Inventory

    Laboratory and field high vertical resolution geophysical research has shown that geoelectrical measurements can detect and monitor the natural attenuation of petroleum hydrocarbons. These results have lead to the continued development and refinement of the conductive model for h...

  11. Borehole geophysics applied to ground-water investigations

    USGS Publications Warehouse

    Keys, W.S.

    1990-01-01

    The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary background in hydrogeology with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, as well as on changes in the character of these factors over time. The response of well logs is caused by petrophysical factors, by the quality, temperature, and pressure of interstitial fluids, and by ground-water flow. Qualitative and quantitative analysis of analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs. The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids, and wells, as well as the principles of measurement, must be understood if geophysical logs are to be interpreted correctly. Plating a logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology is needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and the log analyst and requires both calibration and well-site standardization of equipment. Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization

  12. Borehole geophysics applied to ground-water investigations

    USGS Publications Warehouse

    Keys, W.S.

    1988-01-01

    The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary training with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, in addition to changes in the character of these factors with time. The response of well logs is caused by: petrophysical factors; the quality; temperature, and pressure of interstitial fluids; and ground-water flow. Qualitative and quantitative analysis of the analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs.The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids and wells, and the principles of measurement need to be understood to correctly interpret geophysical logs. Planning the logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology are needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and log analyst and requires both calibration and well-site standardization of equipment.Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include: spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization, volume of investigation, extraneous

  13. Fundamentals of Geophysics

    NASA Astrophysics Data System (ADS)

    Frohlich, Cliff

    Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).

  14. Bringing Undergraduates and Geoscientists Together for Field-Based Geophysical Education and Research at an On-Campus Well Field

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.; Gray, M. B.

    2004-12-01

    Development of our Hydrogeophysics Well Field has enabled new opportunities for field-based undergraduate research and active-learning at Bucknell University. Installed in 2001-2002, the on-campus well field has become a cornerstone of field labs for hydrogeology and applied geophysics courses, and for introductory labs in engineering and environmental geology. In addition to enabling new field experiences, the well field serves as a meeting place for students and practicing geoscientists. In the last three years, we have hosted field demonstrations by alumni working in the environmental, geophysical, and water-well drilling industries; researchers from government agencies; graduate students from other universities; and geophysical equipment vendors seeking to test and demonstrate new instruments. Coordinating undergraduate research and practical course labs with field experiments led by alumni and practicing geoscientists provides students hands-on experience with new technology while educating them about career and graduate-school opportunities. In addition to being effective pedagogical strategy, these experiences are well received by students -- enrollment in our geophysics course has tripled from three years ago. The Bucknell Hydrogeophysics Well Field consists of five bedrock wells, installed in a fractured-rock aquifer in the Wills Creek Shale. The wells are open in the bedrock, facilitating geophysical and hydraulic measurements. To date, student have helped acquire from one or more wells: (1) open-hole slug- and aquifer-test data; (2) packer test data from isolated borehole intervals; (3) flow-meter logs; (4) acoustic and optical televiewer logs; (5) standard borehole logs including single-point resistance, caliper, and natural-gamma; (6) borehole video camera; (7) electrical resistivity tomograms; (8) water levels while drilling; and (9) water chemistry and temperature logs. Preliminary student-led data analysis indicates that sparse discrete fractures

  15. Geophysical sensing experiments on Kilauea Iki lava lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermance, J.F.; Forsyth, D.W.; Colp, J.L.

    1979-12-01

    The Hawaiian lava lake in the Kilauea Iki pit crater, resulting from the 1959 summit eruption of Kilauea volcano, has served as a natural laboratory for the continuing study of the petrology, rheology, and thermal history of ponded molten basalt flows in the field environment. During 1975 and 1976, a series of electromagnetic and seismic experiments were coordinated in an attempt to define the in-situ geophysical properties and the configuration of the molten lava core as closely as possible. Drilling and geophysical experiments in 1976 suggested that the solidified crust of the lava lake had a cool, resistive surface layer,more » undersaturated with water to a depth of 5 meters. A warm, wet layer containing appreciable water and/or steam was essentially isothermal (100/sup 0/C) to 33 meters. From 33 to 45 meters the temperature climbed rapidly (from 100/sup 0/ to 1070/sup 0/C) until a thin plexus of molten sills was encountered, interbedded with solid layers. Below this (50 meters) was apparently a layer having the highest temperature, lowest viscosity, and lowest density of olivine phenocrysts. At 70 meters, a transition zone to a crystalline mush was indicated, and finally (between 80 and 95 meters), solid basalt extended down to the preflow surface at a depth of 115 to 120 meters.« less

  16. Measuring dynamic kidney function in an undergraduate physiology laboratory.

    PubMed

    Medler, Scott; Harrington, Frederick

    2013-12-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty.

  17. Property Changes in Aqueous Solutions due to Surfactant Treatment of PCE: Implications to Geophysical Measurements

    NASA Astrophysics Data System (ADS)

    Werkema, D. D.

    2007-12-01

    Select physicochemical properties of aqueous solutions composed of surfactants, dye, and perchloroethylene (PCE) were evaluated through a response surface quadratic design model of experiment. Nine surfactants, which are conventionally used in the remediation of PCE, were evaluated with varying concentrations of PCE and indicator dyes in aqueous solutions. Two hundred forty experiments were performed using PCE as a numerical factor (coded A) from 0 to 200 parts per million (ppm), dye type (coded B) as a 3-level categorical factor, and surfactant type (coded C) as a 10-level categorical factor. Five responses were measured: temperature (°C), pH, conductivity (μS/cm), dissolved oxygen (DO, mg/L), and density (g/mL). Diagnostics proved a normally distributed predictable response for all measured responses except pH. The Box-Cox plot for transforms recommended a power transform for the conductivity response with lambda (λ) = 0.50, and for the DO response, λ =2.2. The overall mean of the temperature response proved to be a better predictor than the linear model. The conductivity response is best fitted with a linear model using significant coded terms B and C. Both DO and density also showed a linear model with coded terms A, B, and C for DO; and terms A and C for density. Some of the surfactant treatments of PCE significantly alter the conductivity, DO, and density of the aqueous solution. However, the magnitude of the density response is so small that it does not exceed the instrument tolerance. Results for the conductivity and DO responses provide predictive models for the surfactant treatment of PCE and may be useful in determining the potential for geophysically monitoring surfactant enhanced aquifer remediation (SEAR) of PCE. As the aqueous physicochemical properties change due to surfactant remediation efforts, so will the properties of the subsurface pore water which are influential factors in geophysical measurements. Geoelectrical methods are potentially

  18. Publications - IC 51 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey Photography; Aeromagnetic; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Data; Apparent Resistivity Map; Apparent Resistivity Survey; Arctic Deposit; Arsenic; Arsenopyrite

  19. Publications - IC 52 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aerial Photography; Aeromagnetic; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey Resistivity Data; Apparent Resistivity Map; Apparent Resistivity Survey; Arctic Deposit; Arsenic; Arsenopyrite

  20. Publications - SR 61 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey K) Keywords Admiralty Island; Aeromagnetic Data; Aeromagnetic Survey; Airborne Geophysical Survey Dome; Conductivity Survey; Construction Materials; Copper; Core Drilling; Council; Crushed Gravel

  1. Publications - IC 46 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aeromagnetic; Aeromagnetic Survey; Airborne Geophysical Survey; Antimony; Arsenic; Arsenopyrite; Base Metals ; Electromagnetic Data; Electromagnetic Survey; Exploration; Fairbanks Mining District; Fort Knox Mine; Fortymile

  2. Field test of electromagnetic geophysical techniques for locating simulated in situ mining leach solution. Report of investigations/1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.

    1994-01-01

    The U.S. Bureau of Mines, the University of Arizona, Sandia National Laboratory, and Zonge Engineering and Research, Inc., conducted cooperative field tests of six electromagnetic geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 meters below the surface. The test site was the University's San Xavier experimental mine near Tucson, Arizona. Geophysical surveys using surface and surface-borehole time-domain electromagnetics (TEM), surface controlled source audio-frequency magnetotellurics (CSAMT), surface-borehole frequency-domain electromagnetics (FEM), crosshole FEM and surface magnetic field ellipticity were conducted before and duringmore » brine injection.« less

  3. Publications - SR 60 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Highway Corridor; Alaska Peninsula; Alaska, State of ; Bismuth; Chalcopyrite; Chandalar Mining District; Cleary Summit; Coal; Conductivity Survey; Construction

  4. Publications - IC 60 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey (500.0 K) Keywords Admiralty Island; Aeromagnetic Data; Aeromagnetic Map; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Highway Corridor; Alaska Peninsula; Alaska, State of; Ambler; Ambler Mineral Belt

  5. Achieving continuous improvement in laboratory organization through performance measurements: a seven-year experience.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Gutiérrez, Mercedes; Lugo, Javier; Sirvent, Jose Vicente; Uris, Joaquin

    2010-01-01

    Laboratory performance can be measured using a set of model key performance indicators (KPIs). The design and implementation of KPIs are important issues. KPI results from 7 years are reported and their implementation, monitoring, objectives, interventions, result reporting and delivery are analyzed. The KPIs of the entire laboratory process were obtained using Laboratory Information System (LIS) registers. These were collected automatically using a data warehouse application, spreadsheets and external quality program reports. Customer satisfaction was assessed using surveys. Nine model laboratory KPIs were proposed and measured. The results of some examples of KPIs used in our laboratory are reported. Their corrective measurements or the implementation of objectives led to improvement in the associated KPIs results. Measurement of laboratory performance using KPIs and a data warehouse application that continuously collects registers and calculates KPIs confirmed the reliability of indicators, indicator acceptability and usability for users, and continuous process improvement.

  6. Latest developments at the ALBA magnetic measurements laboratory

    NASA Astrophysics Data System (ADS)

    Marcos, J.; Massana, V.; García, L.; Campmany, J.

    2018-02-01

    ALBA is a third-generation synchrotron light source that has been in operation since 2012 near Barcelona. A magnetic measurements laboratory has been associated with the facility since its very early stages and has been active for the last 20 years. In the first part of this work, the different instruments available at the laboratory are described, and a brief overview of the measurement campaigns carried out during its 20 years of history is presented. In the second part, a more detailed description of the approach to Hall probe measurements adopted at ALBA is offered, with an explanation of the methods and ancillary equipment that have been developed along the years in order to improve the accuracy of the system. In the third part, a new concept of Hall probe bench devoted to the measurement of closed structures is presented. The in-house design and building of a prototype for such a bench is described, together with its mechanical and magnetic characterization. As a conclusion, the first results obtained with this bench are discussed.

  7. Useful measures and models for analytical quality management in medical laboratories.

    PubMed

    Westgard, James O

    2016-02-01

    The 2014 Milan Conference "Defining analytical performance goals 15 years after the Stockholm Conference" initiated a new discussion of issues concerning goals for precision, trueness or bias, total analytical error (TAE), and measurement uncertainty (MU). Goal-setting models are critical for analytical quality management, along with error models, quality-assessment models, quality-planning models, as well as comprehensive models for quality management systems. There are also critical underlying issues, such as an emphasis on MU to the possible exclusion of TAE and a corresponding preference for separate precision and bias goals instead of a combined total error goal. This opinion recommends careful consideration of the differences in the concepts of accuracy and traceability and the appropriateness of different measures, particularly TAE as a measure of accuracy and MU as a measure of traceability. TAE is essential to manage quality within a medical laboratory and MU and trueness are essential to achieve comparability of results across laboratories. With this perspective, laboratory scientists can better understand the many measures and models needed for analytical quality management and assess their usefulness for practical applications in medical laboratories.

  8. Integration of Geophysical and Geochemical Data

    NASA Astrophysics Data System (ADS)

    Yamagishi, Y.; Suzuki, K.; Tamura, H.; Nagao, H.; Yanaka, H.; Tsuboi, S.

    2006-12-01

    Integration of geochemical and geophysical data would give us a new insight to the nature of the Earth. It should advance our understanding for the dynamics of the Earth's interior and surface processes. Today various geochemical and geophysical data are available on Internet. These data are stored in various database systems. Each system is isolated and provides own format data. The goal of this study is to display both the geochemical and geophysical data obtained from such databases together visually. We adopt Google Earth as the presentation tool. Google Earth is virtual globe software and is provided free of charge by Google, Inc. Google Earth displays the Earth's surface using satellite images with mean resolution of ~15m. We display any graphical features on Google Earth by KML format file. We have developed softwares to convert geochemical and geophysical data to KML file. First of all, we tried to overlay data from Georoc and PetDB and seismic tomography data on Google Earth. Georoc and PetDB are both online database systems for geochemical data. The data format of Georoc is CSV and that of PetDB is Microsoft Excel. The format of tomography data we used is plain text. The conversion software can process these different file formats. The geochemical data (e. g. compositional abundance) is displayed as a three-dimensional column on the Earth's surface. The shape and color of the column mean the element type. The size and color tone vary according to the abundance of the element. The tomography data can be converted into a KML file for each depth. This overlay plot of geochemical data and tomography data should help us to correlate internal temperature anomalies to geochemical anomalies, which are observed at the surface of the Earth. Our tool can convert any geophysical and geochemical data to a KML as long as the data is associated with longitude and latitude. We are going to support more geophysical data formats. In addition, we are currently trying to

  9. The measure of treatment agreement between portable and laboratory blood gas measurements in guiding protocol-driven ventilator management.

    PubMed

    Thomas, Frank O; Hoffman, Terri L; Handrahan, Diana L; Crapo, Robert O; Snow, Greg

    2009-08-01

    Portable blood gas analyzer and monitor devices are increasingly being used to direct ventilator therapy. The purpose of this study was to evaluate the "measure of treatment agreement" between portable and laboratory blood gas measurements used in guiding protocol-driven ventilator management. Using National Institutes of Health Acute Respiratory Distress Syndrome network ventilator management guidelines to manage patient care, measurements taken from the Nonin 8500 M pulse oximeter (SpO2), the Novametrix-610 end-tidal CO2 (ETCO2) detector, and the i-STAT 1 (SaO2, PO2, pH, PCO2) were compared with the recommended treatment from paired laboratory ABL-725 (SaCO2, PO2, pH, PCO2) measurements. Four hundred forty-six intubated adult intensive care unit patients were studied prospectively. Except for the ETCO2 (R2 = 0.460), correlation coefficients between portable and laboratory measurements were high (R2 > or = 0.755). Testing for equivalence, the Nonin-SpO2, iSTAT-PO2, iSTAT-pH, and iSTAT-PCO2 were deemed "equivalent" surrogates to paired ABL measurements. Testing for the limits of agreement found only the iSTAT-PCO2 to be an acceptable surrogate measurement. The measure of treatment agreement between the portable and paired laboratory blood gas measurements were Nonin-SpO2 (68%), iSTAT-SaO2 (73%), iSTAT-PO2 (97%), iSTAT-pH (88%), iSTAT-PCO2 (95%), and Novametrix-ETCO2 (60%). Only the iSTAT-PO2 and the iSTAT-PCO2 achieved the > or =95% treatment agreement threshold to be considered as acceptable surrogates to laboratory measurements. : The iSTAT-PO2 and -PCO2 were portable device measurements acceptable as surrogates to standard clinical laboratory blood gas measurements in guiding protocol-directed ventilator management. The "measure of treatment agreement," based on standardized decisions and measurement thresholds of a protocol, provides a simple method for assessing clinical validity of surrogate measurements.

  10. Publications - AR 2011-F | Alaska Division of Geological & Geophysical

    Science.gov Websites

    project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical Surveys Annual Report Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-F main

  11. Publications - AR 2010-E | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Communications FY11 project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical Surveys Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-E main

  12. Publications - AR 2010-A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    FY11 project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical Surveys Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-A main

  13. Publications - AR 2010-F | Alaska Division of Geological & Geophysical

    Science.gov Websites

    project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical Surveys Annual Report Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-F main

  14. Potential-Field Geophysical Software for the PC

    USGS Publications Warehouse

    ,

    1995-01-01

    The computer programs of the Potential-Field Software Package run under the DOS operating system on IBM-compatible personal computers. They are used for the processing, display, and interpretation of potential-field geophysical data (gravity- and magnetic-field measurements) and other data sets that can be represented as grids or profiles. These programs have been developed on a variety of computer systems over a period of 25 years by the U.S. Geological Survey.

  15. Present Status of Geophysics Departments at Universities in Turkey from Perspectives of their Students

    NASA Astrophysics Data System (ADS)

    Karabulut, Savas; Baris Aygordu, Ozan; Benli, Aral

    2015-04-01

    This survey was conducted in order to make the students who are having geophysical engineering education in Turkey evaluate their departments from their own perspectives.By doing this we aimed to make a contribution to the geophysical engineering education and we tried to find out if there were any deficiencies in that matter and also the possible solutions.In this respect aproximately 500 undergraduates from 11 different state universities were asked 25 questions regarding both their socio-economic status and their ideas on their future professions.In the survey the students were asked to state their high-school graduation;whether it is an Anatolian High-school,Vocational high-school or college and if geophysical engineering education was their first choice at the university entrance exams.The students' foreign language status-if there were any- except their mother tongue were asked and also their opinions on geophysical education at their universities.Besides these the students were asked in which fields they study in their department; Seismology, Geophysics or Applied Geophysics and if they found the geophysical equipments adequate in their departments and also the programming languages-like data processing laboratories.In the survey we tried to find out if the students were encouraged to participate in the meetings and congresses in their field by their instructers and if they found the theoretical training adequate besides the practical one.Above all the students answered questions if they had any worries about future job opportunities ; what their goals were after they graduate and if they could easily get access to any kind of Turkish sources in their field and if they were reluctant to work at any jobs part-time or full-time during university.The results of the survey were presented to the Union of Turkish Engineers and Architects and also to the related heads of departments.The most striking parts of this survey were that the students were not edequate

  16. A Generalized Approach for the Interpretation of Geophysical Well Logs in Ground-Water Studies - Theory and Application

    USGS Publications Warehouse

    Paillet, Frederick L.; Crowder, R.E.

    1996-01-01

    Quantitative analysis of geophysical logs in ground-water studies often involves at least as broad a range of applications and variation in lithology as is typically encountered in petroleum exploration, making such logs difficult to calibrate and complicating inversion problem formulation. At the same time, data inversion and analysis depend on inversion model formulation and refinement, so that log interpretation cannot be deferred to a geophysical log specialist unless active involvement with interpretation can be maintained by such an expert over the lifetime of the project. We propose a generalized log-interpretation procedure designed to guide hydrogeologists in the interpretation of geophysical logs, and in the integration of log data into ground-water models that may be systematically refined and improved in an iterative way. The procedure is designed to maximize the effective use of three primary contributions from geophysical logs: (1) The continuous depth scale of the measurements along the well bore; (2) The in situ measurement of lithologic properties and the correlation with hydraulic properties of the formations over a finite sample volume; and (3) Multiple independent measurements that can potentially be inverted for multiple physical or hydraulic properties of interest. The approach is formulated in the context of geophysical inversion theory, and is designed to be interfaced with surface geophysical soundings and conventional hydraulic testing. The step-by-step procedures given in our generalized interpretation and inversion technique are based on both qualitative analysis designed to assist formulation of the interpretation model, and quantitative analysis used to assign numerical values to model parameters. The approach bases a decision as to whether quantitative inversion is statistically warranted by formulating an over-determined inversion. If no such inversion is consistent with the inversion model, quantitative inversion is judged not

  17. Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site

    NASA Astrophysics Data System (ADS)

    Gottschalk, Ian P.; Hermans, Thomas; Knight, Rosemary; Caers, Jef; Cameron, David A.; Regnery, Julia; McCray, John E.

    2017-12-01

    Geophysical data have proven to be very useful for lithological characterization. However, quantitatively integrating the information gained from acquiring geophysical data generally requires colocated lithological and geophysical data for constructing a rock-physics relationship. In this contribution, the issue of integrating noncolocated geophysical and lithological data is addressed, and the results are applied to simulate groundwater flow in a heterogeneous aquifer in the Prairie Waters Project North Campus aquifer recharge site, Colorado. Two methods of constructing a rock-physics transform between electrical resistivity tomography (ERT) data and lithology measurements are assessed. In the first approach, a maximum likelihood estimation (MLE) is used to fit a bimodal lognormal distribution to horizontal crosssections of the ERT resistivity histogram. In the second approach, a spatial bootstrap is applied to approximate the rock-physics relationship. The rock-physics transforms provide soft data for multiple point statistics (MPS) simulations. Subsurface models are used to run groundwater flow and tracer test simulations. Each model's uncalibrated, predicted breakthrough time is evaluated based on its agreement with measured subsurface travel time values from infiltration basins to selected groundwater recovery wells. We find that incorporating geophysical information into uncalibrated flow models reduces the difference with observed values, as compared to flow models without geophysical information incorporated. The integration of geophysical data also narrows the variance of predicted tracer breakthrough times substantially. Accuracy is highest and variance is lowest in breakthrough predictions generated by the MLE-based rock-physics transform. Calibrating the ensemble of geophysically constrained models would help produce a suite of realistic flow models for predictive purposes at the site. We find that the success of breakthrough predictions is highly

  18. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    NASA Astrophysics Data System (ADS)

    Alekseenko, Victor; Bagrova, Anastasia; Cui, Shuwang; He, Yayun; Li, Bingbing; Ma, Xinhua; Pozdnyakov, Egor; Shchegolev, Oleg; Stenkin, Yuri; Stepanov, Vladimir

    2017-06-01

    Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors) developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  19. Thermal infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements

    NASA Technical Reports Server (NTRS)

    Salisbury, J. W.; Wald, A.; Daria, D. M.

    1993-01-01

    Kirchoff's Law, as originally conceived, applies only to samples in thermal equilibrium with their surroundings. Most laboratory measurements of emissivity only approach this condition and it never applies in remote sensing applications. In particular, the background is often much cooler than the radiating sample, and this has led to a long controversy about the applicability of Kirchhoff's Law under such conditions. It has also led to field and laboratory measurement techniques that use some form of the 'emissivity box' approach, which surrounds the sample with a background as close as possible to the sample temperature. In our experiments, we have heated soil samples in air on a hot plate in the laboratory to a much higher temperature than the room temperature background. Spectral emissivity was measured, except the known emissivities of both the primary and secondary Christiansen features were used, instead of assuming an emissivity of unity at these wavelengths. The results from this investigation are discussed in brief.

  20. Analysis of Radon Decay Data and its Implications for Physics, Geophysics, and Solar Physics.

    NASA Astrophysics Data System (ADS)

    Sturrock, Peter A.; Fischbach, E.; Jenkins, J. H.; Steinitz, G.

    2012-05-01

    We present an analysis of about 29,000 measurements of gamma radiation associated with the decay of radon in a sealed container at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between January 28 2007 and May 10 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis also reveals a number of periodicities, notably at 11.2 year-1 and 12.5 year-1, which we have found in other nuclear-decay data --including data acquired at the Brookhaven National Laboratory and the Physiklisch-Technische Bundesanstalt-- which we attribute to a solar influence. A distinct property of the GSI results is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. We speculate on possible interpretations of this curious result. Solar neutrinos remain our prime suspect as the agent responsible for beta-decay anomalies. These results have implications for physics (that nuclear decay rates are not constant and may be stimulated); for geophysics (that the variability of radon measurements cannot be ascribed entirely to atmospheric and solid-earth processes); and for solar physics (that the Sun contains an inner tachocline, separating a slowly rotating core from the radiative zone, which has properties similar to those of the outer tachocline separating the radiative zone from the convection zone). This work was supported by DOE grant DE-AC-02-76ER071428.

  1. A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets

    NASA Astrophysics Data System (ADS)

    JafarGandomi, Arash; Binley, Andrew

    2013-09-01

    We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is

  2. Fiber Optic Geophysics Sensor Array

    NASA Astrophysics Data System (ADS)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  3. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  4. An array processing system for lunar geochemical and geophysical data

    NASA Technical Reports Server (NTRS)

    Eliason, E. M.; Soderblom, L. A.

    1977-01-01

    A computerized array processing system has been developed to reduce, analyze, display, and correlate a large number of orbital and earth-based geochemical, geophysical, and geological measurements of the moon on a global scale. The system supports the activities of a consortium of about 30 lunar scientists involved in data synthesis studies. The system was modeled after standard digital image-processing techniques but differs in that processing is performed with floating point precision rather than integer precision. Because of flexibility in floating-point image processing, a series of techniques that are impossible or cumbersome in conventional integer processing were developed to perform optimum interpolation and smoothing of data. Recently color maps of about 25 lunar geophysical and geochemical variables have been generated.

  5. Massive Sulphide Exploration at the Mid-Atlantic Ridge 26oN: an interdisciplinary geophysical study

    NASA Astrophysics Data System (ADS)

    Gehrmann, R. A. S.; Hölz, S.; Jegen, M. D.; Graber, S.; Szitkar, F.; Petersen, S.; Yeo, I. A.; North, L. J.; Gil, A.; Vardy, M. E.; Haroon, A.; Schroeder, H.; Bialas, J.; Tan, Y. Y.; Attias, E.; Sommer, M.; Minshull, T. A.; Murton, B. J.

    2017-12-01

    During the summer 2016 two cruises (M127 and JC138) conducted an interdisciplinary survey as part of the EU FP7 project `Blue Mining' in the Trans-Atlantic Geotraverse (TAG) hydrothermal field, at the Mid-Atlantic Ridge (26° N), to study the geophysical and geochemical signature of extinct seafloor massive sulphide (eSMS) deposits. The survey comprised AUV-based high-resolution bathymetric mapping, magnetic and self-potential data acquisition, reflection and refraction seismic imaging and three types of controlled source electromagnetic (CSEM) experiments (Geomar, UoS). Additionally seafloor coring, drilling and video imaging (NOC, University of Lisbon, BGS) were realized. Laboratory measurements of physical and chemical properties were taken on and post-cruise from rock samples and sediment cores. Here, we present results from the geophysical data analysis with emphasis on the electromagnetic studies in respect to eSMS detection. Six multi-kilometre-long profiles were acquired with the towed CSEM experiment (UoS) and preliminary results indicate the sensitivity to the conductive eSMS deposits and the resistive background to a depth of about 200 m. The system is also sensitive to the rough topography and interpretation of eSMS deposits requires validation from other methods such as measurements with the MARTEMIS system, a seafloor source-receiver coil (Geomar), which were conducted in two collocated work areas for high-resolution imaging with a depth penetration of up to 50 m. Each geophysical method is sensitive to different SMS characteristics, for example, bathymetric and seismic data are sensitive to the shape and structure of the whole deposit, magnetic data are susceptive to the hydrothermal alteration of magnetic minerals, and self-potential and electromagnetic data respond to the electrically conductive sulphide bodies. Each method has different resolution, penetration depths and challenges with the rough-topographic terrain and navigation. Only

  6. Joint geophysical measurements to investigate the Rossano of Vaglio archaeological site affected by landslide phenomena (Basilicata region, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Perrone, A.; Chianese, D.; Lapenna, V.; Lorenzo, P.; Piscitelli, S.; Rizzo, E.; Sdao, F.

    2003-04-01

    In the frame of a project supported by the Italian Ministry of Research: "Geomorphological study and landslides control in some areas of the Basilicata region characterized by historical-cultural heritage", the I.M.A.A. of the CNR (Tito Scalo, Potenza) and the Di.S.G.G. of the Basilicata University, developed a research activity focussed on the realization of combined geophysical measurements for the study of archaeological areas affected by landslide phenomena in Basilicata region (Southern Italy). Since IV century b.C., the birth and the evolution of many religious places is observed in the Basilicata region. Location and construction of these sanctuaries were influenced by the geological and geomorphological setting: many of them were built near important springs; others on morphological terraces, representing the main effect of the large and ancient landslides, often reactivated during the years. In this work we report the results regarding the application of 2D electrical resistivity tomographies, electromagnetic and magnetic measurements carried out in the Rossano of Vaglio (Potenza, Italy), where in the late IV century b.C. raised a sanctuary devoted to the Mephitis goddess (Adamasteanu and Dilthey, 1992; Masseria and D'Anisi, 2001). The sacred area was affected by a multiple and retrogressive rototranslational slide, historically and actually subject to reactivation. The geophysical results, obtained combining advanced technologies for data acquisition and new methods for data inversion (Loke and Barker, 1996; Ciminale and Loddo, 2001; Nuzzo et al, 2002), allowed us to define the geometrical characteristics of the landslide body, to outline the sliding surfaces and to individuate the buried structures of the sanctuary.

  7. pyGIMLi: An open-source library for modelling and inversion in geophysics

    NASA Astrophysics Data System (ADS)

    Rücker, Carsten; Günther, Thomas; Wagner, Florian M.

    2017-12-01

    Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time

  8. Solar Wind Monitor--A School Geophysics Project

    ERIC Educational Resources Information Center

    Robinson, Ian

    2018-01-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…

  9. Performance testing of radiobioassay laboratories: In vivo measurements, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLellan, J.A.; Traub, R.J.; Olsen, P.C.

    1990-04-01

    A study of two rounds of in vivo laboratory performance testing was undertaken by Pacific Northwest Laboratory (PNL) to determine the appropriateness of the in vivo performance criteria of draft American National Standards Institute (ANSI) standard ANSI N13.3, Performance Criteria for Bioassay.'' The draft standard provides guidance to in vivo counting facilities regarding the sensitivity, precision, and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. This report concludes the testing program by presenting the results of the Round Two testing. Testing involved two types of measurements: chest counting for radionuclide detection inmore » the lung, and whole body counting for detection of uniformly distributed material. Each type of measurement was further divided into radionuclide categories as defined in the draft standard. The appropriateness of the draft standard criteria by measuring a laboratory's ability to attain them were judged by the results of both round One and Round Two testing. The testing determined that performance criteria are set at attainable levels, and the majority of in vivo monitoring facilities passed the criteria when complete results were submitted. 18 refs., 18 figs., 15 tabs.« less

  10. A virtual radiation belt observatory: Looking forward to the electronic geophysical year

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Green, J. C.; Kroehl, H. W.; Kihn, E.; Virbo Team

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We are developing the concept of a Virtual Radiation Belt Observatory (ViRBO) that will bring together near-earth particle and field measurements acquired by NASA, NOAA, DoD, DOE, and other spacecraft. We discuss plans to aggregate these measurements into a readily accessible database along with analysis, visualization, and display tools that will make radiation belt information available and useful both to the scientific community and to the user community. We envision that data from the various agencies along with models being developed under the auspices of the National Science Foundation Center for Integrated Space Weather Modeling (CISM) will help us to provide an excellent `climatology' of the radiation belts over the past several decades. In particular, we would plan to use these data to drive physical models of the radiation belts to form a gridded database which would characterize particle and field properties on solar-cycle (11-year) time scales. ViRBO will also provide up-to-date specification of conditions for event analysis and anomaly resolution. We are even examining the possibilities for near-realtime acquisition of

  11. Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer.

    PubMed

    Bowling, Jerry C; Zheng, Chunmiao; Rodriguez, Antonio B; Harry, Dennis L

    2006-05-05

    Approximately 3000 measurements of hydraulic conductivity in over 50 flowmeter boreholes were available at the Macro-Dispersion Experiment (MADE) site in Columbus, Mississippi, USA to quantify the heterogeneity in hydraulic conductivity at the site scale. This high-density measurement approach is perhaps infeasible for time and expense in typical groundwater remediation sites. A natural-gradient tracer experiment from the MADE site was simulated by a groundwater flow and solute transport model incorporating direct-current (DC) resistivity data collected over the observed plume location. Hydraulic conductivity from one borehole collected during the original site characterization was used to calibrate the electrical resistivity data to hydraulic conductivity using a previously derived log-log relationship. Application of this relationship, using site-specific empirical constants determined from the data, transforms the 3D electrical resistivity data into a 3D description of hydraulic conductivity that can be used in groundwater models. The validity of this approach was tested by using the geophysically derived hydraulic conductivity representation in numerical simulations of the natural-gradient tracer experiment. The agreement between the simulated and observed tracer plumes was quantified to gauge the effectiveness of geophysically derived and flowmeter based representations of the hydraulic conductivity field. This study demonstrates that a highly heterogeneous aquifer can be modeled with minimal hydrological data supplemented with geophysical data at least as well as previous models of the site using purely hydrologic data.

  12. Application of surface geophysics to ground-water investigations

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Eaton, Gordon P.; Mabey, Don R.

    1974-01-01

    This manual reviews the standard methods of surface geophysics applicable to ground-water investigations. It covers electrical methods, seismic and gravity methods, and magnetic methods. The general physical principles underlying each method and its capabilities and limitations are described. Possibilities for non-uniqueness of interpretation of geophysical results are noted. Examples of actual use of the methods are given to illustrate applications and interpretation in selected geohydrologic environments. The objective of the manual is to provide the hydrogeologist with a sufficient understanding of the capabilities, imitations, and relative cost of geophysical methods to make sound decisions as to when to use of these methods is desirable. The manual also provides enough information for the hydrogeologist to work with a geophysicist in designing geophysical surveys that differentiate significant hydrogeologic changes.

  13. United States Air Force Summer Research Program -- 1992 High School Apprenticeship Program (HSAP) Reports. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1992-01-01

    Research Program Phillips Laboratory I4oJ A*6Iv4 Sponsored by: Air Force Office of Scientific Research Kirtland Air ...UNITED STATES AIR FORCE SUMMER RESEARCH PROGki"A -- 1992 HIGH SCHOOL APPRENTICESHIP PROGRAM (HSAP) REPORTS VOLUME 13 (t PHILLIPS LABORATORY . RESEARCH ...Arlington High School Final Report for: Summer Research Program Geophysics Directorate Phillips Laboratory

  14. Phase 3 geophysical studies in the Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Flanigan, V.J.; Sadek, Hamdy; Smith, C.W.

    1982-01-01

    Detailed geophysical measurements have been made in the Rabathan area, Wadi Bidah district, Kingdom of Saudi Arabia, at the site of diamond drill holes RAB-1, -2, and -3; these measurements suggest that the causative source for the anomalous EM (electromagnetic) and SP (self-potential) responses is probably highly conductive zones of Precambrian siliceous-carbonaceous rocks. Although many of the zones are no more than a few meters wide, they commonly contain 50 to 80 percent carbonaceous material and locally abundant pyrite. In places, several thin layers of highly concentrated carbonaceous material interlayered with chert form a multiple conductive zone that is seen in the geophysical data as complex anomaly patterns. In the geologic environment of Wadi Bidah, massive sulfide-bearing zones cannot be distinguished from siliceous-carbonaceous zones on the basis of the EM-SP responses. In North America in similar environments, complex resistivity methods used in experimental research have successfully discriminated between sulfide and carbonaceous conductors. Tests of such methods in the Wadi Bidah district are recommended. Geologic, geochemical, and geophysical data at the Jabal Mohr prospect suggest the possibility of mineralized rocks at depth over a possible strike length of 400 m.

  15. United States Air Force Summer Research Program 1991. High School Apprenticeship Program (HSAP) Reports. Volume 11. Phillips Laboratory, Civil Engineering Laboratory

    DTIC Science & Technology

    1992-01-09

    Crystal Polymers Tracy Reed Geophysics Laboratory (GEO) 9 Analysis of Model Output Statistics Thunderstorm Prediction Model Frank Lasley 10...four hours to twenty-four hours. It was predicted that the dogbones would turn brown once they reached the approximate annealing temperature. This was...LYS Hanscom AFB Frank A. Lasley Abstracft. Model Output Statistics (MOS) Thunderstorm prediction information and Service A weather observations

  16. Impact of Biology Laboratory Courses on Students' Science Performance and Views about Laboratory Courses in General: Innovative Measurements and Analyses

    ERIC Educational Resources Information Center

    Lee, Silvia Wen-Yu; Lai, Yung-Chih; Yu, Hon-Tsen Alex; Lin, Yu-Teh Kirk

    2012-01-01

    Despite the fact that some educational researchers believe that laboratory courses promote outcomes in cognitive and affective domains in science learning, others have argued that laboratory courses are costly in relation to their value. Moreover, effective measurement of student learning in the laboratory is an area requiring further…

  17. Inter-laboratory comparison study on measuring semi-volatile organic chemicals in standards and air samples.

    PubMed

    Su, Yushan; Hung, Hayley

    2010-11-01

    Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections <10% and with median differences of duplicate samples between 2.1 and 22%. Inter-laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences. 2010. Published by Elsevier Ltd. All rights reserved.

  18. Critical Zone structure inferred from multiscale near surface geophysical and hydrological data across hillslopes at the Eel River CZO

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Rempe, D. M.; Holbrook, W. S.; Schmidt, L.; Hahm, W. J.; Dietrich, W. E.

    2017-12-01

    Except for boreholes and road cut, landslide, and quarry exposures, the subsurface structure of the critical zone (CZ) of weathered bedrock is relatively invisible and unmapped, yet this structure controls the short and long term fluxes of water and solutes. Non-invasive geophysical methods such as seismic refraction are widely applied to image the structure of the CZ at the hillslope scale. However, interpretations of such data are often limited due to heterogeneity and anisotropy contributed from fracturing, moisture content, and mineralogy on the seismic signal. We develop a quantitative framework for using seismic refraction tomography from intersecting geophysical surveys and hydrologic data obtained at the Eel River Critical Zone Observatory (ERCZO) in Northern California to help quantify the nature of subsurface structure across multiple hillslopes of varying topography in the area. To enhance our understanding of modeled velocity gradients and boundaries in relation to lithological properties, we compare refraction tomography results with borehole logs of nuclear magnetic resonance (NMR), gamma and neutron density, standard penetration testing, and observation drilling logs. We also incorporate laboratory scale rock characterization including mineralogical and elemental analyses as well as porosity and density measurements made via pycnometry, helium and mercury porosimetry, and laboratory scale NMR. We evaluate the sensitivity of seismically inferred saprolite-weathered bedrock and weathered-unweathered bedrock boundaries to various velocity and inversion parameters in relation with other macro scale processes such as gravitational and tectonic forces in influencing weathered bedrock velocities. Together, our sensitivity analyses and multi-method data comparison provide insight into the interpretation of seismic refraction tomography for the quantification of CZ structure and hydrologic dynamics.

  19. LABORATORY AND FIELD RESULTS LINKING HIGH CONDUCTIVITIES TO THE MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS

    EPA Science Inventory

    The results of a field and laboratory investigation of unconsolidated sediments contaminated by petroleum hydrocarbons and undergoing natural biodegradation are presented. Fundamental to geophysical investigations of hydrocarbon impacted sediments is the assessment of how microbi...

  20. Investigation of specification measures for the Software Engineering Laboratory (SEL)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Requirements specification measures are investigated for potential application in the Software Engineering Laboratory. Eighty-seven candidate measures are defined; sixteen are recommended for use. Most measures are derived from a new representation, the Composite Specification Model, which is introduced. The results of extracting the specification measures from the requirements of a real system are described.

  1. Hydro-geophysical observations integration in numerical model: case study in Mediterranean karstic unsaturated zone (Larzac, france)

    NASA Astrophysics Data System (ADS)

    Champollion, Cédric; Fores, Benjamin; Le Moigne, Nicolas; Chéry, Jean

    2016-04-01

    Karstic hydro-systems are highly non-linear and heterogeneous but one of the main water resource in the Mediterranean area. Neither local measurements in boreholes or analysis at the spring can take into account the variability of the water storage. Since a few years, ground-based geophysical measurements (such as gravity, electrical resistivity or seismological data) allows following water storage in heterogeneous hydrosystems at an intermediate scale between boreholes and basin. Behind classical rigorous monitoring, the integration of geophysical data in hydrological numerical models in needed for both processes interpretation and quantification. Since a few years, a karstic geophysical observatory (GEK: Géodésie de l'Environnement Karstique, OSU OREME, SNO H+) has been setup in the Mediterranean area in the south of France. The observatory is surrounding more than 250m karstified dolomite, with an unsaturated zone of ~150m thickness. At the observatory water level in boreholes, evapotranspiration and rainfall are classical hydro-meteorological observations completed by continuous gravity, resistivity and seismological measurements. The main objective of the study is the modelling of the whole observation dataset by explicit unsaturated numerical model in one dimension. Hydrus software is used for the explicit modelling of the water storage and transfer and links the different observations (geophysics, water level, evapotranspiration) with the water saturation. Unknown hydrological parameters (permeability, porosity) are retrieved from stochastic inversions. The scale of investigation of the different observations are discussed thank to the modelling results. A sensibility study of the measurements against the model is done and key hydro-geological processes of the site are presented.

  2. Laboratory measurements of microwave and millimeter-wave properties of planetary atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1989-01-01

    Accurate data on microwave and millimeter-wave properties of potential planetary atmospheric constituents is critical for the proper interpretation of radio occultation measurements, and of radio astronomical observations of both continuum and spectral line emissions. Such data is also needed to correct for atmospheric effects on radar studies of surface reflectivity. Since the refractive and absorptive properties of atmospheric constituents often vary drastically from theoretically-predicted profiles, especially under the extreme conditions characteristic of the planetary atmosphere, laboratory measurements under simulated planetary conditions are required. This paper reviews the instrumentation and techniques used for laboratory measurement of the refractivity and absorptivity of atmospheric constituents at wavelengths longward of 1 mm, under simulated planetary conditions (temperature, pressure, and broadening gases). Techniques for measuring both gases and condensates are considered. Also reviewed are the relative accuracies of the various techniques. Laboratory measurements are reviewed which have already been made, and additional measurements which are needed for interpretation of data from Venus and the outer planets, are highlighted.

  3. Geophysical investigations in Jordan

    NASA Astrophysics Data System (ADS)

    Kovach, Robert L.; Andreasen, Gordon E.; Gettings, Mark E.; El-Kaysi, Kays

    1990-08-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source.

  4. Geophysical investigations in Jordan

    USGS Publications Warehouse

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  5. Analysis and interpretation of geophysical surveys in archaeological sites employing different integrated approach.

    NASA Astrophysics Data System (ADS)

    Piro, Salvatore; Papale, Enrico; Kucukdemirci, Melda; Zamuner, Daniela

    2017-04-01

    Non-destructive ground surface geophysical prospecting methods are frequently used for the investigation of archaeological sites, where a detailed physical and geometrical reconstructions of hidden volumes is required prior to any excavation work. All methods measure the variations of single physical parameters, therefore if these are used singularly, they could not permit a complete location and characterization of anomalous bodies. The probability of a successful result rapidly increases if a multhimethodological approach is adopted, according to the logic of objective complementarity of information and of global convergence toward a high quality multiparametric imaging of the buried structures. The representation of the static configuration of the bodies in the subsoil and of the space-time evolution of the interaction processes between targets and hosting materials have to be actually considered fundamental elements of primary knowledge in archaeological prospecting. The main effort in geophysical prospecting for archaeology is therefore the integration of different, absolutely non-invasive techniques, especially if managed in view of a ultra-high resolution three-dimensional (3D) tomographic representation mode. Following the above outlined approach, we have integrated geophysical methods which measure the variations of potential field (gradiometric methods) with active methods which measure the variations of physical properties due to the body's geometry and volume (GPR and ERT). In this work, the results obtained during the surveys of three archaeological sites, employing Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Fluxgate Differential Magnetic (FDM) to obtain precise and detailed maps of subsurface bodies, are presented and discussed. The first site, situated in a suburban area between Itri and Fondi, in the Aurunci Natural Regional Park (Central Italy), is characterized by the presence of remains of past human activity

  6. Geophysics applications in critical zone science: emerging topics

    USDA-ARS?s Scientific Manuscript database

    Geophysical studies have resulted in remarkable advances in characterization of critical zone. The geophysics applications uncover the relationships between structure and function in subsurface as they seek to define subsurface structural units with individual properties of retention and trans...

  7. Toward Robust Climate Baselining: Objective Assessment of Climate Change Using Widely Distributed Miniaturized Sensors for Accurate World-Wide Geophysical Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teller, E; Leith, C; Canavan, G

    A gap-free, world-wide, ocean-, atmosphere-, and land surface-spanning geophysical data-set of three decades time-duration containing the full set of geophysical parameters characterizing global weather is the scientific perquisite for defining the climate; the generally-accepted definition in the meteorological community is that climate is the 30-year running-average of weather. Until such a tridecadal climate base line exists, climate change discussions inevitably will have a semi-speculative, vs. a purely scientific, character, as the baseline against which changes are referenced will be at least somewhat uncertain. The contemporary technology base provides ways-and-means for commencing the development of such a meteorological measurement-intensive climate baseline, moreover with a program budget far less than the {approx}more » $2.5 B/year which the US. currently spends on ''global change'' studies. In particular, the recent advent of satellite-based global telephony enables real-time control of, and data-return from, instrument packages of very modest scale, and Silicon Revolution-based sensor, data-processing and -storage advances permit 'intelligent' data-gathering payloads to be created with 10 gram-scale mass budgets. A geophysical measurement system implemented in such modern technology is a populous constellation 03 long-lived, highly-miniaturized robotic weather stations deployed throughout the weather-generating portions of the Earths atmosphere, throughout its oceans and across its land surfaces. Leveraging the technological advances of the OS, the filly-developed atmospheric weather station of this system has a projected weight of the order of 1 ounce, and contains a satellite telephone, a GPS receiver, a full set of atmospheric sensing instruments and a control computer - and has an operational life of the order of 1 year and a mass-production cost of the order of $$20. Such stations are effectively ''intra-atmospheric satellites'' but likely have

  8. Combination of Geophysical Methods to Support Urban Geological Mapping

    NASA Astrophysics Data System (ADS)

    Gabàs, A.; Macau, A.; Benjumea, B.; Bellmunt, F.; Figueras, S.; Vilà, M.

    2014-07-01

    Urban geological mapping is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards. Geophysics can have a pivotal role to yield subsurface information in urban areas provided that geophysical methods are capable of dealing with challenges related to these scenarios (e.g., low signal-to-noise ratio or special logistical arrangements). With this principal aim, a specific methodology is developed to characterize lithological changes, to image fault zones and to delineate basin geometry in the urban areas. The process uses the combination of passive and active techniques as complementary data: controlled source audio-magnetotelluric method (CSAMT), magnetotelluric method (MT), microtremor H/V analysis and ambient noise array measurements to overcome the limitations of traditional geophysical methodology. This study is focused in Girona and Salt surrounding areas (NE of Spain) where some uncertainties in subsurface knowledge (maps of bedrock depth and the isopach maps of thickness of quaternary sediments) need to be resolved to carry out the 1:5000 urban geological mapping. These parameters can be estimated using this proposed methodology. (1) Acoustic impedance contrast between Neogene sediments and Paleogene or Paleozoic bedrock is detected with microtremor H/V analysis that provides the soil resonance frequency. The minimum value obtained is 0.4 Hz in Salt city, and the maximum value is the 9.5 Hz in Girona city. The result of this first method is a fast scanner of the geometry of basement. (2) Ambient noise array constrains the bedrock depth using the measurements of shear-wave velocity of soft soil. (3) Finally, the electrical resistivity models contribute with a good description of lithological changes and fault imaging. The conductive materials (1-100 Ωm) are associated with Neogene Basin composed by unconsolidated detrital sediments; medium resistive materials (100-400 Ωm) correspond to

  9. Amino acid racemization dating of fossil bones, I. inter-laboratory comparison of racemization measurements

    USGS Publications Warehouse

    Bada, J.L.; Hoopes, E.; Darling, D.; Dungworth, G.; Kessels, H.J.; Kvenvolden, K.A.; Blunt, D.J.

    1979-01-01

    Enantiomeric measurements for aspartic acid, glutamic acid, and alanine in twenty-one different fossil bone samples have been carried out by three different laboratories using different analytical methods. These inter-laboratory comparisons demonstrate that D/L aspartic acid measurements are highly reproducible, whereas the enantiomeric measurements for the other amino acids show a wide variation between the three laboratories. At present, aspartic acid measurements are the most suitable for racemization dating of bone because of their superior analytical precision. ?? 1979.

  10. Performance audits and laboratory comparisons for SCOS97-NARSTO measurements of speciated volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Fujita, Eric M.; Harshfield, Gregory; Sheetz, Laurence

    Performance audits and laboratory comparisons were conducted as part of the quality assurance program for the 1997 Southern California Ozone Study (SCOS97-NARSTO) to document potential measurement biases among laboratories measuring speciated nonmethane hydrocarbons (NMHC), carbonyl compounds, halogenated compounds, and biogenic hydrocarbons. The results show that measurements of volatile organic compounds (VOC) made during SCOS97-NARSTO are generally consistent with specified data quality objectives. The hydrocarbon comparison involved nine laboratories and consisted of two sets of collocated ambient samples. The coefficients of variation among laboratories for the sum of the 55 PAM target compounds and total NMHC ranged from ±5 to 15 percent for ambient samples from Los Angeles and Azusa. Abundant hydrocarbons are consistently identified by all laboratories, but discrepancies occur for olefins greater than C 4 and for hydrocarbons greater than C 8. Laboratory comparisons for halogenated compounds and biogenic hydrocarbons consisted of both concurrent ambient sampling by different laboratories and round-robin analysis of ambient samples. The coefficients of variation among participating laboratories were about 10-20 percent. Performance audits were conducted for measurement of carbonyl compounds involving sampling from a standard mixture of carbonyl compounds. The values reported by most of the laboratories were within 10-20 percent of those of the reference laboratory. Results of field measurement comparisons showed larger variations among the laboratories ranging from 20 to 40 percent for C 1-C 3 carbonyl compounds. The greater variations observed in the field measurement comparison may reflect potential sampling artifacts, which the performance audits did not address.

  11. Global status of and prospects for protection of terrestrial geophysical diversity.

    PubMed

    Sanderson, Eric W; Segan, Daniel B; Watson, James E M

    2015-06-01

    Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional-focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low-elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step. © 2015 Society for Conservation Biology.

  12. Geophysical techniques for low enthalpy geothermal exploration in New Zealand

    NASA Astrophysics Data System (ADS)

    Soengkono, Supri; Bromley, Chris; Reeves, Robert; Bennie, Stewart; Graham, Duncan

    2013-05-01

    Shallow warm water resources associated with low enthalpy geothermal systems are often difficult to explore using geophysical techniques, mainly because the warm water creates an insufficient physical change from the host rocks to be easily detectable. In addition, often the system also has a limited or narrow size. However, appropriate use of geophysical techniques can still help the exploration and further investigation of low enthalpy geothermal resources. We present case studies on the use of geophysical techniques for shallow warm water explorations over a variety of settings in New Zealand (mostly in the North Island) with variable degrees of success. A simple and direct method for the exploration of warm water systems is shallow temperature measurements. In some New Zealand examples, measurements of near surface temperatures helped to trace the extent of deeper thermal water. The gravity method was utilised as a structural technique for the exploration of some warm water systems in New Zealand. Our case studies show the technique can be useful in identifying basement depths and tracing fault systems associated with the occurrence of hot springs. Direct current (DC) ground resistivity measurements using a variety of electrode arrays have been the most common method for the exploration of low enthalpy geothermal resources in New Zealand. The technique can be used to detect the extent of shallow warm waters that are more electrically conductive than the surrounding cold groundwater. Ground resistivity investigations using the electromagnetic (EM) techniques of audio magnetotellurics (AMT or shallow MT), controlled source audio magnetotellurics (CSAMT) and transient electromagnetic (TEM) methods have also been used. Highly conductive clays of thermal or sedimentary origin often limit the penetration depth of the resistivity techniques and can create some interpretation difficulties. Interpretation of resistivity anomalies needs to be treated in a site specific

  13. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    PubMed Central

    Roosjen, Peter P. J.; Clevers, Jan G. P. W.; Bartholomeus, Harm M.; Schaepman, Michael E.; Schaepman-Strub, Gabriela; Jalink, Henk; van der Schoor, Rob; de Jong, Arjan

    2012-01-01

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers. PMID:23443402

  14. A laboratory goniometer system for measuring reflectance and emittance anisotropy.

    PubMed

    Roosjen, Peter P J; Clevers, Jan G P W; Bartholomeus, Harm M; Schaepman, Michael E; Schaepman-Strub, Gabriela; Jalink, Henk; van der Schoor, Rob; de Jong, Arjan

    2012-12-13

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.

  15. Landslides Monitoring on Salt Deposits Using Geophysical Methods, Case study - Slanic Prahova, Romania

    NASA Astrophysics Data System (ADS)

    Ovidiu, Avram; Rusu, Emil; Maftei, Raluca-Mihaela; Ulmeanu, Antonio; Scutelnicu, Ioan; Filipciuc, Constantina; Tudor, Elena

    2017-12-01

    Electrometry is most frequently applied geophysical method to examine dynamical phenomena related to the massive salt presence due to resistivity contrasts between salt, salt breccia and geological covering formations. On the vertical resistivity sections obtained with VES devices these three compartments are clearly differentiates by high resistivity for the massive salt, very low for salt breccia and variable for geological covering formations. When the land surface is inclined, shallow formations are moving gravitationally on the salt back, producing a landslide. Landslide monitoring involves repeated periodically measurements of geoelectrical profiles into a grid covering the slippery surface, in the same conditions (climate, electrodes position, instrument and measurement parameters). The purpose of monitoring landslides in Slanic Prahova area, was to detect the changes in resistivity distribution profiles to superior part of subsoil measured in 2014 and 2015. Measurement grid include several representative cross sections in susceptibility to landslides point of view. The results are graphically represented by changing the distribution of topography and resistivity differences between the two sets of geophysical measurements.

  16. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  17. Evaluation of geophysical methods and geophysical contractors on four projects in Kentucky.

    DOT National Transportation Integrated Search

    2007-03-01

    his report details four geophysical testing projects that were conducted in Kentucky for the Kentucky Transportation Cabinet. The four projects were as follows: KY 101, Edmonson and Warren Counties, US 31-W, Elizabethtown Bypass, Hardin County, KY 61...

  18. Geophysics of Geothermal Areas: State of the Art and Future Development

    NASA Astrophysics Data System (ADS)

    Mabey, Don R.

    In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.

  19. Application of geophysical methods to agriculture: An overview

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...

  20. A Shallow Underground Laboratory for Low-Background Radiation Measurements and Materials Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Bonicalzi, Ricco; Cantaloub, Michael G.

    Abstract: Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths worldwide houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This manuscript describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. Wemore » conclude by presenting measurement targets and future opportunities.« less

  1. Ninety Years of International Cooperation in Geophysics

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Beer, T.

    2009-05-01

    Because applicable physical, chemical, and mathematical studies of the Earth system must be both interdisciplinary and international, the International Union of Geodesy and Geophysics (IUGG) was formed in 1919 as an non-governmental, non-profit organization dedicated to advancing, promoting, and communicating knowledge of the Earth system, its space environment, and the dynamical processes causing change. The Union brings together eight International Associations that address different disciplines of Earth sciences. Through these Associations, IUGG promotes and enables studies in the geosciences by providing a framework for collaborative research and information exchange, by organizing international scientific assemblies worldwide, and via research publications. Resolutions passed by assemblies of IUGG and its International Associations set geophysical standards and promote issues of science policy on which national members agree. IUGG has initiated and/or vigorously supported collaborative international efforts that have led to highly productive worldwide interdisciplinary research programs, such as the International Geophysical Year and subsequent International Years (IPY, IYPE, eGY, and IHY), International Lithosphere Programme, World Climate Research Programme, Geosphere-Biosphere Programme, and Integrated Research on Risk Disaster. IUGG is inherently involved in the projects and programs related to climate change, global warming, and related environmental impacts. One major contribution has been the creation, through the International Council for Science (ICSU), of the World Data Centers and the Federation of Astronomical and Geophysical Data Analysis Services. These are being transformed to the ICSU World Data System, from which the data gathered during the major programs and data products will be available to researchers everywhere. IUGG cooperates with UNESCO, WMO, and some other U.N. and non-governmental organizations in the study of natural catastrophes

  2. Archaeological Geophysics at the San Marcos Pueblo, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Grimes, K.; Joiner, C. J.; Musa, D.; Allred, I.; Delhaye, R. P.; Zorin, N.; Feucht, D. W.; Johnston, G.; Pellerin, L.; McPhee, D.; Ferguson, J. F.

    2013-12-01

    The students and faculty of the Summer of Applied Geophysical Experience (SAGE) geophysical field course have studied the San Marcos Pueblo (LA 98) since 2004. This activity has provided instruction in near-surface geophysics and research into the application of geophysical techniques to southwestern archaeological problems. Our study site, the San Marcos Pueblo, is a classical and colonial period (1200-1680) pueblo that was once one of the largest communities in the southwest. Previous SAGE publications have discussed the discovery of archaeological features, the underlying geology and hydrological conditions. This study focuses on the interpretation of 'El Mapo Grande', 150 m X 150 m, high-resolution (0.5 m) maps of magnetic and electrical properties and 12 seismic refraction lines. The map covers room block, plaza and midden areas as well as areas where colonial period metallurgical activities were known to have occurred. We acquired magnetic, electromagnetic (EM), and ground-penetrating radar (GPR) data in 30 m X 30 m quads producing geophysical maps of each quad (2 or 3 produced each year). Total magnetic field measurements were made with a Geometrics cesium vapor magnetometer, GPR data collected using a Sensors and Software 250 MHz radar were on 0.5 m spaced lines, and EM data were acquired with a Geonics EM-31 on 1 m spaced lines. Seismic data were collected on interconnected lines with 0.5 m receiver and 3 m source interval. El Mapo Grande shows anomalies correlated among the diverse physical properties that were mapped. The edges of strong magnetic anomalies correlate with areas of high GPR scattering possibly associated with rocky floors under room blocks. Areas of high magnetic response are associated with hill-slope erosion channels and plumes of debris in the plaza to the south that are apparently washing down from the metallurgical sites near room blocks. EM data display a good correlation with the magnetic map. Debris channels and plumes are more

  3. Inter-laboratory comparison measurements of radiochemical laboratories in Slovakia.

    PubMed

    Meresová, J; Belanová, A; Vrsková, M

    2010-01-01

    The first inter-laboratory comparison organized by the radiochemistry laboratory of Water Research Institute (WRI) in Bratislava was carried out in 1993 and since then is it realized on an annual basis and about 10 radiochemical laboratories from all over Slovakia are participating. The gross alpha and gross beta activities, and the activity concentrations of (222)Rn, tritium, and (226)Ra, and U(nat) concentration in synthetic water samples are compared. The distributed samples are covering the concentration range prevailing in potable and surface waters and are prepared by dilution of certified reference materials. Over the course of the years 1993-2008, we observed the improvement in the quality of results for most of the laboratories. However, the success rate of the gross alpha determination activity is not improving as much as the other parameters. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Geophysics-based method of locating a stationary earth object

    DOEpatents

    Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  5. Publications - AR 2005 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Geologic Materials Center General Information Inventory Monthly Report Hours and Location Policy Report Authors: DGGS Staff Publication Date: Feb 2006 Publisher: Alaska Division of Geological & Geological & Geophysical Surveys Annual Report: Alaska Division of Geological & Geophysical Surveys

  6. Publications - AR 2009 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Publications Geologic Materials Center General Information Inventory Monthly Report Hours and Location Policy Report Authors: DGGS Staff Publication Date: Jan 2010 Publisher: Alaska Division of Geological & Geological & Geophysical Surveys Annual Report: Alaska Division of Geological & Geophysical Surveys

  7. Introduction to the JEEG Agricultural Geophysics special issue

    USDA-ARS?s Scientific Manuscript database

    Recent advancements such as the availability of personal computers, technologies to store/process large amounts of data, the GPS, and GIS have now made geophysical methods practical for agricultural use. Consequently, there has been a rapid expansion of agricultural geophysics research just over the...

  8. Performance of the RAD-57 pulse CO-oximeter compared with standard laboratory carboxyhemoglobin measurement.

    PubMed

    Touger, Michael; Birnbaum, Adrienne; Wang, Jessica; Chou, Katherine; Pearson, Darion; Bijur, Polly

    2010-10-01

    We assess agreement between carboxyhemoglobin levels measured by the Rad-57 signal extraction pulse CO-oximeter (RAD), a Food and Drug Administration-approved device for noninvasive bedside measurement, and standard laboratory arterial or venous measurement in a sample of emergency department (ED) patients with suspected carbon monoxide poisoning. The study was a cross-sectional cohort design using a convenience sample of adult and pediatric ED patients in a Level I trauma, burn, and hyperbaric oxygen referral center. Measurement of RAD carboxyhemoglobin was performed simultaneously with blood sampling for laboratory determination of carboxyhemoglobin level. The difference between the measures for each patient was calculated as laboratory carboxyhemoglobin minus carboxyhemoglobin from the carbon monoxide oximeter. The limits of agreement from a Bland-Altman analysis are calculated as the mean of the differences between methods ±1.96 SDs above and below the mean. Median laboratory percentage carboxyhemoglobin level was 2.3% (interquartile range 1 to 8.5; range 0% to 38%). The mean difference between laboratory carboxyhemoglobin values and RAD values was 1.4% carboxyhemoglobin (95% confidence interval [CI] 0.2% to 2.6%). The limits of agreement of differences of measurement made with the 2 devices were -11.6% and 14.4% carboxyhemoglobin. This range exceeded the value of ±5% carboxyhemoglobin defined a priori as clinically acceptable. RAD correctly identified 11 of 23 patients with laboratory values greater than 15% carboxyhemoglobin (sensitivity 48%; 95% CI 27% to 69%). There was one case of a laboratory carboxyhemoglobin level less than 15%, in which the RAD device gave a result greater than 15% (specificity of RAD 96/97=99%; 95% CI 94% to 100%). In the range of carboxyhemoglobin values measured in this sample, the level of agreement observed suggests RAD measurement may not be used interchangeably with standard laboratory measurement. Copyright © 2010 American

  9. Toward Robust Climate Baselining: Objective Assessment of Climate Change Using Widely Distributed Miniaturized Sensors for Accurate World-Wide Geophysical Measurements

    DOE R&D Accomplishments Database

    Teller, E.; Leith, C.; Canavan, G.; Marion, J.; Wood, L.

    2001-11-13

    A gap-free, world-wide, ocean-, atmosphere-, and land surface-spanning geophysical data-set of three decades time-duration containing the full set of geophysical parameters characterizing global weather is the scientific perquisite for defining the climate; the generally-accepted definition in the meteorological community is that climate is the 30-year running-average of weather. Until such a tridecadal climate baseline exists, climate change discussions inevitably will have a semi-speculative, vs. a purely scientific, character, as the baseline against which changes are referenced will at least somewhat uncertain.

  10. Publications - SR 51 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    & Geophysical Surveys Comments: Your help is crucial in the compilation of future Alaska Minerals Resources; Fluorine; Geophysics; Germanium; Gold; Heap Leach; Iron; Jade; Lead; Lode; Mercury; Minerals

  11. Seismic field measurements in Kylylahti, Finland, in support of the further development of geophysical seismic techniques for CTBT On-site Inspections

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Lindblom, Pasi; Malich, Gregor

    2017-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) during which the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI) were tested in integrated manner. Many of the inspection techniques permitted by the CTBT were applied during IFE14 including a range of geophysical techniques, however, one of the techniques foreseen by the CTBT but not yet developed is resonance seismometry. During August and September 2016, seismic field measurements have been conducted in the region of Kylylahti, Finland, in support of the further development of geophysical seismic techniques for OSIs. 45 seismic stations were used to continuously acquire seismic signals. During that period, data from local, regional and teleseismic natural events and man-made events were acquired, including from a devastating earthquake in Italy and the nuclear explosion announced by the Democratic People's Republic of Korea on 9 September 2016. Also, data were acquired following the small-scale use of man-made chemical explosives in the area and of vibratory sources. This presentation will show examples from the data set and will discuss its use for the development of resonance seimometry for OSIs.

  12. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Davis, M. B.; Goff, J. A.; Gulick, S. P. S.; McIntosh, K. D.; Saustrup, S., Sr.

    2014-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers a three-week marine geology and geophysics field course during the spring-summer intersession. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas, and Galveston, TX, and Grand Isle, LA, provide ideal locations for students to investigate coastal processes of the Gulf Coast and continental shelf through application of geophysical techniques in an exploratory mode. At sea, students assist with survey design and instrumentation set up while learning about acquisition parameters, data quality control, trouble-shooting, and safe instrument deployment and retrieval. In teams of four, students work in onshore field labs preparing sediment samples for particle size analysis and data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Echos, Landmark, Caris, and Fledermaus. The course concludes with a series of final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen

  13. Methodology of Detailed Geophysical Examination of the Areas of World Recognized Religious and Cultural Artifacts

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2010-05-01

    It is obvious that noninvasive geophysical methods are the main interpreting tools at the areas of world recognized religious and cultural artifacts. Usually in these areas any excavations, drilling and infrastructure activity are forbidden or very strongly limited. According to field experience and results of numerous modeling (Eppelbaum, 1999, 2000, 2009a, 2009b; Eppelbaum and Itkis, 2001, 2003; Eppelbaum et al., 2000, 2001a, 2001b, 2003a, 2006a, 2006b, 2007, 2010, Itkis et al., 2003; Neishtadt et al., 2006), a set of applied geophysical methods may include the following types of surveys: (1) magnetic, (3) GPR (ground penetration radar), (3) gravity, (4) electromagnetic VLF (very low frequency), (5) ER (electric resistivity), (6) SP (self-potential), (7) IP (induced polarization), (8) SE (seismoelectric), and (9) NST (near-surface temperature). As it was shown in (Eppelbaum, 2005), interpretation ambiguity may be sufficiently reduced not only by integrated analysis of several geophysical methods, but also by the way of multilevel observations of geophysical fields. Magnetic, gravity and VLF measurements may be performed at different levels over the earth's surface (0.1 - 3 m), ER, SP and SE observations may be obtained with different depth of electrodes grounding (0.1 - 1 m), and NST sensor may be located at a depth of 0.8 - 2.5 m. GPR method usually allows measuring electromagnetic fields at various frequencies (with corresponding changing of the investigation depth and other parameters). Influence of some typical noise factors to geophysical investigations at archaeological sites was investigated in (Eppelbaum and Khesin, 2001). In many cases various constructions and walls are in the nearest vicinity of the examined artifacts. These constructions can be also utilized for carrying out geophysical measurements (magnetic, gravity and VLF) at different levels. Application of the modern ROV (remote operated vehicles) with registration of magnetic and VLF fields at

  14. About Us | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Division of Geological & Geophysical Surveys (DGGS) 3354 College Road, Fairbanks, AK 99709 Phone: (907 Division also administers the 11-member Alaska Seismic Hazards Safety Commission. Accomplishments The . Department of Natural Resources, Division of Geological & Geophysical Surveys (DGGS) 3354 College Road

  15. Geophysical characterisation of the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.

    2017-11-01

    Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.

  16. The geology and geophysics of the Oslo rift

    NASA Technical Reports Server (NTRS)

    Ruder, M. E.

    1981-01-01

    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided.

  17. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  18. Publications - NL 2006-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Liberty Bell, western Bonnifield mining district geophysical tract Authors: DGGS Staff, and Athey, J.E inventory Liberty Bell, western Bonnifield mining district geophysical tract: Alaska Division of Geological

  19. Improving Discoverability of Geophysical Data using Location Based Services

    NASA Astrophysics Data System (ADS)

    Morrison, D.; Barnes, R. J.; Potter, M.; Nylund, S. R.; Patrone, D.; Weiss, M.; Talaat, E. R.; Sarris, T. E.; Smith, D.

    2014-12-01

    The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. They will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.

  20. Variability of creatinine measurements in clinical laboratories: results from the CRIC study.

    PubMed

    Joffe, Marshall; Hsu, Chi-yuan; Feldman, Harold I; Weir, Matthew; Landis, J R; Hamm, L Lee

    2010-01-01

    Estimating equations using serum creatinine (SCr) are often used to assess glomerular filtration rate (GFR). Such creatinine (Cr)-based formulae may produce biased estimates of GFR when using Cr measurements that have not been calibrated to reference laboratories. In this paper, we sought to examine the degree of this variation in Cr assays in several laboratories associated with academic medical centers affiliated with the Chronic Renal Insufficiency Cohort (CRIC) Study; to consider how best to correct for this variation, and to quantify the impact of such corrections on eligibility for participation in CRIC. Variability of Cr is of particular concern in the conduct of CRIC, a large multicenter study of subjects with chronic renal disease, because eligibility for the study depends on Cr-based assessment of GFR. A library of 5 large volume plasma specimens from apheresis patients was assembled, representing levels of plasma Cr from 0.8 to 2.4 mg/dl. Samples from this library were used for measurement of Cr at each of the 14 CRIC laboratories repetitively over time. We used graphical displays and linear regression methods to examine the variability in Cr, and used linear regression to develop calibration equations. We also examined the impact of the various calibration equations on the proportion of subjects screened as potential participants who were actually eligible for the study. There was substantial variability in Cr assays across laboratories and over time. We developed calibration equations for each laboratory; these equations varied substantially among laboratories and somewhat over time in some laboratories. The laboratory site contributed the most to variability (51% of the variance unexplained by the specimen) and variation with time accounted for another 15%. In some laboratories, calibration equations resulted in differences in eligibility for CRIC of as much as 20%. The substantial variability in SCr assays across laboratories necessitates calibration

  1. Bringing 3D Printing to Geophysical Science Education

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  2. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  3. Payload-Directed Control of Geophysical Magnetic Surveys

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Yeh, Yoo-Hsiu; Ippolito, Corey; Spritzer, John; Phelps, Geoffrey

    2010-01-01

    Using non-navigational (e.g. imagers, scientific) sensor information in control loops is a difficult problem to which no general solution exists. Whether the task can be successfully achieved in a particular case depends highly on problem specifics, such as application domain and sensors of interest. In this study, we investigate the feasibility of using magnetometer data for control feedback in the context of geophysical magnetic surveys. An experimental system was created and deployed to (a) assess sensor integration with autonomous vehicles, (b) investigate how magnetometer data can be used for feedback control, and (c) evaluate the feasibility of using such a system for geophysical magnetic surveys. Finally, we report the results of our experiments and show that payload-directed control of geophysical magnetic surveys is indeed feasible.

  4. Negligible Risk for Epidemics after Geophysical Disasters

    PubMed Central

    Floret, Nathalie; Viel, Jean-François; Mauny, Frédéric; Hoen, Bruno

    2006-01-01

    After geophysical disasters (i.e., earthquakes, volcanic eruptions, tsunamis), media reports almost always stress the risk for epidemics; whether this risk is genuine has been debated. We analyzed the medical literature and data from humanitarian agencies and the World Health Organization from 1985 to 2004. Of >600 geophysical disasters recorded, we found only 3 reported outbreaks related to these disasters: 1 of measles after the eruption of Pinatubo in Philippines, 1 of coccidioidomycosis after an earthquake in California, and 1 of Plasmodium vivax malaria in Costa Rica related to an earthquake and heavy rainfall. Even though the humanitarian response may play a role in preventing epidemics, our results lend support to the epidemiologic evidence that short-term risk for epidemics after a geophysical disaster is very low. PMID:16704799

  5. Moving Beyond IGY: An Electronic Geophysical Year (eGY) Concept

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Barton, C. E.; Rodger, A. S.; Thompson, B. J.; Fraser, B.; Papitashvili, V.

    2003-12-01

    During the International Geophysical Year (1957-1958), member countries established many new geophysical observatories pursuing the major IGY objectives - to collect geophysical data as widely as possible and to provide free access to these data for all scientists around the globe. Today, geophysics has attained a rather good understanding within traditional regions, i.e., the atmosphere, ionosphere, magnetosphere, and other such geospheres. At the same time, it has become clear that much of the new and important science is coming from the studies of interfaces and coupling between geospheres. Thus, if geophysical data are made `'transparently'' available to a much wider range of scientists and students than to those who do the observations, then new and exciting discoveries can be expected. An International Association of Geomagnetic and Aeronomy (IAGA) task force, recognizing that a key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories, proposes that for the 50th anniversary of IGY, the worldwide scientific community should endorse and promote an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the IGY in 2007-2008 and provide a forward impetus to geophysics in 21st century, similar to that provided by the IGY fifty years ago. The IAGA task force strongly advocates: (1) Securing permission and release of existing data; (2) Creating access to information; and (3) Conversion of relevant analog data to digital form. The eGY concept embraces all available and upcoming geophysical data (e.g., atmospheric, ionospheric, geomagnetic, gravity, etc.) through the establishment of a series of virtual geophysical observatories now being `'deployed'' in cyberspace. The eGY concept is modern, global, and timely; it is attractive, pragmatic, and affordable. The eGY is based on the existing and continually developing computing/networking technologies (e.g., XML, Semantic Web

  6. Research and career opportunities in the geophysical sciences for physics students

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew

    2008-10-01

    The field of geophysics involves using most branches of physics to investigate the physical structure and process that characterize the solid and fluid parts of our planet. Major advances in geophysics have come about from physicists crossing disciplinary boundaries and using their skills and knowledge to address first-order problems about the nature and structure of our planet and how the planet has changed over time. Indeed, some of the largest scientific breakthroughs in geophysics have come from physicists. As a way to introduce students to the field of geophysics and to provide them with information about research and career opportunities in geophysics, this talk will focus on one area of geophysics, seismology. This is an area of geophysics that has not only been instrumental in advancing our understanding of solid Earth structure and processes, but one that also has an applied side used for oil, gas and mineral exploration, as well as for environmental work. Examples of research projects involving seismic wave propagation and tomographic imaging will be presented, along the short descriptions of career opportunities in industry, government and academic institutions. In collaboration with Solomon Bililign, North Carolina A&T State University.

  7. Publications - GMC 263 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications GMC 263 main content DGGS GMC 263 Publication Details Title: Map location and geological logs of core for 1994 diamond drill

  8. Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale

    NASA Astrophysics Data System (ADS)

    Surasani, V.; Commer, M.; Ajo Franklin, J. B.; Li, L.; Hubbard, S. S.

    2012-12-01

    In Microbial-Enhanced-Hydrocarbon-Recovery (MEHR), preferential bioclogging targets the growth of the biofilms (def. immobilized biopolymers with active cells embodied in it) in highly permeable thief zones to enhance sweep efficiency in oil reservoirs. During MEHR, understanding and controlling bioclogging is hindered by the lack of advanced modeling and monitoring tools; these deficiencies contribute to suboptimal performance. Our focus in this study was on developing a systematic approach to understand and monitor bioclogging at the reservoir scale using a combination of reactive transport modeling and geophysical imaging tools (EM & seismic). In this study, we created a realistic reservoir model from a heterogeneous gas reservoir in the Southern Sacramento basin, California; the model well (Citizen Green #1) was characterized using sonic, electrical, nuclear, and NMR logs for hydrologic and geophysical properties. From the simplified 2D log data model, a strip of size 150m x75m with several high permeability streaks is identified for bioclogging simulation experiments. From the NMR log data it is observed that a good linear correlation exist between logarithmic permeability (0.55- 3.34 log (mD)) versus porosity (0.041-0.28). L. mesenteroides was chosen as the model bacteria. In the presence of sucrose, it enzymatically catalyzes the production of dextran, a useful bioclogging agent. Using microbial kinetics from our laboratory experiment and reservoir heterogeneity, a reactive transport model (RTM) is established for two kinds of bioclogging treatments based on whether microbes are present in situ or are supplied externally. In both cases, sucrose media (1.5 M) is injected at the rate of 1 liter/s for 20 days into the center of high permeable strip to stimulate microbes. Simulations show that the high dextran production was deep into the formation from the injection well. This phenomenon can be explained precisely with bacterial kinetics and injection rate. In

  9. Interpretation of NO and OH Emission from 1976 Airborne Measurements,

    DTIC Science & Technology

    1979-01-01

    Development. .~\\ . 0.. ’ ~1 AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE UANSCOM APE , MASSACHUSETTS 01731 79 09 17 ...INGSCHEDULE 16. DISTRIBUTION STATEMENT (of tAle R.port) Approved for public release , distribution unlimited 17 . DISTRIBUTION STATEMENT (of iS. abet,act .nt...for March 7, 1976 from 1000 to 1030 UT, and processed 2.94 pm data with the OH background removed 17 Figure 5. Measured 39l4~ , 2.94 pm , and 1.7 pm

  10. Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Jeff

    2012-11-30

    Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have beenmore » the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values

  11. Interactive Geophysical Mapping on the Web

    NASA Astrophysics Data System (ADS)

    Meertens, C.; Hamburger, M.; Estey, L.; Weingroff, M.; Deardorff, R.; Holt, W.

    2002-12-01

    We have developed a set of interactive, web-based map utilities that make geophysical results accessible to a large number and variety of users. These tools provide access to pre-determined map regions via a simple Html/JavaScript interface or to user-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Users can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Developed initially by UNAVCO for study of global-scale geodynamic processes, users can choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays for example coastlines, political boundaries, rivers and lakes, NEIC earthquake and volcano locations, stress axes, and observed and model plate motion and deformation velocity vectors representing a compilation of 2933 geodetic measurements from around the world. The software design is flexible allowing for construction of special editions for different target audiences. Custom maps been implemented for UNAVCO as the "Jules Verne Voyager" and "Voyager Junior", for the International Lithosphere Project's "Global Strain Rate Map", and for EarthScope Education and Outreach as "EarthScope Voyager Jr.". For the later, a number of EarthScope-specific features have been added, including locations of proposed USArray (seismic), Plate Boundary Observatory (geodetic), and San Andreas Fault Observatory at Depth sites plus detailed maps and geographically referenced examples of EarthScope-related scientific investigations. In addition, we are developing a website that incorporates background materials and curricular activities that encourage users to explore Earth processes. A cluster of map processing computers and nearly a terabyte of disk storage has been assembled to power the generation of

  12. R/V Kilo Moana's New Geophysical Instrumentation, Processing Methods, and Online Data Repository

    NASA Astrophysics Data System (ADS)

    Miller, J. E.; Chandler, M. T.; Taylor, B.; Shor, A.; Ferguson, J. S.; Wessel, P.

    2012-12-01

    In 2012 several upgrades were made to the underway geophysical systems on R/V Kilo Moana, which the University of Hawaii School of Ocean and Earth Science and Technology (SOEST) operates as part of the University-National Oceanographic Laboratory System (UNOLS) fleet. New instrumentation includes a Bell BGM-3 forced feedback-type gravimeter, a Kongsberg EM 122 12-kHz receiver array, and a high resolution 70-100 kHz EM 710 multibeam echo sounder. Multibeam acceptance trials carried out in June by the Multibeam Advisory Committee, Gates Acoustic Services and UH-SOEST found that both sonars are performing within expected levels with ~5x water depth (WD) for the EM 710 system in shallow water and ~19 km swath width at 4,700 m depth (~4x WD) for the EM 122 deep water system. UH-SOEST also took steps this year to fulfill its obligation to make Kilo Moana's geophysical data more accessible to the public. After an audit of Kilo Moana data at SOEST, Lamont's Rolling Deck to Repository (R2R) and the National Geophysical Data Center (NGDC), as of July 2012 all National Science Foundation-funded Kilo Moana multibeam, gravity, magnetics, center beam depth and Acoustic Doppler Current Profiler (ADCP) data have been submitted to R2R and any multibeam data over 2 years old is being transferred to NGDC. Because it had previously been difficult to access some of SOEST's geophysical data, updated data processing routines have been developed for converting raw gravity, magnetics, and centerbeam depth data to NGDC's standard marine data exchange format (MGD77) for archival and dissemination by NGDC. MGD77 files are being generated and inspected using rigorous along-track analytical techniques for ~270 surveys dating from 2002 to the present and are being submitted to NGDC. We are also developing an online data portal to further facilitate access to SOEST data.

  13. The role of instruments in the history of Geophysics: the case of Seismology

    NASA Astrophysics Data System (ADS)

    Ferrari, Graziano

    2015-04-01

    Science is the study that leads to discriminate knowledge of the material world based on observation, experiment and induction. Geophysics is the combination of the former concern about the explanation of every day phenomena in our enviroment, with the achievements of physics that were exploited within the laboratory, either by experiments or by theoreticians. Unlike other disciplines such as physics or chemistry, geophysics is a mosaic of disciplines also very different among each other. The main differences concern the object and method of study or the evolutionary path. Many cyclic phenomena of the Earth are long-term processes so that a long period of study is essential to a thorough understanding. Extreme natural events such as earthquakes, volcanic eruptions, floods, etc. significantly contribute to the natural hazards. So, in seismology, volcanology, hydrogeology, as in those disciplines who study significant changes in climate or in geomagnetism, long time series of data are very useful, along with the instruments that registered them and the scientific paradigms within which they were produced. These aspects, contributing to the history of geophysics, are extremely useful especially for the fallout on the mankind's life and activities.To be useful, as well as the recovery, the historical data must be "normalized" to the current use we want to do of them. This process makes an essential contribution to knowledge of the instruments that recorded this data: their principles of operation, their constants and their variability over time. Many of the disciplines involved in geophysics, as seismology, geomagnetism, etc. require observations both geographically distributed and synchronized. Geomagnetic and seismological recordings, together with astronomical and meteorological observations have been frequently done in the same observatories, in the past. Despite their relative cyclic nature, since earthquakes may not occur in the exact same way, thorough analysis

  14. Solid earth geophysics: Data services

    NASA Astrophysics Data System (ADS)

    1987-01-01

    The National Oceanic and Atmospheric Administration (NOAA) collects, manages, and disseminates many kinds of scientific data that result from the inquiry into the environment. The National Geophysical Data Center (NGDC), one of the several data-management centers of NOAA, is responsible for data activities in the fields of seismology, gravity, topography, geomagnetism, geothermics, marine geology and geophysics, and solar-terrestrial physics. The pamphlet briefly describes the principal products and services NGDC provides through its Solid Earth (SEG) division. Among the most important activities of SEG are acquiring and archiving data, processing and formatting data into standard sets, developing useful data products for customers, and advertising and disseminating data to the scientific, academic, and industrial communities.

  15. Laboratory Measurements for Deuterated Astrochemistry

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Pierre-Michel; Bowen, Kyle Patrick; Miller, Kenneth A.; De Ruette, Nathalie; Urbain, Xavier; Savin, Daniel Wolf

    2017-06-01

    Deuterated molecules are powerful probes of the cold interstellar medium (ISM). Observations of D-bearing molecules are used to infer the chemistry of the ISM and to trace out physical conditions such as density, ionization fraction, and thermal history. The chemistry of the cold ISM results from a complicated interplay between gas-phase processes, reactions on dust grain surfaces, and chemistry occurring both in and on the icy mantles of dust grains. Our focus here is on an improved understanding of the relevant deuterated gas-phase chemistry. At the low temperatures and densities typical of the cold ISM, much of this chemistry is driven by binary ion-neutral reactions, which are typically barrierless and exoergic (as compared to neutral-neutral reactions which often have significant activation energies).One of the biggest challenges in generating a reliable deuterated gas-phase astrochemical network is the uncertainty of the necessary rate coefficients. The vast majority of available chemical kinetic data are for fully hydrogenated species. For those D-bearing reactions where no laboratory data are available, two approaches have been adopted for converting the fully hydrogenated data into partial- and fully-deuterated species. The first approach simply “clones” the H-bearing reactions into D-bearing reactions and assumes that the rate coefficients are the same. The second approach uses a simple mass scaling relationship based on the Langevin formalism.We have initiated a series of laboratory measurements aimed at resolving this issue. For this we use our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and charged molecules. Using co-propagating beams enables us to achieve collision energies corresponding to temperatures as low as 25 K, limited only by the divergences of the two beams. Recently we have measured the reaction C + H2+(D2+) forming CH+(CD+) + H(D). We are now studying D + H3+(D2H+) forming H2D

  16. Laboratory Measurement Implications of Decreasing Childhood Blood Lead Levels

    PubMed Central

    Caldwell, Kathleen L.; Cheng, Po-Yung; Jarrett, Jeffery M.; Makhmudov, Amir; Vance, Kathryn; Ward, Cynthia D.; Jones, Robert L.; Mortensen, Mary E.

    2017-01-01

    In 2012, the Centers for Disease Control and Prevention (CDC) adopted its Advisory Committee on Childhood Lead Poisoning Prevention (ACCLPP) recommendation to use a population-based reference value to identify children and environments associated with lead hazards. The current reference value of 5 μg/dL is calculated as the 97.5th percentile of the distribution of blood lead levels (BLL) in children one to five years old from 2007–2010 National Health and Nutrition Examination Survey (NHANES) data. We calculated and updated selected percentiles, including the 97.5th percentile, using NHANES 2011–2014 blood lead data and examined demographic characteristics of children whose blood lead was ≥90th percentile value. The 97.5% percentile BLL of 3.48 μg/dL highlighted analytical laboratory and clinical interpretation challenges of blood lead measurements ≤ 5 μg/dL. Review of five years of results for target blood lead values < 11 μg/dL for U.S. clinical laboratories participating in CDC’s voluntary Lead and Multi-Element Proficiency (LAMP) quality assurance program showed 40% unable to quantify and reported a non-detectable result at a target blood lead value of 1.48 μg/dL compared 5.5 % at a target blood lead of 4.60 μg/dL. We describe actions taken at CDC’s Environmental Health Laboratory in the Division of Laboratory Sciences, which measures blood lead for NHANES, to improve analytical accuracy and precision and to reduce external lead contamination during blood collection and analysis. PMID:28771411

  17. Automated lithology prediction from PGNAA and other geophysical logs.

    PubMed

    Borsaru, M; Zhou, B; Aizawa, T; Karashima, H; Hashimoto, T

    2006-02-01

    Different methods of lithology predictions from geophysical data have been developed in the last 15 years. The geophysical logs used for predicting lithology are the conventional logs: sonic, neutron-neutron, gamma (total natural-gamma) and density (backscattered gamma-gamma). The prompt gamma neutron activation analysis (PGNAA) is another established geophysical logging technique for in situ element analysis of rocks in boreholes. The work described in this paper was carried out to investigate the application of PGNAA to the lithology interpretation. The data interpretation was conducted using the automatic interpretation program LogTrans based on statistical analysis. Limited test suggests that PGNAA logging data can be used to predict the lithology. A success rate of 73% for lithology prediction was achieved from PGNAA logging data only. It can also be used in conjunction with the conventional geophysical logs to enhance the lithology prediction.

  18. Correlation of VHI-10 to voice laboratory measurements across five common voice disorders.

    PubMed

    Gillespie, Amanda I; Gooding, William; Rosen, Clark; Gartner-Schmidt, Jackie

    2014-07-01

    To correlate change in Voice Handicap Index (VHI)-10 scores with corresponding voice laboratory measures across five voice disorders. Retrospective study. One hundred fifty patients aged >18 years with primary diagnosis of vocal fold lesions, primary muscle tension dysphonia-1, atrophy, unilateral vocal fold paralysis (UVFP), and scar. For each group, participants with the largest change in VHI-10 between two periods (TA and TB) were selected. The dates of the VHI-10 values were linked to corresponding acoustic/aerodynamic and audio-perceptual measures. Change in voice laboratory values were analyzed for correlation with each other and with VHI-10. VHI-10 scores were greater for patients with UVFP than other disorders. The only disorder-specific correlation between voice laboratory measure and VHI-10 was average phonatory airflow in speech for patients with UVFP. Average airflow in repeated phonemes was strongly correlated with average airflow in speech (r=0.75). Acoustic measures did not significantly change between time points. The lack of correlations between the VHI-10 change scores and voice laboratory measures may be due to differing constructs of each measure; namely, handicap versus physiological function. Presuming corroboration between these measures may be faulty. Average airflow in speech may be the most ecologically valid measure for patients with UVFP. Although aerodynamic measures changed between the time points, acoustic measures did not. Correlations to VHI-10 and change between time points may be found with other acoustic measures. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  19. Teaching Computational Geophysics Classes using Active Learning Techniques

    NASA Astrophysics Data System (ADS)

    Keers, H.; Rondenay, S.; Harlap, Y.; Nordmo, I.

    2016-12-01

    We give an overview of our experience in teaching two computational geophysics classes at the undergraduate level. In particular we describe The first class is for most students the first programming class and assumes that the students have had an introductory course in geophysics. In this class the students are introduced to basic Matlab skills: use of variables, basic array and matrix definition and manipulation, basic statistics, 1D integration, plotting of lines and surfaces, making of .m files and basic debugging techniques. All of these concepts are applied to elementary but important concepts in earthquake and exploration geophysics (including epicentre location, computation of travel time curves for simple layered media plotting of 1D and 2D velocity models etc.). It is important to integrate the geophysics with the programming concepts: we found that this enhances students' understanding. Moreover, as this is a 3 year Bachelor program, and this class is taught in the 2nd semester, there is little time for a class that focusses on only programming. In the second class, which is optional and can be taken in the 4th or 6th semester, but often is also taken by Master students we extend the Matlab programming to include signal processing and ordinary and partial differential equations, again with emphasis on geophysics (such as ray tracing and solving the acoustic wave equation). This class also contains a project in which the students have to write a brief paper on a topic in computational geophysics, preferably with programming examples. When teaching these classes it was found that active learning techniques, in which the students actively participate in the class, either individually, in pairs or in groups, are indispensable. We give a brief overview of the various activities that we have developed when teaching theses classes.

  20. Publications - AR 2010 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical DGGS AR 2010 Publication Details Title: Alaska Division of Geological & Geophysical Surveys Annual Report Authors: DGGS Staff Publication Date: Jan 2011 Publisher: Alaska Division of Geological &

  1. Publications - IC 50 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ic050.pdf (999.0 K) Keywords Aeromagnetic; Aeromagnetic Map; Aeromagnetic Survey; Alaska Peninsula ; Coal; Conductivity Survey; Construction Materials; Copper; Cretaceous; Delta River; Diamonds; Drilling

  2. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-waste landfill sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasbrouck, J.C.

    1992-11-01

    Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemicalmore » Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the 60's Pits'' area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP.« less

  3. Measuring Meaningful Learning in the Undergraduate Chemistry Laboratory: A National, Cross-Sectional Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on laboratory learning points to the need to better understand what and how students learn in the undergraduate chemistry laboratory. The Meaningful Learning in the Laboratory Instrument (MLLI) was administered to general and organic chemistry students from 15 colleges and universities across the United States in order to measure the…

  4. Archaeological Geophysics in Israel: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.

    2009-04-01

    -Avraham, Z., 2004b. Advanced analysis of self-potential data in ore deposits and archaeological sites. Proceed. of the 10th European Meeting of Environmental and Engineering Geophysics, Utrecht, The Netherlands, 4 pp. Ezersky, M., Goldman, M., Bar-Matthews, M., and Ayalon, A., 2000. Geoelectric investigation of the Soreq Cave area in Israel. Proceed. of the EAGE/EEGS 6th Meetings, Bochum, Germany, PCD01, 2 pp. Foster, I., Kesselman, C., and Tueke, S., 2001. The anatomy of the grid. Enabling scalable virtual organization. Intl. J. Supercomputer Applications, 15, No.3, 200-222. Frumkin, A., Shimron, A., and Rosenbaum, J., 2003. Radiometric dating of the Siloam Tunnel, Jerusalem. Letters to Nature, 425, 169-171. Ginzburg, A. and Levanon, A., 1977. Direct current resistivity measurements in archaeology. Geoexploration, 15, 47-56. Itkis, S.E., 2003. Magnetic Susceptibility Measurements of Soil: A Diagnostic Tool for Location Human Activity Areas. In: (H. Khalaily and O. Marder, Eds.) The Neolithic Site of Abu Ghosh: The 1995 Excavations, Chapter 14, (IAA Reports 19), Jerusalem, 129-131. Itkis, S.E. and Eppelbaum, L.V., 1998. First results of magnetic prospecting application at the Prehistoric sites of Israel. Journal of the Prehistoric Society of Israel, 28, 177-187. Itkis, S., Feinstein, S., and Khesin, B., 2008. Archaeomagnetic provinces in Israel as a basis for magnetic prospecting of archaeological sites. Proceed. of the 14th Near-Surface Europ. Meeting of Environmental and Engineering Geophysics, Krakow, Poland, 5 pp. Itkis, S., Khesin, B., Eppelbaum, L., and Khalaily, H., 2003. The Natufian site of Eynan (Hula valley, northern Israel): Magnetic prospecting reveals new features. Israel Journal of Earth Sciences, 52 (3-4), 209-219. Itkis, S., Khesin, B., and Feinstein, S., 2002. Detailed magnetic prospecting at archaeological sites of Israel - complications and physical-srchaeological models. Proceed. of the 64th EAGE Annual Conf., Florence, Italy, 4 pp. Jol, H.M., Broshi, M

  5. Sustainable Geophysical Observatory Networks

    NASA Astrophysics Data System (ADS)

    Willemann, R. J.; Lerner-Lam, A.; Aster, R.; Beck, S.; Ekstrom, G.; Nyblade, A.; Sandvol, E.

    2007-05-01

    Geophysical networks are defined not only by their technical specifications, but also by the characteristics and needs of the communities that use them. Growing populations supported by more elaborate urban infrastructure with its fine-grained socio-economic interdependencies and relying on global and regional connections for sustainability make new demands for natural hazard risk management. Taking advantage of advances in the underlying science to provide society with accurate risk assessments often requires higher fidelity measurements, entirely new types of observations, and an evolutionary sense of data products and information management. Engineering a high-tech system to address stakeholder needs is difficult, and designing for unpredictable developments requires an emphasis on adaptation. Thus, it is essential to promote formation of organizations or communities that can support evolution of a technological system, imagine new uses, and develop the societal relationships that sustain operations and provide capital for improvement. The owners must have a deep understanding of why the system works in particular ways and how to manage data products for the benefits of stakeholders. To be effective, community promotion must be sustained over a longer period of time than required to build a network and should be aimed at integrating the community into worldwide partnerships. Practices that can promote community formation if they are sustained include repeated training and scientific exchange workshops, extended visits by experts and staff at all levels to and from countries where networks are installed, mechanisms that make timely upgrades realistically possible, and routine exchange and wide dissemination of data in all directions. The combination of international research and educational collaborations, supported by open data exchange, with regionalized and specific assessments of local stakeholder needs and concerns, provides a sustainable model for

  6. Geophysical and Chemical Weathering Signatures Across the Deep Weathered-Unweathered Granite Boundary of the Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Richter, D., Jr.; Bacon, A. R.; Brantley, S. L.; Holbrook, W. S.

    2015-12-01

    To understand the relationship between geophysical measurements and chemical weathering at Earth's surface, we combine comprehensive chemical and physical analyses of a 70-m granite weathering profile in the Southern Piedmont in the southeastern United States. The research site is in the uplands of the Calhoun Critical Zone Observatory and is similar to many geomorphically stable, ancient, and highly-weathered Ultisol soils of the region. Surface and downhole geophysical analyses suggest significant physical changes to depths of about 40 m, where geophysical properties are consistent with competent and unweathered granite. At this depth, surface refraction velocities increase to >4.5 km/s; variations in downhole sonic velocities decrease by more than two-fold; and deviations in the downhole caliper log sharply decrease as well. Forty meters depth is also the depth of initiation of plagioclase feldspar weathering, as inferred from bulk geochemical measurement of the full 70-m deep core. Specifically, element-depth profiles, cast as mass transfer coefficient profiles using Ti and Zr as immobile elements, document inferred loss of plagioclase in the depth interval between 15 and 40-m depth. Plagioclase feldspar is the most abundant of the highly reactive minerals in the granite. Such a wide reaction front is characteristic of weathering granites. Some loss of K is observed at these depths but most K loss, as well as Mg loss, occurs at shallower depths. Nearby geophysical profiles and 3D stress models have been interpreted as showing that seismic velocities decrease at 40 m depth due to opening of fractures as rock is exhumed toward the surface. Given our interpretations of both the geochemical and geophysical data, we infer that the onset of chemical weathering of feldspar coincides with the opening of these fractures. The data highlight the ability of geochemistry and geophysics to complement each other and enrich our understanding of Earth's Critical Zone.

  7. Characteristics of Sounds Emitted During High-Resolution Marine Geophysical Surveys

    DTIC Science & Technology

    2016-03-24

    In addition, the close proximity of side walls had the potential to reflect sound back into the well, thus contributing to the overall measurement... wall reflections. The reduced amplitude for sounds radiated near the side wall may have been the result of the greater angular displacement between...NUWC-NPT Technical Report 12,203 24 March 2016 Characteristics of Sounds Emitted During High-Resolution Marine Geophysical Surveys

  8. Recommended reference figures for geophysics and geodesy

    NASA Technical Reports Server (NTRS)

    Khan, M. A.; Okeefe, J. A.

    1973-01-01

    Specific reference figures are recommended for consistent use in geophysics and geodesy. The selection of appropriate reference figure for geophysical studies suggests a relationship between the Antarctic negative gravity anomaly and the great shrinkage of the Antarctic ice cap about 4-5 million years ago. The depression of the south polar regions relative to the north polar regions makes the Southern Hemisphere flatter than the Northern Hemisphere, thus producing the third harmonic (pear-shaped) contribution to the earth's figure.

  9. GFO-1 Geophysical Data Record and Orbit Verifications for Global Change Studies

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    2000-01-01

    This final report summarizes the research work conducted under NASA's Physical Oceanography Program, entitled, GFO-1 Geophysical Data Record And Orbit Verifications For Global Change Studies, for the investigation time period from December 1, 1997 through November 30, 2000. The primary objectives of the investigation include providing verification and improvement for the precise orbit, media, geophysical, and instrument corrections to accurately reduce U.S. Navy's Geosat-Followon-1 (GFO-1) mission radar altimeter data to sea level measurements. The status of the GFO satellite (instrument and spacecraft operations, orbital tracking and altimeter) is summarized. GFO spacecraft has been accepted by the Navy from Ball Aerospace and has been declared operational since November, 2000. We have participated in four official GFO calibration/validation periods (Cal/Val I-IV), spanning from June 1999 through October 2000. Results of verification of the GFO orbit and geophysical data record measurements both from NOAA (IGDR) and from the Navy (NGDR) are reported. Our preliminary results indicate that: (1) the precise orbit (GSFC and OSU) can be determined to approx. 5 - 6 cm rms radially using SLR and altimeter crossovers; (2) estimated GFO MOE (GSFC or NRL) radial orbit accuracy is approx. 7 - 30 cm and Operational Doppler orbit accuracy is approx. 60 - 350 cm. After bias and tilt adjustment (1000 km arc), estimated Doppler orbit accuracy is approx. 1.2 - 6.5 cm rms and the MOE accuracy is approx. 1.0 - 2.3 cm; (3) the geophysical and media corrections have been validated versus in situ measurements and measurements from other operating altimeters (T/P and ERS-2). Altimeter time bias is insignificant with 0-2 ms. Sea state bias is about approx. 3 - 4.5% of SWH. Wet troposphere correction has approx. 1 cm bias and approx. 3 cm rms when compared with ERS-2 data. Use of GIM and IRI95 provide ionosphere correction accurate to 2-3 cm rms during medium to high solar activities; (4

  10. Geophysical Technologies to Image Old Mine Works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanaan Hanna; Jim Pfeiffer

    2007-01-15

    ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned minesmore » are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.« less

  11. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Tonopah 1 by 2 degree Quadrangle, Nevada

    USGS Publications Warehouse

    John, David A.; Nash, J.T.; Plouff, Donald; Whitebread, D.H.

    1991-01-01

    The Tonopah 1 ? by 2 ? quadrangle in south-central Nevada was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The selected bibliography lists references to the geology, geochemistry, geophysics, and mineral deposits of the Tonopah 1 ? by 2 ? quadrangle.

  12. Staff - April M. Woolery | Alaska Division of Geological & Geophysical

    Science.gov Websites

    SurveysA> Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Publications Search Statewide Maps New Releases Sales Interactive Maps Databases Sections Geologic Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey

  13. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.

    2007-05-01

    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  14. New experimental sites for borehole geophysics, hydrodynamics and long-term monitoringITORING

    NASA Astrophysics Data System (ADS)

    Pezard, P.; Aliance/Saltrans Team

    2003-04-01

    In order to provide platforms for the development of new downhole geophysical and hydrodynamic sensors, 4 sites are being developped with a series of nearby 100 m deep boreholes located with a few meters to 100 meters, at the most. The objective is to set-up a cluster of extremely well characterized in-situ laboratories at scales where experiments cannot be conducted in traditionnal labs. At least one borehole is continuously cored at each of the sites, and the core is fully characterized in petrological, petrophysical and geochemical terms. An emphasis is placed on fundamental and environmental applications such as hydrogeology, waste storage or the study of seismogenic faults, whether for characterization purposes or the development of long-term monitoring sensors and methods. These sites are developped with the support of CNRS, the University of Montpellier and the ALIANCE program financed by the European Commission. The 4 sites span different lithologies with granite at Ploemeur (Brittany, France), Miocene carbonates from a reefal platform in south Mallorca (Baleares, Spain), Valanginian marly limestone at Lavalette, near Montpellier (Languedoc, France), and unconsolidated sands in a coastal setting also near Montpellier. In the context of ALIANCE, the goal is to improve the investigation, characterisation and monitoring of coastal aquifers for vulnerability assessment. For this, a set of geophysical approaches for the quantitative evaluation of brine intrusion will be developped. This includes the design of 5 new geophysical and hydrodynamical logging/testing sensors. Two end-member sites in terms of hydrogeological behavior will be set up for long-term experimentation, the testing of the new tools, and the validation of site-specific experimental and modelling protocols from µm- to 100 m-scale. Active in-situ testing from short and longer-term injections with variable salinity fluids will simulate overdrafting or saline water intrusion.

  15. Geophysical Investigation of a Thermokarst Lake Talik in Continuous Permafrost

    NASA Astrophysics Data System (ADS)

    Creighton, A.; Parsekian, A.; Arp, C. D.; Jones, B. M.; Babcock, E.; Bondurant, A. C.

    2016-12-01

    On the Arctic Coastal Plain (ACP) of northern Alaska, shallow thermokarst lakes cover up to 25% of the landscape. These lakes occupy depressions created by the subsidence of thawed, ice-rich permafrost. Areas of unfrozen sediment, or taliks, can form under lakes that have a mean annual bottom temperature greater than 0°C. The geometry of these taliks, as well as the processes that create them, are important for understanding interactions between surface water, groundwater, and carbon cycling. Non-invasive geophysical methods are a useful means to study talik sediments as borehole studies yield few data points, and the contrast between unfrozen and frozen sediments is an ideal geophysical target. To study talik configuration associated with an actively expanding thermokarst lake, we conducted a geophysical transect across Peatball Lake. This lake has an estimated initiation age of 1400 calendar years BP. Over the past 60 years, lake surface area has increased through thermal and mechanical shoreline erosion. A talik of previously unknown thickness likely exists below Peatball Lake. We conducted a transect of transient electromagnetic soundings across the lake extending into the surrounding terrestrial environment. Since permafrost has relatively high resistivity compared to talik sediments, the interpreted electrical structure of the subsurface likely reflects talik geometry. We also conducted nuclear magnetic resonance soundings at representative locations along the transect. These measurements can provide data on sub-lake sediment properties including water content. Together, these measurements resolve the talik structure across the lake transect and showed evidence of varying talik thicknesses from the lake edge to center. These is no evidence of a talik at the terrestrial control sites. These results can help constrain talik development models and thus provide insight into Arctic and permafrost processes in the face of a changing climate.

  16. A rocket ozonesonde for geophysical research and satellite intercomparison

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Coley, R. L.; Kirschner, P. T.; Gammill, B.

    1979-01-01

    The in-situ rocketsonde for ozone profile measurements developed and flown for geophysical research and satellite comparison is reviewed. The measurement principle involves the chemiluminescence caused by ambient ozone striking a detector and passive pumping as a means of sampling the atmosphere as the sonde descends through the atmosphere on a parachute. The sonde is flown on a meteorological sounding rocket, and flight data are telemetered via the standard meteorological GMD ground receiving system. The payload operation, sensor performance, and calibration procedures simulating flight conditions are described. An error analysis indicated an absolute accuracy of about 12 percent and a precision of about 8 percent. These are combined to give a measurement error of 14 percent.

  17. GEOPHYSICAL INVESTIGATIONS OF THE ARCHAEOLOGICAL RESOURCES AT THE POWELL STAGE STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollie K. Gilbert; Julie B. Braun; Brenda R. Pace

    2009-04-01

    Within the boundaries of the Idaho National Laboratory, an ongoing archaeological investigation of a late 19th century stage station was expanded with the use of Electro-Magnetic and Magnetic geophysical surveying. The station known as the Powell Stage Station was a primary transportation hub on the Snake River Plain, bridging the gap between railroad supply depots in Blackfoot, Idaho and booming mining camps throughout Central Idaho. Initial investigations have shown a strong magnetic signature from a buried road and previously unknown features that were not detected by visual surface surveys. Data gained from this project aids in federally directed cultural resourcemore » and land management and use requirements and has contributed additional information for archeological interpretation and cultural resource preservation.« less

  18. Publications - GPR 2011-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey content DGGS GPR 2011-4 Publication Details Title: Iditarod survey area: Airborne magnetic and ., Fugro Airborne Surveys Corp., and Fugro GeoServices, Inc., 2015, Iditarod survey area: Airborne magnetic

  19. Publications - GPR 2014-4 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey content DGGS GPR 2014-4 Publication Details Title: Farewell and Middle Styx survey areas: Project report , Inc., 2015, Farewell and Middle Styx survey areas: Project report, interpretation maps, EM anomalies

  20. Publications - GMC 85 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological & Geophysical (Orion) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  1. Publications - GMC 89 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ) well Authors: Unknown Publication Date: 1988 Publisher: Alaska Division of Geological & Geophysical (Mars) well: Alaska Division of Geological & Geophysical Surveys Geologic Materials Center Data

  2. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  3. A geophysical system combining electrical resistivity and spontaneous potential for detecting, delineating, and monitoring slope stability.

    DOT National Transportation Integrated Search

    1991-01-01

    Various geophysical electrical measuring techniques, i.e., spontaneous potential (SP) terrain conductivity meter (TCM), and conventional electrical resistivity/conductivity (ER), were tested to determine their effectiveness in detecting, delineating,...

  4. PREFACE: Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI

    NASA Astrophysics Data System (ADS)

    Rosandi, Y.; Urbassek, H. M.; Yamanaka, H.

    2016-01-01

    This issue of IOP Conference Series: Earth and Environmental Science contains selected papers presented at the Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI. The meeting was held from June 8 to 10, 2015, at the Bale-Sawala of Universitas Padjadjaran in Jatinangor, Indonesia. The PEDISGI is a symposium to accommodate communication between researchers, in particular geophysicists and related scientists, and to enable sharing of knowledge and research findings concerning local and global geophysical issues. The symposium was attended by 126 participants and 64 contributors from Indonesian universities and the neighbouring countries in four categories, viz. Theoretical and Computational Geophysics, Environmental Geophysics, Geophysical Explorations, and Geophysical Instrumentations and Methods. The symposium was accompanied by a dialog, discussing a chosen topic regarding environmental and geological problems of relevance for the Indonesian archipelago and the surrounding regions. For this first event the topic was ''The formation of Bandung-Basin between myths and facts: Exemplary cultural, geological and geophysical study on the evolution of the earth surface'', presented by invited speakers and local experts. This activity was aimed at extending our knowledge on this particular subject, which may have global impact. This topic was augmented by theoretical background lectures on the earth's surface formation, presented by the invited speakers of the symposium. The meeting would not have been successful without the assistance of the local organizing committee. We want to specially thank Irwan A. Dharmawan for managing the programme, Anggie Susilawati and Mia U. Hasanah for the conference administration, and Dini Fitriani for financial management. We also thank the National Geographic Indonesia for its support via the Business to Business Collaboration Program. The conference photograph can be viewed in the PDF.

  5. Tailings dams stability analysis using numerical modelling of geotechnical and geophysical data

    NASA Astrophysics Data System (ADS)

    Mihai, S.; Zlagnean, M.; Oancea, I.; Petrescu, A.

    2009-04-01

    Methods for monitoring seepage and detecting internal erosion are essential for the safety evaluation of embankment dams. Internal erosion is one of the major reasons for embankment dam failures, and there are thousands of large tailings dams and waste-rock dumps in the world that may pe considered as hotspots for environmental impact. In this research the geophysical survey works were performed on Cetatuia 2 tailings dam. Electrical resistivity imaging (ERI) method was able to detect spatially anomalous zones inside the embankment dam. These anomalies are the results of internal erosion phenomena which may progressing inside the dam and is difficult to detect by conventional methods. Data aquired by geophysical survey together with their interpretations were used in the numerical model for slope stability assessment. The final results show us the structural weakness induced by the presence of internal erosion elements especially for seismic loading case. This research methodology may be also available for tailings dam monitoring purposes. Electrical Rezistivity Imaging (ERI) was performed on Cetatuia 2 dam at the Uranium Milling Plant Feldioara, in order to map areas with lateral and vertical changes in resistivity. The electrodes are connected to an automated computer operated switch box that selects the 4 electrodes to be used. A computer controls the switch box and the measuring device, and runs a program that selects the electrodes, makes the measurement, and stores the measurement. For inversion processing procedures was used Res2Din software. The measured resistivity were plotted by the pseudo section contouring method. There are five resistivity pseudosections obtained from the Cetatuia 2 tailings dam during the october 2007 measurements. Four transversal profiles trans1 to trans4 are perpendicular to the berms and the longitudinal one long1 is placed along dam's crest. The high resistivities near the berms surfaces corresponds to unsaturated fill materials

  6. Large natural geophysical events: planetary planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, J.B.; Smith, J.V.

    1984-09-01

    Geological and geophysical data suggest that during the evolution of the earth and its species, that there have been many mass extinctions due to large impacts from comets and large asteroids, and major volcanic events. Today, technology has developed to the stage where we can begin to consider protective measures for the planet. Evidence of the ecological disruption and frequency of these major events is presented. Surveillance and warning systems are most critical to develop wherein sufficient lead times for warnings exist so that appropriate interventions could be designed. The long term research undergirding these warning systems, implementation, and proofmore » testing is rich in opportunities for collaboration for peace.« less

  7. Gulf Coast Subsidence: Integration of Geodesy, Geophysical Modeling, and Interferometric Synthetic Aperture Radar Observations

    NASA Astrophysics Data System (ADS)

    Blom, R. G.; Chapman, B. D.; Deese, R.; Dokka, R. K.; Fielding, E. J.; Hawkins, B.; Hensley, S.; Ivins, E. R.; Jones, C. E.; Kent, J. D.; Liu, Z.; Lohman, R.; Zheng, Y.

    2012-12-01

    The vulnerability of the US Gulf Coast has received increased attention in the years since hurricanes Katrina and Rita. Agencies responsible for the long-term protection of lives and infrastructure require precise estimates of future subsidence and sea level rise. A quantitative, geophysically based methodology can provide such estimates by incorporating geological data, geodetic measurements, geophysical models of non-elastic mechanical behavior at depth, and geographically comprehensive deformation monitoring made possible with measurements from Interferometric Synthetic Aperture Radar (InSAR). To be effective, results must be available to user agencies in a format suitable for integration within existing decision-support processes. Work to date has included analysis of historical and continuing ground-based geodetic measurements. These reveal a surprising degree of complexity, including regions that are subsiding at rates faster than those considered for hurricane protection planning of New Orleans and other coastal communities (http://www.mvn.usace.army.mil/pdf/hps_verticalsettlement.pdf) as well as Louisiana's coastal restoration strategies (http://www.coast2050.gov/2050reports.htm) (Dokka, 2011, J. Geophys. Res., 116, B06403, doi:10.1029/2010JB008008). Traditional geodetic measurements provide precise information at single points, while InSAR observations provide geographically comprehensive measurements of surface deformation at lower vertical precision. Available InSAR data sources include X-, C- and L-band satellite, and NASA/JPL airborne UAVSAR L-band data. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. For example, the shorter wavelength C-band data decorrelates over short time periods requiring more elaborate time-series analysis techniques, with which we've had some success. Meanwhile, preliminary analysis of limited L-Band ALOS/PALSAR satellite data show promise

  8. Publications - AR 2011-E | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , Geologic Communications FY12 project descriptions, in DGGS Staff, Alaska Division of Geological & Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-E main

  9. Publications - PIR 2015-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications PIR 2015-3 main content DGGS PIR 2015-3 Publication Details Title: Overview of 2014 energy-focused studies in Susitna of Geological & Geophysical Surveys Preliminary Interpretive Report 2015-3, 34 p. http://doi.org

  10. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.

    NASA Astrophysics Data System (ADS)

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.

    2016-12-01

    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for

  11. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: Measuring Mass

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The study explains the quartz-crystal microbalance (QCM) technique, which is often used as an undergraduate laboratory experiment for measuring the mass of a system. QCM can be used as a mass sensor only when the measured mass is rigidly attached to the surface.

  12. Development of performance assessment instrument based contextual learning for measuring students laboratory skills

    NASA Astrophysics Data System (ADS)

    Susilaningsih, E.; Khotimah, K.; Nurhayati, S.

    2018-04-01

    The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.

  13. Laboratory Measured Behavioral Impulsivity Relates to Suicide Attempt History

    ERIC Educational Resources Information Center

    Dougherty, Donald M.; Mathias, Charles W.; Marsh, Dawn M.; Papageorgiou, T. Dorina; Swann, Alan C.; Moeller, F. Gerard

    2004-01-01

    The purpose of this study was to examine the relationship between laboratory behavioral measured impulsivity (using the Immediate and Delayed Memory Tasks) and suicidal attempt histories. Three groups of adults were recruited, those with either: no previous suicide attempts (Control, n = 20), only a single suicide attempt (Single, n = 20), or…

  14. Measuring the opacity of stellar interior matter in terrestrial laboratories

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2015-11-01

    How does energy propagate from the core to the surface of the Sun, where it emerges to warm the Earth? Nearly a century ago Eddington recognized that the attenuation of radiation by stellar matter controls the internal structure of stars like the sun. Opacities for high energy density (HED) matter are challenging to calculate because accurate and complete descriptions of the energy levels, populations, and plasma effects such as continuum lowering and line broadening are needed for partially ionized atoms. This requires approximations, in part because billions of bound-bound and bound-free electronic transitions can contribute to the opacity. Opacity calculations, however, have never been benchmarked against laboratory measurements at stellar interior conditions. Laboratory opacity measurements were limited in the past by the challenges of creating and diagnosing sufficiently large and uniform samples at the extreme conditions found inside stars. In research conducted over more than 10 years, we developed an experimental platform on the Z facility and measured wavelength-resolved iron opacity at electron temperatures Te = 156-195 eV and densities ne = 0.7-4.0 x 1022 cm-3 - conditions very similar to the radiation/convection boundary zone within the Sun. The wavelength-dependent opacity in the 975-1775 eV photon energy range is 30-400% higher than models predict. This raises questions about how well we understand the behavior of atoms in HED plasma. These measurements may also help resolve decade-old discrepancies between solar model predictions and helioseismic observations. This talk will provide an overview of the measurements, investigations of possible errors, and ongoing experiments aimed at testing hypotheses to resolve the model-data discrepancy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  15. Geophysical abstracts 167, October-December 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  16. Geophysical abstracts 164, January-March 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. A new table of contents, alphabetically arranged, has been adapted to show more clearly the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  17. Geophysical abstracts 166, July-September 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  18. Geophysical abstracts 165, April-June 1956

    USGS Publications Warehouse

    Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,

    1956-01-01

    Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.

  19. Publications - AR 2010-D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-D main content DGGS AR 2010-D Publication Details Title: Volcanology FY11 project descriptions Authors: Nye, C.J

  20. Publications - AR 2011-D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-D main content DGGS AR 2011-D Publication Details Title: Volcanology FY12 project descriptions Authors: Nye, C.J

  1. Publications - GMC 55 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications GMC 55 main content DGGS GMC 55 Publication Details Title: Geochemical report TOC/rock-eval pyrolysis results for Louisiana ; Geophysical Surveys Geologic Materials Center Data Report 55, 18 p. http://doi.org/10.14509/19198 Publication

  2. Experimental analysis of the levees safety based on geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Rizzo, Enzo; Valeria, Giampaolo; Mario, Votta; Lapenna, Vincenzo; Moramarco, Tommaso; Aricò, Costanza; Camici, S.; Morbidelli, Renato; Sinagra, M.; Tucciarelli, T.

    2010-05-01

    Several flood events brought river levees into the focus of attention for some disasters due to their collapse. This phenomena is quite complex to investigate, because of different factors that can affect the stability of levees, among them the non uniformity of material properties, which influencing the permeability of the embankment, might induce high percolation velocity of flux thus triggering the unstability. Thus, to apply a fast and integrate investigation methods with a non-destructive characteristics should have a large interest, if they are able to furnish ready and usable information necessary to hydrogeological models. In order to achieve this goal, the University of Perugia (Department of Civil and Environmental Engineering) and the National Research Council (IRPI and IMAA research institutes) developed a collaborating project on the study of the internal structure of the river embankment by carrying out experiments in laboratory. The purpose of this study is to show the preliminary results of the experimental investigation. The laboratory embankment was built using material coming from a real levee and gathered inside a 1.5m x 1.2m plexiglas box. The box has two compartments: a water reservoir at one hand where a constant water head was reached after some time and a soil simulating the presence of levee. We perform a geoelectrical multichannel acquisition system with three parallel profiles characterized by 16 mini-electrodes connected to georesistivimeter Syscal Pro. An automatic acquisition protocol has been performed to obtain time slice electrical tomographies during the experiments. The geophysical results show the effect of the water table inside the embankment during the wetting and emptying. In order to assess the capability of the geophysical monitoring for addressing the soil parameters estimate, the resistivity results are investigated by using two analytical and one hydraulic numerical models. The analytical models represent a linear

  3. Evaluation of borehole geophysical logs at the Sharon Steel Farrell Works Superfund site, Mercer County, Pennsylvania

    USGS Publications Warehouse

    McAuley, Steven D.

    2004-01-01

    On April 14?15, 2003, geophysical logging was conducted in five open-borehole wells in and adjacent to the Sharon Steel Farrell Works Superfund Site, Mercer County, Pa. Geophysical-logging tools used included caliper, natural gamma, single-point resistance, fluid temperature, and heatpulse flowmeter. The logs were used to determine casing depth, locate subsurface fractures, identify water-bearing fractures, and identify and measure direction and rate of vertical flow within the borehole. The results of the geophysical logging were used to determine the placement of borehole screens, which allows monitoring of water levels and sampling of water-bearing zones so that the U.S. Environmental Protection Agency can conduct an investigation of contaminant movement in the fractured bedrock. Water-bearing zones were identified in three of five boreholes at depths ranging from 46 to 119 feet below land surface. Borehole MR-3310 (MW03D) showed upward vertical flow from 71 to 74 feet below land surface to a receiving zone at 63-68 feet below land surface, permitting potential movement of ground water, and possibly contaminants, from deep to shallow zones. No vertical flow was measured in the other four boreholes.

  4. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    NASA Astrophysics Data System (ADS)

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  5. Variability in baseline laboratory measurements of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    PubMed

    Ladwig, R; Vigo, A; Fedeli, L M G; Chambless, L E; Bensenor, I; Schmidt, M I; Vidigal, P G; Castilhos, C D; Duncan, B B

    2016-08-01

    Multi-center epidemiological studies must ascertain that their measurements are accurate and reliable. For laboratory measurements, reliability can be assessed through investigation of reproducibility of measurements in the same individual. In this paper, we present results from the quality control analysis of the baseline laboratory measurements from the ELSA-Brasil study. The study enrolled 15,105 civil servants at 6 research centers in 3 regions of Brazil between 2008-2010, with multiple biochemical analytes being measured at a central laboratory. Quality control was ascertained through standard laboratory evaluation of intra- and inter-assay variability and test-retest analysis in a subset of randomly chosen participants. An additional sample of urine or blood was collected from these participants, and these samples were handled in the same manner as the original ones, locally and at the central laboratory. Reliability was assessed with the intraclass correlation coefficient (ICC), estimated through a random effects model. Coefficients of variation (CV) and Bland-Altman plots were additionally used to assess measurement variability. Laboratory intra and inter-assay CVs varied from 0.86% to 7.77%. From test-retest analyses, the ICCs were high for the majority of the analytes. Notably lower ICCs were observed for serum sodium (ICC=0.50; 95%CI=0.31-0.65) and serum potassium (ICC=0.73; 95%CI=0.60-0.83), due to the small biological range of these analytes. The CVs ranged from 1 to 14%. The Bland-Altman plots confirmed these results. The quality control analyses showed that the collection, processing and measurement protocols utilized in the ELSA-Brasil produced reliable biochemical measurements.

  6. GEP, A Geophysical and Environemental integrated payload for ExoMars

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Lognonne, P.; Dehant, V.; Giardini, D.; Friis-Christensen, E.; Calcutt, S.; GEP Team

    The goal of the GEP proposed onboard the ExoMars mission is to provide the first complete set of geophysical and environmental data of Mars. A full mass of 20 kg is envisaged, enabling a payload of about 5 kg serviced by common integrated subsystems. GEP will first monitor the present Martian climate and meteorology by providing a unique monitoring on potential hazards for future human exploration missions (radiations, atmospheric electricity, dust) and on atmospheric parameters (wind, pressure, temperature, humidity). Such a long term monitoring has never been performed since the Viking landers. GEP will then provide, for the first time, a complete geophysical monitoring of Mars. It will search for remote and regional seismic activity, will measure the heat flux of the planets, will monitor the rotation of Mars and will study the magnetic field at the surface and finally will constrain the subsurface in the vicinity of the ExoMars landing site and the deep interior. By providing these new geophysical data and associated constraints on the interior and on the actual geologic activity of the surface, GEP will provide a major step in our understanding of the geological evolution of the planet and the habitability conditions during the first billion years, enabling a full understanding of the surface and mineralogical observations performed by the Pasteur payload onboard the ExoMars rover and by the payload onboard the MSL NASA 2009 mission.

  7. Marine Geology and Geophysics Field Course Offered by The University of Texas Institute for Geophysics

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Davis, M. B.; Allison, M. A.; Gulick, S. P.; Goff, J. A.; Saustrup, S.

    2012-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year six, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students participate in an initial period of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas and Galveston, Texas, and Grand Isle, Louisiana, have provided ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf through application of geophysical techniques. In the field, students rotate between two research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, and is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibrocoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for

  8. Geophysical assessment of karst activity

    DOT National Transportation Integrated Search

    2008-02-01

    MST proposes to acquire electrical resistivity data within a pipeline/roadway ROW. These geophysical data will be processed, analyzed and interpreted with the objective of locating and mapping any subsurface voids that might compromise the integrity ...

  9. Publications - RDF 2015-8 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    from the Tonsina area, Valdez Quadrangle, Alaska: Alaska Division of Geological & Geophysical Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical

  10. HVDC Ground Electrodes - a Source of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pereira, S. Y.

    2015-12-01

    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  11. Investigation and Analysis of Hemoglobin A1c Measurement Systems’ Performance for 135 Laboratories in China

    PubMed Central

    Zhao, Hai-Jian; Zhang, Tian-Jiao; Zeng, Jie; Hu, Cui-Hua; Ma, Rong; Zhang, Chuan-Bao

    2017-01-01

    Background: Hemoglobin A1c (HbA1c) measurement is of great value for the diagnosis and monitoring of diabetes. Many manufacturers have developed various experiments to determine the HbA1c concentration. However, the longitudinal use of these tests requires strict quality management. This study aimed to analyze the quality of HbA1c measurement systems in China using six sigma techniques to help improve their performances. Methods: A total of 135 laboratories were involved in this investigation in 2015. Bias values and coefficients of variation were collected from an HbA1c trueness verification external quality assessment program and an internal quality control program organized by the National Center of Clinical Laboratories in China. The sigma (σ) values and the quality goal index (QGI) were used to evaluate the performances of different groups, which were divided according to principles and instruments. Results: The majority of participants (88, 65.2%) were scored as “improvement needed (σ < 3)”, suggesting that the laboratories needed to improve their measurement performance. Only 8.2% (11/135) of the laboratories were scored as “world class (σ ≥ 6)”. Among all the 88 laboratories whose σ values were below 3, 52 (59.1%) and 23 (26.1%) laboratories needed to improve measurement precision (QGI <8.0) and trueness (QGI >1.2), respectively; the remaining laboratories (13, 14.8%) needed to improve both measurement precision and trueness. In addition, 16.1% (5/31) and 15.0% (3/20) of the laboratories in “TOSOH” and “ARKRAY” groups, respectively, were scored as “world class”, whereas none of the laboratories in “BIO-RAD” group were scored as “world class”. Conclusions: This study indicated that, although participating laboratories were laboratories with better performance in China, the performances were still unsatisfactory. Actions should be taken to improve HbA1c measurement performance before we can include HbA1c assays in diabetes

  12. Geophysical survey of two rural sites in Mallorca (Balearic Islands, Spain): Unveiling Roman villae

    NASA Astrophysics Data System (ADS)

    Mas Florit, Catalina; Cau Ontiveros, Miguel Ángel; Goossens, Lise; Meyer, Cornelius; Sala, Roger; Ortiz, Helena

    2018-03-01

    Two rural sites on the island of Mallorca (Balearic Islands, Spain) have been investigated with geophysical methods. A previous archaeological field survey provided surface ceramics that allowed for a first classification of the sites as possible Roman rural settlements, possibly villae. The objective of the investigation was to work towards the identification of architectural remains to better understand the true nature of the sites. Using the 7-probe fluxgate gradiometer array LEA MAX, magnetic measurements were executed on a large area on each site. GPR measurements were subsequently carried out to examine selected areas of interest in detail by means of the IDS GPR system based on the Fast-Wave module. The investigated areas demonstrated excellent surface conditions with a negligible number of sources of disturbance, permitting a detailed interpretation of the geophysical data. The results helped to reveal the presence of architectural remains beneath the soil at both sites.

  13. The University of Texas Institute for Geophysics' Marine Geology and Geophysics Field Course: A Hand-On Education Approach to Applied Geophysics

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez, R.; Duncan, D.; Saustrup, S.

    2016-12-01

    The University of Texas Institute for Geophysics, Jackson School of Geosciences, offers a 3-week marine geology and geophysics field course. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, and sediment sampling and analysis. Students first participate in 3 days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work at locations that provide an opportunity to investigate coastal and continental shelf processes. Teams of students rotate between UTIG's 26' R/V Scott Petty and NOAA's 82' R/V Manta. They assist with survey design, instrumentation set up, and learn about acquisition, quality control, and safe instrument deployment. Teams also process data and analyze samples in onshore field labs. During the final week teams integrate, interpret, and visualize data in a final project using industry-standard software. The course concludes with team presentations on their interpretations with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and high instructor/student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course (to our knowledge) remains the only one of its kind, satisfies field experience requirements for some degree programs, and provides an alternative to land-based field courses. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.

  14. Mobile geophysics for searching and exploration of Domanic hydrocarbon deposits

    NASA Astrophysics Data System (ADS)

    Borovsky, M. Ya; Uspensky, B. V.; Valeeva, S. E.; Borisov, A. S.

    2018-05-01

    There are noted features of shale hydrocarbons occurrence. It is shown the role of geophysical prospecting in the geological prospecting process for non-traditional sources of hydrocarbon. There are considered the possibilities of non-seismic methods for forecasting, prospecting, exploration and preparation of Domanikovian hydrocarbons accumulations for exploration. It is emphasized the need for geophysical studies of tectonic disturbances. Modern aerogeophysical instrumentation and methodological support allows to combine high-precision magneto-prospecting with gravimetric and gamma spectrometry. This combination of geophysical methods contributes to the diagnosis of active and latent faults.

  15. Analysis of borehole geophysical information across a uranium deposit in the Jackson Group, Karnes County, Texas

    USGS Publications Warehouse

    Daniels, Jeffrey J.; Scott, James Henry; Smith, Bruce D.

    1979-01-01

    Borehole geophysical studies across a uranium deposit in the Jackson Group, South Texas, show the three geochemical environments often associated with uranium roll-type deposits: an altered (oxidized) zone, an ore zone, and an unaltered (reduced) zone. Mineralogic analysis of the total sulfides contained in the drill core shows only slight changes in the total sulfide content among the three geochemical regimes. However, induced polarization measurements on the core samples indicate that samples obtained from the reduced side of the ore zone are more electrically polarizable than those from the oxidized side of the ore zone, and therefore probably contain more pyrite. Analysis of the clay-size fraction in core samples indicates that montmorillonite is the dominant clay mineral. High resistivity values within the ore zone indicate the presence of calcite cement concentrations that are higher than those seen outside of the ore zone. Between-hole resistivity and induced polarization measurements show the presence of an extensive zone of calcite cement within the ore zone, and electrical polarizable material (such as pyrite) within and on the reduced side of the ore zone. A quantitative analysis of the between-hole resistivity data, using a layered-earth model, and a qualitative analysis of the between-hole induced polarization measurements showed that mineralogic variations among the three geochemical environments were more pronounced than were indicated by the geophysical and geologic well logs. Uranium exploration in the South Texas Coastal Plain area has focused chiefly in three geologic units: the Oakville Sandstone, the Catahoula Tuff, and the Jackson Group. The Oakville Sandstone and the Catahoula Tuff are of Miocene age, and the Jackson Group is of Eocene age (Eargle and others, 1971). Most of the uranium mineralization in these formations is low grade (often less than 0.02 percent U3O8) and occurs in shallow deposits that are found by concentrated exploratory

  16. Publications - NL 2002-1 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical 2002 Publisher: Alaska Division of Geological & Geophysical Surveys Ordering Info: Download below Reference DGGS Staff, and Werdon, M.B., 2002, Alaska GeoSurvey News - Geologic Investigations in the Salcha

  17. Geophysical investigation of subrosion processes - an integrated approach

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Hupfer, Sarah; Kobe, Martin; Schneider-Löbens, Christiane; Wadas, Sonja; Krawczyk, Charlotte

    2016-04-01

    suitable for high-resolution imaging of near-surface subrosion structures. The analysis revealed a heterogeneous underground with fractures, faults and depression-structures and variations of traveltime, absorption and scattering of seismic waves. Electric and electromagnetic methods have been used to investigate the geological structure of a karst system (e.g. banking and dipping of limestone) based on the different bulk resistivities of the various geological units and reflections of electromagnetic waves at interfaces. The borehole georadar has successfully been used to detect a cavity and areas of disruption. First results of laboratory SIP measurements on different carbonates show clearly polarization effects and a strong relationship between real and imaginary part of electrical conductivity. All samples of Edwards Brown carbonates show a significant phase peak and the same chemism. Therefore, they are ideal for a more systematic study to derive robust empirical relations between IP and petrophysical parameters. Numerical modelling is applied to simulate the collapse mechanism and rock failure to specify the conditions in which sinkholes form. Important parameters for failure are thickness of overburden, lateral dimension and shape of the cavity, existing fracture network and layer boundaries, which partly can be provided by the other methods. This diversity of methods allows a characterisation of karst systems and subrosion structures based on various complementary properties and on many scales from pore size to the big picture of the karst system.

  18. Precise turnaround time measurement of laboratory processes using radiofrequency identification technology.

    PubMed

    Mayer, Horst; Brümmer, Jens; Brinkmann, Thomas

    2011-01-01

    To implement Lean Six Sigma in our central laboratory we conducted a project to measure single pre-analytical steps influencing turnaround time (TAT) of emergency department (ED) serum samples. The traditional approach of extracting data from the Laboratory Information System (LIS) for a retrospective calculation of a mean TAT is not suitable. Therefore, we used radiofrequency identification (RFID) chips for real time tracking of individual samples at any pre-analytical step. 1,200 serum tubes were labelled with RFID chips and were provided to the emergency department. 3 RFID receivers were installed in the laboratory: at the outlet of the pneumatic tube system, at the centrifuge, and in the analyser area. In addition, time stamps of sample entry at the automated sample distributor and communication of results from the analyser were collected from LIS. 1,023 labelled serum tubes arrived at our laboratory. 899 RFID tags were used for TAT calculation. The following transfer times were determined (median 95th percentile in min:sec): pneumatic tube system --> centrifuge (01:25/04:48), centrifuge --> sample distributor (14:06/5:33), sample distributor --> analysis system zone (02:39/15:07), analysis system zone --> result communication (12:42/22:21). Total TAT was calculated at 33:19/57:40 min:sec. Manual processes around centrifugation were identified as a major part of TAT with 44%/60% (median/95th percentile). RFID is a robust, easy to use, and error-free technology and not susceptible to interferences in the laboratory environment. With this study design we were able to measure significant variations in a single manual sample transfer process. We showed that TAT is mainly influenced by manual steps around the centrifugation process and we concluded that centrifugation should be integrated in solutions for total laboratory automation.

  19. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    USGS Publications Warehouse

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  20. IDIMS/GEOPAK: Users manual for a geophysical data display and analysis system

    NASA Technical Reports Server (NTRS)

    Libert, J. M.

    1982-01-01

    The application of an existing image analysis system to the display and analysis of geophysical data is described, the potential for expanding the capabilities of such a system toward more advanced computer analytic and modeling functions is investigated. The major features of the IDIMS (Interactive Display and Image Manipulation System) and its applicability for image type analysis of geophysical data are described. Development of a basic geophysical data processing system to permit the image representation, coloring, interdisplay and comparison of geophysical data sets using existing IDIMS functions and to provide for the production of hard copies of processed images was described. An instruction manual and documentation for the GEOPAK subsystem was produced. A training course for personnel in the use of the IDIMS/GEOPAK was conducted. The effectiveness of the current IDIMS/GEOPAK system for geophysical data analysis was evaluated.

  1. Geophysical Evolution of Ch Asteroids and Testable Hypotheses for Future Missions

    NASA Astrophysics Data System (ADS)

    Castillo, J. C.

    2017-12-01

    The main population of asteroids related to meteorites in the collections remains to be explored in situ. Ch asteroids are the only midsized asteroids that display a signature of hydration (besides Pallas) and the spectral connection between Ch asteroids and CM chondrites suggests that the former represent potential parent bodies for the latter. This class of asteroids is particularly interesting because it hosts many objects 100-200 km in size, which are believed to belong to a primordial population of planetesimals. This presentation will explore multiple evolution pathways for Ch-asteroids leading to possible hypotheses on the geological, petrological, and geophysical properties that a disrupted parent body would present to a future mission. This work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  2. Some case studies of geophysical exploration of archaeological sites in Yugoslavia

    NASA Astrophysics Data System (ADS)

    Komatina, Snezana; Timotijevic, Zoran

    1999-03-01

    One of the youngest branches of environmental geophysics application is the preservation of national heritage. Numerous digital techniques developed for exploration directed to urban planning can also be applied to investigations of historic buildings. In identifying near-surface layers containing objects of previous civilizations, various sophisticated geophysical methods are used. In the paper, application of geophysics in quantification of possible problems necessary to be carried out in order to get an archaeological map of some locality is discussed [Komatina, S., 1996]. Sophisticated geophysical methods in the preservation of national heritage. Proc. of Int. Conf. Architecture and Urbanism at the turn of the Millenium, Beograd, pp. 39-44. Finally, several examples of archaeogeophysical exploration at Divostin, Bedem and Kalenic monastery localities (Serbia, Yugoslavia) are presented.

  3. Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications

    USGS Publications Warehouse

    Grauch, V.J.; Sawyer, David A.; Fridrich, Chris J.; Hudson, Mark R.

    1999-01-01

    Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The region has been loosely divided into six domains based on structural style and overall geophysical character. For each domain, the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work has been reviewed. Where possible, abrupt changes in geophysical fields as evidence for potential structural lithologic control on ground-water flow has been noted. Inferred lithology is used to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses from regional ground-water pathways where no drill-hole information exists.

  4. Fusion of Geophysical Images in the Study of Archaeological Sites

    NASA Astrophysics Data System (ADS)

    Karamitrou, A. A.; Petrou, M.; Tsokas, G. N.

    2011-12-01

    This paper presents results from different fusion techniques between geophysical images from different modalities in order to combine them into one image with higher information content than the two original images independently. The resultant image will be useful for the detection and mapping of buried archaeological relics. The examined archaeological area is situated in Kampana site (NE Greece) near the ancient theater of Maronia city. Archaeological excavations revealed an ancient theater, an aristocratic house and the temple of the ancient Greek God Dionysus. Numerous ceramic objects found in the broader area indicated the probability of the existence of buried urban structure. In order to accurately locate and map the latter, geophysical measurements performed with the use of the magnetic method (vertical gradient of the magnetic field) and of the electrical method (apparent resistivity). We performed a semi-stochastic pixel based registration method between the geophysical images in order to fine register them by correcting their local spatial offsets produced by the use of hand held devices. After this procedure we applied to the registered images three different fusion approaches. Image fusion is a relatively new technique that not only allows integration of different information sources, but also takes advantage of the spatial and spectral resolution as well as the orientation characteristics of each image. We have used three different fusion techniques, fusion with mean values, with wavelets by enhancing selected frequency bands and curvelets giving emphasis at specific bands and angles (according the expecting orientation of the relics). In all three cases the fused images gave significantly better results than each of the original geophysical images separately. The comparison of the results of the three different approaches showed that the fusion with the use of curvelets, giving emphasis at the features' orientation, seems to give the best fused image

  5. Hands-on Marine Geology and Geophysics Field Instruction at the University of Texas

    NASA Astrophysics Data System (ADS)

    Saustrup, S.; Gulick, S. P. S.; Goff, J. A.; Fernandez, R.; Davis, M. B.; Duncan, D.

    2015-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in its ninth year, the course provides instruction in survey design, data acquisition, processing, interpretation, and visualization. Methods covered include seismic reflection, multibeam bathymetry, sidescan sonar, and sediment sampling. The emphasis of the course is team-oriented, hands-on, field training in real-world situations. The course begins with classroom instruction covering the field area and field methods, followed by a week of at-sea field work in 4-student teams. The students then return to the classroom where they integrate, interpret, and visualize data using industry-standard software. The teams present results in a series of professional-level final presentations before academic and industry supporters. Our rotating field areas provide ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf . In the field, student teams rotate between two research vessels: the smaller vessel, the Jackson School's newly-commissioned R/V Scott Petty (26 feet LOA), is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta (82 feet LOA) is used for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibracoring. Teams also rotate through a field laboratory performing processing of geophysical data and sediment samples. This past year's course in Freeport, Texas proceeded unabated despite concurrent record-breaking rainfall and flooding, which offered students a unique opportunity to observe and image, in real time, flood-related bedform migration on a time scale of hours. The data also allowed an in-class opportunity to examine natural and anthropogenic processes recorded in the river

  6. Evidence for a critical Earth: the New Geophysics

    NASA Astrophysics Data System (ADS)

    Crampin, Stuart; Gao, Yuan

    2015-04-01

    Phenomena that are critical-systems verging on criticality with 'butterfly wings' sensitivity are common - the weather, climate change; stellar radiation; the New York Stock Exchange; population explosions; population collapses; the life cycle of fruit-flies; and many more. It must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena, is a critical-system, hence there is a New Geophysics imposing fundamentally new properties on conventional sub-critical geophysics. We shall show that, despite shear waves and shear-wave splitting (SWS) being observationally neglected, azimuthally-varying stress-aligned SWS is nearly universally observed throughout the Earth's crust and uppermost ~400km of the mantle. Caused by stress-aligned fluid-saturated microcracks (intergranular films of hydrolysed melt in the mantle), the microcracks are so closely-spaced that they verge on failure in fracturing and earthquakes. Phenomena that verge on failure in this way are critical-systems which impose a range of fundamental-new properties on conventional sub-critical geophysics including: self-similarity; monitorability; calculability; predictability; controllability; universality; and butterfly wings' sensitivity. We shall show how these phenomena have been consistently observed along millions of source-to-receiver ray paths confirming the New Geophysics. New Geophysics helps to explain many otherwise inexplicable observations including a number of geophysical conundrums such as the Gutenberg-Richter relationship which is used to describe the behaviour of conventional classic geophysics despite being massively non-linear. The great advantage of the critical Earth is that, unlike other critical-systems, the progress towards criticality can be monitored at almost any point within the deep interior of the material, by analysing observations of seismic SWS. This gives an unrivalled understanding of the detailed behaviour of a particular critical-system. This

  7. Laboratory and field measurements and evaluations of vibration at the handles of riveting hammers

    PubMed Central

    McDOWELL, THOMAS W.; WARREN, CHRISTOPHER; WELCOME, DANIEL E.; DONG, REN G.

    2015-01-01

    The use of riveting hammers can expose workers to harmful levels of hand-transmitted vibration (HTV). As a part of efforts to reduce HTV exposures through tool selection, the primary objective of this study was to evaluate the applicability of a standardized laboratory-based riveting hammer assessment protocol for screening riveting hammers. The second objective was to characterize the vibration emissions of reduced vibration riveting hammers and to make approximations of the HTV exposures of workers operating these tools in actual work tasks. Eight pneumatic riveting hammers were selected for the study. They were first assessed in a laboratory using the standardized method for measuring vibration emissions at the tool handle. The tools were then further assessed under actual working conditions during three aircraft sheet metal riveting tasks. Although the average vibration magnitudes of the riveting hammers measured in the laboratory test were considerably different from those measured in the field study, the rank orders of the tools determined via these tests were fairly consistent, especially for the lower vibration tools. This study identified four tools that consistently exhibited lower frequency-weighted and unweighted accelerations in both the laboratory and workplace evaluations. These observations suggest that the standardized riveting hammer test is acceptable for identifying tools that could be expected to exhibit lower vibrations in workplace environments. However, the large differences between the accelerations measured in the laboratory and field suggest that the standardized laboratory-based tool assessment is not suitable for estimating workplace riveting hammer HTV exposures. Based on the frequency-weighted accelerations measured at the tool handles during the three work tasks, the sheet metal mechanics assigned to these tasks at the studied workplace are unlikely to exceed the daily vibration exposure action value (2.5 m s−2) using any of the

  8. Laboratory measurements and astronomical search for cyanomethanimine

    NASA Astrophysics Data System (ADS)

    Melosso, M.; Melli, A.; Puzzarini, C.; Codella, C.; Spada, L.; Dore, L.; Degli Esposti, C.; Lefloch, B.; Bachiller, R.; Ceccarelli, C.; Cernicharo, J.; Barone, V.

    2018-02-01

    Context. C-cyanomethanimine (HNCHCN), existing in the two Z and E isomeric forms, is a key prebiotic molecule, but, so far, only the E isomer has been detected toward the massive star-forming region Sagittarius B2(N) using transitions in the radio wavelength domain. Aims: With the aim of detecting HNCHCN in Sun-like-star forming regions, the laboratory investigation of its rotational spectrum has been extended to the millimeter-/submillimeter-wave (mm-/submm-) spectral window in which several unbiased spectral surveys have been already carried out. Methods: High-resolution laboratory measurements of the rotational spectrum of C-cyanomethanimine were carried out in the 100-420 GHz range using a frequency-modulation absorption spectrometer. We then searched for the C-cyanomethanimine spectral features in the mm-wave range using the high-sensitivity and unbiased spectral surveys obtained with the IRAM 30-m antenna in the ASAI context, the earliest stages of star formation from starless to evolved Class I objects being sampled. Results: For both the Z and E isomers, the spectroscopic work has led to an improved and extended knowledge of the spectroscopic parameters, thus providing accurate predictions of the rotational signatures up to 700 GHz. So far, no C-cyanomethanimine emission has been detected toward the ASAI targets, and upper limits of the column density of 1011-1012 cm-2 could only be derived. Consequently, the C-cyanomethanimine abundances have to be less than a few 10-10 for starless and hot-corinos. A less stringent constraint, ≤10-9, is obtained for shocks sites. Conclusions: The combination of the upper limits of the abundances of C-cyanomethanimine together with accurate laboratory frequencies up to 700 GHz poses the basis for future higher sensitivity searches around Sun-like-star forming regions. For compact (typically less than 1″) and chemically enriched sources such as hot-corinos, the use of interferometers as NOEMA and ALMA in their extended

  9. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Medford 1 degree x 2 degrees Quadrangle, Oregon and California

    USGS Publications Warehouse

    Smith, James G.; Blakely, R.J.; Johnson, M.G.; Page, N.J.; Peterson, J.A.; Singer, D.A.; Whittington, C.L.

    1986-01-01

    The Medford 1 ? by 2 ? quadrangle in southern Oregon and northern California was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The bibliography lists selected references to the geology, geochemistry, geophysics, and mineral deposits of the Medford 1 ? by 2 ? quadrangle.

  10. Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements

    NASA Astrophysics Data System (ADS)

    May, A. A.; McMeeking, G. R.; Lee, T.; Taylor, J. W.; Craven, J. S.; Burling, I.; Sullivan, A. P.; Akagi, S.; Collett, J. L.; Flynn, M.; Coe, H.; Urbanski, S. P.; Seinfeld, J. H.; Yokelson, R. J.; Kreidenweis, S. M.

    2014-10-01

    Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California; coastal plain ecosystem in South Carolina) and from open burning of over 15 individual plant species in the laboratory. We report emission ratios and emission factors for refractory black carbon (rBC) and submicron nonrefractory aerosol and compare field and laboratory measurements to assess the representativeness of our laboratory-measured emissions. Laboratory measurements of organic aerosol (OA) emission factors for some fires were an order of magnitude higher than those derived from any of our aircraft observations; these are likely due to higher-fuel moisture contents, lower modified combustion efficiencies, and less dilution compared to field studies. Nonrefractory inorganic aerosol emissions depended more strongly on fuel type and fuel composition than on combustion conditions. Laboratory and field measurements for rBC were in good agreement when differences in modified combustion efficiency were considered; however, rBC emission factors measured both from aircraft and in the laboratory during the present study using the Single Particle Soot Photometer were generally higher than values previously reported in the literature, which have been based largely on filter measurements. Although natural variability may account for some of these differences, an increase in the BC emission factors incorporated within emission inventories may be required, pending additional field measurements for a wider variety of fires.

  11. Monitoring Global Geophysical Fluids by Space Geodesy

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  12. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  13. Measuring methylphenidate response in attention-deficit/hyperactvity disorder: how are laboratory classroom-based measures related to parent ratings?

    PubMed

    Sonuga-Barke, Edmund J S; Coghill, David; DeBacker, Marc; Swanson, James

    2009-12-01

    Methylphenidate (MPH) is an efficacious and normally well-tolerated treatment for attention-deficit/hyperactivity disorder (ADHD). Although treatment effects are usually assessed using parent-rating scales, these can be supplemented by more objective methods. Here we examine the associations between ratings and one such method, assessments made across the day in the laboratory classroom. Comparison of Methylphenidates in the Analog Classroom Setting (COMACS) was made in a large (n = 184) placebo-controlled trial comparing Equasym XL/Metadate CD, Concerta, and placebo (PLA) using a Laboratory School protocol. Therapeutic effects were measured using direct observation, scores on a simple math productivity task and parent ratings. Treatment effects were observed on all measures. Laboratory measures were correlated with each other, most strongly between Swanson, Kotkin, Agler, M-Flynn and Pelham Scale (SKAMP) inattention and Permanent Product Measure of Performance (PERMP). Parental ratings were correlated with classroom measures during the main morning period (1.5-4.5 hours after dosing) and to a lesser extent in the afternoon (6.0-7.5 hours after dosing), but not, by and large, immediately after dosing or in the evening. The morning correlations seemed stronger for female than for male participants. The results suggest that parental ratings and direct observations tap different aspects of MPH response and that both may be required for comprehensive assessment.

  14. International Council for Standardization in Haematology (ICSH) Recommendations for Laboratory Measurement of Direct Oral Anticoagulants.

    PubMed

    Gosselin, Robert C; Adcock, Dorothy M; Bates, Shannon M; Douxfils, Jonathan; Favaloro, Emmanuel J; Gouin-Thibault, Isabelle; Guillermo, Cecilia; Kawai, Yohko; Lindhoff-Last, Edelgard; Kitchen, Steve

    2018-03-01

    This guidance document was prepared on behalf of the International Council for Standardization in Haematology (ICSH) for providing haemostasis-related guidance documents for clinical laboratories. This inaugural coagulation ICSH document was developed by an ad hoc committee, comprised of international clinical and laboratory direct acting oral anticoagulant (DOAC) experts. The committee developed consensus recommendations for laboratory measurement of DOACs (dabigatran, rivaroxaban, apixaban and edoxaban), which would be germane for laboratories assessing DOAC anticoagulation. This guidance document addresses all phases of laboratory DOAC measurements, including pre-analytical (e.g. preferred time sample collection, preferred sample type, sample stability), analytical (gold standard method, screening and quantifying methods) and post analytical (e.g. reporting units, quality assurance). The committee addressed the use and limitations of screening tests such as prothrombin time, activated partial thromboplastin time as well as viscoelastic measurements of clotting blood and point of care methods. Additionally, the committee provided recommendations for the proper validation or verification of performance of laboratory assays prior to implementation for clinical use, and external quality assurance to provide continuous assessment of testing and reporting method. Schattauer GmbH Stuttgart.

  15. Staff - Karri R. Sicard | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Raw Data File 2017-5, 26 p. http://doi.org/10.14509/29727 Todd, Erin, Kylander-Clark, Andrew, Wypych Geological & Geophysical Surveys Raw Data File 2017-2, 7 p. http://doi.org/10.14509/29717 Wypych, Alicja ; Geophysical Surveys Raw Data File 2016-9, 3 p. http://doi.org/10.14509/29685 Twelker, Evan, Freeman, L.K

  16. Geophysical Surveys of the Hydrologic Basin Underlying Yosemite Valley, California.

    NASA Astrophysics Data System (ADS)

    Maher, E. L.; Shaw, K. A.; Carey, C.; Dunn, M. E.; Whitman, S.; Bourdeau, J.; Eckert, E.; Louie, J. N.; Stock, G. M.

    2017-12-01

    UNR students in an Applied Geophysics course conducted geophysical investigations in Yosemite Valley during the months of March and August 2017. The goal of the study is to understand better the depth to bedrock, the geometry of the bedrock basin, and the properties of stratigraphy- below the valley floor. Gutenberg and others published the only prior geophysical investigation in 1956, to constrain the depth to bedrock. We employed gravity, resistivity, and refraction microtremor(ReMi) methods to investigate the interface between valley fill and bedrock, as well as shallow contrasts. Resistivity and ReMi arrays along three north-south transects investigated the top 50-60m of the basin fill. Gravity results constrained by shallow measurements suggest a maximum depth of 1000 m to bedrock. ReMi and resistivity techniques identified shallow contrasts in shear velocity and electrical resistivity that yielded information about the location of the unconfined water table, the thickness of the soil zone, and spatial variation in shallow sediment composition. The upper several meters of sediment commonly showed shear velocities below 200 m/s, while biomass-rich areas and sandy river banks could be below 150 m/s. Vs30 values consistently increased towards the edge of the basin. The general pattern for resistivity profiles was a zone of relatively high resistivity, >100 ohm-m, in the top 4 meters, followed by one or more layers with decreased resistivity. According to gravity measurements, assuming either -0.5 g/cc or -0.7 g/cc density contrast between bedrock and basin sediments, a maximum depth to bedrock is found south of El Capitan at respectively, 1145 ± 215 m or 818 ± 150 m. Longitudinal basin geometry coincides with the basin depth geometry discussed by Gutenberg in 1956. Their results describe a "double camel" shape where the deepest points are near El Capitan and the Ahwahnee Hotel and is shallowest near Yosemite Falls, in a wider part of the valley. An August Deep

  17. Well casing-based geophysical sensor apparatus, system and method

    DOEpatents

    Daily, William D.

    2010-03-09

    A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

  18. Solar wind monitor—a school geophysics project

    NASA Astrophysics Data System (ADS)

    Robinson, Ian

    2018-05-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth’s field in real-time uploading data and graphs to a website every few minutes. Modular design encourages construction and testing by teams of students as well as expansion and refinement. The system has been tested running unattended for months at a time. Both the hardware design and software is published as open-source [1, 10].

  19. Common interests bind AGU and geophysical groups around the globe

    NASA Astrophysics Data System (ADS)

    McEntee, Christine

    2012-02-01

    In continuation of our work to strengthen alliances with key organizations in the Earth and space science community, AGU president Michael McPhaden, president-elect Carol Finn, and I held a series of meetings with leaders from other science societies during the 2011 Fall Meeting. Over the course of 2 days we met with leaders from the Geophysical Society of America, European Geosciences Union, Japan Geosciences Union, Ethiopian Geophysical Union, Asia Oceania Geosciences Society, Chinese Geophysical Society, and Asociación Latinoamericana de Geofísica Espacial. This gave us a valued opportunity to discuss the common interests and challenges we all face and to learn from each other's experience. The meetings allowed AGU to strengthen existing cooperative agreements and reach new levels of understanding between us and other societies. Additionally, we met with representatives from the Korean Ocean Research and Development Institute to discuss their intention to establish a geophysical union modeled after AGU.

  20. Comparison of hematologic measurements between local and central laboratories: data from the BABY HUG trial.

    PubMed

    Kalpatthi, Ram; Thompson, Bruce; Lu, Ming; Wang, Winfred C; Patel, Niren; Kutlar, Abdullah; Howard, Thomas; Luchtman-Jones, Lori; Miller, Scott T

    2013-02-01

    To investigate the concordance of blood count indices measured locally and at a central laboratory. In a multi-center clinical trial of hydroxyurea therapy in infants with sickle cell anemia (BABY HUG), the concordance between blood count indices measured locally and at a central laboratory was investigated. Local laboratory measurements of neutrophil and monocyte counts were significantly higher (44% and 37%, respectively) compared to the central measurements (p<0.0001), and mean corpuscular volume (MCV) was higher centrally. Overnight shipping with processing delay causes spurious reductions in absolute neutrophil count (ANC) and absolute monocyte count (AMC) that may result in incorrect monitoring decisions in multicenter clinical trials. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Geophysics Education and Research in India and Role of International Collaboration

    NASA Astrophysics Data System (ADS)

    Rajaram, M.

    2007-12-01

    Some possible avenues for strengthening Geophysics education in India will be examined and possible ways of making the system more dynamic and responsive to the needs will be suggested. Out of the few hundred Universities in India under the University Grants Commission, only around a dozen offer post-graduate degree courses in Geophysics. Over the last decade the demand for Geophysicists has increased tremendously, with the country having opened its gates to foreign companies to invest in India; as a consequence, Geophysics is soon becoming the favored subject for the best students undertaking Post Graduate Courses in Science. Geophysics as a subject is independent of national and international borders and it would prove very useful for students to have international exposure. We have in India, the example of the internationally renowned, Indian Institute of Technology. These Institutes were started with foreign collaboration that included Professors from the collaborating countries taking up selected under-graduate courses. For Geophysics courses it would prove very helpful if students could spend several months at a participating foreign Institution and undertake a project there, as a part of the Geophysics curriculum. India provides the unique settings of having rock types from the Archean to the Present and should attract Geophysicists globally. On an exchange basis foreign students could visit India for their project work. National Science Departments / Universities / Scientific Societies could help provide financial assistance to facilitate this exchange; existing bilateral cooperation could also be used to finance geophysics education. Also oil companies could sponsor geophysics students. Further, due to the high costs of Geophysics Journal, very few Indian Universities are able to subscribe to them. On the Research Arena, there are several areas that by their very nature invoke global interest; for example Research on Antarctica. Currently several countries

  2. Preliminary report on geophysical data in Yavapai County, Arizona

    USGS Publications Warehouse

    Langenheim, V.E.; Hoffmann, J.P.; Blasch, K.W.; DeWitt, Ed; Wirt, Laurie

    2002-01-01

    Recently acquired geophysical data provide information on the geologic framework and its effect of groundwater flow and on stream/aquifer interaction in Yavapai County, Arizona. High-resolution aeromagnetic data reflect diverse rock types at and below the topographic surface and have permitted a preliminary interpretation of faults and underlying rock types (in particular, volcanic) that will provide new insights on the geologic framework, critical input to future hydrologic investigations. Aeromagnetic data map the western end of the Bear Wallow Canyon fault into the sedimentary fill of Verde Valley. Regional gravity data indicate potentially significant accumulations of low-density basin fill in Big Chino, Verde, and Williamson Valleys. Electrical and seismic data were also collected and help evaluate the approximate depth and extent of recent alluvium overlying Tertiary and Paleozoic sediments. These data will be used to ascertain the potential contribution of shallow ground-water subflow that cannot be measured by gages or flow meters and whether stream flow in losing reaches is moving as subflow or is being lost to the subsurface. The geophysical data will help produce a more robust groundwater flow model of the region.

  3. Physicist + Geologist points to Geophysics Course

    ERIC Educational Resources Information Center

    Julian, Glenn M.; Stueber, Alan M.

    1974-01-01

    A two-quarter introductory course in geophysics at the advanced undergraduate/beginning graduate level is described. An outline of course content is provided, and mechanics of instruction are discussed. (DT)

  4. SIGKit: a New Data-based Software for Learning Introductory Geophysics

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Kruse, S.; George, O.; Esmaeili, S.; Papadimitrios, K. S.; Bank, C. G.; Cadmus, A.; Kenneally, N.; Patton, K.; Brusher, J.

    2016-12-01

    Students of diverse academic backgrounds take introductory geophysics courses to learn the theory of a variety of measurement and analysis methods with the expectation to be able to apply their basic knowledge to real data. Ideally, such data is collected in field courses and also used in lecture-based courses because they provide a critical context for better learning and understanding of geophysical methods. Each method requires a separate software package for the data processing steps, and the complexity and variety of professional software makes the path through data processing to data interpretation a strenuous learning process for students and a challenging teaching task for instructors. SIGKit (Student Investigation of Geophysics Toolkit) being developed as a collaboration between the University of South Florida, the University of Toronto, and MathWorks intends to address these shortcomings by showing the most essential processing steps and allowing students to visualize the underlying physics of the various methods. It is based on MATLAB software and offered as an easy-to-use graphical user interface and packaged so it can run as an executable in the classroom and the field even on computers without MATLAB licenses. An evaluation of the software based on student feedback from focus-group interviews and think-aloud observations helps drive its development and refinement. The toolkit provides a logical gateway into the more sophisticated and costly software students will encounter later in their training and careers by combining essential visualization, modeling, processing, and analysis steps for seismic, GPR, magnetics, gravity, resistivity, and electromagnetic data.

  5. Integration of Geophysical Methods By A Generalised Probability Tomography Approach

    NASA Astrophysics Data System (ADS)

    Mauriello, P.; Patella, D.

    In modern science, the propensity interpretative approach stands on the assumption that any physical system consists of two kinds of reality: actual and potential. Also geophysical data systems have potentialities that extend far beyond the few actual models normally attributed to them. Indeed, any geophysical data set is in itself quite inherently ambiguous. Classical deterministic inversion, including tomography, usu- ally forces a measured data set to collapse into a few rather subjective models based on some available a priori information. Classical interpretation is thus an intrinsically limited approach requiring a very deep logical extension. We think that a way to high- light a system full potentiality is to introduce probability as the leading paradigm in dealing with field data systems. Probability tomography has been recently introduced as a completely new approach to data interpretation. Probability tomography has been originally formulated for the self-potential method. It has been then extended to geo- electric, natural source electromagnetic induction, gravity and magnetic methods. Fol- lowing the same rationale, in this paper we generalize the probability tomography the- ory to a generic geophysical anomaly vector field, including the treatment for scalar fields as a particular case. This generalization makes then possible to address for the first time the problem of the integration of different methods by a conjoint probabil- ity tomography imaging procedure. The aim is to infer the existence of an unknown buried object through the analysis of an ad hoc occurrence probability function, blend- ing the physical messages brought forth by a set of singularly observed anomalies.

  6. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  7. Correction of stream quality trends for the effects of laboratory measurement bias

    USGS Publications Warehouse

    Alexander, Richard B.; Smith, Richard A.; Schwarz, Gregory E.

    1993-01-01

    We present a statistical model relating measurements of water quality to associated errors in laboratory methods. Estimation of the model allows us to correct trends in water quality for long-term and short-term variations in laboratory measurement errors. An illustration of the bias correction method for a large national set of stream water quality and quality assurance data shows that reductions in the bias of estimates of water quality trend slopes are achieved at the expense of increases in the variance of these estimates. Slight improvements occur in the precision of estimates of trend in bias by using correlative information on bias and water quality to estimate random variations in measurement bias. The results of this investigation stress the need for reliable, long-term quality assurance data and efficient statistical methods to assess the effects of measurement errors on the detection of water quality trends.

  8. A wideband magnetoresistive sensor for monitoring dynamic fault slip in laboratory fault friction experiments

    USGS Publications Warehouse

    Kilgore, Brian D.

    2017-01-01

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  9. Comparing geophysical measurements to theoretical estimates for soil mixtures at low pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildenschild, D; Berge, P A; Berryman, K G

    1999-01-15

    The authors obtained good estimates of measured velocities of sand-peat samples at low pressures by using a theoretical method, the self-consistent theory of Berryman (1980), using sand and porous peat to represent the microstructure of the mixture. They were unable to obtain useful estimates with several other theoretical approaches, because the properties of the quartz, air and peat components of the samples vary over several orders of magnitude. Methods that are useful for consolidated rock cannot be applied directly to unconsolidated materials. Instead, careful consideration of microstructure is necessary to adapt the methods successfully. Future work includes comparison of themore » measured velocity values to additional theoretical estimates, investigation of Vp/Vs ratios and wave amplitudes, as well as modeling of dry and saturated sand-clay mixtures (e.g., Bonner et al., 1997, 1998). The results suggest that field data can be interpreted by comparing laboratory measurements of soil velocities to theoretical estimates of velocities in order to establish a systematic method for predicting velocities for a full range of sand-organic material mixtures at various pressures. Once the theoretical relationship is obtained, it can be used to estimate the soil composition at various depths from field measurements of seismic velocities. Additional refining of the method for relating velocities to soil characteristics is useful for development inversion algorithms.« less

  10. Laboratory meter-scale seismic monitoring of varying water levels in granular media

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Bodet, L.; Bergamo, P.; Guérin, R.; Martin, R.; Mourgues, R.; Tournat, V.

    2016-12-01

    Laboratory physical modelling and non-contacting ultrasonic techniques are frequently proposed to tackle theoretical and methodological issues related to geophysical prospecting. Following recent developments illustrating the ability of seismic methods to image spatial and/or temporal variations of water content in the vadose zone, we developed laboratory experiments aimed at testing the sensitivity of seismic measurements (i.e., pressure-wave travel times and surface-wave phase velocities) to water saturation variations. Ultrasonic techniques were used to simulate typical seismic acquisitions on small-scale controlled granular media presenting different water levels. Travel times and phase velocity measurements obtained at the dry state were validated with both theoretical models and numerical simulations and serve as reference datasets. The increasing water level clearly affects the recorded wave field in both its phase and amplitude, but the collected data cannot yet be inverted in the absence of a comprehensive theoretical model for such partially saturated and unconsolidated granular media. The differences in travel time and phase velocity observed between the dry and wet models show patterns that are interestingly coincident with the observed water level and depth of the capillary fringe, thus offering attractive perspectives for studying soil water content variations in the field.

  11. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Walker Lake 1 degree x 2 degrees Quadrangle, California and Nevada

    USGS Publications Warehouse

    Stewart, John Harris; Chaffee, M.A.; Dohrenwend, J.C.; John, D.A.; Kistler, R.W.; Kleinhampl, F.J.; Menzie, W.D.; Plouff, Donald; Rowan, L.C.; Silberling, Norman J.

    1984-01-01

    The Walker Lake 1? by 2? quadrangle in eastern California and western Nevada was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The selected bibliography lists selected references to the geology, geochemistry, geophysics, and mineral deposits of the Walker Lake 1? by 2? quadrangle.

  12. Geophysical monitoring of a field-scale biostimulation pilot project

    USGS Publications Warehouse

    Lane, J.W.; Day-Lewis, F. D.; Casey, C.C.

    2006-01-01

    The USGS conducted a geophysical investigation in support of a U.S. Naval Facilities Engineering Command, Southern Division field-scale biostimulation pilot project at Anoka County Riverfront Park (ACP), downgradient of the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota. The goal of the pilot project is to evaluate subsurface injection of vegetable oil emulsion (VOE) to stimulate microbial degradation of chlorinated hydrocarbons. To monitor the emplacement and movement of the VOE and changes in water chemistry resulting from VOE dissolution and/or enhanced biological activity, the USGS acquired cross-hole radar zero-offset profiles, traveltime tomograms, and borehole geophysical logs during five site visits over 1.5 years. Analysis of pre- and postinjection data sets using petrophysical models developed to estimate VOE saturation and changes in total dissolved solids provides insights into the spatial and temporal distribution of VOE and ground water with altered chemistry. Radar slowness-difference tomograms and zero-offset slowness profiles indicate that the VOE remained close to the injection wells, whereas radar attenuation profiles and electromagnetic induction logs indicate that bulk electrical conductivity increased downgradient of the injection zone, diagnostic of changing water chemistry. Geophysical logs indicate that some screened intervals were located above or below zones of elevated dissolved solids; hence, the geophysical data provide a broader context for interpretation of water samples and evaluation of the biostimulation effort. Our results include (1) demonstration of field and data analysis methods for geophysical monitoring of VOE biostimulation and (2) site-specific insights into the spatial and temporal distributions of VOE at the ACP. ?? 2006 National Ground Water Association.

  13. Geophysical monitoring of a field-scale biostimulation pilot project.

    PubMed

    Lane, John W; Day-Lewis, Frederick D; Casey, Clifton C

    2006-01-01

    The USGS conducted a geophysical investigation in support of a U.S. Naval Facilities Engineering Command, Southern Division field-scale biostimulation pilot project at Anoka County Riverfront Park (ACP), down-gradient of the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota. The goal of the pilot project is to evaluate subsurface injection of vegetable oil emulsion (VOE) to stimulate microbial degradation of chlorinated hydrocarbons. To monitor the emplacement and movement of the VOE and changes in water chemistry resulting from VOE dissolution and/or enhanced biological activity, the USGS acquired cross-hole radar zero-offset profiles, travel-time tomograms, and borehole geophysical logs during five site visits over 1.5 years. Analysis of pre- and postinjection data sets using petrophysical models developed to estimate VOE saturation and changes in total dissolved solids provides insights into the spatial and temporal distribution of VOE and ground water with altered chemistry. Radar slowness-difference tomograms and zero-offset slowness profiles indicate that the VOE remained close to the injection wells, whereas radar attenuation profiles and electromagnetic induction logs indicate that bulk electrical conductivity increased down-gradient of the injection zone, diagnostic of changing water chemistry. Geophysical logs indicate that some screened intervals were located above or below zones of elevated dissolved solids; hence, the geophysical data provide a broader context for interpretation of water samples and evaluation of the biostimulation effort. Our results include (1) demonstration of field and data analysis methods for geophysical monitoring of VOE biostimulation and (2) site-specific insights into the spatial and temporal distributions of VOE at the ACP.

  14. The oceanic islands - Azores. [geological, geophysical and geochemical features

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.; Watkins, N. D.; Macfarlane, D. J.

    1974-01-01

    A presentation is made of the known geological, geophysical, and geochemical data on the Azores. The regional setting of the islands is described; under the geological heading, surface geology and petrochemistry are discussed; and paleomagnetism, marine magnetic surveys, gravity, seismology, and heat flow are treated in the geophysics category. A model for the origin of the Azores is constructed on the basis of these observations.

  15. The use of baseline measurements and geophysical models for the estimation of crustal deformations and the terrestrial reference system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bock, Y.

    1982-01-01

    Four possible estimators are investigated for the monitoring of crustal deformations from a combination of repeated baseline length measurements and adopted geophysical models, particularly an absolute motion plate model. The first estimator is an extension of the familiar free adjustment. The next two are Bayesian type estimators, one weak and one strong. Finally, a weighted constraint estimator is presented. The properties of these four estimators are outlined and their physical interpretations discussed. A series of simulations are performed to test the four estimators and to determine whether or not to incorporate a plate model for the monitoring of deformations. The application of these estimations to the maintenance of a new conventional terrestrial reference system is discussed.

  16. An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.

    2006-01-01

    This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning aerial extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.

  17. An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.

    2007-01-01

    This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning areal extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.

  18. A multi-scale permafrost investigation along the Alaska Highway Corridor based on airborne electromagnetic and auxiliary geophysical data

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Kass, M. A.; Bloss, B.; Pastick, N.; Panda, S. K.; Smith, B. D.; Abraham, J. D.; Burns, L. E.

    2012-12-01

    More than 8000 square kilometers of airborne electromagnetic (AEM) data were acquired along the Alaska Highway Corridor in 2005-2006 by the Alaska Department of Natural Resources Division of Geological and Geophysical Surveys. Because this large AEM dataset covers diverse geologic and permafrost settings, it is an excellent testbed for studying the electrical geophysical response from a wide range of subsurface conditions. These data have been used in several recent investigations of geology, permafrost, and infrastructure along the highway corridor. In this study, we build on existing interpretations of permafrost features by re-inverting the AEM data using traditional least squares inversion techniques as well as recently developed stochastic methods aimed at quantifying uncertainty in geophysical data. Ground-based geophysical measurements, including time-domain electromagnetic soundings, surface nuclear magnetic resonance soundings, and shallow frequency-domain electromagnetic profiles, have also been acquired to help validate and extend the AEM interpretations. Here, we focus on the integration of different types of data to yield an improved characterization of permafrost, including: methods to discriminate between geologic and thermal controls on resistivity; identifying relationships between shallow resistivity and active layer thickness by incorporating auxiliary remote sensing data and ground-based measurements; quantifying apparent slope-aspect-resistivity relationships, where south-facing slopes appear less resistive than north-facing slopes within similar geologic settings; and investigating an observed decrease in resistivity beneath several areas associated with recent fires.

  19. Integrated Geophysical Survey on Deák Ferenc Sluice in Hungary

    NASA Astrophysics Data System (ADS)

    Kanli, A. I.

    2015-12-01

    ALI ISMET KANLI1*, G. TALLER2, Z. PRONAY2, P. TILDY2, P. NAGY3, E. TOROS2 *1Istanbul University, Turkey, kanli@istanbul.edu.tr, 2Geological and Geophysical Institute of Hungary,3MinGeo, Hungary The Ferenc Channel is one of the main irrigation and ship channel in south of Hungary, existing from 1801. The water level is controlled by the Deák Ferenc Sluice in the channel which was constructed in 1875. At that time, the sluice was unique in Europe with its two channels and brick-walls. The west channel was used for controlling the amount of water and the east channel was used for shipping. In the study, before starting to the restoration and reinforcement plannings at the sluice, non-destructive geophysical investigations were executed. In the first stage, ultra-high frequency seismic (80 kHz) and acoustic (5 kHz) investigations of the floor slab were carried out from a boat on the water level. Due to the water level was approximately 2 m, we could use the advantage of the water ensuring very good coupling with seismic sensors for high frequency seismic and acoustic measurements. In the second stage, resistivity measurements were carried out in the eastern part of the sluice which was used as the shipping channel. Three profiles were measured to map the resistivity distribution of the slab. In the third stage, for better understanding the stability conditions of the walls and easy to compare with the data of GPR measurements, the wall of the sluice were investigated by a simple seismic direct wave method using seismic P-waves for mapping seismic velocities. The last stage of the survey was the GPR measurements that were carried out both on the walls and on the slab of the sluice. During the investigation, the channels were empty and without water. The integrated survey and the interpretation of the results showed us that there were some faults, cracks and voids in the slab existed in the whole grossness of the slab and the brick walls were builded from inhomogenous

  20. Strainmeters and tiltmeters in geophysics

    NASA Technical Reports Server (NTRS)

    Goulty, N. R.

    1976-01-01

    Several types of sensitive strainmeters and tiltmeters have been developed, and it is now becoming clear which geophysical applications are most suitable for these instruments. In general, strainmeters and tiltmeters are used for observing ground deformation at periods of minutes to days. Small-scale lateral inhomogeneities at the instrument sites distort signals by a few percent, although the effects of large structures can be calculated. In earth tide work these lateral inhomogeneities and unknown ocean loading signals prevent accurate values of the regional tide from being obtained. This limits tidal investigations to looking for temporal variations, possibly associated with pre-earthquake dilatancy, and spatial variations caused by gross elasticity contrasts in the local geological structure. Strainmeters and tiltmeters are well suited for observing long-period seismic waves, seismic slip events on faults and volcano tumescence, where small site-induced distortions in the measured signals are seldom important.

  1. Helicopter electromagnetic and magnetic geophysical survey data, Hunton anticline, south-central Oklahoma

    USGS Publications Warehouse

    Smith, Bruce D.; Smith, David V.; Deszcz-Pan, Maryla; Blome, Charles D.; Hill, Patricia

    2011-01-01

    This report is a digital data release for multiple geophysical surveys conducted in the Hunton anticline area of south-central Oklahoma. The helicopter electromagnetic and magnetic surveys were flown on March 16–17, 2007, in four areas of the Hunton anticline in south-central Oklahoma. The objective of this project is to improve the understanding of the geohydrologic framework of the Arbuckle-Simpson aquifer. The electromagnetic sensor for the helicopter electromagnetic survey consisted of six different transmitter-receiver orientations that measured the earth's electrical response at six distinct frequencies from approximately 500 Hertz to approximately 115,000 Hertz. The electromagnetic measurements were converted to electrical resistivity values, which were gridded and plotted on georeferenced maps. The map from each frequency represents a different depth of investigation for each area. The range of subsurface investigation is comparable to the depth of shallow groundwater. The four areas selected for the helicopter electromagnetic study, blocks A–D, have different geologic and hydrologic settings. Geophysical and hydrologic information from U.S. Geological Survey studies are being used by modelers and resource managers to develop groundwater resource plans for the Arbuckle-Simpson aquifer.

  2. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Schildknecht, T.

    2010-01-01

    To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC attempts to emulate illumination conditions seen in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 75 Watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The laboratory uses known shapes, materials suspected to be consistent with the orbital debris population, and three phase angles to best match the lighting conditions of the telescope based data. The fourteen objects studied in the laboratory are fragments or materials acquired through ground-tests of scaled-model satellites/rocket bodies as well as material samples in more/less "flight-ready" condition. All fragments were measured at 10 increments in a full 360 rotation at 6 , 36 , and 60 phase angles. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1 m telescope of the Astronomical Institute of the University of Bern (AUIB), the 0.9 m operated by the Small- and Medium-Aperture Research Telescope System (SMARTS) Consortium and the Curtis-Schmidt 0.6 m Michigan Orbital Debris Space Debris Telescope both located at Cerro Tololo Inter-American Observatory (CTIO). An empirical based optical characterization model will be presented to provide preliminary correlations between laboratory based and telescope-based data in the context of classification of GEO debris objects.

  3. Multiscale Geophysical Characterization of Weathering Fronts Along a Climate and Vegetation Gradient in Chile

    NASA Astrophysics Data System (ADS)

    Dal Bo, I.; Klotzsche, A.; Schaller, M.; Ehlers, T. A.; Vereecken, H.; Van Der Kruk, J.

    2017-12-01

    Understanding how weathering processes act is non-trivial. Direct methods are spatially restricted, time consuming, and expensive. Here, we show how to upscale and extend the point-scale layering information from dug pits deploying a multi-scale geophysical approach. Many studies have recently shown the potential of geophysics in bridging the gap between scales, although limited to specific environments. We applied Electromagnetic Induction (EMI), Ground Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT) in four study areas separated by 1600 km in the Chilean Coastal Cordillera, and ranging from the arid Atacama Desert in the north and temperate forests in the south. The main goals were to understand how the soil profile and the weathering front vary: 1) from north to south along these gradients, 2) in north- and south-facing hillslopes, and 3) within a single hillslope. We measured at the large-scale (EMI), at the profile scale (EMI, ERT, and GPR), and at the point-scale (GPR). The total length of the EMI, GPR and ERT measurements was 28.95 km, 3.67 km, and 0.27 km. GPR wide angle reflection and refraction measurements were the link between ground-truth data and geophysics. The low electrical conductivity (EC) regime limited the applicability of the EMI and ERT. However, still relative patterns of apparent electrical conductivity (ECa) from EMI could be used. Generally, ECa increased moving uphill and from north to south. Due to the low EC values in the study areas, GPR could image several reflections up to 8 m depth partially confirmed by the pit layering. Thicker layers on GPR profiles were present going from north to south and in the bottom-mid part of the hillslopes, as confirmed by ground-truth data. The main recognizable feature in the GPR profiles was the transition between B and C horizon. Here, hyperbolic-shape signatures were observed that probably were related to the presence of heterogeneities. The soil pits showed deeper layers in

  4. Mass Property Measurements of the Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2012-01-01

    The NASA/JPL Mars Science Laboratory (MSL) spacecraft mass properties were measured on a spin balance table prior to launch. This paper discusses the requirements and issues encountered with the setup, qualification, and testing using the spin balance table, and the idiosyncrasies encountered with the test system. The final mass measurements were made in the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center on the fully assembled and fueled spacecraft. This set of environmental tests required that the control system for the spin balance machine be at a remote location, which posed additional challenges to the operation of the machine

  5. Integrated Research and Capacity Building in Geophysics

    NASA Astrophysics Data System (ADS)

    Willemann, R. J.; Lerner-Lam, A.; Nyblade, A.

    2008-05-01

    There have been special opportunities over the past several years to improve the ways that newly-constructed geophysical observatories in Southeast Asia and the Americas are linked with educational and civil institutions. Because these opportunities have been only partially fulfilled, there remains the possibility that new networks will not fully address desired goals or even lose operational capabilities. In contrast, the AfricaArray project continues to progress towards goals for linkages among education, research, mitigation and observatories. With support from the Office of International Science and Education at the US National Science Foundation, we convened a workshop to explore lessons learned from the AfricaArray experience and their relevance to network development opportunities in other regions. We found closer parallels than we expected between geophysical infrastructure in the predominantly low income countries of Africa with low risk of geophysical disasters and the mostly middle-income countries of Southeast Asia and the Americas with high risk of geophysical disasters. Except in larger countries of South America, workshop participants reported that there are very few geophysicists engaged in research and observatory operations, that geophysical education programs are nearly non-existent even at the undergraduate university level, and that many monitoring agencies continue to focus on limited missions even though closer relationships researchers could facilitate new services that would make important contributions to disaster mitigation and sustainable operations. Workshop participants began discussing plans for international research collaborations that, unlike many projects of even the recent past, would include long-term capacity building and disaster mitigation among their goals. Specific project objectives would include national or regional hazard mapping, development of indigenous education programs, training to address the needs of local

  6. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    PubMed

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  7. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    USGS Publications Warehouse

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  8. Atmospheric CO2 Records from Sites in the Main Geophysical Observatory Air Sampling Network (1983 - 1993)

    DOE Data Explorer

    Brounshtein, A. M. [Main Geophysical Observatory, St. Petersburg, Russia; Shaskov, A. A. [Main Geophysical Observatory, St. Petersburg, Russia; Paramonova, N. N. [Main Geophysical Observatory, St. Petersburg, Russia; Privalov, V. I. [Main Geophysical Observatory, St. Petersburg, Russia; Starodubtsev, Y. A. [Main Geophysical Observatory, St. Petersburg, Russia

    1997-01-01

    Air samples were collected from five sites in the Main Geophysical Observatory air sampling network to monitor the atmospheric CO2 from 1983 - 1993. Airwas collected generally four times per month in pairs of 1.5-L stainless steel electropolished flasks with one greaseless stainless steel stopcock. Sampling was performed by opening the stopcock of the flasks, which have been evacuated at the central laboratory at the Main Geophysical Observatory (MGO). The air was not dried during sample collection. Attempts were made to obtain samples when the wind speed was >5 m/s and the wind direction corresponded to the predetermined "clean air" sector. The period of record at Bering Island is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Bering Island rose from approximately 346 parts per million by volume (ppmv) in 1986 to 362.6 ppmv in 1993. Measurements from this station are considered indicative of maritime air masses. The period of record at Kotelny Island is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Kotelny Island rose from 356.08 parts per million by volume (ppmv) in 1988 to 358.8 ppmv in 1993. Because Kotelny Island is the northernmost Russian sampling site, measurements from this site serve as a useful comparison to other northern sites (e.g., Alert, Northwest Territories). In late 1989, air sampling began at the Russian site of Kyzylcha, located in the Republic of Uzbekistan. Unfortunately, the desert site at Kyzylcha has been out of operation since mid-1991 due to financial difficulties in Russia. The annual mean value of 359.02 parts per million by volume (ppmv) for 1990, the lone full year of operation, is higher than measurements from other monitoring programs at this latitude [e.g., Niwot Ridge (354.7 ppmv in 1990) and Tae-ahn Peninsula]. Station "C," an open ocean site, in the

  9. The Krafla International Testbed (KMT): Ground Truth for the New Magma Geophysics

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Kim, D.; Malin, P. E.; Eichelberger, J. C.

    2017-12-01

    Recent developments in geophysics such as large N seismic arrays , 4D (time lapse) subsurface imaging and joint inversion algorithms represent fresh approaches to delineating and monitoring magma in the subsurface. Drilling at Krafla, both past and proposed, are unique opportunities to quantitatively corroborate and calibrate these new technologies. For example, dense seismic arrays are capable of passive imaging of magma systems with resolutions comparable to that achieved by more expensive (and often logistically impractical) controlled source surveys such as those used in oil exploration. Fine details of the geometry of magma lenses, feeders and associated fluid bearing fracture systems on the scale of meters to tens of meters are now realistic targets for surface seismic surveys using ambient energy sources, as are detection of their temporal variations. Joint inversions, for example of seismic and MT measurements, offer the promise of tighter quantitative constraints on the physical properties of the various components of magma and related geothermal systems imaged by geophysics. However, the accuracy of such techniques will remain captive to academic debate without testing against real world targets that have been directly sampled. Thus application of these new techniques to both guide future drilling at Krafla and to be calibrated against the resulting borehole observations of magma are an important step forward in validating geophysics for magma studies in general.

  10. Comparison of on-site field measured inorganic arsenic in rice with laboratory measurements using a field deployable method: Method validation.

    PubMed

    Mlangeni, Angstone Thembachako; Vecchi, Valeria; Norton, Gareth J; Raab, Andrea; Krupp, Eva M; Feldmann, Joerg

    2018-10-15

    A commercial arsenic field kit designed to measure inorganic arsenic (iAs) in water was modified into a field deployable method (FDM) to measure iAs in rice. While the method has been validated to give precise and accurate results in the laboratory, its on-site field performance has not been evaluated. This study was designed to test the method on-site in Malawi in order to evaluate its accuracy and precision in determination of iAs on-site by comparing with a validated reference method and giving original data on inorganic arsenic in Malawian rice and rice-based products. The method was validated by using the established laboratory-based HPLC-ICPMS. Statistical tests indicated there were no significant differences between on-site and laboratory iAs measurements determined using the FDM (p = 0.263, ά = 0.05) and between on-site measurements and measurements determined using HPLC-ICP-MS (p = 0.299, ά = 0.05). This method allows quick (within 1 h) and efficient screening of rice containing iAs concentrations on-site. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Innovation of floating time domain electromagnetic method in the case of environmental geophysics

    NASA Astrophysics Data System (ADS)

    Nurjanah, Siti; Widodo

    2017-07-01

    Geophysics has some methods that can be used to reveal the subsurface structure of the earth. The physical features obtained from the acquisition then analyzed and interpreted, so that it can be a great lead to interpret the physical contents, determine its position and its distribution. Geophysical methods also can be used to help the environment contamination survey which is referred to environmental geophysics. There are many sources of pollution that can harm the nature, for example, the source in the form of solid waste, liquid waste containing heavy metals, or radioactive, and etc. As time passes, these sources might settle in any sedimentary area and become sediments. Time Domain Electromagnetic (TDEM) is a trustworthy method to detect the presence of conductive anomaly due to sediment accumulation. Innovation of floating TDEM created to maximize the potential of the method, so that it can be used in aquatic environments. The configuration of TDEM modified using pipes and tires during the process of measurements. We conducted numerical simulation using Marquardt and Occam Algorithms towards synthetic model to ensure the capability of the proposed design. The development of this innovation is expected to be very useful to repair the natural conditions, especially in the water.

  12. High resolution land surface geophysical parameters estimation from ALOS PALSAR data

    USDA-ARS?s Scientific Manuscript database

    High resolution land surface geophysical products, such as soil moisture, surface roughness and vegetation water content, are essential for a variety of applications ranging from water management to regional climate predictions. In India high resolution geophysical products, in particular soil moist...

  13. Archaeological Feedback as a Research Methodology in Near-Surface Geophysics

    NASA Astrophysics Data System (ADS)

    Maillol, J.; Ortega-Ramírez, J.; Berard, B.

    2005-05-01

    A unique characteristic of archaeological geophysics is to present the researchers in applied geophysics with the opportunity to verify their interpretation of geophysical data through the direct observation of often extremely detailed excavations. This is usually known as archaeological feedback. Archaeological materials have been slowly buried over periods ranging from several hundreds to several thousands of years, undergoing natural sedimentary and soil-forming processes. Once excavated, archaeological features therefore constitute more realistic test subjects than the targets artifically buried in common geophysical test sites. We are presenting the outcome of several such verification tests aimed at clarifying issues in geometry and spatial resolution of ground penetrating radar (GPR) images. On the site of a Roman villa in SE Portugal 500 Mhz GPR images are shown to depict very accurately the position and geometry of partially excavated remains. In the Maya city of Palenque, Mexico, 900 Mhz data allows the depth of tombs and natural cavities to be determined with cm accuracy. The predicted lateral extent of the cavities is more difficult to match with the reality due to the cluttering caused by high frequency. In the rainforest of Western Africa, 500 MHz GPR was used to prospect for stone tool sites. When very careful positioning and high density data sampling is achieved, stones can be accurately located and retrieved at depths exceeding 1 m with maximum positioning errors of 12cm horizontally and 2 cm vertically. In more difficult data collection conditions however, errors in positioning are shown to actually largely exceed the predictions based on quantitative theoretical resolution considerations. Geophysics has long been recognized as a powerful tool for prospecting and characterizing archaeological sites. Reciprocally, these results show that archaeology is an unparalleled test environment for the assesment and development of high resolution

  14. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  15. A laboratory procedure for measuring and georeferencing soil colour

    NASA Astrophysics Data System (ADS)

    Marques-Mateu, A.; Balaguer-Puig, M.; Moreno-Ramon, H.; Ibanez-Asensio, S.

    2015-04-01

    Remote sensing and geospatial applications very often require ground truth data to assess outcomes from spatial analyses or environmental models. Those data sets, however, may be difficult to collect in proper format or may even be unavailable. In the particular case of soil colour the collection of reliable ground data can be cumbersome due to measuring methods, colour communication issues, and other practical factors which lead to a lack of standard procedure for soil colour measurement and georeferencing. In this paper we present a laboratory procedure that provides colour coordinates of georeferenced soil samples which become useful in later processing stages of soil mapping and classification from digital images. The procedure requires a laboratory setup consisting of a light booth and a trichromatic colorimeter, together with a computer program that performs colour measurement, storage, and colour space transformation tasks. Measurement tasks are automated by means of specific data logging routines which allow storing recorded colour data in a spatial format. A key feature of the system is the ability of transforming between physically-based colour spaces and the Munsell system which is still the standard in soil science. The working scheme pursues the automation of routine tasks whenever possible and the avoidance of input mistakes by means of a convenient layout of the user interface. The program can readily manage colour and coordinate data sets which eventually allow creating spatial data sets. All the tasks regarding data joining between colorimeter measurements and samples locations are executed by the software in the background, allowing users to concentrate on samples processing. As a result, we obtained a robust and fully functional computer-based procedure which has proven a very useful tool for sample classification or cataloging purposes as well as for integrating soil colour data with other remote sensed and spatial data sets.

  16. Addressing the difficulty of changing fields in geophysics

    NASA Astrophysics Data System (ADS)

    Civilini, F.; Savage, M. K.

    2014-12-01

    Geophysics is a wonderfully diverse field of study, encompassing a variety of disciplines greatly different from one other. Even within the same discipline, various branches of study can have drastically different vocabulary and methodologies. The difficulty of breaking this "jargon" barrier is also an important reminder for scientists of how critical it is to clearly and concisely convey information. This presentation will focus on strategies that students can focus on to ease a transition between fields in geophysics. I believe that a student changing disciplines should proceed in the following steps: [1] Do a cursory literature review to find a review paper of the desired topic and work backwards through the details until a level of understanding or recognition is reached, [2] Obtain a clear physical understanding of the data and methods of the proposed study, and [3] Establish a support network through the research group or elsewhere which will recognize the areas in which the student is behind and offer remedies in a supportive and productive manner. These strategies are based on my own personal experience changing from music to geophysics in my undergrad and working on projects spanning various subdisciplines of geophysics during my Masters and PhD. It is worthwhile for research groups to spend the time to mentor students switching from other disciplines because those students will in time be able to observe the research in a different way than their peers, and easily adapt to changes of direction within the research.

  17. Object-Oriented Programming When Developing Software in Geology and Geophysics

    NASA Astrophysics Data System (ADS)

    Ahmadulin, R. K.; Bakanovskaya, L. N.

    2017-01-01

    The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.

  18. Correlations of Clinical and Laboratory Measures of Balance in Older Men and Women: The MOBILIZE Boston Study

    PubMed Central

    Nguyen, Uyen-Sa D.T.; Kiel, Douglas P.; Li, Wenjun; Galica, Andrew M.; Kang, Hyun Gu; Casey, Virginia A.; Hannan, Marian T.

    2012-01-01

    Objective Impaired balance is associated with falls in older adults. However, there is no accepted gold standard on how balance should be measured. Few studies have examined measures of postural sway and clinical balance concurrently in large samples of community-dwelling older adults. We examined the associations among four types of measures of laboratory- and clinic-based balance in a large population-based cohort of older adults. Methods We evaluated balance measures in the MOBILIZE Boston Study (276 men, 489 women, 64–97 years). Measures included: (1) laboratory-based anteroposterior (AP) path length and average sway speed, mediolateral (ML) average sway and root-mean-square, and area of ellipse postural sway; (2) Short Physical Performance Battery (SPPB); (3) Berg Balance Scale; and (4) one-leg stand. Spearman Rank Correlation Coefficients (r) were assessed among the balance measures. Results Area of ellipse sway was highly correlated with the ML sway measures (r >0.9, p < 0.0001), and sway speed was highly correlated with AP sway (r=0.97, p < 0.0001). The Berg Balance Scale was highly correlated with SPPB (r=0.7, p<0.001), and one-leg stand (r=0.8, p<0.001). Correlations between the laboratory- and clinic-based balance measures were low but statistically significant (0.2 < r < 0.3, p<0.0001). Conclusion Clinic-based balance measures, and laboratory-based measures comparing area of ellipse with ML sways or sway speed with AP sway, are highly correlated. Clinic- with laboratory-based measures are less correlated. As both laboratory- and clinic-based measures inform balance in older adults but are not highly correlated with each other, future work should investigate the differences. PMID:22745045

  19. Key Performance Indicators to Measure Improvement After Implementation of Total Laboratory Automation Abbott Accelerator a3600.

    PubMed

    Miler, Marijana; Nikolac Gabaj, Nora; Dukic, Lora; Simundic, Ana-Maria

    2017-12-27

    The aim of the study was to estimate improvement of work efficiency in the laboratory after implementation of total laboratory automation (TLA) by Abbott Accelerator a3600 in the laboratory with measuring different key performance indicators (KPIs) before and after TLA implementation. The objective was also to recommend steps for defining KPIs in other laboratories. For evaluation of improvement 10 organizational and/or technical KPIs were defined for all phases of laboratory work and measured before (November 2013) and after (from 2015 to 2017) TLA implementation. Out of 10 defined KPIs, 9 were successfully measured and significantly improved. Waiting time for registration of samples in the LIS was significantly reduced from 16 (9-28) to 9 (6-16) minutes after TLA (P < 0.001). After TLA all tests were performed at core biochemistry analyzers which significantly reduced walking distance for sample management (for more than 800 m per worker) and number of tube touches (for almost 50%). Analyzers downtime and engagement time for analyzers maintenance was reduced for 50 h and 28 h per month, respectively. TLA eliminated manual dilution of samples with extreme results with sigma values increment from 3.4 to >6 after TLA. Although median turnaround time TAT for potassium and troponin was higher (for approximately 20 min), number of outliers with TAT >60 min expressed as sigma values were satisfying (>3). Implementation of the TLA improved the most of the processes in our laboratory with 9 out of 10 properly defined and measured KPIs. With proper planning and defining of KPIs, every laboratory could measure changes in daily workflow.

  20. Evaluation of borehole geophysical and video logs, at Butz Landfill Superfund Site, Jackson Township, Monroe County, Pennsylvania

    USGS Publications Warehouse

    Low, Dennis J.; Conger, Randall W.

    2001-01-01

    Between February 1996 and November 2000, geophysical logging was conducted in 27 open borehole wells in and adjacent to the Butz Landfill Superfund Site, Jackson Township, Monroe County, Pa., to determine casing depth and depths of water-producing zones, water-receiving zones, and zones of vertical borehole flow. The wells range in depth from 57 to 319 feet below land surface. The geophysical logging determined the placement of well screens and packers, which allow monitoring and sampling of water-bearing zones in the fractured bedrock so that the horizontal and vertical distribution of contaminated ground water migrating from known sources could be determined. Geophysical logging included collection of caliper, natural-gamma, single-point-resistance, fluid-resistivity, fluid-temperature, and video logs. Caliper and video logs were used to locate fractures, joints, and weathered zones. Inflections on single-point-resistance, fluid-temperature, and fluid-resistivity logs indicated possible water-bearing fractures, and heatpulse-flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy.

  1. Spectral measurements of ocean-dumped wastes tested in the marine upwelled spectral signature laboratory

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Usry, J. W.; Whitlock, C. H.; Gurganus, E. A.

    1979-01-01

    Transmission and inherent upwelled radiance measurements were made of various mixtures of three ocean-dumped industrial plant wastes in artificial seawater. Laboratory analyses were made of the physical and chemical properties of the various mixtures. These results and the laboratory measurements of beam attenuation and inherent upwelled radiance indicate a variety of chemical and spectral responses when industrial wastes are added to artificial seawater. In particular, increased levels of turbidity did not always cause increased levels of inherent reflectance.

  2. Measures of complexity in signal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurths, J.; Schwarz, U.; Witt, A.

    Observational data of natural systems, as measured in astrophysical, geophysical or physiological experiments are typically quite different from those obtained in laboratories. Due to the peculiarities with these data, well-known characteristics processes, such as periodicities or fractal dimension, often do not provide a suitable description. To study such data, we present here the use of measures of complexity, which are mainly basing on symbolic dynamics. We distinguish two types of such quantities: traditional measures (e.g. algorithmic complexity) which are measures of randomness and alternative measures (e.g. {epsilon}-complexity) which relate highest complexity to some critical points. It is important to notemore » that there is no optimum measure of complexity. Its choice should depend on the context. Mostly, a combination of some such quantities is appropriate. Applying this concept to three examples in astrophysics, cardiology and cognitive psychology, we show that it can be helpful also in cases where other tools of data analysis fail. {copyright} {ital 1996 American Institute of Physics.}« less

  3. Investigation of subrosion processes using an integrated geophysical approach

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Hupfer, Sarah; Kobe, Martin; Schneider-Löbens, Christiane; Wadas, Sonja

    2017-04-01

    Frankenhausen. Additionally, five SH-wave profiles and one VSP were carried out around the sinkhole of Schmalkalden. The underground in the local subrosion areas is heterogeneous with many fractures and faults. Subrosion structures were imaged in high-resolution and by defining the shear-modulus. Vp/Vs-ratio unstable areas have been identified. Electric and electromagnetic methods have been used to investigate the geological structure of a karst system based on the different bulk resistivities of the various geological units and reflections of electromagnetic waves at interfaces. The borehole georadar has been used to detect a cavity and areas of disruption. Different types of carbonates were analysed with laboratory SIP-measurements. First results show polarisation effects for all carbonate types. Four different phase behaviours were observed in the phase spectra. Further experiments will be conducted to get more insight into the phase behaviour of carbonates. Numerical modelling is applied to simulate the collapse mechanism and rock failure to specify the conditions in which sinkholes form. Important parameters for failure are thickness of overburden, lateral dimension and shape of the cavity, existing fracture network and layer boundaries, which partly can be provided by the other methods. This diversity of methods allows a characterisation of karst systems and subrosion structures based on various complementary properties and on many scales from pore size to the big picture of the karst system.

  4. Spacecraft Dynamics as Related to Laboratory Experiments in Space. [conference

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H. (Editor); Antar, B. N. (Editor); Collins, F. G. (Editor)

    1981-01-01

    Proceedings are presented of a conference sponsored by the Physics and Chemistry Experiments in Space Working Group to discuss the scientific and engineering aspects involved in the design and performance of reduced to zero gravity experiments affected by spacecraft environments and dynamics. The dynamics of drops, geophysical fluids, and superfluid helium are considered as well as two phase flow, combustion, and heat transfer. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments are also examined.

  5. Geophysics: The Earth in Space. A Guide for High School Students.

    ERIC Educational Resources Information Center

    American Geophysical Union, Washington, DC.

    Geophysics is the application of physics, chemistry, and mathematics to the problems and processes of the earth, from its innermost core to its outermost environs in space. Fields within geophysics include the atmospheric sciences; geodesy; geomagnetism and paleomagnetism; hydrology; oceanography; planetology; seismology; solar-planetary…

  6. Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Allario, F.; Katzberg, S. J.; Larsen, J. C.

    1980-01-01

    Several experiments involving spectral scanning interferometers and gas filter correlation radiometers (ref. 2) using limb scanning solar occultation techniques under development for measurements of stratospheric trace gases from Spacelab and satellite platforms are described. An experiment to measure stratospheric trace constituents by Laser Heterodyne Spectroscopy, a summary of sensitivity analyses, and supporting laboratory measurements are presented for O3, ClO, and H2O2 in which the instrument transfer function is modeled using a detailed optical receiver design.

  7. A review of the regional geophysics of the Arizona Transition Zone

    USGS Publications Warehouse

    Hendricks, J.D.; Plescia, J.B.

    1991-01-01

    A review of existing geophysical information and new data presented in this special section indicate that major changes in crustal properties between the Basin and Range and Colorado Plateau occur in, or directly adjacent to, the region defined as the Arizona Transition Zone. Although this region was designated on a physiographic basis, studies indicate that it is also the geophysical transition between adjoining provinces. A relatively shallow asthenosphere beneath the Basin and Range and Transition Zone contrasted with a thick lithosphere beneath the Colorado Plateau would be one explanation that would satisfy these geophysical observations. -from Authors

  8. Geophysical investigation, Salmon Site, Lamar County, Mississippi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Geophysical surveys were conducted in 1992 and 1993 on 21 sites at the Salmon Site (SS) located in Lamar County, Mississippi. The studies are part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted by IT Corporation for the U.S. Department of Energy (DOE). During the 1960s, two nuclear devices and two chemical tests were detonated 826 meters (in) (2710 feet [ft]) below the ground surface in the salt dome underlying the SS. These tests were part of the Vela Uniform Program conducted to improve the United States capability to detect, identify, and locate underground nuclear detonations. The RI/FS is beingmore » conducted to determine if any contamination is migrating from the underground shot cavity in the salt dome and if there is any residual contamination in the near surface mud and debris disposal pits used during the testing activities. The objective of the surface geophysical surveys was to locate buried debris, disposal pits, and abandoned mud pits that may be present at the site. This information will then be used to identify the locations for test pits, cone penetrometer tests, and drill hole/monitor well installation. The disposal pits were used during the operation of the test site in the 1960s. Vertical magnetic gradient (magnetic gradient), electromagnetic (EM) conductivity, and ground-penetrating radar (GPR) surveys were used to accomplish these objectives. A description of the equipment used and a theoretical discussion of the geophysical methods are presented Appendix A. Because of the large number of figures relative to the number of pages of text, the geophysical grid-location maps, the contour maps of the magnetic-gradient data, the contour maps of the EM conductivity data, and the GPR traverse location maps are located in Appendix B, Tabs I through 22. In addition, selected GPR records are located in Appendix C.« less

  9. The Legacy of Benoit Mandelbrot in Geophysics

    NASA Astrophysics Data System (ADS)

    Turcotte, D. L.

    2001-12-01

    The concept of fractals (fractional dimension) was introduced by Benoit Mandelbrot in his famous 1967 Science paper. The initial application was to the length of the coastline of Britain. A milestone in the appreciation of the fractal concept by geophysicists was the Union session of the AGU on fractals led off by Benoit in 1986. Although fractals have found important applications in almost every branch of the physical, biological, and social sciences, fractals have been particularly useful in geophysics. Drainage networks are fractal. The frequency-magnitude distribution of earthquakes is fractal. The scale invariance of landscapes and many other geological processes is due to the applicability of power-law (fractal) distributions. Clouds are often fractal. Porosity distributions are fractal. In an almost independent line of research, Benoit in collaboration with James Wallace and others developed the concept of self-affine fractals. The original applications were primarily to time series in hydrology and built on the foundation laid by Henry Hurst. Fractional Gaussian noises and fractional Brownian motions are ubiquitous in geophysics. These are expressed in terms of the power-law relation between the power-spectral density S and frequency f, S ~ f{ β }, examples are β = 0 (white noise), β = 1 (1/f noise), β = 2 (Brownian motion). Of particular importance in geophysics are fractional noises with β = 0.5, these are stationary but have long-range persistent and have a Hurst exponent H = 0.7. Examples include river flows, tree rings, sunspots, varves, etc. Two of Benoit Mandelbrot's major contributions in geophysics as in other fields are: (1) an appreciation of the importance of fat-tail, power-law (fractal) distributions and (2) an appreciation of the importance of self-similar long-range persistence in both stationary time series (noises) and nonstationary time series (walks).

  10. Geophysical studies of the Crump Geyser known geothermal resource area, Oregon, in 1975

    USGS Publications Warehouse

    Plouff, Donald

    2006-01-01

    sediment thickness was estimated at 820 meters. A three-dimensional gravity model would have yielded a greater thickness. Audiomagnotelluric measurements were not made as far south as the location of the gravity low, as determined in the field, due to a lack of communication at that time. A boat was borrowed to collect gravity measurements along the edge of Crump Lake, but the attempt was curtailed by harsh, snowy weather on May 21, 1975, which shortly followed days of hot temperature. Most of the geophysical data and illustrations in Appendix 1 have been published (Gregory and Martinez, 1975; Plouff, 1975; and Plouff and Conradi, 1975), and Donald Plouff (1986) discussed a gravity interpretation of Warner Valley at the Fall 1986 American Geophysical Union meeting in San Francisco. Further interpretation of possible subsurface geologic sources of geophysical anomalies was not discussed in Appendix 1. For example, how were apparent resistivity lows (Appendix 1, figs. 3-6) centered near Crump Geyser affected by a well and other manmade electrically conductive or magnetic objects? What is the geologic significance of the 15-milligal eastward decrease across Warner Valley? The explanation that the two-dimensional gravity model (Appendix 1, fig. 14) was based on an inverse iterative method suggested by Bott (1960) was not included. Inasmuch as there was no local subsurface rock density distribution information to further constrain the gravity model, the three-dimensional methodology suggested by Plouff (1976) was not attempted. Inasmuch as the associated publication by Plouff (1975), which released the gravity data, is difficult to obtain and not in digital format, that report is reproduced in Appendix 2. Two figures of the publication are appended to the back of the text. A later formula for the theoretical value of gravity for the given latitudes at sea level (International Association of Geodesy, 1971) should be used to re-compute gravity anomalies. To merge t

  11. Geophysical approaches to inverse problems: A methodological comparison. Part 1: A Posteriori approach

    NASA Technical Reports Server (NTRS)

    Seidman, T. I.; Munteanu, M. J.

    1979-01-01

    The relationships of a variety of general computational methods (and variances) for treating illposed problems such as geophysical inverse problems are considered. Differences in approach and interpretation based on varying assumptions as to, e.g., the nature of measurement uncertainties are discussed along with the factors to be considered in selecting an approach. The reliability of the results of such computation is addressed.

  12. Geophysical Anomalies and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  13. Geophysical Surveys for Locating Buried Utilities, Lake Pontchartrain Levees, New Orleans

    DTIC Science & Technology

    2014-06-01

    4 Figure 3. GPR concepts...this study. Electromagnetic (EM) induction, magnetic, and ground penetrating radar ( GPR ) geophysical methods were evaluated to determine which...surveys GPR is a ground-based geophysical instrument that transmits high- frequency EM pulses into the subsurface. The GPR system consists of a

  14. The procedures manual of the Environmental Measurements Laboratory. Volume 1, 28. edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chieco, N.A.

    1997-02-01

    This manual covers procedures and technology currently in use at the Environmental Measurements Laboratory. An attempt is made to be sure that all work carried out will be of the highest quality. Attention is focused on the following areas: quality assurance; sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications.

  15. Notes on interpretation of geophysical data over areas of mineralization in Afghanistan

    USGS Publications Warehouse

    Drenth, Benjamin J.

    2011-01-01

    Afghanistan has the potential to contain substantial metallic mineral resources. Although valuable mineral deposits have been identified, much of the country's potential remains unknown. Geophysical surveys, particularly those conducted from airborne platforms, are a well-accepted and cost-effective method for obtaining information on the geological setting of a given area. This report summarizes interpretive findings from various geophysical surveys over selected mineral targets in Afghanistan, highlighting what existing data tell us. These interpretations are mainly qualitative in nature, because of the low resolution of available geophysical data. Geophysical data and simple interpretations are included for these six areas and deposit types: (1) Aynak: Sedimentary-hosted copper; (2) Zarkashan: Porphyry copper; (3) Kundalan: Porphyry copper; (4) Dusar Shaida: Volcanic-hosted massive sulphide; (5) Khanneshin: Carbonatite-hosted rare earth element; and (6) Chagai Hills: Porphyry copper.

  16. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Redmond, Jay; Kodak, Charles

    2001-01-01

    This report summarizes the technical parameters and the technical staff of the Very Long Base Interferometry (VLBI) system at the fundamental station Goddard Geophysical and Astronomical Observatory (GGAO). It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.

  17. Investigation of coastal areas in Northern Germany using airborne geophysical surveys

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Siemon, Bernhard; Wiederhold, Helga; Steuer, Annika; Ibs-von Seht, Malte; Voß, Wolfgang; Meyer, Uwe

    2014-05-01

    Since 2000, the German Federal Institute for Geosciences and Natural Resources (BGR) carried out several airborne geophysical surveys in Northern Germany to investigate the coastal areas of the North Sea and some of the North and East Frisian Islands. Several of those surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). Two helicopter-borne geophysical systems were used, namely the BGR system, which collects simultaneously frequency-domain electromagnetic, magnetic and radiometric data, and the SkyTEM system, a time-domain electromagnetic system developed by the University of Aarhus. Airborne geophysical surveys enable to investigate huge areas almost completely with high lateral resolution in a relatively short time at economic cost. In general, the results can support geological and hydrogeological mapping. Of particular importance are the airborne electromagnetic results, as the surveyed parameter - the electrical conductivity - depends on both lithology and groundwater status. Therefore, they can reveal buried valleys and the distribution of sandy and clayey sediments as well as salinization zones and fresh-water occurrences. The often simultaneously recorded magnetic and radiometric data support the electromagnetic results. Lateral changes of Quaternary and Tertiary sediments (shallow source - several tens of metres) as well as evidences of the North German Basin (deep source - several kilometres) are revealed by the magnetic results. The radiometric data indicate the various mineral compositions of the soil sediments. This BGR/LIAG project aims to build up a geophysics data base (http://geophysics-database.de/) which contains all airborne geophysical data sets. However, the more significant effort is to create a reference data set as basis for monitoring climate or man-made induced changes of the salt-water/fresh-water interface at the German North Sea coast. The significance of problems for groundwater extraction

  18. A survey of natural aggregate properties and characteristics important in remote sensing and airborne geophysics

    USGS Publications Warehouse

    Knepper, D.H.; Langer, W.H.; Miller, S.

    1995-01-01

    Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.

  19. Geophysical bed sediment characterization of the Androscoggin River from the former Chlor-Alkali Facility Superfund Site, Berlin, New Hampshire, to the state border with Maine, August 2009

    USGS Publications Warehouse

    Degnan, James R.; Teeple, Andrew; Johnston, Craig M.; Marvin-DiPasquale, Mark C.; Luce, Darryl

    2011-01-01

    The former Chlor-Alkali Facility in Berlin, New Hampshire, was listed on the U.S. Environmental Protection Agency National Priorities List in 2005 as a Superfund site. The Chlor-Alkali Facility lies on the east bank of the Androscoggin River. Elemental mercury currently discharges from that bank into the Androscoggin River. The nature, extent, and the speciation of mercury and the production of methyl mercury contamination in the adjacent Androscoggin River is the subject of continuing investigations. The U.S. Geological Survey, in cooperation with Region I of the U.S. Environmental Protection Agency, used geophysical methods to determine the distribution, thickness, and physical properties of sediments in the Androscoggin River channel at a small area of an upstream reference reach and downstream from the site to the New Hampshire–Maine State border. Separate reaches of the Androscoggin River in the study area were surveyed with surface geophysical methods including ground-penetrating radar and step-frequency electromagnetics. Results were processed to assess sediment characteristics including grain size, electrical conductivity, and pore-water specific conductance. Specific conductance measured during surface- and pore-water sampling was used to help interpret the results of the geophysical surveys. The electrical resistivity of sediment samples was measured in the laboratory with intact pore water for comparison with survey results. In some instances, anthropogenic features and land uses, such as roads and power lines affected the detection of riverbed properties using geophysical methods; when this occurred, the data were removed. Through combining results, detailed riverbed sediment characterizations were made. Results from ground-penetrating radar surveys were used to image and measure the depth to the riverbed, depth to buried riverbeds, riverbed thickness and to interpret material-type variations in terms of relative grain size. Fifty two percent of the

  20. Fundamental issues in the geology and geophysics of venus.

    PubMed

    Solomon, S C; Head, J W

    1991-04-12

    A number of important and currently unresolved issues in the global geology and geophysics of Venus will be addressable with the radar imaging, altimetry, and gravity measurements now forthcoming from the Magellan mission. Among these are the global volcanic flux and the rate of formation of new crust; the global heat flux and its regional variations; the relative importance of localized hot spots and linear centers of crustal spreading to crustal formation and tectonics; and the planform of mantle convection on Venus and the nature of the interactions among interior convective flow, near-surface deformation and magmatism.

  1. Integrated study of geophysical and biological anomalies before earthquakes (seismic and non-seismic), in Austria and Indonesia

    NASA Astrophysics Data System (ADS)

    Straka, Wolfgang; Assef, Rizkita; Faber, Robert; Ferasyi, Reza

    2015-04-01

    Earthquakes are commonly seen as unpredictable. Even when scientists believe an earthquake is likely, it is still hard to understand the indications observed, as well as their theoretical and practical implications. There is some controversy surrounding the concept of using animals as a precursor of earthquakes. Nonetheless, several institutes at University of Natural Resources and Life Sciences, and Vienna University of Technology, both Vienna, Austria, and Syiah Kuala University, Banda Aceh, as well as Terramath Indonesia, Buleleng, both Indonesia, cooperate in a long-term project, funded by Red Bull Media House, Salzburg, Austria, which aims at getting some decisive step forward from anecdotal to scientific evidence of those interdependencies, and show their possible use in forecasting seismic hazard on a short-term basis. Though no conclusive research has yet been published, an idea in this study is that even if animals do not respond to specific geophysical precursors and with enough notice to enable earthquake forecasting on that basis, they may at least enhance, in conjunction with other indications, the degree of certainty we can get of a prediction of an impending earthquake. In Indonesia, indeed, before the great earthquakes of 2004 and 2005, ominous geophysical as well as biological phenomena occurred (but were realized as precursors only in retrospect). Numerous comparable stories can be told from other times and regions. Nearly 2000 perceptible earthquakes (> M3.5) occur each year in Indonesia. Also, in 2007, the government has launched a program, focused on West Sumatra, for investigating earthquake precursors. Therefore, Indonesia is an excellent target area for a study concerning possible interconnections between geophysical and biological earthquake precursors. Geophysical and atmospheric measurements and behavioral observation of several animal species (elephant, domestic cattle, water buffalo, chicken, rat, catfish) are conducted in three areas

  2. Autonomous cloud based site monitoring through hydro geophysical data assimilation, processing and result delivery

    NASA Astrophysics Data System (ADS)

    Versteeg, R.; Johnson, D. V.; Rodzianko, A.; Zhou, H.; Dafflon, B.; Leger, E.; de Kleine, M.

    2017-12-01

    Understanding of processes in the shallow subsurface requires that geophysical, biogeochemical, hydrological and remote sensing datasets are assimilated, processed and interpreted. Multiple enabling software capabilities for process understanding have been developed by the science community. These include information models (ODM2), reactive transport modeling (PFLOTRAN, Modflow, CLM, Landlab), geophysical inversion (E4D, BERT), parameter estimation (PEST, DAKOTA), visualization (ViSiT, Paraview, D3, QGIS) as well as numerous tools written in python and R for petrophysical mapping, stochastic modeling, data analysis and so on. These capabilities use data collected using sensors and analytical tools developed by multiple manufacturers which produce many different measurements. While scientists obviously leverage tools, capabilities and lessons learned from one site at other sites, the current approach to site characterization and monitoring is very labor intensive and does not scale well. Our objective is to be able to monitor many (hundreds - thousands) of sites. This requires that monitoring can be done in a near time, affordable, auditable and essentially autonomous manner. For this we have developed a modular vertically integrated cloud based software framework which was designed from the ground up for effective site and process monitoring. This software framework (PAF - Predictive Assimilation Framework) is multitenant software and provides automation of data ingestion, processing and visualization of hydrological, geochemical and geophysical (ERT/DTS) data. The core organizational element of PAF is a project/user one in which capabilities available to users are controlled by a combination of available data and access permissions. All PAF capabilities are exposed through APIs, making it easy to quickly add new components. PAF is fully integrated with newly developed autonomous electrical geophysical hardware and thus allows for automation of electrical

  3. Geophysical, geochemical, and geological investigations of the Dunes geothermal system, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Elders, W. A.; Combs, J.; Coplen, T. B.; Kolesar, P.; Bird, D. K.

    1974-01-01

    The Dunes anomaly is a water-dominated geothermal system in the alluvium of the Salton Trough, lacking any surface expression. It was discovered by shallow-temperature gradient measurements. A 612-meter-deep test well encountered several temperature-gradient reversals, with a maximum of 105 C at 114 meters. The program involves surface geophysics, including electrical, gravity, and seismic methods, down-hole geophysics and petrophysics of core samples, isotopic and chemical studies of water samples, and petrological and geochemical studies of the cores and cuttings. The aim is (1) to determine the source and temperature history of the brines, (2) to understand the interaction between the brines and rocks, and (3) to determine the areal extent, nature, origin, and history of the geothermal system. These studies are designed to provide better definition of exploration targets for hidden geothermal anomalies and to contribute to improved techniques of exploration and resource assessment.

  4. Laboratory microwave measurement of the moisture content in seed cotton and ginned cotton fiber

    USDA-ARS?s Scientific Manuscript database

    The timely and accurate measurement of cotton fiber moisture content is important, but the measurement is often performed by laborious, time-consuming laboratory oven drying methods. Microwave technology for measuring fiber moisture content directly (not for drying only) offers potential advantages...

  5. A pier-scour database: 2,427 field and laboratory measurements of pier scour

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.

    2014-01-01

    The U.S. Geological Survey conducted a literature review to identify potential sources of published pier-scour data, and selected data were compiled into a digital spreadsheet called the 2014 USGS Pier-Scour Database (PSDb-2014) consisting of 569 laboratory and 1,858 field measurements. These data encompass a wide range of laboratory and field conditions and represent field data from 23 States within the United States and from 6 other countries. The digital spreadsheet is available on the Internet and offers a valuable resource to engineers and researchers seeking to understand pier-scour relations in the laboratory and field.

  6. Current Legislative Initiatives and Geophysics

    NASA Astrophysics Data System (ADS)

    Stephan, S. G.

    2002-05-01

    Geophysical research will be most effective in the fight against terrorism if it is done in cooperation with the expectations of local, state and federal policy makers. New tools to prevent, prepare for, and respond to acts of terrorism are coming from all fields, including geoscience. Globally, monitoring the land, oceans, atmosphere, and space for unusual and suspicious activities can help prevent terrorist acts. Closer to home, geoscience research is used to plan emergency transportation routes and identify infrastructure vulnerabilities. As important as it is for Congress and other policy makers to appreciate the promises and limitations of geophysical research, scientists need to be aware of legislative priorities and expectations. What does Congress expect from the geoscience community in the fight against terrorism and how well does reality meet these expectations? What tools do the 44 different federal agencies with stated Homeland Security missions need from geoscientists? I will address these questions with an overview of current legislative antiterrorism initiatives and policies that relate to the geoscience community.

  7. Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes

    NASA Astrophysics Data System (ADS)

    Mewes, Benjamin; Hilbich, Christin; Delaloye, Reynald; Hauck, Christian

    2017-12-01

    Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.

  8. Results of airborne geophysical surveys in the Weser-Elbe area in Northern Germany

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Siemon, B.; Steuer, A.; Ibs-von Seht, M.; Voss, W.; Miensopust, M. P.; Wiederhold, H.

    2012-12-01

    Airborne geophysical surveys were carried out by the German Federal Institute for Geosciences and Natural Resources (BGR) in Northern Germany close to the estuaries of the Weser and Elbe rivers from 2000 to 2010. Two of the six helicopter-borne surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). The common aim was the acquisition of a reference data set for monitoring climate or man-made induced changes of the saltwater/freshwater interface at the German North Sea coast and to build up a data base containing all airborne geophysical data sets. Airborne frequency-domain electromagnetic, magnetic, and radiometric data were collected simultaneously with the helicopter-borne geophysical system operated at BGR. The airborne geophysical results show both geological and hydrogeological structures down to about 100 m depth. The electromagnetic results reveal several hydrogeological important features such as the distribution of sandy or clayey sediments, the extension of saltwater intrusion, and buried valleys. These results are supported by magnetic and radiometric data indicating lateral changes of weakly magnetized sediments or mineral compositions of the top soil. The airborne geophysical data sets provide serve as base-line data for a variety of applications and particularly for groundwater modeling and monitoring.

  9. The Run-up to Volcanic Eruption Unveiled by Forensic Petrology and Geophysical Observations

    NASA Astrophysics Data System (ADS)

    Rasmussen, D. J.; Plank, T. A.; Roman, D. C.

    2017-12-01

    Volcanoes often warn of impending eruptions. However, one of the greatest challenges in volcano research is translating precursory geophysical signals into physical magmatic processes. Petrology offers powerful tools to study eruption run-up that benefit from direct response to magmatic forcings. Developing these tools, and tying them to geophysical observations, will help us identify eruption triggers (e.g., magmatic recharge, gas build-up, tectonic events) and understand the significance of monitored signals of unrest. We present an overview of petrologic tools used for studying eruption run-up, highlighting results from our study of the 1999 eruption of Shishaldin volcano. Olivine crystals contain chemical gradients, the consequence of diffusion following magma mixing events, which is modeled to determine mixing timescales. Modeled timescales provide strong evidence for at least three mixing events, which were triggered by magmatic recharge. Petrologic barometers indicate these events occurred at very shallow depths (within the volcanic edifice). The first mixing event occurred nine months before eruption, which was signaled by a swarm of deep-long period earthquake. Minor recharge events followed over two months, which are indicated by a second deep-long period earthquake swarm and a change in the local stress orientation measured by shear-wave splitting. Following these events, the system was relatively quiet until a large mixing event occurred 45 days prior to eruption, which was heralded by a large earthquake (M5.2). Following this event, geophysical signals of unrest intensified and became continuous. The final mixing event, beginning roughly a week before eruption, represents the final perturbation to the system before eruption. Our findings point to a relatively long run-up, which was subtle at first and intensified several weeks before eruption. This study highlights the strong link between geophysical signals of volcanic unrest and magmatic events, and

  10. Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data

    NASA Astrophysics Data System (ADS)

    He, Xin; Koch, Julian; Sonnenborg, Torben O.; Jørgensen, Flemming; Schamper, Cyril; Christian Refsgaard, Jens

    2014-04-01

    Geological heterogeneity is a very important factor to consider when developing geological models for hydrological purposes. Using statistically based stochastic geological simulations, the spatial heterogeneity in such models can be accounted for. However, various types of uncertainties are associated with both the geostatistical method and the observation data. In the present study, TProGS is used as the geostatistical modeling tool to simulate structural heterogeneity for glacial deposits in a head water catchment in Denmark. The focus is on how the observation data uncertainty can be incorporated in the stochastic simulation process. The study uses two types of observation data: borehole data and airborne geophysical data. It is commonly acknowledged that the density of the borehole data is usually too sparse to characterize the horizontal heterogeneity. The use of geophysical data gives an unprecedented opportunity to obtain high-resolution information and thus to identify geostatistical properties more accurately especially in the horizontal direction. However, since such data are not a direct measurement of the lithology, larger uncertainty of point estimates can be expected as compared to the use of borehole data. We have proposed a histogram probability matching method in order to link the information on resistivity to hydrofacies, while considering the data uncertainty at the same time. Transition probabilities and Markov Chain models are established using the transformed geophysical data. It is shown that such transformation is in fact practical; however, the cutoff value for dividing the resistivity data into facies is difficult to determine. The simulated geological realizations indicate significant differences of spatial structure depending on the type of conditioning data selected. It is to our knowledge the first time that grid-to-grid airborne geophysical data including the data uncertainty are used in conditional geostatistical simulations in TPro

  11. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures

    USGS Publications Warehouse

    Allen, J.P.; Atekwana, E.A.; Duris, J.W.; Werkema, D.D.; Rossbach, S.

    2007-01-01

    The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueousphase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  12. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    NASA Astrophysics Data System (ADS)

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  13. Laboratory measurements of the seismic velocities and other petrophysical properties of the Outokumpu deep drill core samples, eastern Finland

    NASA Astrophysics Data System (ADS)

    Elbra, Tiiu; Karlqvist, Ronnie; Lassila, Ilkka; Høgström, Edward; Pesonen, Lauri J.

    2011-01-01

    Petrophysical, in particular seismic velocity, measurements of the Outokumpu deep drill core (depth 2.5 km) have been carried out to characterize the geophysical nature of the Paleoproterozoic crustal section of eastern Finland and to find lithological and geophysical interpretations to the distinct crustal reflectors as observed in seismic surveys. The results show that different lithological units can be identified based on the petrophysical data. The density of the samples remained nearly constant throughout the drilled section. Only diopside-tremolite skarns and black schists exhibit higher densities. The samples are dominated by the paramagnetic behaviour with occasional ferromagnetic signature caused by serpentinitic rocks. Large variations in seismic velocities, both at ambient pressure and under in situ crustal conditions are observed. The porosity of the samples, which is extremely low, is either intrinsic by nature or caused by decompaction related to fracturing during the core retrieval. It is noteworthy that these microfractures have dramatically lowered the VP and VS values. From the measured velocities and density data we have calculated the seismic impedances, Young's modulus and Poisson's ratios for the lithological units of the Outokumpu section and from these data the reflection coefficients for the major lithological boundaries, evident in the surveyed section, were determined. The data show that the strong and distinct reflections visible in wide-angle seismic surveys are caused by interfaces between diopside-tremolite skarn and either serpentinites, mica schist or black schist.

  14. The Expanding Marketplace for Applied Geophysics

    NASA Astrophysics Data System (ADS)

    Carlson, N.; Sirles, P.

    2012-12-01

    While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing

  15. The Jettencave, Southern Harz Mountains, Germany: Geophysical observations and a structural model of a shallow cave in gypsum/anhydrite-bearing rocks

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko

    2017-12-01

    Gypsum and anhydrite are soluble rocks, where fissures and bedding partings can be enlarged with time by the dissolution of the mineral species through water. The selective enlargement results in sub-surface voids acting as preferential flow path for the drainage of the rock. With time, larger cavities develop, and a network of cave passages can evolve. If the enlarged cave voids are not too deep under the surface, geophysical measurements can be used to detect, identify and trace these structures. We have used gravity measurements (GRAV), electrical resistivity imaging (ERI), self-potential measurements (SP), electrical conductivity measurements (EC), and ground-penetrating radar (GPR) above the cave Jettenhöhle, a cave located in the southern Harz Mountains in Germany. The Jettencave is developed in the Hauptanhydrit formation of the Permian Zechstein sequence, characterised by large breakdown rooms and an exposed water table. The overburden of the cave is only around 10-15 m, and dolomitic rocks are located in close vicinity. We present results from our geophysical surveys in vicinity of the cave. We are able to identify the cave geometry from GRAV, ERI, and GPR measurements, which distinguish the local lithology of the Permian Zechstein rocks in the area. From the ERI and EC measurements, we derive information on the void volume in the soluble rocks. We finally present a three-dimensional structural model of the Jettencave and its surroundings, based on our geophysical results and the hydrological interpretation.

  16. A FMEA clinical laboratory case study: how to make problems and improvements measurable.

    PubMed

    Capunzo, Mario; Cavallo, Pierpaolo; Boccia, Giovanni; Brunetti, Luigi; Pizzuti, Sante

    2004-01-01

    The authors have experimented the application of the Failure Mode and Effect Analysis (FMEA) technique in a clinical laboratory. FMEA technique allows: a) to evaluate and measure the hazards of a process malfunction, b) to decide where to execute improvement actions, and c) to measure the outcome of those actions. A small sample of analytes has been studied: there have been determined the causes of the possible malfunctions of the analytical process, calculating the risk probability index (RPI), with a value between 1 and 1,000. Only for the cases of RPI > 400, improvement actions have been implemented that allowed a reduction of RPI values between 25% to 70% with a costs increment of < 1%. FMEA technique can be applied to the processes of a clinical laboratory, even if of small dimensions, and offers a high potential of improvement. Nevertheless, such activity needs a thorough planning because it is complex, even if the laboratory already operates an ISO 9000 Quality Management System.

  17. Tabletop Models for Electrical and Electromagnetic Geophysics.

    ERIC Educational Resources Information Center

    Young, Charles T.

    2002-01-01

    Details the use of tabletop models that demonstrate concepts in direct current electrical resistivity, self-potential, and electromagnetic geophysical models. Explains how data profiles of the models are obtained. (DDR)

  18. 36 CFR 1256.62 - Geological and geophysical information relating to wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical... MATERIALS General Restrictions § 1256.62 Geological and geophysical information relating to wells. (a) In accordance with 5 U.S.C. 552(b)(9), NARA may withhold information in records that relates to geological and...

  19. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  20. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.; Buesch, David C.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  1. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  2. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †

    PubMed Central

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  3. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  4. Assessment of geothermal energy potential by geophysical methods: Nevşehir Region, Central Anatolia

    NASA Astrophysics Data System (ADS)

    Kıyak, Alper; Karavul, Can; Gülen, Levent; Pekşen, Ertan; Kılıç, A. Rıza

    2015-03-01

    In this study, geothermal potential of the Nevşehir region (Central Anatolia) was assessed by using vertical electrical sounding (VES), self-potential (SP), magnetotelluric (MT), gravity and gravity 3D Euler deconvolution structure analysis methods. Extensive volcanic activity occurred in this region from Upper Miocene to Holocene time. Due to the young volcanic activity Nevşehir region can be viewed as a potential geothermal area. We collected data from 54 VES points along 5 profiles, from 28 MT measurement points along 2 profiles (at frequency range between 320 and 0.0001 Hz), and from 4 SP profiles (total 19 km long). The obtained results based on different geophysical methods are consistent with each other. Joint interpretation of all geological and geophysical data suggests that this region has geothermal potential and an exploration well validated this assessment beyond doubt.

  5. Geophysical investigations of well fields to characterize fractured-bedrock aquifers in southern New Hampshire

    USGS Publications Warehouse

    Degnan, James R.; Moore, Richard Bridge; Mack, Thomas J.

    2001-01-01

    , characterizations, and interpretations. Lineament data, developed as a part of a statewide and regional scale investigation of the bedrock aquifer, were available to identify potential near-vertical fracture zones. Geophysical surveys indicated fracture zones coincident with lineaments at 4 of the sites. Geologic data collected as a part of the regional scale investigation provided outcrop fracture measurements, ductile fabric, and contact information. Dominant fracture trends correspond to the trends of geophysical anomalies at 4 of the sites. Water-well drillers? logs from water supply and environmental data sets also were used where available to characterize sites. Regional overburden information was compiled from stratified-drift aquifer maps and surficial-geological maps.

  6. Quantitative Analysis of Piezoelectric and Seismoelectric Anomalies in Subsurface Geophysics

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2017-04-01

    , A., 2000, Seismic-electric effect method on guided and reflected waves. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 25, No.4, 333-336. Butler, K.E., Russell, R.D., Kepic A.W. and Maxwell, M., 1994. Mapping of a stratigraphic boundary by its seismoelectric response. SAGEEP '94 Conference Proceedings, 689-699. Eppelbaum, L.V., 2010. Archaeological geophysics in Israel: Past, Present and Future. Advances in Geosciences, 24, 45-68. Dupuis, J.C., Butler, K.E., Kepic, A.W. and Harris, B.D., 2009. Anatomy of a seismoelectric conversion: Measurements and conceptual modeling in boreholes penetrating a sandy aquifer. Journal of Geophysical Research, 114, B10306, doi:10.1029/2008JB005939 Eppelbaum, L.V., 2011. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, 36, No. 16, 1318-1330. Eppelbaum, L.V., 2014. Geophysical observations at archaeological sites: Estimating informational content. Archaeological Prospection, 21, No. 2, 25-38. Eppelbaum, L.V., 2015. Quantitative interpretation of magnetic anomalies from thick bed, horizontal plate and intermediate models under complex physical-geological environments in archaeological prospection. Archaeological Prospection, 23, No. 2, 255-268. Eppelbaum, L.V., Alperovich, L., Zheludev, V. and Pechersky, A., 2011. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed. of the 2011 SAGEEP Conference, Charleston, South Carolina, USA, 24, 24-60. Eppelbaum, L.V., Itkis, S.E. and Khesin, B.E., 2000. Optimization of magnetic investigations in the archaeological sites in Israel, In: Special Issue of Prospezioni Archeologiche "Filtering, Modeling and Interpretation of Geophysical Fields at Archaeological Objects", 65-92. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2001. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli

  7. Field gamma-ray spectrometer GS256: measurements stability

    NASA Astrophysics Data System (ADS)

    Mojzeš, Andrej

    2009-01-01

    The stability of in situ readings of the portable gamma-ray spectrometer GS256 during the field season of 2006 was studied. The instrument is an impulse detector of gamma rays based on NaI(Tl) 3" × 3" scintillation unit and 256-channel spectral analyzer which allows simultaneous assessment of up to 8 radioisotopes in rocks. It is commonly used in surface geophysical survey for the measurement of natural 40K, 238U and 232Th but also artificial 137Cs quantities. The statistical evaluation is given of both repeated measurements - in the laboratory and at several field control points in different survey areas. The variability of values shows both the instrument stability and also the relative influence of some meteorological factors, mainly rainfalls. The analysis shows an acceptable level of instrument measurements stability, the necessity to avoid measurement under unfavourable meteorological conditions and to keep detailed field book information about time, position and work conditions.

  8. Borehole-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut

    USGS Publications Warehouse

    Johnson, Carole D.; Haeni, F.P.; Lane, John W.; White, Eric A.

    2002-01-01

    boreholes, the foliation strikes predominantly to the northwest and dips to the northeast. Although small-scale faults and lithologic discontinuities were observed in the OTV data, no large-scale faults were observed that appear on regional geologic maps. Fractures were located and characterized through the use of conventional geophysical, OTV, acoustic-televiewer (ATV), and borehole-radar logs. The orientation of fractures varies considerably across the site; some fractures are parallel to the foliation, whereas others cross-cut the foliation. Many of the transmissive fractures in the bedrock boreholes strike about N170?E and N320?E with dips of less than 45?. Other transmissive fractures strike about N60?E with dips of more than 60?. Most of the transmissive fractures in the domestic wells strike about N60?E and N22?E with dips of more than 45?. The strike of N60?E is parallel to the trend of a thrust fault that appears on regional geologic maps. Vertical flow in the boreholes was measured with the heat-pulse flowmeter under ambient and (or) pumping conditions. Results of ATV, OTV, and conventional logs were used to locate specific zones for flowmeter testing. Ambient downflow was measured in three boreholes, ambient upflow was measured in two other boreholes, and both ambient downflow and upflow were measured in a sixth borehole. The other five bedrock boreholes and domestic wells did not have measurable vertical flow. The highest rate of ambient flow was measured in the background borehole in which upflow and downflow converged and exited the borehole at a fracture zone near a depth of 62 feet. Ambient flow of about 340 gallons per day was measured. In the other five wells, ambient flow of about 20 to 35 gallons per day was measured. Under low-rate pumping (0.25 to 1 gallon per minute), one to six inflow zones were identified in each well. Usually the fractures that are active under ambient conditions contribute to the well under pumping conditions. To prevent

  9. Redesigning Curricula in Geology and Geophysics

    NASA Astrophysics Data System (ADS)

    Sparks, D. W.; Ewing, R. C.; Fowler, D.; Macik, M.; Marcantonio, F.; Miller, B.; Newman, J.; Olszewski, T.; Reece, R.; Rosser, S.

    2015-12-01

    In the summer of 2014, the Texas A&M Department of Geology and Geophysics partnered with the Texas A&M Center for Teaching Excellence to implement TAMU's curriculum revision process: a data-informed, faculty-driven, educational-developer-supported rebuilding of our degree programs and course offerings. The current curricula (B.S. and B.A. in Geology, B.S. in Geophysics) were put into place in 1997, following the merger of two separate departments. The needs and capabilities of the Department and the student body have changed significantly since that time: more than 50% turnover of the faculty, a rapidly-changing job climate for geologists and geophysicists, and a nearly five-fold increase in the undergraduate population to over 500 majors in Fall 2015. Surveys of former students, employers and faculty at other universities revealed more reasons to address the curriculum. Some of the most desired skills are also those at which our graduates feel and are perceived to be least prepared: oral communication and the ability to learn software packages (skills that are most challenging to teach with growing class sizes). The challenge facing the Department is to accommodate growing student numbers while maintaining strength in traditional instructor-intensive activities such as microscopy and field mapping, and also improving our graduates' non-geological skills (e.g., communication, software use, teamwork, problem-solving) to insulate them from volatility in the current job market. We formed the Curriculum Study Group, consisting of faculty, graduate students, advisors and curriculum experts, to gather and analyze data and define the knowledge and skill base a graduate of our department must have. In addition to conducting external surveys, this group interviewed current students and faculty to determine the strengths and weaknesses of our program. We developed program learning goals that were further specified into over fifty criteria. For each criteria we defined

  10. A comparison of soil moisture characteristics predicted by the Arya-Paris model with laboratory-measured data

    NASA Technical Reports Server (NTRS)

    Arya, L. M.; Richter, J. C.; Davidson, S. A. (Principal Investigator)

    1982-01-01

    Soil moisture characteristics predicted by the Arya-Paris model were compared with the laboratory measured data for 181 New Jersey soil horizons. For a number of soil horizons, the predicted and the measured moisture characteristic curves are almost coincident; for a large number of other horizons, despite some disparity, their shapes are strikingly similar. Uncertainties in the model input and laboratory measurement of the moisture characteristic are indicated, and recommendations for additional experimentation and testing are made.

  11. Geophysical investigations in the 100 Areas: Fiscal year 1991 through December 1993

    NASA Astrophysics Data System (ADS)

    Mitchell, T. H.

    1994-09-01

    The geophysical investigations identified in this document were conducted by the Westinghouse Hanford Company (WHC) Surface Geophysics Team, Geophysics Group, between October, 1991 and December, 1993. The investigations supported 100-Area activities for the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensations and Liability Act of 1980 (CERCLA). The primary intent of this document is to provide a general map location and the associated document number for investigations that have been conducted as of December, 1993. The results of the individual investigations are not included here. The results of all of these investigations have been previously reported individually in WHC supporting documents. The investigations conducted during Fiscal Year (FY) 1992 are summarized in a single WHC document, WHC-SD-EN-TI-204, Rev. O. A brief summary of some of the successful applications of geophysics in the 100-Areas is included.

  12. Micronaire measurements on seedcotton and cotton fiber, in and outside of laboratory using micro nir-infrared instruments

    USDA-ARS?s Scientific Manuscript database

    Micronaire is a key quality parameter in cotton fiber. NIR-spectroscopy has the ability to measure micronaire in and out of the laboratory. New very small micronaire instruments have recently been introduced. A program was established to measure micronaire in and outside the laboratory on seed cotto...

  13. EPA/ORD NATIONAL EXPOSURE RESEARCH LABORATORY MEASUREMENT SCIENCE SUPPORT FOR HOMELAND SECURITY

    EPA Science Inventory

    This product describes the National Exposure Research Laboratory research and development support for homeland security through the proposed National Exposure Measurements Center (NEMC). Key NEMC functional areas depicted in this poster are: standardized analytical method develo...

  14. Measuring the Transition Temperature of a Superconductor in a Pre-University Laboratory

    ERIC Educational Resources Information Center

    Ireson, Gren

    2006-01-01

    This article presents the methodology and results for a simple approach to the measurement of the transition temperature of a superconducting material, in a pre-university laboratory session, using readily available apparatus (and some liquid nitrogen).

  15. Laboratory test results for an airborne ASTER simulator

    NASA Astrophysics Data System (ADS)

    Ezaka, Teruya; Kannari, Yoshiaki; Mills, Franklin P.; Watanabe, Hiroshi; Sano, Masaharu; Chang, Sheng-Huei

    1993-08-01

    An airborne ASTER simulator (AAS) is being developed by the Geophysical Environmental Research Corporation (GER) to study land surface temperature and emittance in the thermal infrared. Laboratory tests in October 1992 at NASA's Stennis Space Center (SSC) measured the AAS's spectral, approximate NEdT, and approximate spatial response characteristics. The spectral FWHM for most channels is smaller than 0.3 micrometers ; the NEdT for most TIR channels is better than 0.4 K; and the nominal IFOV is 5 mrad. Flight data was collected over Cuprite and Goldfield, Nevada and near Valencia, California in November 1992. The silicified and opalized zones at Cuprite could be discriminated using decorrelation-stretch images. AAS decorrelation-stretch images agree, qualitatively, with data from NASA's thermal infrared mapping spectrometer (TIMS). These results indicate the AAS may be a good tool for remote sensing studies of geological materials. Lower noise detector arrays and linear variable (optical) filters for the TIR channels will be tested in flights over Cuprite, Nevada later this year. These and other improvements may reduce the NEdT and improve the signal-to-noise ratio.

  16. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction

  17. Possibilities for measuring cotton in the field and outside the laboratory: for breeding, production, ginning, the warehouse

    USDA-ARS?s Scientific Manuscript database

    Cotton is often classified using high volume instrumentation. Although accurate, these laboratory systems require strict laboratory conditions, well trained operators, and are expensive. Much interest has been shown in non-laboratory measurements in situations not related to classing or commercial...

  18. Routine internal- and external-quality control data in clinical laboratories for estimating measurement and diagnostic uncertainty using GUM principles.

    PubMed

    Magnusson, Bertil; Ossowicki, Haakan; Rienitz, Olaf; Theodorsson, Elvar

    2012-05-01

    Healthcare laboratories are increasingly joining into larger laboratory organizations encompassing several physical laboratories. This caters for important new opportunities for re-defining the concept of a 'laboratory' to encompass all laboratories and measurement methods measuring the same measurand for a population of patients. In order to make measurement results, comparable bias should be minimized or eliminated and measurement uncertainty properly evaluated for all methods used for a particular patient population. The measurement as well as diagnostic uncertainty can be evaluated from internal and external quality control results using GUM principles. In this paper the uncertainty evaluations are described in detail using only two main components, within-laboratory reproducibility and uncertainty of the bias component according to a Nordtest guideline. The evaluation is exemplified for the determination of creatinine in serum for a conglomerate of laboratories both expressed in absolute units (μmol/L) and relative (%). An expanded measurement uncertainty of 12 μmol/L associated with concentrations of creatinine below 120 μmol/L and of 10% associated with concentrations above 120 μmol/L was estimated. The diagnostic uncertainty encompasses both measurement uncertainty and biological variation, and can be estimated for a single value and for a difference. This diagnostic uncertainty for the difference for two samples from the same patient was determined to be 14 μmol/L associated with concentrations of creatinine below 100 μmol/L and 14 % associated with concentrations above 100 μmol/L.

  19. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Seitzer, Pat; Abercromby, Kira; Barker, Ed; Schildknecht, Thomas

    2010-01-01

    Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary objective for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The data acquired in the OMC are a function of known shape, size, and material. These three physical parameters are key to understanding the orbital debris environment in more depth. For optical observations, one must rely on spectroscopic or photometric measurements to ascertain an object's material type. Determination of an object s shape using remote observations is more complicated due to the various light scattering properties each object present and is a subject that requires more study. It is much easier to look at the periodicity of the light curve and analyze its structure for rotation. In order to best simulate the orbital debris population, three main sources were used as test fragments for optical measurements: flight-ready materials, destructive hypervelocity testing (simulating on-orbit collisions) and destructive pressure testing (simulating on-orbit explosions). Laboratory optical characteristics of fragments were measured, including light curve shape, phase angle dependence, and photometric and spectroscopic color indices. These characteristics were then compared with similar optical measurements acquired from telescopic observations in order to correlate remote and laboratory properties with the intent of ascertaining the intrinsic properties of the observed orbital debris

  20. Toward Improvements in Inter-laboratory Calibration of Argon Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; Deino, A. L.; Heizler, M. T.; Hodges, K. V.; McIntosh, W. C.; Renne, P. R.; Swisher, C. C., III; Turrin, B. D.; Van Soest, M. C.

    2015-12-01

    It is important to continue to develop strategies to improve our ability to compare results between laboratories chronometers. The U-Pb community has significantly reduced inter-laboratory biases with the application of a community tracer solution and the distribution of synthetic zircon solutions. Inevitably sample selection and processing and even biases in interpretations will still lead to some disagreements in the assignment of ages. Accordingly natural samples that are shared will be important for achievement of the highest levels of agreement. Analogous improvements in quality and inter-laboratory agreement of analytical aspects of Ar-Ar can be achieved through development of synthetic age standards in gas canisters with multiple pipettes to deliver various controlled amounts of argon to the mass spectrometer. A preliminary proof-of concept comes from the inter-laboratory calibration experiment for the 40Ar/39Ar community. This portable Argon Pipette Intercalibration System (APIS) consists of three 2.7 L canisters each equipped with three pipettes of 0.1, 0.2 and 0.4 cc volumes. The currently traveling APIS has the three canisters filled with air and 40Ar*/39Ar of 1.73 and canister 2 has a 40Ar*/39Ar of 40.98 (~ Alder Creek and Fish Canyon in the same irradiation). With these pipettes it is possible to combine them to provide 0.1, 0.2, 0.3 (0.1+0.2), 0.4, 0.5 (0.1+0.4), 0.6 (0.2+0.4), and 0.7 (0.1+0.2+0.4) cc. The configuration allows a simple test for inter-laboratory biases and for volume/pressure dependent mass fractionation on the measured ratios for a gas with a single argon isotope composition. Although not yet tested, it is also possible to mix gas from any one of the three canisters in proportions of these increments, allowing even more tightly controlled calibration of measurements. We suggest that ultimately each EARTHTIME lab should be equipped with such a system permanently, with a community plan for a traveling system to periodically repeat the