Sample records for laboratory measurements ph

  1. Investigation of differences between field and laboratory pH measurements of national atmospheric deposition program/national trends network precipitation samples

    USGS Publications Warehouse

    Latysh, N.; Gordon, J.

    2004-01-01

    A study was undertaken to investigate differences between laboratory and field pH measurements for precipitation samples collected from 135 weekly precipitation-monitoring sites in the National Trends Network from 12/30/1986 to 12/28/1999. Differences in pH between field and laboratory measurements occurred for 96% of samples collected during this time period. Differences between the two measurements were evaluated for precipitation samples collected before and after January 1994, when modifications to sample-handling protocol and elimination of the contaminating bucket o-ring used in sample shipment occurred. Median hydrogen-ion and pH differences between field and laboratory measurements declined from 3.9 ??eq L-1 or 0.10 pH units before the 1994 protocol change to 1.4 ??eq L-1 or 0.04 pH units after the 1994 protocol change. Hydrogen-ion differences between field and laboratory measurements had a high correlation with the sample pH determined in the field. The largest pH differences between the two measurements occurred for high-pH samples (>5.6), typical of precipitation collected in Western United States; however low- pH samples (<5.0) displayed the highest variability in hydrogen-ion differences between field and laboratory analyses. Properly screened field pH measurements are a useful alternative to laboratory pH values for trend analysis, particularly before 1994 when laboratory pH values were influenced by sample-collection equipment.

  2. Diagnosis of complicated parapneumonic effusion by pleural pH measurement is jeopardized by inadequate physician knowledge and guideline-discordant laboratory practice.

    PubMed

    Ng, Lauren; Dabscheck, Eli; Hew, Mark

    2017-01-01

    Pleural fluid pH is a crucial determinant of complicated parapneumonic effusion diagnosis and the need for drainage. It is best measured by blood gas analyzer. We examined whether physicians were aware of this, and whether their laboratories measured pleural pH according to their expectations. Only 53% of physicians understood the need for blood gas analyzer measurements, only 50% of laboratories used blood gas analyzers, and only 35% of physicians correctly identified the method performed in their laboratory. Diagnosis of complicated parapneumonic effusion is jeopardized by inadequate physician knowledge and guideline-discordant laboratory practice. We recommend cooperation between thoracic and biochemistry specialty societies to rectify this issue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Improved reliability of pH measurements.

    PubMed

    Spitzer, Petra; Werner, Barbara

    2002-11-01

    Measurements of pH are performed on a large scale at laboratory level, and in industry. To meet the quality-control requirements and other technical specifications there is a need for traceability in measurement results. The prerequisite for the international acceptance of analytical data is reliability. To measure means to compare. Comparability entails use of recognised references to which the standard buffer solutions used for calibration of pH meter-electrode assemblies can be traced. The new recommendation on the measurement of pH recently published as a provisional document by the International Union on Pure and Applied Chemistry (IUPAC) enables traceability for measured pH values to a conventional reference frame which is recognised world-wide. The primary method for pH will be described. If analytical data are to be accepted internationally it is necessary to demonstrate the equivalence of the national traceability structures, including national measurement standards. For the first time key comparisons for pH have been performed by the Consultative Committee for Amount of Substance (CCQM, set up by the International Bureau of Weights and Measures, BIPM) to assess the equivalence of the national measurement procedures used to determine the pH of primary standard buffer solutions. The results of the first key comparison on pH CCQM-K9, and other international initiatives to improve the consistency of the results of measurement for pH, are reported.

  4. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  5. Measuring pleural fluid pH: high correlation of a handheld unit to a traditional tabletop blood gas analyzer.

    PubMed

    Kohn, G L; Hardie, W D

    2000-12-01

    STUDY PURPOSES: To survey hospital laboratories in the United States to determine methods used for measuring pleural fluid pH, and to compare pleural fluid pH values obtained with a traditional tabletop blood gas analyzer (BGA) to those obtained with a handheld analyzer. Hospital laboratories nationwide were contacted by telephone to survey the methods used to measure pleural fluid pH. In a second phase, pleural fluid was prospectively collected from 19 pediatric and adult patients with pleural effusions, and pleural fluid pH was measured simultaneously with a traditional tabletop BGA and with a handheld unit. A total of 220 hospital laboratories were contacted by telephone, and 166 responded (75%). The methods for determining pleural fluid pH for all hospital laboratories were pH meter (35%; n = 59), BGA (32%; n = 53), and litmus paper (31%: n = 51); 2% (n = 3) did not perform the test. University hospitals were more likely to use a BGA, compared to community hospitals (p < 0.014) or children's hospitals (p < 0.001). In the comparison of pleural fluid measurements, the mean pH for the traditional BGA was 7.358 +/- 0.189, and the mean pH for the handheld unit was 7.382 +/- 0.203. The absolute difference between the two machines was 0.024 U, and the two methods were correlated (p < 0.01; r = 0.993; degrees of freedom = 36). Most hospital laboratories in the United States do not measure pleural fluid pH using a traditional BGA and use alternative methods that have previously been shown to be inaccurate. Pleural fluid pH obtained by a handheld unit has a high degree of correlation to that of a traditional tabletop BGA, and it offers a satisfactory alternative for laboratories reluctant to measure pleural fluid pH with a BGA.

  6. What is the best method to evaluate urine pH? A trial of three urinary pH measurement methods in a stone clinic.

    PubMed

    Ilyas, Rebecca; Chow, Karyee; Young, J Graham

    2015-01-01

    Monitoring of urinary pH is an important part of the assessment of patients with urinary tract stones. It provides valuable information about the future stone risk of certain patients and further allows the effective tailoring of medical intervention. Accurate measurement is therefore essential in these patients. The purpose of this study was to determine the most accurate method of measuring urinary pH in an outpatient setting. Materials, Methods, and Participants: Urine samples were collected from 200 patients attending stone clinics at The University Hospital of South Manchester. pH was measured by three commonly used methods: Siemens Clinitek Status pH meter, a hand-held pH meter, and litmus paper read visually. Results were compared with readings simultaneously obtained from a bench-top laboratory pH machine, which is the reference method for pH measurement. The pH readings obtained were analyzed using the Bland-Altman plot. When compared with the reference method, the hand-held pH meter differed the least with a mean bias of 0.0073 and a maximum under-read of -0.2 pH units and maximum over-read of +0.2 pH units. The Siemens Clinitek pH meter differed most with a mean bias of -0.108, with a maximum over-read of +0.99 pH units and a maximum under-read of 0.78 pH units. The pH values obtained with the litmus paper gave similar results to that of the Clinitek pH meter with a mean bias of -0.069, with a maximum over-read of 0.96 and maximum under-read of 0.82 pH units. The hand-held pH device gave urinary pH readings that most closely and consistently matched those of the reference bench-top laboratory machine. This method of pH measurement should be considered in stone clinics in patients with pH-dependent stone risk.

  7. Laboratory measurements of the W band (3.2 mm) properties of phosphine (PH3) and ammonia (NH3) under simulated conditions for the outer planets

    NASA Astrophysics Data System (ADS)

    Mohammed, Priscilla N.; Steffes, Paul G.

    2004-07-01

    A model, based on the Van Vleck-Weisskopf line shape, was developed for the centimeter-wavelength opacity of PH3, which provides an order of magnitude improvement over previous models [Hoffman et al., 2001]. New laboratory measurements indicate that the model is also accurate at 94 GHz (3.2 mm) under conditions for the outer planets. Measurements of the opacity and refractivity of PH3 in a hydrogen/helium (H2/He) atmosphere were conducted at 94 GHz (3.2 mm) at pressures of 0.5 and 2 bars and at temperatures of 293 K and 213 K. Additionally, new high-precision laboratory measurements of the opacity and refractivity of NH3 in an H2/He atmosphere were conducted at the same frequency at pressures from 0.5 to 2 bars and at temperatures of 204 K, 211 K, and 290 K. Results show that existing models, which predict NH3 opacity in an H2/He environment, understate the absorption due to the pressure broadened rotational lines. A new model is proposed for use at 94 GHz (3.2 mm) which uses a Ben-Reuven line shape [Ben-Reuven, 1966] for the inversion lines and a Kinetic line shape [Gross, 1955] for the rotational lines. Results of measurements of both PH3 and NH3 can be used to better interpret maps of Saturn's emission at this wavelength and can potentially be used to deduce spatial variations in the abundances of both gases in the atmosphere of Saturn.

  8. Measurement of the Extracellular pH of Adherently Growing Mammalian Cells with High Spatial Resolution Using a Voltammetric pH Microsensor.

    PubMed

    Munteanu, Raluca-Elena; Stǎnicǎ, Luciana; Gheorghiu, Mihaela; Gáspár, Szilveszter

    2018-05-15

    There are only a few tools suitable for measuring the extracellular pH of adherently growing mammalian cells with high spatial resolution, and none of them is widely used in laboratories around the world. Cell biologists very often limit themselves to measuring the intracellular pH with commercially available fluorescent probes. Therefore, we built a voltammetric pH microsensor and investigated its suitability for monitoring the extracellular pH of adherently growing mammalian cells. The voltammetric pH microsensor consisted of a 37 μm diameter carbon fiber microelectrode modified with reduced graphene oxide and syringaldazine. While graphene oxide was used to increase the electrochemically active surface area of our sensor, syringaldazine facilitated pH sensing through its pH-dependent electrochemical oxidation and reduction. The good sensitivity (60 ± 2.5 mV/pH unit), reproducibility (coefficient of variation ≤3% for the same pH measured with 5 different microsensors), and stability (pH drift around 0.05 units in 3 h) of the built voltammetric pH sensors were successfully used to investigate the acidification of the extracellular space of both cancer cells and normal cells. The results indicate that the developed pH microsensor and the perfected experimental protocol based on scanning electrochemical microscopy can reveal details of the pH regulation of cells not attainable with pH sensors lacking spatial resolution or which cannot be reproducibly positioned in the extracellular space.

  9. ISFET sensor evaluation and modification for seawater pH measurement

    NASA Astrophysics Data System (ADS)

    Martz, T. R.; Johnson, K. S.; Jannasch, H.; Coletti, L.; Barry, J.; Lovera, C.

    2008-12-01

    In the future, short-term cycles (daily to subannual) and long-term trends (annual and greater) in the carbonate system will be observed by autonomous sensors operating from a variety of platforms (e.g., moorings, profiling floats, AUVs, etc.). Of the four carbonate parameters, pH measurement has the longest history of development - yet robust autonomous sensing techniques remain elusive due to a catalog of technical challenges. Existing commercial sensor technologies generally do not meet the stringent demands of accuracy, long-term stability, low power, pressure tolerance, resistance to biofouling, and ease of use required by the oceanographic community. We report here on some recent advances in Ion Sensitive Field Effect Transistor (ISFET) technology that may open the door for more widespread autonomous seawater pH measurements. Much of our work has focused on applications of the Honeywell Durafet pH sensor, a product designed for industrial process control. Initial results from laboratory testing and deployments in the MBARI test tank and near shore moorings will be presented. Sensor calibration techniques will be addressed. Applications of now-available off-the-shelf sensors including shipboard underway measurement, shallow water mooring deployment, and a gas controlled seawater aquarium for pH perturbation experiments will be discussed. We hope that an ongoing collaboration between MBARI and Honeywell will result in a commercially available product, designed specifically for oceanographic applications, within the next several years.

  10. Characterisation and deployment of an immobilised pH sensor spot towards surface ocean pH measurements.

    PubMed

    Clarke, Jennifer S; Achterberg, Eric P; Rérolle, Victoire M C; Abi Kaed Bey, Samer; Floquet, Cedric F A; Mowlem, Matthew C

    2015-10-15

    The oceans are a major sink for anthropogenic atmospheric carbon dioxide, and the uptake causes changes to the marine carbonate system and has wide ranging effects on flora and fauna. It is crucial to develop analytical systems that allow us to follow the increase in oceanic pCO2 and corresponding reduction in pH. Miniaturised sensor systems using immobilised fluorescence indicator spots are attractive for this purpose because of their simple design and low power requirements. The technology is increasingly used for oceanic dissolved oxygen measurements. We present a detailed method on the use of immobilised fluorescence indicator spots to determine pH in ocean waters across the pH range 7.6-8.2. We characterised temperature (-0.046 pH/°C from 5 to 25 °C) and salinity dependences (-0.01 pH/psu over 5-35), and performed a preliminary investigation into the influence of chlorophyll on the pH measurement. The apparent pKa of the sensor spots was 6.93 at 20 °C. A drift of 0.00014 R (ca. 0.0004 pH, at 25 °C, salinity 35) was observed over a 3 day period in a laboratory based drift experiment. We achieved a precision of 0.0074 pH units, and observed a drift of 0.06 pH units during a test deployment of 5 week duration in the Southern Ocean as an underway surface ocean sensor, which was corrected for using certified reference materials. The temperature and salinity dependences were accounted for with the algorithm, R=0.00034-0.17·pH+0.15·S(2)+0.0067·T-0.0084·S·1.075. This study provides a first step towards a pH optode system suitable for autonomous deployment. The use of a short duration low power illumination (LED current 0.2 mA, 5 μs illumination time) improved the lifetime and precision of the spot. Further improvements to the pH indicator spot operations include regular application of certified reference materials for drift correction and cross-calibration against a spectrophotometric pH system. Desirable future developments should involve novel

  11. Online PH measurement technique in seawater desalination

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Wu, Kaihua; Hu, Shaopeng

    2009-11-01

    The measurement technology of pH is essential in seawater desalination. Glass electrode is the main pH sensor in seawater desalination. Because the internal impedance of glass electrode is high and the signal of pH sensor is easy to be disturbed, a signal processing circuit with high input impedance was designed. Because of high salinity of seawater and the characteristic of glass electrode, ultrasonic cleaning technology was used to online clean pH sensor. Temperature compensation was also designed to reduce the measurement error caused by variety of environment temperature. Additionally, the potential drift of pH sensor was analyzed and an automatic calibration method was proposed. In order to online monitor the variety of pH in seawater desalination, three operating modes were designed. The three modes are online monitoring mode, ultrasonic cleaning mode and auto-calibration mode. The current pH in seawater desalination was measured and displayed in online monitoring mode. The cleaning process of pH sensor was done in ultrasonic cleaning mode. The calibration of pH sensor was finished in auto-calibration mode. The result of experiments showed that the measurement technology of pH could meet the technical requirements for desalination. The glass electrode could be promptly and online cleaned and its service life was lengthened greatly.

  12. The measure of treatment agreement between portable and laboratory blood gas measurements in guiding protocol-driven ventilator management.

    PubMed

    Thomas, Frank O; Hoffman, Terri L; Handrahan, Diana L; Crapo, Robert O; Snow, Greg

    2009-08-01

    Portable blood gas analyzer and monitor devices are increasingly being used to direct ventilator therapy. The purpose of this study was to evaluate the "measure of treatment agreement" between portable and laboratory blood gas measurements used in guiding protocol-driven ventilator management. Using National Institutes of Health Acute Respiratory Distress Syndrome network ventilator management guidelines to manage patient care, measurements taken from the Nonin 8500 M pulse oximeter (SpO2), the Novametrix-610 end-tidal CO2 (ETCO2) detector, and the i-STAT 1 (SaO2, PO2, pH, PCO2) were compared with the recommended treatment from paired laboratory ABL-725 (SaCO2, PO2, pH, PCO2) measurements. Four hundred forty-six intubated adult intensive care unit patients were studied prospectively. Except for the ETCO2 (R2 = 0.460), correlation coefficients between portable and laboratory measurements were high (R2 > or = 0.755). Testing for equivalence, the Nonin-SpO2, iSTAT-PO2, iSTAT-pH, and iSTAT-PCO2 were deemed "equivalent" surrogates to paired ABL measurements. Testing for the limits of agreement found only the iSTAT-PCO2 to be an acceptable surrogate measurement. The measure of treatment agreement between the portable and paired laboratory blood gas measurements were Nonin-SpO2 (68%), iSTAT-SaO2 (73%), iSTAT-PO2 (97%), iSTAT-pH (88%), iSTAT-PCO2 (95%), and Novametrix-ETCO2 (60%). Only the iSTAT-PO2 and the iSTAT-PCO2 achieved the > or =95% treatment agreement threshold to be considered as acceptable surrogates to laboratory measurements. : The iSTAT-PO2 and -PCO2 were portable device measurements acceptable as surrogates to standard clinical laboratory blood gas measurements in guiding protocol-directed ventilator management. The "measure of treatment agreement," based on standardized decisions and measurement thresholds of a protocol, provides a simple method for assessing clinical validity of surrogate measurements.

  13. Clinical utility of pH paper versus pH meter in the measurement of critical gastric pH in stress ulcer prophylaxis.

    PubMed

    Bradley, J S; Phillips, J O; Cavanaugh, J E; Metzler, M H

    1998-11-01

    To evaluate the clinical utility of measuring gastric pH with a pH meter vs. pH paper in critical care patients. Prospective comparison of gastric pH measurements, using both pH meter and pH paper. Surgical intensive care unit (ICU) at a rural Midwestern university medical center. Fifty-one patients who received therapy for prophylaxis of stress ulcers in the surgical ICU. Therapy for stress ulcer prophylaxis was monitored. The pH of 985 gastric samples, taken from 51 patients, was measured with both pH meter and pH paper. The pH meter and pH paper measures demonstrated a concordance correlation coefficient of .896. The mean difference between the two measures (pH paper - pH meter) was estimated to be between -0.4 and 1.4, suggesting a positive bias for the paper. The prevalence of events representing clinically relevant differences between the pH meter and pH paper in the measurement of the same gastric sample was calculated. The frequency with which each of the events occurred consecutively (or, in one case, two nearly consecutive events on the same day) was also calculated. Bias in a clinically relevant range was estimated. A set of "probability profiles" was constructed. A hand-held pH meter and pH paper are not interchangeable measures of gastric pH. The pH paper exhibits an appreciable positive bias compared with a hand-held pH meter in the clinically relevant range of 2 to 6. More research is needed to determine if that bias affects treatment outcomes. We recommend the use of a pH meter for patients who demonstrate pH readings of < or = 4, consecutive with readings of < or = 5.

  14. Amperometric micro pH measurements in oxygenated saliva.

    PubMed

    Chaisiwamongkhol, Korbua; Batchelor-McAuley, Christopher; Compton, Richard G

    2017-07-24

    An amperometric micro pH sensor has been developed based on the chemical oxidation of carbon fibre surfaces (diameter of 9 μm and length of ca. 1 mm) to enhance the population of surface quinone groups for the measurement of salivary pH. The pH analysis utilises the electrochemically reversible two-electron, two-proton behaviour of surface quinone groups on the micro-wire electrodes. A Nernstian response is observed across the pH range 2-8 which is the pH range of many biological fluids. We highlight the measurement of pH in small volumes of biological fluids without the need for oxygen removal and specifically the micro pH electrode is examined by measuring the pH of commercial synthetic saliva and authentic human saliva samples. The results correspond well with those obtained by using commercial glass pH electrodes on large volume samples.

  15. Laboratory Activity on Sample Handling and Maintaining a Laboratory Notebook through Simple pH Measurements

    ERIC Educational Resources Information Center

    Erdmann, Mitzy A.; March, Joe L.

    2016-01-01

    Sample handling and laboratory notebook maintenance are necessary skills but can seem abstract if not presented to students in context. An introductory exercise focusing on proper sample handling, data collection and laboratory notebook keeping for the general chemistry laboratory was developed to emphasize the importance of keeping an accurate…

  16. Quality-assurance results for field pH and specific-conductance measurements, and for laboratory analysis, National Atmospheric Deposition Program and National Trends Network; January 1980-September 1984

    USGS Publications Warehouse

    Schroder, L.J.; Brooks, M.H.; Malo, B.A.; Willoughby, T.C.

    1986-01-01

    Five intersite comparison studies for the field determination of pH and specific conductance, using simulated-precipitation samples, were conducted by the U.S.G.S. for the National Atmospheric Deposition Program and National Trends Network. These comparisons were performed to estimate the precision of pH and specific conductance determinations made by sampling-site operators. Simulated-precipitation samples were prepared from nitric acid and deionized water. The estimated standard deviation for site-operator determination of pH was 0.25 for pH values ranging from 3.79 to 4.64; the estimated standard deviation for specific conductance was 4.6 microsiemens/cm at 25 C for specific-conductance values ranging from 10.4 to 59.0 microsiemens/cm at 25 C. Performance-audit samples with known analyte concentrations were prepared by the U.S.G.S.and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The differences between the National Atmospheric Deposition Program and national Trends Network-reported analyte concentrations and known analyte concentrations were calculated, and the bias and precision were determined. For 1983, concentrations of calcium, magnesium, sodium, and chloride were biased at the 99% confidence limit; concentrations of potassium and sulfate were unbiased at the 99% confidence limit. Four analytical laboratories routinely analyzing precipitation were evaluated in their analysis of identical natural- and simulated precipitation samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple-range test on data produced by these laboratories, from the analysis of identical simulated-precipitation samples. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Interlaboratory comparability results may be used to normalize natural-precipitation chemistry data obtained from two or more of these laboratories. (Author

  17. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  18. Noninvasive Ph-telemetric Measurement of Gastrointestinal Function

    NASA Technical Reports Server (NTRS)

    Tietze, Karen J.

    1991-01-01

    The purpose of this study was to gain experience with and validate the Heidelberg pH-telemetric methodology in order to determine if the pH-telemetric methodology would be a useful noninvasive measure of gastrointestinal transit time for future ground-based and in-flight drug evaluation studies. The Heidelberg pH metering system is a noninvasive, nonradioactive telemetric system that, following oral ingestion, continuously measures intraluminal pH of the stomach, duodenum, small bowel, ileocecal junction, and large bowel. Gastrointestinal motility profiles were obtained in normal volunteers using the lactulose breath-hydrogen and Heidelberg pH metering techniques. All profiles were obtained in the morning after an overnight fast. Heidelberg pH profiles were obtained in the fasting and fed states; lactulose breath-hydrogen profiles were obtained after a standard breakfast. Mouth-to-cecum transit time was measured as the interval from administration of lactulose (30 ml; 20 g) to a sustained increase in breath-hydrogen of 10 ppm or more. Gastric emptying time was measured as the interval from the administration of the Heidelberg capsule to a sustained increase in pH of three units or more.

  19. Evaluating nanoparticle sensor design for intracellular pH measurements.

    PubMed

    Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L

    2011-07-26

    Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.

  20. Characterizing the variation in pH measurements with apheresis platelets.

    PubMed

    Moroff, Gary; Seetharaman, Shalini; Kurtz, James; Wagner, Stephen J

    2011-11-01

    pH measurements of platelet (PLT) components remain a key parameter when assessing how storage and shipping conditions influence the retention of PLT properties. Studies were conducted to characterize variations in pH measured with two pH meters and a blood gas analyzer. Samples were obtained from apheresis PLT units that were stored with or without continuous agitation to measure a range of pH values. pH values were determined with pH meters at room temperature (20-24°C) upon placing of samples in 5-mL sterile polypropylene tubes and with the blood gas analyzer at 37°C upon injection of identical samples, with conversion to 22°C. The calculated coefficient of variation (%CV) of pH measurements using pH meters (n = 10) was 0.43% or less. The %CV values were comparable with different samples having pH values ranging from 6.0 to 7.4. The %CV levels with the blood gas analyzer were comparable to those observed with the pH meters. The difference in the mean pH values for the two pH meters was no greater than 0.10 units, with 9 of 10 samples having differences in values of 0.05 or less; however, greater differences of values (0.1 to 0.2) were observed between pH measured using the blood gas analyzer and pH meters. Our data show good precision and comparability of pH measurements with two pH meters. Differences in pH values were greater on comparison of the blood gas analyzer with the pH meters. © 2011 American Association of Blood Banks.

  1. In situ sensor technology for simultaneous spectrophotometric measurements of seawater total dissolved inorganic carbon and pH.

    PubMed

    Wang, Zhaohui Aleck; Sonnichsen, Frederick N; Bradley, Albert M; Hoering, Katherine A; Lanagan, Thomas M; Chu, Sophie N; Hammar, Terence R; Camilli, Richard

    2015-04-07

    A new, in situ sensing system, Channelized Optical System (CHANOS), was recently developed to make high-resolution, simultaneous measurements of total dissolved inorganic carbon (DIC) and pH in seawater. Measurements made by this single, compact sensor can fully characterize the marine carbonate system. The system has a modular design to accommodate two independent, but similar measurement channels for DIC and pH. Both are based on spectrophotometric detection of hydrogen ion concentrations. The pH channel uses a flow-through, sample-indicator mixing design to achieve near instantaneous measurements. The DIC channel adapts a recently developed spectrophotometric method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time of only ∼ 90 s. During laboratory and in situ testing, CHANOS achieved a precision of ±0.0010 and ± 2.5 μmol kg(-1) for pH and DIC, respectively. In situ comparison tests indicated that the accuracies of the pH and DIC channels over a three-week time-series deployment were ± 0.0024 and ± 4.1 μmol kg(-1), respectively. This study demonstrates that CHANOS can make in situ, climatology-quality measurements by measuring two desirable CO2 parameters, and is capable of resolving the CO2 system in dynamic marine environments.

  2. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode.

    PubMed

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recente pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered na inaccurate result. A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH.

  3. Comparison of pH measurements made using 31P NMR and a fibreoptic pH meter.

    PubMed

    Jayasundar, R; Hall, L D; Bleehen, N M

    1992-01-01

    The objective of this study was to compare pH measurements made in biological samples using 31P NMR (pHNMR) with those made with a novel, dye-based fibreoptic pH measurement system (pHF), which is compatible with use in electromagnetic fields without field perturbation. Using protein-free model solutions, pHNMR was calibrated against pHF, giving a correlation coefficient of 0.969 and a mean difference (+/- SD) between pHNMR and pHF of 0.037 +/- 0.054 over the pH range 6.8-7.7. Further calibration of pHNMR with pHF was carried out for human red blood lysates and then pHNMR was compared with pHF for whole, packed red blood cells over the pH range 7.0-7.8. Values for pHNMR, the intracellular pH, were consistently lower than for pHF, the extracellular pH, by a mean (+/- SD) of 0.15 +/- 0.02 units. A close correlation of extracellular pHNMR with pHF was demonstrated for a blood sample exhibiting two P(i) peaks, over the pH range 7.03-7.71. We conclude that concurrent use of NMR and the fibreoptic pH meter provides a reliable method of simultaneous measurement of intracellular and extracellular pH in biological systems.

  4. Fluorophotometric measurement of pH of human tears in vivo.

    PubMed

    Yamada, M; Mochizuki, H; Kawai, M; Yoshino, M; Mashima, Y

    1997-05-01

    To measure the pH in the precorneal tear film of humans in vivo using a pH-sensitive fluorescent dye, bis-carboxyethyl-carboxyfluorescein (BCECF). The measurement was initiated by instilling 1 microliter of 2 mM BCECF solution into the subject's eye. The pH was calculated by measuring the ratio of fluorescent intensities at two excitation wavelengths (490/430 ratio), which was dependent on pH, but independent of the dye concentration and other variables. The tears of the same subject were then collected and loaded on to a micro pH-meter to ensure the accuracy of the measurement. The mean pH values of 40 eyes from 20 healthy volunteers was 7.50 (SD +/- 0.23), which corresponded well with those measured by the micro pH-meter. The method described was useful in measuring the pH of the precorneal tear film of humans with minimal invasion.

  5. Biodiesel transesterification kinetics monitored by pH measurement.

    PubMed

    Clark, William M; Medeiros, Nicholas J; Boyd, Donal J; Snell, Jared R

    2013-05-01

    Quantification of a pH change that was observed over the course of the transesterification reaction that converts vegetable oil to biodiesel may provide a simple method to monitor the reaction. Transesterification of canola oil at 6:1 methanol to oil ratio with 0.5 wt.% KOH as catalyst was studied at 25, 35, and 45 °C. Reaction conversion was correlated to pH measurements and the results were shown to be in agreement with an independent measure of conversion using an enzymatic assay for glycerol. Rate constants obtained from these measurements are consistent with those in the literature. The measured pH change appears to be related to dilution of OH(-) ions as the oil is converted to products rather than to depletion of OH(-) due to reaction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Intestine pH measurements using fluorescence imaging: an in-vivo preliminary study

    NASA Astrophysics Data System (ADS)

    Marechal, Xavier-Marie; Mordon, Serge R.; Devoisselle, Jean-Marie; Begu, Sylvie; Mathieu, D.; Buys, Bruno; Dhelin, Guy; Lesage, Jean C.; Neviere, Remi; Chopin, Claude

    1999-02-01

    Measurement of gastrointestinal intramucosal pH has been recognized as an important factor in the detection of hypoxia-induced dysfunctions. However, current pH measurement techniques are limited in terms of time and spatial resolution. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-4,5- carboxyfluorescein (BCECF). This study aimed to demonstrate the feasibility of fluorescence imaging technique to measure in vivo the pH of intestine. The intestine was inserted in an optical chamber placed under a microscope. Animals were injected i.v. with the pH-sensitive fluorescent dye BCECF. Fluorescence was visualized by illuminating the intestine alternately at 490 and 470 nm. The emitted fluorescence was directed to an intensified camera. The ratio of emitted fluorescence at excitation wavelengths of 490 and 470 nm was measured, corrected and converted to pH by constructing a calibration curve. The pH controls were performed with a pH microelectrode correlated with venous blood gas sampling. We concluded that accurate pH measurements of rat intestine can be obtained by fluorescence imaging using BCECF. This technology could be easily adapted for endoscopic pH measurement.

  7. Is pH paper an acceptable, low-cost alternative to the blood gas analyzer for determining pleural fluid pH?

    PubMed

    Lesho, E P; Roth, B J

    1997-11-05

    Our laboratory uses pH paper rather than a blood gas analyzer to measure pleural fluid pH to decrease cost and avoid analyzer malfunction due to viscous fluids. To compare these two methods of determining pleural fluid pH, 42 patients undergoing diagnostic or therapeutic thoracentesis had two 1-mL aliquots of pleural fluid anaerobically collected in a heparinized syringe and placed on ice. pH measurements were made using litmus paper (pHydron Vivid 6-8 brand litmus paper; MicroEssential Labs; Brooklyn, NY) and the model 995-Hb blood gas analyzer (AVL Instruments; Roswell, GA) within 1 h of collection. Agreement analysis was performed in three ways: on the entire group; in subcategories of complicated or uncomplicated parapneumonic effusions (<7.1, 7.1 to 7.3, >7.3); and in subcategories of poor prognosis or better prognosis malignant effusions(<7.3, >7.3). pH measured with pH paper was significantly more variable (SD=0.55, coefficient of variation [CV]=7.5%) than was pH measured with the blood gas analyzer (SD=0.11, CV=1.5%). There was no significant correlation between values obtained with the two techniques (r=-0.26, SD of the differences=0.59). Using the pH subcategories, there was 72% discordance in classification between litmus paper and arterial blood gas (ABG) determinations for patients with parapneumonic effusions. In patients with malignant effusions, there was 30% discordance. The pH values obtained by the ABG analyzer predicted tube thoracostomy 72% of the time, whereas the pH values obtained using pH paper were consistent only 36% of the time. Determination of pleural fluid pH using pH paper is unreliable and should not be considered an acceptable alternative to the blood gas analyzer. There is no need to determine pH on purulent samples. Hospital laboratories will be more likely to allow the use of the ABG analyzer on fluids other than blood if clinicians keep this in mind.

  8. Growth of juvenile hard clams in Narragansett Bay after laboratory exposure to low pH

    EPA Science Inventory

    Ocean uptake of carbon dioxide is causing decreases in pH and the concentration of carbonate ions used by marine organisms during shell and skeletal formation. When these conditions are reproduced in laboratory environments and field enclosures, effects on biological rates such ...

  9. SIMPLE WAYS TO IMPROVE PH AND ALKALINITY MEASUREMENTS FOR WATER UTILITIES AND LABORATORIES

    EPA Science Inventory

    Both pH and total alkalinity determinations are critical in characterizing chemical properties of water, being important to implementing good process control, determining corrosivity and other water quality properties, and assessing changes in water characteristics. Poor charac...

  10. Potential of on-line visible and near infrared spectroscopy for measurement of pH for deriving variable rate lime recommendations.

    PubMed

    Tekin, Yücel; Kuang, Boyan; Mouazen, Abdul M

    2013-08-08

    This paper aims at exploring the potential of visible and near infrared (vis-NIR) spectroscopy for on-line measurement of soil pH, with the intention to produce variable rate lime recommendation maps. An on-line vis-NIR soil sensor set up to a frame was used in this study. Lime application maps, based on pH predicted by vis-NIR techniques, were compared with maps based on traditional lab-measured pH. The validation of the calibration model using off-line spectra provided excellent prediction accuracy of pH (R2 = 0.85, RMSEP = 0.18 and RPD = 2.52), as compared to very good accuracy obtained with the on-line measured spectra (R2 = 0.81, RMSEP = 0.20 and RPD = 2.14). On-line predicted pH of all points (e.g., 2,160) resulted in the largest overall field virtual lime requirement (1.404 t), as compared to those obtained with 16 validation points off-line prediction (0.28 t), on-line prediction (0.14 t) and laboratory reference measurement (0.48 t). The conclusion is that the vis-NIR spectroscopy can be successfully used for the prediction of soil pH and for deriving lime recommendations. The advantage of the on-line sensor over sampling with limited number of samples is that more detailed information about pH can be obtained, which is the reason for a higher but precise calculated lime recommendation rate.

  11. Potential of On-Line Visible and Near Infrared Spectroscopy for Measurement of pH for Deriving Variable Rate Lime Recommendations

    PubMed Central

    Tekin, Yücel; Kuang, Boyan; Mouazen, Abdul M.

    2013-01-01

    This paper aims at exploring the potential of visible and near infrared (vis-NIR) spectroscopy for on-line measurement of soil pH, with the intention to produce variable rate lime recommendation maps. An on-line vis-NIR soil sensor set up to a frame was used in this study. Lime application maps, based on pH predicted by vis-NIR techniques, were compared with maps based on traditional lab-measured pH. The validation of the calibration model using off-line spectra provided excellent prediction accuracy of pH (R2 = 0.85, RMSEP = 0.18 and RPD = 2.52), as compared to very good accuracy obtained with the on-line measured spectra (R2 = 0.81, RMSEP = 0.20 and RPD = 2.14). On-line predicted pH of all points (e.g., 2,160) resulted in the largest overall field virtual lime requirement (1.404 t), as compared to those obtained with 16 validation points off-line prediction (0.28 t), on-line prediction (0.14 t) and laboratory reference measurement (0.48 t). The conclusion is that the vis-NIR spectroscopy can be successfully used for the prediction of soil pH and for deriving lime recommendations. The advantage of the on-line sensor over sampling with limited number of samples is that more detailed information about pH can be obtained, which is the reason for a higher but precise calculated lime recommendation rate. PMID:23966186

  12. Nanosensor aided photoacoustic measurement of pH in vivo

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Yoon, Hyung Ki; Kopelman, Raoul; Wang, Xueding

    2013-03-01

    pH plays a critical role in many aspects of cell and tissues physiology. Lower pH is also a typical characteristic of arthritic joints and tumor tissues. These pH anomalies are also exploited in different drug delivery mechanisms. Here we present, a new method of pH sensing in vivo using spectroscopic photoacoustic measurements facilitated by pH sensitive nanosensors. The nanosensors consist of Seminaphtharhodafluor (SNARF), a pH sensitive dye, encapsulated in a specially designed polyacrylamide hydrogel matrix with a hydrophobic core. The photoacoustic intensity ratio between the excitation wavelengths of 585nm and 565nm increases in the pH range from 6.0 to 8.0 and is used to determine the pH of the local environment. These nanosensors are biodegradable, biocompatible, have a long plasma lifetime and can be targeted to any type of cells or tissues by surface modification using proper targeting moieties. The encapsulation of the dye prevents the interaction of the dye with proteins in plasma and also reduces the dye degradation. The SNARF dye in its free form loses 90% of its absorbance in presence of albumin, a protein found in abundance in plasma, and this has severely limited its adaptation to in vivo environments. In comparison, the SNARF nanosensors lose only 16% of their absorbance in the same environment. We employ these nanosensors to demonstrate the feasibility of pH sensing in vivo through photoacoustic measurements on a rat joint model.

  13. Measuring Phagosome pH by Ratiometric Fluorescence Microscopy

    PubMed Central

    Nunes, Paula; Guido, Daniele; Demaurex, Nicolas

    2015-01-01

    Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H+ is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized

  14. Comparison of two methods of measuring gastric pH.

    PubMed

    Neill, K M; Rice, K T; Ahern, H L

    1993-01-01

    To assess the agreement between two methods of measuring gastric pH in critically ill patients (multiple band litmus paper-tested aspirations versus a meter-read probe located in the tip of a nasogastric tube) and to compare nurse satisfaction with both methods of measuring pH. Prospective, correlational, nonprobability sample. Mid-Atlantic, semirural Veterans Affairs Medical Center. 39 male, surgical, critical care patients, who were nasogastrically intubated in the operating room and received nothing by mouth. NURSES: Twenty-seven registered nurses on the medical-surgical intensive care staff. Differences in pH units as determined by two methods of measurement and nurse satisfaction scores. Litmus paper-tested aspirations versus a meter-read probe located in the tip of the nasogastric tube, measured every 2 hours for 48 hours. A nurse satisfaction assessment form for both measurement methods at entry, 6 months, and 12 months. All measures of association, Pearson's r (0.79), the concordance coefficient (0.74), and eta (0.88), were high. The concordance coefficient measures indicated sufficient agreement between the two methods at the initial and 24 hour measurement times (Cb) = 0.97, 0.97, and 0.94), but not at 48 hours. The meter method indicated prophylaxis was needed when the paper did not, more often than did the paper method (9.3% vs 5.2%). A significant difference between methods was found only at the last reading at 48 hours (z = -2.24, p < .0249). MANOVA revealed that nurses' preference for the meter method was significant (F = 139.48, df = 1.18) and increased over time (F = 4.77, df = 2,36). The gastric probe method of measuring pH is an accurate substitution up to 48 hours for the litmus-paper aspiration method in the postoperative patient who is receiving nothing by mouth. Nurses prefer the gastric probe method of measuring pH over the litmus-paper method because they judge it to be safer, faster, and more accurate.

  15. KEY COMPARISON: Final report on CCQM-K9.2: Subsequent key comparison on pH determination of phosphate buffer by Harned cell measurements

    NASA Astrophysics Data System (ADS)

    Spitzer, Petra; Giera, Janine; Fraga, Isabel C.; Tønnes Jakobsen, Pia; Jensen, Hans D.; Hyllested, Peter; Karpov, Oleg; Kutovoy, Viatcheslav; Nakamura, Susumu; Vospelova, Alena; Zvezdina, Valentina

    2008-01-01

    CCQM-K9.2 was performed supplementary to the key comparison CCQM-K9 on the pH determination of a phosphate buffer with nominal pH ~ 6.9 (at 25 °C). The sample composition was very similar in both comparisons. Only the source of the starting material used for sample preparation was different. The comparison was restricted to the use of the primary method for pH (Harned cell measurement) as defined in the IUPAC Recommendations [2]. The measurement temperatures were 15 °C, 25 °C, 37 °C. CCQM-K9.2, CCQM-K.9 and the first supplementary comparison CCQM-K9.1 [5] are activities of the Electrochemical Working Group (EAWG) of the CCQM. All three comparisons were coordinated by the PTB, Germany. The Danish Primary Laboratory (DPL) successfully took part in the CCQM-K9. Meanwhile the primary set-up for pH in Denmark moved from DPL affiliated to Radiometer Medical to DFM, Denmark. The subsequent comparison allows assessing the degree of equivalence for the measurement of pH at DFM after the move. Due to the interest of other laboratories in demonstrating their progress in pH measurements on the primary level the CCQM-K9.2 supplementary comparison was extended to other participants than DFM, namely NMIJ, VNIIFTRI, INMETRO and CMI. The reported quantity for CCQM-K9.2 was not the pH of the sample but the acidity function at zero chloride molality (see chapter 12). To calculate the pH value from the acidity function it is necessary to know the ionic strength of the sample buffer solution, which was undisclosed by the coordinator. With the exception of the Czech Metrology Institute, CMI, good agreement in the determined acidity function is found between the participants. The results reported by DFM and by PTB agree within their measurement uncertainty at all measurement temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report

  16. A pH sensing system using fluorescence-based fibre optical sensor capable of small volume sample measurement

    NASA Astrophysics Data System (ADS)

    Deng, Shijie; McAuliffe, Michael A. P.; Salaj-Kosla, Urszula; Wolfe, Raymond; Lewis, Liam; Huyet, Guillaume

    2017-02-01

    In this work, a low cost optical pH sensing system that allows for small volume sample measurements was developed. The system operates without the requirement of laboratory instruments (e.g. laser source, spectrometer and CCD camera), this lowers the cost and enhances the portability. In the system, an optical arrangement employing a dichroic filter was used which allows the excitation and emission light to be transmitted using a single fibre thus improving the collection efficiency of the fluorescence signal and also the ability of inserting measurement. The pH sensor in the system uses bromocresol purple as the indicator which is immobilised by sol-gel technology through a dip-coating process. The sensor material was coated on the tip of a 1 mm diameter optical fibre which makes it possible for inserting into very small volume samples to measure the pH. In the system, a LED with a peak emission wavelength of 465 nm is used as the light source and a silicon photo-detector is used to detect the uorescence signal. Optical filters are applied after the LED and in front of the photo-detector to separate the excitation and emission light. The fluorescence signal collected is transferred to a PC through a DAQ and processed by a Labview-based graphic-user-interface (GUI). Experimental results show that the system is capable of sensing pH values from 5.3 to 8.7 with a linear response of R2=0.969. Results also show that the response times for a pH changes from 5.3 to 8.7 is approximately 150 s and for a 0.5 pH changes is approximately 50 s.

  17. Evaluation of pH measurement as a method of wound assessment.

    PubMed

    Shukla, V K; Shukla, D; Tiwary, S K; Agrawal, S; Rastogi, A

    2007-07-01

    To assess variations in wound pH levels and explore the relationship between wound pH and the state of wound healing. Fifty patients with acute or chronic wounds attending the wound clinic at University Hospital,Varanasi, India were included. Wound pH was measured using litmus paper strips and recorded weekly. Other parameters recorded were the wound condition, exudate level and culture. The baseline pH of most of the wounds was greater than 8.5. As the wound condition improved and exudate levels decreased, the pH reduced to less than 8.0. Fifty-eight per cent of the wounds were culture positive, and an association was observed between the type of organism present and the wound pH. Wound pH measurements can be performed efficiently and are non-invasive, causing no discomfort to the patient. As the wounds healed, the pH reduced. This change in pH can help predict the likelihood of wound healing.

  18. Soil pH Errors Propagation from Measurements to Spatial Predictions - Cost Benefit Analysis and Risk Assessment Implications for Practitioners and Modelers

    NASA Astrophysics Data System (ADS)

    Owens, P. R.; Libohova, Z.; Seybold, C. A.; Wills, S. A.; Peaslee, S.; Beaudette, D.; Lindbo, D. L.

    2017-12-01

    The measurement errors and spatial prediction uncertainties of soil properties in the modeling community are usually assessed against measured values when available. However, of equal importance is the assessment of errors and uncertainty impacts on cost benefit analysis and risk assessments. Soil pH was selected as one of the most commonly measured soil properties used for liming recommendations. The objective of this study was to assess the error size from different sources and their implications with respect to management decisions. Error sources include measurement methods, laboratory sources, pedotransfer functions, database transections, spatial aggregations, etc. Several databases of measured and predicted soil pH were used for this study including the United States National Cooperative Soil Survey Characterization Database (NCSS-SCDB), the US Soil Survey Geographic (SSURGO) Database. The distribution of errors among different sources from measurement methods to spatial aggregation showed a wide range of values. The greatest RMSE of 0.79 pH units was from spatial aggregation (SSURGO vs Kriging), while the measurement methods had the lowest RMSE of 0.06 pH units. Assuming the order of data acquisition based on the transaction distance i.e. from measurement method to spatial aggregation the RMSE increased from 0.06 to 0.8 pH units suggesting an "error propagation". This has major implications for practitioners and modeling community. Most soil liming rate recommendations are based on 0.1 pH unit increments, while the desired soil pH level increments are based on 0.4 to 0.5 pH units. Thus, even when the measured and desired target soil pH are the same most guidelines recommend 1 ton ha-1 lime, which translates in 111 ha-1 that the farmer has to factor in the cost-benefit analysis. However, this analysis need to be based on uncertainty predictions (0.5-1.0 pH units) rather than measurement errors (0.1 pH units) which would translate in 555-1,111 investment that

  19. Meta-Cresol Purple Reference Material® (RM) for Seawater pH Measurements

    NASA Astrophysics Data System (ADS)

    Easley, R. A.; Waters, J. F.; Place, B. J.; Pratt, K. W.

    2016-02-01

    The pH of seawater is a fundamental quantity that governs the carbon dioxide - carbonate system in the world's oceans. High quality pH measurements for long-term monitoring, shipboard studies, and shorter-term biological studies (mesocosm and field experiments) can be ensured through a reference material (RM) that is compatible with existing procedures and which is traceable to primary pH measurement metrology. High-precision spectrophotometric measurements of seawater pH using an indicator dye such as meta-cresol purple (mCP) are well established. However, traceability of these measurements to the International System of Units (SI) additionally requires characterizing the spectrophotometric pH response of the dye in multiple artificial seawater buffers that themselves are benchmarked via primary pH (Harned cell) measurements at a range of pH, salinity, and temperature. NIST is currently developing such a mCP pH RM using this approach. This material will also incorporate new procedures developed at NIST for assessing the purity and homogeneity of the mCP reagent itself. The resulting mCP will provide long-term (years) stability and ease of shipment compared to artificial seawater pH buffers. These efforts will provide the oceanographic user community with a NIST issued mCP (RM), characterized as to its molar absorptivity values and acid dissociation constants (pKa), with uncertainties that comply with the Guide to the Expression of Uncertainty in Measurement (GUM).

  20. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system.

    PubMed

    Martinière, Alexandre; Bassil, Elias; Jublanc, Elodie; Alcon, Carine; Reguera, Maria; Sentenac, Hervé; Blumwald, Eduardo; Paris, Nadine

    2013-10-01

    The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH -1.5) and Arabidopsis thaliana root cells (ΔpH -2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H(+) ATPase-dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.

  1. Measuring Norfloxacin Binding to Trypsin Using a Fluorescence Quenching Assay in an Upper-Division, Integrated Laboratory Course

    ERIC Educational Resources Information Center

    Hicks, Katherine A.

    2016-01-01

    Fluorescence quenching assays are often used to measure dissociation constants that quantify the binding affinity between small molecules and proteins. In an upper-division undergraduate laboratory course, where students work on projects using a guided inquiry-based approach, a binding titration experiment at physiological pH is performed to…

  2. Technical note: development and testing of a radio transmission pH measurement system for continuous monitoring of ruminal pH in cows.

    PubMed

    Sato, Shigeru; Mizuguchi, Hitoshi; Ito, Kazunori; Ikuta, Kentaro; Kimura, Atushi; Okada, Keiji

    2012-03-01

    An indwelling ruminal pH system has been used for the continuous recording of ruminal pH to evaluate subacute ruminal acidosis (SARA) in dairy cows. However this system does not allow the field application. The objective of this study was to develop a new radio transmission pH measurement system, and to assess its performance and usefulness in a continuous evaluation of ruminal pH for use on commercial dairy farms. The radio transmission pH measurement system consists of a wireless pH sensor, a data measurement receiver, a relay unit, and a personal computer installed special software. The pH sensor is housed in a bullet shaped bolus, which also encloses a pH amplifier circuit, a central processing unit (CPU) circuit, a radio frequency (RF) circuit, and a battery. The mean variations of the measurements by the glass pH electrode were +0.20 (n=10) after 2 months of continuous recording, compared to the values confirmed by standard pH solutions for pH 4 and pH 7 at the start of the recording. The mean lifetime of the internal battery was 2.5 months (n=10) when measurements were continuously transmitted every 10 min. Ruminal pH recorded by our new system was compared to that of the spot sampling of ruminal fluid. The mean pH for spot sampling was 6.36 ± 0.55 (n=96), and the mean pH of continuous recording was 6.22 ± 0.54 (n=96). There was a good correlation between continuous recording and spot sampling (r=0.986, P<0.01). We also examined whether our new pH system was able to detect experimentally induced ruminal acidosis in cows and to record long-term changes in ruminal pH. In the cows fed acidosis-inducing diets, the ruminal pH dropped markedly during the first 2h following the morning feeding, and decreased moreover following the evening feeding, with many pulse-like pH changes. The pH of the cows showed the lowest values of 5.3-5.2 in the midnight time period and it recovered to the normal value by the next morning feeding. In one healthy periparturient cow

  3. Traceability of pH measurements by glass electrode cells: performance characteristic of pH electrodes by multi-point calibration.

    PubMed

    Naumann, R; Alexander-Weber, Ch; Eberhardt, R; Giera, J; Spitzer, P

    2002-11-01

    Routine pH measurements are carried out with pH meter-glass electrode assemblies. In most cases the glass and reference electrodes are thereby fashioned into a single probe, the so-called 'combination electrode' or simply 'the pH electrode'. The use of these electrodes is subject to various effects, described below, producing uncertainties of unknown magnitude. Therefore, the measurement of pH of a sample requires a suitable calibration by certified standard buffer solutions (CRMs) traceable to primary pH standards. The procedures in use are based on calibrations at one point, at two points bracketing the sample pH and at a series of points, the so-called multi-point calibration. The multi-point calibration (MPC) is recommended if minimum uncertainty and maximum consistency are required over a wide range of unknown pH values. Details of uncertainty computations for the two-point and MPC procedure are given. Furthermore, the multi-point calibration is a useful tool to characterise the performance of pH electrodes. This is demonstrated with different commercial pH electrodes. ELECTRONIC SUPPLEMENTARY MATERIAL is available if you access this article at http://dx.doi.org/10.1007/s00216-002-1506-5. On that page (frame on the left side), a link takes you directly to the supplementary material.

  4. In Vivo Intracellular pH Measurements in Tobacco and Arabidopsis Reveal an Unexpected pH Gradient in the Endomembrane System[W

    PubMed Central

    Martinière, Alexandre; Bassil, Elias; Jublanc, Elodie; Alcon, Carine; Reguera, Maria; Sentenac, Hervé; Blumwald, Eduardo; Paris, Nadine

    2013-01-01

    The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH −1.5) and Arabidopsis thaliana root cells (ΔpH −2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H+ ATPase–dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters. PMID:24104564

  5. Open-Source Low-Cost Wireless Potentiometric Instrument for pH Determination Experiments

    ERIC Educational Resources Information Center

    Jin, Hao; Qin, Yiheng; Pan, Si; Alam, Arif U.; Dong, Shurong; Ghosh, Raja; Deen, M. Jamal

    2018-01-01

    pH determination is an essential experiment in many chemistry laboratories. It requires a potentiometric instrument with extremely low input bias current to accurately measure the voltage between a pH sensing electrode and a reference electrode. In this technology report, we propose an open-source potentiometric instrument for pH determination…

  6. Development of a colorimetric microfluidic pH sensor for autonomous seawater measurements.

    PubMed

    Rérolle, Victoire M C; Floquet, Cedric F A; Harris, Andy J K; Mowlem, Matt C; Bellerby, Richard R G J; Achterberg, Eric P

    2013-07-05

    High quality carbonate chemistry measurements are required in order to fully understand the dynamics of the oceanic carbonate system. Seawater pH data with good spatial and temporal coverage are particularly critical to apprehend ocean acidification phenomena and their consequences. There is a growing need for autonomous in situ instruments that measure pH on remote platforms. Our aim is to develop an accurate and precise autonomous in situ pH sensor for long term deployment on remote platforms. The widely used spectrophotometric pH technique is capable of the required high-quality measurements. We report a key step towards the miniaturization of a colorimetric pH sensor with the successful implementation of a simple microfluidic design with low reagent consumption. The system is particularly adapted to shipboard deployment: high quality data was obtained over a period of more than a month during a shipboard deployment in northwest European shelf waters, and less than 30 mL of indicator was consumed. The system featured a short term precision of 0.001 pH (n=20) and an accuracy within the range of a certified Tris buffer (0.004 pH). The quality of the pH system measurements have been checked using various approaches: measurements of certified Tris buffer, measurement of certified seawater for DIC and TA, comparison of measured pH against calculated pH from pCO2, DIC and TA during the cruise in northwest European shelf waters. All showed that our measurements were of high quality. The measurements were made close to in situ temperature (+0.2°C) in a sampling chamber which had a continuous flow of the ship's underway seawater supply. The optical set up was robust and relatively small due to the use of an USB mini-spectrometer, a custom made polymeric flow cell and an LED light source. The use of a three wavelength LED with detection that integrated power across the whole of each LED output spectrum indicated that low wavelength resolution detectors can be used

  7. Interlaboratory comparability, bias, and precision for four laboratories measuring analytes in wet deposition, October 1983-December 1984

    USGS Publications Warehouse

    Brooks, Myron H.; Schroder, LeRoy J.; Willoughby, Timothy C.

    1987-01-01

    Four laboratories involved in the routine analysis of wet-deposition samples participated in an interlaboratory comparison program managed by the U.S. Geological Survey. The four participants were: Illinois State Water Survey central analytical laboratory in Champaign, Illinois; U.S. Geological Survey national water-quality laboratories in Atlanta, Georgia, and Denver, Colorado; and Inland Waters Directorate national water-quality laboratory in Burlington, Ontario, Canada. Analyses of interlaboratory samples performed by the four laboratories from October 1983 through December 1984 were compared.Participating laboratories analyzed three types of interlaboratory samples--natural wet deposition, simulated wet deposition, and deionized water--for pH and specific conductance, and for dissolved calcium, magnesium, sodium, sodium, potassium, chloride, sulfate, nitrate, ammonium, and orthophosphate. Natural wet-deposition samples were aliquots of actual wet-deposition samples. Analyses of these samples by the four laboratories were compared using analysis of variance. Test results indicated that pH, calcium, nitrate, and ammonium results were not directly comparable among the four laboratories. Statistically significant differences between laboratory results probably only were meaningful for analyses of dissolved calcium. Simulated wet-deposition samples with known analyte concentrations were used to test each laboratory for analyte bias. Laboratory analyses of calcium, magnesium, sodium, potassium, chloride, sulfate, and nitrate were not significantly different from the known concentrations of these analytes when tested using analysis of variance. Deionized-water samples were used to test each laboratory for reporting of false positive values. The Illinois State Water Survey Laboratory reported the smallest percentage of false positive values for most analytes. Analyte precision was estimated for each laboratory from results of replicate measurements. In general, the

  8. Next Generation Qualification: Nanometrics T120PH Seismometer Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Bion J.; Slad, George William

    2017-10-01

    Sandia National Laboratories has tested and evaluated three seismometers, the Trillium 120PH, manufactured by Nanometrics. These seismometers measure broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self- noise, dynamic range, and self-calibration ability. The Nanometrics Trillium 120PH seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.

  9. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    ERIC Educational Resources Information Center

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  10. pH measurement and a rational and practical pH control strategy for high throughput cell culture system.

    PubMed

    Zhou, Haiying; Purdie, Jennifer; Wang, Tongtong; Ouyang, Anli

    2010-01-01

    The number of therapeutic proteins produced by cell culture in the pharmaceutical industry continues to increase. During the early stages of manufacturing process development, hundreds of clones and various cell culture conditions are evaluated to develop a robust process to identify and select cell lines with high productivity. It is highly desirable to establish a high throughput system to accelerate process development and reduce cost. Multiwell plates and shake flasks are widely used in the industry as the scale down model for large-scale bioreactors. However, one of the limitations of these two systems is the inability to measure and control pH in a high throughput manner. As pH is an important process parameter for cell culture, this could limit the applications of these scale down model vessels. An economical, rapid, and robust pH measurement method was developed at Eli Lilly and Company by employing SNARF-4F 5-(-and 6)-carboxylic acid. The method demonstrated the ability to measure the pH values of cell culture samples in a high throughput manner. Based upon the chemical equilibrium of CO(2), HCO(3)(-), and the buffer system, i.e., HEPES, we established a mathematical model to regulate pH in multiwell plates and shake flasks. The model calculates the required %CO(2) from the incubator and the amount of sodium bicarbonate to be added to adjust pH to a preset value. The model was validated by experimental data, and pH was accurately regulated by this method. The feasibility of studying the pH effect on cell culture in 96-well plates and shake flasks was also demonstrated in this study. This work shed light on mini-bioreactor scale down model construction and paved the way for cell culture process development to improve productivity or product quality using high throughput systems. Copyright 2009 American Institute of Chemical Engineers

  11. Examining Summer Laboratory Research Apprenticeships for High School Students as a Factor in Entry to MD/PhD Programs at Matriculation

    ERIC Educational Resources Information Center

    Tai, Robert H.; Kong, Xiaoqing; Mitchell, Claire E.; Dabney, Katherine P.; Read, Daniel M.; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.

    2017-01-01

    Do summer laboratory research apprenticeships during high school have an impact on entry into MD/PhD programs? Apart from the nearly decade-long span of time between high school and matriculation into an MD/PhD program, young people have many life-shaping experiences that presumably impact their education and career trajectories. This quantitative…

  12. Measuring pH variability using an experimental sensor on an underwater glider

    NASA Astrophysics Data System (ADS)

    Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner

    2017-05-01

    Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian

  13. Diagnosis of subacute ruminal acidosis (SARA) by continuous reticular pH measurements in cows.

    PubMed

    Sato, Shigeru; Ikeda, Aya; Tsuchiya, Yoshiyuki; Ikuta, Kentaro; Murayama, Isao; Kanehira, Masahiro; Okada, Keiji; Mizuguchi, Hitoshi

    2012-09-01

    The objective of this study was to determine whether subacute ruminal acidosis (SARA) could be diagnosed by continuous measurements of the reticular pH, as compared with the ruminal pH, using healthy cows fed a control diet and SARA cows fed a rumen acidosis-inducing diet. The reticular and ruminal pH were measured simultaneously by a radio transmission pH measurement system. The mean reticular pH at 1-h intervals decreased gradually from the morning feeding to the next feeding time in both healthy and SARA cows, though the decrease in the ruminal pH was observed to be more drastic as compared with that observed in the reticular pH. The threshold of the 1-h mean pH in the reticulum for a diagnosis of SARA was considered to be 6.3, and a significant positive correlation was observed between the reticular and ruminal pH. No differences in the concentrations of lactic acid, ammonia nitrogen, and volatile fatty acids were noted between the reticular and ruminal fluids in SARA cows. These results demonstrate that the reticular pH can be used to detect SARA in cows, as opposed to using the ruminal pH.

  14. Development of a downhole tool measuring real-time concentration of ionic tracers and pH in geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Hess, Ryan F.; Boyle, Timothy J.; Limmer, Steven; Yelton, William G.; Bingham, Samuel; Stillman, Greg; Lindblom, Scott; Cieslewski, Grzegorz

    2014-06-01

    For enhanced or Engineered Geothermal Systems (EGS) geothermal brine is pumped to the surface via the production wells, the heat extracted to turn a turbine to generate electricity, and the spent brine re-injected via injection wells back underground. If designed properly, the subsurface rock formations will lead this water back to the extraction well as heated brine. Proper monitoring of these geothermal reservoirs is essential for developing and maintaining the necessary level of productivity of the field. Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the location of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring tracer concentrations and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave.

  15. Fetal short time variation during labor: a non-invasive alternative to fetal scalp pH measurements?

    PubMed

    Schiermeier, Sven; Reinhard, Joscha; Hatzmann, Hendrike; Zimmermann, Ralf C; Westhof, Gregor

    2009-01-01

    To determine whether short time variation (STV) of fetal heart beat correlates with scalp pH measurements during labor. From 1279 deliveries, 197 women had at least one fetal scalp pH measurement. Using the CTG-Player, STVs were calculated from the electronically saved cardiotocography (CTG) traces and related to the fetal scalp pH measurements. There was no correlation between STV and fetal scalp pH measurements (r=-0.0592). Fetal STV is an important parameter with high sensitivity for antenatal fetal acidosis. This study shows that STV calculations do not correlate with fetal scalp pH measurements during labor, hence are not helpful in identifying fetal acidosis.

  16. Measurements of spectral responses for developing fiber-optic pH sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Heo, Ji Yeon; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jin Soo; Park, Jang-Yeon; Park, Byung Gi; Cho, Seunghyun; Lee, Bongsoo

    2011-01-01

    In this study, we have fabricated a fiber-optic pH sensor, which is composed of a light source, a pH-sensing probe, plastic optical fibers and a spectrometer, for determining the degree of infection by Helicobacter pylori in the stomach. As pH indicators, phenol red and m-cresol purple are used, and pH liquid solutions are prepared by mixing phenol red or m-cresol purple solutions and various kinds of pH buffer solutions. The light emitted by a light source is guided by plastic optical fibers to the pH liquid solution, and the optical characteristic of a reflected light is changed according to the color variations of the pH indicator in the pH-sensing probe. Therefore, we have measured the intensities and wavelength shifts of the reflected lights, which change according to the color variations of indicators at different pH values, by using a spectrometer for spectral analysis. Also, the relationships between the pH values of liquid solutions and the optical properties of the modulated lights are obtained on the basis of the changes of the colors of indicators.

  17. Noninvasive NIR measurement of tissue pH to assess hemorrhagic shock in swine

    NASA Astrophysics Data System (ADS)

    Soller, Babs R.; Zhang, Songbiao; Micheels, Ronald H.; Puyana, Juan C.

    1999-07-01

    Body-worn noninvasive physilogical sensors are needed to continuously monitor soldiers for hemorrhage and to provide real-time information for minimally skilled medics to treat the injured. In the hospital intramucosal pHi of the gut is used to monitor shock and its treatment. We hypothesize that abdominal wall muscle (AWM) pH can be measured noninvasively using near infrared (NIR) spectroscopy and partial least squares analysis (PLS) and will correlate with pHi. METHODS: AWM pH was measured with microelectrodes and gastric pHi was measured with a tonometric catheter simultaneously while NIR spectra were collected using prototype LED spectrometers placed on the pig's flanks. Animals were subject to hemorrhagic shock at 45 mm Hg for 45 minutes, then resuscitated with blood and lactated ringers. Relationships between electrode pH, pHi and NIR spectra were developed using PLS with cross validation. RESULTS: NIR spectral changes noninvasively acquired through the skin were shown to be from the muscle, not from changes in skin blood flow. Trending ability (R2) model accuracy (RMSD), and relative error were calculated for individual pigs. Using electrode pH as the reference, average R2 was 0.88 with a predicted accuracy of 0.17 pH units, a 9.3% relative error. Slightly degraded results were observed when pHi was used as a reference. CONCLUSIONS: NIR measurement of tissue pH can be used to noninvasively monitor for shock and guide its treatment in a swine model. These measurements correlate with gastric pHi, a clinically accepted measure of shock, providing an approach to develop similar methodology for humans.

  18. pH [Measure of Acidity].

    ERIC Educational Resources Information Center

    Henderson, Paula

    This autoinstructional program deals with the study of the pH of given substances by using litmus and hydrion papers. It is a learning activity directed toward low achievers involved in the study of biology at the secondary school level. The time suggested for the unit is 25-30 minutes (plus additional time for further pH testing). The equipment…

  19. Extraction of indirectly captured information for use in a comparison of offline pH measurement technologies.

    PubMed

    Ritchie, Elspeth K; Martin, Elaine B; Racher, Andy; Jaques, Colin

    2017-06-10

    Understanding the causes of discrepancies in pH readings of a sample can allow more robust pH control strategies to be implemented. It was found that 59.4% of differences between two offline pH measurement technologies for an historical dataset lay outside an expected instrument error range of ±0.02pH. A new variable, Osmo Res , was created using multiple linear regression (MLR) to extract information indirectly captured in the recorded measurements for osmolality. Principal component analysis and time series analysis were used to validate the expansion of the historical dataset with the new variable Osmo Res . MLR was used to identify variables strongly correlated (p<0.05) with differences in pH readings by the two offline pH measurement technologies. These included concentrations of specific chemicals (e.g. glucose) and Osmo Res, indicating culture medium and bolus feed additions as possible causes of discrepancies between the offline pH measurement technologies. Temperature was also identified as statistically significant. It is suggested that this was a result of differences in pH-temperature compensations employed by the pH measurement technologies. In summary, a method for extracting indirectly captured information has been demonstrated, and it has been shown that competing pH measurement technologies were not necessarily interchangeable at the desired level of control (±0.02pH). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. In situ Measurement of Pore-Water pH in Anoxic Sediments Using Laser Raman Spectrometry

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Luna, M.; Walz, P. M.; Zhang, X.; Brewer, P. G.

    2010-12-01

    Accurate measurement of the geochemical properties of sediment pore waters is of fundamental importance in ocean geochemistry and microbiology. Recent work has shown that the properties of pore waters can be measured rapidly in situ with a novel Raman based insertion probe (Zhang et al., 2010), and that data obtained from anoxic sediments on in situ dissolved methane concentrations are very different (~30x) than from recovered cores due the large scale degassing that occurs during core recovery (Zhang et al., submitted). Degassing of methane must carry with it via Henry’s Law partioning significant quantities of H2S, which is clearly detectable by smell during sample processing, and thus in situ measurement of H2S is also highly desirable. In practice, dissolved H2S is partitioned between the HS- and H2S species as a function of pH with pKa ~7 for the acid dissociation reaction. Since both species are Raman active full determination of the sulfide system is possible if the relative Raman cross sections are known. The diagenetic equations for these reactions are commonly summarized as: 2CH2O + SO4= ↔ 2HCO3- + H2S CH4 + SO4= ↔ HCO3- + HS- + H2O Three of the major components of these equations, CH4, SO4=, and H2S/HS-, are all observable directly by Raman spectroscopy; but the detection of HCO3- presents a challenge due to its low Raman cross section and thus poor sensitivity. We show that pore water pH, which is a good estimator of HCO3- if total CO2 or alkalinity are known, can be measured by observing the H2S / HS- ratio via the equation: pH = pKa + log([HS-]/[H2S]) thereby fully constraining these equations within a single measurement protocol. The Raman peak for HS- is at 2573 cm-1 and for H2S is at 2592 cm-1; thus the peaks are well separated and may easily be deconvoluted from the observed spectrum. We have determined the relative Raman cross sections by a series of laboratory measurements over a range of pH and by using the definition that when pH = p

  1. Field Performance of ISFET based Deep Ocean pH Sensors

    NASA Astrophysics Data System (ADS)

    Branham, C. W.; Murphy, D. J.

    2017-12-01

    Historically, ocean pH time series data was acquired from infrequent shipboard grab samples and measured using labor intensive spectrophotometry methods. However, with the introduction of robust and stable ISFET pH sensors for use in ocean applications a paradigm shift in the methods used to acquire long-term pH time series data has occurred. Sea-Bird Scientific played a critical role in the adoption this new technology by commercializing the SeaFET pH sensor and float pH Sensor developed by the MBARI chemical sensor group. Sea-Bird Scientific continues to advance this technology through a concerted effort to improve pH sensor accuracy and reliability by characterizing their performance in the laboratory and field. This presentation will focus on calibration of the ISFET pH sensor, evaluate its analytical performance, and validate performance using recent field data.

  2. History of blood gas analysis. II. pH and acid-base balance measurements.

    PubMed

    Severinghaus, J W; Astrup, P B

    1985-10-01

    Electrometric measurement of the hydrogen ion concentration was discovered by Wilhelm Ostwald in Leipzig about 1890 and described thermodynamically by his student Walther Nernst, using the van't Hoff concept of osmotic pressure as a kind of gas pressure, and the Arrhenius concept of ionization of acids, both of which had been formalized in 1887. Hasselbalch, after adapting the pH nomenclature of Sørensen to the carbonic-acid mass equation of Henderson, made the first actual blood pH measurements (with a hydrogen electrode) and proposed that metabolic acid-base imbalance be quantified as the "reduced" pH of blood after equilibration to a carbon dioxide tension (PCO2) of 40 mm Hg. This good idea, coming 40 years before simple blood pH measurements at 37 degrees C became widely available, was never adopted. Instead, Van Slyke developed a concept of acid-base chemistry that depended on measuring plasma CO2 content with his manometric apparatus, a standard method until the 1960s, when it was displaced by the three-electrode method of blood gas analysis. The 1952 polio epidemic in Copenhagen stimulated Astrup to develop a glass electrode in which pH could be measured in blood at 37 degrees C before and after equilibration with known PCO2. He introduced the interpolative measurement of PCO2 and bicarbonate level (later base excess) using only pH measurements and, with Siggaard-Andersen, developed clinical acid-base chemistry. Controversy arose when blood base excess was noted to be altered by acute changes in PCO2 and when abnormalities of base excess were called metabolic acidosis or alkalosis, even when they represented compensation for respiratory abnormalities in PCO2. In the 1970s it became clear that "in-vivo" or "extracellular fluid" base excess (measured at an average extracellular fluid hemoglobin concentration of 5 g) eliminated the error caused by acute changes in PCO2. Base excess is now almost universally used as the index of nonrespiratory acid

  3. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    PubMed Central

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D.; Wilkinson, Martin G.; Panek, Jiri; Auty, Mark A. E.; Periasamy, Ammasi; Sheehan, Jeremiah J.

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening. PMID:25798136

  4. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging.

    PubMed

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D; Wilkinson, Martin G; Panek, Jiri; Auty, Mark A E; Periasamy, Ammasi; Sheehan, Jeremiah J

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  5. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells.

    PubMed

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2012-06-25

    The whole picture: Carbon nanodots labeled with two fluorescent dyes have been developed as a tunable ratiometric pH sensor to measure intracellular pH. The nanosensor shows good biocompatibility and cellular dispersibility. Quantitative determinations on intact HeLa cells and pH fluctuations associated with oxidative stress were performed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low pH Springs - A Natural Laboratory for Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Derse, E.; Rebolledo-Vieyra, M.; Potts, D. C.; Paytan, A.

    2009-12-01

    Recent increases in atmospheric carbon dioxide of 40% above pre-industrial levels has resulted in rising aqueous CO2 concentrations that lower the pH of the oceans. Currently, the surface ocean has an average pH between 8.1 and 8.2: it is estimated that over the next 100 years this value will decrease by ~0.4 pH units. Previous studies have highlighted the negative impacts that changes in pH (and the resulting CaCO3 saturation state) have on marine organisms; however, to date, very little is known about the long-term impacts of ocean acidification on ecosystems as a whole. The Yucatán Peninsula of Quintana Roo, Mexico, represents an ecosystem where naturally low pH groundwater (7.25-8.07) has been discharging offshore at highly localized points (called ojos) since the last deglaciation. We present preliminary chemical and biological data on a selection of ojos from lagoon sites in Puerto Morelos, Mexico. We address the potential long-term implications of low pH waters on marine ecosystems.

  7. Theory and practice in the electrometric determination of pH in precipitation

    NASA Astrophysics Data System (ADS)

    Brennan, Carla Jo; Peden, Mark E.

    Basic theory and laboratory investigations have been applied to the electrometric determination of pH in precipitation samples in an effort to improve the reliability of the results obtained from these low ionic strength samples. The theoretical problems inherent in the measurement of pH in rain have been examined using natural precipitation samples with varying ionic strengths and pH values. The importance of electrode design and construction has been stressed. The proper choice of electrode can minimize or eliminate problems arising from residual liquid junction potentials, streaming potentials and temperature differences. Reliable pH measurements can be made in precipitation samples using commercially available calibration buffers providing low ionic strength quality control solutions are routinely used to verify electrode and meter performance.

  8. Assessment of the suitability of Durafet-based sensors for pH measurement in dynamic estuarine environments

    NASA Astrophysics Data System (ADS)

    Gonski, Stephen F.; Cai, Wei-Jun; Ullman, William J.; Joesoef, Andrew; Main, Christopher R.; Pettay, D. Tye; Martz, Todd R.

    2018-01-01

    The suitability of the Honeywell Durafet to the measurement of pH in productive, high-fouling, and highly-turbid estuarine environments was investigated at the confluence of the Murderkill Estuary and Delaware Bay (Delaware, USA). Three different flow configurations of the SeapHOx sensor equipped with a Honeywell Durafet and its integrated internal (Ag/AgCl reference electrode containing a 4.5 M KCl gel liquid junction) and external (solid-state chloride ion selective electrode, Cl-ISE) reference electrodes were deployed for four periods between April 2015 and September 2016. In this environment, the Honeywell Durafet proved capable of making high-resolution and high-frequency pH measurements on the total scale between pH 6.8 and 8.4. Natural pH fluctuations of >1 pH unit were routinely captured over a range of timescales. The sensor pH collected between May and August 2016 using the most refined SeapHOx configuration exhibited good agreement with multiple sets of independently measured reference pH values. When deployed in conjunction with rigorous discrete sampling and calibration schemes, the sensor pH had a root-mean squared error ranging between 0.011 and 0.036 pH units across a wide range of salinity relative to both pHT calculated from measured dissolved inorganic carbon and total alkalinity and pHNBS measured with a glass electrode corrected to pHT at in situ conditions. The present work demonstrates the viability of the Honeywell Durafet to the measurement of pH to within the weather-level precision defined by the Global Ocean Acidification Observing Network (GOA-ON, ≤ 0.02 pH units) as a part of future estuarine CO2 chemistry studies undertaken in dynamic environments.

  9. A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.

    PubMed

    Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo

    2007-04-01

    The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.

  10. Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling

    NASA Astrophysics Data System (ADS)

    Flory, Jason; Kanel, Sushil R.; Racz, LeeAnn; Impellitteri, Christopher A.; Silva, Rendahandi G.; Goltz, Mark N.

    2013-03-01

    Given the ubiquity of silver nanoparticles (AgNPs) and their potential for toxic effects on both humans and the environment, it is important to understand their environmental fate and transport. The purpose of this study is to gain information on the transport properties of commercial AgNP suspensions in a glass bead-packed column under saturated flow conditions at different solution pH levels. Commercial AgNPs were characterized using high-resolution transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy, ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. Transport data were collected at different pH levels (4, 6.5, 9, and 11) at fixed ionic strength. Capture of AgNPs increased as the pH of the solution increased from 4 to 6.5. Further increase in pH to 9 and 11 decreased the attachment of AgNPs to the glass beads. AgNP concentration versus time breakthrough data were simulated using an advection-dispersion model incorporating both irreversible and reversible attachment. In particular, a reversible attachment model is required to simulate breakthrough curve tailing at near neutral pH, when attachment is most significant. The laboratory and modeling study reveals that for natural groundwaters, AgNP transport in porous media may be retarded due to capture; but ultimately, most of the mass may be slowly released over time.

  11. Model-based pH monitor for sensor assessment.

    PubMed

    van Schagen, Kim; Rietveld, Luuk; Veersma, Alex; Babuska, Robert

    2009-01-01

    Owing to the nature of the treatment processes, monitoring the processes based on individual online measurements is difficult or even impossible. However, the measurements (online and laboratory) can be combined with a priori process knowledge, using mathematical models, to objectively monitor the treatment processes and measurement devices. The pH measurement is a commonly used measurement at different stages in the drinking water treatment plant, although it is a unreliable instrument, requiring significant maintenance. It is shown that, using a grey-box model, it is possible to assess the measurement devices effectively, even if detailed information of the specific processes is unknown.

  12. Purdue Rare Isotope Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Caffee, M.; Elmore, D.; Granger, D.; Muzikar, P.

    2002-12-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is a dedicated research and service facility for accelerator mass spectrometry. AMS is an ultra-sensitive analytical technique used to measure low levels of long-lived cosmic-ray-produced and anthropogenic radionuclides, and rare trace elements. We measure 10Be (T1/2 = 1.5 My), 26Al (.702 My), 36Cl (.301 My), and 129I (16 My), in geologic samples. Applications include dating the cosmic-ray-exposure time of rocks on Earth's surface, determining rock and sediment burial ages, measuring the erosion rates of rocks and soils, and tracing and dating ground water. We perform sample preparation and separation chemistries for these radio-nuclides for our internal research activities and for those external researchers not possessing this capability. Our chemical preparation laboratories also serve as training sites for members of the geoscience community developing these techniques at their institutions. Research at Purdue involves collaborators among members of the Purdue Departments of Physics, Earth and Atmospheric Sciences, Chemistry, Agronomy, and Anthropology. We also collaborate and serve numerous scientists from other institutions. We are currently in the process of modernizing the facility with the goals of higher precision for routinely measured radio-nuclides, increased sample throughput, and the development of new measurement capabilities for the geoscience community.

  13. A miniature integrated multimodal sensor for measuring pH, EC and temperature for precision agriculture.

    PubMed

    Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki

    2012-01-01

    Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si(3)N(4) membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk.

  14. A Miniature Integrated Multimodal Sensor for Measuring pH, EC and Temperature for Precision Agriculture

    PubMed Central

    Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki

    2012-01-01

    Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si3N4 membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk. PMID:22969403

  15. pH measurements of FET-based (bio)chemical sensors using portable measurement system.

    PubMed

    Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G

    2015-01-01

    In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.

  16. Optical Fibre Sensor For Measuring pH In Physiological Range

    NASA Astrophysics Data System (ADS)

    Golunski, Witold; Hypszer, Ryszard; Plucinski, Jerzy

    1990-01-01

    The principle of fibre optic pH sensor operation is given in this paper. PH measurement in 7.0-7.5 range is based on changing of optical property of a indicator. The indicator is sensitive to the hydrogen ion concentration in the water solution. Microspheres of the polymer XAD-2 (a styrene-divinylbenzene copolymer) containing bound phenol red were used as a indicator. Such prepared indicator was inserted in optrode. The optrode was connected with transmitter and receiver by a bundle of glass fibres (multicomponent glass). Transmitter was done by using green LED while receiver construction was based on pin photodiode.

  17. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging.

    PubMed

    Østergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim

    2014-11-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Anthropometric measures in cardiovascular disease prediction: comparison of laboratory-based versus non-laboratory-based model.

    PubMed

    Dhana, Klodian; Ikram, M Arfan; Hofman, Albert; Franco, Oscar H; Kavousi, Maryam

    2015-03-01

    Body mass index (BMI) has been used to simplify cardiovascular risk prediction models by substituting total cholesterol and high-density lipoprotein cholesterol. In the elderly, the ability of BMI as a predictor of cardiovascular disease (CVD) declines. We aimed to find the most predictive anthropometric measure for CVD risk to construct a non-laboratory-based model and to compare it with the model including laboratory measurements. The study included 2675 women and 1902 men aged 55-79 years from the prospective population-based Rotterdam Study. We used Cox proportional hazard regression analysis to evaluate the association of BMI, waist circumference, waist-to-hip ratio and a body shape index (ABSI) with CVD, including coronary heart disease and stroke. The performance of the laboratory-based and non-laboratory-based models was evaluated by studying the discrimination, calibration, correlation and risk agreement. Among men, ABSI was the most informative measure associated with CVD, therefore ABSI was used to construct the non-laboratory-based model. Discrimination of the non-laboratory-based model was not different than laboratory-based model (c-statistic: 0.680-vs-0.683, p=0.71); both models were well calibrated (15.3% observed CVD risk vs 16.9% and 17.0% predicted CVD risks by the non-laboratory-based and laboratory-based models, respectively) and Spearman rank correlation and the agreement between non-laboratory-based and laboratory-based models were 0.89 and 91.7%, respectively. Among women, none of the anthropometric measures were independently associated with CVD. Among middle-aged and elderly where the ability of BMI to predict CVD declines, the non-laboratory-based model, based on ABSI, could predict CVD risk as accurately as the laboratory-based model among men. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Development of a Low Cost, Compact, Spectrophotometric pH Sensor

    NASA Astrophysics Data System (ADS)

    Spaulding, R. S.; Darlington, R. C.; Beck, J. C.; DeGrandpre, M. D.

    2016-02-01

    Understanding the ecological impacts of oceanic CO2 uptake in the post-industrial world requires high spatial and temporal resolution measurements of inorganic carbon. Most researchers aim for measuring two of the four inorganic carbon parameters (partial pressure of CO2, total alkalinity, total dissolve inorganic carbon, and pH), in order to fully characterize the carbonate system. While this is desirable in many circumstances, in some cases it may be possible to fully characterize the system using pH and salinity, or even to use pH alone as a proxy to the health of calcifying marine organisms. The development of relatively inexpensive spectrophotometric pH sensors compatible with Lagrangian drifters would greatly improve the ability of researchers to characterize the changing oceanic carbonate system. We have designed and tested a novel, miniaturized, submersible, autonomous opto-fluidic device that can be manufactured at a relatively low cost. The flexible design can be deployed independent of or in tandem with GDP style drifters and will enable spectrophotometric pH technology on a host of drifting platforms and buoys. This device uses a dual wavelength light emitting diode (LED) light source, low volume mixer, and an optical flow-cell mounted to the electronic controller board. Laboratory testing shows that this device measures pH with similar accuracy and precision to other spectrophotometric methods such as the SAMI-pH.

  20. Laboratory Measurements of Cometary Photochemical Phenomena.

    DTIC Science & Technology

    1981-12-04

    PROGFIAM ELEMENT.PROJECT TASK Laser .Chemistry Division AREA & WORK UNIT NUMaZRS Department of Chemistry - Howard University NR.051-733 Wash’ ngtQn, D. C...William M. Jackson Laser Chemistry Division Department of Chemistry Howard University .Washington, D. C. 20059 / Published by Jet Propulsion Laboratory...MEASUREMENTS OF COMETARY PHOTOCHEMICAL PHENOMENA William M. Jackson Howard University Washington, DC 20059 Abstract Laboratory experiments are described

  1. Intraluminal measurement of papillary duct urine pH, in vivo: a pilot study in the swine kidney.

    PubMed

    Handa, Rajash K; Lingeman, James E; Bledsoe, Sharon B; Evan, Andrew P; Connors, Bret A; Johnson, Cynthia D

    2016-06-01

    We describe the in vivo use of an optic-chemo microsensor to measure intraluminal papillary duct urine pH in a large mammal. Fiber-optic pH microsensors have a tip diameter of 140-µm that allows insertion into papillary Bellini ducts to measure tubule urine proton concentration. Anesthetized adult pigs underwent percutaneous nephrolithotomy to access the lower pole of the urinary collecting system. A flexible nephroscope was advanced towards an upper pole papilla with the fiber-optic microsensor contained within the working channel. The microsensor was then carefully inserted into Bellini ducts to measure tubule urine pH in real time. We successfully recorded tubule urine pH values in five papillary ducts from three pigs (1 farm pig and 2 metabolic syndrome Ossabaw pigs). Our results demonstrate that optical microsensor technology can be used to measure intraluminal urine pH in real time in a living large mammal. This opens the possibility for application of this optical pH sensing technology in nephrolithiasis.

  2. Comparison of two types of dipsticks to measure vaginal pH in clinical practice.

    PubMed

    Donders, Gilbert G G; Caeyers, Tinne; Tydhof, Priska; Riphagen, Ine; van den Bosch, Thierry; Bellen, Gert

    2007-10-01

    To assess the practical use of two dispsticks for measuring vaginal pH with a range 4-7 (Merck and Macherey Nagel in the diagnosis of vaginal infections. Routine gynaecological clinic in the General Hospital H Hart in Tienen and vulvo-vaginitis clinic in the University Hospital Gasthuisberg in Leuven, Belgium. After oral consent was obtained, 101 unselected consecutive women presenting for gynaecologic examination between 15 January 2004 and 15 February 2004 were included in an observational study. Vaginal smears were taken from the upper vaginal wall for pH measurement and for fresh wet mount examination by phase contrast microscopy for diagnosing lactobacillary grades and presence of pathogens. The observed color change of two different pH strips were compared with the color scale provided by the company by a junior investigator who was not familiar with the technique, nor with the pathology of the patient. The difficulty of the measurement was scored semi-quantitatively by assessing the time and effort necessary to decide on the correct pH. Using the Macherey-Nagel method, the mean pH score was lower in women with normal flora and in women with vaginal infections than when the Merck method was used, but the difference was not significant. The pH became progressively more abnormal with increasing lactobacillary grades, a correlation that was similar for both tests. The reading of the pH sticks was significantly simpler and quicker with Macherey-Nagel than with Merck. Although difficult readings with Merck strips were four times more frequent in the group of women with abnormal flora than in women with normal flora, this difference was not significant. (1) In both tests (Macherey-Nagel and Merck) the pH was more abnormal (higher) with increasing lactobacillary grades (declining number of lactobacillary morphotypes). (2) The Macherey-Nagel sticks are more user-friendly than Merck's.

  3. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in

  4. The Determination of the pH of Standard Buffer Solution: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Harris, K. R.

    1985-01-01

    Describes an experiment which shows: (1) how measurements of the reaction electromotive force for the cell (Pt/glass/NaCl(aq,m),buffer/AgCl/Ag/Pt) can be utilized in determining the absolute pH of the buffer; and (2) the demonstration of the use of the Debye-Huckel model of an electrolyte solution in solving an important electrochemical problem.…

  5. Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode.

    PubMed Central

    Robertson, B; Lukashev, E P

    1995-01-01

    The photocurrent transient generated by bacteriorhodopsin (bR) on a tin-oxide electrode is due to pH change and not to charge displacement as previously assumed. Films of either randomly oriented or highly oriented purple membranes were deposited on transparent electrodes made of tin-oxide-coated glass. The membranes contained either wild-type or D96N-mutant bR. When excited with yellow light through the glass, the bR pumps protons across the membrane. The result is a rapid local pH change as well as a charge displacement. Experiments with these films show that it is the pH change rather than the displacement that produces the current transient. The calibration for the transient pH measurement is given. The sensitivity of a tin-oxide electrode to a transient pH change is very much larger than its sensitivity to a steady-state pH change. PMID:7787036

  6. Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH.

    PubMed

    Boron, W F; Roos, A

    1976-09-01

    The intracellular pH (pHi) of giant barnacle muscle fibers was measured with glass microelectrodes and also calculated from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO) and methylamine (MA). Simultaneously applying any two of these methods to muscle fibers of the same barnacle, we found the pH measured with an intracellular electrode (pH-Elec) to be about 0.06 higher than the DMO-derived pH (pH-DMO), and pH-DMO to be about 0.10 higher than the MA-derived pH (p-ma). in studies on the pHi of squid giant axons, we found that pH-Elec (7.35) and pH-DMO (7.36) were not significantly different. In the barnacle experiments, DMO required about 30 min to reach a steady-state distribution, while MA required more than 5 h. The deviations of pH-DMO and pH-MA from pH-Elec for the barnacle can be explained by a) an error in the assumed intracellular pKa' of DMO or MA, b) membrane permeability to the ionic form of DMO or MA, or c) intracellular compartmentalization. Included is a detailed study of the apparent dissociation constant of DMO as affected by temperature, and ionic strength and composition.

  7. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement.

    PubMed

    Zhang, Yanan; Guo, Shan; Cheng, Shibo; Ji, Xinghu; He, Zhike

    2017-08-15

    The homeostasis of lysosomal pH is crucial in cell physiology. Developing small fluorescent nanosensors for lysosome imaging and ratiometric measurement of pH is highly demanded yet challenging. Herein, a pH-sensitive fluorescein tagged aptamer AS1411 has been utilized to covalently modify the label-free fluorescent silicon nanodots via a crosslinker for construction of a ratiometric pH biosensor. The established aptasensor exhibits the advantages of ultrasmall size, hypotoxicity, excellent pH reversibility and good photostability, which favors its application in an intracellular environment. Using human breast MCF-7 cancer cells and MCF-10A normal cells as the model, this aptasensor shows cell specificity for cancer cells and displays a wide pH response range of 4.5-8.0 in living cells. The results demonstrate that the pH of MCF-7 cells is 5.1, which is the expected value for acidic organelles. Lysosome imaging and accurate measurement of pH in MCF-7 cells have been successfully conducted based on this nanosensor via fluorescent microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Space debris measurement program at Phillips Laboratory

    NASA Technical Reports Server (NTRS)

    Dao, Phan D.; Mcnutt, Ross T.

    1992-01-01

    Ground-based optical sensing was identified as a technique for measuring space debris complementary to radar in the critical debris size range of 1 to 10 cm. The Phillips Laboratory is building a staring optical sensor for space debris measurement and considering search and track optical measurement at additional sites. The staring sensor is implemented in collaboration with Wright Laboratory using the 2.5 m telescope at Wright Patterson AFB, Dayton, Ohio. The search and track sensor is designed to detect and track orbital debris in tasked orbits. A progress report and a discussion of sensor performance and search and track strategies will be given.

  9. Dielectric property measurements in the Electromagnetic Properties Measurement Laboratory

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Tiemsin, Pacita I.; Bussell, Kerri; Dudley, Kenneth L.

    1995-01-01

    The capability to measure the dielectric properties of various materials has been developed in the Electromagnetic Properties Measurement Laboratory (EPML) of the Electromagnetics Research Branch (ERB). Two measurement techniques which have been implemented in the EPML to characterize materials are the dielectric probe and waveguide techniques. Several materials, including some for which the dielectric properties are well known, have been measured in an attempt to establish the capabilities of the EPML in determining dielectric properties. Brief descriptions of the two techniques are presented in this report, along with representative results obtained during these measurements.

  10. Reliability of laboratory measurement of human food intake.

    PubMed

    Laessle, R; Geiermann, L

    2012-02-01

    The universal eating monitor (UEM) of Kissileff for laboratory measurement of food intake was modified and used with a newly developed special software to compute cumulative intake data. To explore the measurement precision of the UEM an investigation of test-retest-reliability of food intake parameters was conducted. The intake characteristics of 125 males and females were measured repeatedly in the laboratory with a measurement interval of 1 week. Pudding of preferred flavour served as test meal. Test-retest-reliability of intake characteristics ranged from .49 (change of eating rate) to .89 (initial eating rate). All test-retest correlations were highly significant. Sex, BMI and eating habits according to TFEQ-factors had no significant effects on reliability of intake characteristics. The test-retest-reliability of the laboratory intake measures is as good as those of personality questionnaires, where it should be better than .80. Reliability coefficients are valid independent of sex, BMI or trait characteristics of eating behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Effect of pH and nitrite concentration on nitrite oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Ruano, M V; Ferrer, J; Serralta, J

    2011-10-01

    The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO₂). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO₂ concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO₂ concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Richard J. French, Ph.D. | NREL

    Science.gov Websites

    J. French, Ph.D. Photo of Richard J. French Rick French Researcher IV-Chemistry Richard.French Laboratory equipment design and construction Computer-aided design (CAD) Education Ph.D., Chemistry, Oregon State University B.S., Chemistry, Wheaton College Professional Experience Research Scientist, National

  13. Measurement of pH, exudate composition and temperature in wound healing: a systematic review.

    PubMed

    Power, G; Moore, Z; O'Connor, T

    2017-07-02

    To assess the potential of measurements of pH, exudate composition and temperature in wounds to predict healing outcomes and to identify the methods that are employed to measure them. A systematic review based on the outcomes of a search strategy of quantitative primary research published in the English language was conducted. Inclusion criteria limited studies to those involving in vivo and human participants with an existing or intentionally provoked wound, defined as 'a break in the epithelial integrity of the skin', and excluded in vitro and animal studies. Data synthesis and analysis was performed using structured narrative summaries of each included study arranged by concept, pH, exudate composition and temperature. The Evidence Based Literature (EBL) Critical Appraisal Checklist was implemented to appraise the quality of the included studies. A total of 23 studies, three for pH (mean quality score 54.48%), 12 for exudate composition (mean quality score 46.54%) and eight for temperature (mean quality score 36.66%), were assessed as eligible for inclusion in this review. Findings suggest that reduced pH levels in wounds, from alkaline towards acidic, are associated with improvements in wound condition. Metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase (TIMP), neutrophil elastase (NE) and albumin, in descending order, were the most frequently measured analytes in wounds. MMP-9 emerged as the analyte which offers the most potential as a biomarker of wound healing, with elevated levels observed in acute or non-healing wounds and decreasing levels in wounds progressing in healing. Combined measures of different exudate components, such as MMP/TIMP ratios, also appeared to offer substantial potential to indicate wound healing. Finally, temperature measurements are highest in non-healing, worsening or acute wounds and decrease as wounds progress towards healing. Methods used to measure pH, exudate composition and

  14. Using Visible Spectrophotometers and pH Measurements to Study Speciation in a Guided-Inquiry Laboratory

    ERIC Educational Resources Information Center

    Otto, William H.; Larive, Cynthia K.; Mason, Susan L.; Robinson, Janet B.; Heppert Joseph A.; Ellis, James D.

    2005-01-01

    An experiment to perform a simple initial investigation that illustrates concepts of speciation and equilibrium, using the instrument and chemical resources in the laboratory is presented. The investigation showed that the presence of multiple chemical species in a reaction mixture (phenol red solution) reflects the acid and base conditions…

  15. Harmonization in laboratory medicine: Requests, samples, measurements and reports.

    PubMed

    Plebani, Mario

    2016-01-01

    In laboratory medicine, the terms "standardization" and "harmonization" are frequently used interchangeably as the final goal is the same: the equivalence of measurement results among different routine measurement procedures over time and space according to defined analytical and clinical quality specifications. However, the terms define two distinct, albeit closely linked, concepts based on traceability principles. The word "standardization" is used when results for a measurement are equivalent and traceable to the International System of Units (SI) through a high-order primary reference material and/or a reference measurement procedure (RMP). "Harmonization" is generally used when results are equivalent, but neither a high-order primary reference material nor a reference measurement procedure is available. Harmonization is a fundamental aspect of quality in laboratory medicine as its ultimate goal is to improve patient outcomes through the provision of accurate and actionable laboratory information. Patients, clinicians and other healthcare professionals assume that clinical laboratory tests performed by different laboratories at different times on the same sample and specimen can be compared, and that results can be reliably and consistently interpreted. Unfortunately, this is not necessarily the case, because many laboratory test results are still highly variable and poorly standardized and harmonized. Although the initial focus was mainly on harmonizing and standardizing analytical processes and methods, the scope of harmonization now also includes all other aspects of the total testing process (TTP), such as terminology and units, report formats, reference intervals and decision limits as well as tests and test profiles, requests and criteria for interpretation. Several projects and initiatives aiming to improve standardization and harmonization in the testing process are now underway. Laboratory professionals should therefore step up their efforts to provide

  16. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli

    PubMed Central

    Yang, Maiyun; Jalloh, Abubakar S.; Wei, Wei

    2014-01-01

    Bioorthogonal reactions, especially the Cu(I)-catalyzed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labeling within the cytoplasm of E. coli, here we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site-specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions. PMID:25236616

  17. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli.

    PubMed

    Yang, Maiyun; Jalloh, Abubakar S; Wei, Wei; Zhao, Jing; Wu, Peng; Chen, Peng R

    2014-09-19

    Bioorthogonal reactions, especially the Cu(I)-catalysed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labelling within the cytoplasm of Escherichia coli, we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions.

  18. Doctoral training in statistics, measurement, and methodology in psychology: replication and extension of Aiken, West, Sechrest, and Reno's (1990) survey of PhD programs in North America.

    PubMed

    Aiken, Leona S; West, Stephen G; Millsap, Roger E

    2008-01-01

    In a survey of all PhD programs in psychology in the United States and Canada, the authors documented the quantitative methodology curriculum (statistics, measurement, and research design) to examine the extent to which innovations in quantitative methodology have diffused into the training of PhDs in psychology. In all, 201 psychology PhD programs (86%) participated. This survey replicated and extended a previous survey (L. S. Aiken, S. G. West, L. B. Sechrest, & R. R. Reno, 1990), permitting examination of curriculum development. Most training supported laboratory and not field research. The median of 1.6 years of training in statistics and measurement was mainly devoted to the modally 1-year introductory statistics course, leaving little room for advanced study. Curricular enhancements were noted in statistics and to a minor degree in measurement. Additional coverage of both fundamental and innovative quantitative methodology is needed. The research design curriculum has largely stagnated, a cause for great concern. Elite programs showed no overall advantage in quantitative training. Forces that support curricular innovation are characterized. Human capital challenges to quantitative training, including recruiting and supporting young quantitative faculty, are discussed. Steps must be taken to bring innovations in quantitative methodology into the curriculum of PhD programs in psychology. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  19. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    PubMed

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  20. Peptide-targeted delivery of a pH sensor for quantitative measurements of intraglycosomal pH in live Trypanosoma brucei.

    PubMed

    Lin, Sheng; Morris, Meredith T; Ackroyd, P Christine; Morris, James C; Christensen, Kenneth A

    2013-05-28

    Studies of dynamic changes in organelles of protozoan parasite Trypanosoma brucei have been limited, in part because of the difficulty of targeting analytical probes to specific subcellular compartments. Here we demonstrate application of a ratiometric probe for pH quantification in T. brucei glycosomes. The probe consists of a peptide encoding the peroxisomal targeting sequence (F-PTS1, acetyl-CKGGAKL) coupled to fluorescein, which responds to pH. When incubated with living parasites, the probe is internalized within vesicular structures that colocalize with a glycosomal marker. Inhibition of uptake of F-PTS1 at 4 °C and pulse-chase colocalization with fluorescent dextran suggested that the probe is initially taken up by non-receptor-mediated endocytosis but is subsequently transported separately from dextran and localized within glycosomes, prior to the final fusion of labeled glycosomes and lysosomes as part of glycosomal turnover. Intraorganellar measurements and pH calibration with F-PTS1 in T. brucei glycosomes indicate that the resting glycosomal pH under physiological conditions is 7.4 ± 0.2. However, incubation in glucose-depleted buffer triggered mild acidification of the glycosome over a period of 20 min, with a final observed pH of 6.8 ± 0.3. This glycosomal acidification was reversed by reintroduction of glucose. Coupling of ratiometric fluorescent sensors and reporters to PTS peptides offers an invaluable tool for monitoring in situ glycosomal response(s) to changing environmental conditions and could be applied to additional kinetoplastid parasites.

  1. Laboratory Measurements of Celestial Solids

    NASA Technical Reports Server (NTRS)

    Sievers, A. J.; Beckwith, S. V. W.

    1997-01-01

    Our experimental study has focused on laboratory measurements of the low temperature optical properties of a variety of astronomically significant materials in the infrared and mm-wave region of the spectrum. Our far infrared measurements of silicate grains with an open structure have produced a variety of unusual results: (1) the low temperature mass opacity coefficient of small amorphous 2MgO(central dot)SiO2 and MgO(central dot)2SiO2 grains are many times larger than the values previously used for interstellar grain material; (2) all of the amorphous silicate grains studied possess the characteristic temperature dependent signature associated with two level systems in bulk glass; and (3) a smaller but nonzero two level temperature dependence signature is also observed for crystalline particles, its physical origin is unclear. These laboratory measurements yield surprisingly large and variable values for the mm-wave absorption coefficients of small silicate particles similar to interstellar grains, and suggest that the bulk absorptivity of interstellar dust at these long wavelengths will not be well known without such studies. Furthermore, our studies have been useful to better understand the physics of the two level absorption process in amorphous and crystalline grains to gain confidence in the wide applicability of these results.

  2. Laboratory ginning and blending impacts on cotton fiber micronaire measurements

    USDA-ARS?s Scientific Manuscript database

    Micronaire, a critical cotton quality parameter, is normally measured in a conditioned laboratory, but increasing interest has been shown in new technologies that can measure micronaire both in and outside of the laboratory. Near Infrared (NIR) technology has demonstrated its ability to measure cot...

  3. Measurements of pH and redox potential distributions in TNT-contaminated plant-soil systems using microelectrode techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, H.; Zhang, T.C.

    1997-12-31

    The pH and redox potential profiles in TNT-contaminated soils with and without plants were investigated using microelectrode techniques. The new pH cocktail and double-barreled structure greatly improved the performance of the pH microelectrode. For soil without plants, there is almost no pH difference at different locations with different heights; while for the TNT-contaminated soils with plants there exist pH profiles. The soil immediately near the root of the plant has the lowest pH value. The pH value increases as the distance between the measuring point and the plant roots increases. The pH gradient (the increased pH value over the unitmore » distance) decreases with an increase of the distance between the measuring point and the plant roots. These results show that the plant presence can greatly affect the pH distribution. In vegetated soil, the redox potentials in the layer nearest the plant roots are higher than those in the bulk soil without plants. The redox potentials in the central part of the plant are lower than those in the soil around the plant and soil without the plant. The redox potentials in the soil without plants decrease with an increase of depth.« less

  4. Soil pH mapping with an on-the-go sensor.

    PubMed

    Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan

    2011-01-01

    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r(2)) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany.

  5. Soil pH Mapping with an On-The-Go Sensor

    PubMed Central

    Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan

    2011-01-01

    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r2) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany. PMID:22346591

  6. Continuous measurement of intra-oral pH and temperature: development, validation of an appliance and a pilot study.

    PubMed

    Choi, J E; Loke, C; Waddell, J N; Lyons, K M; Kieser, J A; Farella, M

    2015-08-01

    To describe a novel approach for continuous measurement of intra-oral pH and temperature in individuals carrying out normal daily activities over 24 h. We designed, validated and constructed a custom-made appliance fitted with a pH probe and a thermocouple. Six subjects wore the appliance over a 24-h period for two non-consecutive days, while the intra-oral pH and temperature were measured continuously and recorded. Intra-oral pH and temperature were very similar across different recording days, the difference being not statistically significant (P ≥ 0.14). There was a noticeable difference in the pattern of variation of pH between day and night. During the day, the mean pH was 7.3 (±0.4) and dropped markedly only after consumption of acidic food and drinks. The intra-oral pH decreased slowly during sleep with an average pH of 6.6 (±0.4) being recorded. The difference between day and night was statistically significant (P = 0.002). The mean intra-oral temperature was 33.9 °C (±0.9) during daytime and 35·9 °C (±0·5) during sleep (P = 0.013) with minor fluctuations occurring over 24 h. The continuous and simultaneous intra-oral pH and temperature measurement system described in this report is reliable, easy to construct, able to measure variables over a sustained period and may serve as a future diagnostic tool in a number of applications. © 2015 John Wiley & Sons Ltd.

  7. Extension of laboratory-measured soil spectra to field conditions

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Weismiller, R. A.; Biehl, L. L.; Robinson, B. F.

    1982-01-01

    Spectral responses of two glaciated soils, Chalmers silty clay loam and Fincastle silt loam, formed under prairie grass and forest vegetation, respectively, were measured in the laboratory under controlled moisture equilibria using an Exotech Model 20C spectroradiometer to obtain spectral data in the laboratory under artificial illumination. The same spectroradiometer was used outdoors under solar illumination to obtain spectral response from dry and moistened field plots with and without corn residue cover, representing the two different soils. Results indicate that laboratory-measured spectra of moist soil are directly proportional to the spectral response of that same field-measured moist bare soil over the 0.52 micrometer to 1.75 micrometer wavelength range. The magnitudes of difference in spectral response between identically treated Chalmers and Fincastle soils are greatest in the 0.6 micrometers to 0.8 micrometer transition region between the visible and near infrared, regardless of field condition or laboratory preparation studied.

  8. Laboratory Connections: Review of Two Commercial Interfacing Packages.

    ERIC Educational Resources Information Center

    Powers, Michael H.

    1989-01-01

    Evaluates two Apple II interfacing packages designed to measure pH: (1) "Experiments in Chemistry" by HRM Software and (2) "Voltage Plotter III" by Vernier Software. Provides characteristics and screen dumps of each package. Reports both systems are suitable for high school or beginning college laboratories. (MVL)

  9. Safety in the Chemical Laboratory: Laboratory Air Quality: Part II. Measurements of Ventilation Rates.

    ERIC Educational Resources Information Center

    Butcher, Samuel S.; And Others

    1985-01-01

    Part I of this paper (SE 538 295) described a simple model for estimating laboratory concentrations of gas phase pollutants. In this part, the measurement of ventilation rates and applications of the model are discussed. The model can provide a useful starting point in planning for safer instructional laboratories. (JN)

  10. Optimization of urinary dipstick pH: Are multiple dipstick pH readings reliably comparable to commercial 24-hour urinary pH?

    PubMed

    Abbott, Joel E; Miller, Daniel L; Shi, William; Wenzler, David; Elkhoury, Fuad F; Patel, Nishant D; Sur, Roger L

    2017-09-01

    Accurate measurement of pH is necessary to guide medical management of nephrolithiasis. Urinary dipsticks offer a convenient method to measure pH, but prior studies have only assessed the accuracy of a single, spot dipstick. Given the known diurnal variation in pH, a single dipstick pH is unlikely to reflect the average daily urinary pH. Our goal was to determine whether multiple dipstick pH readings would be reliably comparable to pH from a 24-hour urine analysis. Kidney stone patients undergoing a 24-hour urine collection were enrolled and took images of dipsticks from their first 3 voids concurrently with the 24-hour collection. Images were sent to and read by a study investigator. The individual and mean pH from the dipsticks were compared to the 24-hour urine pH and considered to be accurate if the dipstick readings were within 0.5 of the 24-hour urine pH. The Bland-Altman test of agreement was used to further compare dipstick pH relative to 24-hour urine pH. Fifty-nine percent of patients had mean urinary pH values within 0.5 pH units of their 24-hour urine pH. Bland-Altman analysis showed a mean difference between dipstick pH and 24-hour urine pH of -0.22, with an upper limit of agreement of 1.02 (95% confidence interval [CI], 0.45-1.59) and a lower limit of agreement of -1.47 (95% CI, -2.04 to -0.90). We concluded that urinary dipstick based pH measurement lacks the precision required to guide medical management of nephrolithiasis and physicians should use 24-hour urine analysis to base their metabolic therapy.

  11. Examining Summer Laboratory Research Apprenticeships for High School Students as a Factor in Entry to MD/PhD Programs at Matriculation.

    PubMed

    Tai, Robert H; Kong, Xiaoqing; Mitchell, Claire E; Dabney, Katherine P; Read, Daniel M; Jeffe, Donna B; Andriole, Dorothy A; Wathington, Heather D

    2017-01-01

    Do summer laboratory research apprenticeships during high school have an impact on entry into MD/PhD programs? Apart from the nearly decade-long span of time between high school and matriculation into an MD/PhD program, young people have many life-shaping experiences that presumably impact their education and career trajectories. This quantitative study ( n = 236,432) examines the connection between early laboratory research apprenticeship experiences at the high school level and matriculation into one of the more rigorous educational programs for scientific research training. The span of time covered by this analysis reaches across more than a decade, examining the potential importance of research experiences during the precollege years in the educational trajectory of young people. Intertwined with this question on research experiences is a second major concern regarding diversity in the life sciences research corps. Diversity in this wide-ranging discipline refers specifically to the underrepresentation of Blacks/African Americans, Hispanics/Latino/as, and American Indians/Alaska Natives among the ranks of research scientists. Thus, this study includes analyses that specifically focus on research apprenticeships of Blacks/African Americans and Hispanics/Latino/as and their entrance into MD/PhD programs. © 2017 R. H. Tai et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Measuring meaningful learning in the undergraduate chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Galloway, Kelli R.

    The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from

  13. Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability.

    PubMed

    Suffrian, K; Schulz, K G; Gutowska, M A; Riebesell, U; Bleich, M

    2011-05-01

    • To understand the influence of changing surface ocean pH and carbonate chemistry on the coccolithophore Emiliania huxleyi, it is necessary to characterize mechanisms involved in pH homeostasis and ion transport. • Here, we measured effects of changes in seawater carbonate chemistry on the fluorescence emission ratio of BCECF (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) as a measure of intracellular pH (pH(i)). Out of equilibrium solutions were used to differentiate between membrane permeation pathways for H(+), CO(2) and HCO(3)(-). • Changes in fluorescence ratio were calibrated in single cells, resulting in a ratio change of 0.78 per pH(i) unit. pH(i) acutely followed the pH of seawater (pH(e)) in a linear fashion between pH(e) values of 6.5 and 9 with a slope of 0.44 per pH(e) unit. pH(i) was nearly insensitive to changes in seawater CO(2) at constant pH(e) and HCO(3)(-). An increase in extracellular HCO(3)(-) resulted in a slight intracellular acidification. In the presence of DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), a broad-spectrum inhibitor of anion exchangers, E. huxleyi acidified irreversibly. DIDS slightly reduced the effect of pH(e) on pH(i). • The data for the first time show the occurrence of a proton permeation pathway in E. huxleyi plasma membrane. pH(i) homeostasis involves a DIDS-sensitive mechanism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  14. K[subscript a] and K[subscript b] from pH and Conductivity Measurements: A General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Moehring, Michael; Arthasery, Phyllis; Barlag, Rebecca

    2011-01-01

    The acid ionization constant, K[subscript a], of acetic acid and the base ionization constant, K[subscript b], of ammonia are determined easily and rapidly using a datalogger, a pH sensor, and a conductivity sensor. To decrease sample preparation time and to minimize waste, sequential aliquots of a concentrated standard are added to a known volume…

  15. Simultaneous wireless assessment of intra-oral pH and temperature.

    PubMed

    Farella, M; Loke, C; Sander, S; Songini, A; Allen, M; Mei, L; Cannon, R D

    2016-08-01

    Intra-oral pH plays an important role in the pathogenesis of tooth erosion and decay, but there is limited information about its variation in real life settings. The aims of this research were to: 1) develop a wireless device, which can be used to continuously monitor intra-oral pH and temperature in real-time; 2) test and validate the device under controlled laboratory conditions; and 3) collect data in a natural environment in a sample of healthy volunteers. A wireless device for measuring pH and temperature simultaneously was developed, calibrated and validated against the gold standard glass electrode pH meter. A smart phone was used as data logger. The wireless device was embedded in an oral appliance and worn by eleven participants (mean age 31.1±6.9years) for 24h, while conducting standardised drinking tasks and regular daily activities. The wireless device could accurately measure pH and temperature both in vitro and in vivo. The recovery time following the swallow of a standard acidic drink varied markedly among individuals (mean=1.3±0.9min). The intra-oral pH and temperature recorded in the natural environment also showed a large inter- and intra-individual variability. The average intra-oral pH when asleep (6.7±0.5) was lower (p<0.001) than when awake (7.2±0.5). The average intra-oral temperature during sleep (35.6±0.5°C) was higher (p<0.001) than when awake (34.5±0.7°C). Intra-oral pH and temperature can be continuously and wirelessly assessed in real-life settings, and show individual-specific patterns with circadian variations. Intra-oral pH becomes slightly acidic during sleep while intra-oral temperature increases and fluctuates less. We propose a wireless device that is capable of measuring intra-oral pH over a 24-h period. We found marked inter-individual variation after acidic stimuli, and day to sleep time variation of both intra-oral temperature and pH. Our approach may provide new insight into the relationship between oral pH, tooth

  16. Solid State Sensor for Simultaneous Measurement of Total Alkalinity and pH of Seawater.

    PubMed

    Briggs, Ellen M; Sandoval, Sergio; Erten, Ahmet; Takeshita, Yuichiro; Kummel, Andrew C; Martz, Todd R

    2017-09-22

    A novel design is demonstrated for a solid state, reagent-less sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (A T ) using ion sensitive field effect transistor (ISFET) technology to provide a simplified means of characterization of the aqueous carbon dioxide system through measurement of two "master variables": pH and A T . ISFET-based pH sensors that achieve 0.001 precision are widely used in various oceanographic applications. A modified ISFET is demonstrated to perform a nanoliter-scale acid-base titration of A T in under 40 s. This method of measuring A T , a Coulometric Diffusion Titration, involves electrolytic generation of titrant, H + , through the electrolysis of water on the surface of the chip via a microfabricated electrode eliminating the requirement of external reagents. Characterization has been performed in seawater as well as titrating individual components (i.e., OH - , HCO 3 - , CO 3 2- , B(OH) 4 - , PO 4 3- ) of seawater A T . The seawater measurements are consistent with the design in reaching the benchmark goal of 0.5% precision in A T over the range of seawater A T of ∼2200-2500 μmol kg -1 which demonstrates great potential for autonomous sensing.

  17. A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH.

    PubMed

    Moon, Brianna F; Jones, Kyle M; Chen, Liu Qi; Liu, Peilu; Randtke, Edward A; Howison, Christine M; Pagel, Mark D

    2015-01-01

    Acidosis within tumor and kidney tissues has previously been quantitatively measured using a molecular imaging technique known as acidoCEST MRI. The previous studies used iopromide and iopamidol, two iodinated contrast agents that are approved for clinical CT diagnoses and have been repurposed for acidoCEST MRI studies. We aimed to compare the performance of the two agents for measuring pH by optimizing image acquisition conditions, correlating pH with a ratio of CEST effects from an agent, and evaluating the effects of concentration, endogenous T1 relaxation time and temperature on the pH-CEST ratio correlation for each agent. These results showed that the two agents had similar performance characteristics, although iopromide produced a pH measurement with a higher dynamic range while iopamidol produced a more precise pH measurement. We then compared the performance of the two agents to measure in vivo extracellular pH (pHe) within xenograft tumor models of Raji lymphoma and MCF-7 breast cancer. Our results showed that the pHe values measured with each agent were not significantly different. Also, iopromide consistently measured a greater region of the tumor relative to iopamidol in both tumor models. Therefore, an iodinated contrast agent for acidoCEST MRI should be selected based on the measurement properties needed for a specific biomedical study and the pharmacokinetic properties of a specific tumor model. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Measuring preschool learning engagement in the laboratory.

    PubMed

    Halliday, Simone E; Calkins, Susan D; Leerkes, Esther M

    2018-03-01

    Learning engagement is a critical factor for academic achievement and successful school transitioning. However, current methods of assessing learning engagement in young children are limited to teacher report or classroom observation, which may limit the types of research questions one could assess about this construct. The current study investigated the validity of a novel assessment designed to measure behavioral learning engagement among young children in a standardized laboratory setting and examined how learning engagement in the laboratory relates to future classroom adjustment. Preschool-aged children (N = 278) participated in a learning-based Tangrams task and Story sequencing task and were observed based on seven behavioral indicators of engagement. Confirmatory factor analysis supported the construct validity for a behavioral engagement factor composed of six of the original behavioral indicators: attention to instructions, on-task behavior, enthusiasm/energy, persistence, monitoring progress/strategy use, and negative affect. Concurrent validity for this behavioral engagement factor was established through its associations with parent-reported mastery motivation and pre-academic skills in math and literacy measured in the laboratory, and predictive validity was demonstrated through its associations with teacher-reported classroom learning behaviors and performance in math and reading in kindergarten. These associations were found when behavioral engagement was observed during both the nonverbal task and the verbal story sequencing tasks and persisted even after controlling for child minority status, gender, and maternal education. Learning engagement in preschool appears to be successfully measurable in a laboratory setting. This finding has implications for future research on the mechanisms that support successful academic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Report of the key comparison APMP.QM-K19. APMP comparison on pH measurement of borate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Obromsook, Krairerk; Tangpaisarnkul, Nongluck; Rodruangthum, Patumporn; Wong, Siu-Kay; Lam, Wai-Hing; Zakaria, Osman; Anuar Mohd. Amin, Khirul; Thanh, Ngo Huy; Máriássy, Michal; Vyskocil, Leos; Hankova, Zuzana; Fisicaro, Paola; Stoica, Daniela; Singh, Nahar; Soni, Daya; Ticona Canaza, Galia; Kutovoy, Viatcheslav; Barbieri Gonzaga, Fabiano; Dias, Júlio Cesar; Vospelova, Alena; Bakovets, Nickolay; Zhanasbayeva, Bibinur

    2015-01-01

    The APMP.QM-K19 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a borate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan (NMIJ) and the National Institute of Metrology (Thailand) (NIMT) at the APMP-TCQM meeting held 26-27 November 2012. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K19 and CCQM-K19.1. The comparison material was a borate buffer of pH around 9.2 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the second APMP key comparison on pH measurement and the fourth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006 and APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011. The results can be used further by any participant to support its CMC claim at least for a borate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Sensitivity, specificity, and reproducibility of four measures of laboratory turnaround time.

    PubMed

    Valenstein, P N; Emancipator, K

    1989-04-01

    The authors studied the performance of four measures of laboratory turnaround time: the mean, median, 90th percentile, and proportion of tests reported within a predetermined cut-off interval (proportion of acceptable tests [PAT]). Measures were examined with the use of turnaround time data from 11,070 stat partial thromboplastin times, 16,761 urine cultures, and 28,055 stat electrolyte panels performed by a single laboratory. For laboratories with long turnaround times, the most important quality of a turnaround time measure is high reproducibility, so that improvement in reporting speed can be distinguished from random variation resulting from sampling. The mean was found to be the most reproducible of the four measures, followed by the median. The mean achieved acceptable precision with sample sizes of 100-500 tests. For laboratories with normally rapid turnaround times, the most important quality of a measure is high sensitivity and specificity for detecting whether turnaround time has dropped below standards. The PAT was found to be the best measure of turnaround time in this setting but required sample sizes of at least 500 tests to achieve acceptable accuracy. Laboratory turnaround time may be measured for different reasons. The method of measurement should be chosen with an eye toward its intended application.

  1. Self-Assembled Fluorescent Bovine Serum Albumin Nanoprobes for Ratiometric pH Measurement inside Living Cells.

    PubMed

    Yang, Qiaoyu; Ye, Zhongju; Zhong, Meile; Chen, Bo; Chen, Jian; Zeng, Rongjin; Wei, Lin; Li, Hung-wing; Xiao, Lehui

    2016-04-20

    In this work, we demonstrated a new ratiometric method for the quantitative analysis of pH inside living cells. The structure of the nanosensor comprises a biofriendly fluorescent bovine serum albumin (BSA) matrix, acting as a pH probe, and pH-insensitive reference dye Alexa 594 enabling ratiometric quantitative pH measurement. The fluorescent BSA matrix was synthesized by cross-linking of the denatured BSA proteins in ethanol with glutaraldehyde. The size of the as-synthesized BSA nanoparticles can be readily manipulated from 30 to 90 nm, which exhibit decent fluorescence at the peak wavelength of 535 nm with a pH response range of 6-8. The potential of this pH sensor for intracellular pH monitoring was demonstrated inside living HeLa cells, whereby a significant change in fluorescence ratio was observed when the pH of the cell was switched from normal to acidic with anticancer drug treatment. The fast response of the nanosensor makes it a very powerful tool in monitoring the processes occurring within the cytosol.

  2. Making pH Tangible.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

  3. Comparison of Rumen Fluid pH by Continuous Telemetry System and Bench pH Meter in Sheep with Different Ranges of Ruminal pH

    PubMed Central

    Reis, Leonardo F.; Minervino, Antonio H. H.; Araújo, Carolina A. S. C.; Sousa, Rejane S.; Oliveira, Francisco L. C.; Rodrigues, Frederico A. M. L.; Meira-Júnior, Enoch B. S.; Barrêto-Júnior, Raimundo A.; Mori, Clara S.; Ortolani, Enrico L.

    2014-01-01

    We aimed to compare the measurements of sheep ruminal pH using a continuous telemetry system or a bench pH meter using sheep with different degrees of ruminal pH. Ruminal lactic acidosis was induced in nine adult crossbred Santa Ines sheep by the administration of 15 g of sucrose per kg/BW. Samples of rumen fluid were collected at the baseline, before the induction of acidosis (T 0) and at six, 12, 18, 24, 48, and 72 hours after the induction for pH measurement using a bench pH meter. During this 72-hour period, all animals had electrodes for the continuous measurement of pH. The results were compared using the Bland-Altman analysis of agreement, Pearson coefficients of correlation and determination, and paired analysis of variance with Student's t-test. The measurement methods presented a strong correlation (r = 0.94, P < 0.05) but the rumen pH that was measured continuously using a telemetry system resulted in lower values than the bench pH meter (overall mean of 5.38 and 5.48, resp., P = 0.0001). The telemetry system was able to detect smaller changes in rumen fluid pH and was more accurate in diagnosing both subacute ruminal lactic acidosis and acute ruminal lactic acidosis in sheep. PMID:24967422

  4. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    NASA Astrophysics Data System (ADS)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  5. Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press.

    PubMed

    Gamlen, Michael John Desmond; Martini, Luigi G; Al Obaidy, Kais G

    2015-01-01

    The repeated compaction of Avicel PH101, dicalcium phosphate dihydrate (DCP) powder, 50:50 DCP/Avicel PH101 and Starch 1500 was studied using an instrumented laboratory tablet press which measures upper punch force, punch displacement and ejection force and operates using a V-shaped compression profile. The measurement of work compaction was demonstrated, and the test materials were ranked in order of compaction behaviour Avicel PH101 > DCP/Avicel PH101 > Starch > DCP. The behaviour of the DCP/Avicel PH101 mixture was distinctly non-linear compared with the pure components. Repeated compaction and precompression had no effect on the tensile fracture strength of Avicel PH101 tablets, although small effects on friability and disintegration time were seen. Repeated compaction and precompression reduced the tensile strength and the increased disintegration time of the DCP tablets, but improved the strength and friability of Starch 1500 tablets. Based on the data reported, routine laboratory measurement of tablet work of compaction may have potential as a critical quality attribute of a powder blend for compression. The instrumented press was suitable for student use with minimal supervisor input.

  6. pH tolerance in freshwater bacterioplankton: trait variation of the community as measured by leucine incorporation.

    PubMed

    Bååth, Erland; Kritzberg, Emma

    2015-11-01

    pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) instantaneously after pH adjustment. The resulting unimodal response curves, reflecting community tolerance to pH, were well modeled with a double logistic equation (mean R(2) = 0.97). The optimal pH for growth (pHopt) among the bacterial communities was closely correlated with in situ pH, with a slope (0.89 ± 0.099) close to unity. The pH interval, in which growth was ≥90% of that at pHopt, was 1.1 to 3 pH units wide (mean 2.0 pH units). Tolerance response curves of communities originating from circum-neutral pH were symmetrical, whereas in high-pH (8.9) and especially in low-pH (<5.5) waters, asymmetric tolerance curves were found. In low-pH waters, decreasing pH was more detrimental for bacterial growth than increasing pH, with a tendency for the opposite for high-pH waters. A pH tolerance index, using the ratio of growth at only two pH values (pH 4 and 8), was closely related to pHopt (R(2) = 0.83), allowing for easy determination of pH tolerance during rapid changes in pH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. pH Tolerance in Freshwater Bacterioplankton: Trait Variation of the Community as Measured by Leucine Incorporation

    PubMed Central

    Kritzberg, Emma

    2015-01-01

    pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) instantaneously after pH adjustment. The resulting unimodal response curves, reflecting community tolerance to pH, were well modeled with a double logistic equation (mean R2 = 0.97). The optimal pH for growth (pHopt) among the bacterial communities was closely correlated with in situ pH, with a slope (0.89 ± 0.099) close to unity. The pH interval, in which growth was ≥90% of that at pHopt, was 1.1 to 3 pH units wide (mean 2.0 pH units). Tolerance response curves of communities originating from circum-neutral pH were symmetrical, whereas in high-pH (8.9) and especially in low-pH (<5.5) waters, asymmetric tolerance curves were found. In low-pH waters, decreasing pH was more detrimental for bacterial growth than increasing pH, with a tendency for the opposite for high-pH waters. A pH tolerance index, using the ratio of growth at only two pH values (pH 4 and 8), was closely related to pHopt (R2 = 0.83), allowing for easy determination of pH tolerance during rapid changes in pH. PMID:26276108

  8. A comparison of three electrodes for the measurement of pH in small volumes.

    PubMed

    Smit, A; Pollard, M; Cleaton-Jones, P; Preston, A

    1997-01-01

    An ion-sensitive field effect transistor (ISFET, Sentron, Sentron, Inc.) electrode was compared with a glass combination micro-electrode (MI-410, Micro-electrodes, Inc.) and a solid-state metal wire oxide pH sensor (Beetrode, World Precision Instruments, Inc.) with a liquid junction reference electrode (MERE1, World Precision Instruments, Inc.). The electrodes were assessed for linearity, reproducibility, accuracy, drift from the initial calibration between pH 4 and pH 7 and the time taken to record a stable reading. The ISFET was used to determine the pH in dental plaque samples (1 mg suspended in 20 microliters). The pH values correlated with the hydrogen ion concentration for all the electrodes (r = 0.98). The MI-410 fractured before this evaluation was completed. Coefficients of variation were 0.65% (pH 4) and 0.08% (pH 7) for the ISFET and 4.69% (pH 4) and 3.46% (pH 7) for the Beetrode. Both electrodes gave readings that differed significantly from the initial calibration, but the drift was greater for the Beetrode (F = 7.93; p = 0.0005) than the ISFET (F = 1.89; p = 0.1519). However, this drift was smaller than the change in pH as measured in dental plaque samples. The Beetrode gave a stable reading after 3.39 +/- 0.83 s and the ISFET after 2.2 +/- 0.76 s, while the MI-410 required at least 20 s. The ISFET type electrode is suitable for use in small volumes such as plaque suspensions, is easier to operate and yields results closer to the initial calibration than the Beetrode and is more robust than the MI-410 and the Beetrode.

  9. NOAA's Van-Based Mobile Atmospheric Emissions Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dube, W. P.; Peischl, J.; Neuman, J. A.; Eilerman, S. J.; Holloway, M.; Roberts, O.; Aikin, K. C.; Ryerson, T. B.

    2015-12-01

    The Chemical Science Division (CSD) mobile atmospheric emissions measurement laboratory is the second and latest of two mobile measurement vans outfitted for atmospheric sampling by the NOAA Earth System Research Laboratory. In this presentation we will describe the modifications made to this vehicle to provide a versatile and relatively inexpensive instrument platform including: the 2 kW 120 volt instrument power system; battery back-up system; data acquisition system; real-time display; meteorological, directional, and position sensor package; and the typical atmospheric emissions instrument package. The van conversion uses commercially available, off-the-shelf components from the marine and RV industries, thus keeping the costs quite modest.

  10. New Improvements in Magnetic Measurements Laboratory of the ALBA Synchrotron Facility

    NASA Astrophysics Data System (ADS)

    Campmany, Josep; Marcos, Jordi; Massana, Valentí

    ALBA synchrotron facility has a complete insertion devices (ID) laboratory to characterize and produce magnetic devices needed to satisfy the requirements of ALBA's user community. The laboratory is equipped with a Hall-probe bench working in on-the-fly measurement mode allowing the measurement of field maps of big magnetic structures with high accuracy, both in magnetic field magnitude and position. The whole control system of this bench is based on TANGO. The Hall probe calibration range extends between sub-Gauss to 2 Tesla with an accuracy of 100 ppm. Apart from the Hall probe bench, the ID laboratory has a flipping coil bench dedicated to measuring field integrals and a Helmholtz coil bench specially designed to characterize permanent magnet blocks. Also, a fixed stretched wire bench is used to measure field integrals of magnet sets. This device is specifically dedicated to ID construction. Finally, the laboratory is equipped with a rotating coil bench, specially designed for measuring multipolar devices used in accelerators, such as quadrupoles, sextupoles, etc. Recent improvements of the magnetic measurements laboratory of ALBA synchrotron include the design and manufacturing of very thin 3D Hall probe heads, the design and manufacturing of coil sensors for the Rotating coil bench based on multilayered PCB, and the improvement of calibration methodology in order to improve the accuracy of the measurements. ALBA magnetic measurements laboratory is open for external contracts, and has been widely used by national and international institutes such as CERN, ESRF or CIEMAT, as well as magnet manufacturing companies, such as ANTEC, TESLA and I3 M. In this paper, we will present the main features of the measurement benches as well as improvements made so far.

  11. Comparing Laboratory and Field Measured Bioaccumulation Endpoints

    EPA Science Inventory

    The report presents an approach that allows comparisons of all laboratory and field bioaccumulation endpoints measurements. The approach will enable the inclusion of large amounts of field data into evaluations of bioaccumulation potential for legacy chemicals. Currently, these...

  12. Laboratory measurements of gravel thermal properties. A methodology proposal

    NASA Astrophysics Data System (ADS)

    Cultrera, Matteo; Peron, Fabio; Bison, Paolo; Dalla Santa, Giorgia; Bertermann, David; Muller, Johannes; Bernardi, Adriana; Galgaro, Antonio

    2017-04-01

    Gravel thermal properties measurements at laboratory level is quite challenging due to several technical and logistic issues, mainly connected to the sediment sizes and the variability of their mineralogical composition. The direct measurement of gravel thermal properties usually are not able to involve a representative volume of geological material, consequently the thermal measurements performed produce much dispersed results and not consistent due to the large interstitial voids and the poor physical contact with the measuring sensors. With the aim of directly provide the measurement of the gravel thermal properties, a new methodology has been developed and some results are already available on several gravel deposits samples around Europe. Indeed, a single guarded hot plate Taurus Instruments TLP 800 measured the gravel thermal properties. Some instrumental adjustments were necessary to adapt the measuring devices and to finalize the thermal measurements on gravels at the IUAV FISTEC laboratory (Environmental Technical Physics Laboratory of Venice University). This device usually provides thermal measurements according to ISO 8302, ASTM C177, EN 1946-2, EN 12664, EN 12667 and EN 12939 for building materials. A preliminary calibration has been performed comparing the outcomes obtained with the single guarded hot plate with a needle probe of a portable thermal conductivity meter (ISOMET). Standard sand (ISO 67:2009) is used as reference material. This study is provided under the Cheap-GSHPs project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 657982

  13. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass

    NASA Technical Reports Server (NTRS)

    Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.

    2003-01-01

    OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and

  14. Final report of the key comparison APMP.QM-K91: APMP comparison on pH measurement of phthalate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Ketrin, Rosi; Nuryatini; Thanh, Ngo Huy; Truong Chinh, Nguyen; Vospelova, Alena; Bastkowski, Frank; Sander, Beatrice; Matzke, Jessica; Prokunin, Sergey; Frolov, Dmitry; Aprelev, Alexey; Dobrovolskiy, Vladimir; Uysal, Emrah; Liv, Lokman; Velina Lara-Manzano, Judith; Montero-Ruiz, Jazmin; Ortiz-Aparicio, JosÉ Luis; Ticona Canaza, Galia; Anuar Mohd Amin, Khirul; Abd Kadir, Haslina; Bakovets, Nickolay; Wong, Siu-Kay; Lam, Wai-Hing

    2017-01-01

    The APMP.QM-K91 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phthalate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan at the APMP-TCQM meeting held September 22-23, 2014. After approval by TCQM, the comparison has been conducted by NMIJ. The comparison is a key comparison following CCQM-K91. The comparison material was a phthalate buffer of pH around 4.0 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the third APMP key comparison on pH measurement and the fifth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006, APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011 and APMP.QM-K19/APMP.QM-P25 (a borate buffer) in 2013-2014. The results can be used further by any participant to support its CMC claim at least for a phthalate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Final report of the key comparison APMP.QM-K9: APMP comparison on pH measurement of phosphate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Ohata, Masaki; Cherdchu, Chainarong; Tangpaisarnkul, Nongluck

    2011-01-01

    The APMP.QM-K9 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phosphate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan, NMIJ, and the National Institute of Metrology of Thailand, NIMT, in August 2009. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K9, CCQM-K9.1 and CCQM-K9.2. The comparison material was a phosphate buffer of pH around 6.86 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the first APMP key comparison on pH measurement and the third APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004 and APMP.QM-P09 (a phthalate buffer) in 2006. The results can be used further by any participant to support its CMC claim for a phosphate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the temperature(s) used or the full temperature range between 15 °C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  16. A laboratory study evaluating the pH of various modern root canal filling materials.

    PubMed

    Pawińska, Małgorzata; Szczurko, Grzegorz; Kierklo, Anna; Sidun, Jarosław

    2017-01-01

    Alkaline pH is responsible for antibacterial activity and the stimulation of periapical tissue healing. It neutralizes the acidic environment of inflammatory tissues in the periapical region of the teeth and favors bone repair by activating tissue enzymes. The aim of this study was to evaluate and compare in vitro the pH of 8 root canal filling materials (sealers and points) -AH Plus Jet (AH), Apexit Plus (AP), Endomethasone N (END), Epiphany (EP), GuttaFlow (GF), gutta-percha (G), Resilon (R), Tubliseal (T). 0.1 g of each material (n = 6) was placed in dialysis tubes and immersed in 20 mL of deionized water. The control contained deionized water (pH 6.6) with an empty tube. The pH values were recorded immediately after immersion (baseline) and after 1, 2, 24, 48, 120, and 192 h with a pH-meter. Data were statistically analyzed using the Student's -t test and 1-way analysis of variance (p < 0.05). Nearly all the materials had pH significantly higher than the control (p < 0.05). There were significant differences in the pH between the materials tested at each time point (p < 0.001). The highest pH was exhibited by EP, followed by AP and AH. The lowest pH was shown by GF, G and R. Among the materials studied, only EP, AP and AH Plus were able to elevate the pH level that would allow inactivation of microorganisms in the root canals and promote healing of inflamed periapical tissues. However, the low alkalizing potential of G and R can be modified by the concomitant application of sealers producing alkaline pH.

  17. Proficiency Tests for Environmental Radioactivity Measurement Organized by an Accredited Laboratory

    NASA Astrophysics Data System (ADS)

    Aubert, Cédric; Osmond, Mélanie

    2008-08-01

    For 40 years, STEME (Environmental Sample Processing and Metrology Department) organized international proficiency testing (PT) exercises formerly for WHO (World Health Organization) and EC (European Community) and currently for ASN (French Nuclear Safety Authority). Five PT exercises are organized each year for the measurement of radionuclides (alpha, beta and gamma) in different matrixes (water, soil, biological and air samples) at environmental levels. ASN can deliver a French ministerial agreement to participate on environmental radioactivity measurements French network for laboratories asking it [1]. Since 2006, November, STEME is the first French entity obtaining a COFRAC (French Committee of Accreditation) accreditation as "Interlaboratory Comparisons" for the organization of proficiency tests for environmental radioactivity measurement according to standard International Standard Organization (ISO) 17025 and guide ISO 43-1. STEME has in charge to find, as far as possible, real sample or to create, by radionuclide adding, an adapted sample. STEME realizes the sampling, the samples preparation and the dispatching. STEME is also accredited according to Standard 17025 for radioactivity measurements in environmental samples and determines homogeneity, stability and reference values. After the reception of participating laboratories results, STEME executes statistical treatments in order to verify the normal distribution, to eliminate outliers and to evaluate laboratories performance. Laboratories participate with several objectives, to obtain French agreement, to prove the quality of their analytical performance in regards to standard 17025 or to validate new methods or latest developments. For 2 years, in addition to usual PT exercises, new PT about alpha or beta measurement in air filters, radioactive iodine in carbon cartridges or measurement of environmental dosimeters are organized. These PT exercises help laboratories to improve radioactive measurements

  18. Proficiency Tests for Environmental Radioactivity Measurement Organized by an Accredited Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, Cedric; Osmond, Melanie

    2008-08-14

    For 40 years, STEME (Environmental Sample Processing and Metrology Department) organized international proficiency testing (PT) exercises formerly for WHO (World Health Organization) and EC (European Community) and currently for ASN (French Nuclear Safety Authority). Five PT exercises are organized each year for the measurement of radionuclides (alpha, beta and gamma) in different matrixes (water, soil, biological and air samples) at environmental levels. ASN can deliver a French ministerial agreement to participate on environmental radioactivity measurements French network for laboratories asking it. Since 2006, November, STEME is the first French entity obtaining a COFRAC (French Committee of Accreditation) accreditation as 'Interlaboratorymore » Comparisons' for the organization of proficiency tests for environmental radioactivity measurement according to standard International Standard Organization (ISO) 17025 and guide ISO 43-1. STEME has in charge to find, as far as possible, real sample or to create, by radionuclide adding, an adapted sample. STEME realizes the sampling, the samples preparation and the dispatching. STEME is also accredited according to Standard 17025 for radioactivity measurements in environmental samples and determines homogeneity, stability and reference values. After the reception of participating laboratories results, STEME executes statistical treatments in order to verify the normal distribution, to eliminate outliers and to evaluate laboratories performance.Laboratories participate with several objectives, to obtain French agreement, to prove the quality of their analytical performance in regards to standard 17025 or to validate new methods or latest developments. For 2 years, in addition to usual PT exercises, new PT about alpha or beta measurement in air filters, radioactive iodine in carbon cartridges or measurement of environmental dosimeters are organized. These PT exercises help laboratories to improve radioactive measurements

  19. Microwave moisture measurement of cotton fiber moisture content in the laboratory

    USDA-ARS?s Scientific Manuscript database

    The moisture content of cotton fiber is an important fiber property, but it is often measured by a laborious, time-consuming laboratory oven drying method. A program was implemented to establish the capabilities of a laboratory microwave moisture measurement instrument to perform rapid, precise and...

  20. Time-to-Fatigue and Intramuscular pH Measured via NIRS During Handgrip Exercise in Trained and Sedentary Individuals

    NASA Technical Reports Server (NTRS)

    Everett, M. E.; Lee, S. M. C.; Stroud, L.; Scott, P.; Hagan, R. D.; Soller, B. R.

    2009-01-01

    In exercising muscles force production and muscular endurance are impaired by a decrease in intramuscular pH. The effects of aerobic training (AT) on preventing acidosis and prolonging exercise time in muscles not specifically targeted by the training are unknown. Purpose: To compare interstitial pH, measured non-invasively with near infrared spectroscopy (NIRS), in the flexor digitorum profundus (FDP) during rhythmic handgrip exercise in sedentary subjects and those who participate in AT activities that target the lower body. Methods: Maximal isometric force (MIF) was measured on three separate days in AT (n=5) and sedentary (n=8) subjects using a handgrip dynamometer (HGD). Isometric muscular endurance (IME) was measured during five trials, each separated by at least 48 hrs. For each IME trial subjects rhythmically squeezed (4 sec at 40% of MVC) and relaxed (2 sec) to fatigue or failure to reach the target force in three consecutive contractions or four non-consecutive contractions. Interstitial pH was derived from spectra collected using a NIRS sensor adhered to the skin over the FDP. The first four IME trials served to familiarize subjects with the protocol; the fifth trial was used for analysis. NIRS-derived pH was averaged in 30 sec increments. Between group differences in MIF and exercise time were tested using paired t-tests. A repeated measures ANOVA was used to analyze effects of AT and exercise time on pH. Results: MIF was not different between groups (mean SD; aerobic=415.6 95.4 N vs. sedentary =505.1 107.4 N). Time to fatigue was greater in the AT than in the sedentary group (mean SD: 611 173 sec vs. 377 162 sec, p<0.05). pH was not different between groups at any time point. Average pH decreased (p<0.05) in both groups from rest (pH=7.4) through 90 sec of exercise (pH=6.9), but did not decrease further throughout the remainder of exercise. Conclusion: Although between group differences in pH were not detected, differences during the onset of exercise

  1. A novel fiber optic sensor for the measurement of pH of blood based on colorimetry

    NASA Astrophysics Data System (ADS)

    Chaudhari, A. L.; Patil, D. D.; Shaligram, Arvind D.

    2005-04-01

    Fiber optic sensors designed to the date are largely based on monitoring the absorption change of several immobilized indicators or change in fluorescence of fluorometric indicators. The present paper reports a new type of fiber optic sensor for the measurement of blood pH based on Colorimetric principle. The sensor consists of two multimode step index fibers, mirror as reflector and blood serum with universal indicator as medium. LED is used as source and photodiode as detector. The intensity of color produced due to addition of indicator to blood serum depends upon hydrogen ion concentration. The output intensity from receiving fiber is measured as a function of pH of blood. The developed sensor is calibrated against the standard pH meter. The design, construction and calibration details are presented in paper.

  2. Radon Mitigation Approach in a Laboratory Measurement Room

    PubMed Central

    Blanco-Rodríguez, Patricia; Fernández-Serantes, Luis Alfonso; Otero-Pazos, Alberto; Calvo-Rolle, José Luis; de Cos Juez, Francisco Javier

    2017-01-01

    Radon gas is the second leading cause of lung cancer, causing thousands of deaths annually. It can be a problem for people or animals in houses, workplaces, schools or any building. Therefore, its mitigation has become essential to avoid health problems and to prevent radon from interfering in radioactive measurements. This study describes the implementation of radon mitigation systems at a radioactivity laboratory in order to reduce interferences in the different works carried out. A large set of radon concentration samples is obtained from measurements at the laboratory. While several mitigation methods were taken into account, the final applied solution is explained in detail, obtaining thus very good results by reducing the radon concentration by 76%. PMID:28492468

  3. Radon Mitigation Approach in a Laboratory Measurement Room.

    PubMed

    Blanco-Rodríguez, Patricia; Fernández-Serantes, Luis Alfonso; Otero-Pazos, Alberto; Calvo-Rolle, José Luis; de Cos Juez, Francisco Javier

    2017-05-11

    Radon gas is the second leading cause of lung cancer, causing thousands of deaths annually. It can be a problem for people or animals in houses, workplaces, schools or any building. Therefore, its mitigation has become essential to avoid health problems and to prevent radon from interfering in radioactive measurements. This study describes the implementation of radon mitigation systems at a radioactivity laboratory in order to reduce interferences in the different works carried out. A large set of radon concentration samples is obtained from measurements at the laboratory. While several mitigation methods were taken into account, the final applied solution is explained in detail, obtaining thus very good results by reducing the radon concentration by 76%.

  4. A method for developing outcome measures in the clinical laboratory.

    PubMed

    Jones, J

    1996-01-01

    Measuring and reporting outcomes in health care is becoming more important for quality assessment, utilization assessment, accreditation standards, and negotiating contracts in managed care. How does one develop an outcome measure for the laboratory to assess the value of the services? A method is described which outlines seven steps in developing outcome measures for a laboratory service or process. These steps include the following: 1. Identify the process or service to be monitored for performance and outcome assessment. 2. If necessary, form an multidisciplinary team of laboratory staff, other department staff, physicians, and pathologists. 3. State the purpose of the test or service including a review of published data for the clinical pathological correlation. 4. Prepare a process cause and effect diagram including steps critical to the outcome. 5. Identify key process variables that contribute to positive or negative outcomes. 6. Identify outcome measures that are not process measures. 7. Develop an operational definition, identify data sources, and collect data. Examples, including a process cause and effect diagram, process variables, and outcome measures, are given using the Therapeutic Drug Monitoring service (TDM). A summary of conclusions and precautions for outcome measurement is then provided.

  5. Comparative study of two modes of gastroesophageal reflux measuring: conventional esophageal pH monitoring and wireless pH monitoring.

    PubMed

    Azzam, Rimon Sobhi; Sallum, Rubens A A; Brandão, Jeovana Ferreira; Navarro-Rodriguez, Tomás; Nasi, Ary

    2012-01-01

    Esophageal pH monitoring is considered to be the gold standard for the diagnosis of gastroesophageal acid reflux. However, this method is very troublesome and considerably limits the patient's routine activities. Wireless pH monitoring was developed to avoid these restrictions. To compare the first 24 hours of the conventional and wireless pH monitoring, positioned 3 cm above the lower esophageal sphincter, in relation to: the occurrence of relevant technical failures, the ability to detect reflux and the ability to correlate the clinical symptoms to reflux. Twenty-five patients referred for esophageal pH monitoring and with typical symptoms of gastroesophageal reflux disease were studied prospectively, underwent clinical interview, endoscopy, esophageal manometry and were submitted, with a simultaneous initial period, to 24-hour catheter pH monitoring and 48-hour wireless pH monitoring. Early capsule detachment occurred in one (4%) case and there were no technical failures with the catheter pH monitoring (P = 0.463). Percentages of reflux time (total, upright and supine) were higher with the wireless pH monitoring (P < 0.05). Pathological gastroesophageal reflux occurred in 16 (64%) patients submitted to catheter and in 19 (76%) to the capsule (P = 0.355). The symptom index was positive in 12 (48%) patients with catheter pH monitoring and in 13 (52%) with wireless pH monitoring (P = 0.777). 1) No significant differences were reported between the two methods of pH monitoring (capsule vs catheter), in regard to relevant technical failures; 2) Wireless pH monitoring detected higher percentages of reflux time than the conventional pH-metry; 3) The two methods of pH monitoring were comparable in diagnosis of pathological gastroesophageal reflux and comparable in correlating the clinical symptoms with the gastroesophageal reflux.

  6. Real-time measurement of the intracellular pH of yeast cells during glucose metabolism using ratiometric fluorescent nanosensors.

    PubMed

    Elsutohy, Mohamed M; Chauhan, Veeren M; Markus, Robert; Kyyaly, Mohammed Aref; Tendler, Saul J B; Aylott, Jonathan W

    2017-05-11

    Intracellular pH is a key parameter that influences many biochemical and metabolic pathways that can also be used as an indirect marker to monitor metabolic and intracellular processes. Herein, we utilise ratiometric fluorescent pH-sensitive nanosensors with an extended dynamic pH range to measure the intracellular pH of yeast (Saccharomyces cerevisiae) during glucose metabolism in real-time. Ratiometric fluorescent pH-sensitive nanosensors consisting of a polyacrylamide nanoparticle matrix covalently linked to two pH-sensitive fluorophores, Oregon green (OG) and 5(6)carboxyfluorescein (FAM), and a reference pH-insensitive fluorophore, 5(6)carboxytetramethylrhodamine (TAMRA), were synthesised. Nanosensors were functionalised with acrylamidopropyltrimethyl ammonium hydrochloride (ACTA) to confer a positive charge to the nanoparticle surfaces that facilitated nanosensor delivery to yeast cells, negating the need to use stress inducing techniques. The results showed that under glucose-starved conditions the intracellular pH of yeast population (n ≈ 200) was 4.67 ± 0.15. Upon addition of d-(+)-glucose (10 mM), this pH value decreased to pH 3.86 ± 0.13 over a period of 10 minutes followed by a gradual rise to a maximal pH of 5.21 ± 0.26, 25 minutes after glucose addition. 45 minutes after the addition of glucose, the intracellular pH of yeast cells returned to that of the glucose starved conditions. This study advances our understanding of the interplay between glucose metabolism and pH regulation in yeast cells, and indicates that the intracellular pH homestasis in yeast is highly regulated and demonstrates the utility of nanosensors for real-time intracellular pH measurements.

  7. Longitudinal meta-analysis of NIST pH Standard Reference Materials(®): a complement to pH key comparisons.

    PubMed

    Pratt, Kenneth W

    2015-04-01

    This meta-analysis assesses the long-term (up to 70 years) within-laboratory variation of the NIST pH Standard Reference Material® (SRM) tetroxalate, phthalate, phosphate, borate, and carbonate buffers. Values of ΔpH(S), the difference between the certified pH value, pH(S), of each SRM issue and the mean of all pH(S) values for the given SRM at that Celsius temperature, t, are graphed as a function of the SRM issue and t. In most cases, |ΔpH(S)| < 0.004. Deviations from the nominal base:acid amount (mole) ratio of a buffer yield t-independent, constant shifts in ΔpH(S). The mean ΔpH(S) characterizes such deviations. The corresponding mole fraction of impurity in the conjugate buffer component is generally <0.3 %. Changes in the equipment, personnel, materials, and methodology of the pH(S) measurement yield t-dependent variations. The standard deviation of ΔpH(S) characterizes such changes. Standard deviations of ΔpH(S) are generally 0.0015 or less. The results provide a long-term, single-institution complement to the time-specific, multi-institution results of pH key comparisons administered by the Consultative Committee for Metrology in Chemistry and Biology (CCQM).

  8. Measuring dynamic kidney function in an undergraduate physiology laboratory.

    PubMed

    Medler, Scott; Harrington, Frederick

    2013-12-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty.

  9. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    PubMed

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  10. A Guided-Inquiry pH Laboratory Exercise for Introductory Biological Science Laboratories

    ERIC Educational Resources Information Center

    Snodgrass, Meagan A.; Lux, Nicholas; Metz, Anneke M.

    2011-01-01

    There is a continuing need for engaging inquiry-based laboratory experiences for advanced high school and undergraduate biology courses. The authors describe a guided-inquiry exercise investigating the pH-dependence of lactase enzyme that uses an inexpensive, wide-range buffering system, lactase dietary supplement, over-the-counter glucose test…

  11. Achieving continuous improvement in laboratory organization through performance measurements: a seven-year experience.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Gutiérrez, Mercedes; Lugo, Javier; Sirvent, Jose Vicente; Uris, Joaquin

    2010-01-01

    Laboratory performance can be measured using a set of model key performance indicators (KPIs). The design and implementation of KPIs are important issues. KPI results from 7 years are reported and their implementation, monitoring, objectives, interventions, result reporting and delivery are analyzed. The KPIs of the entire laboratory process were obtained using Laboratory Information System (LIS) registers. These were collected automatically using a data warehouse application, spreadsheets and external quality program reports. Customer satisfaction was assessed using surveys. Nine model laboratory KPIs were proposed and measured. The results of some examples of KPIs used in our laboratory are reported. Their corrective measurements or the implementation of objectives led to improvement in the associated KPIs results. Measurement of laboratory performance using KPIs and a data warehouse application that continuously collects registers and calculates KPIs confirmed the reliability of indicators, indicator acceptability and usability for users, and continuous process improvement.

  12. Latest developments at the ALBA magnetic measurements laboratory

    NASA Astrophysics Data System (ADS)

    Marcos, J.; Massana, V.; García, L.; Campmany, J.

    2018-02-01

    ALBA is a third-generation synchrotron light source that has been in operation since 2012 near Barcelona. A magnetic measurements laboratory has been associated with the facility since its very early stages and has been active for the last 20 years. In the first part of this work, the different instruments available at the laboratory are described, and a brief overview of the measurement campaigns carried out during its 20 years of history is presented. In the second part, a more detailed description of the approach to Hall probe measurements adopted at ALBA is offered, with an explanation of the methods and ancillary equipment that have been developed along the years in order to improve the accuracy of the system. In the third part, a new concept of Hall probe bench devoted to the measurement of closed structures is presented. The in-house design and building of a prototype for such a bench is described, together with its mechanical and magnetic characterization. As a conclusion, the first results obtained with this bench are discussed.

  13. Useful measures and models for analytical quality management in medical laboratories.

    PubMed

    Westgard, James O

    2016-02-01

    The 2014 Milan Conference "Defining analytical performance goals 15 years after the Stockholm Conference" initiated a new discussion of issues concerning goals for precision, trueness or bias, total analytical error (TAE), and measurement uncertainty (MU). Goal-setting models are critical for analytical quality management, along with error models, quality-assessment models, quality-planning models, as well as comprehensive models for quality management systems. There are also critical underlying issues, such as an emphasis on MU to the possible exclusion of TAE and a corresponding preference for separate precision and bias goals instead of a combined total error goal. This opinion recommends careful consideration of the differences in the concepts of accuracy and traceability and the appropriateness of different measures, particularly TAE as a measure of accuracy and MU as a measure of traceability. TAE is essential to manage quality within a medical laboratory and MU and trueness are essential to achieve comparability of results across laboratories. With this perspective, laboratory scientists can better understand the many measures and models needed for analytical quality management and assess their usefulness for practical applications in medical laboratories.

  14. Field and laboratory analyses of water from the Columbia aquifer in Eastern Maryland

    USGS Publications Warehouse

    Bachman, L.J.

    1984-01-01

    Field and laboratory analyses of pH, alkalinity, and specific conductance from water samples collected from the Columbia aquifer on the Delmarva Peninsula in eastern Maryland were compared to determine if laboratory analyses could be used for making regional water-quality interpretations. Kruskal-Wallis tests of field and laboratory data indicate that the difference between field and laboratory values is usually not enough to affect the outcome of the statistical tests. Thus, laboratory measurements of these constituents may be adequate for making certain regional water-quality interpretations, although they may result in errors if used for geochemical interpretations.

  15. Sorption and pH determine the long-term partitioning of cadmium in natural soils.

    PubMed

    Ardestani, Masoud M; van Gestel, Cornelis A M

    2016-09-01

    The bioavailability of metals in soil is a dynamic process. For a proper extrapolation to the field of laboratory studies on fate and effects, it is important to understand the dynamics of metal bioavailability and the way it is influenced by soil properties. The aim of this study was to assess the parallel (concurrent) effect of pH and aging time on the partitioning of cadmium in natural LUFA 2.2 soil. Cadmium nitrate-spiked pH-amended LUFA 2.2 soils were incubated under laboratory conditions for up to 30 weeks. Measured pHpw was lower after 3 weeks and decreased only slightly toward the end of the test. Cadmium concentrations in the pore water increased with time for all soil pH levels, while they decreased with increasing pH. Freundlich kf values ranged between 4.26 and 934 L kg(-1) (n = 0.79 to 1.36) and were highest at the highest pH tested (pH = 6.5). Multiple linear regression analysis, based on a soil ligand modeling approach, resulted in affinity constants of 2.61 for Ca(2+) (log KCa-SL) and 5.05 for H(+) (log KH-SL) for their binding to the active sites on the soil surface. The results showed that pH and aging time are two important factors which together affect cadmium partitioning and mobility in spiked natural soils.

  16. Measuring efficiency of university-industry Ph.D. projects using best worst method.

    PubMed

    Salimi, Negin; Rezaei, Jafar

    A collaborative Ph.D. project, carried out by a doctoral candidate, is a type of collaboration between university and industry. Due to the importance of such projects, researchers have considered different ways to evaluate the success, with a focus on the outputs of these projects. However, what has been neglected is the other side of the coin-the inputs. The main aim of this study is to incorporate both the inputs and outputs of these projects into a more meaningful measure called efficiency. A ratio of the weighted sum of outputs over the weighted sum of inputs identifies the efficiency of a Ph.D. The weights of the inputs and outputs can be identified using a multi-criteria decision-making (MCDM) method. Data on inputs and outputs are collected from 51 Ph.D. candidates who graduated from Eindhoven University of Technology. The weights are identified using a new MCDM method called Best Worst Method (BWM). Because there may be differences in the opinion of Ph.D. candidates and supervisors on weighing the inputs and outputs, data for BWM are collected from both groups. It is interesting to see that there are differences in the level of efficiency from the two perspectives, because of the weight differences. Moreover, a comparison between the efficiency scores of these projects and their success scores reveals differences that may have significant implications. A sensitivity analysis divulges the most contributing inputs and outputs.

  17. Meet EPA Chemist Linda Sheldon, Ph.D.

    EPA Pesticide Factsheets

    Environmental chemist Linda Sheldon, Ph.D, is the Associate Director for Human Heath in the National Exposure Research Laboratory. She studies environmental exposure, particularly focusing on children's environments and their contact with chemicals.

  18. In-Situ pH Measurements in Mid-Ocean Ridge Hydrothermal Vent Fluids: Constraints on Subseafloor Alteration Processes at Crustal Depths

    NASA Astrophysics Data System (ADS)

    Schaen, A. T.; Ding, K.; Seyfried, W. E.

    2013-12-01

    Developments in electrochemistry and material science have facilitated the construction of ceramic (YSZ) based chemical sensor systems that can be used to measure and monitor pH and redox in aqueous fluids at elevated temperatures and pressures. In recent years, these sensor systems have been deployed to acquire real-time and time series in-situ data for high-temperature hydrothermal vent fluids at the Main Endeavour Field (Juan de Fuca Ridge), 9oN (East Pacific Rise), and at the ultramafic-hosted Rainbow field (36oN, Mid-Atlantic Ridge). Here we review in-situ pH data measured at these sites and apply these data to estimate the pH of fluids ascending to the seafloor from hydrothermal alteration zones deeper in the crust. In general, in-situ pH measured at virtually all vent sites is well in excess of that measured shipboard owing to the effects of temperature on the distribution of aqueous species and the solubility of metal sulfides, especially Cu and Zn, originally dissolved in the vent fluids. In situ pH measurements determined at MEF (Sully vent) and EPR 9oN (P-vent) in 2005 and 2008 were 4.4 ×0.02 and 5.05×0.05, respectively. The temperature and pressure (seafloor) of the vent fluids at each of the respective sites were 356oC and 220 bar, and 380oC and 250 bar. Plotting these data with respect to fluid density reveals that the in-situ pH of each vent fluid is approximately 1.5 pH units below neutrality. The density-pH (in-situ) correlation, however, is important because it provides a means from which the vent fluids were derived. Using dissolved silica and chloride from fluid samples at the MEF (Sully) suggest T/P conditions of approximately 435oC, 380 bar, based on quartz-fluid and NaCl-H2O systems. At the fluid density calculated for these conditions, pH (in-situ) is predicted to be ~6.2. Attempts are presently underway to assess the effect of the calculated pH on metal sulfide and silicate (e.g., plagioclase, chlorite) solubility in comparison with

  19. Technical note: A comparison of reticular and ruminal pH monitored continuously with 2 measurement systems at different weeks of early lactation.

    PubMed

    Falk, M; Münger, A; Dohme-Meier, F

    2016-03-01

    Subacute ruminal acidosis is one of the most important digestive disorders in high-yielding dairy cows fed highly fermentable diets. Monitoring of forestomach pH has been suggested as a potentially valuable tool for diagnosing subacute ruminal acidosis. The objective of the present study was to compare continuously recorded measurements of an indwelling telemetric pH sensor inserted orally in the reticulum with those obtained from a measurement system placed in the ventral sac of the rumen through a cannula. The experiment was conducted with 6 ruminally cannulated Holstein cows kept in a freestall barn. Equal numbers of cows were assigned to 2 treatment groups based on their previous lactation milk yield. Cows in treatment CON- were offered a diet consisting of only fresh herbage cut once daily, and cows in treatment CON+ got fresh herbage plus a concentrate supplement according to the individual milk yield of each cow to meet their predicted nutrient requirements. The experiment lasted from 2 wk before the predicted calving date until wk 8 of lactation. During the whole experiment, a pH value was recorded every 10 min in the reticulum using a wireless telemetry bolus including a pH sensor (eBolus, eCow Ltd., Exeter, Devon, UK), which had been applied orally using a balling gun. Simultaneously, in wk 2, before the estimated calving date and in wk 2, 4, 6, and 8 of lactation, the ruminal pH was measured every 30 s for 48 h with the LRCpH measurement system (Dascor Inc., Escondido, CA) placed in the ventral sac of the rumen through the cannula. The readings of the LRCpH measurement system were summarized as an average over 10 min for statistical analysis. The recorded pH values were on average 0.24 pH units higher in the reticulum than in the rumen. The reticular pH also showed less fluctuation (overall SD 0.19 pH units) than pH profiles recorded in the rumen (overall SD 0.51 pH units). Regardless of measurement system, pH was not influenced by treatment, but varied

  20. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.

  1. Monitoring pH and electric conductivity in an EBPR sequencing batch reactor.

    PubMed

    Serralta, J; Borrás, L; Blanco, C; Barat, R; Seco, A

    2004-01-01

    This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobic phases in an A/O SBR. More valuable information provided by monitoring pH and electric conductivity is the relation between the amount of phosphorus released and the conductivity increase observed during the anaerobic stages and which group of bacteria (heterotrophic or polyphosphate accumulating) is carrying out the denitrification process.

  2. Thermal infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements

    NASA Technical Reports Server (NTRS)

    Salisbury, J. W.; Wald, A.; Daria, D. M.

    1993-01-01

    Kirchoff's Law, as originally conceived, applies only to samples in thermal equilibrium with their surroundings. Most laboratory measurements of emissivity only approach this condition and it never applies in remote sensing applications. In particular, the background is often much cooler than the radiating sample, and this has led to a long controversy about the applicability of Kirchhoff's Law under such conditions. It has also led to field and laboratory measurement techniques that use some form of the 'emissivity box' approach, which surrounds the sample with a background as close as possible to the sample temperature. In our experiments, we have heated soil samples in air on a hot plate in the laboratory to a much higher temperature than the room temperature background. Spectral emissivity was measured, except the known emissivities of both the primary and secondary Christiansen features were used, instead of assuming an emissivity of unity at these wavelengths. The results from this investigation are discussed in brief.

  3. KEY COMPARISON: Final report of EUROMET Project 696: pH determination of a phthalate buffer

    NASA Astrophysics Data System (ADS)

    Spitzer, Petra; Charlet, Philippe; Eberhard, Ralf; Karpov, Oleg V.; Philippe, Rachel; Rivier, Cedric; Maximov, Igor; Sudmeier, Uwe

    2005-01-01

    The EUROMET project 696, a trilateral comparison between PTB, Germany, LNE, France and VNIIFTRI, Russia was performed in order to demonstrate and document the capability of the participants to measure the pH of a phthalate buffer by the primary measurement procedure for pH. Good agreement of the reported results was observed. The sample was very similar to the one used in the comparison CCQM-K17. PTB acts as pilot laboratory in CCQM-K17 and in EUROMET 696. This comparison allows one to link the results obtained by LNE to the CCQM-K17 key comparison through the degree of equivalence of PTB. On the other hand, the discrepancy between measured pH values at the VNIIFTRI and PTB for the same type of buffer solution decreased, as compared with a bilateral comparison in 1997. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the Mutual Recognition Arrangement (MRA).

  4. Direct fluorination of phenolsulfonphthalein: a method for synthesis of positron-emitting indicators for in vivo pH measurement

    PubMed Central

    Kachur, Alexander V.; Popov, Anatoliy V.; Karp, Joel S.; Delikatny, E. James

    2014-01-01

    We report a reaction of direct electrophilic fluorination of phenolsulfonphthalein at mild conditions. This reaction affords the synthesis of novel positron-emitting 18F-labeled pH indicators. These compounds are useful for non-invasive in vivo pH measurement in biological objects. PMID:22790882

  5. Quantitative color measurement of pH indicator paper using trichromatic LEDs and TCS230 color sensor

    NASA Astrophysics Data System (ADS)

    Ghorude, T. N.; Chaudhari, A. L.; Shaligram, A. D.

    2008-11-01

    Quantitative analysis of pH indicator paper color is needed in the various fields. An indigenously developed Tristimulus colorimeter is used in this work for pH Indicator paper color measurement. The colorimeter uses Trichromatic RGB LEDs and a programmable color light to frequency converter (TCS230), combining configurable silicon photodiodes and a current to frequency converter on a single monolithic CMOS integrated circuit. The output is a square wave (50% duty cycle) with frequency directly proportional to light intensity. Digital input and digital output allow directly to a microcontroller. The light to frequency converter reads an 8*8 array of photodiodes. Sixteen photodiodes have red filters, 16 photodiodes have green filters, 16 photodiodes have blue filters, and 16 photodiodes are clear with no filters. All 16 photodiodes of the same colors are connected in parallel and type of photodiode the device uses during operation is pin selectable. Solutions having different standard pH were prepared and indicator paper was dipped in solution, it shows change in color. Using the developed RGB colorimeter chromaticity coordinates were measured and compared with the chromaticity coordinates measured using Ocean Optics HR-4000 high resolution spectrophotometer.

  6. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  7. A Thermally Powered ISFET Array for On-Body pH Measurement.

    PubMed

    Douthwaite, Matthew; Koutsos, Ermis; Yates, David C; Mitcheson, Paul D; Georgiou, Pantelis

    2017-12-01

    Recent advances in electronics and electrochemical sensors have led to an emerging class of next generation wearables, detecting analytes in biofluids such as perspiration. Most of these devices utilize ion-selective electrodes (ISEs) as a detection method; however, ion-sensitive field-effect transistors (ISFETs) offer a solution with improved integration and a low power consumption. This work presents a wearable, thermoelectrically powered system composed of an application-specific integrated circuit (ASIC), two commercial power management integrated circuits and a network of commercial thermoelectric generators (TEGs). The ASIC is fabricated in 0.35 m CMOS and contains an ISFET array designed to read pH as a current, a processing module which averages the signal to reduce noise and encodes it into a frequency, and a transmitter. The output frequency has a measured sensitivity of 6 to 8 kHz/pH for a pH range of 7-5. It is shown that the sensing array and processing module has a power consumption 6 W and, therefore, can be entirely powered by body heat using a TEG. Array averaging is shown to reduce noise at these low power levels to 104 V (input referred integrated noise), reducing the minimum detectable limit of the ASIC to 0.008 pH units. The work forms the foundation and proves the feasibility of battery-less, on-body electrochemical for perspiration analysis in sports science and healthcare applications.

  8. Using Chemistry and Color To Analyze Household Products: A 10-12-Hour Laboratory Project at the General Chemistry Level.

    ERIC Educational Resources Information Center

    Bosma, Wayne B.

    1998-01-01

    Describes a set of experiments using a UV-VIS spectrometer to identify food colorings and to measure the pH of soft drinks. The first laboratory component uses locations and shapes of visible absorption peaks as a means of identifying dyes while the second portion uses the spectrometer for determining pH. (PVD)

  9. Performance testing of radiobioassay laboratories: In vivo measurements, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLellan, J.A.; Traub, R.J.; Olsen, P.C.

    1990-04-01

    A study of two rounds of in vivo laboratory performance testing was undertaken by Pacific Northwest Laboratory (PNL) to determine the appropriateness of the in vivo performance criteria of draft American National Standards Institute (ANSI) standard ANSI N13.3, Performance Criteria for Bioassay.'' The draft standard provides guidance to in vivo counting facilities regarding the sensitivity, precision, and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. This report concludes the testing program by presenting the results of the Round Two testing. Testing involved two types of measurements: chest counting for radionuclide detection inmore » the lung, and whole body counting for detection of uniformly distributed material. Each type of measurement was further divided into radionuclide categories as defined in the draft standard. The appropriateness of the draft standard criteria by measuring a laboratory's ability to attain them were judged by the results of both round One and Round Two testing. The testing determined that performance criteria are set at attainable levels, and the majority of in vivo monitoring facilities passed the criteria when complete results were submitted. 18 refs., 18 figs., 15 tabs.« less

  10. Measurement of pH in whole blood by near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Kathleen; Maynard, John D.; Robinson, M. Ries

    1999-03-01

    Whole blood pH has been determined {ital in vitro} by using near-infrared spectroscopy over the wavelength range of 1500 to 1785 nm with multivariate calibration modeling of the spectral data obtained from two different sample sets. In the first sample set, the pH of whole blood was varied without controlling cell size and oxygen saturation (O{sub 2} Sat) variation. The result was that the red blood cell (RBC) size and O{sub 2} Sat correlated with pH. Although the partial least-squares (PLS) multivariate calibration of these data produced a good pH prediction cross-validation standard error of prediction (CVSEP)=0.046, R{sup 2}=0.982, themore » spectral data were dominated by scattering changes due to changing RBC size that correlated with the pH changes. A second experiment was carried out where the RBC size and O{sub 2} Sat were varied orthogonally to the pH variation. A PLS calibration of the spectral data obtained from these samples produced a pH prediction with an R{sup 2} of 0.954 and a cross-validated standard error of prediction of 0.064 pH units. The robustness of the PLS calibration models was tested by predicting the data obtained from the other sets. The predicted pH values obtained from both data sets yielded R{sup 2} values greater than 0.9 once the data were corrected for differences in hemoglobin concentration. For example, with the use of the calibration produced from the second sample set, the pH values from the first sample set were predicted with an R{sup 2} of 0.92 after the predictions were corrected for bias and slope. It is shown that spectral information specific to pH-induced chemical changes in the hemoglobin molecule is contained within the PLS loading vectors developed for both the first and second data sets. It is this pH specific information that allows the spectra dominated by pH-correlated scattering changes to provide robust pH predictive ability in the uncorrelated data, and visa versa. {copyright} {ital 1999} {ital Society for

  11. Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.

    PubMed

    Zhang, R H; Zhang, X T; Hu, S M

    2008-04-15

    The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.

  12. Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: laboratory and field studies.

    PubMed

    Bordoloi, Shreemoyee; Nath, Suresh K; Gogoi, Sweety; Dutta, Robin K

    2013-09-15

    A three-step treatment process involving (i) mild alkaline pH-conditioning by NaHCO₃; (ii) oxidation of arsenite and ferrous ions by KMnO₄, itself precipitating as insoluble MnO₂ under the pH condition; and (iii) coagulation by FeCl₃ has been used for simultaneous removal of arsenic and iron ions from water. The treated water is filtered after a residence time of 1-2 h. Laboratory batch experiments were performed to optimize the doses. A field trial was performed with an optimized recipe at 30 households and 5 schools at some highly arsenic affected villages in Assam, India. Simultaneous removals of arsenic from initial 0.1-0.5 mg/L to about 5 μg/L and iron from initial 0.3-5.0 mg/L to less than 0.1 mg/L have been achieved along with final pH between 7.0 and 7.5 after residence time of 1h. The process also removes other heavy elements, if present, without leaving any additional toxic residue. The small quantity of solid sludge containing mainly ferrihydrite with adsorbed arsenate passes the toxicity characteristic leaching procedure (TCLP) test. The estimated recurring cost is approximately USD 0.16 per/m(3) of purified water. A high efficiency, an extremely low cost, safety, non-requirement of power and simplicity of operation make the technique potential for rural application. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The Evolving Role of Field and Laboratory Seismic Measurements in Geotechnical Engineering

    NASA Astrophysics Data System (ADS)

    Stokoe, K. H.

    2017-12-01

    The geotechnical engineering has been faced with the problem of characterizing geological materials for site-specific design in the built environment since the profession began. When one of the design requirements included determining the dynamic response of important and critical facilities to earthquake shaking or other types of dynamic loads, seismically-based measurements in the field and laboratory became important tools for direct characterization of the stiffnesses and energy dissipation (material damping) of these materials. In the 1960s, field seismic measurements using small-strain body waves were adapted from exploration geophysics. At the same time, laboratory measurements began using dynamic, torsional, resonant-column devices to measure shear stiffness and material damping in shear. The laboratory measurements also allowed parameters such as material type, confinement state, and nonlinear straining to be evaluated. Today, seismic measurements are widely used and evolving because: (1) the measurements have a strong theoretical basis, (2) they can be performed in the field and laboratory, thus forming an important link between these measurements, and (3) in recent developments in field testing involving surface waves, they are noninvasive which makes them cost effective in comparison to other methods. Active field seismic measurements are used today over depths ranging from about 5 to 1000 m. Examples of shear-wave velocity (VS) profiles evaluated using boreholes, penetrometers, suspension logging, and Rayleigh-type surface waves are presented. The VS measurements were performed in materials ranging from uncemented soil to unweathered rock. The coefficients of variation (COVs) in the VS profiles are generally less than 0.15 over sites with surface areas of 50 km2 or more as long as material types are not laterally mixed. Interestingly, the largest COVs often occur around layer boundaries which vary vertically. It is also interesting to observe how the

  14. Intracellular pH measurements made simple by fluorescent protein probes and the phasor approach to fluorescence lifetime imaging†

    PubMed Central

    Digman, Michelle A.; Gratton, Enrico; Storti, Barbara; Beltram, Fabio

    2013-01-01

    A versatile pH-dependent fluorescent protein was applied to intracellular pH measurements by means of the phasor approach to fluorescence lifetime imaging. By this fit-less method we obtain intracellular pH maps under resting or altered physiological conditions by single-photon confocal or two-photon microscopy. PMID:22517076

  15. Impact of Biology Laboratory Courses on Students' Science Performance and Views about Laboratory Courses in General: Innovative Measurements and Analyses

    ERIC Educational Resources Information Center

    Lee, Silvia Wen-Yu; Lai, Yung-Chih; Yu, Hon-Tsen Alex; Lin, Yu-Teh Kirk

    2012-01-01

    Despite the fact that some educational researchers believe that laboratory courses promote outcomes in cognitive and affective domains in science learning, others have argued that laboratory courses are costly in relation to their value. Moreover, effective measurement of student learning in the laboratory is an area requiring further…

  16. Inter-laboratory comparison study on measuring semi-volatile organic chemicals in standards and air samples.

    PubMed

    Su, Yushan; Hung, Hayley

    2010-11-01

    Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections <10% and with median differences of duplicate samples between 2.1 and 22%. Inter-laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences. 2010. Published by Elsevier Ltd. All rights reserved.

  17. Investigation of specification measures for the Software Engineering Laboratory (SEL)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Requirements specification measures are investigated for potential application in the Software Engineering Laboratory. Eighty-seven candidate measures are defined; sixteen are recommended for use. Most measures are derived from a new representation, the Composite Specification Model, which is introduced. The results of extracting the specification measures from the requirements of a real system are described.

  18. Laboratory measurements of microwave and millimeter-wave properties of planetary atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1989-01-01

    Accurate data on microwave and millimeter-wave properties of potential planetary atmospheric constituents is critical for the proper interpretation of radio occultation measurements, and of radio astronomical observations of both continuum and spectral line emissions. Such data is also needed to correct for atmospheric effects on radar studies of surface reflectivity. Since the refractive and absorptive properties of atmospheric constituents often vary drastically from theoretically-predicted profiles, especially under the extreme conditions characteristic of the planetary atmosphere, laboratory measurements under simulated planetary conditions are required. This paper reviews the instrumentation and techniques used for laboratory measurement of the refractivity and absorptivity of atmospheric constituents at wavelengths longward of 1 mm, under simulated planetary conditions (temperature, pressure, and broadening gases). Techniques for measuring both gases and condensates are considered. Also reviewed are the relative accuracies of the various techniques. Laboratory measurements are reviewed which have already been made, and additional measurements which are needed for interpretation of data from Venus and the outer planets, are highlighted.

  19. A rapid method for measuring intracellular pH using BCECF-AM.

    PubMed

    Ozkan, Pinar; Mutharasan, Raj

    2002-08-15

    A rapid intracellular pH (pH(i)) measurement method based on initial rate of increase of fluorescence ratio of 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein upon dye addition to a cell suspension in growth medium is reported. A dye transport model that describes dye concentration and fluorescence values in intracellular and extracellular spaces provides the mathematical basis for the approach. Experimental results of ammonium chloride challenge response of the two suspension cells, Spodoptera frugiperda and Chinese hamster ovary (CHO) cells, successfully compared with results obtained using traditional perfusion method. Since the cell suspension does not require any preparation, measurement of pH(i) can be completed in about 1 min minimizing any potential errors due to dye leakage.

  20. Amino acid racemization dating of fossil bones, I. inter-laboratory comparison of racemization measurements

    USGS Publications Warehouse

    Bada, J.L.; Hoopes, E.; Darling, D.; Dungworth, G.; Kessels, H.J.; Kvenvolden, K.A.; Blunt, D.J.

    1979-01-01

    Enantiomeric measurements for aspartic acid, glutamic acid, and alanine in twenty-one different fossil bone samples have been carried out by three different laboratories using different analytical methods. These inter-laboratory comparisons demonstrate that D/L aspartic acid measurements are highly reproducible, whereas the enantiomeric measurements for the other amino acids show a wide variation between the three laboratories. At present, aspartic acid measurements are the most suitable for racemization dating of bone because of their superior analytical precision. ?? 1979.

  1. Performance audits and laboratory comparisons for SCOS97-NARSTO measurements of speciated volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Fujita, Eric M.; Harshfield, Gregory; Sheetz, Laurence

    Performance audits and laboratory comparisons were conducted as part of the quality assurance program for the 1997 Southern California Ozone Study (SCOS97-NARSTO) to document potential measurement biases among laboratories measuring speciated nonmethane hydrocarbons (NMHC), carbonyl compounds, halogenated compounds, and biogenic hydrocarbons. The results show that measurements of volatile organic compounds (VOC) made during SCOS97-NARSTO are generally consistent with specified data quality objectives. The hydrocarbon comparison involved nine laboratories and consisted of two sets of collocated ambient samples. The coefficients of variation among laboratories for the sum of the 55 PAM target compounds and total NMHC ranged from ±5 to 15 percent for ambient samples from Los Angeles and Azusa. Abundant hydrocarbons are consistently identified by all laboratories, but discrepancies occur for olefins greater than C 4 and for hydrocarbons greater than C 8. Laboratory comparisons for halogenated compounds and biogenic hydrocarbons consisted of both concurrent ambient sampling by different laboratories and round-robin analysis of ambient samples. The coefficients of variation among participating laboratories were about 10-20 percent. Performance audits were conducted for measurement of carbonyl compounds involving sampling from a standard mixture of carbonyl compounds. The values reported by most of the laboratories were within 10-20 percent of those of the reference laboratory. Results of field measurement comparisons showed larger variations among the laboratories ranging from 20 to 40 percent for C 1-C 3 carbonyl compounds. The greater variations observed in the field measurement comparison may reflect potential sampling artifacts, which the performance audits did not address.

  2. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification

    PubMed Central

    Cornwall, Christopher E.; Hepburn, Christopher D.; McGraw, Christina M.; Currie, Kim I.; Pilditch, Conrad A.; Hunter, Keith A.; Boyd, Philip W.; Hurd, Catriona L.

    2013-01-01

    Coastal ecosystems that are characterized by kelp forests encounter daily pH fluctuations, driven by photosynthesis and respiration, which are larger than pH changes owing to ocean acidification (OA) projected for surface ocean waters by 2100. We investigated whether mimicry of biologically mediated diurnal shifts in pH—based for the first time on pH time-series measurements within a kelp forest—would offset or amplify the negative effects of OA on calcifiers. In a 40-day laboratory experiment, the calcifying coralline macroalga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05 or 7.65). For each mean, two experimental pH manipulations were applied. In one treatment, pH was held constant. In the second treatment, pH was manipulated around the mean (as a step-function), 0.4 pH units higher during daylight and 0.4 units lower during darkness to approximate diurnal fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced mean pH, and fluctuations in pH acted additively to further reduce growth. Photosynthesis, recruitment and elemental composition did not change with pH, but δ13C increased at lower mean pH. Including environmental heterogeneity in experimental design will assist with a more accurate assessment of the responses of calcifiers to OA. PMID:24107535

  3. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    PubMed Central

    Roosjen, Peter P. J.; Clevers, Jan G. P. W.; Bartholomeus, Harm M.; Schaepman, Michael E.; Schaepman-Strub, Gabriela; Jalink, Henk; van der Schoor, Rob; de Jong, Arjan

    2012-01-01

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers. PMID:23443402

  4. A laboratory goniometer system for measuring reflectance and emittance anisotropy.

    PubMed

    Roosjen, Peter P J; Clevers, Jan G P W; Bartholomeus, Harm M; Schaepman, Michael E; Schaepman-Strub, Gabriela; Jalink, Henk; van der Schoor, Rob; de Jong, Arjan

    2012-12-13

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.

  5. A Shallow Underground Laboratory for Low-Background Radiation Measurements and Materials Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Bonicalzi, Ricco; Cantaloub, Michael G.

    Abstract: Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths worldwide houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This manuscript describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. Wemore » conclude by presenting measurement targets and future opportunities.« less

  6. Continuous haematic pH monitoring in extracorporeal circulation using a disposable florescence sensing element

    NASA Astrophysics Data System (ADS)

    Ferrari, Luca; Rovati, Luigi; Fabbri, Paola; Pilati, Francesco

    2013-02-01

    During extracorporeal circulation (ECC), blood is periodically sampled and analyzed to maintain the blood-gas status of the patient within acceptable limits. This protocol has well-known drawbacks that may be overcome by continuous monitoring. We present the characterization of a new pH sensor for continuous monitoring in ECC. This monitoring device includes a disposable fluorescence-sensing element directly in contact with the blood, whose fluorescence intensity is strictly related to the pH of the blood. In vitro experiments show no significant difference between the blood gas analyzer values and the sensor readings; after proper calibration, it gives a correlation of R>0.9887, and measuring errors were lower than the 3% of the pH range of interest (RoI) with respect to a commercial blood gas analyzer. This performance has been confirmed also by simulating a moderate ipothermia condition, i.e., blood temperature 32°C, frequently used in cardiac surgery. In ex vivo experiments, performed with animal models, the sensor is continuously operated in an extracorporeal undiluted blood stream for a maximum of 11 h. It gives a correlation of R>0.9431, and a measuring error lower than the 3% of the pH RoI with respect to laboratory techniques.

  7. Continuous haematic pH monitoring in extracorporeal circulation using a disposable florescence sensing element.

    PubMed

    Ferrari, Luca; Rovati, Luigi; Fabbri, Paola; Pilati, Francesco

    2013-02-01

    During extracorporeal circulation (ECC), blood is periodically sampled and analyzed to maintain the blood-gas status of the patient within acceptable limits. This protocol has well-known drawbacks that may be overcome by continuous monitoring. We present the characterization of a new pH sensor for continuous monitoring in ECC. This monitoring device includes a disposable fluorescence-sensing element directly in contact with the blood, whose fluorescence intensity is strictly related to the pH of the blood. In vitro experiments show no significant difference between the blood gas analyzer values and the sensor readings; after proper calibration, it gives a correlation of R>0.9887, and measuring errors were lower than the 3% of the pH range of interest (RoI) with respect to a commercial blood gas analyzer. This performance has been confirmed also by simulating a moderate ipothermia condition, i.e., blood temperature 32°C, frequently used in cardiac surgery. In ex vivo experiments, performed with animal models, the sensor is continuously operated in an extracorporeal undiluted blood stream for a maximum of 11 h. It gives a correlation of R>0.9431, and a measuring error lower than the 3% of the pH RoI with respect to laboratory techniques.

  8. A laboratory animal science pioneer.

    PubMed

    Kostomitsopoulos, Nikolaos

    2014-11-01

    Nikolaos Kostomitsopoulos, DVM, PhD, is Head of Laboratory Animal Facilities and Designated Veterinarian, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece. Dr. Kostomitsopoulos discusses his successes in implementing laboratory animal science legislation and fostering collaboration among scientists in Greece.

  9. Inter-laboratory comparison measurements of radiochemical laboratories in Slovakia.

    PubMed

    Meresová, J; Belanová, A; Vrsková, M

    2010-01-01

    The first inter-laboratory comparison organized by the radiochemistry laboratory of Water Research Institute (WRI) in Bratislava was carried out in 1993 and since then is it realized on an annual basis and about 10 radiochemical laboratories from all over Slovakia are participating. The gross alpha and gross beta activities, and the activity concentrations of (222)Rn, tritium, and (226)Ra, and U(nat) concentration in synthetic water samples are compared. The distributed samples are covering the concentration range prevailing in potable and surface waters and are prepared by dilution of certified reference materials. Over the course of the years 1993-2008, we observed the improvement in the quality of results for most of the laboratories. However, the success rate of the gross alpha determination activity is not improving as much as the other parameters. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Development of in situ CO2 and pH sensor for AUVs and ROVs

    NASA Astrophysics Data System (ADS)

    Nakano, Yoshiyuki; Kimoto, Hideshi; Miwa, Tetsuya; Yoshida, Hiroshi

    2013-04-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been developing two-type autonomous underwater vehicles (AUVs): a cruising AUV and a working AUV, since October 2010. These vehicles will perform carbon dioxide (CO2) and pH observations to explore hydrothermal plume on seabed mineral resources and to monitor a leak of CO2 in carbon capture and storage (CCS) up to depth of 3,000 meters. We here have been developing the compact in situ CO2 and pH sensor (Hybrid CO2-pH sensor: HCS) for the AUVs to obtain vertical and horizontal distributions of CO2 and pH. The HCS consists of an aluminum pressure housing (diameter 84 mm, length 570 mm, weight 4 kg) and an acrylic silicon-oil filled, pressure-compensated vessel (diameter 90 mm, length 355 mm, weight 2 kg) containing valves and pump unit. The HCS is also useful for the observation by remotely operated vehicles (ROVs). The measured data were transmitted to the AUVs or ROVs by serial communications. We can monitor the data of in situ pCO2, pH and so on in real time on board. The measurement principle for the CO2 sensor is based on spectrophotometry. The pCO2 is calculated from the optical absorbance of the pH indicator solution equilibrated with CO2 in seawater through a gas permeable membrane. On the other hand, we adopt potentiometric analysis using original glass and reference electrodes as a pH sensor because of the most commonly used technique for sea water pH measurements and high-speed response (within 20 seconds). From simultaneously measured data of in situ pCO2 and pH, we can also calculate dissolved inorganic carbon (DIC) and total alkalinity (TA) as other carbonate species in the ocean. The resolutions of HCS are 1 μatm for pCO2 and 0.001 pH. In the laboratory experiment, the HCS obtained precisions within 3 μatm and within 0.01 pH, respectively. Our first in situ observational test of the HSC with cruising AUV was made in the coast of the Japan Sea last August. And also first in situ test

  11. Performance of the RAD-57 pulse CO-oximeter compared with standard laboratory carboxyhemoglobin measurement.

    PubMed

    Touger, Michael; Birnbaum, Adrienne; Wang, Jessica; Chou, Katherine; Pearson, Darion; Bijur, Polly

    2010-10-01

    We assess agreement between carboxyhemoglobin levels measured by the Rad-57 signal extraction pulse CO-oximeter (RAD), a Food and Drug Administration-approved device for noninvasive bedside measurement, and standard laboratory arterial or venous measurement in a sample of emergency department (ED) patients with suspected carbon monoxide poisoning. The study was a cross-sectional cohort design using a convenience sample of adult and pediatric ED patients in a Level I trauma, burn, and hyperbaric oxygen referral center. Measurement of RAD carboxyhemoglobin was performed simultaneously with blood sampling for laboratory determination of carboxyhemoglobin level. The difference between the measures for each patient was calculated as laboratory carboxyhemoglobin minus carboxyhemoglobin from the carbon monoxide oximeter. The limits of agreement from a Bland-Altman analysis are calculated as the mean of the differences between methods ±1.96 SDs above and below the mean. Median laboratory percentage carboxyhemoglobin level was 2.3% (interquartile range 1 to 8.5; range 0% to 38%). The mean difference between laboratory carboxyhemoglobin values and RAD values was 1.4% carboxyhemoglobin (95% confidence interval [CI] 0.2% to 2.6%). The limits of agreement of differences of measurement made with the 2 devices were -11.6% and 14.4% carboxyhemoglobin. This range exceeded the value of ±5% carboxyhemoglobin defined a priori as clinically acceptable. RAD correctly identified 11 of 23 patients with laboratory values greater than 15% carboxyhemoglobin (sensitivity 48%; 95% CI 27% to 69%). There was one case of a laboratory carboxyhemoglobin level less than 15%, in which the RAD device gave a result greater than 15% (specificity of RAD 96/97=99%; 95% CI 94% to 100%). In the range of carboxyhemoglobin values measured in this sample, the level of agreement observed suggests RAD measurement may not be used interchangeably with standard laboratory measurement. Copyright © 2010 American

  12. High temperature hydrothermal vent fluids in Yellowstone Lake: Observations and insights from in-situ pH and redox measurements

    NASA Astrophysics Data System (ADS)

    Tan, Chunyang; Cino, Christie D.; Ding, Kang; Seyfried, William E.

    2017-09-01

    ROV investigation of hydrothermal fluids issuing from vents on the floor of Yellowstone lake revealed temperatures in excess of 170 °C - the highest temperature yet reported for vent fluids within Yellowstone National Park (YNP). The study site is east of Stevenson Island at depth of approximately 100-125 m. In-situ pH and redox measurements of vent fluids were made using solid state sensors designed to sustain the elevated temperatures and pressures. YSZ membrane electrode with Ag/Ag2O internal element and internal pressure balanced Ag/AgCl reference electrode were used to measure pH, while a platinum electrode provided redox constraints. Lab verification of the pH sensor confirmed excellent agreement with Nernst law predictions, especially at temperatures in excess of 120 °C. In-situ pH values of between 4.2 and 4.5 were measured for the vent fluids at temperatures of 120 to 150 °C. The slightly acidic vent fluids are likely caused by CO2 enrichment in association with magmatic degassing effects that occur throughout YNP. This is consistent with results of simple model calculations and direct observation of CO2 bubbles in the immediate vicinity of the lake floor vents. Simultaneous redox measurements indicated moderate to highly reducing conditions (- 0.2 to - 0.3 V). As typical of measurements of this kind, internal and external redox disequilibria likely preclude unambiguous determination of redox controlling reactions. Redox disequilibria, however, can be expected to drive microbial metabolism and diversity in the near vent environment. Thus, the combination of in-situ pH and redox sensor deployments may ultimately provide the requisite framework to better understand the microbiology of the newly discovered hot vents on Yellowstone lake floor.

  13. Assessment of Tandem Measurements of pH and Total Gut Transit Time in Healthy Volunteers.

    PubMed

    Mikolajczyk, Adam E; Watson, Sydeaka; Surma, Bonnie L; Rubin, David T

    2015-07-09

    The variation of luminal pH and transit time in an individual is unknown, yet is necessary to interpret single measurements. This study aimed to assess the intrasubject variability of gut pH and transit time in healthy volunteers using SmartPill devices (Covidien, Minneapolis, MN). Each subject (n=10) ingested two SmartPill devices separated by 24 h. Mean pH values were calculated for 30 min after gastric emptying (AGE), before the ileocecal (BIC) valve, after the ileocecal (AIC) valve, and before body exit (BBE). Intrasubject variability was determined by comparing mean values from both ingestions for an individual subject using standard deviations, 95% limits of agreement, and Bland-Altman plots. Tandem device ingestion occurred without complication. The median (full range) intrasubject standard deviations for pH were 0.02 (0.0002-0.2048) for AGE, 0.06 (0.0002-0.3445) for BIC, 0.14 (0.0018-0.3042) for AIC, and 0.08 (0.0098-0.5202) for BBE. There was a significant change in pH for AIC (mean difference: -0.45±0.31, P=0.0015) observed across all subjects. The mean coefficients of variation for transit time were 12.0±7.4% and 25.8±15.8% for small and large bowels, respectively (P=0.01). This study demonstrates the safety and feasibility of tandem gut transit and pH assessments using the SmartPill device. In healthy individuals and over 24 h, the gut pH profile does not markedly fluctuate in a given region with more variation seen in the colon compared with the small bowel, which has important implications for future physiology and drug delivery studies.

  14. National surveys on internal quality control for blood gas analysis and related electrolytes in clinical laboratories of China.

    PubMed

    Duan, Min; Wang, Wei; Zhao, Haijian; Zhang, Chuanbao; He, Falin; Zhong, Kun; Yuan, Shuai; Wang, Zhiguo

    2018-05-01

    Internal quality control (IQC) is essential for precision evaluation and continuous quality improvement. This study aims to investigate the IQC status of blood gas analysis (BGA) in clinical laboratories of China from 2014 to 2017. IQC information on BGA (including pH, pCO2, pO2, Na+, K+, Ca2+, Cl-) was submitted by external quality assessment (EQA) participant laboratories and collected through Clinet-EQA reporting system in March from 2014 to 2017. First, current CVs were compared among different years and measurement systems. Then, percentages of laboratories meeting five allowable imprecision specifications for each analyte were calculated, respectively. Finally, laboratories were divided into different groups based on control rules and frequency to compare their variation trend. The current CVs of BGA were significantly decreasing from 2014 to 2017. pH and pCO2 got the highest pass rates when compared with the minimum imprecision specification, whereas pO2, Na+, K+, Ca2+, Cl- got the highest pass rates when 1/3 TEa imprecision specification applied. The pass rates of pH, pO2, Na+, K+, Ca2+, Cl- were significantly increasing during the 4 years. The comparisons of current CVs among different measurement systems showed that the precision performance of different analytes among different measurement systems had no regular distribution from 2014 to 2017. The analysis of IQC practice indicated great progress and improvement among different years. The imprecision performance of BGA has improved from 2014 to 2017, but the status of imprecision performance in China remains unsatisfying. Therefore, further investigation and continuous improvement measures should be taken.

  15. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  16. Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors.

    PubMed

    Yang, Jiang; Kwak, Tae-Joon; Zhang, Xiaodong; McClain, Robert; Chang, Woo-Jin; Gunasekaran, Sundaram

    2016-11-22

    A facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties. A uniform and smooth IrO2 film in nanoscale grain size is anodically electrodeposited onto the graphene film, without any observable cracks. The resulting IrO2-RGO electrode showed slightly super-Nernstian responses from pH 2-12 in Britton-Robinson (B-R) buffers with good linearity, small hysteresis, low response time and reproducibility in different buffers, as well as low sensitivities to different interfering ionic species and dissolved oxygen. A simple portable digital pH meter is fabricated, whose signal is measured with a multimeter, using high input-impedance operational amplifier and consumer batteries. The pH values measured with the portable electrochemical paper-microfluidic pH sensors were consistent with those measured using a commercial laboratory pH meter with a glass electrode.

  17. Variability of creatinine measurements in clinical laboratories: results from the CRIC study.

    PubMed

    Joffe, Marshall; Hsu, Chi-yuan; Feldman, Harold I; Weir, Matthew; Landis, J R; Hamm, L Lee

    2010-01-01

    Estimating equations using serum creatinine (SCr) are often used to assess glomerular filtration rate (GFR). Such creatinine (Cr)-based formulae may produce biased estimates of GFR when using Cr measurements that have not been calibrated to reference laboratories. In this paper, we sought to examine the degree of this variation in Cr assays in several laboratories associated with academic medical centers affiliated with the Chronic Renal Insufficiency Cohort (CRIC) Study; to consider how best to correct for this variation, and to quantify the impact of such corrections on eligibility for participation in CRIC. Variability of Cr is of particular concern in the conduct of CRIC, a large multicenter study of subjects with chronic renal disease, because eligibility for the study depends on Cr-based assessment of GFR. A library of 5 large volume plasma specimens from apheresis patients was assembled, representing levels of plasma Cr from 0.8 to 2.4 mg/dl. Samples from this library were used for measurement of Cr at each of the 14 CRIC laboratories repetitively over time. We used graphical displays and linear regression methods to examine the variability in Cr, and used linear regression to develop calibration equations. We also examined the impact of the various calibration equations on the proportion of subjects screened as potential participants who were actually eligible for the study. There was substantial variability in Cr assays across laboratories and over time. We developed calibration equations for each laboratory; these equations varied substantially among laboratories and somewhat over time in some laboratories. The laboratory site contributed the most to variability (51% of the variance unexplained by the specimen) and variation with time accounted for another 15%. In some laboratories, calibration equations resulted in differences in eligibility for CRIC of as much as 20%. The substantial variability in SCr assays across laboratories necessitates calibration

  18. Endoscopic sensing of alveolar pH.

    PubMed

    Choudhury, D; Tanner, M G; McAughtrie, S; Yu, F; Mills, B; Choudhary, T R; Seth, S; Craven, T H; Stone, J M; Mati, I K; Campbell, C J; Bradley, M; Williams, C K I; Dhaliwal, K; Birks, T A; Thomson, R R

    2017-01-01

    Previously unobtainable measurements of alveolar pH were obtained using an endoscope-deployable optrode. The pH sensing was achieved using functionalized gold nanoshell sensors and surface enhanced Raman spectroscopy (SERS). The optrode consisted of an asymmetric dual-core optical fiber designed for spatially separating the optical pump delivery and signal collection, in order to circumvent the unwanted Raman signal generated within the fiber. Using this approach, we demonstrate a ~100-fold increase in SERS signal-to-fiber background ratio, and demonstrate multiple site pH sensing with a measurement accuracy of ± 0.07 pH units in the respiratory acini of an ex vivo ovine lung model. We also demonstrate that alveolar pH changes in response to ventilation.

  19. Endoscopic sensing of alveolar pH

    PubMed Central

    Choudhury, D.; Tanner, M. G.; McAughtrie, S.; Yu, F.; Mills, B.; Choudhary, T. R.; Seth, S.; Craven, T. H.; Stone, J. M.; Mati, I. K.; Campbell, C. J.; Bradley, M.; Williams, C. K. I.; Dhaliwal, K.; Birks, T. A.; Thomson, R. R.

    2016-01-01

    Previously unobtainable measurements of alveolar pH were obtained using an endoscope-deployable optrode. The pH sensing was achieved using functionalized gold nanoshell sensors and surface enhanced Raman spectroscopy (SERS). The optrode consisted of an asymmetric dual-core optical fiber designed for spatially separating the optical pump delivery and signal collection, in order to circumvent the unwanted Raman signal generated within the fiber. Using this approach, we demonstrate a ~100-fold increase in SERS signal-to-fiber background ratio, and demonstrate multiple site pH sensing with a measurement accuracy of ± 0.07 pH units in the respiratory acini of an ex vivo ovine lung model. We also demonstrate that alveolar pH changes in response to ventilation. PMID:28101415

  20. The Acid Test: pH Tolerance of the Eggs and Larvae of the Invasive Cane Toad (Rhinella marina) in Southeastern Australia.

    PubMed

    Wijethunga, Uditha; Greenlees, Matthew; Shine, Richard

    2015-01-01

    Invasive cane toads are colonizing southeastern Australia via a narrow coastal strip sandwiched between unsuitable areas (Pacific Ocean to the east, mountains to the west). Many of the available spawning sites exhibit abiotic conditions (e.g., temperature, salinity, and pH) more extreme than those encountered elsewhere in the toad's native or already invaded range. Will that challenge impede toad expansion? To answer that question, we measured pH in 35 ponds in northeastern New South Wales and 8 ponds in the Sydney region, in both areas where toads occur (and breed) and adjacent areas where toads are likely to invade, and conducted laboratory experiments to quantify effects of pH on the survival and development of toad eggs and larvae. Our field surveys revealed wide variation in pH (3.9-9.8) among natural water bodies. In the laboratory, the hatching success of eggs was increased at low pH (down to pH 4), whereas the survival, growth, and developmental rates of tadpoles were enhanced by higher pH levels. We found that pH influenced metamorph size and shape (relative head width, relative leg length) but not locomotor performance. The broad tolerance range of these early life-history stages suggests that pH conditions in ponds will not significantly slow the toad's expansion southward. Indeed, toads may benefit from transiently low pH conditions, and habitat where pH in wetlands is consistently low (such as coastal heath) may enhance rather than reduce toad reproductive success. A broad physiological tolerance during embryonic and larval life has contributed significantly to the cane toad's success as a widespread colonizer.

  1. Teaching Plant-Soil Relationships with Color Images of Rhizosphere pH.

    ERIC Educational Resources Information Center

    Heckman, J. R.; Strick, J. E.

    1996-01-01

    Presents a laboratory exercise that uses a simple imaging technique to illustrate the profound effects that living roots exert on the pH of the surrounding soil environment. Achieves visually stimulating results that can be used to reinforce lectures on rhizosphere pH, nutrient availability, plant tolerance of soil acidity, microbial activity, and…

  2. An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva.

    PubMed

    Luo, Chongdai; Wang, Yangyang; Li, Xuemeng; Jiang, Xueqin; Gao, Panpan; Sun, Kang; Zhou, Jianhua; Zhang, Zhiguang; Jiang, Qing

    2017-03-17

    Saliva contains important personal physiological information that is related to some diseases, and it is a valuable source of biochemical information that can be collected rapidly, frequently, and without stress. In this article, we reported a new and simple localized surface plasmon resonance (LSPR) substrate composed of polyaniline (PANI)-gold hybrid nanostructures as an optical sensor for monitoring the pH of saliva samples. The overall appearance and topography of the substrates, the composition, and the wettability of the LSPR surfaces were characterized by optical and scanning electron microscope (SEM) images, infrared spectra, and contact angles measurement, respectively. The PANI-gold hybrid substrate readily responded to the pH. The response time was very short, which was 3.5 s when the pH switched from 2 to 7, and 4.5 s from 7 to 2. The changes of visible-near-infrared (NIR) spectra of this sensor upon varying pH in solution showed that-for the absorption at given wavelengths of 665 nm and 785 nm-the sensitivities were 0.0299 a.u./pH (a.u. = arbitrary unit) with a linear range of pH = 5-8 and 0.0234 a.u./pH with linear range of pH = 2-8, respectively. By using this new sensor, the pH of a real saliva sample was monitored and was consistent with the parallel measurements with a standard laboratory method. The results suggest that this novel LSPR sensor shows great potential in the field of mobile healthcare and home medical devices, and could also be modified by different sensitive materials to detect various molecules or ions in the future.

  3. Smartphone-Based pH Sensor for Home Monitoring of Pulmonary Exacerbations in Cystic Fibrosis.

    PubMed

    Sun, Alexander; Phelps, Tom; Yao, Chengyang; Venkatesh, A G; Conrad, Douglas; Hall, Drew A

    2017-05-30

    Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs.

  4. Laboratory simulations of PH3 photolysis in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Khwaja, H.

    1985-01-01

    The effects of pressure, temperature, light wavelength and intensity, and components of the atmosphere of the Jovian planets on the photolysis of PH3 were experimentally studied. The products of the photolysis, P2H4 and red phosphorus, exhibited little variation when the irradiation experiments were performed under conditions prevalent in Jupiter's atmosphere. No quenching of PH2 radicals by the levels of hydrocarbons present in the Jovian atmosphere was noted. The high partial pressure of hydrogen present on Jupiter should have no effect on the course of the photolysis. The low temperatures on Jupiter and Saturn may result in some condensation of P2H4, but P2H4 had sufficient vapor pressure in the experimental studies at 157 K to be slowly converted to red phosphorus. The products of PH3 photolysis were the same whether a 147, 184.9, or 206.2 nm monochromatic light source or a xenon lamp with a broad spectral output was used.

  5. Purification and Characterization of meta-Cresol Purple for Spectrophotometric Seawater pH Measurements

    PubMed Central

    2011-01-01

    Spectrophotometric procedures allow rapid and precise measurements of the pH of natural waters. However, impurities in the acid–base indicators used in these analyses can significantly affect measurement accuracy. This work describes HPLC procedures for purifying one such indicator, meta-cresol purple (mCP), and reports mCP physical–chemical characteristics (thermodynamic equilibrium constants and visible-light absorbances) over a range of temperature (T) and salinity (S). Using pure mCP, seawater pH on the total hydrogen ion concentration scale (pHT) can be expressed in terms of measured mCP absorbance ratios (R = λ2A/λ1A) as follows:where −log(K2Te2) = a + (b/T) + c ln T – dT; a = −246.64209 + 0.315971S + 2.8855 × 10–4S2; b = 7229.23864 – 7.098137S – 0.057034S2; c = 44.493382 – 0.052711S; d = 0.0781344; and mCP molar absorbance ratios (ei) are expressed as e1 = −0.007762 + 4.5174 × 10–5T and e3/e2 = −0.020813 + 2.60262 × 10–4T + 1.0436 × 10–4 (S – 35). The mCP absorbances, λ1A and λ2A, used to calculate R are measured at wavelengths (λ) of 434 and 578 nm. This characterization is appropriate for 278.15 ≤ T ≤ 308.15 and 20 ≤ S ≤ 40. PMID:21563773

  6. Reliability of Measured Data for pH Sensor Arrays with Fault Diagnosis and Data Fusion Based on LabVIEW

    PubMed Central

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-01-01

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636

  7. Reliability of measured data for pH sensor arrays with fault diagnosis and data fusion based on LabVIEW.

    PubMed

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-12-13

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.

  8. [Inhibition of Bacillus coagulans growth in laboratory media and in fruit purees].

    PubMed

    Cerrutti, P; Alzamora, S M; de Huergo, M S

    2000-01-01

    The growth of two strains of B. coagulans was inhibited in laboratory media at pH < or = 4.5, and at water activity (aw) levels of 0.96 for B. coagulans NRS 609 and 0.95 for B. coagulans ATCC 803. The growth of both strains was also inhibited in apple and strawberry purees (pH = 3.5) stored at 37 degrees C for over two months. B. coagulans was able to grow in banana puree (pH approximately equal to 5.0) but acidification of the puree at pH = 3.5 was enough to prevent growth. The addition of up to 3,000 ppm vainillin ("natural" preservative) or 1,000 ppm potassium sorbate (traditional preservative) at pH higher than the inhibitory level previously determined could not prevent growth of B. coagulans in laboratory or in fruits, but 100 ppm lysozyme retarded growth in laboratory media at different pH levels (from 4.5 to 6.7) and in banana puree. As lysozyme showed to be effective at pH < or = 6.7, it might be used to prevent growth of B. coagulans at an eventual increment of pH during storage.

  9. Blood gas testing and related measurements: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Dukić, Lora; Kopčinović, Lara Milevoj; Dorotić, Adrijana; Baršić, Ivana

    2016-10-15

    Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard - fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline - second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing.

  10. Blood gas testing and related measurements: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Dukić, Lora; Kopčinović, Lara Milevoj; Dorotić, Adrijana; Baršić, Ivana

    2016-01-01

    Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard – fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline – second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing. PMID:27812301

  11. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  12. Detection of Micrococcus luteus biofilm formation in microfluidic environments by pH measurement using an ion-sensitive field-effect transistor.

    PubMed

    Matsuura, Koji; Asano, Yuka; Yamada, Akira; Naruse, Keiji

    2013-02-18

    Biofilm formation in microfluidic channels is difficult to detect because sampling volumes are too small for conventional turbidity measurements. To detect biofilm formation, we used an ion-sensitive field-effect transistor (ISFET) measurement system to measure pH changes in small volumes of bacterial suspension. Cells of Micrococcus luteus (M. luteus) were cultured in polystyrene (PS) microtubes and polymethylmethacrylate (PMMA)-based microfluidic channels laminated with polyvinylidene chloride. In microtubes, concentrations of bacteria and pH in the suspension were analyzed by measuring turbidity and using an ISFET sensor, respectively. In microfluidic channels containing 20 μL of bacterial suspension, we measured pH changes using the ISFET sensor and monitored biofilm formation using a microscope. We detected acidification and alkalinization phases of M. luteus from the ISFET sensor signals in both microtubes and microfluidic channels. In the alkalinization phase, after 2 day culture, dense biofilm formation was observed at the bottom of the microfluidic channels. In this study, we used an ISFET sensor to detect biofilm formation in clinical and industrial microfluidic environments by detecting alkalinization of the culture medium. 

  13. Laboratory Measurements for Deuterated Astrochemistry

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Pierre-Michel; Bowen, Kyle Patrick; Miller, Kenneth A.; De Ruette, Nathalie; Urbain, Xavier; Savin, Daniel Wolf

    2017-06-01

    Deuterated molecules are powerful probes of the cold interstellar medium (ISM). Observations of D-bearing molecules are used to infer the chemistry of the ISM and to trace out physical conditions such as density, ionization fraction, and thermal history. The chemistry of the cold ISM results from a complicated interplay between gas-phase processes, reactions on dust grain surfaces, and chemistry occurring both in and on the icy mantles of dust grains. Our focus here is on an improved understanding of the relevant deuterated gas-phase chemistry. At the low temperatures and densities typical of the cold ISM, much of this chemistry is driven by binary ion-neutral reactions, which are typically barrierless and exoergic (as compared to neutral-neutral reactions which often have significant activation energies).One of the biggest challenges in generating a reliable deuterated gas-phase astrochemical network is the uncertainty of the necessary rate coefficients. The vast majority of available chemical kinetic data are for fully hydrogenated species. For those D-bearing reactions where no laboratory data are available, two approaches have been adopted for converting the fully hydrogenated data into partial- and fully-deuterated species. The first approach simply “clones” the H-bearing reactions into D-bearing reactions and assumes that the rate coefficients are the same. The second approach uses a simple mass scaling relationship based on the Langevin formalism.We have initiated a series of laboratory measurements aimed at resolving this issue. For this we use our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and charged molecules. Using co-propagating beams enables us to achieve collision energies corresponding to temperatures as low as 25 K, limited only by the divergences of the two beams. Recently we have measured the reaction C + H2+(D2+) forming CH+(CD+) + H(D). We are now studying D + H3+(D2H+) forming H2D

  14. Laboratory Measurement Implications of Decreasing Childhood Blood Lead Levels

    PubMed Central

    Caldwell, Kathleen L.; Cheng, Po-Yung; Jarrett, Jeffery M.; Makhmudov, Amir; Vance, Kathryn; Ward, Cynthia D.; Jones, Robert L.; Mortensen, Mary E.

    2017-01-01

    In 2012, the Centers for Disease Control and Prevention (CDC) adopted its Advisory Committee on Childhood Lead Poisoning Prevention (ACCLPP) recommendation to use a population-based reference value to identify children and environments associated with lead hazards. The current reference value of 5 μg/dL is calculated as the 97.5th percentile of the distribution of blood lead levels (BLL) in children one to five years old from 2007–2010 National Health and Nutrition Examination Survey (NHANES) data. We calculated and updated selected percentiles, including the 97.5th percentile, using NHANES 2011–2014 blood lead data and examined demographic characteristics of children whose blood lead was ≥90th percentile value. The 97.5% percentile BLL of 3.48 μg/dL highlighted analytical laboratory and clinical interpretation challenges of blood lead measurements ≤ 5 μg/dL. Review of five years of results for target blood lead values < 11 μg/dL for U.S. clinical laboratories participating in CDC’s voluntary Lead and Multi-Element Proficiency (LAMP) quality assurance program showed 40% unable to quantify and reported a non-detectable result at a target blood lead value of 1.48 μg/dL compared 5.5 % at a target blood lead of 4.60 μg/dL. We describe actions taken at CDC’s Environmental Health Laboratory in the Division of Laboratory Sciences, which measures blood lead for NHANES, to improve analytical accuracy and precision and to reduce external lead contamination during blood collection and analysis. PMID:28771411

  15. Acid loading test (pH)

    MedlinePlus

    ... medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the kidneys to send ...

  16. Correlation of VHI-10 to voice laboratory measurements across five common voice disorders.

    PubMed

    Gillespie, Amanda I; Gooding, William; Rosen, Clark; Gartner-Schmidt, Jackie

    2014-07-01

    To correlate change in Voice Handicap Index (VHI)-10 scores with corresponding voice laboratory measures across five voice disorders. Retrospective study. One hundred fifty patients aged >18 years with primary diagnosis of vocal fold lesions, primary muscle tension dysphonia-1, atrophy, unilateral vocal fold paralysis (UVFP), and scar. For each group, participants with the largest change in VHI-10 between two periods (TA and TB) were selected. The dates of the VHI-10 values were linked to corresponding acoustic/aerodynamic and audio-perceptual measures. Change in voice laboratory values were analyzed for correlation with each other and with VHI-10. VHI-10 scores were greater for patients with UVFP than other disorders. The only disorder-specific correlation between voice laboratory measure and VHI-10 was average phonatory airflow in speech for patients with UVFP. Average airflow in repeated phonemes was strongly correlated with average airflow in speech (r=0.75). Acoustic measures did not significantly change between time points. The lack of correlations between the VHI-10 change scores and voice laboratory measures may be due to differing constructs of each measure; namely, handicap versus physiological function. Presuming corroboration between these measures may be faulty. Average airflow in speech may be the most ecologically valid measure for patients with UVFP. Although aerodynamic measures changed between the time points, acoustic measures did not. Correlations to VHI-10 and change between time points may be found with other acoustic measures. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  17. Measuring Meaningful Learning in the Undergraduate Chemistry Laboratory: A National, Cross-Sectional Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on laboratory learning points to the need to better understand what and how students learn in the undergraduate chemistry laboratory. The Meaningful Learning in the Laboratory Instrument (MLLI) was administered to general and organic chemistry students from 15 colleges and universities across the United States in order to measure the…

  18. Diurnal and seasonal variations of pH for a year in the western subarctic North Pacific observed by using a hybrid pH sensor

    NASA Astrophysics Data System (ADS)

    Nakano, Yoshiyuki; Fujiki, Tetsuichi; Kimoto, Katsunori; Miwa, Tetsuya

    2017-04-01

    Ocean acidification has many far reaching impacts on plankton community in the ocean. There is great need of quality instrumentation to assess and monitor the changing seawater pH. To meet the need, we have developed the in situ high accurate pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring to participate the Wendy Schmidt Ocean health XPRIZE. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS is correcting the value of the potentiometric pH (measuring frequently) by the value of the spectrophotometric pH (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the HpHS can measure accurately the value of pH over a long period of time with low power consumption. In order to understand the seasonal and inter-annual variabilities of biogeochemical cycles and ecosystems, ship-based studies have been carried out since 1997 at time-series station K2 (47oN, 160oE) in the subarctic western North Pacific, which is a region with progression of ocean acidification. However, the ship-based studies of the open ocean have been limited in their ability to conduct high-frequency observations for understanding the

  19. Inexpensive and Disposable pH Electrodes

    ERIC Educational Resources Information Center

    Goldcamp, Michael J.; Conklin, Alfred; Nelson, Kimberly; Marchetti, Jessica; Brashear, Ryan; Epure, Emily

    2010-01-01

    Inexpensive electrodes for the measurement of pH have been constructed using the ionophore tribenzylamine for sensing H[superscript +] concentrations. Both traditional liquid-membrane electrodes and coated-wire electrodes have been constructed and studied, and both exhibit linear, nearly Nernstian responses to changes in pH. Measurements of pH…

  20. Intracellular pH Recovery Rates in Bivalve Hemocytes Following Exposure to Acidic Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G. H.

    2012-12-01

    Predictions of ocean acidification effects upon carbonate shell-forming species have caused great concern for the future of shellfisheries. Nevertheless, bivalve species inhabiting an estuarine environment have evolved in these environments with fluctuating pH levels. Previous experimental studies conducted in our laboratory have demonstrated the ability of oyster hemocytes to maintain intracellular homeostasis under acidic external conditions. However, little information is known of this homeostatic mechanism in other molluscan shellfish species present in these same habitats. In the current study we propose to determine if other bivalve species of aquaculture interest also possess this intracellular regulation by applying an in vitro hemocyte pH-recovery assay, previously developed for oysters, on the northern quahog, Mercenaria mercenaria, the blue mussel, Mytilus edulis, and the softshell clam, Mya arenaria. Preliminary results from the determination of initial intracellular pH levels, the initial step in the rate recovery assay, indicated a pH range between 7.0-7.4. This range was comparable to initial values measured in oysters, and consistent with data reported in the current literature. The second step of the hemocyte pH-recovery assay involves exposing oyster hemocytes to acidic external conditions and measuring the ability of the hemocyte intracellular pH to maintain homeostasis (i.e. recovery rate). Results from the recovery rate process will be presented.

  1. PhD Funding as a Determinant of PhD and Career Research Performance

    ERIC Educational Resources Information Center

    Horta, Hugo; Cattaneo, Mattia; Meoli, Michele

    2018-01-01

    This article focuses on the effects of PhD funding on research performance both during the degree and throughout researchers' careers as measured through publications and citations. This analysis draws from a representative sample of researchers holding a doctorate based in Portugal and finds that those funded by grants during the PhD perform…

  2. Proton pumping and the internal pH of yeast cells, measured with pyranine introduced by electroporation.

    PubMed Central

    Peña, A; Ramírez, J; Rosas, G; Calahorra, M

    1995-01-01

    The internal pH of yeast cells was determined by measuring the fluorescence changes of pyranine (8-hydroxy-1,3,6-pyrene-trisulfonic acid), which was introduced into the cells by electroporation. This may be a suitable procedure for the following reasons. (i) Only minor changes in the physiological status of the cells seemed to be produced. (ii) The dye did not seem to leak at a significant rate from the cells. (iii) Different incubation conditions produced large fluorescence changes in the dye, which in general agree with present knowledge of the proton movements of the yeast cell under different conditions. (iv) Pyranine introduced by electroporation seemed to be located in the cytoplasm and to avoid the vacuole, and therefore it probably measured actual cytoplasmic pH. (v) Correction factors to obtain a more precise estimation of the internal pH are not difficult to apply, and the procedure may be useful for other yeasts and microorganisms, as well as for the introduction of other substances into cells. Values for the cytoplasmic pHs of yeast cells that were higher than those reported previously were obtained, probably because this fluorescent indicator did not seem to penetrate into the cell vacuole. PMID:7860582

  3. Mobilization of natural colloids from an iron oxide-coated sand aquifer--Effect of pH and ionic strength

    USGS Publications Warehouse

    Bunn, Rebecca A.; Magelky, Robin D.; Ryan, Joseph N.; Elimelech, Menachem

    2002-01-01

    Field and laboratory column experiments were performed to assess the effect of elevated pH and reduced ionic strength on the mobilization of natural colloids in a ferric oxyhydroxide-coated aquifer sediment. The field experiments were conducted as natural gradient injections of groundwater amended by sodium hydroxide additions. The laboratory experiments were conducted in columns of undisturbed, oriented sediments and disturbed, disoriented sediments. In the field, the breakthrough of released colloids coincided with the pH pulse breakthrough and lagged the bromide tracer breakthrough. The breakthrough behavior suggested that the progress of the elevated pH front controlled the transport of the mobilized colloids. In the laboratory, about twice as much colloid release occurred in the disturbed sediments as in the undisturbed sediments. The field and laboratory experiments both showed that the total mass of colloid release increased with increasing pH until the concurrent increase in ionic strength limited release. A decrease in ionic strength did not mobilize significant amounts of colloids in the field. The amount of colloids released normalized to the mass of the sediments was similar for the field and the undisturbed laboratory experiments.

  4. Sodium bicarbonate ingestion and individual variability in time-to-peak pH.

    PubMed

    Sparks, Andy; Williams, Emily; Robinson, Amy; Miller, Peter; Bentley, David J; Bridge, Craig; Mc Naughton, Lars R

    2017-01-01

    This study determined variability in time-to-peak pH after consumption of 300 mg kg - 1 of sodium bicarbonate. Seventeen participants (mean ± SD: age 21.38 ± 1.5 years; mass 75.8 ± 5.8 kg; height 176.8 ± 7.6 cm) reported to the laboratory where a resting capillary sample was taken. Then, 300 mg kg -1 of NaHCO 3 in 450 ml of flavoured water was ingested. Participants rested for 90 min and repeated blood samples were procured at 10 min intervals for 60 min and then every 5 min until 90 min. Blood pH concentrations were measured. Results suggested that time-to-peak pH (64.41 ± 18.78 min) was variable with a range of 10-85 min and a coefficient of variation of 29.16%. A bimodal distribution occurred, at 65 and 75 min. In conclusion, athletes, when using NaHCO 3 as an ergogenic aid, should determine their time-to-peak pH to best utilize the added buffering capacity this substance allows.

  5. In Memoriam: Amar J.S. Klar, Ph.D. | Center for Cancer Research

    Cancer.gov

    In Memoriam: Amar J.S. Klar, Ph.D. The Center for Cancer Research mourns the recent death of colleague and friend Amar J.S. Klar, Ph.D.  Dr. Klar was a much-liked and respected member of the NCI community as part of the Gene Regulation and Chromosome Biology Laboratory since 1988.

  6. Equivalence of litmus paper and intragastric pH probes for intragastric pH monitoring in the intensive care unit.

    PubMed

    Levine, R L; Fromm, R E; Mojtahedzadeh, M; Baghaie, A A; Opekun, A R

    1994-06-01

    To compare the accuracy of litmus paper-determined gastric pH to a nasogastric graphite antimony pH probe. A prospective clinical trial of gastric pH determination in patients enrolled in a study of histamine-2-receptor (H2) antagonists. The medical intensive care unit (ICU) of a 450-bed county hospital. Critically ill ICU patients requiring stress ulcer prophylaxis. Using a crossover design, the patients were randomized to initially receive an H2 antagonist by continuous infusion or intravenous bolus, and subsequently were crossed over to the other limb of the study. Gastric pH was determined using pH-sensitive litmus paper at the initiation of each limb of the study and at 1, 2, 4, and 8 hrs after the initiation of H2 receptor antagonist therapy. In addition, gastric pH was continuously determined over the same time period utilizing a graphite antimony pH probe. Gastric pH measurements determined with litmus paper and intragastric pH probes demonstrated an excellent correlation (r2 = .93, p < .001). McNemar's test of correlated proportions could not demonstrate a significant difference between the two monitoring methods (chi-square = 0.5, p > .47), and the kappa statistic (0.95, p < .001) demonstrated excellent concordance. Bias measurement was 0.01 (95% confidence interval = -0.155 to 0.176). Measurement of intragastric pH, using pH-sensitive litmus paper, is both sensitive and specific when utilizing a graphite antimony nasogastric pH probe as a reference standard. Litmus paper-determined gastric pH testing is both easy to perform and inexpensive. Therefore, based on the current data, we believe this technique (i.e., litmus paper determined gastric pH testing) to be the method of choice for determination of intragastric pH in patients at risk for stress gastric ulcers in the medical ICU.

  7. Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.

    PubMed

    Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin

    2016-08-02

    Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.

  8. High-Resolution pH Imaging of Living Bacterial Cells To Detect Local pH Differences

    PubMed Central

    Morimoto, Yusuke V.; Kami-ike, Nobunori; Miyata, Tomoko; Kawamoto, Akihiro; Kato, Takayuki

    2016-01-01

    ABSTRACT Protons are utilized for various biological activities such as energy transduction and cell signaling. For construction of the bacterial flagellum, a type III export apparatus utilizes ATP and proton motive force to drive flagellar protein export, but the energy transduction mechanism remains unclear. Here, we have developed a high-resolution pH imaging system to measure local pH differences within living Salmonella enterica cells, especially in close proximity to the cytoplasmic membrane and the export apparatus. The local pH near the membrane was ca. 0.2 pH unit higher than the bulk cytoplasmic pH. However, the local pH near the export apparatus was ca. 0.1 pH unit lower than that near the membrane. This drop of local pH depended on the activities of both transmembrane export components and FliI ATPase. We propose that the export apparatus acts as an H+/protein antiporter to couple ATP hydrolysis with H+ flow to drive protein export. PMID:27923921

  9. Human errors and measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Kuselman, Ilya; Pennecchi, Francesca

    2015-04-01

    Evaluating the residual risk of human errors in a measurement and testing laboratory, remaining after the error reduction by the laboratory quality system, and quantifying the consequences of this risk for the quality of the measurement/test results are discussed based on expert judgments and Monte Carlo simulations. A procedure for evaluation of the contribution of the residual risk to the measurement uncertainty budget is proposed. Examples are provided using earlier published sets of expert judgments on human errors in pH measurement of groundwater, elemental analysis of geological samples by inductively coupled plasma mass spectrometry, and multi-residue analysis of pesticides in fruits and vegetables. The human error contribution to the measurement uncertainty budget in the examples was not negligible, yet also not dominant. This was assessed as a good risk management result.

  10. Smartphone-Based pH Sensor for Home Monitoring of Pulmonary Exacerbations in Cystic Fibrosis

    PubMed Central

    Sun, Alexander; Phelps, Tom; Yao, Chengyang; Venkatesh, A. G.; Conrad, Douglas; Hall, Drew A.

    2017-01-01

    Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs. PMID:28556804

  11. Effect of sampling location on L* values and pH measurements and their relationship in broiler breast fillets

    USDA-ARS?s Scientific Manuscript database

    Lightness (CIELAB L*) and pH values are the most widely measured quality indicators for broiler breast fillets (pectoralis major). Measurement of L* values with a spectrophotometer can be done through Specular Component Included (SCI) or Specular Component Excluded (SCE) modes. The intra-fillet loca...

  12. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  13. Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH.

    PubMed

    Masoomi, Mohammad; Shamsaei, Nima; Winholtz, Robert A; Milner, Justin L; Gnäupel-Herold, Thomas; Elwany, Alaa; Mahmoudi, Mohamad; Thompson, Scott M

    2017-08-01

    Neutron diffraction was employed to measure internal residual stresses at various locations along stainless steel (SS) 17-4 PH specimens additively manufactured via laser-powder bed fusion (L-PBF). Of these specimens, two were rods (diameter=8 mm, length=80 mm) built vertically upward and one a parallelepiped (8×80×9 mm 3 ) built with its longest edge parallel to ground. One rod and the parallelepiped were left in their as-built condition, while the other rod was heat treated. Data presented provide insight into the microstructural characteristics of typical L-PBF SS 17-4 PH specimens and their dependence on build orientation and post-processing procedures such as heat treatment. Data have been deposited in the Data in Brief Dataverse repository (doi:10.7910/DVN/T41S3V).

  14. Chapter A6. Section 6.4. pH

    USGS Publications Warehouse

    Wilde, Franceska D.; Busenberg, Eurybiades; Radtke, Dean B.

    2006-01-01

    Measurement of pH is critical to the understanding of the viability and vulnerability of environmental waters and is considered a master variable in determining the aqueous geochemistry of an aqueous system. pH is a measure that represents the hydrogen-ion concentration (activity) of a solution. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of pH in ground and surface waters.

  15. pH Mapping on Tooth Surfaces for Quantitative Caries Diagnosis Using Micro Ir/IrOx pH Sensor.

    PubMed

    Ratanaporncharoen, Chindanai; Tabata, Miyuki; Kitasako, Yuichi; Ikeda, Masaomi; Goda, Tatsuro; Matsumoto, Akira; Tagami, Junji; Miyahara, Yuji

    2018-04-03

    A quantitative diagnostic method for dental caries would improve oral health, which directly affects the quality of life. Here we describe the preparation and application of Ir/IrOx pH sensors, which are used to measure the surface pH of dental caries. The pH level is used as an indicator to distinguish between active and arrested caries. After a dentist visually inspected and defined 18 extracted dentinal caries at various positions as active or arrested caries, the surface pH values of sound and caries areas were directly measured with an Ir/IrOx pH sensor with a diameter of 300 μm as a dental explorer. The average pH values of the sound root, the arrested caries, and active caries were 6.85, 6.07, and 5.30, respectively. The pH obtained with an Ir/IrOx sensor was highly correlated with the inspection results by the dentist, indicating that the types of caries were successfully categorized. This caries testing technique using a micro Ir/IrOx pH sensor provides an accurate quantitative caries evaluation and has potential in clinical diagnosis.

  16. Quasi-simultaneous Measurements of Ionic Currents by Vibrating Probe and pH Distribution by Ion-selective Microelectrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, H.S.; Lamaka, S.V.; Taryba, M.

    2011-01-01

    This work reports a new methodology to measure quasi-simultaneously the local electric fields and the distribution of specific ions in a solution via selective microelectrodes. The field produced by the net electric current was detected using the scanning vibrating electrode technique (SVET) with quasi-simultaneous measurements of pH with an ion-selective microelectrode (pH-SME). The measurements were performed in a validation cell providing a 48 ?m diameter Pt wire cross section as a source of electric current. A time lag between acquiring each current density and pH data-point was 1.5 s due to the response time of pH-SME. The quasi-simultaneous SVET-pH measurementsmore » that correlate electrochemical oxidation-reduction processes with acid-base chemical equilibria are reported for the first time. No cross-talk between the vibrating microelectrode and the ion-selective microelectrode could be detected under given experimental conditions.« less

  17. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: Measuring Mass

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The study explains the quartz-crystal microbalance (QCM) technique, which is often used as an undergraduate laboratory experiment for measuring the mass of a system. QCM can be used as a mass sensor only when the measured mass is rigidly attached to the surface.

  18. [Research in the PhD Program led by János Fehér between 1993 and 2010 at the Biochemical Research Laboratory, 2nd Department of Medicine, Semmelweis University].

    PubMed

    Blázovics, Anna

    2010-11-21

    Author wish to express gratitude to late professor János Fehér for the invitation to participate in "Free Radical and Immunological References of Hepatology" PhD program in 1993 and for providing opportunity to establish a laboratory at the 2nd Department of Medicine, Semmelweis University. He established a joint medical and biological research that is continuing unbrokenly. In this research group, between 1993 and 2010, eleven Ph.D. students received their scientific degrees and two candidate dissertations were prepared. Three students are working in this very exciting field even today. Author would like to salute before János Fehér's remembrance by giving a list of results of topics under her leadership.

  19. Development of performance assessment instrument based contextual learning for measuring students laboratory skills

    NASA Astrophysics Data System (ADS)

    Susilaningsih, E.; Khotimah, K.; Nurhayati, S.

    2018-04-01

    The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.

  20. Augmenting Laboratory Rearing of Stable Fly (Diptera: Muscidae) Larvae With Ammoniacal Salts

    PubMed Central

    Friesen, Kristina; Berkebile, Dennis R.; Zhu, Jerry J.

    2017-01-01

    Stable flies are blood feeding parasites and serious pests of livestock. The immature stages develop in decaying materials which frequently have high ammonium content. We added various ammonium salts to our laboratory stable fly rearing medium and measured their effect on size and survival as well as the physical properties of the used media. The addition of ammonium hydroxide, ammonium phosphate and ammonium sulfate reduced larval survival. These compounds decreased pH and increased ammonium content of the used media. Ammonium bicarbonate had no effect on pH and marginally increased ammonium while increasing survival twofold. The optimal level of ammonium bicarbonate was 50 g (0.63 mol) per pan. Larval survival decreased when pH was outside the range of 8.5 to 9.0. PMID:28130462

  1. Laboratory Measured Behavioral Impulsivity Relates to Suicide Attempt History

    ERIC Educational Resources Information Center

    Dougherty, Donald M.; Mathias, Charles W.; Marsh, Dawn M.; Papageorgiou, T. Dorina; Swann, Alan C.; Moeller, F. Gerard

    2004-01-01

    The purpose of this study was to examine the relationship between laboratory behavioral measured impulsivity (using the Immediate and Delayed Memory Tasks) and suicidal attempt histories. Three groups of adults were recruited, those with either: no previous suicide attempts (Control, n = 20), only a single suicide attempt (Single, n = 20), or…

  2. Measuring the opacity of stellar interior matter in terrestrial laboratories

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2015-11-01

    How does energy propagate from the core to the surface of the Sun, where it emerges to warm the Earth? Nearly a century ago Eddington recognized that the attenuation of radiation by stellar matter controls the internal structure of stars like the sun. Opacities for high energy density (HED) matter are challenging to calculate because accurate and complete descriptions of the energy levels, populations, and plasma effects such as continuum lowering and line broadening are needed for partially ionized atoms. This requires approximations, in part because billions of bound-bound and bound-free electronic transitions can contribute to the opacity. Opacity calculations, however, have never been benchmarked against laboratory measurements at stellar interior conditions. Laboratory opacity measurements were limited in the past by the challenges of creating and diagnosing sufficiently large and uniform samples at the extreme conditions found inside stars. In research conducted over more than 10 years, we developed an experimental platform on the Z facility and measured wavelength-resolved iron opacity at electron temperatures Te = 156-195 eV and densities ne = 0.7-4.0 x 1022 cm-3 - conditions very similar to the radiation/convection boundary zone within the Sun. The wavelength-dependent opacity in the 975-1775 eV photon energy range is 30-400% higher than models predict. This raises questions about how well we understand the behavior of atoms in HED plasma. These measurements may also help resolve decade-old discrepancies between solar model predictions and helioseismic observations. This talk will provide an overview of the measurements, investigations of possible errors, and ongoing experiments aimed at testing hypotheses to resolve the model-data discrepancy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  3. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems.

    PubMed

    Gutierrez, Oriol; Sudarjanto, Gatut; Ren, Guo; Ganigué, Ramon; Jiang, Guangming; Yuan, Zhiguo

    2014-01-01

    Caustic dosing to raise pH above 10.0 for short periods (hours) is often used by water utilities for controlling sulfide formation in sewers. However the effectiveness of this strategy is rarely reported and the impact of pH level and exposure time on the effectiveness is largely unknown. The effectiveness of this strategy under various pH levels (10.5-12.5) and exposure time (0.5-6.0 h) in controlling sulfide and methane production was evaluated in laboratory scale anaerobic sewer reactors and then in a real sewer system. Laboratory studies showed that the sulfide production rate of the laboratory sewer biofilm was reduced by 70-90% upon the completion of the pH shock, while the methane production rate decreased by 95-100%. It took approximately one week for the sulfate-reducing activity to recover to normal levels. In comparison, the methanogenic activities recovered to only about 10% in 4 weeks. The slow recovery is explained by the substantially loss of cell viability upon pH shocks, which recovered slowly after the shocks. Laboratory studies further revealed that a pH level of 10.5 for 1-2 h represent cost-effective conditions for the pH shock treatment. However, field trials showed a higher pH (11.5) and larger dosing times are needed due to the pH decreases along the sewer line and at the two ends of the caustic-receiving wastewater slugs due to dilution. To have effective sulfide and methane control, it is important to ensure effective conditions (pH > 10.5 and duration >1-2 h) for the entire sewer line. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Variability in baseline laboratory measurements of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    PubMed

    Ladwig, R; Vigo, A; Fedeli, L M G; Chambless, L E; Bensenor, I; Schmidt, M I; Vidigal, P G; Castilhos, C D; Duncan, B B

    2016-08-01

    Multi-center epidemiological studies must ascertain that their measurements are accurate and reliable. For laboratory measurements, reliability can be assessed through investigation of reproducibility of measurements in the same individual. In this paper, we present results from the quality control analysis of the baseline laboratory measurements from the ELSA-Brasil study. The study enrolled 15,105 civil servants at 6 research centers in 3 regions of Brazil between 2008-2010, with multiple biochemical analytes being measured at a central laboratory. Quality control was ascertained through standard laboratory evaluation of intra- and inter-assay variability and test-retest analysis in a subset of randomly chosen participants. An additional sample of urine or blood was collected from these participants, and these samples were handled in the same manner as the original ones, locally and at the central laboratory. Reliability was assessed with the intraclass correlation coefficient (ICC), estimated through a random effects model. Coefficients of variation (CV) and Bland-Altman plots were additionally used to assess measurement variability. Laboratory intra and inter-assay CVs varied from 0.86% to 7.77%. From test-retest analyses, the ICCs were high for the majority of the analytes. Notably lower ICCs were observed for serum sodium (ICC=0.50; 95%CI=0.31-0.65) and serum potassium (ICC=0.73; 95%CI=0.60-0.83), due to the small biological range of these analytes. The CVs ranged from 1 to 14%. The Bland-Altman plots confirmed these results. The quality control analyses showed that the collection, processing and measurement protocols utilized in the ELSA-Brasil produced reliable biochemical measurements.

  5. pH. Training Module 5.305.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with pH, measurement of pH with a pH meter and maintenance of pH meter electrodes. Included are objectives, instructor guides, student handouts and transparency masters. This module considers the definition of pH, types of electrodes and…

  6. Investigation and Analysis of Hemoglobin A1c Measurement Systems’ Performance for 135 Laboratories in China

    PubMed Central

    Zhao, Hai-Jian; Zhang, Tian-Jiao; Zeng, Jie; Hu, Cui-Hua; Ma, Rong; Zhang, Chuan-Bao

    2017-01-01

    Background: Hemoglobin A1c (HbA1c) measurement is of great value for the diagnosis and monitoring of diabetes. Many manufacturers have developed various experiments to determine the HbA1c concentration. However, the longitudinal use of these tests requires strict quality management. This study aimed to analyze the quality of HbA1c measurement systems in China using six sigma techniques to help improve their performances. Methods: A total of 135 laboratories were involved in this investigation in 2015. Bias values and coefficients of variation were collected from an HbA1c trueness verification external quality assessment program and an internal quality control program organized by the National Center of Clinical Laboratories in China. The sigma (σ) values and the quality goal index (QGI) were used to evaluate the performances of different groups, which were divided according to principles and instruments. Results: The majority of participants (88, 65.2%) were scored as “improvement needed (σ < 3)”, suggesting that the laboratories needed to improve their measurement performance. Only 8.2% (11/135) of the laboratories were scored as “world class (σ ≥ 6)”. Among all the 88 laboratories whose σ values were below 3, 52 (59.1%) and 23 (26.1%) laboratories needed to improve measurement precision (QGI <8.0) and trueness (QGI >1.2), respectively; the remaining laboratories (13, 14.8%) needed to improve both measurement precision and trueness. In addition, 16.1% (5/31) and 15.0% (3/20) of the laboratories in “TOSOH” and “ARKRAY” groups, respectively, were scored as “world class”, whereas none of the laboratories in “BIO-RAD” group were scored as “world class”. Conclusions: This study indicated that, although participating laboratories were laboratories with better performance in China, the performances were still unsatisfactory. Actions should be taken to improve HbA1c measurement performance before we can include HbA1c assays in diabetes

  7. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains.

    PubMed

    Zhou, Jie; Zhang, Limin; Tian, Yang

    2016-02-16

    To develop in vivo monitoring meter for pH measurements is still the bottleneck for understanding the role of pH plays in the brain diseases. In this work, a selective and sensitive electrochemical pH meter was developed for real-time ratiometric monitoring of pH in different regions of rat brains upon ischemia. First, 1,2-naphthoquinone (1,2-NQ) was employed and optimized as a selective pH recognition element to establish a 2H(+)/2e(-) approach over a wide range of pH from 5.8 to 8.0. The pH meter demonstrated remarkable selectivity toward pH detection against metal ions, amino acids, reactive oxygen species, and other biological species in the brain. Meanwhile, an inner reference, 6-(ferrocenyl)hexanethiol (FcHT), was selected as a built-in correction to avoid the environmental effect through coimmobilization with 1,2-NQ. In addition, three-dimensional gold nanoleaves were electrodeposited onto the electrode surface to amplify the signal by ∼4.0-fold and the measurement was achieved down to 0.07 pH. Finally, combined with the microelectrode technique, the microelectrochemical pH meter was directly implanted into brain regions including the striatum, hippocampus, and cortex and successfully applied in real-time monitoring of pH values in these regions of brain followed by global cerebral ischemia. The results demonstrated that pH values were estimated to 7.21 ± 0.05, 7.13 ± 0.09, and 7.27 ± 0.06 in the striatum, hippocampus, and cortex in the rat brains, respectively, in normal conditions. However, pH decreased to 6.75 ± 0.07 and 6.52 ± 0.03 in the striatum and hippocampus, upon global cerebral ischemia, while a negligible pH change was obtained in the cortex.

  8. Plant based dietary supplement increases urinary pH

    PubMed Central

    Berardi, John M; Logan, Alan C; Rao, A Venket

    2008-01-01

    Background Research has demonstrated that the net acid load of the typical Western diet has the potential to influence many aspects of human health, including osteoporosis risk/progression; obesity; cardiovascular disease risk/progression; and overall well-being. As urinary pH provides a reliable surrogate measure for dietary acid load, this study examined whether a plant-based dietary supplement, one marketed to increase alkalinity, impacts urinary pH as advertised. Methods Using pH test strips, the urinary pH of 34 healthy men and women (33.9 +/- 1.57 y, 79.3 +/- 3.1 kg) was measured for seven days to establish a baseline urinary pH without supplementation. After this initial baseline period, urinary pH was measured for an additional 14 days while participants ingested the plant-based nutritional supplement. At the end of the investigation, pH values at baseline and during the treatment period were compared to determine the efficacy of the supplement. Results Mean urinary pH statistically increased (p = 0.03) with the plant-based dietary supplement. Mean urinary pH was 6.07 +/- 0.04 during the baseline period and increased to 6.21 +/- 0.03 during the first week of treatment and to 6.27 +/- 0.06 during the second week of treatment. Conclusion Supplementation with a plant-based dietary product for at least seven days increases urinary pH, potentially increasing the alkalinity of the body. PMID:18990209

  9. Electrochemiluminescent pH sensor measured by the emission potential of TiO2 nanocrystals and its biosensing application.

    PubMed

    Liu, Xuan; Wang, Nianyue; Zhao, Wei; Jiang, Hui

    2015-02-01

    This work reports for the first time a potential-based nano-electrochemiluminescent (ECL) pH sensor, using anatase TiO2 nanocrystals (NCs) as the ECL probe. The first ECL peak potential of the TiO2 NCs shifted negatively with increasing pH, showing a linear range from -0.47 V (vs Ag/AgCl) at pH 3 to -1.06 V at pH 10. This phenomenon was attributed to the absorption of 'potential-determining ions' of OH(-) on the surface of TiO2 NCs, leading to larger impedance of the electron injection. Other common 'potential-determining ions', such as phosphate, induced a slight potential shift of 0.03 V at a concentration of 0.1 M. Using urease as an enzyme model, a urea biosensor was developed by the simultaneous modification of urease and TiO2 NCs on indium-tin oxide (ITO) electrodes. The biosensor, measured on the basis of the pH increase caused by the enzyme catalysis reaction, had a linear range of 0.01-2.0 mM, with a potential shift of 0.175 V. The as-prepared pH sensor, which has simple construction procedures and acceptable sensitivity and selectivity, may provide new avenues for the construction of ECL bioanalytical methodologies. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Implications of the pH and temperature of diluted, cooled boar semen on fresh and frozen-thawed sperm motility characteristics.

    PubMed

    Purdy, P H; Tharp, N; Stewart, T; Spiller, S F; Blackburn, H D

    2010-10-15

    Boar semen is typically collected, diluted and cooled for AI use over numerous days, or frozen immediately after shipping to capable laboratories. The storage temperature and pH of the diluted, cooled boar semen could influence the fertility of boar sperm. Therefore, the purpose of this study was to determine the effects of pH and storage temperature on fresh and frozen-thawed boar sperm motility end points. Semen samples (n = 199) were collected, diluted, cooled and shipped overnight to the National Animal Germplasm Program laboratory for freezing and analysis from four boar stud facilities. The temperature, pH and motility characteristics, determined using computer automated semen analysis, were measured at arrival. Samples were then cryopreserved and post-thaw motility determined. The commercial stud was a significant source of variation for mean semen temperature and pH, as well as total and progressive motility, and numerous other sperm motility characteristics. Based on multiple regression analysis, pH was not a significant source of variation for fresh or frozen-thawed boar sperm motility end points. However, significant models were derived which demonstrated that storage temperature, boar, and the commercial stud influenced sperm motility end points and the potential success for surviving cryopreservation. We inferred that maintaining cooled boar semen at approximately 16 °C during storage will result in higher fresh and frozen-thawed boar sperm quality, which should result in greater fertility. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Precise turnaround time measurement of laboratory processes using radiofrequency identification technology.

    PubMed

    Mayer, Horst; Brümmer, Jens; Brinkmann, Thomas

    2011-01-01

    To implement Lean Six Sigma in our central laboratory we conducted a project to measure single pre-analytical steps influencing turnaround time (TAT) of emergency department (ED) serum samples. The traditional approach of extracting data from the Laboratory Information System (LIS) for a retrospective calculation of a mean TAT is not suitable. Therefore, we used radiofrequency identification (RFID) chips for real time tracking of individual samples at any pre-analytical step. 1,200 serum tubes were labelled with RFID chips and were provided to the emergency department. 3 RFID receivers were installed in the laboratory: at the outlet of the pneumatic tube system, at the centrifuge, and in the analyser area. In addition, time stamps of sample entry at the automated sample distributor and communication of results from the analyser were collected from LIS. 1,023 labelled serum tubes arrived at our laboratory. 899 RFID tags were used for TAT calculation. The following transfer times were determined (median 95th percentile in min:sec): pneumatic tube system --> centrifuge (01:25/04:48), centrifuge --> sample distributor (14:06/5:33), sample distributor --> analysis system zone (02:39/15:07), analysis system zone --> result communication (12:42/22:21). Total TAT was calculated at 33:19/57:40 min:sec. Manual processes around centrifugation were identified as a major part of TAT with 44%/60% (median/95th percentile). RFID is a robust, easy to use, and error-free technology and not susceptible to interferences in the laboratory environment. With this study design we were able to measure significant variations in a single manual sample transfer process. We showed that TAT is mainly influenced by manual steps around the centrifugation process and we concluded that centrifugation should be integrated in solutions for total laboratory automation.

  12. Prevalence of oral lesions and measurement of salivary pH in the different trimesters of pregnancy.

    PubMed

    Jain, Kanu; Kaur, Harshaminder

    2015-01-01

    Oral changes observed during pregnancy have been studied for many years, but their magnitude and frequency have not been stressed upon. This study was undertaken to assess the prevalence of oral lesions during different trimesters of pregnancy and their correlation with salivary pH change. The gingival, simplified oral hygiene, community periodontal and decayed-missing-filled teeth indices were used to assess a total of 120 pregnant women (40 in each trimester group) and 40 nonpregnant women (control group). Salivary pH was measured using a digital pH meter. Presence of any oral lesions was determined via oral examination. Scores for all indices increased while salivary pH decreased from the control group to the first trimester group, through to the third. Oral lesions were seen in 44.2% of pregnant women. Lesions were seen in 27.5%, 52.5% and 52.5% of women in the first, second and third trimesters, respectively. The percentage of pregnant women with one oral lesion was highest in the second trimester (47.5%), whereas the third trimester had the highest prevalence (17.5%) of two concurrent oral lesions. The incidence of fissured tongue was highest in the first trimester group, and that of gingival enlargement was highest in the third trimester group. In the second trimester group, there was an almost equal incidence of fissured tongue and gingival/mucosal enlargement. Most changes in oral tissues during pregnancy can be avoided with good oral hygiene. Salivary pH could be used to assess the prevalence of oral lesions in the different trimesters of pregnancy.

  13. Factors affecting human heterocyclic amine intake and the metabolism of PhIP.

    PubMed

    Knize, Mark G; Kulp, Kristen S; Salmon, Cynthia P; Keating, Garrett A; Felton, James S

    2002-09-30

    We are working to understand possible human health effects from exposure to heterocyclic amines that are formed in meat during cooking. Laboratory-cooked beef, pork, and chicken are capable of producing tens of nanograms of MeIQx, IFP, and PhIP per gram of meat and smaller amounts of other heteroyclic amines. Well-done restaurant-cooked beef, pork, and chicken may contain PhIP and IFP at concentrations as high as tens of nanograms per gram and MeIQx at levels up to 3 ng/g. Although well-done chicken breast prepared in the laboratory may contain large amounts of PhIP, a survey of flame-grilled meat samples cooked in private homes showed PhIP levels in beef steak and chicken breast are not significantly different (P=0.36). The extremely high PhIP levels reported in some studies of grilled chicken are not seen in home-cooked samples.Many studies suggest individuals may have varying susceptibility to carcinogens and that diet may influence metabolism, thus affecting cancer susceptibility. To understand the human metabolism of PhIP, we examined urinary metabolites of PhIP in volunteers following a single well-done meat exposure. Using solid-phase extraction and LC/MS/MS, we quantified four major PhIP metabolites in human urine. In addition to investigating individual variation, we examined the interaction of PhIP with a potentially chemopreventive food. In a preliminary study of the effect of broccoli on PhIP metabolism, we fed chicken to six volunteers before and after eating steamed broccoli daily for 3 days. Preliminary results suggest that broccoli, which contains isothiocyanates shown to induce Phases I and II metabolism in vitro, may affect both the rate of metabolite excretion and the metabolic products of a dietary carcinogen. This newly developed methodology will allow us to assess prevention strategies that reduce the possible risks associated with PhIP exposure.

  14. Initial steps in defining the environment of the prepuce of the bull by measuring pH and temperature.

    PubMed

    Koziol, J H; Fraser, N S; Passler, T; Wolfe, D F

    2017-12-01

    To determine the baseline pH and temperature of the preputial cavity of bulls. We enrolled 55 bulls ranging in age from 15 to 84 months. The preputial temperature and pH were measured by insertion of temperature and pH probes, respectively, into the preputial orifice prior to routine breeding soundness examinations. Information was obtained from owners regarding the diet of each bull and categorised as one of three categories: forage only, grain supplemented or silage supplemented. The average temperature of the prepuce was 37.81°C ± 1.76 and the median pH of the prepuce was 8.45 (6.35-9.46). Preputial temperatures of the bull weakly correlated with ambient temperatures (r s  = -0.29, P = 0.028). The preputial pH of silage-fed bulls was significantly lower than that of bulls fed forage only (P = 0.025) or grain-supplemented diets (P = 0.002). The median preputial pH of bulls fed a silage-based diet was 7.6 (6.3-8.9) compared with a median pH 8.7 (7.8-9.1) for bulls fed forage-based diets or a median of 8.5 (7.7-9.4) for those given grain-supplemented diets. Diet and ambient temperature can, respectively, affect pH and the temperature in the prepuce. Further studies to describe and understand the microbiota of the prepuce and penis may assist in developing treatments for diseases of the genital tract in bulls. © 2017 Australian Veterinary Association.

  15. Laboratory and field measurements and evaluations of vibration at the handles of riveting hammers

    PubMed Central

    McDOWELL, THOMAS W.; WARREN, CHRISTOPHER; WELCOME, DANIEL E.; DONG, REN G.

    2015-01-01

    The use of riveting hammers can expose workers to harmful levels of hand-transmitted vibration (HTV). As a part of efforts to reduce HTV exposures through tool selection, the primary objective of this study was to evaluate the applicability of a standardized laboratory-based riveting hammer assessment protocol for screening riveting hammers. The second objective was to characterize the vibration emissions of reduced vibration riveting hammers and to make approximations of the HTV exposures of workers operating these tools in actual work tasks. Eight pneumatic riveting hammers were selected for the study. They were first assessed in a laboratory using the standardized method for measuring vibration emissions at the tool handle. The tools were then further assessed under actual working conditions during three aircraft sheet metal riveting tasks. Although the average vibration magnitudes of the riveting hammers measured in the laboratory test were considerably different from those measured in the field study, the rank orders of the tools determined via these tests were fairly consistent, especially for the lower vibration tools. This study identified four tools that consistently exhibited lower frequency-weighted and unweighted accelerations in both the laboratory and workplace evaluations. These observations suggest that the standardized riveting hammer test is acceptable for identifying tools that could be expected to exhibit lower vibrations in workplace environments. However, the large differences between the accelerations measured in the laboratory and field suggest that the standardized laboratory-based tool assessment is not suitable for estimating workplace riveting hammer HTV exposures. Based on the frequency-weighted accelerations measured at the tool handles during the three work tasks, the sheet metal mechanics assigned to these tasks at the studied workplace are unlikely to exceed the daily vibration exposure action value (2.5 m s−2) using any of the

  16. SAMPLING DEVICE FOR pH MEASUREMENT IN PROCESS STREAMS

    DOEpatents

    Michelson, C.E.; Carson, W.N. Jr.

    1958-11-01

    A pH cell is presented for monitoring the hydrogen ion concentration of a fluid in a process stream. The cell is made of glass with a side entry arm just above a reservoir in which the ends of a glass electrode and a reference electrode are situated. The glass electrode contains the usual internal solution which is connected to a lead. The reference electrode is formed of saturated calomel having a salt bridge in its bottom portion fabricated of a porous glass to insure low electrolyte flow. A flush tube leads into the cell through which buffer and flush solutions are introduced. A ground wire twists about both electrode ends to insure constant electrical grounding of the sample. The electrode leads are electrically connected to a pH meter of aay standard type.

  17. Laboratory measurements and astronomical search for cyanomethanimine

    NASA Astrophysics Data System (ADS)

    Melosso, M.; Melli, A.; Puzzarini, C.; Codella, C.; Spada, L.; Dore, L.; Degli Esposti, C.; Lefloch, B.; Bachiller, R.; Ceccarelli, C.; Cernicharo, J.; Barone, V.

    2018-02-01

    Context. C-cyanomethanimine (HNCHCN), existing in the two Z and E isomeric forms, is a key prebiotic molecule, but, so far, only the E isomer has been detected toward the massive star-forming region Sagittarius B2(N) using transitions in the radio wavelength domain. Aims: With the aim of detecting HNCHCN in Sun-like-star forming regions, the laboratory investigation of its rotational spectrum has been extended to the millimeter-/submillimeter-wave (mm-/submm-) spectral window in which several unbiased spectral surveys have been already carried out. Methods: High-resolution laboratory measurements of the rotational spectrum of C-cyanomethanimine were carried out in the 100-420 GHz range using a frequency-modulation absorption spectrometer. We then searched for the C-cyanomethanimine spectral features in the mm-wave range using the high-sensitivity and unbiased spectral surveys obtained with the IRAM 30-m antenna in the ASAI context, the earliest stages of star formation from starless to evolved Class I objects being sampled. Results: For both the Z and E isomers, the spectroscopic work has led to an improved and extended knowledge of the spectroscopic parameters, thus providing accurate predictions of the rotational signatures up to 700 GHz. So far, no C-cyanomethanimine emission has been detected toward the ASAI targets, and upper limits of the column density of 1011-1012 cm-2 could only be derived. Consequently, the C-cyanomethanimine abundances have to be less than a few 10-10 for starless and hot-corinos. A less stringent constraint, ≤10-9, is obtained for shocks sites. Conclusions: The combination of the upper limits of the abundances of C-cyanomethanimine together with accurate laboratory frequencies up to 700 GHz poses the basis for future higher sensitivity searches around Sun-like-star forming regions. For compact (typically less than 1″) and chemically enriched sources such as hot-corinos, the use of interferometers as NOEMA and ALMA in their extended

  18. Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements

    NASA Astrophysics Data System (ADS)

    May, A. A.; McMeeking, G. R.; Lee, T.; Taylor, J. W.; Craven, J. S.; Burling, I.; Sullivan, A. P.; Akagi, S.; Collett, J. L.; Flynn, M.; Coe, H.; Urbanski, S. P.; Seinfeld, J. H.; Yokelson, R. J.; Kreidenweis, S. M.

    2014-10-01

    Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California; coastal plain ecosystem in South Carolina) and from open burning of over 15 individual plant species in the laboratory. We report emission ratios and emission factors for refractory black carbon (rBC) and submicron nonrefractory aerosol and compare field and laboratory measurements to assess the representativeness of our laboratory-measured emissions. Laboratory measurements of organic aerosol (OA) emission factors for some fires were an order of magnitude higher than those derived from any of our aircraft observations; these are likely due to higher-fuel moisture contents, lower modified combustion efficiencies, and less dilution compared to field studies. Nonrefractory inorganic aerosol emissions depended more strongly on fuel type and fuel composition than on combustion conditions. Laboratory and field measurements for rBC were in good agreement when differences in modified combustion efficiency were considered; however, rBC emission factors measured both from aircraft and in the laboratory during the present study using the Single Particle Soot Photometer were generally higher than values previously reported in the literature, which have been based largely on filter measurements. Although natural variability may account for some of these differences, an increase in the BC emission factors incorporated within emission inventories may be required, pending additional field measurements for a wider variety of fires.

  19. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  20. Organic Selenium, Selenate and Selenite Accumulation by Lake Plankton and the Alga Chlamydomonas reinhardtii at Different pH and Sulfate Concentrations.

    PubMed

    Ponton, Dominic E; Fortin, Claude; Hare, Landis

    2018-04-19

    Selenium (Se) concentrations measured in lake planktonic food chains (microplankton < 64 µm, copepods and Chaoborus larvae) were strongly correlated with the concentrations of dissolved organic Se. These correlations were strengthened slightly by adding the concentrations of dissolved selenate to those of organic Se. To better understand the role of Se species and the influence of water chemistry on Se uptake, we exposed the green alga Chlamydomonas reinhardtii to selenite, selenate or selenomethionine at various H + ion and sulfate concentrations under controlled laboratory conditions. At low sulfate concentrations, inorganic Se species (selenate > selenite) were more readily accumulated by this alga than was selenomethionine. However, at higher sulfate concentrations the uptake of selenite was higher than that of selenate while the uptake of selenomethionine remained unchanged. While pH of the exposure water did not influence the uptake of selenate by this alga, the accumulation of selenomethionine and selenite increased with pH because of their relative pH-related speciation. The Se concentrations that we measured in C. reinhardtii exposed to selenomethionine were 30 times lower than those that we measured in field-collected microplankton exposed in the same laboratory conditions. This difference is explained by the taxa present in the microplankton samples. Using our laboratory measurements of Se uptake in microplankton and our natural Se concentrations in lakewater allowed us to model Se concentrations in a lake pelagic food chain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Measuring methylphenidate response in attention-deficit/hyperactvity disorder: how are laboratory classroom-based measures related to parent ratings?

    PubMed

    Sonuga-Barke, Edmund J S; Coghill, David; DeBacker, Marc; Swanson, James

    2009-12-01

    Methylphenidate (MPH) is an efficacious and normally well-tolerated treatment for attention-deficit/hyperactivity disorder (ADHD). Although treatment effects are usually assessed using parent-rating scales, these can be supplemented by more objective methods. Here we examine the associations between ratings and one such method, assessments made across the day in the laboratory classroom. Comparison of Methylphenidates in the Analog Classroom Setting (COMACS) was made in a large (n = 184) placebo-controlled trial comparing Equasym XL/Metadate CD, Concerta, and placebo (PLA) using a Laboratory School protocol. Therapeutic effects were measured using direct observation, scores on a simple math productivity task and parent ratings. Treatment effects were observed on all measures. Laboratory measures were correlated with each other, most strongly between Swanson, Kotkin, Agler, M-Flynn and Pelham Scale (SKAMP) inattention and Permanent Product Measure of Performance (PERMP). Parental ratings were correlated with classroom measures during the main morning period (1.5-4.5 hours after dosing) and to a lesser extent in the afternoon (6.0-7.5 hours after dosing), but not, by and large, immediately after dosing or in the evening. The morning correlations seemed stronger for female than for male participants. The results suggest that parental ratings and direct observations tap different aspects of MPH response and that both may be required for comprehensive assessment.

  2. International Council for Standardization in Haematology (ICSH) Recommendations for Laboratory Measurement of Direct Oral Anticoagulants.

    PubMed

    Gosselin, Robert C; Adcock, Dorothy M; Bates, Shannon M; Douxfils, Jonathan; Favaloro, Emmanuel J; Gouin-Thibault, Isabelle; Guillermo, Cecilia; Kawai, Yohko; Lindhoff-Last, Edelgard; Kitchen, Steve

    2018-03-01

    This guidance document was prepared on behalf of the International Council for Standardization in Haematology (ICSH) for providing haemostasis-related guidance documents for clinical laboratories. This inaugural coagulation ICSH document was developed by an ad hoc committee, comprised of international clinical and laboratory direct acting oral anticoagulant (DOAC) experts. The committee developed consensus recommendations for laboratory measurement of DOACs (dabigatran, rivaroxaban, apixaban and edoxaban), which would be germane for laboratories assessing DOAC anticoagulation. This guidance document addresses all phases of laboratory DOAC measurements, including pre-analytical (e.g. preferred time sample collection, preferred sample type, sample stability), analytical (gold standard method, screening and quantifying methods) and post analytical (e.g. reporting units, quality assurance). The committee addressed the use and limitations of screening tests such as prothrombin time, activated partial thromboplastin time as well as viscoelastic measurements of clotting blood and point of care methods. Additionally, the committee provided recommendations for the proper validation or verification of performance of laboratory assays prior to implementation for clinical use, and external quality assurance to provide continuous assessment of testing and reporting method. Schattauer GmbH Stuttgart.

  3. Sensitivity of greenback cutthroat trout to acidic pH and elevated aluminum

    USGS Publications Warehouse

    Woodward, D.F.; Farag, Aïda M.; Little, E.E.; Steadman, B. L.; Yancik, R.

    1991-01-01

    The greenback cutthroat trout Oncorhynchus clarki stomias is a threatened subspecies native to the upper South Platte and Arkansas rivers between Denver and Fort Collins, Colorado, an area also susceptible to acid deposition. In laboratory studies, we exposed this subspecies to nominal pHs of 4.5–6.5 and to nominal aluminum concentrations of 0, 50, 100, and 300 μg/L; the control was pH 6.5 treatment without Al. We used soft water that contained 1.3 mg Ca/L. Exposures of 7 d each were made for four early life stages: fertilized egg, eyed embryo, alevin, and swim-up larva. Effects were measured at the end of exposure and again after a recovery period lasting until 40 d posthatch. The alevin stage was the most sensitive: at pH 5.0 with no Al, survival was reduced by 68% and swimming duration by 76%; at pH 6.0 and 50 μg Al/L, swimming duration was reduced by 62%, but survival was not affected. Reductions in whole-body concentrations of Na, K, and Ca indicated organism stress. Sodium was reduced most—about 50% in alevins exposed to pH 5.0 without Al and to pH 6.0 with 50 μg Al/L. Growth and the ratio of RNA to DNA were not affected by any exposure. All responses that were affected during exposure returned to normal by 40 d posthatch. Overall, it appeared that pH 6.0 and 50 μg Al/L might be detrimental to greenback cutthroat trout populations.

  4. Sensitivity of greenback cutthroat trout to acidic pH and elevated aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, D.F.; Farag, A.M.; Little E.E.

    1991-01-01

    The greenback cutthroat trout Oncorhynchus clarki stomias is a threatened subspecies native to the upper South Platte and Arkansas rivers between Denver and Fort Collins, Colorado, an area also susceptible to acid deposition. In laboratory studies, the authors exposed this subspecies to nominal pHs of 4.5-6.5 and to nominal aluminum concentrations of 0, 50, 100, and 300 {mu}g/L; the control was pH 6.5 treatment without Al. The authors used soft water that contained 1.3 mg Ca/L. Exposures of 7 days each were made for four early life stages: fertilized egg, eyed embryo, alevin, and swim-up larva. Effects were measured atmore » the end of exposure and again after a recovery period lasting until 40 days posthatch. The alevin stage was the most sensitive: at pH 5.0 with no Al, survival was reduced by 68% and swimming duration by 76%, at pH 6.0 and 50 {mu}g Al/L, swimming duration was reduced by 62%, but survival was not affected. Reductions in whole-body concentrations of Na, K, and Ca indicated organism stress. Sodium was reduced most-about 50% in alevins exposed to pH 5.0 without Al and to pH 6.0 with 50 {mu}g Al/L. Growth and the ratio of RNA to DNA were not affected by any exposure. All responses that were affected during exposure returned to normal by 40 days posthatch. Overall, it appeared that pH 6.0 and 50 {mu}g Al/L might be detrimental to greenback cutthroat trout populations.« less

  5. A genetically encoded ratiometric sensor to measure extracellular pH in microdomains bounded by basolateral membranes of epithelial cells.

    PubMed

    Urra, Javier; Sandoval, Moisés; Cornejo, Isabel; Barros, L Felipe; Sepúlveda, Francisco V; Cid, L Pablo

    2008-10-01

    Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.

  6. 21 CFR 876.1400 - Stomach pH electrode.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Stomach pH electrode. 876.1400 Section 876.1400...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1400 Stomach pH electrode. (a) Identification. A stomach pH electrode is a device used to measure intragastric and intraesophageal pH (hydrogen...

  7. 21 CFR 876.1400 - Stomach pH electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stomach pH electrode. 876.1400 Section 876.1400...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1400 Stomach pH electrode. (a) Identification. A stomach pH electrode is a device used to measure intragastric and intraesophageal pH (hydrogen...

  8. 17-4 PH and 15-5 PH

    NASA Technical Reports Server (NTRS)

    Johnson, Howard T.

    1995-01-01

    17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

  9. Comparison of hematologic measurements between local and central laboratories: data from the BABY HUG trial.

    PubMed

    Kalpatthi, Ram; Thompson, Bruce; Lu, Ming; Wang, Winfred C; Patel, Niren; Kutlar, Abdullah; Howard, Thomas; Luchtman-Jones, Lori; Miller, Scott T

    2013-02-01

    To investigate the concordance of blood count indices measured locally and at a central laboratory. In a multi-center clinical trial of hydroxyurea therapy in infants with sickle cell anemia (BABY HUG), the concordance between blood count indices measured locally and at a central laboratory was investigated. Local laboratory measurements of neutrophil and monocyte counts were significantly higher (44% and 37%, respectively) compared to the central measurements (p<0.0001), and mean corpuscular volume (MCV) was higher centrally. Overnight shipping with processing delay causes spurious reductions in absolute neutrophil count (ANC) and absolute monocyte count (AMC) that may result in incorrect monitoring decisions in multicenter clinical trials. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Clinical and laboratory assessment of dehydration severity in children with acute gastroenteritis.

    PubMed

    Parkin, Patricia C; Macarthur, Colin; Khambalia, Amina; Goldman, Ran D; Friedman, Jeremy N

    2010-03-01

    To evaluate clinical and laboratory assessment of dehydration severity in children, 1 to 36 months, with acute gastroenteritis. Clinical and laboratory measures and weight change following rehydration were collected for enrolled children. Pediatric emergency department. Likelihood ratio (LR+) and 95% confidence interval (CI): for a clinical score of 0, the LR+ was 2.2 (95% CI = 0.9-5.3); for a clinical score of 1 to 4, the LR+ was 1.3 (95% CI = 0.90-1.74); for a clinical score of 5 to 8, the LR+ was 5.2 (95% CI = 2.2-12.8); for a venous pH <7.32, the LR+ was 7.2 (95% CI = 2.4-21.9); and for serum bicarbonate <18 mmol/L, the LR+ was 11.6 (95% CI = 3.5-38.0). Clinicians may find it useful to incorporate the Clinical Dehydration Scale and laboratory measures into clinical decision-making algorithms to assess dehydration severity in children with acute gastroenteritis.

  11. Chemical changes induced by pH manipulations of volcanic ash-influenced soils

    Treesearch

    Deborah Page-Dumroese; Dennis Ferguson; Paul McDaniel; Jodi Johnson-Maynard

    2007-01-01

    Data from volcanic ash-influenced soils indicates that soil pH may change by as much as 3 units during a year. The effects of these changes on soil chemical properties are not well understood. Our study examined soil chemical changes after artificially altering soil pH of ash-influenced soils in a laboratory. Soil from the surface (0-5 cm) and subsurface (10-15 cm)...

  12. An embedded measurement system for the electrical characterization of EGFET as a pH sensor

    NASA Astrophysics Data System (ADS)

    Diniz Batista, Pablo

    2014-02-01

    This work presents the development of an electronic system for the electrical characterization of pH sensors based on the extended gate field effect transistor (EGFET). We designed an electronic circuit with a microcontroller (PIC15F14K50) as the main component in order to provide two programmable output voltages as well as circuits to measure electric current and voltages. The instrument performance analysis was carried out using a glass electrode as a sensitive membrane for investigating the EGFET operation as a pH sensor. The results show that the system is an alternative to the commercial equipment for the electrical characterization of sensors based on field effect devices. In addition, some of the key features expected of this electronic module are: low cost, flexibility, portability and communication with a personal computer using a USB port.

  13. Measures for Ph.D. Evaluation: The Recruitment Process

    ERIC Educational Resources Information Center

    D'Agostino, Antonella; Fruzzetti, Stefania; Ghellini, Giulio; Neri, Laura

    2011-01-01

    In the last years the quality of Higher Education (HE) system and its evaluation have been key issues of the political and scientific debate on education policies all over Europe. In the wide landscape that involves the entire HE system we draw attention on the third level of its organization, i.e. the Ph.D. In particular, this paper discusses the…

  14. Laboratory Studies Of Astrophysically-interesting Phosphorus-bearing Molecules

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.; Halfen, D. T.; Sun, M.; Clouthier, D. J.

    2009-05-01

    Over the past year, there has been a renewed interest in the presence of phosphorus-containing molecules in the interstellar medium. Recent observations have increased the number of known interstellar phosphorus-bearing species from two (PN, CP) to six with the identification of HCP, CCP, and PH3 in the carbon-rich circumstellar shell of IRC+10216 and PO in the oxygen-rich envelope of VY Canis Majoris. More species of this type may be present in the ISM, but laboratory rest frequencies, necessary for such detections, are not generally known for many potential molecules. To fill in this gap, we have been conducting measurements of the pure rotational spectra of phosphorus-containing molecules of astrophysical interest, using both millimeter/submm direct absorption and Fourier transform microwave (FTMW) spectroscopy. We have developed a new phosphorus source for this purpose. These methods cover the frequency ranges 65-850 GHz and 4-40 GHz, respectively. Our recent study of the CCP radical (X2Πr) using both of these techniques has resulted in its identification in IRC+10216. Rotational spectra of other molecules such as PCN, HPS, and CH3PH2 have been recorded. We will report on these species and additional new laboratory developments

  15. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  16. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, WC; Zhuang, ZB; Gao, MR

    2015-01-08

    The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearlymore » increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.« less

  17. Correction of stream quality trends for the effects of laboratory measurement bias

    USGS Publications Warehouse

    Alexander, Richard B.; Smith, Richard A.; Schwarz, Gregory E.

    1993-01-01

    We present a statistical model relating measurements of water quality to associated errors in laboratory methods. Estimation of the model allows us to correct trends in water quality for long-term and short-term variations in laboratory measurement errors. An illustration of the bias correction method for a large national set of stream water quality and quality assurance data shows that reductions in the bias of estimates of water quality trend slopes are achieved at the expense of increases in the variance of these estimates. Slight improvements occur in the precision of estimates of trend in bias by using correlative information on bias and water quality to estimate random variations in measurement bias. The results of this investigation stress the need for reliable, long-term quality assurance data and efficient statistical methods to assess the effects of measurement errors on the detection of water quality trends.

  18. Development of an extended-range fiber optic pH sensor using evanescent wave absorption of sol-gel-entrapped pH indicators

    NASA Astrophysics Data System (ADS)

    Butler, Thomas M.; MacCraith, Brian D.; McDonagh, Colette M.

    1995-09-01

    The sol-gel process has been used to entrap pH indicators in porous glass coatings for sensor applications. This sensor is based on evanescent wave absorption using an unclad optical fiber dipcoated with the pH sensitive coating. The entrapped pH indicators show a broadening of the pH range with respect to the behavior in solution giving accurate measurement over three pH units when one indicator is used (bromophenol blue) and over six pH units (pH 3-9) when two indicators are used (bromophenol blue and bromocresol purple). The response of the pH sensor was monitored by measuring absorption at 590 nm referenced against a nonabsorbing region of the spectrum. This enabled the use of LED sources together with low cost photodiodes. The sensor displayed short response time and good repeatability. The thickness and stability of the pH sensitive coatings can be influenced by modifying the composition of the starting sol mixture. The evanescent absorption, and hence the sensitivity of the sensor, can be increased by selectively launching higher order modes in the fiber. These issues together with a full sensor characterization will be reported.

  19. Prevalence of oral lesions and measurement of salivary pH in the different trimesters of pregnancy

    PubMed Central

    Jain, Kanu; Kaur, Harshaminder

    2015-01-01

    INTRODUCTION Oral changes observed during pregnancy have been studied for many years, but their magnitude and frequency have not been stressed upon. This study was undertaken to assess the prevalence of oral lesions during different trimesters of pregnancy and their correlation with salivary pH change. METHODS The gingival, simplified oral hygiene, community periodontal and decayed-missing-filled teeth indices were used to assess a total of 120 pregnant women (40 in each trimester group) and 40 nonpregnant women (control group). Salivary pH was measured using a digital pH meter. Presence of any oral lesions was determined via oral examination. RESULTS Scores for all indices increased while salivary pH decreased from the control group to the first trimester group, through to the third. Oral lesions were seen in 44.2% of pregnant women. Lesions were seen in 27.5%, 52.5% and 52.5% of women in the first, second and third trimesters, respectively. The percentage of pregnant women with one oral lesion was highest in the second trimester (47.5%), whereas the third trimester had the highest prevalence (17.5%) of two concurrent oral lesions. The incidence of fissured tongue was highest in the first trimester group, and that of gingival enlargement was highest in the third trimester group. In the second trimester group, there was an almost equal incidence of fissured tongue and gingival/mucosal enlargement. CONCLUSION Most changes in oral tissues during pregnancy can be avoided with good oral hygiene. Salivary pH could be used to assess the prevalence of oral lesions in the different trimesters of pregnancy. PMID:25640100

  20. The variability of standard artificial soils: cadmium and phenanthrene sorption measured by a batch equilibrium method.

    PubMed

    Bielská, Lucie; Hovorková, Ivana; Kuta, Jan; Machát, Jiří; Hofman, Jakub

    2017-01-01

    Artificial soil (AS) is used in soil ecotoxicology as a test medium or reference matrix. AS is prepared according to standard OECD/ISO protocols and components of local sources are usually used by laboratories. This may result in significant inter-laboratory variations in AS properties and, consequently, in the fate and bioavailability of tested chemicals. In order to reveal the extent and sources of variations, the batch equilibrium method was applied to measure the sorption of 2 model compounds (phenanthrene and cadmium) to 21 artificial soils from different laboratories. The distribution coefficients (K d ) of phenanthrene and cadmium varied over one order of magnitude: from 5.3 to 61.5L/kg for phenanthrene and from 17.9 to 190L/kg for cadmium. Variations in phenanthrene sorption could not be reliably explained by measured soil properties; not even by the total organic carbon (TOC) content which was expected. Cadmium logK d values significantly correlated with cation exchange capacity (CEC), pH H2O and pH KCl , with Pearson correlation coefficients of 0.62, 0.80, and 0.79, respectively. CEC and pH H2O together were able to explain 72% of cadmium logK d variability in the following model: logK d =0.29pH H2O +0.0032 CEC -0.53. Similarly, 66% of cadmium logK d variability could be explained by CEC and pH KCl in the model: logKd=0.27pH KCl +0.0028 CEC -0.23. Variable cadmium sorption in differing ASs could be partially treated with these models. However, considering the unpredictable variability of phenanthrene sorption, a more reliable solution for reducing the variability of ASs from different laboratories would be better harmonization of AS preparation and composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Oleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells

    NASA Astrophysics Data System (ADS)

    Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji

    2016-01-01

    The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of -37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays.

  2. Oleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells

    PubMed Central

    Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji

    2016-01-01

    Abstract The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of −37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays. PMID:27877886

  3. State-of-the-Art pH Electrode Quality Control for Measurements of Acidic, Low Ionic Strength Waters.

    ERIC Educational Resources Information Center

    Stapanian, Martin A.; Metcalf, Richard C.

    1990-01-01

    Described is the derivation of the relationship between the pH measurement error and the resulting percentage error in hydrogen ion concentration including the use of variable activity coefficients. The relative influence of the ionic strength of the solution on the percentage error is shown. (CW)

  4. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Schildknecht, T.

    2010-01-01

    To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC attempts to emulate illumination conditions seen in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 75 Watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The laboratory uses known shapes, materials suspected to be consistent with the orbital debris population, and three phase angles to best match the lighting conditions of the telescope based data. The fourteen objects studied in the laboratory are fragments or materials acquired through ground-tests of scaled-model satellites/rocket bodies as well as material samples in more/less "flight-ready" condition. All fragments were measured at 10 increments in a full 360 rotation at 6 , 36 , and 60 phase angles. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1 m telescope of the Astronomical Institute of the University of Bern (AUIB), the 0.9 m operated by the Small- and Medium-Aperture Research Telescope System (SMARTS) Consortium and the Curtis-Schmidt 0.6 m Michigan Orbital Debris Space Debris Telescope both located at Cerro Tololo Inter-American Observatory (CTIO). An empirical based optical characterization model will be presented to provide preliminary correlations between laboratory based and telescope-based data in the context of classification of GEO debris objects.

  5. Mass Property Measurements of the Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2012-01-01

    The NASA/JPL Mars Science Laboratory (MSL) spacecraft mass properties were measured on a spin balance table prior to launch. This paper discusses the requirements and issues encountered with the setup, qualification, and testing using the spin balance table, and the idiosyncrasies encountered with the test system. The final mass measurements were made in the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center on the fully assembled and fueled spacecraft. This set of environmental tests required that the control system for the spin balance machine be at a remote location, which posed additional challenges to the operation of the machine

  6. A graphene oxide pH sensor for wound monitoring.

    PubMed

    Melai, B; Salvo, P; Calisi, N; Moni, L; Bonini, A; Paoletti, C; Lomonaco, T; Mollica, V; Fuoco, R; Di Francesco, F

    2016-08-01

    This article describes the fabrication and characterization of a pH sensor for monitoring the wound status. The pH sensitive layer consists of a graphene oxide (GO) layer obtained by drop-casting 5 μΐ of GO dispersion onto the working electrode of a screen-printed substrate. Sensitivity was 31.8 mV/pH with an accuracy of 0.3 unit of pH. Open-circuit potentiometry was carried out to measure pH in an exudate sample. The GO pH sensor proved to be reliable as the comparison with results obtained from a standard glass electrode pH-meter showed negligible differences (<; 0.09 pH units in the worst case) for measurements performed over a period of 4 days.

  7. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    PubMed

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  8. Monitoring the Productivity of Coastal Systems Using PH ...

    EPA Pesticide Factsheets

    The impact of nutrient inputs to the eutrophication of coastal ecosystems has been one of the great themes of coastal ecology. There have been countless studies devoted to quantifying how human sources of nutrients, in particular nitrogen (N), effect coastal water bodies. These studies, which often measure in situ concentrations of nutrients, chlorophyll, and dissolved oxygen, are often spatially and/or temporally intensive and expensive. We provide evidence from experimental mesocosms, coupled with data from the water column of a well-mixed estuary, that pH can be a quick, inexpensive, and integrative measure of net ecosystem metabolism. In some cases, this approach is a more sensitive tracer of production than direct measurements of chlorophyll and carbon-14. Taken together, our data suggest that pH is a sensitive, but often overlooked, tool for monitoring estuarine production. This presentation will explore the potential utility of pH as an indicator of ecosystem productivity. Our data suggest that pH is a sensitive and potentially integrator of net ecosystem production. It should not be overlooked, that measuring pH is quick, easy, and inexpensive, further increasing its value as an analytical tool.

  9. ORP and pH measurements to detect redox and acid-base anomalies from hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Santana-Casiano, J. M.; González-Dávila, M.; Fraile-Nuez, E.

    2017-12-01

    The Tagoro submarine volcano is located 1.8 km south of the Island of El Hierro at 350 m depth and rises up to 88 m below sea level. It was erupting melting material for five months, from October 2011 to March 2012, changing drastically the physical-chemical properties of the water column in the area. After this eruption, the system evolved to a hydrothermal system. The character of both reduced and acid of the hydrothermal emissions in the Tagoro submarine volcano allowed us to detect anomalies related with changes in the chemical potential and the proton concentration using ORP and pH sensors, respectively. Tow-yos using a CTD-rosette with these two sensors provided the locations of the emissions plotting δ(ORP)/δt and ΔpH versus the latitude or longitude. The ORP sensor responds very quickly to the presence of reduced chemicals in the water column. Changes in potential are proportional to the amount of reduced chemical species present in the water. The magnitude of these changes are examined by the time derivative of ORP, δ(ORP)/δt. To detect changes in the pH, the mean pH for each depth at a reference station in an area not affected by the vent emission is subtracted from each point measured near the volcanic edifice, defining in this way ΔpH. Detailed surveys of the volcanic edifice were carried out between 2014 and 2016 using several CTD-pH-ORP tow-yo studies, localizing the ORP and pH changes, which were used to obtain surface maps of anomalies. Moreover, meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1 which increases the acidity above the volcano by 20%. Sites like the Tagoro submarine volcano, in its degasification stage, provide an excellent opportunity to study the carbonate system in a high CO2 world, the volcanic contribution to the global

  10. Comparison of on-site field measured inorganic arsenic in rice with laboratory measurements using a field deployable method: Method validation.

    PubMed

    Mlangeni, Angstone Thembachako; Vecchi, Valeria; Norton, Gareth J; Raab, Andrea; Krupp, Eva M; Feldmann, Joerg

    2018-10-15

    A commercial arsenic field kit designed to measure inorganic arsenic (iAs) in water was modified into a field deployable method (FDM) to measure iAs in rice. While the method has been validated to give precise and accurate results in the laboratory, its on-site field performance has not been evaluated. This study was designed to test the method on-site in Malawi in order to evaluate its accuracy and precision in determination of iAs on-site by comparing with a validated reference method and giving original data on inorganic arsenic in Malawian rice and rice-based products. The method was validated by using the established laboratory-based HPLC-ICPMS. Statistical tests indicated there were no significant differences between on-site and laboratory iAs measurements determined using the FDM (p = 0.263, ά = 0.05) and between on-site measurements and measurements determined using HPLC-ICP-MS (p = 0.299, ά = 0.05). This method allows quick (within 1 h) and efficient screening of rice containing iAs concentrations on-site. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Effect of urine pH on the effectiveness of shock wave lithotripsy: A pilot study.

    PubMed

    Majzoub, Ahmad; Al-Ani, Ammar; Gul, Tawiz; Kamkoum, Hatem; Al-Jalham, Khalid

    2016-01-01

    Shock wave lithotripsy (SWL) is a well-established modality in the treatment of urolithiasis. Studying the effect of urine pH on SWL success is appealing as pH can be manipulated before SWL to insure a better outcome. This is a prospective study performed at a tertiary medical center. Patients presenting to the SWL unit with a single renal stone <2 cm in size were included in this study. In addition to standard laboratory and radiologic investigations, urine pH measurement was performed on all patients before their procedure. The number of sessions performed, and the stone-free rate (SFR) were assessed. Patients were divided into two groups according to stone clearance. Group 1 was stone-free, whereas Group 2 had residual stones after three sessions of SWL. Data was also classified according to different pH ranges. Influential factors were compared among the study groups and pH ranges. A total of 175 patients were included in this study. The SFR was 54.3%. The mean number of sessions performed was 2.2 ± 0.8. Group 1 included 95 patients, whereas Group 2 had eighty patients. Among all studied factors, stone size (P = 0.03) and skin to stone distance (P = 0.04) significantly affected SFR with SWL. Urine pH was not found to have a statistically significant influence on SWL outcome (P = 0.51). Urine pH was not found in this study population to influence the effectiveness of SWL. Further experimental studies are required to help investigate this notion.

  12. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  13. A laboratory procedure for measuring and georeferencing soil colour

    NASA Astrophysics Data System (ADS)

    Marques-Mateu, A.; Balaguer-Puig, M.; Moreno-Ramon, H.; Ibanez-Asensio, S.

    2015-04-01

    Remote sensing and geospatial applications very often require ground truth data to assess outcomes from spatial analyses or environmental models. Those data sets, however, may be difficult to collect in proper format or may even be unavailable. In the particular case of soil colour the collection of reliable ground data can be cumbersome due to measuring methods, colour communication issues, and other practical factors which lead to a lack of standard procedure for soil colour measurement and georeferencing. In this paper we present a laboratory procedure that provides colour coordinates of georeferenced soil samples which become useful in later processing stages of soil mapping and classification from digital images. The procedure requires a laboratory setup consisting of a light booth and a trichromatic colorimeter, together with a computer program that performs colour measurement, storage, and colour space transformation tasks. Measurement tasks are automated by means of specific data logging routines which allow storing recorded colour data in a spatial format. A key feature of the system is the ability of transforming between physically-based colour spaces and the Munsell system which is still the standard in soil science. The working scheme pursues the automation of routine tasks whenever possible and the avoidance of input mistakes by means of a convenient layout of the user interface. The program can readily manage colour and coordinate data sets which eventually allow creating spatial data sets. All the tasks regarding data joining between colorimeter measurements and samples locations are executed by the software in the background, allowing users to concentrate on samples processing. As a result, we obtained a robust and fully functional computer-based procedure which has proven a very useful tool for sample classification or cataloging purposes as well as for integrating soil colour data with other remote sensed and spatial data sets.

  14. Seasonal and high-frequency measurements of pH, oxygen and aragonite saturation state in a coral reef: Cabo Pulmo, Mexico.

    NASA Astrophysics Data System (ADS)

    Norzagaray, O.; Martin Hernandez-Ayon, J. M.; Calderon Aguilera, L. E.; Reyes-Bonilla, H.; Castro, R.; Trasviña, A.

    2016-02-01

    Cabo Pulmo reef is located in the coastal area within the oxygen minimum zone (OMZ), which has been reported as shallow as 70m, and characterized by CO2-rich waters (>2200 μmolkg-1) and low pH (<7.7). To date it is unknown whether the OMZ waters influence these coral reef at any point of the year, or during certain oceanographic episodes, therefore, it is important to know the temporal variability of these parameters. This study presents high frequency data series from November 2013 to June 2014 from a SeapHOX sensor deployed at 15 m depth and 1.5 km from shore. The pH series was calibrated with discrete samples (total carbon and alkalinity measurements). A high-resolution aragonite saturation state (< Ωar) series was calculated from pH series and total alkalinity. Discrete and continuous measurements showed the seasonal influence of two water masses, the Gulf of California water during winter (GCW), and the surface Tropical water (TSW) during spring-summer. From December to April the conditions with the lowest pH were found (<Ωar), related to GCW, and two months with TSW; the highest pH values (> Ωar) were from May to June. During winter-spring (mostly-TSW) were present the most optimal conditions for coral calcification (>Ωar). Dissolved oxygen (OD) was always up to 3.4 mlL-1. However, two events (5-10 days length) arose in winter (February/TSW) and summer (June/GCW) with low pH (<7.9), low Ωar (<2.6), low temperature (<22oC), and low DO (<4 mlL-1), threshold values reported to cause negative effects on coral calcification and with exposure times on the order of days.

  15. Stretchable wireless system for sweat pH monitoring.

    PubMed

    Dang, Wenting; Manjakkal, Libu; Navaraj, William Taube; Lorenzelli, Leandro; Vinciguerra, Vincenzo; Dahiya, Ravinder

    2018-06-01

    Sensor-laden wearable systems that are capable of providing continuous measurement of key physiological parameters coupled with data storage, drug delivery and feedback therapy have attracted huge interest. Here we report a stretchable wireless system for sweat pH monitoring, which is able to withstand up to 53% uniaxial strain and more than 500 cycles to 30% strain. The stretchability of the pH sensor patch is provided by a pair of serpentine-shaped stretchable interconnects. The pH sensing electrode is made of graphite-polyurethane composite, which is suitable for biosensor application. The sensing patch validated through in-depth electrochemical studies, exhibits a pH sensitivity of 11.13 ± 5.8 mV/pH with a maximum response time of 8 s. Interference study of ions and analyte (Na + , K + and glucose) in test solutions shows negligible influence on the pH sensor performance. The pH data can be wirelessly and continuously transmitted to smartphone through a stretchable radio-frequency-identification antenna, of which the radiating performance is stable under 20% strain, as proved by vector network analyzer measurement. To evaluate the full system, the pH value of a human sweat equivalent solution has been measured and wirelessly transmitted to a custom-developed smart phone App. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Correlations of Clinical and Laboratory Measures of Balance in Older Men and Women: The MOBILIZE Boston Study

    PubMed Central

    Nguyen, Uyen-Sa D.T.; Kiel, Douglas P.; Li, Wenjun; Galica, Andrew M.; Kang, Hyun Gu; Casey, Virginia A.; Hannan, Marian T.

    2012-01-01

    Objective Impaired balance is associated with falls in older adults. However, there is no accepted gold standard on how balance should be measured. Few studies have examined measures of postural sway and clinical balance concurrently in large samples of community-dwelling older adults. We examined the associations among four types of measures of laboratory- and clinic-based balance in a large population-based cohort of older adults. Methods We evaluated balance measures in the MOBILIZE Boston Study (276 men, 489 women, 64–97 years). Measures included: (1) laboratory-based anteroposterior (AP) path length and average sway speed, mediolateral (ML) average sway and root-mean-square, and area of ellipse postural sway; (2) Short Physical Performance Battery (SPPB); (3) Berg Balance Scale; and (4) one-leg stand. Spearman Rank Correlation Coefficients (r) were assessed among the balance measures. Results Area of ellipse sway was highly correlated with the ML sway measures (r >0.9, p < 0.0001), and sway speed was highly correlated with AP sway (r=0.97, p < 0.0001). The Berg Balance Scale was highly correlated with SPPB (r=0.7, p<0.001), and one-leg stand (r=0.8, p<0.001). Correlations between the laboratory- and clinic-based balance measures were low but statistically significant (0.2 < r < 0.3, p<0.0001). Conclusion Clinic-based balance measures, and laboratory-based measures comparing area of ellipse with ML sways or sway speed with AP sway, are highly correlated. Clinic- with laboratory-based measures are less correlated. As both laboratory- and clinic-based measures inform balance in older adults but are not highly correlated with each other, future work should investigate the differences. PMID:22745045

  17. Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity.

    PubMed

    Rindelaub, Joel D; Craig, Rebecca L; Nandy, Lucy; Bondy, Amy L; Dutcher, Cari S; Shepson, Paul B; Ault, Andrew P

    2016-02-18

    Atmospheric aerosol acidity is an important characteristic of aqueous particles, which has been linked to the formation of secondary organic aerosol by catalyzing reactions of oxidized organic compounds that have partitioned to the particle phase. However, aerosol acidity is difficult to measure and traditionally estimated using indirect methods or assumptions based on composition. Ongoing disagreements between experiments and thermodynamic models of particle acidity necessitate improved fundamental understanding of pH and ion behavior in high ionic strength atmospheric particles. Herein, Raman microspectroscopy was used to determine the pH of individual particles (H2SO4+MgSO4) based on sulfate and bisulfate concentrations determined from νs(SO4(2-)) and νs(HSO4(-)), the acid dissociation constant, and activity coefficients from extended Debye-Hückel calculations. Shifts in pH and peak positions of νs(SO4(2-)) and νs(HSO4(-)) were observed as a function of relative humidity. These results indicate the potential for direct spectroscopic determination of pH in individual particles and the need to improve fundamental understanding of ion behavior in atmospheric particles.

  18. ChemDuino: Adapting Arduino for Low-Cost Chemical Measurements in Lecture and Laboratory

    ERIC Educational Resources Information Center

    Kubínova´, S?te?pa´nka; S?le´gr, Jan

    2015-01-01

    In everyday praxis, we often need demonstration measuring devices (thermometers, pH meters, etc.), with large enough displays to be easily readable from every point in the classroom. Here, we present some of the capabilities of the Arduino platform for the school environment. This microprocessor board can be used for inexpensive construction of…

  19. [Intraesophageal pH in children with suspected reflux].

    PubMed

    Calva-Rodríguez, R; García-Aranda, J A; Bendimez-Cano, A; Estrada-Saavedra, R

    1989-05-01

    We study 22 children with clinical symptoms of gastroesophageal reflux. The main manifestations were: frequent vomiting, failure to thrive and repetitive pneumonia. In all of them we perform barium esophagogram (SEGD) with fluoroscopy, esophageal manometry (EM) and a four hours intraesophageal pH measurement. Thirteen of the twenty two children present a pathologic reflux (ERGE); in 16 we found SEGD that show reflux; three of them had an abnormal EM, the other 13 were normal. Seven patients showed alteration of the intraesophageal pH measurement. In conclusion the intraesophageal pH measurement in short period of time (4 hours) is a good method in the diagnosis of patients with ERGE.

  20. Key Performance Indicators to Measure Improvement After Implementation of Total Laboratory Automation Abbott Accelerator a3600.

    PubMed

    Miler, Marijana; Nikolac Gabaj, Nora; Dukic, Lora; Simundic, Ana-Maria

    2017-12-27

    The aim of the study was to estimate improvement of work efficiency in the laboratory after implementation of total laboratory automation (TLA) by Abbott Accelerator a3600 in the laboratory with measuring different key performance indicators (KPIs) before and after TLA implementation. The objective was also to recommend steps for defining KPIs in other laboratories. For evaluation of improvement 10 organizational and/or technical KPIs were defined for all phases of laboratory work and measured before (November 2013) and after (from 2015 to 2017) TLA implementation. Out of 10 defined KPIs, 9 were successfully measured and significantly improved. Waiting time for registration of samples in the LIS was significantly reduced from 16 (9-28) to 9 (6-16) minutes after TLA (P < 0.001). After TLA all tests were performed at core biochemistry analyzers which significantly reduced walking distance for sample management (for more than 800 m per worker) and number of tube touches (for almost 50%). Analyzers downtime and engagement time for analyzers maintenance was reduced for 50 h and 28 h per month, respectively. TLA eliminated manual dilution of samples with extreme results with sigma values increment from 3.4 to >6 after TLA. Although median turnaround time TAT for potassium and troponin was higher (for approximately 20 min), number of outliers with TAT >60 min expressed as sigma values were satisfying (>3). Implementation of the TLA improved the most of the processes in our laboratory with 9 out of 10 properly defined and measured KPIs. With proper planning and defining of KPIs, every laboratory could measure changes in daily workflow.

  1. Spectral measurements of ocean-dumped wastes tested in the marine upwelled spectral signature laboratory

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Usry, J. W.; Whitlock, C. H.; Gurganus, E. A.

    1979-01-01

    Transmission and inherent upwelled radiance measurements were made of various mixtures of three ocean-dumped industrial plant wastes in artificial seawater. Laboratory analyses were made of the physical and chemical properties of the various mixtures. These results and the laboratory measurements of beam attenuation and inherent upwelled radiance indicate a variety of chemical and spectral responses when industrial wastes are added to artificial seawater. In particular, increased levels of turbidity did not always cause increased levels of inherent reflectance.

  2. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  3. Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Allario, F.; Katzberg, S. J.; Larsen, J. C.

    1980-01-01

    Several experiments involving spectral scanning interferometers and gas filter correlation radiometers (ref. 2) using limb scanning solar occultation techniques under development for measurements of stratospheric trace gases from Spacelab and satellite platforms are described. An experiment to measure stratospheric trace constituents by Laser Heterodyne Spectroscopy, a summary of sensitivity analyses, and supporting laboratory measurements are presented for O3, ClO, and H2O2 in which the instrument transfer function is modeled using a detailed optical receiver design.

  4. Association between serum bicarbonate and pH with depression, cognition and sleep quality in hemodialysis patients.

    PubMed

    Afsar, Baris; Elsurer, Rengin

    2015-07-01

    Metabolic acidosis is a common feature in chronic renal failure patients, worsening progressively as renal function declines. There are conflicting data in hemodialysis (HD) patients with regard to acidosis, alkalosis and mortality. In HD patients, cognitive impairment, depression, sleep disorders and impaired quality of life are very common. Besides, these conditions are related with increased morbidity and mortality. However, no previous study investigated the relationship between pH, venous bicarbonate and anion gap with depression, sleep problems and cognitive function in HD patients. In this study we investigated these relationships. In total, 65 HD patients were included. The demographic parameters and laboratory parameters including bicarbonate, pH and anion gap was measured for all patients. Depressive symptoms, sleep quality and cognitive function, were measured by Beck depression inventory, The Pittsburgh Sleep Quality Index and by Mini Mental State Examination, respectively. We found that, sleep quality but not cognitive function or depression was independently related with venous pH and bicarbonate. Anion gap has no independent relationship with sleep quality, cognitive function and depression. In conclusion, metabolic acidosis and bicarbonate levels were independently related with sleep quality in HD patients. However, there was no association between metabolic acidosis and bicarbonate levels with cognitive function and depression.

  5. Asad Umar, DVM, PhD | Division of Cancer Prevention

    Cancer.gov

    Dr. Asad Umar received his PhD in Biochemistry and Immunology at the Johns Hopkins University in Baltimore, MD, in 1993. He conducted his postdoctoral training in the laboratories of Patricia Gearhart in Baltimore, MD and Thomas Kunkel at the National Institutes of Environmental Health Sciences in Research Triangle Park, NC. Dr. |

  6. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  7. Development of a fluorescence endoscopic system for pH mapping of gastric tissue

    NASA Astrophysics Data System (ADS)

    Rochon, Philippe; Mordon, Serge; Buys, Bruno; Dhelin, Guy; Lesage, Jean C.; Chopin, Claude

    2003-10-01

    Measurement of gastro intestinal intramucosal pH (pHim) has been recognized as an important factor in the detection of hypoxia induced dysfonctions. However, current pH measurements techniques are limited in terms of time and spatial resolutions. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). BCECF which pKa is in the physiological pH range is suitable for pH tissue measurements in vivo. This study aimed to develop and evaluate an endoscopic imaging system for real time pH measurements in the stomach in order to provide to ICU a new tool for gastro intestinal intramucosal pH (pHim) measurements. This fluorescence imaging technique should allow the temporal exploration of sequential events, particularly in ICU where the pHim provides a predictive information of the patient' status. The experimental evaluations of this new and innovative endoscopic fluorescence system confirms the accuracy of pH measurement using BCECF.

  8. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata.

    PubMed

    Britton, Damon; Cornwall, Christopher E; Revill, Andrew T; Hurd, Catriona L; Johnson, Craig R

    2016-05-27

    Ocean acidification (OA) is the reduction in seawater pH due to the absorption of human-released CO2 by the world's oceans. The average surface oceanic pH is predicted to decline by 0.4 units by 2100. However, kelp metabolically modifies seawater pH via photosynthesis and respiration in some temperate coastal systems, resulting in daily pH fluctuations of up to ±0.45 units. It is unknown how these fluctuations in pH influence the growth and physiology of the kelp, or how this might change with OA. In laboratory experiments that mimicked the most extreme pH fluctuations measured within beds of the canopy-forming kelp Ecklonia radiata in Tasmania, the growth and photosynthetic rates of juvenile E. radiata were greater under fluctuating pH (8.4 in the day, 7.8 at night) than in static pH treatments (8.4, 8.1, 7.8). However, pH fluctuations had no effect on growth rates and a negative effect on photosynthesis when the mean pH of each treatment was reduced by 0.3 units. Currently, pH fluctuations have a positive effect on E. radiata but this effect could be reversed in the future under OA, which is likely to impact the future ecological dynamics and productivity of habitats dominated by E. radiata.

  9. Methodological implications in pH standardization of exhaled breath condensate.

    PubMed

    Hoffmeyer, F; Berresheim, H; Beine, A; Sucker, K; Brüning, T; Bünger, J

    2015-05-14

    The variable amount of dissolved carbon dioxide is one of the main confounding factors of exhaled breath condensate (EBC) pH measurements. There have been many attempts at identifying the optimal approach to displace CO2 as a way to gain reproducible and valid pH values in EBC samples. The aim of the present study was to assess the correlation of pH and pCO2 in untreated, neat EBC samples and, after deaeration, to reevaluate the standardization of CO2 as a means to obtain valid pH values. A further aim was to evaluate the impact of deaeration on the acid-base balance in EBC samples. EBC was collected from seven female and 31 male subjects. The pH and pCO2 values immediately determined in untreated, neat EBC samples were strongly correlated (rp = -0.723, p <  0.0001). This correlation was not observed after deaeration with argon (rs = 0.264, p = 0.109). Based on a regression function for the pH/pCO2 relationship, the calculated pH at a pCO2 of 5.33 kPa was 6.07 (IQR 5.99, 6.20). No significant difference was observed between the pH measured in neat EBC samples and those calculated after deaeration with regression function and measured neat pCO2. Our data suggest that pCO2 is the most important confounder of pH measurement in EBC samples and, when adjusting for pCO2, the acid-base balance of EBC samples is not significantly influenced by the process of deaeration. Furthermore, measurement with a blood-gas analyzer and standardization of pH for pCO2 allows sensitive assaying of EBC samples. Therefore, this method provides a basis for detection of even small changes in airway pH due to inhalative exposure or respiratory disease.

  10. The procedures manual of the Environmental Measurements Laboratory. Volume 1, 28. edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chieco, N.A.

    1997-02-01

    This manual covers procedures and technology currently in use at the Environmental Measurements Laboratory. An attempt is made to be sure that all work carried out will be of the highest quality. Attention is focused on the following areas: quality assurance; sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications.

  11. Quantified pH imaging with hyperpolarized (13) C-bicarbonate.

    PubMed

    Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I

    2015-06-01

    Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.

  12. Nanoparticle-based measurements of pH and O2 dynamics in the rhizosphere of Zostera marina L.: effects of temperature elevation and light-dark transitions.

    PubMed

    Elgetti Brodersen, Kasper; Koren, Klaus; Lichtenberg, Mads; Kühl, Michael

    2016-07-01

    Seagrasses can modulate the geochemical conditions in their immediate rhizosphere through the release of chemical compounds from their below-ground tissue. This is a vital chemical defence mechanism, whereby the plants detoxify the surrounding sediment. Using novel nanoparticle-based optical O2 and pH sensors incorporated in reduced and transparent artificial sediment, we investigated the spatio-temporal dynamics of pH and O2 within the entire rhizosphere of Zostera marina L. during experimental manipulations of light and temperature. We combined such measurements with O2 microsensor measurements of the photosynthetic productivity and respiration of seagrass leaves. We found pronounced pH and O2 microheterogeneity within the immediate rhizosphere of Z. marina, with higher below-ground tissue oxidation capability and rhizoplane pH levels during both light exposure of the leaf canopy and elevated temperature, where the temperature-mediated stimuli of biogeochemical processes seemed to predominate. Low rhizosphere pH microenvironments appeared to correlate with plant-derived oxic microzones stimulating local sulphide oxidation and thus driving local proton generation, although the rhizoplane pH levels generally where much higher than the bulk sediment pH. Our data show that Z. marina can actively alter its rhizosphere pH microenvironment alleviating the local H2 S toxicity and enhancing nutrient availability in the adjacent sediment via geochemical speciation shift. © 2016 John Wiley & Sons Ltd.

  13. Non-invasive technique to measure biogeochemical parameters (pH and O2) in a microenvironment: Design and applications

    NASA Astrophysics Data System (ADS)

    Li, Biting; Seliman, Ayman; Pales, Ashley; Liang, Weizhen; Sams, Allison; Darnault, Christophe; Devol, Timothy

    2017-04-01

    The primary objectives of this research are to do the pH and O2 sensor foils calibration and then to test them in applications. Potentially, this project can be utilized to monitor the fate and transport of radionuclides in porous media. The information for physical and chemical parameters (e.g. pH and O2) is crucial to know when determining contaminants' behavior and transport in the environment. As a non-invasive method, optical imaging technique using a DSLR camera could capture data on the foil when it fluoresces, and gives a high temporal and spatial resolution during the experimental period. The calibration procedures were done in cuvettes in a row. The preliminary experiments could measure pH value in the range from 4.5 to 7.5, and O2 concentration from 0 mg/L to 20.74 mg/L. Applications of sensor foils have involved nano zero valent and acid rain experiments in order to obtain a gradient of parameter changes.

  14. [Characteristics of precipitation pH and conductivity at Mt. Huang].

    PubMed

    Shi, Chun-e; Deng, Xue-liang; Wu, Bi-wen; Hong, Jie; Zhang, Su; Yang, Yuan-jian

    2013-05-01

    To understand the general characteristics of pH distribution and pollution in precipitation at Mt. Huang, statistical analyses were conducted for the routine measurements of pH and conductivity (K) at Mt. Huang during 2006-2011. The results showed that: (1) Over the period of study, the annual volume weighted mean (VWM) precipitation pH varied from 4.81 to 5.57, with precipitation acidity strengthening before 2009 and weakening thereafter. The precipitation acidity showed evident seasonal variations, with the VWM pH lowest in winter (4.78), and highest in summer (5.33). The occurrence frequency of acid rain was 46% , accounting for 45% of total rainfalls and with the most frequent pH falling into weak acid to neutral rain. (2) The annual VWM K varied from 16.91 to 27.84 microS x cm(-1), with no evident trend. As for ions pollution, the precipitation was relatively clean at Mt. Huang, with the most frequent K range being below 15 microS x cm(-1), followed by 15-25 microS x cm(-1). From February 2010 to December 2011, precipitation samples were collected on daily basis for ions analysis, as well as pH and K measurement in lab. Detailed comparisons were conducted between the two sets of pH and K, one set from field measurement and the other from lab measurement. The results indicated: (1) The lab measured pH (K) was highly correlated with the field pH (K); however, the lab pH tended to move towards neutral comparing with the corresponding field pH, and the shift range was closely correlated with the field pH and rainfall. The shift range of K from field to lab was highly correlated with the total ion concentration of precipitation. The field K showed evident negative correlation with the field pH with a correlation coefficient of -0.51. (2) When sampling with nylon-polyethylene bags, the statistics showed smaller bias between two sets of pH, with higher correlation coefficient between two sets of K. Furthermore, the lab K also showed evident negative correlation with

  15. Synergic effect of salivary pH baselines and low pH intakes on the force relaxation of orthodontic latex elastics

    PubMed Central

    Ajami, Shabnam; Farjood, Amin; Zare, Mahbubeh

    2017-01-01

    Background: Latex elastics are still in common use due to their low cost and high flexibility to improve sagittal discrepancies or interdigitation of teeth. Mechanical properties of elastics are influenced by several environmental factors such as pH changes. This study evaluated similar latex elastics to define the influence of synergic effect of intermittent low pH and various baselines pH of saliva. Materials and Methods: Four groups of latex elastics (3-M Unitek, 3/16 inch) were tested (n = 15 in each group). Two groups of elastics were immersed in two tanks of artificial saliva with different pH levels of 7 and 5, and two groups were immersed in two tanks of artificial saliva with intermittent drop of pH to 4. The force was measured when the elastics were stretched to 25 mm. These measurements were taken in 0, 4, 8, 12, 24, 36, and 48 h for each group. Repeated measures analysis of variance (RMANOVA) and post-hoc Tukey's test were used to assess the findings. The level of significance was 0.05%. Results: The interaction between pH and time analyzed with RMANOVA showed no significant differences (P > 0.05) except in 36 h (P = 0.014). The Tukey's analysis showed that each comparison between any two groups did not indicate significant differences (P > 0.05) except between Groups 1 and 3 and between Groups 2 and 3 (P < 0.05). Conclusion: No significant correlation was seen between fluctuation of pH and force degradation in latex elastic band except in 36 h. PMID:28348621

  16. Synergic effect of salivary pH baselines and low pH intakes on the force relaxation of orthodontic latex elastics.

    PubMed

    Ajami, Shabnam; Farjood, Amin; Zare, Mahbubeh

    2017-01-01

    Latex elastics are still in common use due to their low cost and high flexibility to improve sagittal discrepancies or interdigitation of teeth. Mechanical properties of elastics are influenced by several environmental factors such as pH changes. This study evaluated similar latex elastics to define the influence of synergic effect of intermittent low pH and various baselines pH of saliva. Four groups of latex elastics (3-M Unitek, 3/16 inch) were tested ( n = 15 in each group). Two groups of elastics were immersed in two tanks of artificial saliva with different pH levels of 7 and 5, and two groups were immersed in two tanks of artificial saliva with intermittent drop of pH to 4. The force was measured when the elastics were stretched to 25 mm. These measurements were taken in 0, 4, 8, 12, 24, 36, and 48 h for each group. Repeated measures analysis of variance (RMANOVA) and post-hoc Tukey's test were used to assess the findings. The level of significance was 0.05%. The interaction between pH and time analyzed with RMANOVA showed no significant differences ( P > 0.05) except in 36 h ( P = 0.014). The Tukey's analysis showed that each comparison between any two groups did not indicate significant differences ( P > 0.05) except between Groups 1 and 3 and between Groups 2 and 3 ( P < 0.05). No significant correlation was seen between fluctuation of pH and force degradation in latex elastic band except in 36 h.

  17. Resilience and recovery of Dehalococcoides mccartyi following low pH exposure.

    PubMed

    Yang, Yi; Cápiro, Natalie L; Yan, Jun; Marcet, Tyler F; Pennell, Kurt D; Löffler, Frank E

    2017-12-01

    Bioremediation treatment (e.g. biostimulation) can decrease groundwater pH with consequences for Dehalococcoides mccartyi (Dhc) reductive dechlorination activity. To explore the pH resilience of Dhc, the Dhc-containing consortium BDI was exposed to pH 5.5 for up to 40 days. Following 8- and 16-day exposure periods to pH 5.5, dechlorination activity and growth recovered when returned to pH 7.2; however, the ability of the culture to dechlorinate vinyl chloride (VC) to ethene was impaired (i.e. decreased rate of VC transformation). Dhc cells exposed to pH 5.5 for 40 days did not recover the ethene-producing phenotype upon transfer to pH 7.2 even after 200 days of incubation. When returned to pH 7.2 conditions after an 8-, a 16- and a 40-day low pH exposure, tceA and vcrA genes showed distinct fold increases, suggesting Dhc strain-specific responses to low pH exposure. Furthermore, a survey of Dhc biomarker genes in groundwater samples revealed the average abundances of Dhc 16S rRNA, tceA and vcrA genes in pH 4.5-6 groundwater were significantly lower (P-value < 0.05) than in pH 6-8.3 groundwater. Overall, the results of the laboratory study and the assessment of field data demonstrate that sustained Dhc activity should not be expected in low pH groundwater, and the duration of low pH exposure affects the ability of Dhc to recover activity at circumneutral pH. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. A gel probe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: I. Laboratory development

    USGS Publications Warehouse

    Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.

    2008-01-01

    A gel probe equilibrium sampler has been developed to study arsenic (As) geochemistry and sorption behavior in sediment porewater. The gels consist of a hydrated polyacrylamide polymer, which has a 92% water content. Two types of gels were used in this study. Undoped (clear) gels were used to measure concentrations of As and other elements in sediment porewater. The polyacrylamide gel was also doped with hydrous ferric oxide (HFO), an amorphous iron (Fe) oxyhydroxide. When deployed in the field, HFO-doped gels introduce a fresh sorbent into the subsurface thus allowing assessment of in situ sorption. In this study, clear and HFO-doped gels were tested under laboratory conditions to constrain the gel behavior prior to field deployment. Both types of gels were allowed to equilibrate with solutions of varying composition and re-equilibrated in acid for analysis. Clear gels accurately measured solution concentrations (??1%), and As was completely recovered from HFO-doped gels (??4%). Arsenic speciation was determined in clear gels through chromatographic separation of the re-equilibrated solution. For comparison to speciation in solution, mixtures of As(III) and As(V) adsorbed on HFO embedded in gel were measured in situ using X-ray absorption spectroscopy (XAS). Sorption densities for As(III) and As(V) on HFO embedded in gel were obtained from sorption isotherms at pH 7.1. When As and phosphate were simultaneously equilibrated (in up to 50-fold excess of As) with HFO-doped gels, phosphate inhibited As sorption by up to 85% and had a stronger inhibitory effect on As(V) than As(III). Natural organic matter (>200 ppm) decreased As adsorption by up to 50%, and had similar effects on As(V) and As(III). The laboratory results provide a basis for interpreting results obtained by deploying the gel probe in the field and elucidating the mechanisms controlling As partitioning between solid and dissolved phases in the environment. ?? 2008 American Chemical Society.

  19. Laboratory microwave measurement of the moisture content in seed cotton and ginned cotton fiber

    USDA-ARS?s Scientific Manuscript database

    The timely and accurate measurement of cotton fiber moisture content is important, but the measurement is often performed by laborious, time-consuming laboratory oven drying methods. Microwave technology for measuring fiber moisture content directly (not for drying only) offers potential advantages...

  20. Augmenting Laboratory Rearing of Stable Fly (Diptera: Muscidae) Larvae With Ammoniacal Salts.

    PubMed

    Friesen, Kristina; Berkebile, Dennis R; Zhu, Jerry J; Taylor, David B

    2017-01-01

    Stable flies are blood feeding parasites and serious pests of livestock. The immature stages develop in decaying materials which frequently have high ammonium content. We added various ammonium salts to our laboratory stable fly rearing medium and measured their effect on size and survival as well as the physical properties of the used media. The addition of ammonium hydroxide, ammonium phosphate and ammonium sulfate reduced larval survival. These compounds decreased pH and increased ammonium content of the used media. Ammonium bicarbonate had no effect on pH and marginally increased ammonium while increasing survival twofold. The optimal level of ammonium bicarbonate was 50 g (0.63 mol) per pan. Larval survival decreased when pH was outside the range of 8.5 to 9.0. Published by Oxford University Press on behalf of the Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  1. A pier-scour database: 2,427 field and laboratory measurements of pier scour

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.

    2014-01-01

    The U.S. Geological Survey conducted a literature review to identify potential sources of published pier-scour data, and selected data were compiled into a digital spreadsheet called the 2014 USGS Pier-Scour Database (PSDb-2014) consisting of 569 laboratory and 1,858 field measurements. These data encompass a wide range of laboratory and field conditions and represent field data from 23 States within the United States and from 6 other countries. The digital spreadsheet is available on the Internet and offers a valuable resource to engineers and researchers seeking to understand pier-scour relations in the laboratory and field.

  2. Effect of two mouthwashes on salivary ph.

    PubMed

    Belardinelli, Paola A; Morelatto, Rosana A; Benavidez, Tomás E; Baruzzi, Ana M; López de Blanc, Silvia A

    2014-01-01

    To analyze the effect of two mouthwashes on salivary pH and correlate it with age, buffer capacity and saliva flow rate in healthy volunteers, a crossover phase IV clinical study involving three age-based groups was designed. Two commercial mouthwashes (MW), Cool Mint ListerineR (MWa) and Periobacter R (MWb) were used. The unstimulated saliva of each individual was first characterized by measuring flow rate, pH, and buffer capacity. Salivary pH was evaluated before rinsing with a given MW, immediately after rinsing, 5 minutes later, and then every 10 min (at 15, 25, 35 min) until the baseline pH was recovered. Paired t-test, ANOVA with a randomized block design, and Pearson correlation tests were used. Averages were 0.63 mL/min, 7.06, and 0.87 for flow rate, pH, and buffer capacity, respectively. An immediate significant increase in salivary pH was observed after rinsing, reaching average values of 7.24 (MWb) and 7.30 (MWa), which declined to an almost stable value 15 minutes. The great increase in salivary pH, after MW use shows that saliva is a dynamic system, and that the organism is capable of responding to a stimulus with changes in its composition. It is thus evident that pH of the external agent alone is not a good indicator for its erosive potential because biological systems tend to neutralize it. The results of this study enhance the importance of in vivo measurements and reinforce the concept of the protective action of saliva.

  3. Line Parameters of the PH_3 Pentad in the 4-5 μm Region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Kleiner, I.; Sams, R. L.; Blake, T. A.; Brown, Linda R.; Fletcher, L. N.

    2012-06-01

    Line positions, intensities and line shape parameters are reported for four bands of phosphine between 2150 and 2400 cm-1 in order to improve the spectroscopic database for remote sensing of the giant planets. Knowledge of PH_3 in this spectral region is important for Cassini/VIMS exploration of dynamics and chemistry on Saturn, as well as for interpreting the near-IR data from Juno and ESA's proposed Jupiter mission. For this study, five high-resolution (0.0023 cm-1), high signal-to-noise (>2000) spectra of pure PH_3 were recorded at room temperature (298.2 K) with the Bruker IFS 125HR Fourier transform spectrometer at Pacific Northwest National Laboratory. Individual line parameters were retrieved by multispectrum fitting of all five spectra simultaneously. Positions and intensities were measured for over 3100 transitions. The rotational quantum numbers of measured lines go as high as J''=16 and K''=15 in the ν_3 and ν_1 bands; some lines of the weaker bands 2ν_4 and ν_2+ν_4 are also reported. The measured positions and intensities are compared to new theoretical calculations of the pentad. Lorentz self-broadened width and pressure-induced shift coefficients of many transitions were also obtained, along with speed dependence parameters. Line mixing coefficients were determined for several A+A- pairs of transitions for K''=3, 6, and 9. Research described in this paper was performed at the College of William and Mary and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. L. Fletcher acknowledges support from a Glasstone Science Fellowship. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721.

  4. A FMEA clinical laboratory case study: how to make problems and improvements measurable.

    PubMed

    Capunzo, Mario; Cavallo, Pierpaolo; Boccia, Giovanni; Brunetti, Luigi; Pizzuti, Sante

    2004-01-01

    The authors have experimented the application of the Failure Mode and Effect Analysis (FMEA) technique in a clinical laboratory. FMEA technique allows: a) to evaluate and measure the hazards of a process malfunction, b) to decide where to execute improvement actions, and c) to measure the outcome of those actions. A small sample of analytes has been studied: there have been determined the causes of the possible malfunctions of the analytical process, calculating the risk probability index (RPI), with a value between 1 and 1,000. Only for the cases of RPI > 400, improvement actions have been implemented that allowed a reduction of RPI values between 25% to 70% with a costs increment of < 1%. FMEA technique can be applied to the processes of a clinical laboratory, even if of small dimensions, and offers a high potential of improvement. Nevertheless, such activity needs a thorough planning because it is complex, even if the laboratory already operates an ISO 9000 Quality Management System.

  5. Leonard F. Peltier, MD, PhD, 1920-2003.

    PubMed

    Reckling, Frederick W; Lo Vecchio, Janolyn G; Reckling, JoAnn B

    2004-05-01

    Leonard F. Peltier, MD, PhD, was an orthopaedic surgeon, academician, administrator, laboratory investigator, historian, and mentor. His career spanned nearly six decades, beginning with graduate education at the University of Minnesota (UM) under the auspices of Owen H. Wangensteen, MD, PhD. In addition to obtaining a PhD in physiology in the UM Graduate School, he completed general and orthopaedic surgery residencies and attained board certification in each specialty. He served in the US Army Occupation Force Medical Corps in Germany just after World War II. In 1957, at 37 years old, he assumed the chairmanship of the orthopaedic training program at the University of Kansas. In 1971, he couldn't resist the opportunity to become one of the founding members of the "start-up" University of Arizona College of Medicine, accepting an appointment as chair of the new orthopaedic training program, where he remained until his retirement in 1990. He took clinical problems to the laboratory, and made important scientific contributions, particularly in the area of fat embolism and in using calcium sulfate (plaster of Paris) to fill bone defects. He served on governing boards of national professional organizations and presided over the American Association for the Surgery of Trauma from 1980-1981. Throughout his career, he was fascinated by, and published extensively in, the history of medicine arena. Known fondly as "the professor" to many of his residents and colleagues, he had a pragmatic, honest, upbeat, and often humorous approach to life's challenges, valuing personal integrity above other virtues. He explored various eclectic interests far beyond his professional contributions while maintaining his family as a central priority. With his exemplary productivity and interests in the surgical and laboratory sciences, history of medicine, appreciation of fine arts, and perceptive and effective interactions with family, friends, patients, and colleagues, the memory of Leonard

  6. Variability of exhaled breath condensate pH in lung transplant recipients.

    PubMed

    Czebe, Krisztina; Kullmann, Tamas; Csiszer, Eszter; Barat, Erzsebet; Horvath, Ildiko; Antus, Balazs

    2008-01-01

    Measurement of pH in exhaled breath condensate (EBC) may represent a novel method for investigating airway pathology. The aim of this longitudinal study was to assess the variability of EBC pH in stable lung transplant recipients (LTR). During routine clinical visits 74 EBC pH measurements were performed in 17 LTR. EBC pH was also measured in 19 healthy volunteers on four separate occasions. EBC pH was determined at standard CO2 partial pressure by a blood gas analyzer. Mean EBC pH in clinically stable LTR and in controls was similar (6.38 +/- 0.09 vs. 6.44 +/- 0.16; p = nonsignificant). Coefficient of variation for pH in LTR and controls was 2.1 and 2.3%, respectively. The limits of agreement for between-visit variability determined by the Bland-Altman test in LTR and healthy volunteers were also comparable (-0.29 and 0.46 vs. -0.53 and 0.44). Our data suggest that the variability of EBC pH in stable LTR is relatively small, and it is similar to that in healthy nontransplant subjects.

  7. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  8. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †

    PubMed Central

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  9. Mouthguard and sports drinks on tooth surface pH.

    PubMed

    Maeda, Y; Yang, T-C; Miyanaga, H; Tanaka, Y; Ikebe, K; Akimoto, N

    2014-09-01

    The influence of sports drinks and mouthguards on the pH level of tooth surface was examined. A custom-made mouthguard was fabricated for each subject. The pH level was measured by electric pH meter with sensitivity of 0.01 up to 30 min. Sports drinks (pH=3.75) containing 9.4% sugar were used in this study. Measurements were performed on a cohort of 23 female subjects without a mouthguard (control), wearing a mouthguard only (MG), wearing a mouthguard after 30 ml sports drink intake (SD+MG), wearing a mouthguard during a 5-min jogging exercise (MG+EX) and wearing a mouthguard during jogging after sports drink intake (SD+MG+EX). For 7 male subjects, the same measurements were performed while a sports drink was taken over the mouthguard (MG+SD, MD+EX+SD). MG showed statistically higher pH level than control (p<0.05). SD+MG exhibited a significant decrease in pH level, and SD+MG+EX exhibited even below the critical level of pH 5.5 in some subjects. When sports drinks were taken over the mouthguard, no significant differences in pH level were observed among the different conditions.Within the limitations of this study, it was suggested that wearing a mouthguard during exercise is in itself not a possible risk factor for dental caries, while wearing a mouthguard after consuming sports drinks is. © Georg Thieme Verlag KG Stuttgart · New York.

  10. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  11. A quantum dot-spore nanocomposite pH sensor.

    PubMed

    Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang

    2016-04-01

    A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A comparison of soil moisture characteristics predicted by the Arya-Paris model with laboratory-measured data

    NASA Technical Reports Server (NTRS)

    Arya, L. M.; Richter, J. C.; Davidson, S. A. (Principal Investigator)

    1982-01-01

    Soil moisture characteristics predicted by the Arya-Paris model were compared with the laboratory measured data for 181 New Jersey soil horizons. For a number of soil horizons, the predicted and the measured moisture characteristic curves are almost coincident; for a large number of other horizons, despite some disparity, their shapes are strikingly similar. Uncertainties in the model input and laboratory measurement of the moisture characteristic are indicated, and recommendations for additional experimentation and testing are made.

  13. Micronaire measurements on seedcotton and cotton fiber, in and outside of laboratory using micro nir-infrared instruments

    USDA-ARS?s Scientific Manuscript database

    Micronaire is a key quality parameter in cotton fiber. NIR-spectroscopy has the ability to measure micronaire in and out of the laboratory. New very small micronaire instruments have recently been introduced. A program was established to measure micronaire in and outside the laboratory on seed cotto...

  14. EPA/ORD NATIONAL EXPOSURE RESEARCH LABORATORY MEASUREMENT SCIENCE SUPPORT FOR HOMELAND SECURITY

    EPA Science Inventory

    This product describes the National Exposure Research Laboratory research and development support for homeland security through the proposed National Exposure Measurements Center (NEMC). Key NEMC functional areas depicted in this poster are: standardized analytical method develo...

  15. Measuring the Transition Temperature of a Superconductor in a Pre-University Laboratory

    ERIC Educational Resources Information Center

    Ireson, Gren

    2006-01-01

    This article presents the methodology and results for a simple approach to the measurement of the transition temperature of a superconducting material, in a pre-university laboratory session, using readily available apparatus (and some liquid nitrogen).

  16. A Class of Multiresponsive Colorimetric and Fluorescent pH Probes via Three Different Reaction Mechanisms of Salen Complexes: A Selective and Accurate pH Measurement.

    PubMed

    Cheng, Jinghui; Gou, Fei; Zhang, Xiaohong; Shen, Guangyu; Zhou, Xiangge; Xiang, Haifeng

    2016-09-19

    We report a class of multiresponsive colorimetric and fluorescent pH probes based on three different reaction mechanisms including cation exchange, protonation, and hydrolysis reaction of K(I), Ca(II), Zn(II), Cu(II), Al(III), and Pd(II) Salen complexes. Compared with traditional pure organic pH probes, these complex-based pH probes exhibited a much better selectivity due to the shielding function of the filled-in metal ion in the complex. Their pH sensing performances were affected by the ligand structure and the central metal ion. This work is the first report of "off-on-on'-off" colorimetric and fluorescent pH probes that possess three different reaction mechanisms and should inspire the design of multiple-responsive probes for important analytes in biological systems.

  17. pH induced contrast in viscoelasticity imaging of biopolymers

    PubMed Central

    Yapp, R D; Insana, M F

    2009-01-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This report focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced, however the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability. PMID:19174599

  18. Possibilities for measuring cotton in the field and outside the laboratory: for breeding, production, ginning, the warehouse

    USDA-ARS?s Scientific Manuscript database

    Cotton is often classified using high volume instrumentation. Although accurate, these laboratory systems require strict laboratory conditions, well trained operators, and are expensive. Much interest has been shown in non-laboratory measurements in situations not related to classing or commercial...

  19. Routine internal- and external-quality control data in clinical laboratories for estimating measurement and diagnostic uncertainty using GUM principles.

    PubMed

    Magnusson, Bertil; Ossowicki, Haakan; Rienitz, Olaf; Theodorsson, Elvar

    2012-05-01

    Healthcare laboratories are increasingly joining into larger laboratory organizations encompassing several physical laboratories. This caters for important new opportunities for re-defining the concept of a 'laboratory' to encompass all laboratories and measurement methods measuring the same measurand for a population of patients. In order to make measurement results, comparable bias should be minimized or eliminated and measurement uncertainty properly evaluated for all methods used for a particular patient population. The measurement as well as diagnostic uncertainty can be evaluated from internal and external quality control results using GUM principles. In this paper the uncertainty evaluations are described in detail using only two main components, within-laboratory reproducibility and uncertainty of the bias component according to a Nordtest guideline. The evaluation is exemplified for the determination of creatinine in serum for a conglomerate of laboratories both expressed in absolute units (μmol/L) and relative (%). An expanded measurement uncertainty of 12 μmol/L associated with concentrations of creatinine below 120 μmol/L and of 10% associated with concentrations above 120 μmol/L was estimated. The diagnostic uncertainty encompasses both measurement uncertainty and biological variation, and can be estimated for a single value and for a difference. This diagnostic uncertainty for the difference for two samples from the same patient was determined to be 14 μmol/L associated with concentrations of creatinine below 100 μmol/L and 14 % associated with concentrations above 100 μmol/L.

  20. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Seitzer, Pat; Abercromby, Kira; Barker, Ed; Schildknecht, Thomas

    2010-01-01

    Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary objective for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The data acquired in the OMC are a function of known shape, size, and material. These three physical parameters are key to understanding the orbital debris environment in more depth. For optical observations, one must rely on spectroscopic or photometric measurements to ascertain an object's material type. Determination of an object s shape using remote observations is more complicated due to the various light scattering properties each object present and is a subject that requires more study. It is much easier to look at the periodicity of the light curve and analyze its structure for rotation. In order to best simulate the orbital debris population, three main sources were used as test fragments for optical measurements: flight-ready materials, destructive hypervelocity testing (simulating on-orbit collisions) and destructive pressure testing (simulating on-orbit explosions). Laboratory optical characteristics of fragments were measured, including light curve shape, phase angle dependence, and photometric and spectroscopic color indices. These characteristics were then compared with similar optical measurements acquired from telescopic observations in order to correlate remote and laboratory properties with the intent of ascertaining the intrinsic properties of the observed orbital debris

  1. Toward Improvements in Inter-laboratory Calibration of Argon Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; Deino, A. L.; Heizler, M. T.; Hodges, K. V.; McIntosh, W. C.; Renne, P. R.; Swisher, C. C., III; Turrin, B. D.; Van Soest, M. C.

    2015-12-01

    It is important to continue to develop strategies to improve our ability to compare results between laboratories chronometers. The U-Pb community has significantly reduced inter-laboratory biases with the application of a community tracer solution and the distribution of synthetic zircon solutions. Inevitably sample selection and processing and even biases in interpretations will still lead to some disagreements in the assignment of ages. Accordingly natural samples that are shared will be important for achievement of the highest levels of agreement. Analogous improvements in quality and inter-laboratory agreement of analytical aspects of Ar-Ar can be achieved through development of synthetic age standards in gas canisters with multiple pipettes to deliver various controlled amounts of argon to the mass spectrometer. A preliminary proof-of concept comes from the inter-laboratory calibration experiment for the 40Ar/39Ar community. This portable Argon Pipette Intercalibration System (APIS) consists of three 2.7 L canisters each equipped with three pipettes of 0.1, 0.2 and 0.4 cc volumes. The currently traveling APIS has the three canisters filled with air and 40Ar*/39Ar of 1.73 and canister 2 has a 40Ar*/39Ar of 40.98 (~ Alder Creek and Fish Canyon in the same irradiation). With these pipettes it is possible to combine them to provide 0.1, 0.2, 0.3 (0.1+0.2), 0.4, 0.5 (0.1+0.4), 0.6 (0.2+0.4), and 0.7 (0.1+0.2+0.4) cc. The configuration allows a simple test for inter-laboratory biases and for volume/pressure dependent mass fractionation on the measured ratios for a gas with a single argon isotope composition. Although not yet tested, it is also possible to mix gas from any one of the three canisters in proportions of these increments, allowing even more tightly controlled calibration of measurements. We suggest that ultimately each EARTHTIME lab should be equipped with such a system permanently, with a community plan for a traveling system to periodically repeat the

  2. Laboratory Measurements for H3+ Deuteration Reactions

    NASA Astrophysics Data System (ADS)

    Bowen, Kyle; Hillenbrand, Pierre-Michel; Urbain, Xavier; Savin, Daniel Wolf

    2018-06-01

    Deuterated molecules are important chemical tracers of protostellar cores. At the ~106 cm-3 particle densities and ~20 K temperatures typical for protostellar cores, most molecules freeze onto dust grains. A notable exception is H3+ and its isotopologues. These become important carriers of positive charge in the gas, can couple to any ambient magnetic field, and can thereby alter the cloud dynamics. Knowing the total abundance of H3+ and its isotopologues is important for studying the evolution of protostellar cores. However, H3+ and D3+ have no dipole moment. They lack a pure rotational spectrum and are not observable at protostellar core temperatures. Fortunately H2D+ and D2H+ have dipole moments and a pure rotational spectrum that can be excited in protostellar cores. Observations of these two molecules, combined with astrochemical models, provide information about the total abundance of H3+ and all its isotopologues. The inferred abundances, though, rely on accurate astrochemical data for the deuteration of H3+ and its isotopologues.Here we present laboratory measurements of the rate coefficients for three important deuterating reactions, namely D + H3+/H2D+/D2H+ → H + H2D+/ D2H+/D3+. Astrochemical models currently rely on rate coefficients from classical (Langevin) or semi-classical methods for these reactions, as fully quantum-mechanical calculations are beyond current computational capabilities. Laboratory studies are the most tractable means of providing the needed data. For our studies we used our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and molecular ions. Co-propagating beams allow us to measure experimental rate coefficients as a function of collision energy. We extract cross section data from these results, which we then convolve with a Maxwell-Boltzmann distribution to generate thermal rate coefficients. Here we present our results for these three reactions and discuss some implications.

  3. Successful Minority PhD Producing Programs -- Bell Laboratories and the Meyerhoff Scholarship Program at UMBC

    NASA Astrophysics Data System (ADS)

    Johnson, Anthony

    2009-03-01

    The Bell Labs Cooperative Research Fellowship Program for Minorities (CRFP), founded in 1972 was one of the first programs of its kind in the US to address the issue of under-representation of minorities in the fields of engineering, mathematics and science. As of 2000, well over 100 PhDs graduated with CRFP sponsorship and a significant fraction joined the research ranks of Bell Labs. In the early days of the program as much as 50% of African American PhDs in Physics in the US were granted to students supported by CRFP. Another unique program initiated by Bell Labs in 1974 that introduced undergraduate students to cutting edge research was the Summer Research Program for Minorities and Women (SRP). The SRP served as a natural feeder to the CRFP. Personally, my career in Optical Physics owes its foundation to these programs and I will give my perspective on participation and impact of the Bell Labs SRP (1974) and CRFP (1975) programs. The Meyerhoff Scholars Program at UMBC was developed in 1988. At that time, UMBC was graduating fewer than 18 African-American STEM majors per year. In 1996 the program was opened to all students with an interest in the advancement of minorities in STEM fields. The program enjoys an overall 18-year retention rate of greater than 95% and has over 500 graduates since 1993. As of May 2006, 75% of these graduates are enrolled in graduate and/or professional programs, with 49 PhDs and 20 MD/PhDs completed as of August 2006. The program challenges notions about minority achievement. Meyerhoff Scholars have changed the perceptions of those around them -- the expectations of faculty who instruct them, the attitudes of students who learn beside them, and the perspectives of scientists who engage them in research.

  4. "Do-It-Yourself" reliable pH-stat device by using open-source software, inexpensive hardware and available laboratory equipment

    PubMed Central

    Kragic, Rastislav; Kostic, Mirjana

    2018-01-01

    In this paper, we present the construction of a reliable and inexpensive pH stat device, by using open-source “OpenPhControl” software, inexpensive hardware (a peristaltic and a syringe pump, Arduino, a step motor…), readily available laboratory devices: a pH meter, a computer, a webcam, and some 3D printed parts. We provide a methodology for the design, development and test results of each part of the device, as well as of the entire system. In addition to dosing reagents by means of a low-cost peristaltic pump, we also present carefully controlled dosing of reagents by an open-source syringe pump. The upgrading of the basic open-source syringe pump is given in terms of pump control and application of a larger syringe. In addition to the basic functions of pH stat, i.e. pH value measurement and maintenance, an improvement allowing the device to be used for potentiometric titration has been made as well. We have demonstrated the device’s utility when applied for cellulose fibers oxidation with 2,2,6,6-tetramethylpiperidine-1-oxyl radical, i.e. for TEMPO-mediated oxidation. In support of this, we present the results obtained for the oxidation kinetics, the consumption of added reagent and experimental repeatability. Considering that the open-source scientific tools are available to everyone, and that researchers can construct and adjust the device according to their needs, as well as, that the total cost of the open-source pH stat device, excluding the existing laboratory equipment (pH meter, computer and glossary) was less than 150 EUR, we believe that, at a small fraction of the cost of available commercial offers, our open-source pH stat can significantly improve experimental work where the use of pH stat is necessary. PMID:29509793

  5. "Do-It-Yourself" reliable pH-stat device by using open-source software, inexpensive hardware and available laboratory equipment.

    PubMed

    Milanovic, Jovana Z; Milanovic, Predrag; Kragic, Rastislav; Kostic, Mirjana

    2018-01-01

    In this paper, we present the construction of a reliable and inexpensive pH stat device, by using open-source "OpenPhControl" software, inexpensive hardware (a peristaltic and a syringe pump, Arduino, a step motor…), readily available laboratory devices: a pH meter, a computer, a webcam, and some 3D printed parts. We provide a methodology for the design, development and test results of each part of the device, as well as of the entire system. In addition to dosing reagents by means of a low-cost peristaltic pump, we also present carefully controlled dosing of reagents by an open-source syringe pump. The upgrading of the basic open-source syringe pump is given in terms of pump control and application of a larger syringe. In addition to the basic functions of pH stat, i.e. pH value measurement and maintenance, an improvement allowing the device to be used for potentiometric titration has been made as well. We have demonstrated the device's utility when applied for cellulose fibers oxidation with 2,2,6,6-tetramethylpiperidine-1-oxyl radical, i.e. for TEMPO-mediated oxidation. In support of this, we present the results obtained for the oxidation kinetics, the consumption of added reagent and experimental repeatability. Considering that the open-source scientific tools are available to everyone, and that researchers can construct and adjust the device according to their needs, as well as, that the total cost of the open-source pH stat device, excluding the existing laboratory equipment (pH meter, computer and glossary) was less than 150 EUR, we believe that, at a small fraction of the cost of available commercial offers, our open-source pH stat can significantly improve experimental work where the use of pH stat is necessary.

  6. An international marine-atmospheric {sup 222}Rn measurement intercomparison in Bermuda. Part 2: Results for the participating laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colle, R.; Unterweger, M.P.; Hutchinson, J.M.R.

    1996-01-01

    As part of an international measurement intercomparison of instruments used to measure atmospheric {sup 222}Rn, four participating laboratories made nearly simultaneous measurements of {sup 222}Rn activity concentration in commonly sampled, ambient air over approximately a 2 week period, and three of these four laboratories participated in the measurement comparison of 14 introduced samples with known, but undisclosed (blind) {sup 222}Rn activity concentration. The exercise was conducted in Bermuda in October 1991. The {sup 222}Rn activity concentrations in ambient Bermudian air over the course of the intercomparison ranged from a few hundredths of a Bq {center_dot} m{sup {minus}3} to about 2more » Bq {center_dot} m{sup {minus}3}, while the standardized sample additions covered a range from approximately 2.5 Bq {center_dot} m{sup {minus}3} to 35 Bq {center_dot} m{sup {minus}3}. The overall uncertainty in the latter concentrations was in the general range of 10%, approximating a 3 standard deviation uncertainty interval. The results of the intercomparison indicated that two of the laboratories were within very good agreement with the standard additions, and almost within expected statistical variations. These same two laboratories, however, at lower ambient concentrations, exhibited a systematic difference with an averaged offset of roughly 0.3 Bq {center_dot} m{sup {minus}3}. The third laboratory participating in the measurement of standardized sample additions was systematically low by about 65% to 70%, with respect to the standard addition which was also confirmed in their ambient air concentration measurements. The fourth laboratory, participating in only the ambient measurement part of the intercomparison, was also systematically low by at least 40% with respect to the first two laboratories.« less

  7. Doctoral Training in Statistics, Measurement, and Methodology in Psychology: Replication and Extension of Aiken, West, Sechrest, and Reno's (1990) Survey of PhD Programs in North America

    ERIC Educational Resources Information Center

    Aiken, Leona S.; West, Stephen G.; Millsap, Roger E.

    2008-01-01

    In a survey of all PhD programs in psychology in the United States and Canada, the authors documented the quantitative methodology curriculum (statistics, measurement, and research design) to examine the extent to which innovations in quantitative methodology have diffused into the training of PhDs in psychology. In all, 201 psychology PhD…

  8. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  9. Validation of a portable, waterproof blood pH analyser for elasmobranchs.

    PubMed

    Talwar, Brendan; Bouyoucos, Ian A; Shipley, Oliver; Rummer, Jodie L; Mandelman, John W; Brooks, Edward J; Grubbs, R Dean

    2017-01-01

    Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish ( Squalus cubensis ) and lemon shark ( Negaprion brevirostris ). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30°C; lemon sharks: 7.0-7.45 pH 25-31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal.

  10. Validation of a portable, waterproof blood pH analyser for elasmobranchs

    PubMed Central

    Bouyoucos, Ian A.; Shipley, Oliver; Rummer, Jodie L.; Mandelman, John W.; Brooks, Edward J.; Grubbs, R. Dean

    2017-01-01

    Abstract Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8–7.1 pH 24–30°C; lemon sharks: 7.0–7.45 pH 25–31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal. PMID:28616238

  11. New laboratory measurements on ammonia's inversion spectrum, with implications for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas R.

    1993-01-01

    Microwave spectral measurements have been performed on pure room-temperature gaseous ammonia at frequencies from 1.75 to 18 GHz (1.7-17 cm), at 50-, 100-, and 300-torr pressures. These measurements are part of a laboratory program to measure the microwave absorption spectrum of ammonia, under conditions applicable to giant planet atmospheres, now in progress at the Jet Propulsion Laboratory. The pure ammonia data reported here agree well with previous data by Bleaney and Loubser (1950) at 100 and 300 torrs, and with predictions of the absorptivity formalism published by Berge and Gulkis. Success with pure ammonia but failure with mixtures of ammonia in hydrogen and helium (Spilker, 1990) indicates that the Berge and Gulkis formalism does not correctly handle foreign-gas effects on ammonia inversion lines. This may require modifying conclusions of radio astronomical and radio occultation studies that used this formalism. Notably, a suggested depletion of ammonia and superabundance of hydrogen sulfide may have been exaggerated as a result of inaccuracies in the Berge and Gulkis formalism.

  12. Field and laboratory determination of water-surface elevation and velocity using noncontact measurements

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; Schmeeckle, Mark Walter; McDonald, Richard R.; Minear, Justin T.

    2016-01-01

    Noncontact methods for measuring water-surface elevation and velocity in laboratory flumes and rivers are presented with examples. Water-surface elevations are measured using an array of acoustic transducers in the laboratory and using laser scanning in field situations. Water-surface velocities are based on using particle image velocimetry or other machine vision techniques on infrared video of the water surface. Using spatial and temporal averaging, results from these methods provide information that can be used to develop estimates of discharge for flows over known bathymetry. Making such estimates requires relating water-surface velocities to vertically averaged velocities; the methods here use standard relations. To examine where these relations break down, laboratory data for flows over simple bumps of three amplitudes are evaluated. As anticipated, discharges determined from surface information can have large errors where nonhydrostatic effects are large. In addition to investigating and characterizing this potential error in estimating discharge, a simple method for correction of the issue is presented. With a simple correction based on bed gradient along the flow direction, remotely sensed estimates of discharge appear to be viable.

  13. Overview and Brief History of the Boron Isotope Proxy for Past Seawater pH

    NASA Astrophysics Data System (ADS)

    Hoenisch, B.; Hemming, G.

    2007-05-01

    In 1992 Hemming and Hanson (GCA, vol. 56, p. 537-543) showed that a variety of modern marine carbonates revealed a boron isotopic composition close to the isotopic composition of dissolved borate at modern seawater pH, suggesting this was the boron species preferentially adsorbed and incorporated into marine carbonates. With a constant offset between the trigonal and tetrahedrally coordinated boron species and a pH-dependent variation in their fractions, it appeared that this system would be sensitive to pH changes in the natural range of seawater. Accordingly, it was suggested that the boron isotope composition of marine carbonates is a proxy for past seawater pH. Subsequent culture studies with living planktic foraminifers and corals, as well as synthetic precipitation experiments confirmed that the boron isotopic composition follows the isotopic composition of borate across a wide range of seawater pH. In order to use the proxy with confidence, however, all other controls apart from pH need to be thoroughly understood. Recent laboratory and sediment experiments have demonstrated that vital effects and partial shell dissolution have the potential to modify the primary seawater pH signal recorded in the boron isotopic composition of planktic foraminifers. However it has also been shown that careful sample selection allows for avoiding these potential complications. A record of reconstructed surface seawater pH and estimated aqueous PCO2 shows a remarkable match between boron isotope based atmospheric pCO2 estimates and the Vostok ice core CO2 record. This convincingly demonstrates that boron isotopes in planktic foraminifers allow quantitative estimates of atmospheric pCO2 in the past, and confirms that glacial surface ocean pH was ~0.2 units higher compared to interglacial periods. We are going to review and discuss the achievements generated in Gil Hanson's lab over the past 15 years in the light of recent empirical measurements of the boron isotope

  14. Measuring laboratory-based influenza surveillance capacity: development of the 'International Influenza Laboratory Capacity Review' Tool.

    PubMed

    Muir-Paulik, S A; Johnson, L E A; Kennedy, P; Aden, T; Villanueva, J; Reisdorf, E; Humes, R; Moen, A C

    2016-01-01

    The 2005 International Health Regulations (IHR 2005) emphasized the importance of laboratory capacity to detect emerging diseases including novel influenza viruses. To support IHR 2005 requirements and the need to enhance influenza laboratory surveillance capacity, the Association of Public Health Laboratories (APHL) and the Centers for Disease Control and Prevention (CDC) Influenza Division developed the International Influenza Laboratory Capacity Review (Tool). Data from 37 assessments were reviewed and analyzed to verify that the quantitative analysis results accurately depicted a laboratory's capacity and capabilities. Subject matter experts in influenza and laboratory practice used an iterative approach to develop the Tool incorporating feedback and lessons learnt through piloting and implementation. To systematically analyze assessment data, a quantitative framework for analysis was added to the Tool. The review indicated that changes in scores consistently reflected enhanced or decreased capacity. The review process also validated the utility of adding a quantitative analysis component to the assessments and the benefit of establishing a baseline from which to compare future assessments in a standardized way. Use of the Tool has provided APHL, CDC and each assessed laboratory with a standardized analysis of the laboratory's capacity. The information generated is used to improve laboratory systems for laboratory testing and enhance influenza surveillance globally. We describe the development of the Tool and lessons learnt. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    NASA Astrophysics Data System (ADS)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  16. Near-infrared noninvasive spectroscopic determination of pH

    DOEpatents

    Alam, Mary K.; Robinson, Mark R.

    1998-08-11

    Methods and apparatus for, preferably, determining noninvasively and in vitro pH in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 1000 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of pH. The determination of pH is made by using measured intensities at wavelengths that exhibit change in absorbance due to histidine titration. Histidine absorbance changes are due to titration by hydrogen ions. The determination of the unknown pH values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. The determined pH values are within the physiological ranges observed in blood containing tissue. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  17. Incorporating spectroscopy and measurement technology into the high school chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Harbert, Emily Ann

    Science and technology are becoming increasingly important in maintaining a healthy economy at home and a competitive edge on the world stage, though that is just one facet affected by inadequate science education in the United States. Engaging students in the pursuit of knowledge and giving them the skills to think critically are paramount. One small way to assist in achieving these goals is to increase the quality and variety of technology-rich activities conducted in high school classrooms. Incorporating more laboratory measurement technology into high schools may incite more student interest in the processes and practices of science and may allow students to learn to think more critically about their data and what it represents. The first objective of the work described herein was to determine what measurement technology is being used in schools and to what extent, as well as to determine other teacher needs and preferences. Second, the objective was to develop a new program to provide incoming freshmen (or rising seniors) with measurement technology training they did not receive in high school, and expose them to new research and career opportunities in science. The final objective was to create a technology-rich classroom laboratory activity for use in high schools.

  18. Potentiometric pH Measurements of Acidity Are Approximations, Some More Useful than Others

    ERIC Educational Resources Information Center

    de Levie, Robert

    2010-01-01

    A recent article by McCarty and Vitz "demonstrating that it is not true that pH = -log[H+]" is examined critically. Then, the focus shifts to underlying problems with the IUPAC definition of pH. It is shown how the potentiometric method can provide "estimates" of both the IUPAC-defined hydrogen activity "and" the hydrogen ion concentration, using…

  19. Laboratory measurements of white dwarf photospheric spectral lines: Hβ

    DOE PAGES

    Falcon, Ross Edward; Rochau, Gregory A.; Bailey, James E.; ...

    2015-06-18

    We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. We also present time-resolved measurements of Hβ and fit this line using different theoretical line profiles to diagnose electron density, n e, and n = 2 level population, n 2. Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, wemore » infer a continuous range of electron densities increasing from n e ~ 4 to ~30 × 10 16 cm -3 throughout a 120-ns evolution of our plasma. Also, we observe n 2 to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within ~55 ns to become consistent with LTE. This also supports our electron-temperature determination of T e ~ 1.3 eV (~15,000 K) after this time. At n e≲ 10 17 cm -3, we find that computer-simulation-based line-profile calculations provide better fits (lower reduced χ 2) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. Lastly, this work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines.« less

  20. Variation in Biofilm Stability with Decreasing pH Affects Porous Medium Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Kirk, M. F.; Santillan, E. F.; McGrath, L. K.; Altman, S. J.

    2010-12-01

    Changes to microbial communities caused by subsurface CO2 injection may have many consequences, including possible impacts to CO2 transport. We used column experiments to examine how decreasing pH, a geochemical change associated with CO2 injection, will affect biofilm stability and ultimately the hydraulic properties of porous media. Columns consisted of 1 mm2 square capillary tubes filled with 105-150 µm diameter glass beads. Artificial groundwater medium containing 1 mM glucose was pumped through the columns at a rate of 0.01 mL/min (q = 14.4 m/day; Re = 0.03). Columns were inoculated with 3 × 10^8 CFU (avg.) of Pseudomonas fluorescens, a model biofilm former, transformed with a green fluorescent protein. Biomass distribution and transport was examined using scanning laser confocal microscopy and effluent plating. Variation in the bulk hydraulic properties of the columns was measured using manometers. In an initial experiment, biofilm growth was allowed to occur for seven days in medium with pH 7.3. Within this period, cells uniformly coated bead surfaces, effluent cell numbers stabilized at 1 × 10^9 CFU/mL, and hydraulic conductivity (K) decreased 77%. Next, medium with pH 4 was introduced. As a result, biomass within the reactor redistributed from bead surfaces to pores, effluent cell numbers decreased to 3 × 10^5 CFU/mL, and K decreased even further (>94% reduction). This decreased K was maintained until the experiment was terminated, seven days after introducing low pH medium. These results suggest that changes in biomass distribution as a result of decreased pH may initially limit transport of solubility-trapped CO2 following CO2 injection. Experiments in progress and planned will test this result in more detail and over longer periods of time. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office

  1. Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface

    NASA Astrophysics Data System (ADS)

    Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.

    2018-03-01

    A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.

  2. Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-04-01

    Multicomponent ionic interactions have been increasingly recognized as important factors for the displacement of charged species in porous media under both diffusion- [1,2] and advection-dominated flow regimes [3,4]. In this study we investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross-coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also significant differences in the dilution of the distinct ionic plumes, quantified using the flux-related dilution index at the laboratory bench scale [5], were measured at the outflow of the flow-through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow-through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow-through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between

  3. Pulverized solid injection system. Application to laboratory burners and pyrometric temperature measurements

    NASA Astrophysics Data System (ADS)

    Therssen, E.; Delfosse, L.

    1995-08-01

    The design and setting up of a pulverized solid injection system for use in laboratory burners is presented. The original dual system consists of a screw feeder coupled to an acoustic sower. This laboratory device allows a good regularity and stability of the particle-gas mixture transported to the burner in a large scale of mass powder and gas vector rate flow. The thermal history of the particles has been followed by optical measurements. The quality of the particle cloud injected in the burner has been validated by the good agreement between experimental and modeling particle temperature.

  4. Low pH affects survival, growth, size distribution, and carapace quality of the postlarvae and early juveniles of the freshwater prawn Macrobrachium rosenbergii de Man

    NASA Astrophysics Data System (ADS)

    Kawamura, Gunzo; Bagarinao, Teodora; Yong, Annita Seok Kian; Chen, Chiau Yu; Noor, Siti Norasidah Mat; Lim, Leong Seng

    2015-06-01

    Acidification of rain water caused by air pollutants is now recognized as a serious threat to aquatic ecosystems. We examined the effects of low pH (control pH 7.5, pH 6, pH 5, pH 4) on the survival, growth, and shell quality of Macrobrachium rosenbergii postlarvae and early juveniles in the laboratory. Hatcheryproduced postlarvae (PL 5) were stocked at 250 PL per aquarium, acclimated over 7 d to experimental pH adjusted with hydrochloric acid, and reared for 30 d. Dead specimens were removed and counted twice a day. After 27 d rearing, all specimens were measured for total length and body weight. Carapace quality was assessed by spectrophotometry. Survival of juveniles was highest at pH 6 (binomial 95% confidence interval 79 - 89%) followed by control pH 7.5 (56 - 68%) and pH 5 (50 - 60%) and was lowest for unmetamorphosed postlarvae and juveniles at pH 4 (43 - 49%). The final median total length and body weight of juveniles were similar at control pH 7.5 (18.2 TL, 50.2 mg BW) and pH 6 (17.7 mm TL, 45.0 mg BW) but significantly less at pH 5 (16.7 mm TL, 38.2 mg BW); at pH 4, the postlarvae did not metamorphose and measured only 9.8 mm TL, 29.3 mg BW. Length frequency distribution showed homogeneous growth at pH 6, positive skew at control pH 7.5 and pH 5, and extreme heterogeneity at pH 4. The carapace showed different transmittance spectra and lower total transmittance (i.e. thicker carapace) in juveniles at pH 7.5, pH 6, and pH 5 than in unmetamorphosed postlarvae and juveniles with thinner carapace at pH 4. Thus, survival, growth, size distribution, and carapace quality of M. rosenbergii postlarvae and early juveniles were negatively affected by pH 5 and especially pH 4. The thinner carapace of the survivors at pH 4 was mostly due to their small size and failure to metamorphose. Natural waters affected by acid rain could decimate M. rosenbergii populations in the wild.

  5. Ecophysiological adaptations of anaerobic bacteria to low pH. [Sarcina ventriculi; Lactobacillus helveticus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, S.D.

    1986-01-01

    The ecological and physiological adaptations of anaerobic bacteria to low pH were investigated in field and laboratory studies. Determinations of hydrogen kinetic parameters demonstrated that overall hydrogen metabolism was inhibited in acid ecosystems. In particular, hydrogen metabolism became progressively uncoupled at low pH. This uncoupling resulted in a slowing of carbon flow during anaerobic digestion and the accumulation of intermediary metabolites. The addition of carbon electron donors to acid bog sediments resulted in the accumulation of hydrogen and a slowing of the overall rates of anaerobic digestion. As an adaptation to low pH, anaerobic bacterial populations shifted from production ofmore » acid intermediary metabolites (e.g. acetate and lactate) to the production of neutral intermediary metabolites (e.g. ethanol). This shift was observed both in situ and in pure cultures of hydrolytic strains isolated from bog sediments. Detailed physiological studies of Sarcina ventriculi showed an adaptation to growth at low pH by mechanisms which allowed the continued production of ethanol from glucose and the maintenance of a proton motive force at low cytoplasmic pH values. Further physiological studies Lactobacillus helveticus showed that the accumulation of acidic end-product (lactic acid) strongly influenced cellular electrochemical parameters. Based on the results of computer simulations and laboratory studies of the physiology of the organism in the presence of organic acids, a new model for the passive coupling of energy conservation to the efflux of lactic acid in an electroneutral process is proposed.« less

  6. Field and laboratory investigation of acid effects on largemouth bass, rock bass, black crappie, and yellow perch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, J.G.; Swenson, W.A.; McCormick, J.H.

    1992-01-01

    One-half of Little Rock Lake, a small seepage lake in north-central Wisconsin, was gradually acidified by additions of sulfuric acid between August 1983 and November 1990. The ambient pH (6.1) of the lake was reduced at successive 2-year intervals to pH 5.6, 5.1, and 4.7. Responses of largemouth bass Micropterus salmoides, rock bass Ambloplites rupestris, black crappie Pomoxis nigromaculatus, and yellow perch Perca flavescens populations to the pH reductions were recorded and compared to the responses of these species during in situ bioassays and laboratory toxicity tests on embryos and larvae. Laboratory results obtained for largemouth bass and rock bassmore » underestimated, black crappie results overestimated, and yellow perch results were similar to effects observed in field studies. In situ bioassays predicted field responses better than did laboratory toxicity tests. Laboratory results showed that monomeric Al concentrations of approximately 50 microgram/l, which were comparable to Al concentrations in the acidified half of the lake, altered low-pH toxicity. Reduced recruitment was observed in field populations at higher pH than that at which adult mortality was observed. The results indicate that laboratory toxicity tests with early life stages may not accurately predict field population responses and that results from laboratory tests should be field-validated whenever possible.« less

  7. Colorimetric Determination of pH.

    ERIC Educational Resources Information Center

    Tucker, Sheryl; And Others

    1989-01-01

    Presented is an activity in which the pH of a solution can be quantitatively measured using a spectrophotometer. The theory, experimental details, sample preparation and selection, instrumentation, and results are discussed. (CW)

  8. Commentary: Attitude Adjustment--Educating PhD Scientist for Business Careers

    ERIC Educational Resources Information Center

    Schuster, Sheldon M.

    2011-01-01

    The PhD graduate from a US research academic institution who has worked 5-7 years to solve a combination of laboratory and computational problems after an in-depth classroom experience is likely superbly trained in at least a subset of the life sciences and the underlying methodology and thought processes required to perform high level research.…

  9. The August 1988 and June 1989 radon intercomparisons at EML (Environmental Measurements Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Keller, H.W.

    1990-06-01

    The Environmental Measurements Laboratory hosted the fifteenth and sixteenth radon intercomparison exercises in August 1988 and June 1989. Forty-five groups including US Federal facilities, USDOE Office of Health and Environmental Research contractors, national and state laboratories and foreign institutions participated in these exercises. The results show that the majority of the participants' results were within {plus minus} of the EML value at radon concentrations of 220 and 890 Bq m{sup {minus}3}. 10 refs., 4 figs., 9 tabs.

  10. Development of Rhizo-Columns for Nondestructive Root System Architecture Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Johnson, T. J.; Varga, T.; Hess, N. J.; Wietsma, T. W.

    2016-12-01

    Numerical models for root water uptake in plant-soil systems have been developing rapidly, increasing the demand for laboratory experimental data to test and verify these models. Most of the increasingly detailed models are either compared to long-term field crop data or do not involve comparisons at all. Ideally, experiments would provide information on dynamic root system architecture (RSA) in combination with soil-pant hydraulics such as water pressures and volumetric water contents. Data obtained from emerging methods such as Spectral Induced Polarization (SIP) and x-ray computed tomography (x-ray CT) may be used to provide laboratory RSA data needed for model comparisons. Point measurements such as polymer tensiometers (PT) may provide soil moisture information over a large range of water pressures, from field capacity to the wilting point under drought conditions. In the presentation, we demonstrate a novel laboratory capability allowing for detailed RSA studies in large columns under controlled conditions using automated SIP, X-ray CT, and PT methods. Examples are shown for pea and corn root development under various moisture regimes.

  11. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    PubMed

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  12. Comparison of Instream and Laboratory Methods of Measuring Sediment Oxygen Demand

    USGS Publications Warehouse

    Hall, Dennis C.; Berkas, Wayne R.

    1988-01-01

    Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12 degree Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.

  13. Environmental Audit of the Environmental Measurements Laboratory (EML)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    This document contains the findings identified during the Environmental Audit of the Environmental Measurements Laboratory (EML), conducted from December 2 to 13, 1991. The Audit included the EML facility located in a fifth-floor General Services Administration (GSA) office building located in New York City, and a remote environmental monitoring station located in Chester, New Jersey. The scope of this Environmental Audit was comprehensive, covering all areas of environmental activities and waste management operations, with the exception of the National Environmental Policy Act (NEPA), which is the responsibility of the DOE Headquarters Office of NEPA Oversight. Compliance with applicable Federal, state,more » and local requirements; applicable DOE Orders; and internal facility requirements was addressed.« less

  14. Update: Assessment of gastric pH in the critically ill.

    PubMed

    Neill, K M; Rice, K T; Ahern, H L

    1998-04-27

    The purpose of this manuscript is to update a review of the measurement of intraluminal gastric pH in the critically ill. Intraluminal gastric pH is readily measured by aspirates tested with litmus paper or a nasogastric tube with an antimony or glass electrode tip. Significant variations of intragastric pH have been shown in different stomach locations. Significant variations in the accuracy of pH readings have also been demonstrated. Prophylactic therapy in the critically ill is aimed at maintaining a gastric pH greater than 4.0 by drug therapy that 1) neutralizes acid, 2) interrupts the signal to produce acid, 3) reduces the amount of acid produced, or 4) enhances the mucosal barrier of the stomach lining. The critically ill patients at risk of respiratory failure or coagulopathy are the patients most at risk of gastrointestinal bleeding and are, therefore, the ones most likely to benefit from prophylactic therapy. Multiple pH readings are more reliable indicators of gastric pH than are individual readings. Continuous prophylaxis is more effective than intermittent.

  15. Mapping Soil pH Buffering Capacity of Selected Fields

    NASA Technical Reports Server (NTRS)

    Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.

    2003-01-01

    Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.

  16. Usefulness of saliva for measurement of 3,4-methylenedioxymethamphetamine and its metabolites: correlation with plasma drug concentrations and effect of salivary pH.

    PubMed

    Navarro, M; Pichini, S; Farré, M; Ortuño, J; Roset, P N; Segura, J; de la Torre, R

    2001-10-01

    Saliva is an alternative biologic matrix for drugs-of-abuse testing that offers the advantages of noninvasive, rapid, and easy sampling. We studied the excretion profile of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites in both saliva and plasma, as well the effect of the drug on salivary pH. Saliva and plasma samples were obtained from eight healthy MDMA consumers after ingestion of a single 100-mg dose of the drug. Concentrations of MDMA and its main metabolites, 3,4-methylenedioxyamphetamine (MDA) and 4-hydroxy-3-methoxymethamphetamine (HMMA), in saliva and plasma were measured by gas chromatography-mass spectrometry. Apparent pharmacokinetic parameters for MDMA in saliva were estimated, and the saliva-to-plasma ratio at each time interval was calculated and correlated with salivary pH. MDMA, MDA, and HMMA were detected in saliva. Salivary concentrations of MDMA were 1728.9-6510.6 microg/L and peaked at 1.5 h after drug intake. This was followed by a progressive decrease, with a mean concentration of 126.2 microg/L at 24 h. The saliva-to-plasma ratio was 32.3-1.2, with a peak of 18.1 at 1.5 h after drug administration. Salivary pH seemed to be affected by MDMA administration; pH values decreased by 0.6 units (mean pH values of 6.9 and 6.8 at 1.5 and 4 h after drug administration vs predose pH of 7.4). Measurement of MDMA in saliva is a valuable alternative to determination of plasma drug concentrations in both clinical and toxicologic studies. On-site testing is also facilitated by noninvasive and rapid collection of salivary specimens.

  17. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  18. Rearing two fruit flies pests on artificial diet with variable pH.

    PubMed

    Dias, N P; Nava, D E; Smaniotto, G; Garcia, M S; Valgas, R A

    2018-04-23

    Fruit flies (Diptera: Tephritidae) are considered the main fruit pests worldwide. In Brazil, two species are predominant: the South American fruit fly, Anastrepha fraterculus and the Mediterranean fruit fly, Ceratitis capitata. In this study, we evaluated the effect of artificial diets with variable pH in their larval development and adult performance. The experiments were carried out in the laboratory at 25 ± 2 °C, 70 ± 10% RH and 12:12h (L:D) photoperiod. Semisolid diets with pH values of 6.0, 5.0, 4.0, 3.0, 2.0, 1.5, and 1.0, adjusted by adding hydrochloric acid were tested. Results indicated that the diet with pH 6.0 did not support larval development of both species of fruit fly. Diets with greater acidic pH values did not allow egg, larvae or pupae development and adult reproduction of A. fraterculus. For C. capitata , the pH of artificial diet exerts greater influence compared to A. fraterculus on the duration and viability of the larval stage, number of pupae, sex ratio and longevity of males.

  19. Detecting activity-evoked pH changes in human brain

    PubMed Central

    Magnotta, Vincent A.; Heo, Hye-Young; Dlouhy, Brian J.; Dahdaleh, Nader S.; Follmer, Robin L.; Thedens, Daniel R.; Welsh, Michael J.; Wemmie, John A.

    2012-01-01

    Localized pH changes have been suggested to occur in the brain during normal function. However, the existence of such pH changes has also been questioned. Lack of methods for noninvasively measuring pH with high spatial and temporal resolution has limited insight into this issue. Here we report that a magnetic resonance imaging (MRI) strategy, T1 relaxation in the rotating frame (T1ρ), is sufficiently sensitive to detect widespread pH changes in the mouse and human brain evoked by systemically manipulating carbon dioxide or bicarbonate. Moreover, T1ρ detected a localized acidosis in the human visual cortex induced by a flashing checkerboard. Lactate measurements and pH-sensitive 31P spectroscopy at the same site also identified a localized acidosis. Consistent with the established role for pH in blood flow recruitment, T1ρ correlated with blood oxygenation level-dependent contrast commonly used in functional MRI. However, T1ρ was not directly sensitive to blood oxygen content. These observations indicate that localized pH fluctuations occur in the human brain during normal function. Furthermore, they suggest a unique functional imaging strategy based on pH that is independent of traditional functional MRI contrast mechanisms. PMID:22566645

  20. Employability of genetic counselors with a PhD in genetic counseling.

    PubMed

    Wallace, Jody P; Myers, Melanie F; Huether, Carl A; Bedard, Angela C; Warren, Nancy Steinberg

    2008-06-01

    The development of a PhD in genetic counseling has been discussed for more than 20 years, yet the perspectives of employers have not been assessed. The goal of this qualitative study was to gain an understanding of the employability of genetic counselors with a PhD in genetic counseling by conducting interviews with United States employers of genetic counselors. Study participants were categorized according to one of the following practice areas: academic, clinical, government, industry, laboratory, or research. All participants were responsible for hiring genetic counselors in their institutions. Of the 30 employers interviewed, 23 envisioned opportunities for individuals with a PhD degree in genetic counseling, particularly in academic and research settings. Performing research and having the ability to be a principal investigator on a grant was the primary role envisioned for these individuals by 22/30 participants. Employers expect individuals with a PhD in genetic counseling to perform different roles than MS genetic counselors with a master's degree. This study suggests there is an employment niche for individuals who have a PhD in genetic counseling that complements, and does not compete with, master's prepared genetic counselors.

  1. pH dynamics in sewers and its modeling.

    PubMed

    Sharma, Keshab; Ganigue, Ramon; Yuan, Zhiguo

    2013-10-15

    pH variation in sewers has a significant effect on hydrogen sulfide production and emissions, and hence its accurate prediction is critical for the optimization of mitigation strategies. In this study, the nature and dynamics of pH variation in a sewer system is examined. Three sewer systems collecting domestic wastewater were monitored, with pH in all cases showing large diurnal variations. pH in fresh sewage in all three cases had a very similar trend with maximum pH in the range of 8.5-8.7. pH variation in fresh sewage followed the same pattern as the sewage flow rate, suggesting that sewage pH is influenced by household water use. Nitrogen content of the wastewater was found to be the most influential factor causing pH variation in fresh sewage, with the total ammonium concentration variation well correlated with the pH variation. A methodology for predicting pH variation in sewers is developed and calibration protocols proposed. The methodology, which is based on the concept of charge balance, was validated using titration curves and field pH data. Measurement of the total ammonium concentration in fresh sewage was found necessary and adequate for the calibration of the charge balance-based pH model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Evaluation of vaginal pH for detection of bacterial vaginosis

    PubMed Central

    Hemalatha, R.; Ramalaxmi, Baru Anantha; Swetha, Eluru; Balakrishna, N.; Mastromarino, Paola

    2013-01-01

    Background & objectives: Bacterial vaginosis (BV) is highly prevalent among women in reproductive age group. Little information exists on routine vaginal pH measurement in women with BV. We undertook this study to assess the utility of vaginal pH determination for initial evaluation of bacterial vaginosis. Methods: In this cross-sectional study vaginal swabs were collected from women with complaints of white discharge, back ache and pain abdomen attending a government hospital and a community health clinic, and subjected to vaginal pH determination, Gram stain, wet mount and whiff test. Nugent score and Amsel criteria were used for BV confirmation. Results: Of the 270 women included in the analysis, 154 had BV based on Nugents’ score. The mean vaginal pH in women with BV measured by pH strips and pH glove was 5 and 4.9, respectively. The vaginal pH was significantly higher in women with BV. Vaginal discharge was prevalent in 84.8 per cent women, however, only 56.8 per cent of these actually had BV by Nugent score (NS). Presence of clue cells and positive whiff test were significant for BV. Vaginal pH >4.5 by pH strips and pH Glove had a sensitivity of 72 and 79 per cent and specificity of 60 and 53 per cent, respectively to detect BV. Among the combination criteria, clue cells and glove pH >4.5 had highest sensitivity and specificity to detect BV. Interpretation & conclusions: Vaginal pH determination is relatively sensitive, but less specific in detecting women with BV. Inclusion of whiff test along with pH test reduced the sensitivity, but improved specificity. Both, the pH strip and pH glove are equally suitable for screening women with BV on outpatient basis. PMID:24135180

  3. High-Resolution Measurement of the Turbulent Frequency-Wavenumber Power Spectrum in a Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Qian, T. M.; Mauel, M. E.

    2017-10-01

    In a laboratory magnetosphere, plasma is confined by a strong dipole magnet, where interchange and entropy mode turbulence can be studied and controlled in near steady-state conditions. Whole-plasma imaging shows turbulence dominated by long wavelength modes having chaotic amplitudes and phases. Here, we report for the first time, high-resolution measurement of the frequency-wavenumber power spectrum by applying the method of Capon to simultaneous multi-point measurement of electrostatic entropy modes using an array of floating potential probes. Unlike previously reported measurements in which ensemble correlation between two probes detected only the dominant wavenumber, Capon's ``maximum likelihood method'' uses all available probes to produce a frequency-wavenumber spectrum, showing the existence of modes propagating in both electron and ion magnetic drift directions. We also discuss the wider application of this technique to laboratory and magnetospheric plasmas with simultaneous multi-point measurements. Supported by NSF-DOE Partnership in Plasma Science Grant DE-FG02-00ER54585.

  4. Empirical algorithms to estimate water column pH in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Williams, N. L.; Juranek, L. W.; Johnson, K. S.; Feely, R. A.; Riser, S. C.; Talley, L. D.; Russell, J. L.; Sarmiento, J. L.; Wanninkhof, R.

    2016-04-01

    Empirical algorithms are developed using high-quality GO-SHIP hydrographic measurements of commonly measured parameters (temperature, salinity, pressure, nitrate, and oxygen) that estimate pH in the Pacific sector of the Southern Ocean. The coefficients of determination, R2, are 0.98 for pH from nitrate (pHN) and 0.97 for pH from oxygen (pHOx) with RMS errors of 0.010 and 0.008, respectively. These algorithms are applied to Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemical profiling floats, which include novel sensors (pH, nitrate, oxygen, fluorescence, and backscatter). These algorithms are used to estimate pH on floats with no pH sensors and to validate and adjust pH sensor data from floats with pH sensors. The adjusted float data provide, for the first time, seasonal cycles in surface pH on weekly resolution that range from 0.05 to 0.08 on weekly resolution for the Pacific sector of the Southern Ocean.

  5. Continuous measurement of reticuloruminal pH values in dairy cows during the transition period from barn to pasture feeding using an indwelling wireless data transmitting unit.

    PubMed

    Gasteiner, J; Horn, M; Steinwidder, A

    2015-04-01

    This study was performed to investigate the effect of the transition from barn feeding to pasture on the pattern of reticuloruminal pH values in 8 multiparous dairy cows. A indwelling wireless data transmitting system for pH measurement was given to 8 multiparous cows orally. Reticuloruminal pH values were measured every 600 s over a period of 42 days. After 7 days of barn feeding (period 1), all of the animals were pastured with increasing grazing times from 2 to 7 h/day over 7 days (period 2). From day 15 to day 21 (period 3), the cows spent 7 h/day on pasture. Beginning on day 22, the animals had 20 h/day access to pasture (day and night grazing). To study reticuloruminal adaptation to pasture feeding, the phase of day and night grazing was subdivided into another 3 weekly periods (periods 4-6). Despite a mild transition period from barn feeding to pasture, significant effects on reticuloruminal pH values were observed. During barn feeding, the mean reticuloruminal pH value for all of the cows was 6.44 ± 0.14, and the pH values decreased significantly (p < 0.001) during period 2 and 3 to 6.24 ± 0.17 and 6.21 ± 0.19 respectively. During periods 4, 5 and 6, the reticuloruminal pH values increased again (pH 6.25 ± 0.22; pH 6.31 ± 0.17; pH 6.37 ± 0.16). Our results showed that the animals had significantly lowered reticuloruminal pH during the periods of feed transition from barn to pasture feeding. Despite these significant changes, the decrease was not harmful, as indicated by data of feed intake and milk production. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  6. LABORATORY MEASUREMENTS OF WHITE DWARF PHOTOSPHERIC SPECTRAL LINES: Hβ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falcon, Ross E.; Gomez, T. A.; Montgomery, M. H.

    2015-06-20

    We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. Here we present time-resolved measurements of Hβ and fit this line using different theoretical line profiles to diagnose electron density, n{sub e}, and n = 2 level population, n{sub 2}. Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, wemore » infer a continuous range of electron densities increasing from n{sub e} ∼ 4 to ∼30 × 10{sup 16} cm{sup −3} throughout a 120-ns evolution of our plasma. Also, we observe n{sub 2} to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within ∼55 ns to become consistent with LTE. This supports our electron-temperature determination of T{sub e} ∼ 1.3 eV (∼15,000 K) after this time. At n{sub e} ≳ 10{sup 17} cm{sup −3}, we find that computer-simulation-based line-profile calculations provide better fits (lower reduced χ{sup 2}) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. This work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines.« less

  7. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study.

    PubMed

    Lee, Jungmin; Durst, Robert W; Wrolstad, Ronald E

    2005-01-01

    This collaborative study was conducted to determine the total monomeric anthocyanin concentration by the pH differential method, which is a rapid and simple spectrophotometric method based on the anthocyanin structural transformation that occurs with a change in pH (colored at pH 1.0 and colorless at pH 4.5). Eleven collaborators representing commercial laboratories, academic institutions, and government laboratories participated. Seven Youden pair materials representing fruit juices, beverages, natural colorants, and wines were tested. The repeatability relative standard deviation (RSDr) varied from 1.06 to 4.16%. The reproducibility relative standard deviation (RSDR) ranged from 2.69 to 10.12%. The HorRat values were < or = 1.33 for all materials. The Study Director recommends that the method be adopted Official First Action.

  8. A field and laboratory investigation of acid effects on largemouth bass, rock bass, black crappie, and yellow perch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, J.G.; McCormick, J.H.; Swenson, W.A.

    1992-09-01

    One-half of Little Rock Lake, a small seepage lake in north-central Wisconsin, was gradually acidified by additions of sulfuric acid between August 1983 and November 1990. The ambient pH (6.1) of the lake was reduced at successive 2-year intervals to pH 5.6, 5.1, and 4.7. Responses of largemouth bass Micropterus salmoides, rock bass Ambloplites rupestris, black crappie Pomoxis nigromaculatus, and yellow perch Perca flavescens populations to the pH reductions were recorded and compared to the responses of these species during in situ bioassays and laboratory toxicity tests on embryos and larvae. Laboratory results obtained for largemouth bass and rock bassmore » underestimated, black crappie results overestimated, and yellow perch results were similar to effects observed in field studies. In situ bioassays predicted field responses better than did laboratory toxicity tests. Laboratory results showed that monomeric Al concentrations of approximately 50 [mu]g/L, which were comparable to Al concentrations in the acidified half of the lake, altered low-pH toxicity. Reduced recruitment was observed in field populations at higher pH than that at which adult mortality was observed. The results indicate that laboratory toxicity tests with early life stages may not accurately predict field population responses and that results from laboratory tests should be field-validated whenever possible. 42 refs., 2 figs., 7 tabs.« less

  9. Implementing and measuring the level of laboratory service integration in a program setting in Nigeria.

    PubMed

    Mbah, Henry; Negedu-Momoh, Olubunmi Ruth; Adedokun, Oluwasanmi; Ikani, Patrick Anibbe; Balogun, Oluseyi; Sanwo, Olusola; Ochei, Kingsley; Ekanem, Maurice; Torpey, Kwasi

    2014-01-01

    The surge of donor funds to fight HIV&AIDS epidemic inadvertently resulted in the setup of laboratories as parallel structures to rapidly respond to the identified need. However these parallel structures are a threat to the existing fragile laboratory systems. Laboratory service integration is critical to remedy this situation. This paper describes an approach to quantitatively measure and track integration of HIV-related laboratory services into the mainstream laboratory services and highlight some key intervention steps taken, to enhance service integration. A quantitative before-and-after study conducted in 122 Family Health International (FHI360) supported health facilities across Nigeria. A minimum service package was identified including management structure; trainings; equipment utilization and maintenance; information, commodity and quality management for laboratory integration. A check list was used to assess facilities at baseline and 3 months follow-up. Level of integration was assessed on an ordinal scale (0 = no integration, 1 = partial integration, 2 = full integration) for each service package. A composite score grading expressed as a percentage of total obtainable score of 14 was defined and used to classify facilities (≤ 80% FULL, 25% to 79% PARTIAL and <25% NO integration). Weaknesses were noted and addressed. We analyzed 9 (7.4%) primary, 104 (85.2%) secondary and 9 (7.4%) tertiary level facilities. There were statistically significant differences in integration levels between baseline and 3 months follow-up period (p<0.01). Baseline median total integration score was 4 (IQR 3 to 5) compared to 7 (IQR 4 to 9) at 3 months follow-up (p = 0.000). Partial and fully integrated laboratory systems were 64 (52.5%) and 0 (0.0%) at baseline, compared to 100 (82.0%) and 3 (2.4%) respectively at 3 months follow-up (p = 0.000). This project showcases our novel approach to measure the status of each laboratory on the integration continuum.

  10. Pb and Cd binding to natural freshwater biofilms developed at different pH: the important role of culture pH.

    PubMed

    Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong

    2013-01-01

    The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.

  11. Impact of pH on Urine Chemistry Assayed on Roche Analyzers.

    PubMed

    Cohen, R; Alkouri, R; Tostivint, I; Djiavoudine, S; Mestari, F; Dever, S; Atlan, G; Devilliers, C; Imbert-Bismut, F; Bonnefont-Rousselot, D; Monneret, D

    2017-10-01

    The pH may impact the concentration of certain urinary parameters, making urine pre-treatment questionable. 1) Determining the impact of pH in vitro on the urinary concentration of chemistry parameters assayed on Roche Modular analyzers. 2) Evaluating whether concentrations depended on pH in non-pretreated urines from patients. 1) The optimal urinary pH values for each measurement were: 6.3 ± 0.8 (amylase), < 5.5 (calcium and magnesium), < 6.5 (phosphorus), > 6.5 (uric acid). Urinary creatinine, sodium and urea concentrations were not pH-dependent. 2) In urines from patients, the pH was negatively associated with the concentration of some urinary parameters. However, concentrations of all the parameters were strongly and positively correlated with urinary creatinine, and relationships with pH were no longer evidenced after creatinine-normalization. The need for urine pH adjustment does not seem necessary when considering renal function. However, from an analytical and accreditation standpoint, the relationship between urine pH and several parameters justifies its measurement.

  12. The first laboratory measurements of sulfur ions sputtering water ice

    NASA Astrophysics Data System (ADS)

    Galli, André; Pommerol, Antoine; Vorburger, Audrey; Wurz, Peter; Tulej, Marek; Scheer, Jürgen; Thomas, Nicolas; Wieser, Martin; Barabash, Stas

    2015-04-01

    The upcoming JUpiter ICy moons Explorer mission to Europa, Ganymede, and Callisto has renewed the interest in the interaction of plasma with an icy surface. In particular, the surface release processes on which exosphere models of icy moons rely should be tested with realistic laboratory experiments. We therefore use an existing laboratory facility for space hardware calibration in vacuum to measure the sputtering of water ice due to hydrogen, oxygen, and sulfur ions at energies from 1 keV to 100 keV. Pressure and temperature are comparable to surface conditions encountered on Jupiter's icy moons. The sputter target is a 1cm deep layer of porous, salty water ice. Our results confirm theoretical predictions that the sputter yield from oxygen and sulfur ions should be similar. Thanks to the modular set-up of our experiment we can add further surface processes relevant for icy moons, such as electron sputtering, sublimation, and photodesorption due to UV light.

  13. The pH of beverages in the United States.

    PubMed

    Reddy, Avanija; Norris, Don F; Momeni, Stephanie S; Waldo, Belinda; Ruby, John D

    2016-04-01

    Dental erosion is the chemical dissolution of tooth structure in the absence of bacteria when the environment is acidic (pH < 4.0). Research indicates that low pH is the primary determinant of a beverage's erosive potential. In addition, citrate chelation of calcium ions may contribute to erosion at higher pH. The authors of this study determined the erosive potential measured by the pH of commercially available beverages in the United States. The authors purchased 379 beverages from stores in Birmingham, Alabama, and categorized them (for example, juices, sodas, flavored waters, teas, and energy drinks) and assessed their pH. They used a pH meter to measure the pH of each beverage in triplicate immediately after it was opened at a temperature of 25°C. The authors recorded the pH data as mean (standard deviation). Most (93%, 354 of 379) beverages had a pH of less than 4.0, and 7% (25 of 379) had a pH of 4.0 or more. Relative beverage erosivity zones based on studies of apatite solubility in acid indicated that 39% (149 of 379) of the beverages tested in this study were considered extremely erosive (pH < 3.0), 54% (205 of 379) were considered erosive (pH 3.0 to 3.99), and 7% (25 of 379) were considered minimally erosive (pH ≥ 4.0). This comprehensive pH assessment of commercially available beverages in the United States found that most are potentially erosive to the dentition. This study's findings provide dental clinicians and auxiliaries with information regarding the erosive potential of commercially available beverages. Specific dietary recommendations for the prevention of dental erosion may now be developed based on the patient's history of beverage consumption. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  14. Potential benefits of pH 8.8 alkaline drinking water as an adjunct in the treatment of reflux disease.

    PubMed

    Koufman, Jamie A; Johnston, Nikki

    2012-07-01

    At the cellular level, tissue-bound pepsin is fundamental to the pathophysiologic mechanism of reflux disease, and although the thresholds for laryngeal damage in laryngopharyngeal reflux and for esophageal damage in gastroesophageal reflux disease differ, both forms of damage are due to pepsin, which requires acid for its activation. In addition, human pepsin remains stable at pH 7.4 and may be reactivated by hydrogen ions from any source. Thus, most tap and bottled waters (typically pH 6.7 to 7.4) would not be expected to affect pepsin stability. The purposes of these in vitro studies were to investigate whether artesian well water containing natural bicarbonate (pH 8.8) might irreversibly denature (inactivate) human pepsin, and to establish its potential acid-buffering capacity. Laboratory studies were performed to determine whether human pepsin was inactivated by pH 8.8 alkaline water. In addition, the buffering capacity of the alkaline water was measured and compared to that of the two most popular commercially available bottled waters. The pH 8.8 alkaline water irreversibly inactivated human pepsin (in vitro), and its hydrochloric acid-buffering capacity far exceeded that of the conventional-pH waters. Unlike conventional drinking water, pH 8.8 alkaline water instantly denatures pepsin, rendering it permanently inactive. In addition, it has good acid-buffering capacity. Thus, the consumption of alkaline water may have therapeutic benefits for patients with reflux disease.

  15. Efficient production of hyperpolarized bicarbonate by chemical reaction on a DNP precursor to measure pH.

    PubMed

    Ghosh, Rajat K; Kadlecek, Stephen J; Pourfathi, Mehrdad; Rizi, Rahim R

    2015-11-01

    To produce hyperpolarized bicarbonate indirectly via chemical reaction from a hyperpolarized precursor and utilize it for the simultaneous regional measurement of metabolism and pH. Alpha keto carboxylic acids are first hyperpolarized by dissolution dynamic nuclear polarization (DNP). These precursor molecules are rapidly reacted with hydrogen peroxide (H2O2) to decarboxylate the species, resulting in new target molecules. Unreacted H2O2 is removed from the system by reaction with sulfite. Interrogation of the ratio of dissolved carbon dioxide (CO2) to bicarbonate can be used to determine pH. Conversion of hyperpolarized alpha keto acids to bicarbonate and CO2 results in a minimal loss of the spin order. The reaction can be conducted to completion within seconds and preserves the nuclear spin polarization. Through a rapid chemical reaction, we can conserve the nuclear spin order of a DNP precursor to generate multiple hyperpolarized bioprobes otherwise unamenable to polarization. This indirect technique for the production of hyperpolarized agents can be applied to different precursor compounds to generate additional novel probes. © 2014 Wiley Periodicals, Inc.

  16. Measurement of the fast neutron background at the China Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Du, Q.; Lin, S. T.; Liu, S. K.; Tang, C. J.; Wang, L.; Wei, W. W.; Wong, H. T.; Xing, H. Y.; Yue, Q.; Zhu, J. J.

    2018-05-01

    We report on the measurements of the fluxes and spectra of the environmental fast neutron background at the China Jinping Underground Laboratory (CJPL) with a rock overburden of about 6700 meters water equivalent, using a liquid scintillator detector doped with 0.5% gadolinium. The signature of a prompt nuclear recoil followed by a delayed high energy γ-ray cascade is used to identify neutron events. The large energy deposition of the delayed γ-rays from the (n , γ) reaction on gadolinium, together with the excellent n- γ discrimination capability provides a powerful background suppression which allows the measurement of a low intensity neutron flux. The neutron flux of (1 . 51 ± 0 . 03(stat .) ± 0 . 10(syst .)) × 10-7cm-2s-1 in the energy range of 1-10 MeV in the Hall A of CJPL was measured based on 356 days of data. In the same energy region, measurement with the same detector placed in a room surrounding with one meter thick polyethylene shielding gives a significantly lower flux of (4 . 9 ± 0 . 9(stat .) ± 0 . 5(syst .)) × 10-9cm-2s-1 with 174 days of data. This represents a measurement of the lowest environmental fast neutron background among the underground laboratories in the world, prior to additional experiment-specific attenuation. Additionally, the fast neutron spectra both in the Hall A and the polyethylene room were reconstructed with the help of GEANT4 simulations.

  17. Teaching pH Measurements with a Student-Assembled Combination Quinhydrone Electrode

    ERIC Educational Resources Information Center

    Scholz, Fritz; Steinhardt, Tim; Kahlert, Heike; Porksen, Jens R.; Behnert, Jurgen

    2005-01-01

    A simple combination pH electrode consisting of a solid-state quinhydrone sensor and a solid-state quinhydrone reference electrode is described. Both electrodes are essentially rubber stoppers that are inserted into a special doublewalled holder.

  18. Birth asphyxia measured by the pH value of the umbilical cord blood may predict an increased risk of attention deficit hyperactivity disorder.

    PubMed

    Mikkelsen, Susanne Hvolgaard; Olsen, Jørn; Bech, Bodil Hammer; Wu, Chunsen; Liew, Zeyan; Gissler, Mika; Obel, Carsten; Arah, Onyebuchi

    2017-06-01

    Although birth asphyxia is a major risk factor for neonatal and childhood morbidity and mortality, it has not been investigated much in relation to attention deficit hyperactivity disorder (ADHD). We examined whether birth asphyxia measured by the pH of the blood in the umbilical artery cord was associated with childhood ADHD. A population-based cohort of 295 687 children born in Finland between 1991 and 2002 was followed until December 31, 2007. ADHD was identified by the International Classification of Diseases, 10th edition, as a diagnosis of hyperkinetic disorder. We examined the risk of ADHD with varying pH values using Cox regression, taking time trends into consideration. When compared to the reference group, a pH value below 7.10 was significantly associated with an increased risk of ADHD. The strongest risks were observed among children with a pH value <7.15 and a gestational age of <32 weeks. The pH value did not contribute much to the risk among children with an Apgar score of 0-3. Birth asphyxia, defined by low pH value, may predict an increased risk of ADHD in childhood. The association between the pH value and ADHD was homogenous when stratified by gestational age and the Apgar score. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  19. Sequim Marine Research Laboratory routine environmental measurements during CY-1978. [Monitoring for laboratory-related radioactivity and pollutants in environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houston, J.R.; Blumer, P.J.

    1979-03-01

    Environmental data collected during 1978 in the vicinity of the Marine Research Laboratory show continued compliance with all applicable state and federal regulations and furthermore show no detectable change from conditions that existed in previous years. Samples collected for radiological analysis included soil, drinking water, bay water, clams, and seaweed. Radiation dose rates at 1 meter aboveground were also measured.

  20. Core outcome measures for opioid abuse liability laboratory assessment studies in humans: IMMPACT recommendations

    PubMed Central

    Comer, Sandra D.; Zacny, James P.; Dworkin, Robert H.; Turk, Dennis C.; Bigelow, George E.; Foltin, Richard W.; Jasinski, Donald R.; Sellers, Edward M.; Adams, Edgar H.; Balster, Robert; Burke, Laurie B.; Cerny, Igor; Colucci, Robert D.; Cone, Edward; Cowan, Penney; Farrar, John T.; Haddox, J. David; Haythornthwaite, Jennifer A.; Hertz, Sharon; Jay, Gary W.; Johanson, Chris-Ellyn; Junor, Roderick; Katz, Nathaniel P.; Klein, Michael; Kopecky, Ernest A.; Leiderman, Deborah B.; McDermott, Michael P.; O’Brien, Charles; O’Connor, Alec B.; Palmer, Pamela P.; Raja, Srinivasa N.; Rappaport, Bob A.; Rauschkolb, Christine; Rowbotham, Michael C.; Sampaio, Cristina; Setnik, Beatrice; Sokolowska, Marta; Stauffer, Joseph W.; Walsh, Sharon L.

    2012-01-01

    A critical component in development of opioid analgesics is assessment of their abuse liability (AL). Standardization of approaches and measures used in assessing AL has the potential to facilitate comparisons across studies, research laboratories, and drugs. The goal of this report is to provide consensus recommendations regarding core outcome measures for assessing abuse potential of opioid medications in humans in a controlled laboratory setting. Although many of the recommended measures are appropriate for assessing the AL of medications from other drug classes, the focus here is on opioid medications because they present unique risks from both physiological (e.g., respiratory depression, physical dependence) and public health (e.g., individuals in pain) perspectives. A brief historical perspective on AL testing is provided and then those measures that can be considered primary and secondary outcomes and possible additional outcomes in AL assessment are discussed. These outcome measures include: (1) subjective effects (some of which comprise the primary outcome measures, including drug liking); (2) physiological responses; (3) drug self-administration behavior; and (4) cognitive and psychomotor performance. Prior to presenting recommendations for standardized approaches and measures to be used in AL assessments, the appropriateness of using these measures in clinical trials with patients in pain is discussed. PMID:22998781

  1. High-resolution ocean pH dynamics in four subtropical Atlantic benthic habitats

    NASA Astrophysics Data System (ADS)

    Hernández, C. A.; Clemente, S.; Sangil, C.; Hernández, J. C.

    2015-12-01

    Oscillations of ocean pH are largely unknown in coastal environments and ocean acidification studies often do not account for natural variability yet most of what is known about marine species and populations is found out via studies conducted in near shore environments. Most experiments designed to make predictions about future climate change scenarios are carried out in coastal environments with no research that takes into account the natural pH variability. In order to fill this knowledge gap and to provide reliable measures of pH oscillation, seawater pH was measured over time using moored pH sensors in four contrasting phytocenoses typical of the north Atlantic subtropical region. Each phytocenosis was characterized by its predominant engineer species: (1) Cystoseira abies-marina, (2) a mix of gelidiales and geniculate corallines, (3) Lobophora variegata, and (4) encrusting corallines. The autonomous pH measuring systems consisted of a pH sensor; a data logger and a battery encased in a waterproof container and allowed the acquisition of high-resolution continuous pH data at each of the study sites. The pH variation observed ranged by between 0.09 and 0.24 pHNBS units. A clear daily variation in seawater pH was detected at all the studied sites (0.04-0.12 pHNBS units). Significant differences in daily pH oscillations were also observed between phytocenoses, which shows that macroalgal communities influence the seawater pH in benthic habitats. Natural oscillations in pH must be taken into account in future ocean acidification studies to put findings in perspective and for any ecological recommendations to be realistic.

  2. The Microcomputer as an Educational Laboratory Workstation.

    ERIC Educational Resources Information Center

    Ciociolo, James M.

    1983-01-01

    Describes laboratory workstations which provide direct connection for monitoring and control of analytical instruments such as pH meters, spectrophotometers, temperature, and chromatographic instruments. This is accomplished through analog/digital and digital/analog converters for analog signals and input/output devices for on/off signals.…

  3. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  4. Natural variance in pH as a complication in detecting acidification of lakes

    USGS Publications Warehouse

    Turk, J.T.

    1988-01-01

    Natural variance in the pH of three dilute lakes in the Flat Tops Wilderness Area, Colorado, complicates the detection of acidification. Variations in pH during July-September of 1983 were: 0.95 (Ned Wilson Lake), 1.36 (Upper Island Lake), and 1.53 (Oyster Lake). Mean diurnal variations in pH during 1983 were: 0.37 (Ned Wilson Lake), 0.54 (Upper Island Lake), and 0.39 (Oyster Lake). Replicate pH measurements indicate that pH can be measured with a mean variance due to measurement error of ?? 0.005. Regression analysis indicates that samples collected on the same day of different years may differ because of time of day and percentage of cloud cover. Differences in wind duration and intensity and primary productivity also may cause the pH to differ between years. Such differences can be either random or systematic. Comparisons of pH among 3 yr of data from Ned Wilson Lake indicate that natural variations in pH are much larger than variations in Colorado Lakes previously attributed to acidification by precipitation.

  5. Environmental Measurements Laboratory, annual report 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krey, P.W.; Heit, M.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron,more » and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues.« less

  6. Environmental Measurements Laboratory 1994 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chieco, N.A.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, andmore » related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML`s mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues.« less

  7. Axillary pH and influence of deodorants.

    PubMed

    Stenzaly-Achtert, S.; Schölermann, A.; Schreiber, J.; Diec, K. H.; Rippke, F.; Bielfeldt, S.

    2000-05-01

    BACKGROUND/AIMS: In moist intertriginous regions, such as the armpit, the pH value is physiologically higher than in other skin regions. The regulation of the axillary pH-value was examined in an open study with 48 subjects in three groups with n=16 each. METHODS: In the first 10 days (run-in) the subjects received a standard treatment in the axilla with shaving, cleansing and application of a pH-neutral deodorant. This was followed by a 5 day treatment period with the three test products (pH5 Eucerin(R) Deodorant Roll-on, Deodorant Balsam Spray, Deodorant Cream). The study was concluded by a wash-out period with procedures identical to the run-in phase. The pH was measured with a calibrated pH-meter. RESULTS: A significant pH reduction was shown during the treatment period when compared to the run-in phase. The Deodorant Roll-on induced a reduction of the mean pH values from 6.1 to 5.3, the Deodorant Balsam Spray from 6.5 to 5.7 and the Deodorant Cream from 6.2 to 5.3. During the wash-out period all pH values returned to baseline. CONCLUSION: All of the deodorants tested demonstrated a significant reduction in axillary pH. There is evidence that a high skin pH promotes the growth of several microorganisms that produce malodor. Therefore, the regulation of pH may contribute to the deodorant efficacy of the test products.

  8. Tight Coupling of Astrocyte pH Dynamics to Epileptiform Activity Revealed by Genetically Encoded pH Sensors.

    PubMed

    Raimondo, Joseph V; Tomes, Hayley; Irkle, Agnese; Kay, Louise; Kellaway, Lauriston; Markram, Henry; Millar, Robert P; Akerman, Colin J

    2016-06-29

    Astrocytes can both sense and shape the evolution of neuronal network activity and are known to possess unique ion regulatory mechanisms. Here we explore the relationship between astrocytic intracellular pH dynamics and the synchronous network activity that occurs during seizure-like activity. By combining confocal and two-photon imaging of genetically encoded pH reporters with simultaneous electrophysiological recordings, we perform pH measurements in defined cell populations and relate these to ongoing network activity. This approach reveals marked differences in the intracellular pH dynamics between hippocampal astrocytes and neighboring pyramidal neurons in rodent in vitro models of epilepsy. With three different genetically encoded pH reporters, astrocytes are observed to alkalinize during epileptiform activity, whereas neurons are observed to acidify. In addition to the direction of pH change, the kinetics of epileptiform-associated intracellular pH transients are found to differ between the two cell types, with astrocytes displaying significantly more rapid changes in pH. The astrocytic alkalinization is shown to be highly correlated with astrocytic membrane potential changes during seizure-like events and mediated by an electrogenic Na(+)/HCO3 (-) cotransporter. Finally, comparisons across different cell-pair combinations reveal that astrocytic pH dynamics are more closely related to network activity than are neuronal pH dynamics. This work demonstrates that astrocytes exhibit distinct pH dynamics during periods of epileptiform activity, which has relevance to multiple processes including neurometabolic coupling and the control of network excitability. Dynamic changes in intracellular ion concentrations are central to the initiation and progression of epileptic seizures. However, it is not known how changes in intracellular H(+) concentration (ie, pH) differ between different cell types during seizures. Using recently developed pH-sensitive proteins, we

  9. Creating and measuring white dwarf photospheres in a terrestrial laboratory

    NASA Astrophysics Data System (ADS)

    Falcon, Ross Edward

    2014-08-01

    As the ultimate fate of nearly all stars, including our Sun, white dwarfs (WDs) hold rich and informative histories in their observable light. To determine a fundamental parameter of WDs, mass, we perform the first measurement of the average gravitational redshift of an ensemble of WDs. We find a larger mean mass than that determined from the primary and expansive technique known as the spectroscopic method. The potential inaccuracy of this method has broad astrophysical implications, including for our understanding of Type 1a supernova progenitors and for constraining the age of the Universe. This motivates us to investigate the WD atmosphere models used with the spectroscopic method, particularly the input theoretical line profiles, by developing a new experimental platform to create plasmas at WD photospheric conditions (Te~1 eV, ne~1017 cm-3). Instead of observing WD spectra to infer the plasma conditions at the surface of the star, we set the conditions and measure the emergent spectra in the laboratory. X-rays from a z-pinch dynamic hohlraum generated at the Z Pulsed Power Facility at Sandia National Laboratories irradiate a gas cell to initiate formation of a large (120x20x10 mm or 24 cm3) plasma. We observe multiple Balmer lines from our plasma in emission and in absorption simultaneously along relatively long (~120 mm) lines of sight perpendicular to the heating radiation. Using a large, radiation-driven plasma aides us to achieve homogeneity along our observed lines of sight. With time-resolved spectroscopy we measure lines at a range of electron densities that spans an order of magnitude, and we do this within one pulsed power shot experiment. Observing our plasma in absorption not only provides the signal-to-noise to measure relative line shapes, it allows us to measure relative line strengths because the lines share the same lower level population. This constrains the theoretical reduction factors used to describe ionization potential depression or the

  10. Density Measurement of Tridecane by using Hydrostatic Weighing System at Density Laboratory, NML-SIRIM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nor, Mohd. Fazrul Hisyam Mohd.; Othman, Hafidzah; Abidin, Abd. Rashid Zainal

    2009-07-07

    This paper presents the density measurement of tridecane by using hydrostatic weighing system, which is currently practised in Density Laboratory of National Metrology Laboratory (NML), SIRIM Berhad. This system weighed the crystal sphere while the crystal sphere was immersed in the tridecane. The volume and mass in air of the crystal sphere were calibrated at KRISS, Korea. The uncertainties of volume and mass in air of the crystal sphere were 4 ppm and 0.3 ppm respectively.

  11. A Genetically Encoded Ratiometric pH Probe: Wavelength Regulation-Inspired Design of pH Indicators.

    PubMed

    Berbasova, Tetyana; Tahmasebi Nick, Setare; Nosrati, Meisam; Nossoni, Zahra; Santos, Elizabeth M; Vasileiou, Chrysoula; Geiger, James H; Borhan, Babak

    2018-04-12

    Mutants of human cellular retinol-binding protein II (hCRBPII) were engineered to bind a julolidine retinal analogue for the purpose of developing a ratiometric pH sensor. The design relied on the electrostatic influence of a titratable amino acid side chain, which affects the absorption and, thus, the emission of the protein/fluorophore complex. The ratio of emissions obtained at two excitation wavelengths that correspond to the absorption of the two forms of the protein/fluorophore complex, leads to a concentration-independent measure of pH. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The procedures manual of the Environmental Measurements Laboratory. Volume 2, 28. edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chieco, N.A.

    1997-02-01

    This report contains environmental sampling and analytical chemistry procedures that are performed by the Environmental Measurements Laboratory. The purpose of environmental sampling and analysis is to obtain data that describe a particular site at a specific point in time from which an evaluation can be made as a basis for possible action.

  13. First-Principles pH Theory

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Zhang, S. B.

    2006-03-01

    Despite being one of the most important macroscopic measures and a long history even before the quantum mechanics, the concept of pH has rarely been mentioned in microscopic theories, nor being incorporated computationally into first-principles theory of aqueous solutions. Here, we formulate a theory for the pH dependence of solution formation energy by introducing the proton chemical potential as the microscopic counterpart of pH in atomistic solution models. Within the theory, the general acid-base chemistry can be cast in a simple pictorial representation. We adopt density-functional molecular dynamics to demonstrate the usefulness of the method by studying a number of solution systems including water, small solute molecules such as NH3 and HCOOH, and more complex amino acids with several functional groups. For pure water, we calculated the auto- ionization constant to be 13.2 with a 95 % accuracy. For other solutes, the calculated dissociation constants, i.e., the so- called pKa, are also in reasonable agreement with experiments. Our first-principles pH theory can be readily applied to broad solution chemistry problems such as redox reactions.

  14. Optical fibre PH sensor based on immobilized indicator

    NASA Astrophysics Data System (ADS)

    Cai, Defu; Cao, Qiang; Han, JingHong; Cai, Jine; Li, YaTing; Zhu, ZeMin; Fan, Jie; Gao, Ning

    1991-08-01

    An optical fiber pH sensor which has the immobilized pH sensitive indicator dye reagents on the tip of the optical fiber has been studied. The probe is made by covalently immobilizing the phenol red, bromine phenol blue, or bromothymol blue on the polyacrylamide microsphere fixed by polyterafluoroethylene (PTFE) film. A gap between the dye and optical fiber was used to make the diffusion of the hydrogen ions easier. The parameters of the optical fiber pH sensor have been given completely. The ranges of measurement are 3.0 - 5.0 pH, 7.0 - 8.5 pH, and 8.0 - 10.0 pH for bromine phenol blue, phenol red, and bromothymol blue, respectively. The sensitivity is 66.6 mV/pH. The probe has a precision of better than 0.55 pH. The linear correlation coefficient is 0.999. The response time is 1 - 2 min. The hysteresis is 0.52%. The repeatability is 0.013 mV, while the stability is 0.015 pH/h.

  15. Insights Regarding Ice Nucleating Particle Measurement Capabilities from Laboratory and Field Measurements During the Fifth International Ice Nucleation Workshop

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Mohler, O.; Cziczo, D. J.; Hiranuma, N.; Brooks, S. D.; Petters, M.

    2017-12-01

    Improvement in the ability to quantify the role of aerosols in primary ice formation in clouds is vital to improving prediction of natural and anthropogenic impacts on cold cloud properties and reducing uncertainties in climate predictions. A host of common and new methods for quantifying the atmospheric abundance of ice nucleating particles (INPs) have recently been developed. To realize the utility of such data for numerical model parameterization development and validation, it is important to understand similarities, differences, and biases in different methods. To achieve this goal, it is common to challenge instruments with a range of aerosol types in laboratory studies. Only a few comparisons have occurred in atmospheric situations. This presentation highlights comparisons made in laboratory and field phases of the Fifth International Ice Nucleation workshop (FIN) during 2015. The FIN-2 laboratory workshop was conducted at the AIDA facility of the Karlsruhe Institute of Technology, involving nine real-time INP instruments and several sampling methods for wet suspensions and filter collection and resuspension for INP measurements. The FIN-3 atmospheric activity was conducted at the Desert Research Institute's Storm Peak Laboratory (SPL), with a reduced set of participants. Lessons and insights were gained during analyses of data from both workshops regarding the capabilities and comparability of present ice nucleation measurement systems. The FIN-2 and FIN-3 results show typical one order of magnitude agreement within basic measurement types and overall for characterizing the concentrations (over several orders of magnitude dynamic range from -5 to -35 C) of a variety of INP types and ambient INPs active in the immersion-freezing mode. Discrepancies are least for lab sampling of natural soil particle INPs and greatest for materials with steep d[INP]/dT functions, such as K-feldspar or bacterial INPs processed warmer than -8 C. Varied reasons and implications

  16. Accurate VUV Laboratory Measurements of Fe III Transitions for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Blackwell-Whitehead, R. J.; Pickering, J. C.; Smillie, D.; Nave, G.; Szabo, C. I.; Smith, Peter L.; Nielsen, K. E.; Peters, G.

    2006-01-01

    We report preliminary measurements of Fe III spectra in the 1150 to 2500 A wavelength interval. Spectra have been recorded with an iron-neon Penning discharge lamp (PDL) between 1600 and 2500 A at Imperial College (IC) using high resolution Fourier (FT) transform spectroscopy. These FT spectrometer measurements were extended beyond 1600 A to 1150 A using high-resolution grating spectroscopy at the National Institute of Standards and Technology (NIST). These recorded spectra represent the first radiometrically calibrated measurements of a doubly-ionized iron-group element spectrum combining the techniques of vacuum ultraviolet FT and grating spectroscopy. The spectral range of the new laboratory measurements corresponds to recent HST/STIS observations of sharp-lined B stars and of Eta Carinae. The new improved atomic data can be applied to abundance studies and diagnostics of astrophysical plasmas.

  17. Assessment of the Impact of a New Guanidine Suppressor In NGS on F/H Laboratory Analyses For DWPF and Saltstone MCU Transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2013-04-29

    Implementation of the Next Generation Solvent (NGS) in the Modular Caustic-Side Solvent Extraction Unit (MCU) will now proceed with a new suppressor compound, 1,2,3-tris(3,7-dimethyloctyl)guanidine (TiDG), replacing the originally planned suppressor for NGS, 1,3-dicyclohexyl-2-(11-methyldodecyl) guanidine (DCiTG). The Savannah River National Laboratory (SRNL) was tasked with evaluating the potential impact to F/H Laboratory analyses supporting the Defense Waste Processing Facility (DWPF) Waste Acceptance Criteria (WAC) used to qualify transfers of MCU Strip Effluent (SE) into the facility and the Saltstone WAC used to qualify transfers of Tank 50 containing Decontaminated Salt Solution (DSS) from MCU into Saltstone. This assigned scope is coveredmore » by a Task Technical and Quality Assurance Plan (TTQAP). Previous impact evaluations were conducted when the DCiTG suppressor was planned for NGS and concluded that there was no impact to either the determination of MCU SE pH nor the analysis of Isopar® L carryover in the MCU SE and DSS streams. SRNL reported on this series of cross-check studies between the SRNL and F/H Laboratories. The change in suppressor from DCiTG to TiDG in the NGS should not impact the measurement of Isopar® L or pH in SE or DSS necessary to satisfy DWPF and Saltstone WAC (Tank 50) criteria, respectively. A statistical study of the low bias observed in Isopar® L measurements in both SRNL and F/H Laboratories may be necessary now that the final NGS composition is fixed in order to quantify the low bias so that a proper correction can be applied to measurements critical to the DWPF and Saltstone WACs. Depending upon the final DWPF WAC requirement put in place for SE pH, it could become necessary to implement an alternative ICP-AES measurement of boron. The current blended solvent system testing in SRNL should address any impacts to Isopar® L carryover into either the DSS or the SE. It is recommended that SRNL monitor the current blended

  18. Laboratory Simulation and Measurement of Instrument Drift in Quartz-Resonant Pressure Gauges

    NASA Astrophysics Data System (ADS)

    Sasagawa, G. S.; Zumberge, M. A.

    2017-12-01

    Marine geodesy uses ocean bottom pressure sensors to measure vertical deformation of the sea floor, including that due to volcanic inflation and subsidence, episodic tremor and slip, plate subduction, and deformation due to hydrocarbon extraction at offshore reservoirs. Instrumental drift is inherent in existing pressure sensors and introduce uncertainties in data interpretation. Different methods have been developed to control drift, using varying techniques and instrumentation. Laboratory measurements of sensor drift, under controlled conditions that simulate seafloor pressures and temperatures, would allow for evaluating pressure gauge drift and the efficacy of new drift control methods. We have constructed and operated a laboratory system to monitor the drift of 15 quartz resonant pressure gauges over a year. The temperature and pressure are maintained and controlled at approximately 5 °C and 1900 dbar. A deadweight tester was used to provide a reference signal at frequent intervals; the time series of reference pressure signals is a direct measure of each gauge's drift. Several other tests were conducted, including a) evaluation of a custom outgassing sensor used as proxy for instrument drift, b) determination of the oscillator drift in the pressure gauge signal conditioning electronics, and c) a test of ambient air pressure calibration, also known as the A-0-A method. First results will be presented.

  19. First laboratory high-temperature emissivity measurements of Venus analog measurements in the near-infrared atmospheric windows

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Smrekar, S. E.

    2014-12-01

    The permanent cloud cover of Venus prohibits observation of the surface with traditional imaging techniques over most of the visible spectral range. Venus' CO2 atmosphere is transparent exclusively in small spectral windows near 1 μm. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) team on the European Space Agency Venus-Express mission have recently used these windows successfully to map the southern hemisphere from orbit. VIRTIS is showing variations in surface brightness, which can be interpreted as variations in surface emissivity. Deriving surface composition from these variations is a challenging task. Comparison with laboratory analogue spectra are complicated by the fact that Venus has an average surface temperature of 730K. Mineral crystal structures and their resultant spectral signatures are notably affected by temperature, therefore any interpretations based on room temperature laboratory spectra database can be misleading. In order to support the interpretation of near-infrared data from Venus we have started an extensive measurement campaign at the Planetary Emissivity Laboratory (PEL, Institute of Planetary Research of the German Aerospace Center, Berlin). The PEL facility, which is unique in the world, allows emission measurements covering the 1 to 2 μm wavelength range at sample temperatures of up to 770K. Conciliating the expected emissivity variation between felsic and mafic minerals with Venera and VEGA geochemical data we have started with a set of five analog samples. This set includes basalt, gneiss, granodiorite, anorthosite and hematite, thus covering the range of mineralogies. Preliminary results show significant spectral contrast, thus allowing different samples to be distinguished with only 5 spectral points and validating the use of thermal emissivity for investigating composition. This unique new dataset from PEL not only allows interpretation of the Venus Express VIRTIS data but also provide a baseline for considering

  20. Atomic Calculations and Laboratory Measurements Relevant to X-ray Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Kallman, Tim; Bautista, M.; Palmeri, P.

    2007-01-01

    This viewgraph document reviews the atomic calculations and the measurements from the laboratory that are relevant to our understanding of X-Ray Warm Absorbers. Included is a brief discussion of the theoretical and the experimental tools. Also included is a discussion of the challenges, and calculations relevant to dielectronic recombination, photoionization cross sections, and collisional ionization. A review of the models is included, and the sequence that the models were applied.

  1. Laboratory Measurements of SO2 and N2 Absorption Spectra for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Stark, Glenn

    2003-01-01

    This laboratory project focuses on the following topics: 1) Measurement of SO2 ultraviolet absorption cross sections; and 2) N2 band and Line Oscillator Strengths and Line Widths in the 80 to 100 nm region. Accomplishments for these projects are summarized.

  2. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  3. COMPARATIVE STUDIES OF THREE METHODS FOR MEASURING PEPSIN ACTIVITY

    PubMed Central

    Loken, Merle K.; Terrill, Kathleen D.; Marvin, James F.; Mosser, Donn G.

    1958-01-01

    Comparison has been made of a simple method originated by Absolon and modified in our laboratories for assay of proteolytic activity using RISA (radioactive iodinated serum albumin—Abbott Laboratories), with the commonly used photometric methods of Anson and Kunitz. In this method, pepsin was incubated with an albumin substrate containing RISA, followed by precipitation of the undigested substrate with trichloroacetic acid and measurement of radioactive digestion products in the supernatant fluid. The I131—albumin bond was shown in the present studies to be altered only by the proteolytic activity, and not by the incubation procedures at various values of pH. Any free iodine present originally in the RISA was removed by a single passage through a resin column (amberlite IRA-400-C1). Pepsin was shown to be most stable in solution at a pH of 5.5. Activity of pepsin was shown to be maximal when it was incubated with albumin at a pH of 2.5. Pepsin activity was shown to be altered in the presence of various electrolytes. Pepsin activity measured by the RISA and Anson methods as a function of concentration or of time of incubation indicated that these two methods are in good agreement and are equally sensitive. Consistently smaller standard errors were obtained by the RISA method of pepsin assay than were obtained with either of the other methods. PMID:13587910

  4. [Clinical and laboratory characteristics of patients with pathologic chronic gastroesophageal reflux].

    PubMed

    Csendes, A; Burdiles, P; Maluenda, F; Cortés, C; Korn, O; Rojas, J; Tepper, P; Huertas, C; Sagastume, H; Puente, G; Quezada, F; Csendes, P

    1998-07-01

    Sixty percent of adults has typical symptoms of gastroesophageal reflux in Chile. To report the clinical and laboratory features of patients with gastroesophageal reflux. Five hundred thirty-four patients (255 male) with gastroesophageal reflux were included in a prospective protocol that included clinical analysis, manometry and endoscopy in all patients, barium swallow in 427, scintigraphy in 195, acid reflux test in 359, 24 h pH in 175, and differential potential of gastroesophageal mucosa in 73 patients. There was no correlation between the severity of symptoms and the endoscopical severity. Patients with Barret esophagus were 12 years older, were male in a greater proportion and had a higher proportion of manometrically incompetent sphincters than patients with esophageal reflux but without esophagitis or with erosive esophagitis. Severity of acid reflux, measured with 24 h pH monitoring was proportional to the endoscopical damage of the mucosa. There was a close relationship between the mucosal change limit determined with differential potentials and with endoscopy. No short esophagi were found. Patients with symptoms of gastroesophageal reflux must be assessed using several objective measures to determine the severity of their pathological alterations.

  5. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  6. Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner.

    PubMed

    Müller-Lutz, Anja; Khalil, Nadia; Schmitt, Benjamin; Jellus, Vladimir; Pentang, Gael; Oeltzschner, Georg; Antoch, Gerald; Lanzman, Rotem S; Wittsack, Hans-Jörg

    2014-12-01

    The objective of this study was to show the feasibility to perform Iopamidol-based pH imaging via clinical 3T magnetic resonance imaging (MRI) using chemical exchange saturation transfer (CEST) imaging with pulse train presaturation. The pulse train presaturation scheme of a CEST sequence was investigated for Iopamidol-based pH measurements using a 3T magnetic resonance (MR) scanner. The CEST sequence was applied to eight tubes filled with 100-mM Iopamidol solutions with pH values ranging from 5.6 to 7.0. Calibration curves for pH quantification were determined. The dependence of pH values on the concentration of Iopamidol was investigated. An in vivo measurement was performed in one patient who had undergone a previous contrast-enhanced computed tomography (CT) scan with Iopamidol. The pH values of urine measured with CEST MRI and with a pH meter were compared. In the measured pH range, pH imaging using CEST imaging with pulse train presaturation was possible. Dependence between the pH value and the concentration of Iopamidol was not observed. In the in vivo investigation, the pH values in the human bladder measured by the Iopamidol CEST sequence and in urine were consistent. Our study shows the feasibility of using CEST imaging with Iopamidol for quantitative pH mapping in vitro and in vivo on a 3T MR scanner.

  7. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    USGS Publications Warehouse

    Ross, Donald S.; Bailiey, Scott W; Briggs, Russell D; Curry, Johanna; Fernandez, Ivan J.; Fredriksen, Guinevere; Goodale, Christine L.; Hazlett, Paul W.; Heine, Paul R; Johnson, Chris E.; Larson, John T; Lawrence, Gregory B.; Kolka, Randy K; Ouimet, Rock; Pare, D; Richter, Daniel D.; Shirmer, Charles D; Warby, Richard A.F.

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from agronomic and horticultural soils. Soil proficiency programs do not generally include forest soil samples that are highly acidic, high in extractable Al, low in extractable Ca and often high in carbon. To determine the uncertainty associated with specific analytical methods for forest soils, we collected and distributed samples from two soil horizons (Oa and Bs) to 15 laboratories in the eastern United States and Canada. Soil properties measured included total organic carbon and nitrogen, pH and exchangeable cations. Overall, results were consistent despite some differences in methodology. We calculated the median absolute deviation (MAD) for each measurement and considered the acceptable range to be the median 6 2.5 3 MAD. Variability among laboratories was usually as low as the typical variability within a laboratory. A few areas of concern include a lack of consistency in the measurement and expression of results on a dry weight basis, relatively high variability in the C/N ratio in the Bs horizon, challenges associated with determining exchangeable cations at concentrations near the lower reporting range of some laboratories and the operationally defined nature of aluminum extractability. Recommendations include a continuation of reference forest soil exchange programs to quantify the uncertainty associated with these analyses in conjunction with ongoing efforts to review and standardize laboratory methods.

  8. Measuring Dynamic Kidney Function in an Undergraduate Physiology Laboratory

    ERIC Educational Resources Information Center

    Medler, Scott; Harrington, Frederick

    2013-01-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on…

  9. Sampling and storage of blood for pH and blood gas analysis.

    PubMed

    Haskins, S C

    1977-02-15

    Techniques used in sampling and storage of a blood sample for pH and gas measurements can have an important effect on the measured values. Observation of these techniques and principles will minimize in vitro alteration of the pH and blood gas values. To consider that a significant change has occurred in a pH or blood gas measurement from previous values, the change must exceed 0.015 for pH, 3 mm Hg for PCO2, 5 mm Hg for PO2, and 2 mEq/L for [HCO-3] or base excess/deficit. In vitro dilution of the blood sample with anticoagulant should be avoided because it will alter the measured PCO2 and base excess/deficit values. Arterial samples should be collected for meaningful pH and blood gas values. Central venous and free-flowing capillary blood can be used for screening procedures in normal patients but are subject to considerable error. A blood sample can be stored for up to 30 minutes at room temperature without significant change in acid-base values but only up to 12 minutes before significant changes occur in PO2. A blood sample can be stored for up to 3.5 hours in an ice-water bath without significant change in pH and for 6 hours without significant change in PCO2 or PO2. Variations of body temperatures from normal will cause a measurable change in pH and blood gas values when the blood is exposed to the normal water bath temperatures of the analyzer.

  10. 40 CFR 401.17 - pH Effluent limitations under continuous monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false pH Effluent limitations under... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.17 pH Effluent limitations under continuous monitoring. (a) Where a permittee continuously measures the pH of wastewater pursuant to a...

  11. 40 CFR 401.17 - pH Effluent limitations under continuous monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true pH Effluent limitations under... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.17 pH Effluent limitations under continuous monitoring. (a) Where a permittee continuously measures the pH of wastewater pursuant to a...

  12. 40 CFR 401.17 - pH Effluent limitations under continuous monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true pH Effluent limitations under... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.17 pH Effluent limitations under continuous monitoring. (a) Where a permittee continuously measures the pH of wastewater pursuant to a...

  13. 40 CFR 401.17 - pH Effluent limitations under continuous monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true pH Effluent limitations under... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.17 pH Effluent limitations under continuous monitoring. (a) Where a permittee continuously measures the pH of wastewater pursuant to a...

  14. 40 CFR 401.17 - pH Effluent limitations under continuous monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true pH Effluent limitations under... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.17 pH Effluent limitations under continuous monitoring. (a) Where a permittee continuously measures the pH of wastewater pursuant to a...

  15. Field Measurements Indicate Unexpected, Serious Underestimation of Mussel Heart Rates and Thermal Tolerance by Laboratory Studies

    PubMed Central

    Tagliarolo, Morgana; McQuaid, Christopher D.

    2016-01-01

    Attempts to predict the response of species to long-term environmental change are generally based on extrapolations from laboratory experiments that inevitably simplify the complex interacting effects that occur in the field. We recorded heart rates of two genetic lineages of the brown mussel Perna perna over a full tidal cycle in-situ at two different sites in order to evaluate the cardiac responses of the two genetic lineages present on the South African coast to temperature and the immersion/emersion cycle. “Robomussel” temperature loggers were used to monitor thermal conditions at the two sites over one year. Comparison with live animals showed that robomussels provided a good estimate of mussel body temperatures. A significant difference in estimated body temperatures was observed between the sites and the results showed that, under natural conditions, temperatures regularly approach or exceed the thermal limits of P. perna identified in the laboratory. The two P. perna lineages showed similar tidal and diel patterns of heart rate, with higher cardiac activity during daytime immersion and minimal values during daytime emersion. Comparison of the heart rates measured in the field with data previously measured in the laboratory indicates that laboratory results seriously underestimate heart rate activity, by as much as 75%, especially during immersion. Unexpectedly, field estimates of body temperatures indicated an ability to tolerate temperatures considered lethal on the basis of laboratory measurements. This suggests that the interaction of abiotic conditions in the field does not necessarily raise vulnerability to high temperatures. PMID:26840775

  16. Blood Cholesterol Measurement in Clinical Laboratories in the United States. Current Status. A Report from the Laboratory Standardization Panel of the National Cholesterol Education Program.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    Precise and accurate cholesterol measurements are required to identify and treat individuals with high blood cholesterol levels. However, the current state of reliability of blood cholesterol measurements suggests that considerable inaccuracy in cholesterol testing exists. This report describes the Laboratory Standardization Panel findings on the…

  17. Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing

    NASA Astrophysics Data System (ADS)

    Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.

    2014-07-01

    The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.

  18. Effect of pH on bacteriophage transport through sandy soils

    USGS Publications Warehouse

    Kinoshita, Takashi; Bales, Roger C.; Maguire, Kimberley M.; Gerba, Charles P.

    1993-01-01

    Effects of pH and hydrophobicity on attachment and detachment of PRD-1 and MS-2 in three different sandy soils were investigated in a series of laboratory-column experiments. Concentrations of the lipid-containing phage PRD-1 decreased 3–4 orders of magnitude during passage through the 10–15-cm-long columns. Attachment of the lipid-containing phage PRD-1 was insensitive to pH and was apparently controlled by hydrophobic interactions in soil media. The less-hydrophobic phage MS-2 acted conservatively; it was not removed in the columns at pH's 5.7–8.0. The sticking efficiency (α) in a colloid-filtration model was between 0.1 and 1 for PRD-1, indicating a relatively high removal efficiency. Phage attachment was reversible, but detachment under steady-state conditions was slow. An increase in pH had a moderate effect on enhancing detachment. Still, these soils should continue to release phage to virus-free water for days to weeks following exposure to virus-containing water. In sandy soils with a mass-fraction organic carbon as low as a few hundredths of a percent, pH changes in the range 5.7–8.0 should have little effect on retention of more-hydrophobic virus (e.g., PRD-1), in that retardation will be dominated by hydrophobic effects. Sharp increases in pH should enhance detachment and transport of virus previously deposited on soil grains. A more hydrophilic virus (e.g., MS-2) will transport as a conservative tracer in low-carbon sandy soil.

  19. Postdoctoral Professional Fellowships in Laboratory Medicine.

    PubMed

    Straseski, Joely A

    2013-04-01

    Doctoral level scientists often pursue a traditional academic route, focusing their efforts on research and education. However, additional options exist for those that are interested in using their laboratory and research skills in a clinical setting. Clinical laboratory directors serve as the interface between the clinical laboratory and the users of laboratory test results. This article describes these career paths options for PhD scientists. Clinical laboratory directors are primarily trained via one of two routes: physicians that have been trained in clinical pathology or non-physician doctoral scientists that have completed professional fellowship training. This article will focus on the latter of these 2 routes. In the United States, completing a postdoctoral fellowship in laboratory-specific professional fields qualifies non-physician doctoral scientists as laboratory directors and consultants. Their expert consultation provides invaluable insight into testing procedures such as possible sources of interference or inaccurate test results, preferred testing for specific clinical situations, and confirmatory methods. They must also be knowledgeable about current instrumentation, assay limitations, and the newest available technologies. One of the older and more developed professional fellowships in the United States, clinical chemistry, encompasses many laboratory disciplines and will be highlighted in detail. Training information specific to clinical immunology, clinical microbiology, and clinical genetics is also discussed.

  20. A quantum chemical study for the multichannel reaction PH 2 + PH 2

    NASA Astrophysics Data System (ADS)

    Pimentel, André S.; Viana, Rommel B.

    2007-04-01

    The PH 2 + PH 2 multichannel reaction path was proposed in this study. The transition state that connects the reactants to cis-P 2H 2 isomer was found for the first time ever. This process is not allowed to occur at ordinary conditions because of its high energy barrier, 70 kcal mol -1. The PH 2 + PH 2 disproportionation to form the triplet PH 3 radical is an exothermic and spontaneous reaction. The PH 2 + PH 2 reaction may also form the P 2H 4 molecule in the absence of surfaces.

  1. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, M. P.; Burton, J.; Sindler, P.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These fourmore » cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.« less

  2. Synthesis and Magnetic, Thermal, and Electrical Measurements on Complex non-Cuprate Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Laurence L

    2006-02-27

    The project investigated superconductivity in non-cuprate materials with critical temperatures, T{sub c}, in excess of 20 K in order to understand the thermodynamics of several of these materials. The project is a cooperative effort between investigators at Southern University (SU), Louisiana State University (LSU), and Los Alamos National Laboratory (LANL). It involved synthesis of high quality samples, and subsequent detailed magnetic, thermal and electrical measurements on them. The project provided a PhD Thesis research experience and training for a graduate student, Ms. Robin Macaluso. High quality, single crystal samples were synthesized by Ms. Macaluso under the direction of one ofmore » the CO-PIS, John Sarao, during the summer while she was a visitor at LANL being supported by this grant. On these samples magnetic measurements were performed at SU, thermal and electrical measurements were made in the LSU Physics and Astronomy Department. The crystallographic properties were determined in the LSU Chemistry Department by Ms. Macaluso under the direction of her dissertation advisor, Dr. Julia Chan. Additional high field magnetic measurements on other samples were performed at the National High Magnetic Field Laboratory (NHMFL) both in Tallahassee and at LANL. These measurements involved another graduate student, Umit Alver, who used some of the measurements as part of his PhD dissertation in Physics at LSU.« less

  3. Long-term, High Frequency, High Precision pH Measurements on the MBARI deep-water FOCE Experiment at the MARS Cabled Observatory in Monterey Bay, CA

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Maughan, T.; Barry, J. P.; Brewer, P. G.; Headley, K. L.; Herlien, R.; Kirkwood, W. J.; Matsumoto, G. I.; O'Reilly, T. C.; Salamy, K. A.; Scholfield, J.; Shane, F. F.; Walz, P. M.

    2012-12-01

    The MBARI deep-water FOCE experiment was deployed on the MARS cabled observatory in Monterey Bay on May 4th, 2011. It has been in continuous operation (excluding a few minor shore based power outages) ever since. During the fifteen months of deployment, we have been able to observe both the daily variation in pH in response to water mass movements associated with the semi-diurnal tides, internal waves and longer-term trends as a function of the seasonal variations in the water masses within the Monterey Bay Canyon. Our experimental site is located at 890 meters, just below the oxygen minimum for Monterey Bay, and we clearly see the anticipated inverse correlation between seawater temperature and pH. Daily variation in pH is on the order of 0.020-0.030 pH units with longer term trends adding an additional variation of similar magnitude. Instrumentation on this experiment included two CTDs with oxygen sensors (Sea-Bird 52). One CTD is mounted on the external FOCE framework to measure the background conditions, and one CTD is installed within the FOCE pH control area to monitor the experimentally manipulated conditions. In addition, 6 MBARI modified Sea-Bird 18 pH sensors were mounted on the FOCE apparatus. Four of these pH sensors monitored pH inside the experimental chamber and two monitored the external background seawater conditions. Although we originally intended to conduct several in situ CO2 enrichment experiments to study the impact of ocean acidification on the benthic biology and then recover the apparatus after one year, unanticipated changes in the ship schedule have left the FOCE experiment in place for nearly fifteen months at the time of this writing. Throughout this time period, all sensor data has been logged by the MBARI Shore-Side Data System (SSDS) resulting in the longest continuous record of high precision pH measurements in the intermediate water column. We present an analysis of the data obtained from this unique data set, and discuss our in

  4. CHARGE MEASUREMENTS ON INDIVIDUAL PARTICLES EXITING LABORATORY PRECIPITATORS WITH POSITIVE AND NEGATIVE CORONA AT VARIOUS TEMPERATURES

    EPA Science Inventory

    The paper reports measurements of charge values on individual particles exiting three different laboratory electrostatic precipitators (ESPs) in an experimental apparatus containing a Millikan cell. Dioctylphthalate (DOP) droplets and fly ash particles were measured at temperatur...

  5. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure.

    PubMed

    Zhou, Jun; Zhang, Rui; Liu, Fenwu; Yong, Xiaoyu; Wu, Xiayuan; Zheng, Tao; Jiang, Min; Jia, Honghua

    2016-10-01

    Laboratory-scale reactors, in which the pH could be auto-adjusted, were employed to investigate the mesophilic methane fermentation with pig manure (7.8% total solids) at pH 6.0, 7.0, and 8.0. Results showed that the performance of anaerobic digestion was strongly dependent on pH value. Biogas production and methane content at neutral pH 7.0 were significantly higher (16,607mL, 51.81%) than those at pH 6.0 (6916mL, 42.9%) and 8.0 (9739mL, 35.6%). Denaturing gradient gel electrophoresis fingerprinting and Shannon's index indicated that the samples contained highly diverse microbial communities. The major genus at pH 7.0 was Methanocorpusculum, compared with that was Methanosarcina at both pH 6.0 and 8.0. Our research revealed that cultures maintained at pH 7.0 could support increased biogas production, which has significant implications for the scale-up biogas engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Use of a control test to aid pH assessment of chemical eye injuries.

    PubMed

    Connor, A J; Severn, P

    2009-11-01

    Chemical burns of the eye represent 7.0%-9.9% of all ocular trauma. Initial management of ocular chemical injuries is irrigation of the eye and conjunctival sac until neutralisation of the tear surface pH is achieved.We present a case of alkali injury in which the raised tear film pH seemed to be unresponsive to irrigation treatment. Suspicion was raised about the accuracy of the litmus paper used to test the tear film pH. The error was confirmed by use of a control litmus pH test of the examining doctor's eyes. Errors in litmus paper pH measurement can occur because of difficulty in matching the paper with scale colours and drying of the paper, which produces a darker colour. A small tear film sample can also create difficulty in colour matching, whereas too large a sample can wash away pigment from the litmus paper. Samples measured too quickly after irrigation can result in a falsely neutral pH measurement. Use of faulty or inappropriate materials can also result in errors. We advocate the use of control litmus pH test in all patients. This would highlight errors in pH measurements and aid in the detection of the end point of irrigation.

  7. The erosion of carbonate stone by acid rain: Laboratory and field investigations

    USGS Publications Warehouse

    Baedecker, P.A.; Reddy, M.M.

    1993-01-01

    One of the goals of research on the effects of acidic deposition on carbonate stone surfaces is to define the incremental impact of acidic deposition relative to natural weathering processes on the rate of carbonate stone erosion. If rain that impacts carbonate stone surfaces is resident on the surface long enough to approach chemical equilibrium, the incremental effect of hydrogen ion is expected to be small (i.e., 6% for a rain of pH 4.0). Under nonequilibrium (i.e., high flow rate) conditions, kinetic considerations suggest that the incremental effect of hydrogen ion deposition could be quite significant. Field run-off experiments involving the chemical analysis of rain collected from inclined stone slabs have been used to evaluate stone dissolution processes under ambient conditions of wet and dry deposition of acidic species. The stoichiometry of the reaction of stone with hydrogen ion is difficult to define from the field data due to scatter in the data attributed to hydrodynamic effects. Laboratory run-off experiments show that the stoichiometry is best defined by a reaction with H+ in which CO2 is released from the system. The baseline effect caused by water in equilibrium with atmospheric CO2 is identical in the field and in laboratory simulation. The experiments show that the solutions are close enough to equilibrium for the incremental effect of hydrogen ion to be minor (i.e., 24% for marble for a rain of pH 4.0) relative to dissolution due to water and carbonic acid reactions. Stone erosion rates based on physical measurement are approximately double the recession rates that are due to dissolution (estimated from the observed calcium content of the run-off solutions). The difference may reflect the loss of granular material not included in recession estimates based on the run-off data. Neither the field nor the laboratory run-off experiments indicate a pH dependence for the grain-removal process.

  8. Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae?

    PubMed

    Frieder, Christina A; Gonzalez, Jennifer P; Bockmon, Emily E; Navarro, Michael O; Levin, Lisa A

    2014-03-01

    Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2 ]) levels. In controlled-laboratory experiments we explored the interactive effects of pH, [O2 ], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2 ], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O2 ] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O2 ] reflective of their environment (80-260 μmol kg(-1) ). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. © 2013 John Wiley & Sons Ltd.

  9. Noninvasive pH monitoring of platelet concentrates: a large field test.

    PubMed

    Gkoumassi, Effimia; Klein-Bosgoed, Christa; Dijkstra-Tiekstra, Margriet J; de Korte, Dirk; de Wildt-Eggen, Janny

    2013-10-01

    Developing new quality control methods for platelet concentrates (PCs) can contribute to increasing transfusion safety and efficiency. The aim of this study was to investigate in a large field test the quality of expired PCs and whether 100% noninvasive pH monitoring can be used to predict PC quality. The pH of 13,693 PCs produced for transfusion was monitored daily using Blood Storage, Inc.'s pH sterile, automated fluoroscopic evaluation technology. Upon indication of compromised quality or expiration, PCs were returned and in vitro tests were performed. A total of 998 PCs were returned, of which 962 outdated, 26 had a positive BacT/ALERT reaction, seven had aggregates, one was without swirl, one had low pH, and one had high pH. BacT/ALERT was faster in identifying bacterial contamination than pH measurements. The pH at the end of the storage period was significantly lower than at the beginning. In vitro tests indicated that while the PC quality was acceptable upon expiration, it rapidly declined after expiration. In this setting where the vast majority of PCs were of good quality and within acceptable pH limits, daily, noninvasive routine pH measurement has limited added value in identifying quality-compromised PCs. © 2013 Sanquin Research. Transfusion © 2013 American Association of Blood Banks.

  10. The Master level optics laboratory at the Institute of Optics

    NASA Astrophysics Data System (ADS)

    Adamson, Per

    2017-08-01

    The master level optics laboratory is a biannual, intensive laboratory course in the fields of geometrical, physical and modern optics. This course is intended for the master level student though Ph.D. advisors which often recommend it to their advisees. The students are required to complete five standard laboratory experiments and an independent project during a semester. The goals of the laboratory experiments are for the students to get hands-on experience setting up optical laboratory equipment, collecting and analyzing data, as well as to communicate key results. The experimental methods, analysis, and results of the standard experiments are submitted in a journal style report, while an oral presentation is given for the independent project.

  11. Psychophysiological measures of cognitive workload in laboratory and flight

    NASA Technical Reports Server (NTRS)

    Wilson, Glenn F.; Badeau, Albert

    1993-01-01

    Psychophysiological data have been recorded during different levels of cognitive workload in laboratory and flight settings. Cardiac, eye blink, and brain data have shown meaningful changes as a function of the levels of mental workload. Increased cognitive workload is generally associated with increased heart rates, decreased blink rates and eye closures, and decreased evoked potential amplitudes. However, comparisons of laboratory and flight data show that direct transference of laboratory findings to the flight environment is not possible in many cases. While the laboratory data are valuable, a data base from flight is required so that 'real world' data can be properly interpreted.

  12. The Al(I) molecule, Ph2COAl and its anion

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Eichhorn, Bryan; Schnöckel, Hansgeorg; Bowen, Kit

    2016-08-01

    We have formed the Al(I)-containing molecule, benzophenone-aluminum, i.e., Ph2COAl, and studied it by conducting density functional theory calculations on both its neutral and anionic forms and by measuring the photoelectron spectrum of its anion. Our calculations identified two nearly iso-energetic anion isomers, (Ph2COAl)-, the vertical detachment energies (VDE) of which are in excellent agreement with our photoelectron spectrum. Natural population analysis (NPA) of Ph2COAl found the Al moiety to be positively charged by +0.81 e, indicating a strongly ionic bond between Al and Ph2CO, i.e., Ph2CO-Al+.

  13. Questionnaire and laboratory measures of eating behavior: Associations with energy intake and BMI in a community sample of working adults

    PubMed Central

    French, Simone A; Mitchell, Nathan R; Wolfson, Julian; Finlayson, Graham; Blundell, John E; Jeffery, Robert W

    2013-01-01

    Purpose The present research compared a self-report measure of usual eating behaviors with two laboratory-based behavioral measures of food reward and food preference. Methods Eating behaviors were measured among 233 working adults. A self-report measure was the Three Factor Eating Questionnaire (TFEQ) Restraint, Disinhibition and Hunger subscales. Laboratory measures were the (RVF) and Explicit Liking (EL) and Implicit Wanting (IW) for high fat food. Outcome measures were body mass index (BMI), and energy intake measured using three 24-hour dietary recalls. Results Significant bivariate associations were observed between each of the eating behavior measures and energy intake, but only Disinhibition and Hunger were associated with BMI. Multiple regression results showed RVF and EL and IW predicted energy intake independent of the TFEQ scales but did not predict BMI. Conclusion Laboratory and self-report measures capture unique aspects of individual differences in eating behaviors that are associated with energy intake. PMID:24096082

  14. Synthesis and Application of Ratiometric and "Turn-On" Fluorescent pH Sensors: An Advanced Organic Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hutt, Johnathon T.; Aron, Zachary D.

    2014-01-01

    An upper-division organic chemistry laboratory experiment exploring fluorescent sensing over two laboratory periods and part of a third is described. Two functionally distinct pH-responsive sensors are prepared through a dehydrative three-component coupling reaction. During the abbreviated (<1 h) first laboratory period, students set up…

  15. Biochemical stabilization of glucagon at alkaline pH.

    PubMed

    Caputo, Nicholas; Jackson, Melanie A; Castle, Jessica R; El Youssef, Joseph; Bakhtiani, Parkash A; Bergstrom, Colin P; Carroll, Julie M; Breen, Matthew E; Leonard, Gerald L; David, Larry L; Roberts, Charles T; Ward, W Kenneth

    2014-11-01

    For patients with type 1 diabetes mellitus, a bihormonal artificial endocrine pancreas system utilizing glucagon and insulin has been found to stabilize glycemic control. However, commercially available formulations of glucagon cannot currently be used in such systems because of physical instability characterized by aggregation and chemical degradation. Storing glucagon at pH 10 blocks protein aggregation but results in chemical degradation. Reductions in pH minimize chemical degradation, but even small reductions increase protein aggregation. We hypothesized that common pharmaceutical excipients accompanied by a new excipient would inhibit glucagon aggregation at an alkaline pH. As measured by tryptophan intrinsic fluorescence shift and optical density at 630 nm, protein aggregation was indeed minimized when glucagon was formulated with curcumin and albumin. This formulation also reduced chemical degradation, measured by liquid chromatography with mass spectrometry. Biological activity was retained after aging for 7 days in an in vitro cell-based bioassay and also in Yorkshire swine. Based on these findings, a formulation of glucagon stabilized with curcumin, polysorbate-80, l-methionine, and albumin at alkaline pH in glycine buffer may be suitable for extended use in a portable pump in the setting of a bihormonal artificial endocrine pancreas.

  16. Mixed waste landfill corrective measures study final report Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald; Goering, Timothy James

    2004-03-01

    The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, themore » U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.« less

  17. Metal/Metal Oxide Differential Electrode pH Sensors

    NASA Technical Reports Server (NTRS)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  18. Laboratory and outside the laboratory measurements of ginned and ot ginned cotton for fiber micronaire and maturity by portable Near Infrared (NIR) Instruments

    USDA-ARS?s Scientific Manuscript database

    Micronaire is a key cotton quality assessment property, impacting downstream fiber processing and dye consistency. A component of micronaire is fiber maturity (degree of secondary wall development). Historically, micronaire and maturity are measured in a laboratory under tight environmental condit...

  19. LED-CT Scan for pH Distribution on a Cross-Section of Cell Culture Medium.

    PubMed

    Higashino, Nobuya; Takayama, Toshio; Ito, Hiroaki; Horade, Mitsuhiro; Yamaguchi, Yasutaka; Dylan Tsai, Chia-Hung; Kaneko, Makoto

    2018-01-11

    In cell culture, the pH of the culture medium is one of the most important conditions. However, the culture medium may have non-uniform pH distribution due to activities of cells and changes in the environment. Although it is possible to measure the pH distribution with an existing pH meter using distributed electrodes, the method involves direct contact with the medium and would greatly increase the risk of contamination. Here in this paper, we propose a computed tomography (CT) scan for measuring pH distribution using the color change of phenol red with a light-emitting diode (LED) light source. Using the principle of CT scan, we can measure pH distribution without contacting culture medium, and thus, decrease the risk of contamination. We have developed the device with a LED, an array of photo receivers and a rotation mechanism. The system is firstly calibrated with different shapes of wooden objects that do not pass light, we succeeded in obtaining their 3D topographies. The system was also used for measuring a culture medium with two different pH values, it was possible to obtain a pH distribution that clearly shows the boundary.

  20. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    PubMed

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  1. The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.

    PubMed

    Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie

    2013-05-01

    pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.

  2. Laboratory Facilities and Measurement Techniques for Beamed-Energy-Propulsion Experiments in Brazil

    NASA Astrophysics Data System (ADS)

    de Oliveira, Antonio Carlos; Chanes Júnior, José Brosler; Cordeiro Marcos, Thiago Victor; Pinto, David Romanelli; Santos Vilela, Renan Guilherme; Barros Galvão, Victor Alves; Mantovani, Arthur Freire; da Costa, Felipe Jean; dos Santos Assenção, José Adeildo; dos Santos, Alberto Monteiro; de Paula Toro, Paulo Gilberto; Sala Minucci, Marco Antonio; da Silveira Rêgo, Israel; Salvador, Israel Irone; Myrabo, Leik N.

    2011-11-01

    Laser propulsion is an innovative concept of accessing the space easier and cheaper where the propulsive energy is beamed to the aerospace vehicle in flight from ground—or even satellite-based high-power laser sources. In order to be realistic about laser propulsion, the Institute for Advanced Studies of the Brazilian Air Force in cooperation with the United States Air Force and the Rensselaer Polytechnic Institute are seriously investigating its basic physics mechanisms and engineering aspects at the Henry T. Hamamatsu Laboratory of Hypersonic and Aerothermodynamics in São José dos Campos, Brazil. This paper describes in details the existing facilities and measuring systems such as high-power laser devices, pulsed-hypersonic wind tunnels and high-speed flow visualization system currently utilized in the laboratory for experimentation on laser propulsion.

  3. Layer configurations comparison of bilayer-films for EGFET pH sensor application

    NASA Astrophysics Data System (ADS)

    Rahman, R. A.; Zulkefle, M. A.; Yusof, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-05-01

    The comparison between bilayer configurations were presented in this paper. TiO2 and ZnO layer configurations were manipulated in order to investigate which configuration produce highest sensing performance to be applied as EGFET pH sensor. Both of the materials were deposited together as the bilayer film. The configurations were manipulated between TiO2/ZnO and ZnO/TiO2. ITO was used as the substrate in this study and both of the materials were deposited by using sol-gel spin coating technique. After deposition process, these bilayer film then undergone for EGFET pH sensor measurement and physical characterization. The EGFET pH sensor measurement was done by dipping the fabricated bilayer film into three different pH values, which is pH4, pH7 and pH10. Bilayer film act as the pH-sensitive membrane, which connected to the commercial metal-oxide semiconductor FET (MOSFET). This MOSFET was connected to the interfacing circuit. Voltage output obtained were recorded and the graph was plotted by using the data recorded. Based on the EGFET pH sensor measurement, TiO2/ZnO bilayer film exhibit higher sensing performance, compared with ZnO/TiO2. TiO2/ZnO bilayer film produced 53.10 mV/pH with the linearity value of 0.9913. Afterwards, fabricated bilayer films then were characterized with AFM to explore their surface roughness and surface topography behavior.

  4. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring

    PubMed Central

    2016-01-01

    Abstract Evaluation of the radio‐transmission pH‐measurement system for monitoring the ruminal pH and subacute ruminal acidosis (SARA) in cattle is described. This is done in order to reveal the possible application of this system for detection and pathophysiological research of SARA by continuous ruminal pH measurement. The possibility of using this system for assessment of the ruminal pH in SARA cattle, and the presence of negative correlation between the ruminal pH and ruminal temperature in heathy and SARA cattle were determined. In addition, the 16S rRNA gene pyrosequencing analysis showed that the ruminal microbial community was simpler in SARA cattle, and the bacterial numbers in SARA cattle were lower than those in healthy hay‐fed cattle. Concentrate feeding might have reduced the diversity of the ruminal microbial community. Changes in the ruminal microbial community of SARA cattle might be related to the changes in ruminal pH followed by the decrease in the number of some bacteria. Continuous monitoring of the ruminal pH using the radio‐transmission pH‐measurement system would be applied for detection and prevention of SARA in the field and pathophysiological research of SARA, including ruminal zymology and bacteriology, which have been determined previously by sampling of the ruminal fluid and measuring of ruminal pH. PMID:26279060

  5. Comparison of a New Cobinamide-Based Method to a Standard Laboratory Method for Measuring Cyanide in Human Blood

    PubMed Central

    Swezey, Robert; Shinn, Walter; Green, Carol; Drover, David R.; Hammer, Gregory B.; Schulman, Scott R.; Zajicek, Anne; Jett, David A.; Boss, Gerry R.

    2013-01-01

    Most hospital laboratories do not measure blood cyanide concentrations, and samples must be sent to reference laboratories. A simple method is needed for measuring cyanide in hospitals. The authors previously developed a method to quantify cyanide based on the high binding affinity of the vitamin B12 analog, cobinamide, for cyanide and a major spectral change observed for cyanide-bound cobinamide. This method is now validated in human blood, and the findings include a mean inter-assay accuracy of 99.1%, precision of 8.75% and a lower limit of quantification of 3.27 µM cyanide. The method was applied to blood samples from children treated with sodium nitroprusside and it yielded measurable results in 88 of 172 samples (51%), whereas the reference laboratory yielded results in only 19 samples (11%). In all 19 samples, the cobinamide-based method also yielded measurable results. The two methods showed reasonable agreement when analyzed by linear regression, but not when analyzed by a standard error of the estimate or paired t-test. Differences in results between the two methods may be because samples were assayed at different times on different sample types. The cobinamide-based method is applicable to human blood, and can be used in hospital laboratories and emergency rooms. PMID:23653045

  6. Comparison of laboratory and field remote sensing methods to measure forage quality.

    PubMed

    Guo, Xulin; Wilmshurst, John F; Li, Zhaoqin

    2010-09-01

    Recent research in range ecology has emphasized the importance of forage quality as a key indicator of rangeland condition. However, we lack tools to evaluate forage quality at scales appropriate for management. Using canopy reflectance data to measure forage quality has been conducted at both laboratory and field levels separately, but little work has been conducted to evaluate these methods simultaneously. The objective of this study is to find a reliable way of assessing grassland quality through measuring forage chemistry with reflectance. We studied a mixed grass ecosystem in Grasslands National Park of Canada and surrounding pastures, located in southern Saskatchewan. Spectral reflectance was collected at both in-situ field level and in the laboratory. Vegetation samples were collected at each site, sorted into the green grass portion, and then sent to a chemical company for measuring forage quality variables, including protein, lignin, ash, moisture at 135 °C, Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), Total Digestible, Digestible Energy, Net Energy for Lactation, Net Energy for Maintenance, and Net Energy for Gain. Reflectance data were processed with the first derivative transformation and continuum removal method. Correlation analysis was conducted on spectral and forage quality variables. A regression model was further built to investigate the possibility of using canopy spectral measurements to predict the grassland quality. Results indicated that field level prediction of protein of mixed grass species was possible (r² = 0.63). However, the relationship between canopy reflectance and the other forage quality variables was not strong.

  7. Application of peer instruction in the laboratory task of measuring the effective mass of a spring

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Ling; Hou, Zhen-Yu; Si, Yu-Chang; Wen, Xiao-Qing; Tang, Lei

    2017-11-01

    Peer instruction (PI) is an effective interactive approach to teaching and learning that has principally been used to modify the experience of learning in traditional physics lecture settings. This article further illustrates how the concept of PI can be effectively applied in the physics student laboratory setting. The setting used is a laboratory task that calls for the measurement of the effective mass of the spring of a Jolly balance. Through PI the students gain a better understanding of what is meant by the construct ‘effective mass of a spring’, and thereby competently work out how the mass, shape, wire diameter, and number of turns of the spring can all affect the effective mass of the spring. Furthermore, using stopwatches the students were also able to appreciate how recorded times at the equilibrium position had greater uncertainty than measurements made at the maximum displacement. This led to their calculations of the effective mass of the spring being impressively close to the theoretical value. Such laboratory tasks are extremely challenging to introductory level students and the success attained by the students in this study indicates that there is much potential in the application of PI in laboratory settings. PI should be used to teach in the laboratory and results should be reported in order for our community to build on these experiences. This article is a contribution to that effort.

  8. Use of the pH sensitive fluorescence probe pyranine to monitor internal pH changes in Escherichia coli membrane vesicles.

    PubMed

    Damiano, E; Bassilana, M; Rigaud, J L; Leblanc, G

    1984-01-23

    Measurements of the fluorescent properties of 8-hydroxy-1,3,6-pyrenetrisulfonate (pyranine) enclosed within the internal space of Escherichia coli membrane vesicles enable recordings and quantitative analysis of: (i) changes in intravesicular pH taking place during oxidation of electron donors by the membrane respiratory chain; (ii) transient alkalization of the internal aqueous space resulting from the creation of outwardly directed acetate diffusion gradients across the vesicular membrane. Quantitation of the fluorescence variations recorded during the creation of transmembrane acetate gradients shows a close correspondence between the measured shifts in internal pH value and those expected from the amplitude of the imposed acetate gradients.

  9. Improvement of the quality of work in a biochemistry laboratory via measurement system analysis.

    PubMed

    Chen, Ming-Shu; Liao, Chen-Mao; Wu, Ming-Hsun; Lin, Chih-Ming

    2016-10-31

    An adequate and continuous monitoring of operational variations can effectively reduce the uncertainty and enhance the quality of laboratory reports. This study applied the evaluation rule of the measurement system analysis (MSA) method to estimate the quality of work conducted in a biochemistry laboratory. Using the gauge repeatability & reproducibility (GR&R) approach, variations in quality control (QC) data among medical technicians in conducting measurements of five biochemical items, namely, serum glucose (GLU), aspartate aminotransferase (AST), uric acid (UA), sodium (Na) and chloride (Cl), were evaluated. The measurements of the five biochemical items showed different levels of variance among the different technicians, with the variances in GLU measurements being higher than those for the other four items. The ratios of precision-to-tolerance (P/T) for Na, Cl and GLU were all above 0.5, implying inadequate gauge capability. The product variation contribution of Na was large (75.45% and 31.24% in normal and abnormal QC levels, respectively), which showed that the impact of insufficient usage of reagents could not be excluded. With regard to reproducibility, high contributions (of more than 30%) of variation for the selected items were found. These high operator variation levels implied that the possibility of inadequate gauge capacity could not be excluded. The analysis of variance (ANOVA) of GR&R showed that the operator variations in GLU measurements were significant (F=5.296, P=0.001 in the normal level and F=3.399, P=0.015 in the abnormal level, respectively). In addition to operator variations, product variations of Na were also significant for both QC levels. The heterogeneity of variance for the five technicians showed significant differences for the Na and Cl measurements in the normal QC level. The accuracy of QC for five technicians was identified for further operational improvement. This study revealed that MSA can be used to evaluate product and

  10. Measurement of Rapid Amiloride-Dependent pH Changes at the Cell Surface Using a Proton-Sensitive Field-Effect Transistor.

    PubMed

    Schaffhauser, Daniel; Fine, Michael; Tabata, Miyuki; Goda, Tatsuro; Miyahara, Yuji

    2016-03-30

    We present a novel method for the rapid measurement of pH fluxes at close proximity to the surface of the plasma membrane in mammalian cells using an ion-sensitive field-effect transistor (ISFET). In conjuction with an efficient continuous superfusion system, the ISFET sensor was capable of recording rapid changes in pH at the cells' surface induced by intervals of ammonia loading and unloading, even when using highly buffered solutions. Furthermore, the system was able to isolate physiologically relevant signals by not only detecting the transients caused by ammonia loading and unloading, but display steady-state signals as would be expected by a proton transport-mediated influence on the extracellular proton-gradient. Proof of concept was demonstrated through the use of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a small molecule inhibitor of sodium/hydrogen exchangers (NHE). As the primary transporter responsible for proton balance during cellular regulation of pH, non-electrogenic NHE transport is notoriously difficult to detect with traditional methods. Using the NHE positive cell lines, Chinese hamster ovary (CHO) cells and NHE3-reconstituted mouse skin fibroblasts (MSF), the sensor exhibited a significant response to EIPA inhibition, whereas NHE-deficient MSF cells were unaffected by application of the inhibitor.

  11. ISFET pH Sensitivity: Counter-Ions Play a Key Role.

    PubMed

    Parizi, Kokab B; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H S Philip

    2017-02-02

    The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor.

  12. Microelectrode characterization of coral daytime interior pH and carbonate chemistry.

    PubMed

    Cai, Wei-Jun; Ma, Yuening; Hopkinson, Brian M; Grottoli, Andréa G; Warner, Mark E; Ding, Qian; Hu, Xinping; Yuan, Xiangchen; Schoepf, Verena; Xu, Hui; Han, Chenhua; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Matsui, Yohei; Baumann, Justin H; Levas, Stephen; Ying, Ye; Wang, Yongchen

    2016-04-04

    Reliably predicting how coral calcification may respond to ocean acidification and warming depends on our understanding of coral calcification mechanisms. However, the concentration and speciation of dissolved inorganic carbon (DIC) inside corals remain unclear, as only pH has been measured while a necessary second parameter to constrain carbonate chemistry has been missing. Here we report the first carbonate ion concentration ([CO3(2-)]) measurements together with pH inside corals during the light period. We observe sharp increases in [CO3(2-)] and pH from the gastric cavity to the calcifying fluid, confirming the existence of a proton (H(+)) pumping mechanism. We also show that corals can achieve a high aragonite saturation state (Ωarag) in the calcifying fluid by elevating pH while at the same time keeping [DIC] low. Such a mechanism may require less H(+)-pumping and energy for upregulating pH compared with the high [DIC] scenario and thus may allow corals to be more resistant to climate change related stressors.

  13. Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: Effect of initial pore structure and initial brine pH

    NASA Astrophysics Data System (ADS)

    Menke, H. P.; Bijeljic, B.; Blunt, M. J.

    2017-05-01

    We study the impact of brine acidity and initial pore structure on the dynamics of fluid/solid reaction at high Péclet numbers and low Damköhler numbers. A laboratory μ-CT scanner was used to image the dissolution of Ketton, Estaillades, and Portland limestones in the presence of CO2-acidified brine at reservoir conditions (10 MPa and 50 °C) at two injected acid strengths for a period of 4 h. Each sample was scanned between 6 and 10 times at ∼4 μm resolution and multiple effluent samples were extracted. The images were used as inputs into flow simulations, and analysed for dynamic changes in porosity, permeability, and reaction rate. Additionally, the effluent samples were used to verify the image-measured porosity changes. We find that initial brine acidity and pore structure determine the type of dissolution. Dissolution is either uniform where the porosity increases evenly both spatially and temporally, or occurs as channelling where the porosity increase is concentrated in preferential flow paths. Ketton, which has a relatively homogeneous pore structure, dissolved uniformly at pH = 3.6 but showed more channelized flow at pH = 3.1. In Estaillades and Portland, increasingly complex carbonates, channelized flow was observed at both acidities with the channel forming faster at lower pH. It was found that the effluent pH, which is higher than that injected, is a reasonably good indicator of effective reaction rate during uniform dissolution, but a poor indicator during channelling. The overall effective reaction rate was up to 18 times lower than the batch reaction rate measured on a flat surface at the effluent pH, with the lowest reaction rates in the samples with the most channelized flow, confirming that transport limitations are the dominant mechanism in determining reaction dynamics at the fluid/solid boundary.

  14. Meta-audit of laboratory ISO accreditation inspections: measuring the old emperor's clothes.

    PubMed

    Wilson, Ian G; Smye, Michael; Wallace, Ian J C

    2016-02-01

    Accreditation to ISO/IEC 17025 is required for EC official food control and veterinary laboratories by Regulation (EC) No. 882/2004. Measurements in hospital laboratories and clinics are increasingly accredited to ISO/IEC 15189. Both of these management standards arose from command and control military standards for factory inspection during World War II. They rely on auditing of compliance and have not been validated internally as assessment bodies require of those they accredit. Neither have they been validated to criteria outside their own ideology such as the Cochrane principles of evidence-based medicine which might establish whether any benefit exceeds their cost. We undertook a retrospective meta-audit over 14 years of internal and external laboratory audits that checked compliance with ISO 17025 in a public health laboratory. Most noncompliances arose solely from clauses in the standard and would not affect users. No effect was likely from 91% of these. Fewer than 1% of noncompliances were likely to have consequences for the validity of results or quality of service. The ISO system of compliance auditing has the performance characteristics of a poor screening test. It adds substantially to costs and generates more noise (false positives) than informative signal. Ethical use of resources indicates that management standards should not be used unless proven to deliver the efficacy, effectiveness, and value required of modern healthcare interventions. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Roughness and pH changes of enamel surface induced by soft drinks in vitro-applications of stylus profilometry, focus variation 3D scanning microscopy and micro pH sensor.

    PubMed

    Fujii, Mie; Kitasako, Yuichi; Sadr, Alireza; Tagami, Junji

    2011-01-01

    This study aimed to evaluate enamel surface roughness (Ra) and pH before and after erosion by soft drinks. Enamel was exposed to a soft drink (cola, orange juice or green tea) for 1, 5 or 60 min; Ra was measured using contact-stylus surface profilometry (SSP) and non-contact focus variation 3D microscope (FVM). Surface pH was measured using a micro pH sensor. Data were analyzed at significance level of alpha=0.05. There was a significant correlation in Ra between SSP and FVM. FVM images showed no changes in the surface morphology after various periods of exposure to green tea. Unlike cola and orange juice, exposure to green tea did not significantly affect Ra or pH. A significant correlation was observed between surface pH and Ra change after exposure to the drinks. Optical surface analysis and micro pH sensor may be useful tools for non-damaging, quantitative assessment of soft drinks erosion on enamel.

  16. Exhaled breath condensate pH decreases following oral glucose tolerance test.

    PubMed

    Bikov, Andras; Pako, Judit; Montvai, David; Kovacs, Dorottya; Koller, Zsofia; Losonczy, Gyorgy; Horvath, Ildiko

    2015-12-15

    Exhaled breath condensate (EBC) pH is a widely measured non-invasive marker of airway acidity. However, some methodological aspects have not been thoroughly investigated. The aim of the study was to determine the effect of oral glucose tolerance test (OGTT) on EBC pH in attempt to better standardize its measurement. Seventeen healthy subjects (24  ±  2 years, 6 men, 11 women) participated in the study. EBC collection and capillary blood glucose measurements were performed before as well as 0, 30, 60 and 120 min after a standardized OGTT test. The rate of respiratory droplet dilution and pH were evaluated in EBC. Blood glucose significantly increased at 30 min and maintained elevation after 60 and 120 min following OGTT. Compared to baseline (7.99  ±  0.25) EBC pH significantly decreased immediately after OGTT (7.41  ±  0.47); this drop sustained over 30 (7.44  ±  0.72) and 60 min (7.62  ±  0.44) without a significant difference at 120 min (7.78  ±  0.26). No change was observed in the rate of respiratory droplet dilution. There was no relationship between blood glucose and EBC pH values. Sugar intake may significantly decrease EBC pH. This effect needs to be considered when performing EBC pH studies. Further experiments are also warranted to investigate the effect of diet on other exhaled biomarkers.

  17. Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements

    NASA Astrophysics Data System (ADS)

    Arntsen, B.

    2017-12-01

    The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.

  18. Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG.

    PubMed

    Lu, Min; Compton, Richard G

    2014-09-21

    Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.

  19. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    PubMed

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  20. Comprehensive analysis of proteins of pH fractionated samples using monolithic LC/MS/MS, intact MW measurement and MALDI-QIT-TOF MS

    PubMed Central

    Yoo, Chul; Patwa, Tasneem H.; Kreunin, Paweena; Miller, Fred R.; Huber, Christian G.; Nesvizhskii, Alexey I.; Lubman, David M.

    2012-01-01

    A comprehensive platform that integrates information from the protein and peptide levels by combining various MS techniques has been employed for the analysis of proteins in fully malignant human breast cancer cells. The cell lysates were subjected to chromatofocusing fractionation, followed by tryptic digestion of pH fractions for on-line monolithic RP-HPLC interfaced with linear ion trap MS analysis for rapid protein identification. This unique approach of direct analysis of pH fractions resulted in the identification of large numbers of proteins from several selected pH fractions, in which approximately 1.5 μg of each of the pH fraction digests was consumed for an analysis time of ca 50 min. In order to combine valuable information retained at the protein level with the protein identifications obtained from the peptide level information, the same pH fraction was analyzed using nonporous (NPS)-RP-HPLC/ESI-TOF MS to obtain intact protein MW measurements. In order to further validate the protein identification procedures from the fraction digest analysis, NPS-RP-HPLC separation was performed for off-line protein collection to closely examine each protein using MALDI-TOF MS and MALDI-quadrupole ion trap (QIT)-TOF MS, and excellent agreement of protein identifications was consistently observed. It was also observed that the comparison to intact MW and other MS information was particularly useful for analyzing proteins whose identifications were suggested by one sequenced peptide from fraction digest analysis. PMID:17206599

  1. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...

  2. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...

  3. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...

  4. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...

  5. 21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...

  6. Laboratory Evaluation of Acoustic Backscatter and LISST Methods for Measurements of Suspended Sediments

    PubMed Central

    Meral, Ramazan

    2008-01-01

    The limitation of traditional sampling method to provide detailed spatial and temporal profiles of suspended sediment concentration has led to an interest in alternative devices and methods based on scattering of underwater sound and light. In the present work, acoustic backscatter and LISST (the Laser In Situ Scattering Transmissometry) devices, and methodologies were given. Besides a laboratory study was conducted to compare pumping methods for different sediment radiuses at the same concentration. The glass spheres (ballotini) of three different radiuses of 115, 137 and 163 μm were used to obtain suspension in the sediment tower at laboratory. A quite good agreement was obtained between these methods and pumping results with the range at 60.6-94.2% for sediment concentration and 91.3-100% for radius measurements. These results and the other studies show that these methods have potential for research tools for sediment studies. In addition further studies are needed to determine the ability of these methods for sediment measurement under different water and sediment material conditions. PMID:27879747

  7. Intracellular pH regulation in rat round spermatids.

    PubMed

    Osses, N; Pancetti, F; Benos, D J; Reyes, J G

    1997-07-01

    Intracellular pH has been shown to be an important physiological parameter in cell cycle control and differentiation, aspects that are central to the spermatogenic process. However, the pH regulatory mechanisms in spermatogenic cells have not been systematically explored. In this work, measuring intracellular pH (pHi) with a fluorescent probe (BCECF), membrane potential with a fluorescent lipophilic anion (bisoxonol), and net movement of acid using a pH-stat system, we have found that rat round spermatids regulate pHi by means of a V-type H(+)-ATPase, a HCO3- entry pathway, a Na+/HCO3- dependent transport system, and a putative proton conductive pathway. Rat spermatids do not have functional base extruder transport systems. These pH regulatory characteristics seem specially designed to withstand acid challenges, and can generate sustained alkalinization upon acid exit stimulation.

  8. A Pollutant Transformation Laboratory Exercise for Environmental Chemistry: The Reduction of Nitrobenzenes by Anaerobic Solutions of Humic Acid

    ERIC Educational Resources Information Center

    Dunnivant, Frank M.; Reynolds, Mark-Cody

    2007-01-01

    The laboratory experiment, which acts as a capstone, integrated lecture-laboratory exercise involving solution preparation, pH buffers, [E[subscript]H] (reduction potential) buffers, organic reaction mechanisms, reaction kinetics, and instrumental analysis is presented. The students completing the lecture and laboratory exercises could gain a…

  9. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring.

    PubMed

    Sato, Shigeru

    2016-02-01

    Evaluation of the radio-transmission pH-measurement system for monitoring the ruminal pH and subacute ruminal acidosis (SARA) in cattle is described. This is done in order to reveal the possible application of this system for detection and pathophysiological research of SARA by continuous ruminal pH measurement. The possibility of using this system for assessment of the ruminal pH in SARA cattle, and the presence of negative correlation between the ruminal pH and ruminal temperature in heathy and SARA cattle were determined. In addition, the 16S rRNA gene pyrosequencing analysis showed that the ruminal microbial community was simpler in SARA cattle, and the bacterial numbers in SARA cattle were lower than those in healthy hay-fed cattle. Concentrate feeding might have reduced the diversity of the ruminal microbial community. Changes in the ruminal microbial community of SARA cattle might be related to the changes in ruminal pH followed by the decrease in the number of some bacteria. Continuous monitoring of the ruminal pH using the radio-transmission pH-measurement system would be applied for detection and prevention of SARA in the field and pathophysiological research of SARA, including ruminal zymology and bacteriology, which have been determined previously by sampling of the ruminal fluid and measuring of ruminal pH. © 2015 The Authors. Animal Science Journal published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Society of Animal Science.

  10. Active Control of pH in the Bioculture System Through Carbon Dioxide Control

    NASA Technical Reports Server (NTRS)

    Monhollon, Luke; Pletcher, David; Hauss, Jessica

    2016-01-01

    For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.

  11. ISFET pH Sensitivity: Counter-Ions Play a Key Role

    PubMed Central

    Parizi, Kokab B.; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H. S. Philip

    2017-01-01

    The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor. PMID:28150700

  12. Biochemical Stabilization of Glucagon at Alkaline pH

    PubMed Central

    Jackson, Melanie A.; Castle, Jessica R.; El Youssef, Joseph; Bakhtiani, Parkash A.; Bergstrom, Colin P.; Carroll, Julie M.; Breen, Matthew E.; Leonard, Gerald L.; David, Larry L.; Roberts, Charles T.; Ward, W. Kenneth

    2014-01-01

    Abstract Background: For patients with type 1 diabetes mellitus, a bihormonal artificial endocrine pancreas system utilizing glucagon and insulin has been found to stabilize glycemic control. However, commercially available formulations of glucagon cannot currently be used in such systems because of physical instability characterized by aggregation and chemical degradation. Storing glucagon at pH 10 blocks protein aggregation but results in chemical degradation. Reductions in pH minimize chemical degradation, but even small reductions increase protein aggregation. We hypothesized that common pharmaceutical excipients accompanied by a new excipient would inhibit glucagon aggregation at an alkaline pH. Methods and Results: As measured by tryptophan intrinsic fluorescence shift and optical density at 630 nm, protein aggregation was indeed minimized when glucagon was formulated with curcumin and albumin. This formulation also reduced chemical degradation, measured by liquid chromatography with mass spectrometry. Biological activity was retained after aging for 7 days in an in vitro cell-based bioassay and also in Yorkshire swine. Conclusions: Based on these findings, a formulation of glucagon stabilized with curcumin, polysorbate-80, l-methionine, and albumin at alkaline pH in glycine buffer may be suitable for extended use in a portable pump in the setting of a bihormonal artificial endocrine pancreas. PMID:24968220

  13. PH Tester Gauge Repeatability and Reproducibility Study for WO3 Nanostructure Hydrothermal Growth Process

    NASA Astrophysics Data System (ADS)

    Abd Rashid, Amirul; Hayati Saad, Nor; Bien Chia Sheng, Daniel; Yee, Lee Wai

    2014-06-01

    PH value is one of the important variables for tungsten trioxide (WO3) nanostructure hydrothermal synthesis process. The morphology of the synthesized nanostructure can be properly controlled by measuring and controlling the pH value of the solution used in this facile synthesis route. Therefore, it is very crucial to ensure the gauge used for pH measurement is reliable in order to achieve the expected result. In this study, gauge repeatability and reproducibility (GR&R) method was used to assess the repeatability and reproducibility of the pH tester. Based on ANOVA method, the design of experimental metrics as well as the result of the experiment was analyzed using Minitab software. It was found that the initial GR&R value for the tester was at 17.55 % which considered as acceptable. To further improve the GR&R level, a new pH measuring procedure was introduced. With the new procedure, the GR&R value was able to be reduced to 2.05%, which means the tester is statistically very ideal to measure the pH of the solution prepared for WO3 hydrothermal synthesis process.

  14. AMBIENT POLLUTANT CONCENTRATIONS MEASURED BY A MOBILE LABORATORY IN SOUTH BRONX, NY (R827351)

    EPA Science Inventory

    The objective of this study is to characterize the ambient air quality of the South Bronx, New York City (NYC), having high concentrations of diesel trucks and waste transfer facilities. We employed a mobile laboratory for continuous measurements of concentrations of fine part...

  15. Confirmation of nasogastric tube position by pH testing.

    PubMed

    Taylor, S J; Clemente, R

    2005-10-01

    In 2004, the Medicines and Healthcare products Regulatory Agency (MHRA) advised that nasogastric (NG) tube position should be confirmed using pH strips or paper. However, gastric pH is raised by the use of H2-blockers and proton-pump inhibitors (PPIs) potentially producing false negative pH tests resulting in delayed feeding. In addition, colorimetric differentiation using pH strips may be more prone to bias and inaccuracy than direct pH measurements largely used to establish the threshold. To quantify this problem a 1 day survey of all the patients requiring NG and nasointestinal (NI) feeding was undertaken, to establish the numbers of patients receiving H2-Blockers or PPIs, with or without a safe swallow and the methods currently being used to confirm tube positioning. A second observational study was performed to establish the accuracy of six pH strips available to NHS trusts against four unlabelled pH solutions. Forty-two per cent of patients receiving NG feeding were on H2-blockers or PPIs, including 13% who had a safe swallow for acidic drinks that could be subsequently aspirated to confirm position. In the second study 'testers' correctly identified pH's 3, 4, 5 and 6 with Mackery-Nagel 0-6, BDH 0-6 and 0-14 strips but overestimated pH 4 as pH 5 with Johnson 0-11 paper, underestimated pH 6 as pH 5 with Pehanon 0-12 paper and with Litmus classified pH 3-5 as acid (all), but half also classified pH 6 as acid. Theoretically 29% of NG tube positions could not be confirmed by pH testing because of the usage of PPIs or H2-blockers and lack of swallow. Some pH strips are either inaccurate or their result misinterpreted by staff. Large surveys and trials of the actual efficacy and accuracy of pH testing are required.

  16. Development of a pH sensor using nanoporous nanostructures of NiO.

    PubMed

    Ibupoto, Z H; Khun, K; Willander, M

    2014-09-01

    Glass is the conventional material used in pH electrodes to monitor pH in various applications. However, the glass-based pH electrode has some limitations for particular applications. The glass sensor is limited in the use of in vivo biomedical, clinical or food applications because of the brittleness of glass, its large size, the difficulty in measuring small volumes and the absence of deformation (inflexibility). Nanostructure-based pH sensors are very sensitive, reliable, fast and applicable towards in vivo measurements. In this study, nanoporous NiO nanostructures are synthesized on a gold-coated glass substrate by a hydrothermal route using poly(vinyl alcohol) (PVA) as a stabilizer. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used for the morphological and crystalline studies. The grown NiO nanostructures are uniform and dense, and they possess good crystallinity. A pH sensor based on these NiO nanostructures was developed by testing the different pH values from 2-12 of phosphate buffered saline solution. The proposed pH sensor showed robust sensitivity of -43.74 ± 0.80 mV/pH and a quick response time of less than 10 s. Moreover, the repeatability, reproducibility and stability of the presented pH sensor were also studied.

  17. Measurement of the residual energy of muons in the Gran Sasso underground laboratories

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Vakili, M.; Walter, C. W.; Webb, R.

    2003-06-01

    The MACRO detector was located in the Hall B of the Gran Sasso underground laboratories under an average rock overburden of 3700 hg/cm2. A transition radiation detector composed of three identical modules, covering a total horizontal area of 36 m2, was installed inside the empty upper part of the detector in order to measure the residual energy of muons. This paper presents the measurement of the residual energy of single and double muons crossing the apparatus. Our data show that double muons are more energetic than single ones. This measurement is performed over a standard rock depth range from 3000 to 6500 hg/cm2.

  18. [Laboratory accreditation and proficiency testing].

    PubMed

    Kuwa, Katsuhiko

    2003-05-01

    ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.

  19. Online PhD Program Delivery Models and Their Relationship to Student Success

    ERIC Educational Resources Information Center

    Jorissen, Shari L.

    2012-01-01

    Attrition rates in Ph.D. programs are at approximately 50% in traditional Ph.D. programs and 10-20% higher in online Ph.D. programs. Understanding the relationship between student factors, measures of student success (retention, graduation, year to degree), and student satisfaction is important to support and improve retention, graduation rates,…

  20. Eight year experience in open ended instrumentation laboratory

    NASA Astrophysics Data System (ADS)

    Marques, Manuel B.; Rosa, Carla C.; Marques, Paulo V. S.

    2015-10-01

    When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.