Sample records for laboratory microfusion facility

  1. High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrach, R.J.

    1989-07-24

    A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions)more » to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.« less

  2. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  3. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  4. The Nova Upgrade Facility for ICF ignition and gain

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.

    1992-01-01

    Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.

  5. Facility and Laboratory Equipment | Energy Systems Integration Facility |

    Science.gov Websites

    Energy Systems Integration Facility is its infrastructure. In addition to extensive fixed laboratory . Photo of researchers testing building loads and power networks in the Systems Performance Laboratory

  6. Energy efficiency in California laboratory-type facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, E.; Bell, G.; Sartor, D.

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in themore » overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.« less

  7. Naval Research Laboratory Major Facilities 2008

    DTIC Science & Technology

    2008-10-01

    Development Laboratory • Secure Supercomputing Facility • CBD/Tilghman Island IR Field Evaluation Facility • Ultra-Short-Pulse Laser Effects Research...EMI Test Facility • Proximity Operations Testbed GENERAL INFORMATION • Maps EX EC U TI V E D IR EC TO RA TE Code 1100 – Institute for Nanoscience...facility: atomic force microscope (AFM); benchtop transmission electron microscope (TEM); cascade probe station; critical point dryer ; dual beam focused

  8. Manufacturing Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Manufacturing Laboratory Manufacturing Laboratory Researchers in the Energy Systems Integration Facility's Manufacturing Laboratory develop methods and technologies to scale up renewable energy technology manufacturing capabilities. Photo of researchers and equipment in the Manufacturing Laboratory. Capability Hubs

  9. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  10. Shock wave facilities at Pulter Laboratory of SRI international

    NASA Astrophysics Data System (ADS)

    Murri, W. J.

    1982-04-01

    Shock wave research in the Poulter Laboratory covers two broad areas: dynamic material response and dynamic structural response. Workers in both areas use common facilities. The Laboratory has several guns and the facilities to perform various types of high explosive loading experiments. The use of these facilities and experimental techniques is illustrated with examples from research projects.

  11. Redirecting Under-Utilised Computer Laboratories into Cluster Computing Facilities

    ERIC Educational Resources Information Center

    Atkinson, John S.; Spenneman, Dirk H. R.; Cornforth, David

    2005-01-01

    Purpose: To provide administrators at an Australian university with data on the feasibility of redirecting under-utilised computer laboratories facilities into a distributed high performance computing facility. Design/methodology/approach: The individual log-in records for each computer located in the computer laboratories at the university were…

  12. Department of Energy Other Major Laboratories and Facilities

    Science.gov Websites

    major laboratories and facilities. This high-level compilation of their history and achievements Laboratory (NBL) History About Background/History of the Laboratory New Brunswick Laboratory website TOP dropdown listing Oak Ridge Institute for Science and Education (ORISE) History Environmental Assessments

  13. Thermal Storage Materials Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar

  14. A History of Educational Facilities Laboratories (EFL)

    ERIC Educational Resources Information Center

    Marks, Judy

    2009-01-01

    The Educational Facilities Laboratories (EFL), an independent research organization established by the Ford Foundation, opened its doors in 1958 under the direction of Harold B. Gores, a distinguished educator. Its purpose was to help schools and colleges maximize the quality and utility of their facilities, stimulate research, and disseminate…

  15. Energy Systems Sensor Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen

  16. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  17. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  18. The laboratory astrophysics facility at University College

    NASA Astrophysics Data System (ADS)

    Hyland, A. R.; Smith, R. G.; Robinson, G.

    A laboratory astrophysics facility for the study of the terrestrial analogues of interstellar dust grains is being developed in the Physics Department, University College, Australian Defence Force Academy. The facility consists of a gas handling system for the preparation of samples, a closed-cycle cooler and specimen chamber, and a Fourier Transform Infrared (FTIR) Spectrometer capable of high resolution (0.3/cm) and high sensitivity measurements, currently from 1-25 microns. The layout and construction of the laboratory are described, and the proposed initial experimental program aimed at determining the optical constants of ices, over a wide wavelength range for comparison with astronomical observations, is discussed.

  19. On the viability of supporting institutional sharing of remote laboratory facilities

    NASA Astrophysics Data System (ADS)

    Lowe, David; Dang, Bridgette; Daniel, Keith; Murray, Stephen; Lindsay, Euan

    2015-11-01

    Laboratories are generally regarded as critical to engineering education, and yet educational institutions face significant challenges in developing and maintaining high-quality laboratory facilities. Remote laboratories are increasingly being explored as a partial solution to this challenge, with research showing that - for the right learning outcomes - they can be viable adjuncts or alternatives to conventional hands-on laboratories. One consequential opportunity arising from the inherent support for distributed access is the possibility of cross-institutional shared facilities. While both technical feasibility and pedagogic implications of remote laboratories have been well studied within the literature, the organisational and logistical issues associated with shared facilities have received limited consideration. This paper uses an existing national-scale laboratory sharing initiative, along with a related survey and laboratory sharing data, to analyse a range of factors that can affect engagement in laboratory sharing. The paper also discusses the implications for supporting ongoing laboratory sharing.

  20. A user-friendly approach to cost accounting in laboratory animal facilities.

    PubMed

    Baker, David G

    2011-08-19

    Cost accounting is an essential management activity for laboratory animal facility management. In this report, the author describes basic principles of cost accounting and outlines steps for carrying out cost accounting in laboratory animal facilities. Methods of post hoc cost accounting analysis for maximizing the efficiency of facility operations are also described.

  1. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  2. Evaluation of aircraft crash hazard at Los Alamos National Laboratory facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvage, R.D.

    This report selects a method for use in calculating the frequency of an aircraft crash occurring at selected facilities at the Los Alamos National Laboratory (the Laboratory). The Solomon method was chosen to determine these probabilities. Each variable in the Solomon method is defined and a value for each variable is selected for fourteen facilities at the Laboratory. These values and calculated probabilities are to be used in all safety analysis reports and hazards analyses for the facilities addressed in this report. This report also gives detailed directions to perform aircraft-crash frequency calculations for other facilities. This will ensure thatmore » future aircraft-crash frequency calculations are consistent with calculations in this report.« less

  3. University of Maryland MRSEC - Facilities: Keck Laboratory

    Science.gov Websites

    MRSEC Templates Opportunities Search Home » Facilities » Keck Laboratory Shared Experimental educational institutions for non-profit administrative or educational purposes if proper credit is given to

  4. The Mars Science Laboratory Touchdown Test Facility

    NASA Technical Reports Server (NTRS)

    White, Christopher; Frankovich, John; Yates, Phillip; Wells Jr, George H.; Losey, Robert

    2009-01-01

    In the Touchdown Test Program for the Mars Science Laboratory (MSL) mission, a facility was developed to use a full-scale rover vehicle and an overhead winch system to replicate the Skycrane landing event.

  5. High Vacuum Creep Facility in the Materials Processing Laboratory

    NASA Image and Video Library

    1973-01-21

    Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.

  6. 3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW LOOKING NORTH, COMPONENTS TEST LABORATORY, DYNAMIC TEST FACILITY (SATURN V IN BACKGROUND). - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  7. Optical laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre

    NASA Astrophysics Data System (ADS)

    Lakkala, Kaisa; Suokanerva, Hanne; Matti Karhu, Juha; Aarva, Antti; Poikonen, Antti; Karppinen, Tomi; Ahponen, Markku; Hannula, Henna-Reetta; Kontu, Anna; Kyrö, Esko

    2016-07-01

    This paper describes the laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre (FMI-ARC, http://fmiarc.fmi.fi). They comprise an optical laboratory, a facility for biological studies, and an office. A dark room has been built, in which an optical table and a fixed lamp test system are set up, and the electronics allow high-precision adjustment of the current. The Brewer spectroradiometer, NILU-UV multifilter radiometer, and Analytical Spectral Devices (ASD) spectroradiometer of the FMI-ARC are regularly calibrated or checked for stability in the laboratory. The facilities are ideal for responding to the needs of international multidisciplinary research, giving the possibility to calibrate and characterize the research instruments as well as handle and store samples.

  8. On the Viability of Supporting Institutional Sharing of Remote Laboratory Facilities

    ERIC Educational Resources Information Center

    Lowe, David; Dang, Bridgette; Daniel, Keith; Murray, Stephen; Lindsay, Euan

    2015-01-01

    Laboratories are generally regarded as critical to engineering education, and yet educational institutions face significant challenges in developing and maintaining high-quality laboratory facilities. Remote laboratories are increasingly being explored as a partial solution to this challenge, with research showing that--for the right learning…

  9. Historic Properties Report: Harry Diamond Laboratories, Maryland and Satellite Installations Woodbridge Research Facility, Virginia and Blossom Point Field Test Facility, Maryland

    DTIC Science & Technology

    1984-07-01

    HISTORIC PROPERTIES REPORT HARRY DIAMOND LABORATORIES, MARYLAND ,’ / .’- AND SATELLITE INSTALLATIONS ~WOODBRIDGE RESEARCH FACILITY, VIRGINIA AND ,00... report . METHODOLOGY 1. Documentary Research Harry Diamond Laboratories (HDL) and its two satellite facilities at Woodbridge and Blossom Point are...drawings, and written history. Interagency Archeological Services and U.S. Army, Harry Diamond Laboratories. 106 Case Report and Mitigation Plan: Ballast

  10. SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia.

    PubMed

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a total of 43 facilities which, were investigated through quantitative methods using structured questionnaires interviews. Focus group discussion with the designated supply chain managers and key informant interviews were conducted for the qualitative method. There exists a well-designed logistics system for laboratory commodities with trained pharmacy personnel, distributed standard LMIS formats and established inventory control procedures. However, majority of laboratory professionals were not trained in LMIS. Majority of the facilities (60.5%) were stocked out for at least one ART monitoring and TB laboratory reagents and the highest stock out rate was for chemistry reagents. Expired ART monitoring laboratory commodities were found in 25 (73.5%) of facilities. Fifty percent (50%) of the assessed hospitals and 54% of health centers were currently using stock/bin cards for all HIV/AIDS and TB laboratory commodities in main pharmacy store, among these only 25% and 20.8% of them were updated with accurate information matching with the physical count done at the time of visit for hospitals and health centers respectively. Even though there exists a well designed laboratory LMIS, keeping quality stock/bin cards and LMIS reports were very low. Key ART monitoring laboratory commodities were stock out at many facilities at the day of visit and during the past six months. Based on findings, training of laboratory personnel's managing laboratory commodities and keeping accurate inventory control procedures

  12. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia

    PubMed Central

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Introduction Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a total of 43 facilities which, were investigated through quantitative methods using structured questionnaires interviews. Focus group discussion with the designated supply chain managers and key informant interviews were conducted for the qualitative method. Results There exists a well-designed logistics system for laboratory commodities with trained pharmacy personnel, distributed standard LMIS formats and established inventory control procedures. However, majority of laboratory professionals were not trained in LMIS. Majority of the facilities (60.5%) were stocked out for at least one ART monitoring and TB laboratory reagents and the highest stock out rate was for chemistry reagents. Expired ART monitoring laboratory commodities were found in 25 (73.5%) of facilities. Fifty percent (50%) of the assessed hospitals and 54% of health centers were currently using stock/bin cards for all HIV/AIDS and TB laboratory commodities in main pharmacy store, among these only 25% and 20.8% of them were updated with accurate information matching with the physical count done at the time of visit for hospitals and health centers respectively. Conclusion Even though there exists a well designed laboratory LMIS, keeping quality stock/bin cards and LMIS reports were very low. Key ART monitoring laboratory commodities were stock out at many facilities at the day of visit and during the past six months. Based on findings, training of laboratory personnel's managing laboratory commodities and keeping

  13. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less

  14. [Security Management in Clinical Laboratory Departments and Facilities: Current Status and Issues].

    PubMed

    Ishida, Haku; Nakamura, Junji; Yoshida, Hiroshi; Koike, Masaru; Inoue, Yuji

    2014-11-01

    We conducted a questionnaire survey regarding the current activities for protecting patients' privacy and the security of information systems (IS) related to the clinical laboratory departments of university hospitals, certified training facilities for clinical laboratories, and general hospitals in Yamaguchi Prefecture. The response rate was 47% from 215 medical institutions, including three commercial clinical laboratory centers. The results showed that there were some differences in management activities among facilities with respect to continuing education, the documentation or regulation of operational management for paper records, electronic information, remaining samples, genetic testing, and laboratory information for secondary use. They were suggested to be caused by differences in functions between university and general hospitals, differences in the scale of hospitals, or whether or not hospitals have received accreditation or ISO 15189. Regarding the IS, although the majority of facilities had sufficiently employed the access control to IS, there was some room for improvement in the management of special cases such as VIPs and patients with HIV infection. Furthermore, there were issues regarding the login method for computers shared by multiple staff, the showing of the names of personnel in charge of reports, and the risks associated with direct connections to systems and the Internet and the use of portable media such as USB memory sticks. These results indicated that further efforts are necessary for each facility to continue self-assessment and make improvements.

  15. ICF Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less

  16. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example ofmore » a risk-based decision technique. This document contains the Appendices for the report.« less

  17. BSL-3 laboratory practices in the United States: comparison of select agent and non-select agent facilities.

    PubMed

    Richards, Stephanie L; Pompei, Victoria C; Anderson, Alice

    2014-01-01

    New construction of biosafety level 3 (BSL-3) laboratories in the United States has increased in the past decade to facilitate research on potential bioterrorism agents. The Centers for Disease Control and Prevention inspect BSL-3 facilities and review commissioning documentation, but no single agency has oversight over all BSL-3 facilities. This article explores the extent to which standard operating procedures in US BSL-3 facilities vary between laboratories with select agent or non-select agent status. Comparisons are made for the following variables: personnel training, decontamination, personal protective equipment (PPE), medical surveillance, security access, laboratory structure and maintenance, funding, and pest management. Facilities working with select agents had more complex training programs and decontamination procedures than non-select agent facilities. Personnel working in select agent laboratories were likely to use powered air purifying respirators, while non-select agent laboratories primarily used N95 respirators. More rigorous medical surveillance was carried out in select agent workers (although not required by the select agent program) and a higher level of restrictive access to laboratories was found. Most select agent and non-select agent laboratories reported adequate structural integrity in facilities; however, differences were observed in personnel perception of funding for repairs. Pest management was carried out by select agent personnel more frequently than non-select agent personnel. Our findings support the need to promote high quality biosafety training and standard operating procedures in both select agent and non-select agent laboratories to improve occupational health and safety.

  18. The availability and functional status of focused antenatal care laboratory services at public health facilities in Addis Ababa, Ethiopia.

    PubMed

    Desalegn, Daniel Melese; Abay, Serebe; Taye, Bineyam

    2016-08-11

    Provision of quality laboratory services is an essential aspect of a promoting safe motherhood and better outcomes for newborn. Therefore; this study was intended to assess status of focused antenatal care (FANC) laboratory services at public health facilities in Addis Ababa, Ethiopia. Institution based, descriptive cross-sectional study was conducted from April to May 2015. The study included 13 randomly selected health facilities and 13 purposively selected laboratory service providers. The status of FANC laboratory service was assessed by using pre-tested structured questionnaire and observation checklist. The study supplemented with qualitative data through in-depth interview of laboratory service providers. The quantitative data were coded and analysed by using SPSS Version 20 software and qualitative data was transcribed, coded, categorized and thematically analysed by the principal investigator. Only 5 (38.5 %) out of 13 visited health facilities reported the availability of all types of basic FANC laboratory investigations. Comparing the availability of individual tests in the study facilities, urine dipstick, urine microscopy and stool examination were available in all institutions. However, only 7 (53.8 %) of the health facilities reported the availability of hepatitis B virus screening test. Rapid syphilis (RPR) test was found in 10 (76.9 %) facilities. All laboratory facilities had at least one or more basic FANC laboratory tests interruption for more than a day within the last 1 year due to shortage of reagent and electric power disruption. Majority of the health facilities reported incomplete provision of FANC laboratory investigations. Laboratory supply shortage and electric power disruption were the facilities' major challenge to screen pregnant women for pregnancy related health conditions. Since such conditions may affect the outcome of pregnancy, therefore extensive efforts should be targeted to avoid services interruption by taking

  19. Piloting laboratory quality system management in six health facilities in Nigeria.

    PubMed

    Mbah, Henry; Ojo, Emmanuel; Ameh, James; Musuluma, Humphrey; Negedu-Momoh, Olubunmi Ruth; Jegede, Feyisayo; Ojo, Olufunmilayo; Uwakwe, Nkem; Ochei, Kingsley; Dada, Michael; Udah, Donald; Chiegil, Robert; Torpey, Kwasi

    2014-01-01

    Achieving accreditation in laboratories is a challenge in Nigeria like in most African countries. Nigeria adopted the World Health Organization Regional Office for Africa Stepwise Laboratory (Quality) Improvement Process Towards Accreditation (WHO/AFRO- SLIPTA) in 2010. We report on FHI360 effort and progress in piloting WHO-AFRO recognition and accreditation preparedness in six health facility laboratories in five different states of Nigeria. Laboratory assessments were conducted at baseline, follow up and exit using the WHO/AFRO- SLIPTA checklist. From the total percentage score obtained, the quality status of laboratories were classified using a zero to five star rating, based on the WHO/AFRO quality improvement stepwise approach. Major interventions include advocacy, capacity building, mentorship and quality improvement projects. At baseline audit, two of the laboratories attained 1- star while the remaining four were at 0- star. At follow up audit one lab was at 1- star, two at 3-star and three at 4-star. At exit audit, four labs were at 4- star, one at 3-star and one at 2-star rating. One laboratory dropped a 'star' at exit audit, while others consistently improved. The two weakest elements at baseline; internal audit (4%) and occurrence/incidence management (15%) improved significantly, with an exit score of 76% and 81% respectively. The elements facility and safety was the major strength across board throughout the audit exercise. This effort resulted in measurable and positive impact on the laboratories. We recommend further improvement towards a formal international accreditation status and scale up of WHO/AFRO- SLIPTA implementation in Nigeria.

  20. The Shock Compression Laboratory at Harvard: A New Facility for Planetary Impact Processes

    NASA Technical Reports Server (NTRS)

    Stewart, S. T.

    2004-01-01

    The Shock Compression Laboratory in the Department of Earth and Planetary Sciences at Harvard is a new facility for the study of impact and collisional phenomena. The following describes the experimental capabilities of the laboratory.

  1. BSL-3 Laboratory Practices in the United States: Comparison of Select Agent and Non–Select Agent Facilities

    PubMed Central

    Pompei, Victoria C.; Anderson, Alice

    2014-01-01

    New construction of biosafety level 3 (BSL-3) laboratories in the United States has increased in the past decade to facilitate research on potential bioterrorism agents. The Centers for Disease Control and Prevention inspect BSL-3 facilities and review commissioning documentation, but no single agency has oversight over all BSL-3 facilities. This article explores the extent to which standard operating procedures in US BSL-3 facilities vary between laboratories with select agent or non–select agent status. Comparisons are made for the following variables: personnel training, decontamination, personal protective equipment (PPE), medical surveillance, security access, laboratory structure and maintenance, funding, and pest management. Facilities working with select agents had more complex training programs and decontamination procedures than non–select agent facilities. Personnel working in select agent laboratories were likely to use powered air purifying respirators, while non–select agent laboratories primarily used N95 respirators. More rigorous medical surveillance was carried out in select agent workers (although not required by the select agent program) and a higher level of restrictive access to laboratories was found. Most select agent and non–select agent laboratories reported adequate structural integrity in facilities; however, differences were observed in personnel perception of funding for repairs. Pest management was carried out by select agent personnel more frequently than non–select agent personnel. Our findings support the need to promote high quality biosafety training and standard operating procedures in both select agent and non–select agent laboratories to improve occupational health and safety. PMID:24552359

  2. Development of Facilities for an Ocean Engineering Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Nash, W. A.; And Others

    A collection of seven laboratory facilities and processes dedicated to improving student understanding of the fundamental concepts associated with the structural mechanics of oceanic structures is described. Complete working drawings covering all mechanical and electrical aspects of these systems are presented so that the systems may be reproduced…

  3. DECOMMISSIONING OF HOT CELL FACILITIES AT THE BATTELLE COLUMBUS LABORATORIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Patrick; Henderson, Glenn; Erickson, Peter

    2003-02-27

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning activities for nuclear research buildings and grounds at its West Jefferson Facilities by 2006, as mandated by Congress. This effort includes decommissioning several hot cells located in the Hot Cell Laboratory (Building JN-1). JN-1 was originally constructed in 1955, and a hot cell/high bay addition was built in the mid 1970s. For over 30 years, BCL used these hot cell facilities to conduct research for the nuclear power industry and several government agencies, including the U.S. Navy, U.S. Army, U.S. Air Force, and the U.S. Department ofmore » Energy. As a result of this research, the JN-1 hot cells became highly contaminated with mixed fission and activation products, as well as fuel residues. In 1998, the Battelle Columbus Laboratories Decommissioning Project (BCLDP) began efforts to decommission JN-1 with the goal of remediating the site to levels of residual contamination allowing future use without radiological restrictions. This goal requires that each hot cell be decommissioned to a state where it can be safely demolished and transported to an off-site disposal facility. To achieve this, the BCLDP uses a four-step process for decommissioning each hot cell: (1) Source Term Removal; (2) Initial (i.e., remote) Decontamination; (3) Utility Removal; and (4) Final (i.e., manual) Decontamination/Stabilization. To date, this process has been successfully utilized on 13 hot cells within JN-1, with one hot cell remaining to be decommissioned. This paper will provide a case study of the hot cell decommissioning being conducted by the BCLDP. Discussed will be the methods used to achieve the goals of each of the hot cell decommissioning stages and the lessons learned that could be applied at other sites where hot cells need to be decommissioned.« less

  4. Slew maneuvers on the SCOLE Laboratory Facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.

    1987-01-01

    The Spacecraft Control Laboratory Experiment (SCOLE) was conceived to provide a physical test bed for the investigation of control techniques for large flexible spacecraft. The control problems studied are slewing maneuvers and pointing operations. The slew is defined as a minimum time maneuver to bring the antenna line-of-sight (LOS) pointing to within an error limit of the pointing target. The second objective is to rotate about the LOS within the 0.02 degree error limit. The SCOLE problem is defined as two design challenges: control laws for a mathematical model of a large antenna attached to the Space Shuttle by a long flexible mast; and a control scheme on a laboratory representation of the structure modelled on the control laws. Control sensors and actuators are typical of those which the control designer would have to deal with on an actual spacecraft. Computational facilities consist of microcomputer based central processing units with appropriate analog interfaces for implementation of the primary control system, and the attitude estimation algorithm. Preliminary results of some slewing control experiments are given.

  5. A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies

    Treesearch

    Samuel V. Glass

    2010-01-01

    Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.

  6. 10 CFR 26.715 - Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Recordkeeping requirements for collection sites, licensee testing facilities, and laboratories certified by the Department of Health and Human Services. 26.715... laboratories certified by the Department of Health and Human Services. (a) Collection sites providing services...

  7. The Subsurface Flow and Transport Laboratory: A New Department of Energy User's Facility for Intermediate-Scale Experimentation

    NASA Astrophysics Data System (ADS)

    Wietsma, T. W.; Oostrom, M.; Foster, N. S.

    2003-12-01

    Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  8. Good Laboratory Practices of Materials Testing at NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, James H.

    2005-01-01

    An approach to good laboratory practices of materials testing at NASA White Sands Test Facility is presented. The contents include: 1) Current approach; 2) Data analysis; and 3) Improvements sought by WSTF to enhance the diagnostic capability of existing methods.

  9. A Comprehensive Laboratory Animal Facility Pandemic Response Plan

    PubMed Central

    Roble, Gordon S; Lingenhol, Naomi M; Baker, Bryan; Wilkerson, Amy; Tolwani, Ravi J

    2010-01-01

    The potential of a severe influenza pandemic necessitates the development of an organized, rational plan for continued laboratory animal facility operation without compromise of the welfare of animals. A comprehensive laboratory animal program pandemic response plan was integrated into a university-wide plan. Preparation involved input from all levels of organizational hierarchy including the IACUC. Many contingencies and operational scenarios were considered based on the severity and duration of the influenza pandemic. Trigger points for systematic action steps were based on the World Health Organization's phase alert criteria. One extreme scenario requires hibernation of research operations and maintenance of reduced numbers of laboratory animal colonies for a period of up to 6 mo. This plan includes active recruitment and cross-training of volunteers for essential personnel positions, protective measures for employee and family health, logistical arrangements for delivery and storage of food and bedding, the removal of waste, and the potential for euthanasia. Strategies such as encouraging and subsidizing cryopreservation of unique strains were undertaken to protect valuable research assets and intellectual property. Elements of this plan were put into practice after escalation of the pandemic alerts due to influenza A (H1N1) in April 2009. PMID:20858365

  10. Strategically Planning Avionics Laboratory’s Facilities for the Future

    DTIC Science & Technology

    1993-09-01

    Goldsboro Road Bethesda, Maryland 20817-5886 93 12 22 02 DISCLAIMII NOTICE THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHLD TO DTIC CONTAINED A...Avionics Laboratory establish a multiyear strategy for improving its facility utilization nearly 7 years ago. That plan, which is still being implemented...experi- mental data transmission delays caused when on-line equipment is separated by as much as a mile. The plan - now nearly 7 years old - initiated

  11. A Guide for Planning Facilities for Occupational Preparation Programs for Dental Laboratory Technicians. Research Series No. 34.

    ERIC Educational Resources Information Center

    Macconnell, James D., And Others

    The twelfth in a series also including guides for facilities for medical x-ray technologist, medical assistant, and medical secretary programs, the document is intended for use in the preparation of educational specifications for facilities for dental laboratory technician programs. Designed for use by those responsible for planning facilities,…

  12. The MSFC Noble Gas Research Laboratory (MNGRL): A NASA Investigator Facility

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara

    2016-01-01

    Noble-gas isotopes are a well-established technique for providing detailed temperature-time histories of rocks and meteorites. We have established the MSFC Noble Gas Research Laboratory (MNGRL) at Marshall Space Flight Center to serve as a NASA investigator facility in the wake of the closure of the JSC laboratory formerly run by Don Bogard. The MNGRL lab was constructed to be able to measure all the noble gases, particularly Ar-Ar and I-Xe radioactive dating to find the formation age of rocks and meteorites, and Ar/Kr/Ne cosmic-ray exposure ages to understand when the meteorites were launched from their parent planets.

  13. Proposal for a slow positron facility at Jefferson National Laboratory

    NASA Astrophysics Data System (ADS)

    Mills, Allen P.

    2018-05-01

    One goal of the JPos-17 International Workshop on Physics with Positrons was to ascertain whether it would be a good idea to expand the mission of the Thomas Jefferson National Accelerator Facility (JLab) to include science with low energy (i.e. "slow") spin polarized positrons. It is probably true that experimentation with slow positrons would potentially have wide-ranging benefits comparable to those obtained with neutron and x-ray scattering, but it is certain that the full range of these benefits will never be fully available without an infrastructure comparable to that of existing neutron and x-ray facilities. The role for Jefferson Laboratory would therefore be to provide and maintain (1) a dedicated set of machines for making and manipulating high intensity, high brightness beams of polarized slow positrons; (2) a suite of unique and easily used instruments of wide utility that will make efficient use of the positrons; and (3) a group of on-site positron scientists to provide scientific leadership, instrument development, and user support. In this note some examples will be given of the science that might make a serious investment in a positron facility worthwhile. At the same time, the lessons learned from various proposed and successful positron facilities will be presented for consideration.

  14. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  15. Serological evidence for hepatitis e virus infection in laboratory monkeys and pigs in animal facilities in Japan.

    PubMed

    Yamamoto, Hiroshi; Li, Tian-Cheng; Koshimoto, Chihiro; Ito, Kaori; Kita, Masakazu; Miyashita, Nobumoto; Arikawa, Jiro; Yagami, Kenichi; Asano, Masahide; Tezuka, Hideo; Suzuki, Noboru; Kurosawa, Tsutomu; Shibahara, Toshiyuki; Furuya, Masato; Mohri, Shirou; Sato, Hiroshi; Ohsawa, Kazutaka; Ibuki, Kentaro; Takeda, Naokazu

    2008-07-01

    In laboratory animal facilities, monkeys and pigs are used for animal experiments, but the details of hepatitis E virus (HEV) infection in these animals are unknown. The risk of infection from laboratory animals to humans has become a concern; therefore, much attention should be paid to the handling of these animals during their care and use, including surgical procedures performed on infected animals. In this connection, serum samples collected from 916 monkeys and 77 pigs kept in 23 animal facilities belonging to the Japanese Association of Laboratory Animal Facilities of National University Corporations (JALAN) and the Japanese Association of Laboratory Animal Facilities of Public and Private Universities (JALAP) in Japan were examined for the purpose of detecting antibodies to HEV and HEV RNA by using ELISA and RT-PCR, respectively. One hundred and seven serum samples of 916 (11.7%) monkeys were positive for anti-HEV IgG, and 7 and 17 serum samples of 916 (0.8% and 5.3%) monkeys were positive for anti-HEV IgM and IgA, respectively. Thirty-six samples from 62 (58.1%) farm pigs were positive for anti-HEV IgG, whereas all samples tested from miniature pigs were negative (0/15, 0%). Seven samples from 62 (9.1%) farm pigs and 7 samples from 916 (0.8%) monkeys were positive for IgM antibody, but these HEV-IgM antibody positive serum samples were HEV-RNA negative by RT-PCR. The IgM antibody positive rate (9.1%) of farm pigs was much higher than that of monkeys (0.8%). These results suggest the relative levels of risk of HEV infection from these animals to animal handlers and researchers who work with them in laboratory animal facilities.

  16. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory

    PubMed Central

    Barton, Carrie L.; Johnson, Eric W.

    2016-01-01

    Abstract The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility. PMID:26981844

  17. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory.

    PubMed

    Barton, Carrie L; Johnson, Eric W; Tanguay, Robert L

    2016-07-01

    The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility.

  18. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  19. Take a Tour of Our Facility | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Take a Tour of Our Facility Take a Tour of Our Facility The Energy Systems Integration Facility Optical Characterization Laboratory System Performance Laboratory Power Systems Integration Laboratory Control Room Energy Storage Laboratory Outdoor Testing Areas Outdoor Testing Areas Energy Systems

  20. High-temperature test facility at the NASA Lewis engine components research laboratory

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1990-01-01

    The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.

  1. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigo, H.G.; Chandler, A.J.

    Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  2. Laboratories | Energy Systems Integration Facility | NREL

    Science.gov Websites

    laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing

  3. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  4. Economic Education Laboratory: Initiating a Meaningful Economic Learning through Laboratory

    ERIC Educational Resources Information Center

    Noviani, Leny; Soetjipto, Budi Eko; Sabandi, Muhammad

    2015-01-01

    Laboratory is considered as one of the resources in supporting the learning process. The laboratory can be used as facilities to deepen the concepts, learning methods and enriching students' knowledge and skills. Learning process by utilizing the laboratory facilities can help lecturers and students in grasping the concept easily, constructing the…

  5. Laboratory Facilities and Measurement Techniques for Beamed-Energy-Propulsion Experiments in Brazil

    NASA Astrophysics Data System (ADS)

    de Oliveira, Antonio Carlos; Chanes Júnior, José Brosler; Cordeiro Marcos, Thiago Victor; Pinto, David Romanelli; Santos Vilela, Renan Guilherme; Barros Galvão, Victor Alves; Mantovani, Arthur Freire; da Costa, Felipe Jean; dos Santos Assenção, José Adeildo; dos Santos, Alberto Monteiro; de Paula Toro, Paulo Gilberto; Sala Minucci, Marco Antonio; da Silveira Rêgo, Israel; Salvador, Israel Irone; Myrabo, Leik N.

    2011-11-01

    Laser propulsion is an innovative concept of accessing the space easier and cheaper where the propulsive energy is beamed to the aerospace vehicle in flight from ground—or even satellite-based high-power laser sources. In order to be realistic about laser propulsion, the Institute for Advanced Studies of the Brazilian Air Force in cooperation with the United States Air Force and the Rensselaer Polytechnic Institute are seriously investigating its basic physics mechanisms and engineering aspects at the Henry T. Hamamatsu Laboratory of Hypersonic and Aerothermodynamics in São José dos Campos, Brazil. This paper describes in details the existing facilities and measuring systems such as high-power laser devices, pulsed-hypersonic wind tunnels and high-speed flow visualization system currently utilized in the laboratory for experimentation on laser propulsion.

  6. Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-06-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J

  7. New Improvements in Magnetic Measurements Laboratory of the ALBA Synchrotron Facility

    NASA Astrophysics Data System (ADS)

    Campmany, Josep; Marcos, Jordi; Massana, Valentí

    ALBA synchrotron facility has a complete insertion devices (ID) laboratory to characterize and produce magnetic devices needed to satisfy the requirements of ALBA's user community. The laboratory is equipped with a Hall-probe bench working in on-the-fly measurement mode allowing the measurement of field maps of big magnetic structures with high accuracy, both in magnetic field magnitude and position. The whole control system of this bench is based on TANGO. The Hall probe calibration range extends between sub-Gauss to 2 Tesla with an accuracy of 100 ppm. Apart from the Hall probe bench, the ID laboratory has a flipping coil bench dedicated to measuring field integrals and a Helmholtz coil bench specially designed to characterize permanent magnet blocks. Also, a fixed stretched wire bench is used to measure field integrals of magnet sets. This device is specifically dedicated to ID construction. Finally, the laboratory is equipped with a rotating coil bench, specially designed for measuring multipolar devices used in accelerators, such as quadrupoles, sextupoles, etc. Recent improvements of the magnetic measurements laboratory of ALBA synchrotron include the design and manufacturing of very thin 3D Hall probe heads, the design and manufacturing of coil sensors for the Rotating coil bench based on multilayered PCB, and the improvement of calibration methodology in order to improve the accuracy of the measurements. ALBA magnetic measurements laboratory is open for external contracts, and has been widely used by national and international institutes such as CERN, ESRF or CIEMAT, as well as magnet manufacturing companies, such as ANTEC, TESLA and I3 M. In this paper, we will present the main features of the measurement benches as well as improvements made so far.

  8. Lightning Protection Certification for High Explosives Facilities at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, T J; Brown, C G; Ong, M M

    2006-01-11

    Presented here is an innovation in lighting safety certification, and a description of its implementation for high explosives processing and storage facilities at Lawrence Livermore National Laboratory. Lightning rods have proven useful in the protection of wooden structures; however, modern structures made of rebar, concrete, and the like, require fresh thinking. Our process involves a rigorous and unique approach to lightning safety for modern buildings, where the internal voltages and currents are quantified and the risk assessed. To follow are the main technical aspects of lightning protection for modern structures and these methods comply with the requirements of the Nationalmore » Fire Protection Association, the National Electrical Code, and the Department of Energy [1][2]. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facility.« less

  9. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Phyllis C.

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort wasmore » designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D

  10. SINGLE EVENT EFFECTS TEST FACILITY AT OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X; Dominik, Laura J

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of ICs and systems for use in radiation environments requiresmore » the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.« less

  11. Initial experimental results from the Laboratory Biosphere closed ecological system facility

    NASA Astrophysics Data System (ADS)

    Alling, A.; Allen, J.; Dempster, W.; Nelson, M.; Silverstone, S.; van Thillo, M.

    Results from the closure and initial closed ecological system research in the "Laboratory Biosphere" facility in Santa Fe, New Mexico (USA) will be presented. The facility was initially sealed in April 2002; and the first crop experiments with soybeans commenced in May 2002. The Laboratory Biosphere was created by the team which invented, built and operated Biosphere 2 during its years of closed ecological system functioning (1991-94) and is a testbed to build upon the lessons learned. It is an opportunity to continue experiments with a sustainable soil based agriculture system unlike most bioregenerative systems which use hydroponic systems dependent on a supply of nutrient solution. Because of the small volume of the system (34-45 m3), developing mechanisms to keep parameters like carbon dioxide within acceptable limits will be critical. Recycle of nutrients within the system to maintain soil fertility; and the ability of the inherent complex ecology of soils and a soil bed reactor to handle trace gas buildups are primary research goals. Other research goals are determination of short and long-term exchanges between soil, plants and atmosphere, especially for carbon dioxide, oxygen, nitrogen, NOX, and methane, impact of cultivation (tillage) on soil/atmospheric exchanges., investigation and development of strategies to return nutrients to the soil to maintain fertility, e.g. shredding biomass vs. composting, impact on soil chemistry of returning leachate water to the soil as irrigation water. The microbiological status of soils prior to experiments and over time will allow measurement of changes in microbial diversity and the determination of the role of soil microbes in biogeochemical cycles. Integration of automated sensor and control in the system with real-time modeling has importance for operation, research and educational outreach programs. The Laboratory Biosphere is intended to test and develop a "cybersphere" (network of shared intelligence) that may be

  12. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  13. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and Laboratory Reports, Part 1 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigo, H.G.; Chandler, A.J.

    1996-04-01

    Volume II (part 1 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the documentation and raw data, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  14. Downgrading Nuclear Facilities to Radiological Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  15. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  16. 21 CFR 111.310 - What are the requirements for the laboratory facilities that you use?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false What are the requirements for the laboratory facilities that you use? 111.310 Section 111.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN...

  17. 21 CFR 111.310 - What are the requirements for the laboratory facilities that you use?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false What are the requirements for the laboratory facilities that you use? 111.310 Section 111.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN...

  18. 21 CFR 111.310 - What are the requirements for the laboratory facilities that you use?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false What are the requirements for the laboratory facilities that you use? 111.310 Section 111.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN...

  19. 21 CFR 111.310 - What are the requirements for the laboratory facilities that you use?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What are the requirements for the laboratory facilities that you use? 111.310 Section 111.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN...

  20. 21 CFR 111.310 - What are the requirements for the laboratory facilities that you use?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false What are the requirements for the laboratory facilities that you use? 111.310 Section 111.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN...

  1. The influence of facility and home pen design on the welfare of the laboratory-housed dog.

    PubMed

    Scullion Hall, Laura E M; Robinson, Sally; Finch, John; Buchanan-Smith, Hannah M

    We have an ethical and scientific obligation to Refine all aspects of the life of the laboratory-housed dog. Across industry there are many differences amongst facilities, home pen design and husbandry, as well as differences in features of the dogs such as strain, sex and scientific protocols. Understanding how these influence welfare, and hence scientific output is therefore critical. A significant proportion of dogs' lives are spent in the home pen and as such, the design can have a considerable impact on welfare. Although best practice guidelines exist, there is a paucity of empirical evidence to support the recommended Refinements and uptake varies across industry. In this study, we examine the effect of modern and traditional home pen design, overall facility design, husbandry, history of regulated procedures, strain and sex on welfare-indicating behaviours and mechanical pressure threshold. Six groups of dogs from two facilities (total n=46) were observed in the home pen and tested for mechanical pressure threshold. Dogs which were housed in a purpose-built modern facility or in a modern design home pen showed the fewest behavioural indicators of negative welfare (such as alert or pacing behaviours) and more indicators of positive welfare (such as resting) compared to those in a traditional home pen design or traditional facility. Welfare indicating behaviours did not vary consistently with strain, but male dogs showed more negative welfare indicating behaviours and had greater variation in these behaviours than females. Our findings showed more positive welfare indicating behaviours in dogs with higher mechanical pressure thresholds. We conclude that factors relating to the design of home pens and implementation of Refinements at the facility level have a significant positive impact on the welfare of laboratory-housed dogs, with a potential concomitant impact on scientific endpoints. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights

  2. Interactive radiopharmaceutical facility between Yale Medical Center and Brookhaven National Laboratory. Progress report, October 1976-June 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottschalk, A.

    1979-01-01

    DOE Contract No. EY-76-S-02-4078 was started in October 1976 to set up an investigative radiochemical facility at the Yale Medical Center which would bridge the gap between current investigation with radionuclides at the Yale School of Medicine and the facilities in the Chemistry Department at the Brookhaven National Laboratory. To facilitate these goals, Dr. Mathew L. Thakur was recruited who joined the Yale University faculty in March of 1977. This report briefly summarizes our research accomplishments through the end of June 1979. These can be broadly classified into three categories: (1) research using indium-111 labelled cellular blood components; (2) developmentmore » of new radiopharmaceuticals; and (3) interaction with Dr. Alfred Wolf and colleagues in the Chemistry Department of Brookhaven National Laboratory.« less

  3. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazardmore » areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.« less

  4. Facilities to Support Beamed Energy Launch Testing at the Laser Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.

    2003-05-01

    The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.

  5. The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF)

    DTIC Science & Technology

    2015-10-01

    ARL-TR-7506 ● OCT 2015 US Army Research Laboratory The Automation of the Transonic Experimental Facility (TEF) and the...Laboratory The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility (AEF) by Charith R Ranawake Weapons...To) 05/2015–08/2015 4. TITLE AND SUBTITLE The Automation of the Transonic Experimental Facility (TEF) and the Aerodynamic Experimental Facility

  6. 2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Areamore » Sewage Treatment plant.« less

  7. [Improving experimental teaching facilities and opening up of laboratories in order to raise experimental teaching quality of genetics].

    PubMed

    Xiao, Jian-Fu; Wu, Jian-Guo; Shi, Chun-Hai

    2011-12-01

    Advanced teaching facilities and the policy of opening laboratories to students play an important role in raising the quality in the experimental teaching of Genetics. This article introduces the superiority of some advanced instruments and equipment (such as digital microscope mutual laboratory system, flow cytometry, and NIRSystems) in the experimental teaching of genetics, and illustrates with examples the significance of exposing students to experiments in developing their creative consciousness and creative ability. This article also offers some new concepts on the further improvement upon teaching in the laboratory.

  8. ICF quarterly report January - March 1997 volume 7, number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J

    The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide criticalmore » information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.« less

  9. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in

  10. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, Stuart D.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Fox, W.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-04-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE (flare.pppl.gov), is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to heliophysical and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) (mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to magnetospheric, solar wind, and solar coronal plasmas. After a brief summary of recent laboratory results on the topic of magnetic reconnection, the motivating major physics questions, the construction status, and the planned collaborative research especially with heliophysics communities will be discussed.

  11. Comprehensive facilities plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitatemore » existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.« less

  12. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  13. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies.

    PubMed

    Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal

    2006-09-20

    High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option.GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and industry service providers alike.

  14. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    PubMed Central

    Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal

    2006-01-01

    Background High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and

  15. SABRE, a 10-MV linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corely, J.P.; Alexander, J.A.; Pankuch, P.J.

    SABRE (Sandia Accelerator and Beam Research Experiment) is a 10-MV, 250-kA, 40-ns linear induction accelerator. It was designed to be used in positive polarity output. Positive polarity accelerators are important for application to Sandia's ICF (Inertial Confinement Fusion) and LMF (Laboratory Microfusion Facility) program efforts. SABRE was built to allow a more detailed study of pulsed power issues associated with positive polarity output machines. MITL (Magnetically Insulated Transmission Line) voltage adder efficiency, extraction ion diode development, and ion beam transport and focusing. The SABRE design allows the system to operate in either positive polarity output for ion extraction applications ormore » negative polarity output for more conventional electron beam loads. Details of the design of SABRE and the results of initial machine performance in negative polarity operation are presented in this paper. 13 refs., 12 figs., 1 tab.« less

  16. The status of medical laboratory towards of AFRO-WHO accreditation process in government and private health facilities in Addis Ababa, Ethiopia.

    PubMed

    Mesfin, Eyob Abera; Taye, Bineyam; Belay, Getachew; Ashenafi, Aytenew

    2015-01-01

    The World Health Organization Regional Office for Africa (WHO AFRO) introduces a step wise incremental accreditation approach to improving quality of laboratory and it is a new initiative in Ethiopia and activities are performed for implementation of accreditation program. Descriptive cross sectional study was conducted in 30 laboratory facilities including 6 laboratory sections to determine their status towards of accreditation using WHO AFRO accreditation checklist and 213 laboratory professionals were interviewed to assess their knowledge on quality system essentials and accreditation in Addis Ababa Ethiopia. Out of 30 laboratory facilities 1 private laboratory scored 156 (62%) points, which is the minimum required point for WHO accreditation and the least score was 32 (12.8%) points from government laboratory. The assessment finding from each section indicate that 2 Clinical chemistry (55.2% & 62.8%), 2 Hematology (55.2% & 62.8%), 2 Serology (55.2% & 62.8%), 2 Microbiology (55.2% & 62.4%), 1 Parasitology (62.8%) & 1 Urinalysis (61.6%) sections scored the minimum required point for WHO accreditation. The average score for government laboratories was 78.2 (31.2%) points, of these 6 laboratories were under accreditation process with 106.2 (42.5%) average score, while the private laboratories had 71.2 (28.5%) average score. Of 213 respondents 197 (92.5%) professionals had a knowledge on quality system essentials whereas 155 (72.8%) respondents on accreditation. Although majority of the laboratory professionals had knowledge on quality system and accreditation, laboratories professionals were not able to practice the quality system properly and most of the laboratories had poor status towards the WHO accreditation process. Thus government as well as stakeholders should integrate accreditation program into planning and health policy.

  17. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birdsell, Kay Hanson; Stauffer, Philip H.; Atchley, Adam Lee

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2016 annual review for Area G.

  18. Recent Progress in Laboratory Astrophysics and Astrochemistry Achieved with the COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-01-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as diffuse interstellar clouds, circumstellar outflows and planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow recreating simulated space conditions to generate, process and monitor cosmic analogs in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to high-sensitivity, complementary in situ diagnostics: cavity ring down spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection, and Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of circumstellar dust grains and planetary atmosphere aerosols from their gas-phase molecular precursors. Plans for future laboratory experiments on interstellar and planetary molecules and grains will also be addressed, as well as the implications of the studies underway for astronomical observations and past and future space mission data analysis.

  19. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  20. The status of medical laboratory towards of AFRO-WHO accreditation process in government and private health facilities in Addis Ababa, Ethiopia

    PubMed Central

    Mesfin, Eyob Abera; Taye, Bineyam; Belay, Getachew; Ashenafi, Aytenew

    2015-01-01

    Introduction The World Health Organization Regional Office for Africa (WHO AFRO) introduces a step wise incremental accreditation approach to improving quality of laboratory and it is a new initiative in Ethiopia and activities are performed for implementation of accreditation program. Methods Descriptive cross sectional study was conducted in 30 laboratory facilities including 6 laboratory sections to determine their status towards of accreditation using WHO AFRO accreditation checklist and 213 laboratory professionals were interviewed to assess their knowledge on quality system essentials and accreditation in Addis Ababa Ethiopia. Results Out of 30 laboratory facilities 1 private laboratory scored 156 (62%) points, which is the minimum required point for WHO accreditation and the least score was 32 (12.8%) points from government laboratory. The assessment finding from each section indicate that 2 Clinical chemistry (55.2% & 62.8%), 2 Hematology (55.2% & 62.8%), 2 Serology (55.2% & 62.8%), 2 Microbiology (55.2% & 62.4%), 1 Parasitology (62.8%) & 1 Urinalysis (61.6%) sections scored the minimum required point for WHO accreditation. The average score for government laboratories was 78.2 (31.2%) points, of these 6 laboratories were under accreditation process with 106.2 (42.5%) average score, while the private laboratories had 71.2 (28.5%) average score. Of 213 respondents 197 (92.5%) professionals had a knowledge on quality system essentials whereas 155 (72.8%) respondents on accreditation. Conclusion Although majority of the laboratory professionals had knowledge on quality system and accreditation, laboratories professionals were not able to practice the quality system properly and most of the laboratories had poor status towards the WHO accreditation process. Thus government as well as stakeholders should integrate accreditation program into planning and health policy. PMID:26889317

  1. The Underground Laboratory in South Korea : facilities and experiments

    NASA Astrophysics Data System (ADS)

    Kim, Yeongduk

    2017-01-01

    We have developed underground physics programs for last 15 years in South Korea. The scientific and technical motivation for this initiative was the lack of local facility of a large accelerator in Korea. Thanks to the large underground electric power generator in Yangyang area, we could construct a deep underground laboratory (Yangyang Laboratory, Y2L) and has performed some pioneering experiments for dark matter search and double beta decay experiments. Since year of 2013, a new research center in the Institute for Basic Science (IBS), Center for Underground Physics (CUP), is approved by the government and Y2L laboratory is managed by CUP. Due to the limited space in Y2L, we are proposing to construct a new deep underground laboratory where we can host larger scale experiments of next generation. The site is in an active iron mine, and will be made in 1100 meter underground with a space of about 2000 m2 by the end of 2019. I will describe the status and future plan for this underground laboratory. CUP has two main experimental programs. (1) Identification of dark matter : The annual modulation signal of DAMA/LIBRA experiment has been contradictory to many other experiments such as XENON100, LUX, and Super CDMS. Yale University and CUP (COSINE-100) experimentalists agreed to do an experiment together at the Y2L and recently commissioned a 100kg scale low background NaI(Tl) crystal experiment. In future, we will develop NaI(Tl) crystals with lower internal backgrounds and try to run identical detectors at both north and south hemisphere. Low mass WIMP search is also planned with a development of low temperature sensors coupled with highly scintillating crystals. (2) Neutrinoless double beta decay search : The mass of the lightest neutrino and the Majorana nature of the neutrinos are not determined yet. Neutrinoless double beta decay experiment can answer both of the questions directly, and ultra-low backgrounds and excellent energy resolution are critical to

  2. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  3. Single Event Effects Test Facility Options at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X; Dominik, Laura J

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of integrated circuits (ICs) and systems for use in radiationmore » environments requires the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.« less

  4. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    radiation components, and has expanded its expertise to include integrated metrology, optics, electronics Acquisition Laboratory, Metrology Laboratory, Optics Laboratory, and Electronics Laboratory. Photo of a

  5. NASA Ames’ COSmIC Laboratory Astrophysics Facility: Recent Results and Progress

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2018-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1, 2]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of molecules, ions and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow generating; processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostic tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection, and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [3, 4].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular in the domain of the diffuse interstellar bands (DIBs) [5, 6] and the monitoring, in the laboratory, of the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [7] and planetary atmospheres [8, 9, 10]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs) will also be addressed as well as the implications for astronomy.References: [1] Salama F., Proceed. IAU S251, Kwok & Sandford eds. CUP, 4, 357 (2008).[2] Salama F., et al., Proceed. IAU S332, Y. Aikawa, M. Cunningham, T. Millar, eds., CUP (2018)[3] Biennier L., et al., J. Chem. Phys., 118, 7863 (2003)[4] Ricketts C. et al. IJMS, 300, 26 (2011)[5] Salama F., et al., ApJ., 728, 154 (2011)[6] EDIBLES

  6. User Facilities | Argonne National Laboratory

    Science.gov Websites

    , including biology and medicine. More than 7,000 scientists conduct experiments at Argonne user facilities Transformations IGSBInstitute for Genomics and Systems Biology IMEInstitute for Molecular Engineering JCESRJoint Science Center SBCStructural Biology Center Energy.gov U.S. Department of Energy Office of Science

  7. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  8. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  9. Wind Energy Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  10. 42 CFR 493.1101 - Standard: Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Facilities. 493.1101 Section 493.1101... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Facility Administration for Nonwaived Testing § 493.1101 Standard: Facilities. (a) The laboratory must be constructed, arranged, and maintained to...

  11. Sandia, California Tritium Research Laboratory transition and reutilization project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, T.B.

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  12. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B.; Stauffer, Philip H.; Birdsell, Kay H.

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  13. Productivity of Veterans Health Administration laboratories: a College of American Pathologists Laboratory Management Index Program (LMIP) study.

    PubMed

    Valenstein, Paul N; Wang, Edward; O'Donohue, Tom

    2003-12-01

    The Veterans Health Administration (VA) operates the largest integrated laboratory network in the United States. To assess whether the unique characteristics of VA laboratories impact efficiency of operations, we compared the productivity of VA and non-VA facilities. Financial and activity data were prospectively collected from 124 VA and 131 non-VA laboratories enrolled in the College of American Pathologists Laboratory Management Index Program (LMIP) during 2002. In addition, secular trends in 5 productivity ratios were calculated for VA and non-VA laboratories enrolled in LMIP from 1997 through 2002. Veterans Health Administration and non-VA facilities did not differ significantly in size. Inpatients accounted for a lower percentage of testing at VA facilities than non-VA facilities (21.7% vs 37.3%; P <.001). Technical staff at the median VA facility were paid more than at non-VA facilities (28.11/h dollars vs 22.60/h dollars, salaries plus benefits; P <.001), VA laboratories employed a smaller percentage of nontechnical staff (30.0% vs 41.9%; P <.001), and workers at VA laboratories worked less time per hour paid (85.5% vs 88.5%; P <.001). However, labor productivity was significantly higher at VA than at non-VA facilities (30 448 test results/total full-time equivalent (FTE)/y vs 19 260 results/total FTE; P <.001), resulting in lower labor expense per on-site test at VA sites than at non-VA sites (1.79 dollars/result vs 2.08 dollars/result; P <.001). Veterans Health Administration laboratories paid less per test for consumables (P =.003), depreciation, and maintenance than their non-VA counterparts (all P <.001), resulting in lower overall cost per on-site test result (2.64 dollars vs 3.40 dollars; P <.001). Cost per referred (sent-out) test did not differ significantly between the 2 groups. Analysis of 6-year trends showed significant increases in both VA (P <.001) and non-VA (P =.02) labor productivity (on-site tests/total FTE). Expenses at VA laboratories

  14. Advances in Interstellar and Planetary Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow forming, processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostics tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular the advances that have been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [4] and planetary atmospheres [5, 6]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs will also be addressed as well as the implications of the on-going studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU S251, Kwok & Sandford eds.CUP, 4, 357 (2008).[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J., Biennier L., Beletsky Y., In-Ok Song, The

  15. Detection of pinworm eggs in the dust of laboratory animals breeding facility, in the cages and on the hands of the technicians.

    PubMed

    Lytvynets, A; Langrova, I; Lachout, J; Vadlejch, J

    2013-01-01

    Pinworms (Nematoda: Oxyurida) are common contaminants in most laboratory rodent colonies. The aim of the study was to monitor the transmission of Syphacia muris eggs in laboratory rat breeding facilities. Dust in a breeding room was investigated using special grids (free fallout, or through the help suction chamber). Furthermore, the ventilation system, breeding cages and the hands of the laboratory technical staff were examined. In the case of free fallout, the percentage of positive grids increased slightly over time: from 5.5% (after 24 h) to 8.2% (72 h). Similar values were also found when using the suction chamber (7.6%). Many more pinworm eggs were found in samples collected every second month from suction holes of the ventilation system (28.7%). One-half of the samples taken from the breeding cages (before washing) exhibited pinworm eggs (50.8%). Examination of the hands of technical staff showed positive detection in 37.9% of cases. In this study, certain transmission factors (dust, unclean cages and technicians) were proved to be significant in the distribution of pinworm infection in laboratory rodent facilities.

  16. Energy Systems Integration Facility (ESIF) Facility Stewardship Plan: Revision 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan; Anderson, Art

    The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), has established the Energy Systems Integration Facility (ESIF) on the campus of the National Renewable Energy Laboratory (NREL) and has designated it as a DOE user facility. This 182,500-ft2 research facility provides state-of-the-art laboratory and support infrastructure to optimize the design and performance of electrical, thermal, fuel, and information technologies and systems at scale. This Facility Stewardship Plan provides DOE and other decision makers with information about the existing and expected capabilities of the ESIF and the expected performance metrics to be applied to ESIF operations.more » This plan is a living document that will be updated and refined throughout the lifetime of the facility.« less

  17. Tuberculosis Laboratory Diagnosis Quality Assurance among Public Health Facilities in West Amhara Region, Ethiopia.

    PubMed

    Shiferaw, Melashu Balew; Hailu, Hiwot Amare; Fola, Abebe Alemu; Derebe, Mulatu Melese; Kebede, Aimro Tadese; Kebede, Abayneh Admas; Emiru, Manamnot Agegne; Gelaw, Zelalem Dessie

    2015-01-01

    Reliable smear microscopy is an important component of Directly Observed Treatment Scheme (DOTS) strategy for TB control program in countries with limited resources. Despite external quality assessment is established in Ethiopia, there is lower TB detection rate (48%) in Amhara region compared to the World Health Organization (WHO) estimate (70%). This highlights the quality of smear microscopy needs to be evaluated. Therefore, the aim of this study was to assess the quality of sputum smear microscopy performance among health center laboratories in West Amhara region, Ethiopia. A cross sectional study was conducted from July 08, 2013 to July 07, 2014. Data were collected from 201 public health center laboratories using a structured questionnaire. Slides were collected based on Lot Quality Assurance Sampling (LQAS) method and rechecked blindly by trained laboratory technologists. The data were entered into EPI info V.7 and smear quality indicators and AFB results were analyzed by SPSS version 20. Among 201 laboratories enrolled in this study, 47 (23.4%) laboratories had major errors. Forty one (20.4%) laboratories had a total of 67 false negative and 29 (14.4%) laboratories had a total of 68 false positive results. Specimen quality, smear thickness and evenness were found poor in 134 (66.7%), 133 (66.2%) and 126 (62.7%) laboratories, respectively. Unavailability of microscope lens cleaning solution (AOR: 2.90; 95% CI: 1.25-6.75; P: 0.013) and dirty smears (AOR: 2.65; 95% CI: 1.14-6.18; P: 0.024) were correlated with false negative results whereas no previous EQA participation (AOR: 3.43; 95% CI: 1. 39-8.45; P: 0.007) was associated with false positive results. The performance of health facilities for sputum smear microscopy was relatively poor in West Amhara region. Hence, strengthening the EQA program and technical support on sputum smear microscopy are recommended to ensure quality tuberculosis diagnostic service.

  18. Sediment and erosion control laboratory facility expansion.

    DOT National Transportation Integrated Search

    2016-08-01

    The Sediment and Erosion Control Laboratory (SEC Lab), formerly the Hydraulics, Sedimentation, and : Erosion Control Laboratory, is operated by the Texas A&M Transportation Institutes Environment and : Planning Program. Performance evaluation prog...

  19. 42 CFR 493.1100 - Condition: Facility administration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Facility administration. 493.1100... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Facility Administration for Nonwaived Testing § 493.1100 Condition: Facility administration. Each laboratory that performs nonwaived...

  20. Standard Specification for Language Laboratory.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Administration, Raleigh.

    This specification covers the components of electronic and electromechanical equipment, nonelectronic materials for the teacher-student positions, and other items of a miscellaneous nature to provide for a complete and workable language laboratory facility. Language laboratory facilities covered by this specification are of two types: (1)…

  1. 21 CFR 58.43 - Animal care facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Animal care facilities. 58.43 Section 58.43 Food... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.43 Animal care facilities. (a) A testing facility shall have a sufficient number of animal rooms or areas, as needed, to assure proper: (1...

  2. 21 CFR 58.43 - Animal care facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Animal care facilities. 58.43 Section 58.43 Food... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.43 Animal care facilities. (a) A testing facility shall have a sufficient number of animal rooms or areas, as needed, to assure proper: (1...

  3. 21 CFR 58.43 - Animal care facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Animal care facilities. 58.43 Section 58.43 Food... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.43 Animal care facilities. (a) A testing facility shall have a sufficient number of animal rooms or areas, as needed, to assure proper: (1...

  4. 21 CFR 58.43 - Animal care facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Animal care facilities. 58.43 Section 58.43 Food... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.43 Animal care facilities. (a) A testing facility shall have a sufficient number of animal rooms or areas, as needed, to assure proper: (1...

  5. 21 CFR 58.43 - Animal care facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Animal care facilities. 58.43 Section 58.43 Food... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.43 Animal care facilities. (a) A testing facility shall have a sufficient number of animal rooms or areas, as needed, to assure proper: (1...

  6. Laboratory simulations of astrophysical jets: results from experiments at the PF-3, PF-1000U, and KPF-4 facilities

    NASA Astrophysics Data System (ADS)

    Krauz, V. I.; Myalton, V. V.; Vinogradov, V. P.; Velikhov, E. P.; Ananyev, S. S.; Dan'ko, S. A.; Kalinin, Yu G.; Kharrasov, A. M.; Vinogradova, Yu V.; Mitrofanov, K. N.; Paduch, M.; Miklaszewski, R.; Zielinska, E.; Skladnik-Sadowska, E.; Sadowski, M. J.; Kwiatkowski, R.; Tomaszewski, K.; Vojtenko, D. A.

    2017-10-01

    Results are presented from laboratory simulations of plasma jets emitted by young stellar objects carried out at the plasma focus facilities. The experiments were performed at three facilities: the PF-3, PF-1000U and KPF-4. The operation modes were realized enabling the formation of narrow plasma jets which can propagate over long distances. The main parameters of plasma jets and background plasma were determined. In order to control the ratio of a jet density to that of background plasma, some special operation modes with pulsed injection of the working gas were used.

  7. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, andmore » the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.« less

  8. Laboratory Equipment Criteria.

    ERIC Educational Resources Information Center

    State Univ. Construction Fund, Albany, NY.

    Requirements for planning, designing, constructing and installing laboratory furniture are given in conjunction with establishing facility criteria for housing laboratory equipment. Furniture and equipment described include--(1) center tables, (2) reagent racks, (3) laboratory benches and their mechanical fixtures, (4) sink and work counters, (5)…

  9. Optical Characterization Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    Laboratory offers the following capabilities. Solar Thermal Calibration The Optical Characterization collectors for solar thermal energy generation to enable the study of increasingly stable (less intermittent Characterization Laboratory's environmental characterization hub offers high-temperature/humidity thermal chambers

  10. 21 CFR 58.31 - Testing facility management.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Organization and Personnel § 58.31 Testing facility management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study...

  11. The Phillips Laboratory capillary pumped loop test facility

    NASA Astrophysics Data System (ADS)

    Gluck, Donald F.; Kaylor, Marc C.

    1996-03-01

    An ammonia capillary pumped loop (CPL) test facility has been designed, fabricated, subject to acceptance tests, and assembled at Phillips Laboratory. Its intent is to support a wide range of Air Force programs, bringing CPL technology to flight readiness for operational systems. The facility provides a high degree of modularity and flexibility with several heating and cooling options, and capability for elevation (+/- 15 in.), tilt (+/-60°) and transport length variation. It has a 182 by 44 by 84 inch envelope, an expected heat load capability of 2500 W, and a temperature range of 0 to 50 °C. The evaporator section has two plates with four capillary pumps (CPs) each, with a starter pump on one plate. The CPs are 5/8 in., with TAG aluminum 6063-T6 casing and UHMW polyethylene wicks. The active lengths are 15 and 30 inch with both 10 and 15 micron wicks. The individual CPs have thermal and hydraulic isolation capability, and are removable. The transport section consists of stainless steel lines in a serpentine configuration, a 216 in3 free volume reservoir, and a mechanical pump. The vapor transport line contains a capillary device (which can be bypassed) for vapor blockage during startup. The condenser consists of two separately valved, parallel cold plates each with a downstream noncondensible gas trap. Cooling of up to 1500 W at -50 °C is provided by an FTS Systems chiller using Flourinert FC-72. An enclosure/exhaust system is provided for safety and emergency venting of ammonia. An ammonia charge station performs or supports the functions of proof pressure, flushing with ammonia, purging with gaseous nitrogen, evacuation of all or part of the CPL to 20 microns, and charging. Instrumentation consists of over 116 thermocouples, five of which are internal; one absolute and six differential pressure transducers; eleven watt transducers, and a reservoir load cell. The data acquisition system consists of a temperature scanner, Bernoulli drive, and two Macintosh

  12. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservativemore » assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.« less

  13. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plantmore » and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.« less

  14. Sandia National Laboratories Facilities Management and Operations Center Design Standards Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Timothy L.

    2014-09-01

    At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. Themore » safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural

  15. Environmental monitoring in a laboratory animal facility.

    PubMed

    Wellstood-Nuesse, S; Shields, R P

    1976-08-01

    A study was made of the microbial environmental status of an animal facility. Cultures were made of animal and surgical room floors; the germicidal effectiveness of the phenolic disinfectant-detergent employed in the facility was tested against standard test organisms as well as against other microorganisms isolated from the facility, and killing power of the disinfectant-detergent was evaluated during various steps of the usual cleaning procedures, ie, mops and mop bucket solutions were tested before, during, and after mopping a room. It was found that colony counts for animal rooms cleaned with a chlorhexidine disinfectant were much lower than those cleaned with a phenolic disinfectant. The phenolic disinfectant killed some organisms after 10 min exposure, but no others. Pseudomonads were the most resistant organisms. Contaminated mops and mop bucket solutions appeared responsible for the high counts on floors cleaned with the phenolic disinfectant. Guidelines for achievable levels of cleanliness were suggested.

  16. A study of electro-mechanical and infrastructure instrumentation facilities in environmental laboratory.

    PubMed

    Dhawangale, R M; Kawale, S M; Waghmare, Maya; Pandya, G H; Kondawar, V K

    2006-01-01

    Environmental laboratories carry out measurement and analysis of a number of physical, chemical and biological parameters. Each parameter requires some sort of instrument for its determination. Providing efficient instrumentation services to various departments of the Institute is an stupendous task. Instrumentation services in the form of installation, operation, repair and maintenanace of electro-mechanical equipment requires an in-depth experience and knowledge of the working, fabrication, design and repair of similar type of instruments so that the need of space, installation pre-requisites, budget constraints, availability of essential spares parts could be assessed. The paper discusses the operation of an environmental instrument repairs and maintenance, and audio-visual facilities. Suggestions for drafting of the proper specifications for procurement of laboratory equipments, such as ovens, furnaces, refrigerators, blowers, audio visual aids, and spares and accessories are given in this paper. The paper also gives the detailed information on various aspects that are needed for checking and testing of the equipment against specification before putting it in operational use. Development of a preventive maintenance program involving QC checks and keeping an inventory of essential spares required are also discussed in this paper. It is felt that such services are essential in providing smooth support to carry out research and development activities of the Institute.

  17. Implementation of the OECD principles of good laboratory practice in test facilities complying with a quality system accredited to the ISO/IEC 17025 standard.

    PubMed

    Feller, Etty

    2008-01-01

    Laboratories with a quality system accredited to the ISO/IEC 17025 standard have a definite advantage, compared to non-accredited laboratories, when preparing their facilities for the implementation of the principles of good laboratory practice (GLP) of the Organisation for Economic Co-operation and Development (OECD). Accredited laboratories have an established quality system covering the administrative and technical issues specified in the standard. The similarities and differences between the ISO/IEC 17025 standard and the OECD principles of GLP are compared and discussed.

  18. Decontamination and deactivation of the power burst facility at the Idaho National Laboratory.

    PubMed

    Greene, Christy Jo

    2007-05-01

    Successful decontamination and deactivation of the Power Burst Facility located at the Idaho National Laboratory was accomplished through the use of extensive planning, job sequencing, engineering controls, continuous radiological support, and the use of a dedicated group of experienced workers. Activities included the removal and disposal of irradiated fuel, miscellaneous reactor components and debris stored in the canal, removal and disposition of a 15.6 curie Pu:Be start-up source, removal of an irradiated in-pile tube, and the removal of approximately 220,000 pounds of lead that was used as shielding primarily in Cubicle 13. The canal and reactor vessel were drained and water was transferred to an evaporation tank adjacent to the facility. The canal was decontaminated using underwater divers, and epoxy was affixed to the interior surfaces of the canal to contain loose contamination. The support structures and concrete or steel frame walls that form the confinement were left in place. The reactor core was left in place and a carbon steel shielding plate was placed over the reactor core to reduce radiation levels. All low-level waste and mixed low level waste generated as a result of the work activities was characterized and disposed.

  19. GRC Ground Support Facilities

    NASA Technical Reports Server (NTRS)

    SaintOnge, Thomas H.

    2010-01-01

    The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.

  20. Radiation and Health Technology Laboratory Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.

    2005-07-09

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrumentmore » calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.« less

  1. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  2. 21 CFR 58.45 - Animal supply facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Animal supply facilities. 58.45 Section 58.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.45 Animal supply facilities. There...

  3. 21 CFR 58.45 - Animal supply facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Animal supply facilities. 58.45 Section 58.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.45 Animal supply facilities. There...

  4. 21 CFR 58.45 - Animal supply facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Animal supply facilities. 58.45 Section 58.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.45 Animal supply facilities. There...

  5. 21 CFR 58.45 - Animal supply facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Animal supply facilities. 58.45 Section 58.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.45 Animal supply facilities. There...

  6. Conceptual design of a biological specimen holding facility. [Life Science Laboratory for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.; Yakut, M. M.

    1976-01-01

    An all-important first step in the development of the Spacelab Life Science Laboratory is the design of the Biological Specimen Holding Facility (BSHF) which will provide accommodation for living specimens for life science research in orbit. As a useful tool in the understanding of physiological and biomedical changes produced in the weightless environment, the BSHF will enable biomedical researchers to conduct in-orbit investigations utilizing techniques that may be impossible to perform on human subjects. The results of a comprehensive study for defining the BSHF, description of its experiment support capabilities, and the planning required for its development are presented. Conceptual designs of the facility, its subsystems and interfaces with the Orbiter and Spacelab are included. Environmental control, life support and data management systems are provided. Interface and support equipment required for specimen transfer, surgical research, and food, water and waste storage is defined. New and optimized concepts are presented for waste collection, feces and urine separation and sampling, environmental control, feeding and watering, lighting, data management and other support subsystems.

  7. A review of filovirus work and facilities at the Defence Science and Technology Laboratory Porton Down.

    PubMed

    Smither, Sophie J; Lever, Mark S

    2012-08-01

    Porton Down houses two separate sites capable of conducting high containment research on ACDP (Advisory Committee on Dangerous Pathogens) Hazard Group 4 agents: the Defence Science and Technology Laboratory (Dstl) and the Health Protection Agency (HPA), and filovirus research has been performed at Porton Down since the first Marburg virus disease outbreak in 1967. All work is conducted within primary containment either within cabinet lines (for in vitro work) or large rigid half-suit isolators (for in vivo work). There are extensive aerobiological facilities at high containment and the use of these facilities will be reported. Research at Dstl is primarily focused on assessing and quantifying the hazard, and testing the efficacy of medical countermeasures against filoviruses. Fundamental research directed to the study and understanding of the infectious and pathogenic nature of the filoviruses, particularly in aerosols, will be reported.

  8. A Review of Filovirus Work and Facilities at The Defence Science and Technology Laboratory Porton Down

    PubMed Central

    Smither, Sophie J.; Lever, Mark S.

    2012-01-01

    Porton Down houses two separate sites capable of conducting high containment research on ACDP (Advisory Committee on Dangerous Pathogens) Hazard Group 4 agents: the Defence Science and Technology Laboratory (Dstl) and the Health Protection Agency (HPA), and filovirus research has been performed at Porton Down since the first Marburg virus disease outbreak in 1967. All work is conducted within primary containment either within cabinet lines (for in vitro work) or large rigid half-suit isolators (for in vivo work). There are extensive aerobiological facilities at high containment and the use of these facilities will be reported. Research at Dstl is primarily focused on assessing and quantifying the hazard, and testing the efficacy of medical countermeasures against filoviruses. Fundamental research directed to the study and understanding of the infectious and pathogenic nature of the filoviruses, particularly in aerosols, will be reported. PMID:23012627

  9. Teaching Laboratory Renovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Zuhairi, Ali Jassim; Al-Dahhan, Wedad; Hussein, Falah

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. The improvement of students’ understanding of concepts in science and its applications, practical scientific skills and understanding of how science and scientists work in laboratory experiences have been considered key aspects of education in science for over 100 years. Facility requirements for the necessary level of safety and security combined with specific requirementsmore » relevant to the course to be conducted dictate the structural design of a particular laboratory, and the design process must address both. This manuscript is the second in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. We summarize the process used to guide a major renovation of the chemistry instructional laboratory facilities at Al-Nahrain University and discuss lessons learned from the project.« less

  10. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance frommore » the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.« less

  11. OB's high voltage laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1966-01-01

    The January issue of Hi-Tension News provides a detailed description of the advanced surge test facilities and procedures in daily operation at the OB High Voltage Laboratory in Barberton, Ohio. Technical competences achieved in this laboratory contribute to the essential factors of design confirmation to basic studies of ehv insulation systems, conductor and hardware performance, and optimum tower construction. Known throughout the industry for authenticity of its full scale, all weather outdoor testing, OB's High Voltage Laboratory is a full-fledged participant in the NEMA-sponsored program to make testing facilities available on a cooperative basis.

  12. Research and test facilities for development of technologies and experiments with commercial applications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

  13. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  14. Maintenance and operation of the multispectral data collection and reproduction facilities of the Willow Run Laboratories

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.; Stewart, S. R.

    1972-01-01

    The accomplishments in multispectral mapping during 1970 and (fiscal year) 1971 are presented. The mapping was done with the instrumented C-47 aircraft owned and operated by Willow Run Laboratories of The University of Michigan. Specific information for flight operations sponsored by NASA/MSC (Manned Spacecraft Center) in 1970 and fiscal year 1971 is presented, and a total listing of flights for 1968, 1969, 1970, and fiscal year 1971 is included in the appendices. The data-collection and reproduction facilities are described.

  15. Thermal Storage Process and Components Laboratory | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Process and Components Laboratory Thermal Storage Process and Components Laboratory The Energy Systems Integration Facility's Thermal Systems Process and Components Laboratory supports research and development, testing, and evaluation of new thermal energy storage systems

  16. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  17. Cysticercosis in laboratory rabbits.

    PubMed

    Owiny, J R

    2001-03-01

    There are no data on the current incidence of Taenia pisiformis in laboratory rabbits. Two cases of cysticercosis most likely due to T. pisiformis in laboratory rabbits (intermediate host) are presented. Both rabbits had no contact with dogs (final host); their caretakers did not work with dogs, and these caretakers changed into facility scrubs and wore gloves when working with the rabbits. Rabbit 1 may have been infected after being fed hay at our facility. In light of the life cycle of the parasite and the history of rabbit 2, it potentially could have been infected prior to arrival at our facility. There have been only three cases of tapeworm cysts in rabbits in our facility (average daily census, 250) during the last 10 years (incidence, < 1%). This report indicates that although cysticercosis is rare in laboratory rabbits, one should always be aware of such incidental findings. Although it may not produce overt illness in the rabbit, hepatic migration could adversely affect the outcome of some experimental procedures

  18. Emissions of PCDD and PCDF from combustion of forest fuels and sugarcane: a comparison between field measurements and simulations in a laboratory burn facility.

    PubMed

    Black, R R; Meyer, C P; Touati, A; Gullett, B K; Fiedler, H; Mueller, J F

    2011-05-01

    Release of PCDD and PCDF from biomass combustion such as forest and agricultural crop fires has been nominated as an important source for these chemicals despite minimal characterisation. Available emission factors that have been experimentally determined in laboratory and field experiments vary by several orders of magnitude from <0.5 μg TEQ (t fuel consumed)(-1) to >100 μg TEQ (t fuel consumed)(-1). The aim of this study was to evaluate the effect of experimental methods on the emission factor. A portable field sampler was used to measure PCDD/PCDF emissions from forest fires and the same fuel when burnt over a brick hearth to eliminate potential soil effects. A laboratory burn facility was used to sample emissions from the same fuels. There was very good agreement in emission factors to air (EF(Air)) for forest fuel (Duke Forest, NC) of 0.52 (range: 0.40-0.79), 0.59 (range: 0.18-1.2) and 0.75 (range: 0.27-1.2) μg TEQ(WHO2005) (t fuel consumed)(-1) for the in-field, over a brick hearth, and burn facility experiments, respectively. Similarly, experiments with sugarcane showed very good agreement with EF(Air) of 1.1 (range: 0.40-2.2), 1.5 (range: 0.84-2.2) and 1.7 (range: 0.34-4.4) μg TEQ (t fuel consumed)(-1) for in-field, over a brick hearth, open field and burn facility experiments respectively. Field sampling and laboratory simulations were in good agreement, and no significant changes in emissions of PCDD/PCDF could be attributed to fuel storage and transport to laboratory test facilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  20. Los Alamos National Laboratory Facility Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H + and H - beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  1. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel a fuel cell test in the Fuel Cell Development and Test Laboratory. Capability Hubs The Fuel Cell

  2. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

  3. Burden of laboratory-confirmed Campylobacter infections in Guatemala 2008-2012: results from a facility-based surveillance system.

    PubMed

    Benoit, Stephen R; Lopez, Beatriz; Arvelo, Wences; Henao, Olga; Parsons, Michele B; Reyes, Lissette; Moir, Juan Carlos; Lindblade, Kim

    2014-03-01

    Campylobacteriosis is one of the leading causes of gastroenteritis worldwide. This study describes the epidemiology of laboratory-confirmed Campylobacter diarrheal infections in two facility-based surveillance sites in Guatemala. Clinical, epidemiologic, and laboratory data were collected on patients presenting with acute diarrhea from select healthcare facilities in the departments of Santa Rosa and Quetzaltenango, Guatemala, from January 2008 through August 2012. Stool specimens were cultured for Campylobacter and antimicrobial susceptibility testing was performed on a subset of isolates. Multidrug resistance (MDR) was defined as resistance to ≥3 antimicrobial classes. Campylobacter was isolated from 306 (6.0%) of 5137 stool specimens collected. For children <5 years of age, annual incidence was as high as 1288.8 per 100,000 children in Santa Rosa and 185.5 per 100,000 children in Quetzaltenango. Among 224 ambulatory care patients with Campylobacter, 169 (75.5%) received metronidazole or trimethoprim-sulfamethoxazole, and 152 (66.7%) received or were prescribed oral rehydration therapy. Antimicrobial susceptibilities were tested in 96 isolates; 57 (59.4%) were resistant to ciprofloxacin and 12 (12.5%) were MDR. Campylobacter was a major cause of diarrhea in children in two departments in Guatemala; antimicrobial resistance was high, and treatment regimens in the ambulatory setting which included metronidazole and trimethoprim-sulfamethoxazole and lacked oral rehydration were sub-optimal. Published by Elsevier Ltd.

  4. Power source evaluation capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  5. Laboratory Design for Microbiological Safety

    PubMed Central

    Phillips, G. Briggs; Runkle, Robert S.

    1967-01-01

    Of the large amount of funds spent each year in this country on construction and remodeling of biomedical research facilities, a significant portion is directed to laboratories handling infectious microorganisms. This paper is intended for the scientific administrators, architects, and engineers concerned with the design of new microbiological facilities. It develops and explains the concept of primary and secondary barriers for the containment of microorganisms. The basic objectives of a microbiological research laboratory, (i) protection of the experimenter and staff, (ii) protection of the surrounding community, and (iii) maintenance of experimental validity, are defined. In the design of a new infectious-disease research laboratory, early identification should be made of the five functional zones of the facility and their relation to each other. The following five zones and design criteria applicable to each are discussed: clean and transition, research area, animal holding and research area, laboratory support, engineering support. The magnitude of equipment and design criteria which are necessary to integrate these five zones into an efficient and safe facility are delineated. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:4961771

  6. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 basemore » pairs per year, while still retaining its efficiency.« less

  7. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    NASA Astrophysics Data System (ADS)

    de Angelis, Giacomo; Fiorentini, Gianni

    2016-11-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ-ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ-detector array based on γ-ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes.

  8. Challenges for proteomics core facilities.

    PubMed

    Lilley, Kathryn S; Deery, Michael J; Gatto, Laurent

    2011-03-01

    Many analytical techniques have been executed by core facilities established within academic, pharmaceutical and other industrial institutions. The centralization of such facilities ensures a level of expertise and hardware which often cannot be supported by individual laboratories. The establishment of a core facility thus makes the technology available for multiple researchers in the same institution. Often, the services within the core facility are also opened out to researchers from other institutions, frequently with a fee being levied for the service provided. In the 1990s, with the onset of the age of genomics, there was an abundance of DNA analysis facilities, many of which have since disappeared from institutions and are now available through commercial sources. Ten years on, as proteomics was beginning to be utilized by many researchers, this technology found itself an ideal candidate for being placed within a core facility. We discuss what in our view are the daily challenges of proteomics core facilities. We also examine the potential unmet needs of the proteomics core facility that may also be applicable to proteomics laboratories which do not function as core facilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Belova, E.; Ellis, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Que, W.; Ren, Y.; Titus, P.; Yamada, M.; Yoo, J.

    2014-12-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE, is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) at Princeton (http://mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to space and solar plasmas. The motivating major physics questions, the construction status, and the planned collaborative research especially with space and solar research communities will be discussed.

  10. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  11. Sandia National Laboratories: Locations: Kauai Test Facility

    Science.gov Websites

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience Suppliers iSupplier Account Accounts Payable Contract Information Construction & Facilities Contract

  12. Energy - Sandia National Laboratories

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  13. Aerospace Energy Systems Laboratory - Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames/Dryden Flight Research Facility operates a mixed fleet of research aircraft employing NiCd batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has evolved over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  14. Saving Water at Los Alamos National Laboratory

    ScienceCinema

    Erickson, Andy

    2018-01-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  15. ATLAS with CARIBU: A laboratory portrait

    DOE PAGES

    Pardo, Richard C.; Savard, Guy; Janssens, Robert V. F.

    2016-03-21

    The Argonne Tandem Linac Accelerator System (ATLAS) is the world's first superconducting accelerator for projectiles heavier than the electron. This unique system is a U.S. Department of Energy (DOE) national user research facility open to scientists from all over the world. Here, it is located within the Physics Division at Argonne National Laboratory and is one of five large scientific user facilities located at the laboratory.

  16. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas... procedures required by nonclinical laboratory studies. [52 FR 33780, Sept. 4, 1987] ...

  17. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas... procedures required by nonclinical laboratory studies. [52 FR 33780, Sept. 4, 1987] ...

  18. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas... procedures required by nonclinical laboratory studies. [52 FR 33780, Sept. 4, 1987] ...

  19. Burden of laboratory-confirmed Campylobacter infections in Guatemala 2008–2012: Results from a facility-based surveillance system

    PubMed Central

    Benoit, Stephen R.; Lopez, Beatriz; Arvelo, Wences; Henao, Olga; Parsons, Michele B.; Reyes, Lissette; Moir, Juan Carlos; Lindblade, Kim

    2015-01-01

    Introduction Campylobacteriosis is one of the leading causes of gastroenteritis worldwide. This study describes the epidemiology of laboratory-confirmed Campylobacter diarrheal infections in two facility-based surveillance sites in Guatemala. Methods Clinical, epidemiologic, and laboratory data were collected on patients presenting with acute diarrhea from select healthcare facilities in the departments of Santa Rosa and Quetzaltenango, Guatemala, from January 2008 through August 2012. Stool specimens were cultured for Campylobacter and antimicrobial susceptibility testing was performed on a subset of isolates. Multidrug resistance (MDR) was defined as resistance to ≥3 antimicrobial classes. Results Campylobacter was isolated from 306 (6.0%) of 5137 stool specimens collected. For children <5 years of age, annual incidence was as high as 1288.8 per 100,000 children in Santa Rosa and 185.5 per 100,000 children in Quetzaltenango. Among 224 ambulatory care patients with Campylobacter, 169 (75.5%) received metronidazole or trimethoprim-sulfamethoxazole, and 152 (66.7%) received or were prescribed oral rehydration therapy. Antimicrobial susceptibilities were tested in 96 isolates; 57 (59.4%) were resistant to ciprofloxacin and 12 (12.5%) were MDR. Conclusion Campylobacter was a major cause of diarrhea in children in two departments in Guatemala; antimicrobial resistance was high, and treatment regimens in the ambulatory setting which included metronidazole and trimethoprim-sulfamethoxazole and lacked oral rehydration were sub-optimal. PMID:24534336

  20. Development and Commissioning of an External Beam Facility in the Union College Ion Beam Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael

    2015-10-01

    We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.

  1. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  2. Murine norovirus infection in Brazilian animal facilities

    PubMed Central

    Rodrigues, Daniele Masselli; Moreira, Josélia Cristina de Oliveira; Lancellotti, Marcelo; Gilioli, Rovilson; Corat, Marcus Alexandre Finzi

    2016-01-01

    Murine norovirus (MNV) is a single-stranded positive-sense RNA virus of the Caliciviridae family. MNV has been reported to infect laboratory mice with the ability to cause lethal infections in strains lacking components of the innate immune response. Currently, MNV is considered the most prevalent infectious agent detected in laboratory mouse facilities. In this study, mice in 22 laboratory animal facilities within Brazil were analyzed for MNV infection. Using primers targeting a conserved region of the viral capsid, MNV was detected by RT-PCR in 137 of 359 mice from all 22 facilities. Nucleotide sequencing and phylogenetic analysis of the capsid region from the viral genome showed identity ranging from 87% to 99% when compared to reported MNV sequences. In addition, RAW264.7 cells inoculated with a mouse fecal suspension displayed cytopathic effect after the fifth passage. This study represents the first report of MNV in mouse colonies in Brazilian laboratory animal facilities, emphasizing the relevance of a health surveillance program in such environments. PMID:28049885

  3. Aerospace energy systems laboratory: Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  4. Safety | Argonne National Laboratory

    Science.gov Websites

    laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Careers Education Community Diversity Directory Energy Environment National Security User Facilities

  5. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less

  6. Metrology Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    and artificial) Spectral reflectance and transmission of materials (functional check only , pyrheliometers,* pyranometers,* and pyrgeometers. The Metrology Laboratory provides National Institute of

  7. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A description of the sensor, ground data processing facility, laboratory calibration, and first results

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1987-01-01

    The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.

  8. 21 CFR 58.49 - Laboratory operation areas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Laboratory operation areas. 58.49 Section 58.49... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.49 Laboratory operation areas. Separate laboratory space shall be provided, as needed, for the performance of the routine and specialized...

  9. 40 CFR 160.49 - Laboratory operation areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Laboratory operation areas. 160.49 Section 160.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.49 Laboratory operation areas. Separate laboratory...

  10. 40 CFR 160.49 - Laboratory operation areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Laboratory operation areas. 160.49 Section 160.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.49 Laboratory operation areas. Separate laboratory...

  11. Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Kimmel, Mark; Rambo, Patrick; Broyles, Robin; Geissel, Matthias; Schwarz, Jens; Bellum, John; Atherton, Briggs

    2009-10-01

    To enable laser-based radiography of high energy density physics events on the Z-Accelerator[4,5] at Sandia National Laboratories, a facility known as the Z-Backlighter has been developed. Two Nd:Phosphate glass lasers are used to create x-rays and/or proton beams capable of this radiographic diagnosis: Z-Beamlet (a multi-kilojoule laser operating at 527nm in a few nanoseconds) and Z-Petawatt (a several hundred joule laser operating at 1054nm in the subpicosecond regime) [1,2]. At the energy densities used in these systems, it is necessary to use high damage threshold optical materials, some of which are poorly characterized (especially for the sub-picosecond pulse). For example, Sandia has developed a meter-class dielectric coating capability for system optics. Damage testing can be performed by external facilities for nanosecond 532nm pulses, measuring high reflector coating damage thresholds >80J/cm2 and antireflection coating damage thresholds >20J/cm2 [3]. However, available external testing capabilities do not use femtosecond/picosecond scale laser pulses. To this end, we have constructed a sub-picoseond-laser-based optical damage test system. The damage tester system also allows for testing in a vacuum vessel, which is relevant since many optics in the Z-Backlighter system are used in vacuum. This paper will present the results of laser induced damage testing performed in both atmosphere and in vacuum, with 1054nm sub-picosecond laser pulses. Optical materials/coatings discussed are: bare fused silica and protected gold used for benchmarking; BK7; Zerodur; protected silver; and dielectric optical coatings (halfnia/silica layer pairs) produced by Sandia's in-house meter-class coating capability.

  12. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    PubMed Central

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were developed in the mid-1970s. In 1980 the facility was relocated to the Nevis Laboratories of Columbia University. RARAF now has seven beam lines, each having a dedicated irradiation facility: monoenergetic neutrons, charged particle track segments, two charged particle microbeams (one electrostatically focused to <1 μm, one magnetically focused), a 4.5 keV soft X-ray microbeam, a neutron microbeam, and a facility that produces a neutron spectrum similar to that of the atomic bomb dropped at Hiroshima. Biology facilities are available on site within close proximity to the irradiation facilities, making the RARAF very user friendly. PMID:28140790

  13. Awareness and practice of safety precautions among healthcare workers in the laboratories of two public health facilities in Nigeria.

    PubMed

    Fadeyi, A; Fowotade, A; Abiodun, M O; Jimoh, A K; Nwabuisi, C; Desalu, O O

    2011-06-01

    To determine the level of awareness and practice of SP among laboratory workers at two tertiary public health facilities in Nigeria. A semi-structured, self-administered questionnaire was used to assess the awareness, attitude and adherence to SP among laboratory workers. Information on the availability of safety equipment was also sought. The laboratory safety practice of respondents was assessed based on self-reported observance of basic principles of universal precautions in clinical settings. Study participants were 130, mean age: 28.2 years (SD±6.6), number of years in hospital employment: 3.7 years (SD±2.4) and the male to female ratio was 1.8:1. Many (41.5%) were unaware and 25.4% do not observe SP. Participants attest to availability of various safety devices and equipment including hand gloves (86.2%), disinfectants (84.6%), HBV immunisation (46.2%) and post exposure prophylaxis (PEP) for HIV and HBV (79.6%). Attitude to safety is unsatisfactory as 60.0% eat and drink in the laboratory, 50.8% recap needles and 56.9% use sharps box. Even though 83.1% are willing to take PEP, only 1.5% will present self following laboratory injury. This study shows the deficit in the awareness of SP among laboratory personnel and demonstrates that attitude and practice of safety rules are unsatisfactory. Training and re-training on SP is therefore desired. Counselling to induce a positive attitudinal change on HBV immunisation and PEP is similarly necessary.

  14. Biosecurity for animal facilities and associated laboratories.

    PubMed

    Richmond, Jonathan Y; Nesby-O'Dell, Shanna

    2003-01-01

    Although working with human pathogens and zoonotic agents has always carried a certain degree of danger, current events have resulted in an increased focus on the subject, including new regulations. The authors discuss a number of risk assessment and management activities that animal research facilities should use to evaluate strengthen their current programs.

  15. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  16. Development and Use of a Virtual NMR Facility

    NASA Astrophysics Data System (ADS)

    Keating, Kelly A.; Myers, James D.; Pelton, Jeffrey G.; Bair, Raymond A.; Wemmer, David E.; Ellis, Paul D.

    2000-03-01

    We have developed a "virtual NMR facility" (VNMRF) to enhance access to the NMR spectrometers in Pacific Northwest National Laboratory's Environmental Molecular Sciences Laboratory (EMSL). We use the term virtual facility to describe a real NMR facility made accessible via the Internet. The VNMRF combines secure remote operation of the EMSL's NMR spectrometers over the Internet with real-time videoconferencing, remotely controlled laboratory cameras, real-time computer display sharing, a Web-based electronic laboratory notebook, and other capabilities. Remote VNMRF users can see and converse with EMSL researchers, directly and securely control the EMSL spectrometers, and collaboratively analyze results. A customized Electronic Laboratory Notebook allows interactive Web-based access to group notes, experimental parameters, proposed molecular structures, and other aspects of a research project. This paper describes our experience developing a VNMRF and details the specific capabilities available through the EMSL VNMRF. We show how the VNMRF has evolved during a test project and present an evaluation of its impact in the EMSL and its potential as a model for other scientific facilities. All Collaboratory software used in the VNMRF is freely available from http://www.emsl.pnl.gov:2080/docs/collab.

  17. Saving Water at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Andy

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility thatmore » supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.« less

  18. 2016 Annual Site Environmental report Sandia National Laboratories Tonopah Test Range Nevada & Kaua'i Test Facility Hawai'i.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, Angela Maria; Griffith, Stacy R.

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA) under contract DE-NA0003525. The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the SNL, Tonopah Test Range (SNL/TTR) in Nevada and the SNL, Kaua‘i Test Facility (SNL/KTF) in Hawai‘i. SNL personnel manage and conduct operations at SNL/TTR in support of the DOE/NNSA’s Weapons Ordnance Program and have operated the site since 1957. Navarro Research and Engineeringmore » personnel perform most of the environmental programs activities at SNL/TTR. The DOE/NNSA/Nevada Field Office retains responsibility for cleanup and management of SNL/TTR Environmental Restoration sites. SNL personnel operate SNL/KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/TTR and SNL/KTF during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and biological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and as required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.« less

  19. 40 CFR 792.49 - Laboratory operation areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Laboratory operation areas. 792.49... CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.49 Laboratory operation areas. Separate laboratory space and other space shall be provided, as needed, for the performance of the routine...

  20. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    NASA Astrophysics Data System (ADS)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  1. Malaria diagnostic capacity in health facilities in Ethiopia

    PubMed Central

    2014-01-01

    Background Accurate early diagnosis and prompt treatment is one of the key strategies to control and prevent malaria in Ethiopia where both Plasmodium falciparum and Plasmodium vivax are sympatric and require different treatment regimens. Microscopy is the standard for malaria diagnosis at the health centres and hospitals whereas rapid diagnostic tests are used at community-level health posts. The current study was designed to assess malaria microscopy capacity of health facilities in Oromia Regional State and Dire Dawa Administrative City, Ethiopia. Methods A descriptive cross-sectional study was conducted from February to April 2011 in 122 health facilities, where health professionals were interviewed using a pre-tested, standardized assessment tool and facilities’ laboratory practices were assessed by direct observation. Results Of the 122 assessed facilities, 104 (85%) were health centres and 18 (15%) were hospitals. Out of 94 health facilities reportedly performing blood films, only 34 (36%) used both thin and thick smears for malaria diagnosis. The quality of stained slides was graded in 66 health facilities as excellent, good and poor quality in 11(17%), 31 (47%) and 24 (36%) respectively. Quality assurance guidelines and malaria microscopy standard operating procedures were found in only 13 (11%) facilities and 12 (10%) had involved in external quality assessment activities, and 32 (26%) had supportive supervision within six months of the survey. Only seven (6%) facilities reported at least one staff’s participation in malaria microscopy refresher training during the previous 12 months. Although most facilities, 96 (79%), had binocular microscopes, only eight (7%) had the necessary reagents and supplies to perform malaria microscopy. Treatment guidelines for malaria were available in only 38 (31%) of the surveyed facilities. Febrile patients with negative malaria laboratory test results were managed with artemether-lumefantrine or chloroquine in 51% (53

  2. Pacific Northwest Laboratory Institutional Plan FY 1995-2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-12-01

    This report serves as a document to describe the role PNL is positioned to take in the Department of Energy`s plans for its national centers in the period 1995-2000. It highlights the strengths of the facilities and personnel present at the laboratory, touches on the accomplishments and projects they have contributed to, and the direction being taken to prepare for the demands to be placed on DOE facilities in the near and far term. It consists of sections titled: director`s statement; laboratory mission and core competencies; laboratory strategic plan; laboratory initiatives; core business areas; critical success factors.

  3. Sandia National Laboratories: Z Pulsed Power Facility

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  4. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  5. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  6. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  7. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  8. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  9. Crew Systems Laboratory/Building 7. Historical Documentation

    NASA Technical Reports Server (NTRS)

    Slovinac, Patricia

    2011-01-01

    Building 7 is managed by the Crew and Thermal Systems Division of the JSC Engineering Directorate. Originally named the Life Systems Laboratory, it contained five major test facilities: two advanced environmental control laboratories and three human-rated vacuum chambers (8 , 11 , and the 20 ). These facilities supported flight crew familiarization and the testing and evaluation of hardware used in the early manned spaceflight programs, including Gemini, Apollo, and the ASTP.

  10. Sensitive and specific identification by polymerase chain reaction of Eimeria tenella and Eimeria maxima, important protozoan pathogens in laboratory avian facilities.

    PubMed

    Lee, Hyun-A; Hong, Sunhwa; Chung, Yungho; Kim, Okjin

    2011-09-01

    Eimeria tenella and Eimeria maxima are important pathogens causing intracellular protozoa infections in laboratory avian animals and are known to affect experimental results obtained from contaminated animals. This study aimed to find a fast, sensitive, and efficient protocol for the molecular identification of E. tenella and E. maxima in experimental samples using chickens as laboratory avian animals. DNA was extracted from fecal samples collected from chickens and polymerase chain reaction (PCR) analysis was employed to detect E. tenella and E. maxima from the extracted DNA. The target nucleic acid fragments were specifically amplified by PCR. Feces secreting E. tenella and E. maxima were detected by a positive PCR reaction. In this study, we were able to successfully detect E. tenella and E. maxima using the molecular diagnostic method of PCR. As such, we recommended PCR for monitoring E. tenella and E. maxima in laboratory avian facilities.

  11. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  12. National Ignition Facility project acquisition plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaghan, R.W.

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertialmore » Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.« less

  13. 2014 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2013, through October 31, 2014. The report contains, as applicable, the following information; Site description; Facility and system description; Permit required monitoring data and loading rates; Status of compliance conditions and activities; and Discussion of the facility’s environmental impacts. The current permit expires on March 16, 2015. A permit renewal application was submitted to Idaho Department of Environmental Quality on September 15, 2014. Duringmore » the 2014 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. Seepage testing of the three lagoons was performed between August 26, 2014 and September 22, 2014. Seepage rates from Lagoons 1 and 2 were below the 0.25 inches/day requirement; however, Lagoon 3 was above the 0.25 inches/day. Lagoon 3 has been isolated and is being evaluated for future use or permanent removal from service.« less

  14. 40 CFR 792.49 - Laboratory operation areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Laboratory operation areas. 792.49 Section 792.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.49 Laboratory operation areas...

  15. New radiation protection calibration facility at CERN.

    PubMed

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Aerial View of NACA's Lewis Flight Propulsion Research Laboratory

    NASA Image and Video Library

    1946-05-21

    The National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio as seen from the west in May 1946. The Cleveland Municipal Airport is located directly behind. The laboratory was built in the early 1940s to resolve problems associated with aircraft engines. The initial campus contained seven principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Engine Propeller Research Building, Altitude Wind Tunnel, and Icing Research Tunnel. These facilities and their associated support structures were located within an area occupying approximately one-third of the NACA’s property. After World War II ended, the NACA began adding new facilities to address different problems associated with the newer, more powerful engines and high speed flight. Between 1946 and 1955, four new world-class test facilities were built: the 8- by 6-Foot Supersonic Wind Tunnel, the Propulsion Systems Laboratory, the Rocket Engine Test Facility, and the 10- by 10-Foot Supersonic Wind Tunnel. These large facilities occupied the remainder of the NACA’s semicircular property. The Lewis laboratory expanded again in the late 1950s and early 1960s as the space program commenced. Lewis purchased additional land in areas adjacent to the original laboratory and acquired a large 9000-acre site located 60 miles to the west in Sandusky, Ohio. The new site became known as Plum Brook Station.

  17. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  18. High-temperature acoustic test facilities and methods

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome

    1994-09-01

    The Wright Laboratory is the Air Force center for air vehicles, responsible for developing advanced technology and incorporating it into new flight vehicles and for continuous technological improvement of operational air vehicles. Part of that responsibility is the problem of acoustic fatigue. With the advent of jet aircraft in the 1950's, acoustic fatigue of aircraft structure became a significant problem. In the 1960's the Wright Laboratory constructed the first large acoustic fatigue test facilities in the United States, and the laboratory has been a dominant factor in high-intensity acoustic testing since that time. This paper discusses some of the intense environments encountered by new and planned Air Force flight vehicles, and describes three new acoustic test facilities of the Wright Laboratory designed for testing structures in these dynamic environments. These new test facilities represent the state of the art in high-temperature, high-intensity acoustic testing and random fatigue testing. They will allow the laboratory scientists and engineers to test the new structures and materials required to withstand the severe environments of captive-carry missiles, augmented lift wings and flaps, exhaust structures of stealth aircraft, and hypersonic vehicle structures well into the twenty-first century.

  19. Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-06

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  20. 1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY. CAMERA FACING NORTHEAST. ON RIGHT OF VIEW IS PART OF EARTH/GRAVEL SHIELDING FOR BIN SET. AERIAL STRUCTURE MOUNTED ON POLES IS PNEUMATIC TRANSFER SYSTEM FOR DELIVERY OF SAMPLES BEING SENT FROM NEW WASTE CALCINING FACILITY TO THE CPP REMOTE ANALYTICAL LABORATORY. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  1. Capsule review of the DOE research and development and field facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less

  2. Vehicle Thermal Management Facilities | Transportation Research | NREL

    Science.gov Websites

    Management Facilities Vehicle Thermal Management Facilities Image of a building with two semi truck evaluation facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and apparatus. Combined fluid loops bench research apparatus in the Vehicle Thermal Management Laboratory. Photo

  3. 40 CFR 160.31 - Testing facility management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...

  4. Our Story | Materials Research Laboratory at UCSB: an NSF MRSEC

    Science.gov Websites

    this site Materials Research Laboratory at UCSB: an NSF MRSEC logo Materials Research Laboratory at & Workshops Visitor Info Research IRG-1: Magnetic Intermetallic Mesostructures IRG 2: Polymeric Seminars Publications MRL Calendar Facilities Computing Energy Research Facility Microscopy &

  5. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...

  6. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...

  7. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    PubMed

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  8. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    PubMed Central

    Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  9. A laboratory animal science pioneer.

    PubMed

    Kostomitsopoulos, Nikolaos

    2014-11-01

    Nikolaos Kostomitsopoulos, DVM, PhD, is Head of Laboratory Animal Facilities and Designated Veterinarian, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece. Dr. Kostomitsopoulos discusses his successes in implementing laboratory animal science legislation and fostering collaboration among scientists in Greece.

  10. 21 CFR 200.10 - Contract facilities (including consulting laboratories) utilized as extramural facilities by...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (IND) Application, any information obtained during the inspection of an extramural facility having a... Administration does not consider results of validation studies of analytical and assay methods and control...

  11. Construction of the Propulsion Systems Laboratory No. 1 and 2

    NASA Image and Video Library

    1951-01-21

    Construction of the Propulsion Systems Laboratory No. 1 and 2 at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. When it began operation in late 1952, the Propulsion Systems Laboratory was the NACA’s most powerful facility for testing full-scale engines at simulated flight altitudes. The facility contained two altitude simulating test chambers which were a technological combination of the static sea-level test stands and the complex Altitude Wind Tunnel, which recreated actual flight conditions on a larger scale. NACA Lewis began designing the new facility in 1947 as part of a comprehensive plan to improve the altitude testing capabilities across the lab. The exhaust, refrigeration, and combustion air systems from all the major test facilities were linked. In this way, different facilities could be used to complement the capabilities of one another. Propulsion Systems Laboratory construction began in late summer 1949 with the installation of an overhead exhaust pipe connecting the facility to the Altitude Wind Tunnel and Engine Research Building. The large test section pieces arriving in early 1951, when this photograph was taken. The two primary coolers for the altitude exhaust are in place within the framework near the center of the photograph.

  12. 42 CFR 494.130 - Condition: Laboratory services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratory services. 494.130 Section 494... Patient Care § 494.130 Condition: Laboratory services. The dialysis facility must provide, or make available, laboratory services (other than tissue pathology and histocompatibility) to meet the needs of the...

  13. 42 CFR 494.130 - Condition: Laboratory services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratory services. 494.130 Section 494... Patient Care § 494.130 Condition: Laboratory services. The dialysis facility must provide, or make available, laboratory services (other than tissue pathology and histocompatibility) to meet the needs of the...

  14. Facility Name | Research Site Name | NREL

    Science.gov Websites

    ex ea commodo consequat. Images should have a width of 1746px - height can vary Capabilities Capability 1 Capability 2 Capability 3 Testing Facilities and Laboratories Laboratory Name Images should have a width of 768px - height can vary Download fact sheet Laboratory Name Images should have a width of

  15. Making of the NSTX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Neumeyer; M. Ono; S.M. Kaye

    1999-11-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

  16. Energy Systems Integration Facility Overview

    ScienceCinema

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2018-01-16

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  17. Laboratory-associated infections and biosafety.

    PubMed Central

    Sewell, D L

    1995-01-01

    An estimated 500,000 laboratory workers in the United States are at risk of exposure to infectious agents that cause disease ranging from inapparent to life-threatening infections, but the precise risk to a given worker unknown. The emergence of human immunodeficiency virus and hantavirus, the continuing problem of hepatitis B virus, and the reemergence of Mycobacterium tuberculosis have renewed interest in biosafety for the employees of laboratories and health care facilities. This review examines the history, the causes, and the methods for prevention of laboratory-associated infections. The initial step in a biosafety program is the assessment of risk to the employee. Risk assessment guidelines include the pathogenicity of the infectious agent, the method of transmission, worker-related risk factors, the source and route of infection, and the design of the laboratory facility. Strategies for the prevention and management of laboratory-associated infections are based on the containment of the infectious agent by physical separation from the laboratory worker and the environment, employee education about the occupational risks, and availability of an employee health program. Adherence to the biosafety guidelines mandated or proposed by various governmental and accrediting agencies reduces the risk of an occupational exposure to infectious agents handled in the workplace. PMID:7553572

  18. Liability in the Laboratory.

    ERIC Educational Resources Information Center

    Purvis, Johnny; And Others

    1986-01-01

    Presents two scenarios to illustrate the difference between liability and negligence. Also presents highlights of four actual cases related to laboratory security, appropriate facilities, proper instructions, and protective gear. (JN)

  19. Fuel Distribution Systems | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Fuel Distribution Systems Fuel Distribution Systems The Energy Systems Integration Facility's integrated fuel distribution systems provide natural gas, hydrogen, and diesel throughout its laboratories in two laboratories: the Power Systems Integration Laboratory and the Energy Storage Laboratory. Each

  20. User Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  1. Laboratory Safety Needs of Kentucky School-Based Agricultural Mechanics Teachers

    ERIC Educational Resources Information Center

    Saucier, P. Ryan; Vincent, Stacy K.; Anderson, Ryan G.

    2014-01-01

    The frequency and severity of accidents that occur in the agricultural mechanics laboratory can be reduced when these facilities are managed by educators who are competent in the area of laboratory safety and facility management (McKim & Saucier, 2011). To ensure teachers are technically competent and prepared to manage an agricultural…

  2. Nuclear electric propulsion development and qualification facilities

    NASA Technical Reports Server (NTRS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-01-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  3. The capacity of diagnostic laboratories in Kenya for detecting infectious diseases.

    PubMed

    Slotved, H-C; Yatich, Kennedy K; Sam, Shem Otoi; Ndhine, Edwardina Otieno

    2017-01-01

    The aim of this study is to present data of the diagnostic capacity of Kenyan laboratories to diagnose a number of human pathogens. The study is based on the data obtained from a biosecurity survey conducted in Kenya in 2014/2015 and data from the Statistical Abstract of Kenya for 2015. The biosecurity survey has previously been published; however, the survey also included information on laboratory capacity to handle a number of pathogens, which have not been published. Data were retrieved from the survey on 86 laboratory facilities. The data include information from relevant categories such as training laboratories, human diagnostic laboratories, veterinary diagnostic laboratories, and research laboratories. The disease incidence in Kenya ranges widely from malaria and diarrhea with an incidence rate of around 10.000 per year to diseases such as cholera and yellow fever with an incidence rate of 1 per year or less for all age groups. The data showed that diseases with the highest number of diagnostic facilities were mainly malaria-, HIV-, tuberculosis-, and diarrhea-related infectious diseases. The study generally shows that the laboratory facilities have the capacity of detecting the infectious diseases with the highest incidence rates. Furthermore, it seems that the number of facilities able to detect a particular disease is related to the incidence rate of the disease.

  4. 40 CFR 792.43 - Test system care facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Test system care facilities. 792.43 Section 792.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.43 Test system care facilities...

  5. LABORATORY DESIGN CONSIDERATIONS FOR SAFETY.

    ERIC Educational Resources Information Center

    National Safety Council, Chicago, IL. Campus Safety Association.

    THIS SET OF CONSIDERATIONS HAS BEEN PREPARED TO PROVIDE PERSONS WORKING ON THE DESIGN OF NEW OR REMODELED LABORATORY FACILITIES WITH A SUITABLE REFERENCE GUIDE TO DESIGN SAFETY. THERE IS NO DISTINCTION BETWEEN TYPES OF LABORATORY AND THE EMPHASIS IS ON GIVING GUIDES AND ALTERNATIVES RATHER THAN DETAILED SPECIFICATIONS. AREAS COVERED INCLUDE--(1)…

  6. Mars Science Laboratory Mission Curiosity Rover Stereo

    NASA Image and Video Library

    2011-07-22

    This stereo image of NASA Mars Science Laboratory Curiosity Rovert was taken May 26, 2011, in Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory in Pasadena, Calif. 3D glasses are necessary to view this image.

  7. Integration of Biosafety into Core Facility Management

    PubMed Central

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core laboratory for biosafety professionals. Elevating awareness of biohazards and the biosafety regulatory landscape among core facility operators is essential for the establishment of a framework for both project and material risk assessment. The goal of the biohazard risk assessment process is to identify the biohazard risk management parameters to conduct the procedure safely and in compliance with applicable regulations. An evaluation of the containment, protective equipment and work practices for the procedure for the level of risk identified is facilitated by the establishment of a core facility registration form for work with biohazards and other biological materials with potential risk. The final step in the biocontainment process is the assumption of Principal Investigator role with full responsibility for the structure of the site-specific biosafety program plan by core facility leadership. The presentation will provide example biohazard protocol reviews and accompanying containment measures for core laboratories at Yale University.

  8. Laboratory Buildings.

    ERIC Educational Resources Information Center

    Barnett, Jonathan

    The need for flexibility in science research facilities is discussed, with emphasis on the effect of that need on the design of laboratories. The relationship of office space, bench space, and special equipment areas, and the location and distribution of piping and air conditioning, are considered particularly important. This building type study…

  9. Eliminating animal facility light-at-night contamination and its effect on circadian regulation of rodent physiology, tumor growth, and metabolism: a challenge in the relocation of a cancer research laboratory.

    PubMed

    Dauchy, Robert T; Dupepe, Lynell M; Ooms, Tara G; Dauchy, Erin M; Hill, Cody R; Mao, Lulu; Belancio, Victoria P; Slakey, Lauren M; Hill, Steven M; Blask, David E

    2011-05-01

    Appropriate laboratory animal facility lighting and lighting protocols are essential for maintaining the health and wellbeing of laboratory animals and ensuring the credible outcome of scientific investigations. Our recent experience in relocating to a new laboratory facility illustrates the importance of these considerations. Previous studies in our laboratory demonstrated that animal room contamination with light-at-night (LAN) of as little as 0.2 lx at rodent eye level during an otherwise normal dark-phase disrupted host circadian rhythms and stimulated the metabolism and proliferation of human cancer xenografts in rats. Here we examined how simple improvements in facility design at our new location completely eliminated dark-phase LAN contamination and restored normal circadian rhythms in nontumor-bearing rats and normal tumor metabolism and growth in host rats bearing tissue-isolated MCF7(SR(-)) human breast tumor xenografts or 7288CTC rodent hepatomas. Reducing LAN contamination in the animal quarters from 24.5 ± 2.5 lx to nondetectable levels (complete darkness) restored normal circadian regulation of rodent arterial blood melatonin, glucose, total fatty and linoleic acid concentrations, tumor uptake of O(2), glucose, total fatty acid and CO(2) production and tumor levels of cAMP, triglycerides, free fatty acids, phospholipids, and cholesterol esters, as well as extracellular-signal-regulated kinase, mitogen-activated protein kinase, serine-threonine protein kinase, glycogen synthase kinase 3β, γ-histone 2AX, and proliferating cell nuclear antigen.

  10. Eliminating Animal Facility Light-at-Night Contamination and Its Effect on Circadian Regulation of Rodent Physiology, Tumor Growth, and Metabolism: A Challenge in the Relocation of a Cancer Research Laboratory

    PubMed Central

    Dauchy, Robert T; Dupepe, Lynell M; Ooms, Tara G; Dauchy, Erin M; Hill, Cody R; Mao, Lulu; Belancio, Victoria P; Slakey, Lauren M; Hill, Steven M; Blask, David E

    2011-01-01

    Appropriate laboratory animal facility lighting and lighting protocols are essential for maintaining the health and wellbeing of laboratory animals and ensuring the credible outcome of scientific investigations. Our recent experience in relocating to a new laboratory facility illustrates the importance of these considerations. Previous studies in our laboratory demonstrated that animal room contamination with light-at-night (LAN) of as little as 0.2 lx at rodent eye level during an otherwise normal dark-phase disrupted host circadian rhythms and stimulated the metabolism and proliferation of human cancer xenografts in rats. Here we examined how simple improvements in facility design at our new location completely eliminated dark-phase LAN contamination and restored normal circadian rhythms in nontumor-bearing rats and normal tumor metabolism and growth in host rats bearing tissue-isolated MCF7(SR–) human breast tumor xenografts or 7288CTC rodent hepatomas. Reducing LAN contamination in the animal quarters from 24.5 ± 2.5 lx to nondetectable levels (complete darkness) restored normal circadian regulation of rodent arterial blood melatonin, glucose, total fatty and linoleic acid concentrations, tumor uptake of O2, glucose, total fatty acid and CO2 production and tumor levels of cAMP, triglycerides, free fatty acids, phospholipids, and cholesterol esters, as well as extracellular-signal-regulated kinase, mitogen-activated protein kinase, serine–threonine protein kinase, glycogen synthase kinase 3β, γ-histone 2AX, and proliferating cell nuclear antigen. PMID:21640027

  11. Indoor Air Quality in Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  12. Removal design report for the 108-F Biological Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded bymore » adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.« less

  13. Descent Stage of Mars Science Laboratory During Assembly

    NASA Image and Video Library

    2008-11-19

    This image from early October 2008 shows personnel working on the descent stage of NASA Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  14. SPES and the neutron facilities at Laboratori Nazionali di Legnaro

    NASA Astrophysics Data System (ADS)

    Silvestrin, L.; Bisello, D.; Esposito, J.; Mastinu, P.; Prete, G.; Wyss, J.

    2016-03-01

    The SPES Radioactive Ion Beam (RIB) facility, now in the construction phase at INFN-LNL, has the aim to provide high-intensity and high-quality beams of neutron-rich nuclei for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam. The SPES system is based on a dual-exit high-current cyclotron, with tunable proton beam energy 35-70MeV and 0.20-0.75mA. The first exit is used as proton driver to supply an ISOL system with an UCx Direct Target able to sustain a power of 10kW. The expected fission rate in the target is of the order of 10^{13} fissions per second. The exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10 A MeV and higher, for masses around A=130 amu, with an expected beam intensity of 10^7 - 10^9 pps. The second exit will be used for applied physics: radioisotope production for medicine and neutrons for material studies. Fast neutron spectra will be produced by the proton beam interaction with a conversion target. A production rate in excess of 10^{14} n/s can be achieved: this opens up the prospect of a high-flux neutron irradiation facility (NEPIR) to produce both discrete and continuous energy neutrons. A direct proton beam line is also envisaged. NEPIR and the direct proton line would dramatically increase the wide range of irradiation facilities presently available at LNL. We also present LENOS, a proposed project dedicated to accurate neutron cross-sections measurements using intense, well-characterized, broad energy neutron beams. Other activities already in operation at LNL are briefly reviewed: the SIRAD facility for proton and heavy-ion irradiation at the TANDEM-ALPI accelerator and the BELINA test facility at CN van de Graaff accelerator.

  15. [Economic impact of external laboratory test].

    PubMed

    Takura, Tomoyuki

    2006-11-01

    The realities of the spread and the aim of the introduction, and an economical influence of an external laboratory tests were researched. As a result, 90% or more the ratio to have consigned the external whole became clear. But it is preferable to correspond about inspection item of about 70% in own facilities because of the characteristic of the medical institution and the inspection item. Moreover, when correct the unbridgeable gulf of characteristic of the realities of spread of present external laboratory tests inspection and the ranging of ideal external laboratory tests inspection that specialist thinks about, the needed medical payment was thought that the investment of about 50 billion yen a year was necessary to expand the inspection in own facilities, by calculated based on the stochastic model.

  16. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  17. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing ofmore » facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)« less

  18. Biosafety and biosecurity measures: management of biosafety level 3 facilities.

    PubMed

    Zaki, Adel N

    2010-11-01

    With the increasing biological threat from emerging infectious diseases and bioterrorism, it has become essential for governments around the globe to increase awareness and preparedness for identifying and containing those agents. This article introduces the basic concepts of laboratory management, laboratory biosafety and laboratory biosecurity. Assessment criteria for laboratories' biorisk should include both biosafety and biosecurity measures. The assessment requires setting specific goals and selecting management approaches. In order to implement technologies at the laboratory working level, a management team should be created whose role is to implement biorisk policies, rules and regulations appropriate for that facility. Rules and regulations required by government authorities are presented, with special emphasis on methods for air control, and liquid and solid waste management. Management and biorisk measures and appropriate physical facilities must keep pace, ensuring efficient facilities that protect workers, the environment, the product (research, diagnostic and/or vaccine) and the biological pathogen. Published by Elsevier B.V.

  19. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  20. Materials and Nondestructive Evaluation Laboratoriers: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Schaschl, Leslie

    2011-01-01

    The Materials and Nondestructive Evaluation Laboratory process, milestones and inputs are unknowns to first-time users. The Materials and Nondestructive Evaluation Laboratory Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware developers. It is intended to assist their project engineering personnel in materials analysis planning and execution. Material covered includes a roadmap of the analysis process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define scope of analysis, cost, and schedule are included as an appendix to the guide.

  1. Chemistry in a Large, Multidisciplinary Laboratory.

    ERIC Educational Resources Information Center

    Lingren, Wesley E.; Hughson, Robert C.

    1982-01-01

    Describes a science facility built at Seattle Pacific University for approximately 70 percent of the capital cost of a conventional science building. The building serves seven disciplines on a regular basis. The operation of the multidisciplinary laboratory, special features, laboratory security, and student experience/reactions are highlighted.…

  2. JESS facility modification and environmental/power plans

    NASA Technical Reports Server (NTRS)

    Bordeaux, T. A.

    1984-01-01

    Preliminary plans for facility modifications and environmental/power systems for the JESS (Joint Exercise Support System) computer laboratory and Freedom Hall are presented. Blueprints are provided for each of the facilities and an estimate of the air conditioning requirements is given.

  3. FLARE: A New User Facility for Laboratory Studies of Multiple-Scale Physics of Magnetic Reconnection and Related Phenomena in Heliophysics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-10-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton with first plasmas expected in the fall of 2017, based on the design of Magnetic Reconnection Experiment (MRX; mrx.pppl.gov) with much extended parameter ranges. Its main objective is to provide an experimental platform for the studies of magnetic reconnection and related phenomena in the multiple X-line regimes directly relevant to space, solar, astrophysical and fusion plasmas. The main diagnostics is an extensive set of magnetic probe arrays, simultaneously covering multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m). Specific example space physics topics which can be studied on FLARE will be discussed.

  4. The Sixth Omega Laser Facility Users Group Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrasso, R. D.

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Sixth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual OMEGA users, and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to providemore » an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback from the users to LLE management about ways to improve and keep the facility and future experimental campaigns at the cutting edge.« less

  5. The Fifth Omega Laser Facility Users Group Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrasso, R. D.

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Fifth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual Omega users and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to providemore » an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback to LLE management from the users about ways to improve the facility and future experimental campaigns.« less

  6. Visitor's Guide | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research headquarters are located at the Advanced Technology and Research Facility (ATRF), located at 8560 Progress Drive, Frederick Maryland. Additional offices and laboratories are locatedon the NC

  7. [Quality use of commercial laboratory for clinical testing services - considering laboratory's role].

    PubMed

    Ogawa, Shinji

    2014-12-01

    The number of commercial laboratories for clinical testing in Japan run privately has decreased to about 30 companies, and their business is getting tougher. Branch Lab. and FMS businesses have not expanded recently due to the new reimbursement system which adds an additional sample management fee, becoming effective in 2010. This presentation gives an outline of each role for hospital and commercial laboratories, and their pros & cons considering the current medical situation. Commercial laboratories have investigated how to utilize ICT systems for sharing test information between hospitals and our facilities. It would be very helpful to clarify issues for each hospital. We will develop and create new values for clinical laboratory testing services and forge mutually beneficial relationships with medical institutions. (Review).

  8. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Specimen and data storage facilities. 160.51 Section 160.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space...

  9. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  10. Establishment of Biosafety Level-3 (BSL-3) laboratory: Important criteria to consider while designing, constructing, commissioning & operating the facility in Indian setting

    PubMed Central

    Mourya, Devendra T.; Yadav, Pragya D.; Majumdar, Triparna Dutta; Chauhan, Devendra S.; Katoch, Vishwa Mohan

    2014-01-01

    Since the enactment of Environmental Protection Act in 1989 and Department of Biotechnology (DBT) guidelines to deal with genetically modified organisms, India has embarked on establishing various levels of biosafety laboratories to deal with highly infectious and pathogenic organisms. Occurrence of outbreaks due to rapidly spreading respiratory and haemorrhagic fever causing viruses has caused an urgency to create a safe laboratory environment. This has thus become a mandate, not only to protect laboratory workers, but also to protect the environment and community. In India, technology and science are progressing rapidly. Several BSL-3 [=high containment] laboratories are in the planning or execution phase, to tackle biosafety issues involved in handling highly infectious disease agents required for basic research and diagnosis. In most of the developing countries, the awareness about biocontainment has increased but planning, designing, constructing and operating BSL-3 laboratories need regular updates about the design and construction of facilities and clear definition of risk groups and their handling which should be in harmony with the latest international practices. This article describes the major steps involved in the process of construction of a BSL-3 laboratory in Indian settings, from freezing the concept of proposal to operationalization phase. The key to success of this kind of project is strong institutional commitment to biosafety norms, adequate fund availability, careful planning and designing, hiring good construction agency, monitoring by experienced consultancy agency and involvement of scientific and engineering personnel with biocontainment experience in the process. PMID:25297350

  11. Establishment of Biosafety Level-3 (BSL-3) laboratory: important criteria to consider while designing, constructing, commissioning & operating the facility in Indian setting.

    PubMed

    Mourya, Devendra T; Yadav, Pragya D; Majumdar, Triparna Dutta; Chauhan, Devendra S; Katoch, Vishwa Mohan

    2014-08-01

    Since the enactment of Environmental Protection Act in 1989 and Department of Biotechnology (DBT) guidelines to deal with genetically modified organisms, India has embarked on establishing various levels of biosafety laboratories to deal with highly infectious and pathogenic organisms. Occurrence of outbreaks due to rapidly spreading respiratory and haemorrhagic fever causing viruses has caused an urgency to create a safe laboratory environment. This has thus become a mandate, not only to protect laboratory workers, but also to protect the environment and community. In India, technology and science are progressing rapidly. Several BSL-3 [=high containment] laboratories are in the planning or execution phase, to tackle biosafety issues involved in handling highly infectious disease agents required for basic research and diagnosis. In most of the developing countries, the awareness about biocontainment has increased but planning, designing, constructing and operating BSL-3 laboratories need regular updates about the design and construction of facilities and clear definition of risk groups and their handling which should be in harmony with the latest international practices. This article describes the major steps involved in the process of construction of a BSL-3 laboratory in Indian settings, from freezing the concept of proposal to operationalization phase. The key to success of this kind of project is strong institutional commitment to biosafety norms, adequate fund availability, careful planning and designing, hiring good construction agency, monitoring by experienced consultancy agency and involvement of scientific and engineering personnel with biocontainment experience in the process.

  12. NACA Zero Power Reactor Facility Hazards Summary

    NASA Technical Reports Server (NTRS)

    1957-01-01

    The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.

  13. Laboratory and In-Flight In-Situ X-ray Imaging and Scattering Facility for Materials, Biotechnology and Life Sciences

    NASA Technical Reports Server (NTRS)

    2003-01-01

    We propose a multifunctional X-ray facility for the Materials, Biotechnology and Life Sciences Programs to visualize formation and behavior dynamics of materials, biomaterials, and living organisms, tissues and cells. The facility will combine X-ray topography, phase micro-imaging and scattering capabilities with sample units installed on the goniometer. This should allow, for the first time, to monitor under well defined conditions, in situ, in real time: creation of imperfections during growth of semiconductors, metal, dielectric and biomacromolecular crystals and films, high-precision diffraction from crystals within a wide range of temperatures and vapor, melt, solution conditions, internal morphology and changes in living organisms, tissues and cells, diffraction on biominerals, nanotubes and particles, radiation damage, also under controlled formation/life conditions. The system will include an ultrabright X-ray source, X-ray mirror, monochromator, image-recording unit, detectors, and multipurpose diffractometer that fully accommodate and integrate furnaces and samples with other experimental environments. The easily adjustable laboratory and flight versions will allow monitoring processes under terrestrial and microgravity conditions. The flight version can be made available using a microsource combined with multilayer or capillary optics.

  14. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    PubMed

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed.

  15. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  16. Energy Systems Fabrication Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    Fabrication The fuel cell fabrication hub includes laboratory spaces with local exhaust and chemical fume hoods that support electrolysis and other chemical process research. Key Infrastructure Perchloric acid washdown hood, local exhaust, specialty gas manifolding, deionized water, chemical fume hoods, glassware

  17. 2. COLD FLOW LABORATORY, VIEW TOWARDS NORTH. Glenn L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. COLD FLOW LABORATORY, VIEW TOWARDS NORTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  18. 1. COLD FLOW LABORATORY, VIEW TOWARDS EAST. Glenn L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. COLD FLOW LABORATORY, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. Compact anti-radon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajt, L.; Kouba, P.; Mamedov, F.

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  20. The flight robotics laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  1. Improvement of the prompt-gamma neutron activation facility at Brookhaven National Laboratory.

    PubMed

    Dilmanian, F A; Lidofsky, L J; Stamatelatos, I; Kamen, Y; Yasumura, S; Vartsky, D; Pierson, R N; Weber, D A; Moore, R I; Ma, R

    1998-02-01

    The prompt-gamma neutron activation facility at Brookhaven National Laboratory was upgraded to improve both the precision and accuracy of its in vivo determinations of total body nitrogen. The upgrade, guided by Monte Carlo simulations, involved elongating and modifying the source collimator and its shielding, repositioning the system's two NaI(Tl) detectors, and improving the neutron and gamma shielding of these detectors. The new source collimator has a graphite reflector around the 238PuBe neutron source to enhance the low-energy region of the neutron spectrum incident on the patient. The gamma detectors have been relocated from positions close to the upward-emerging collimated neutron beam to positions close to and at the sides of the patient. These modifications substantially reduced spurious counts resulting from the capture of small-angle scattered neutrons in the NaI detectors. The pile-up background under the 10.8 MeV 14N(n, gamma)15N spectral peak has been reduced so that the nitrogen peak-to-background ratio has been increased by a factor of 2.8. The resulting reduction in the coefficient of variation of the total body nitrogen measurements from 3% to 2.2% has improved the statistical significance of the results possible for any given number of patient measurements. The new system also has a more uniform composite sensitivity.

  2. Configuration and Management of a Cluster Computing Facility in Undergraduate Student Computer Laboratories

    ERIC Educational Resources Information Center

    Cornforth, David; Atkinson, John; Spennemann, Dirk H. R.

    2006-01-01

    Purpose: Many researchers require access to computer facilities beyond those offered by desktop workstations. Traditionally, these are offered either through partnerships, to share the cost of supercomputing facilities, or through purpose-built cluster facilities. However, funds are not always available to satisfy either of these options, and…

  3. NETL's Hybrid Performance, or Hyper, facility

    ScienceCinema

    None

    2018-02-13

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  4. Francis Bitter National Magnet Laboratory annual report, July 1988 through June 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Contents include: reports on laboratory research programs--magneto-optics and semiconductor physics, magnetism, superconductivity, solid-state nuclear magnetic resonance, condensed-matter chemistry, biomagnetism, magnet technology, instrumentation for high-magnetic-field research, molecular biophysics; reports of visiting scientists--reports of users of the High Magnetic Field Facility, reports of users of the Pulsed Field Facility, reports of users of the SQUID Magnetometer and Moessbauer Facility, reports of users of the High-Field NMR Facility; Appendices--publications and meeting speeches, organization, summary of High-Field Magnet Facility use January 1, 1981 through December 31, 1988; geographic distribution of High-Field Magnet users (excluding laboratory staff); and summary of educational activities.

  5. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  6. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  7. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  8. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  9. The NUITM-KEMRI P3 Laboratory in Kenya: Establishment, Features, Operation and Maintenance

    PubMed Central

    Inoue, Shingo; Wandera, Ernest; Miringu, Gabriel; Bundi, Martin; Narita, Chika; Ashur, Salame; Kwallah, Allan; Galata, Amina; Abubakar, Mwajuma; Suka, Sora; Mohamed, Shah; Karama, Mohamed; Horio, Masahiro; Shimada, Masaaki; Ichinose, Yoshio

    2013-01-01

    A biocontainment facility is a core component in any research setting due to the services it renders towards comprehensive biosafety observance. The NUITM-KEMRI P3 facility was set up in 2007 and has been actively in use since 2010 by researchers from this and other institutions. A number of hazardous agents have been handled in the laboratory among them MDR-TB and yellow fever viruses. The laboratory has the general physical and operational features of a P3 laboratory in addition to a number of unique features, among them the water-air filtration system, the eco-mode operation feature and automation of the pressure system that make the facility more efficient. It is equipped with biosafety and emergency response equipments alongside common laboratory equipments, maintained regularly using daily, monthly and yearly routines. Security and safety is strictly observed within the facility, enhanced by restricted entry, strict documentation and use of safety symbols. Training is also engrained within the operation of the laboratory and is undertaken and evaluated annually. Though the laboratory is in the process of obtaining accreditation, it is fully certified courtesy of the manufactures’ and constructed within specified standards. PMID:23533023

  10. Crisis management and recovery from the damage to the laboratory animal production facility due to the Great East Japan Earthquake.

    PubMed

    Ikeda, Takuya

    2012-01-01

    Charles River Laboratories Japan produces laboratory animals, mainly mice and rats. In its history, we have experienced many crises such as mass food poisoning of staff and contamination of animals. However, we overcame these crises, accomplishing our corporate missions to secure steady supply of healthy animals. Under such circumstances, in 2008, we faced an unprecedented crisis involving a novel influenza possibly becoming pandemic. Therefore, we prepared a Crisis Management Plan (CMP) and Business Continuity Plan (BCP) to avoid the worst case scenario. Fortunately, the novel influenza did not develop into a pandemic and no major problems occurred in production of our laboratory animals. In March 2011, our Tsukuba Breeding Center was struck by the Great East Japan Earthquake. Many cages fell from racks, and consequently, 14,000 mice and rats were euthanized. Moreover, this animal production facility experienced not only blackouts and water outage but also various maintenance problems. After triage of the animals, almost half of the animals kept were eventually lost. However, we recovered and resumed shipment of animals two weeks after the disaster by utilizing the CMP and BCP we initially created as a countermeasure against novel influenza. After two months, our production volume returned to normal except for two strains. I sincerely hope this review, which highlights our experience and related issues, will be a useful resource in regard to crisis management for people who are engaged in laboratory animal care and use.

  11. Mars Science Laboratory Rover Closeout

    NASA Image and Video Library

    2011-11-10

    The Mars Science Laboratory mission rover, Curiosity, is prepared for final integration into the complete NASA spacecraft in this photograph taken inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.

  12. Mars Science Laboratory Descent Stage

    NASA Image and Video Library

    2011-11-10

    The descent stage of NASA Mars Science Laboratory spacecraft is being lifted during assembly of the spacecraft in this photograph taken inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.

  13. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  14. 21 CFR 58.31 - Testing facility management.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  15. Laboratory Animal Housing--Parts I and II.

    ERIC Educational Resources Information Center

    Runkle, Robert S.

    1963-01-01

    In recent years, the use of laboratory animals for bio-medical research has shown marked increase. Economic and efficient housing is a necessity. This two part report established guidelines for design and selection of materials for conventional animal housing. Contents include--(1) production and breeding facilities, (2) quarantine facilities, (3)…

  16. The aerospace energy systems laboratory: Hardware and software implementation

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneil-Rood, Nora

    1989-01-01

    For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.

  17. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2. Sections 4 through 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  18. Data Sharing Report for the Quantification of Removable Activity in Various Surveillance and Maintenance Facilities at the Oak Ridge National Laboratory Oak Ridge TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, David A.

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (OR-EM) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using American Recovery and Reinvestment Act (ARRA) funds. Specifically, DOE OR-EM requested that ORAU plan and implement a sampling and analysis campaign targeting potential removable radiological contamination that may be transferrable to future personal protective equipment (PPE) and contamination control materials—collectively referred to as PPE throughout the remainder of this report—used in certain URS|CH2M Oak Ridge, LLC (UCOR) Surveillance andmore » Maintenance (S&M) Project facilities at the Oak Ridge National Laboratory (ORNL). Routine surveys in Bldgs. 3001, 3005, 3010, 3028, 3029, 3038, 3042, 3517, 4507, and 7500 continuously generate PPE. The waste is comprised of Tyvek coveralls, gloves, booties, Herculite, and other materials used to prevent worker exposure or the spread of contamination during routine maintenance and monitoring activities. This report describes the effort to collect and quantify removable activity that may be used by the ORNL S&M Project team to develop radiation instrumentation “screening criteria.” Material potentially containing removable activity was collected on smears, including both masselin large-area wipes (LAWs) and standard paper smears, and analyzed for site-related constituents (SRCs) in an analytical laboratory. The screening criteria, if approved, may be used to expedite waste disposition of relatively clean PPE. The ultimate objectives of this effort were to: 1) determine whether screening criteria can be developed for these facilities, and 2) provide process knowledge information for future site planners. The screening criteria, if calculated, must be formally approved by Federal Facility Agreement parties prior to

  19. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    systems test hub includes a Class 1, Division 2 space for performing tests of high-pressure hydrogen Laboratory offers the following capabilities. High-Pressure Hydrogen Systems The high-pressure hydrogen infrastructure. Key Infrastructure Robotic arm; high-pressure hydrogen; natural gas supply; standalone SCADA

  20. Utilizing On-Campus Foodservice Facilities as a Laboratory

    ERIC Educational Resources Information Center

    Dallmeyer, Martha A.

    2012-01-01

    In 2008, the Family and Consumer Sciences Department at Bradley University recognized the need to improve the quality of the laboratory experience in foodservice classes. A hands-on, real-world, learning experience was desired. Simultaneously, the university administration wanted to provide an on-campus foodservice for students from 8:00 p.m. to…

  1. Mars Science Laboratory Cruise Stage

    NASA Image and Video Library

    2011-11-10

    The cruise stage of NASA Mars Science Laboratory spacecraft is being prepared for final stacking of the spacecraft in this photograph from inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.

  2. Laboratory Resources Management in Manufacturing Systems Programs

    ERIC Educational Resources Information Center

    Obi, Samuel C.

    2004-01-01

    Most, if not all, industrial technology (IT) programs have laboratories or workshops. Often equipped with modern equipment, tools, materials, and measurement and test instruments, these facilities constitute a major investment for IT programs. Improper use or over use of program facilities may result in dirty lab equipment, lost or damaged tools,…

  3. Tour NREL Facilities During Energy Awareness Month

    Science.gov Websites

    laboratories for photovoltaics (solar electricity) research; the Photovoltaic Outdoor Test Facility, where scientists test photovoltaic systems; and the Alternative Fuels User Facility, which houses a biofuels pilot month. Space is limited and pre-registration is required at (303) 384-6565. NREL is a national

  4. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Renae

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and Universitymore » of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.« less

  5. Geometry Laboratory (GEOLAB) surface modeling and grid generation technology and services

    NASA Technical Reports Server (NTRS)

    Kerr, Patricia A.; Smith, Robert E.; Posenau, Mary-Anne K.

    1995-01-01

    The facilities and services of the GEOmetry LABoratory (GEOLAB) at the NASA Langley Research Center are described. Included in this description are the laboratory functions, the surface modeling and grid generation technologies used in the laboratory, and examples of the tasks performed in the laboratory.

  6. Six Strategies for Chemical Waste Minimization in Laboratories.

    ERIC Educational Resources Information Center

    Matteson, Gary C.; Hadley, Cheri R.

    1991-01-01

    Guidelines are offered to research administrators for reducing the volume of hazardous laboratory waste. Suggestions include a chemical location inventory, a chemical reuse facility, progressive contracts with chemical suppliers, internal or external chemical recycling mechanisms, a "chemical conservation" campaign, and laboratory fees for…

  7. The Homestake Interim Laboratory and Homestake DUSEL

    NASA Astrophysics Data System (ADS)

    Lesko, Kevin T.

    2011-12-01

    The former Homestake gold mine in Lead South Dakota is proposed for the National Science Foundation's Deep Underground Science and Engineering Laboratory (DUSEL). The gold mine provides expedient access to depths in excess of 8000 feet below the surface (>7000 mwe). Homestake's long history of promoting scientific endeavours includes the Davis Solar Neutrino Experiment, a chlorine-based experiment that was hosted at the 4850 Level for more than 30 years. As DUSEL, Homestake would be uncompromised by competition with mining interests or other shared uses. The facility's 600-km of drifts would be available for conversion for scientific and educational uses. The State of South Dakota, under Governor Rounds' leadership, has demonstrated exceptionally strong support for Homestake and the creation of DUSEL. The State has provided funding totalling $46M for the preservation of the site for DUSEL and for the conversion and operation of the Homestake Interim Laboratory. Motivated by the strong educational and outreach potential of Homestake, the State contracted a Conversion Plan by world-recognized mine-engineering contractor to define the process of rehabilitating the facility, establishing the appropriate safety program, and regaining access to the facility. The State of South Dakota has established the South Dakota Science and Technology Authority to oversee the transfer of the Homestake property to the State and the rehabilitation and preservation of the facility. The Homestake Scientific Collaboration and the State of South Dakota's Science and Technology Authority has called for Letters of Interest from scientific, educational and engineering collaborations and institutions that are interested in hosting experiments and uses in the Homestake Interim Facility in advance of the NSF's DUSEL, to define experiments starting as early as 2007. The Homestake Program Advisory Committee has reviewed these Letters and their initial report has been released. Options for

  8. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure successmore » in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.« less

  9. Science and Technology Facility | Photovoltaic Research | NREL

    Science.gov Websites

    - and back-contact schemes for advanced thin-film PV solar cells. Contact materials include metals Science and Technology Facility Science and Technology Facility Solar cell, thin-film, and Development Laboratory Research in thin-film PV is accomplished in this lab with techniques used for

  10. Roles of laboratories and laboratory systems in effective tuberculosis programmes.

    PubMed

    Ridderhof, John C; van Deun, Armand; Kam, Kai Man; Narayanan, P R; Aziz, Mohamed Abdul

    2007-05-01

    Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB.

  11. Computational Electromagnetics (CEM) Laboratory: Simulation Planning Guide

    NASA Technical Reports Server (NTRS)

    Khayat, Michael A.

    2011-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the CEM Laboratory. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  12. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes 1 through 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  13. INNOVATIONS IN EQUIPMENT AND TECHNIQUES FOR THE BIOLOGY TEACHING LABORATORY.

    ERIC Educational Resources Information Center

    BARTHELEMY, RICHARD E.; AND OTHERS

    LABORATORY TECHNIQUES AND EQUIPMENT APPROPRIATE FOR TEACHING BIOLOGICAL SCIENCE CURRICULUM STUDY BIOLOGY ARE EMPHASIZED. MAJOR CATEGORIES INCLUDE (1) LABORATORY FACILITIES, (2) EQUIPMENT AND TECHNIQUES FOR CULTURE OF MICRO-ORGANISMS, (3) LABORATORY ANIMALS AND THEIR HOUSING, (4) TECHNIQUES FOR STUDYING PLANT GROWTH, (5) TECHNIQUES FOR STUDYING…

  14. A Combustion Laboratory for Undergraduates.

    ERIC Educational Resources Information Center

    Peters, James E.

    1985-01-01

    Describes a combustion laboratory facility and experiments for a senior-level (undergraduate) course in mechanical engineering. The experiment reinforces basic thermodynamic concepts and provides many students with their first opportunity to work with a combustion system. (DH)

  15. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKinnon, Robert J.

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. Thismore » report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.« less

  16. 21 CFR 200.10 - Contract facilities (including consulting laboratories) utilized as extramural facilities by...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Cosmetic Act specifically authorizes inspection of consulting laboratories as well as any factory... Federal Food, Drug, and Cosmetic Act. The Food and Drug Administration's position is that by the... Administration does not consider results of validation studies of analytical and assay methods and control...

  17. 21 CFR 200.10 - Contract facilities (including consulting laboratories) utilized as extramural facilities by...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Cosmetic Act specifically authorizes inspection of consulting laboratories as well as any factory... Federal Food, Drug, and Cosmetic Act. The Food and Drug Administration's position is that by the... Administration does not consider results of validation studies of analytical and assay methods and control...

  18. 21 CFR 200.10 - Contract facilities (including consulting laboratories) utilized as extramural facilities by...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Cosmetic Act specifically authorizes inspection of consulting laboratories as well as any factory... Federal Food, Drug, and Cosmetic Act. The Food and Drug Administration's position is that by the... Administration does not consider results of validation studies of analytical and assay methods and control...

  19. 21 CFR 200.10 - Contract facilities (including consulting laboratories) utilized as extramural facilities by...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Cosmetic Act specifically authorizes inspection of consulting laboratories as well as any factory... Federal Food, Drug, and Cosmetic Act. The Food and Drug Administration's position is that by the... Administration does not consider results of validation studies of analytical and assay methods and control...

  20. The Otis Weather Test Facility at Otis ANGB, Falmouth, MA : an aviation weather resource

    DOT National Transportation Integrated Search

    2004-10-06

    The Otis Weather Test Facility (WTF) is located on the US Air National Guard Base, Cape Cod, MA. The Facility was originally established by the US Air Force Cambridge Research Laboratory [now Air Force Research Laboratory (AFRL)] in 1974 to develop a...

  1. Noise in animal facilities: why it matters.

    PubMed

    Turner, Jeremy G; Bauer, Carol A; Rybak, Leonard P

    2007-01-01

    Environmental noise can alter endocrine, reproductive and cardiovascular function, disturb sleep/wake cycles, and can mask normal communication between animals. These outcomes indicate that noise in the animal facility might have wide-ranging affects on animals, making what laboratory animals hear of consequence for all those who use animals in research, not just the hearing researcher. Given the wide-ranging effects of noise on laboratory animals, routine monitoring of noise in animal facilities would provide important information on the nature and stability of the animal environment. This special issue will highlight the need for more thorough monitoring and will serve as an introduction to noise and its various effects on animals.

  2. A new AMS facility at Inter University Accelerator Centre, New Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Chopra, S.; Pattanaik, J. K.; Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D.

    2015-10-01

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for 10Be and 26Al with all the modern facilities has also been developed for the chemical processing of samples. 10Be measurements on sediment samples, inter laboratory comparison results and 26Al measurements on standard samples are presented in this paper. In addition to the 10Be and 26Al AMS facilities, a new 14C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  3. Using Mobile Devices for Motor-Learning Laboratory Exercises

    ERIC Educational Resources Information Center

    Hill, Kory

    2014-01-01

    When teaching motor-learning concepts, laboratory experiments can be valuable tools for promoting learning. In certain circumstances, traditional laboratory exercises are often impractical due to facilities, time, or cost. Inexpensive or free applications (apps) that run on mobile devices can serve as useful alternatives. This article details…

  4. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    PubMed Central

    2011-01-01

    Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/. PMID:21385349

  5. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities.

    PubMed

    Troshin, Peter V; Postis, Vincent Lg; Ashworth, Denise; Baldwin, Stephen A; McPherson, Michael J; Barton, Geoffrey J

    2011-03-07

    Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  6. Roles of laboratories and laboratory systems in effective tuberculosis programmes

    PubMed Central

    van Deun, Armand; Kam, Kai Man; Narayanan, PR; Aziz, Mohamed Abdul

    2007-01-01

    Abstract Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories’ functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB. PMID:17639219

  7. Booklice (Liposcelis spp.), Grain Mites (Acarus siro), and Flour Beetles (Tribolium spp.): 'Other Pests' Occasionally Found in Laboratory Animal Facilities.

    PubMed

    Clemmons, Elizabeth A; Taylor, Douglas K

    2016-11-01

    Pests that infest stored food products are an important problem worldwide. In addition to causing loss and consumer rejection of products, these pests can elicit allergic reactions and perhaps spread disease-causing microorganisms. Booklice (Liposcelis spp.), grain mites (Acarus siro), and flour beetles (Tribolium spp.) are common stored-product pests that have previously been identified in our laboratory animal facility. These pests traditionally are described as harmless to our animals, but their presence can be cause for concern in some cases. Here we discuss the biology of these species and their potential effects on human and animal health. Occupational health risks are covered, and common monitoring and control methods are summarized.

  8. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. USGS Scientific Visualization Laboratory

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey's (USGS) Scientific Visualization Laboratory at the National Center in Reston, Va., provides a central facility where USGS employees can use state-of-the-art equipment for projects ranging from presentation graphics preparation to complex visual representations of scientific data. Equipment including color printers, black-and-white and color scanners, film recorders, video equipment, and DOS, Apple Macintosh, and UNIX platforms with software are available for both technical and nontechnical users. The laboratory staff provides assistance and demonstrations in the use of the hardware and software products.

  10. District, state or regional veterinary diagnostic laboratories.

    PubMed

    Gosser, H S; Morehouse, L G

    1998-08-01

    The district, regional or state laboratory is the local laboratory to which veterinarian practitioners usually submit samples, and consequently these laboratories are usually the first to observe a suspected disease problem. In most countries, these laboratories are under the jurisdiction of the State or region in which they are located. In the United States of America (USA), most veterinary diagnostic laboratories are State-associated and operate under the aegis of either the State Department of Agriculture or a university. The national laboratory provides reference assistance to the State laboratories. In the USA, the national Laboratory (the National Veterinary Services Laboratories) acts as a consultant to confirm difficult diagnoses and administer performance tests for State-associated laboratories. District, state or regional laboratories need to share information regarding technological advances in diagnostic procedures. This need was met in the USA by the formation of the American Association of Veterinary Laboratory Diagnosticians (AAVLD) in the late 1950s. Another requirement of district, state or regional diagnostic laboratories is a method to confirm quality assurance, which was fulfilled in the USA by an accreditation programme established through the AAVLD. The Accreditation Committee evaluates laboratories (on request) in terms of organisation, personnel, physical facilities and equipment, records, finance and budget. Those laboratories which meet the standards as established in the 'Essential Requirements for Accreditation' are given accreditation status, which indicates that they have the expertise and facilities to perform tests on food-producing animals for shipment in national or international commerce and on companion, laboratory or zoo animals. While confidentiality of test records is most important, it is becoming necessary to release certain types of animal disease test information if a country is to participate in the exportation of animals

  11. A new gated x-ray detector for the Orion laser facility

    NASA Astrophysics Data System (ADS)

    Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal

    2012-10-01

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  12. 25. CONSTRUCTION PROGRESS AERIAL VIEW OF WASTE CALCINING FACILITY TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. CONSTRUCTION PROGRESS AERIAL VIEW OF WASTE CALCINING FACILITY TAKEN WHEN STRUCTURE WAS 99 PERCENT COMPLETE. INEEL PHOTO NUMBER NRTS-60-5409. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  13. Orbiting quarantine facility. The Antaeus report

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); Bagby, J. R. (Editor)

    1981-01-01

    A mission plan for the Orbiting Quarantine Facility (OQF) is presented. Coverage includes system overview, quarantine and protocol, the laboratory, support systems, cost analysis and possible additional uses of the OQF.

  14. The Dental Solid Waste Management in Different Categories of Dental Laboratories in Abha City, Saudi Arabia

    PubMed Central

    Haralur, Satheesh B.; Al-Qahtani, Ali S.; Al-Qarni, Marie M.; Al-Homrany, Rami M.; Aboalkhair, Ayyob E.; Madalakote, Sujatha S.

    2015-01-01

    Aim: To study the awareness, attitude, practice and facilities among the different categories of dental laboratories in Abha city. Materials and Methods: A total of 80 dental technicians were surveyed in the study. The dental laboratories included in the study were teaching institute (Group I), Government Hospital (Group II), Private Dental Clinic (Group III) and Independent laboratory (Group IV). The pre-tested anonymous questionnaire was used to understand knowledge, attitude, facilities, practice and orientation regarding biomedical waste management. Results: The knowledge of biomedical waste categories, colour coding and segregation was better among Group I (55-65%) and Group II (65-75%). The lowest standard of waste disposal was practiced at Group IV (15-20%) and Group III (25-35%). The availability of disposal facilities was poor at Group IV. The continuous education on biomedical waste management lacked in all the Groups. Conclusion: The significant improvement in disposal facilities was required at Group III and Group IV laboratories. All dental technicians were in need of regular training of biomedical waste management. Clinical Significance: The dental laboratories are an integral part of dental practice. The dental laboratories are actively involved in the generation, handling and disposal of biomedical waste. Hence, it is important to assess the biomedical waste management knowledge, attitude, facilities and practice among different categories of dental laboratories. PMID:26962373

  15. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-IIImore » is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  16. The USDA Forest Service National Seed Laboratory

    Treesearch

    Robert P. Karrfalt

    2006-01-01

    The USDA Forest Service National Seed Laboratory has provided seed technology services to the forest and conservation seed and nursery industry for more than 50 years. This paper briefly traces the lab’s evolution from a regional facility concerned principally with southern pines to its newest mission as a national facility working with all native U.S. plants and...

  17. Research Laboratories and Centers Fact Sheet

    EPA Pesticide Factsheets

    The Office of Research and Development is the research arm of the U.S. Environmental Protection Agency. It has three national laboratories and four national centers located in 14 facilities across the country.

  18. Los Alamos Science Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  19. Technical Review of the Laboratory Biosphere Closed Ecological System Facility

    NASA Astrophysics Data System (ADS)

    Dempster, W.; van Thillo, M.; Alling, A.; Allen, J.; Silverstone, S.; Nelson, M.

    The "Laboratory Biosphere", a new closed ecological system facility in Santa Fe, New Mexico (USA) has been constructed and became operational in May 2002. Built and operated by the Global Ecotechnics consortium (Biosphere Technologies and Biosphere Foundation with Biospheric Design Inc., and the Institute of Ecotechnics), the research apparatus for intensive crop growth, biogeochemical cycle dynamics and recycling of inedible crop biomass comprises a sealed cylindrical steel chamber and attached variable volume chamber (lung) to prevent pressures caused by the expansion and contraction of the contained air. The cylindrical growing chamber is 3.7m (12 feet) long and 3.7m (12 foot) diameter, giving an internal volume of 34 m3 (1200 ft 3 ). The two crop growth beds cover 5.5 m2, with a soil depth of 0.3m (12 inches), with 12 x 1000 watt high-pressure sodium lights capable of variable lighting of 40-70 mol per m2 per day. A small soil bed reactor in the chamber can be activated to help with metabolism of chamber trace gases. The volume of the attached variable volume chamber (lung) can range between 0-11 m3 (0-400 ft 3 ). Evapotranspired and soil leachate water are collected, combined and recycled to water the planting beds. Sampling ports enable testing of water quality of leachate, condensate and irrigation water. Visual inspection windows provide views of the entire interior and growing beds. The chamber is also outfitted with an airlock to minimize air exchange when people enter and work in the chamber. Continuous sensors include atmospheric CO2 and oxygen, temperature, humidity, soil moisture, light level and water levels in reservoirs. Both "sniffer" (air ports) and "sipper" (water ports) will enable collection of water or air samples for detailed analysis. This paper reports on the development of this new soil-based bioregenerative life support closed system apparatus and its technical challenges and capabilities.

  20. Location for the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the planned locations of the Space Experiment Research and Processing Laboratory (SERPL) and the Space Station Commerce Park at Kennedy Space Center. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for the planned 400- acre commerce park.

  1. Biosafety principles and practices for the veterinary diagnostic laboratory.

    PubMed

    Kozlovac, Joseph; Schmitt, Beverly

    2015-01-01

    Good biosafety and biocontainment programs and practices are critical components of the successful operation of any veterinary diagnostic laboratory. In this chapter we provide information and guidance on critical biosafety management program elements, facility requirements, protective equipment, and procedures necessary to ensure that the laboratory worker and the environment are adequately protected in the challenging work environment of the veterinary diagnostic laboratory in general and provide specific guidance for those laboratories employing molecular diagnostic techniques.

  2. 40 CFR 160.15 - Inspection of a testing facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Inspection of a testing facility. 160.15 Section 160.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS General Provisions § 160.15 Inspection of a testing facility...

  3. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Specimen and data storage facilities. 792.51 Section 792.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  4. 40 CFR 160.15 - Inspection of a testing facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Inspection of a testing facility. 160.15 Section 160.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS General Provisions § 160.15 Inspection of a testing facility...

  5. 7 CFR 353.8 - Accreditation of non-government facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... relationship to a larger corporate entity; and (iv) A description of the specific laboratory testing or... the facility is seeking accreditation must be identified and must possess the training, education, or... inspection services for which the facility seeks accreditation, and that training, education, or experience...

  6. National Ignition Facility: Experimental plan

    NASA Astrophysics Data System (ADS)

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  7. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiss, Troy P.; Andrus, Jason

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required

  8. Aerial Flyover of New Research Facilities

    ScienceCinema

    None

    2018-02-14

    The Idaho National Laboratory is focused on continued development of its primary campus areas, including our Idaho Falls campus, to enable the INL to meet DOE expectations as the nations lead nuclear energy laboratory. This video identifies some of the existing Idaho Falls campus facilities and highlights planned and potential future development to support campus growth. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.

  9. The Explosive Pulsed Power Test Facility at AFRL

    DTIC Science & Technology

    2005-06-01

    Air Force Research Laboratory , AFRL /DEHP, Albuquerque...NM 87117 S. Coffey, A. Brown, B. Guffey NumerEx, Albuquerque, NM Abstract The Air Force Research Laboratory has developed and tested a...Chestnut Site on Kirtland Air Force Base. The facility is described in this paper, including details of recent upgrades. I.

  10. The Virtual Robotics Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Love, L.J.

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well asmore » many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.« less

  11. Survey of laboratory-acquired infections around the world in biosafety level 3 and 4 laboratories.

    PubMed

    Wurtz, N; Papa, A; Hukic, M; Di Caro, A; Leparc-Goffart, I; Leroy, E; Landini, M P; Sekeyova, Z; Dumler, J S; Bădescu, D; Busquets, N; Calistri, A; Parolin, C; Palù, G; Christova, I; Maurin, M; La Scola, B; Raoult, D

    2016-08-01

    Laboratory-acquired infections due to a variety of bacteria, viruses, parasites, and fungi have been described over the last century, and laboratory workers are at risk of exposure to these infectious agents. However, reporting laboratory-associated infections has been largely voluntary, and there is no way to determine the real number of people involved or to know the precise risks for workers. In this study, an international survey based on volunteering was conducted in biosafety level 3 and 4 laboratories to determine the number of laboratory-acquired infections and the possible underlying causes of these contaminations. The analysis of the survey reveals that laboratory-acquired infections have been infrequent and even rare in recent years, and human errors represent a very high percentage of the cases. Today, most risks from biological hazards can be reduced through the use of appropriate procedures and techniques, containment devices and facilities, and the training of personnel.

  12. A 20-Year Comparison of Teachers' Agricultural Mechanics Laboratory Management Competency

    ERIC Educational Resources Information Center

    McKim, Billy R.; Saucier, P. Ryan

    2013-01-01

    Agricultural mechanics laboratory management skills are essential for school-based agriculture teachers who instruct students in an agricultural mechanics laboratory (Bear & Hoerner, 1986). McKim and Saucier (2011) suggested the frequency and severity of accidents that occur in these laboratories can be reduced when these facilities are…

  13. Environmental Assessment (EA): Proposed Software Facilities, Hill Air Force Base, Utah

    DTIC Science & Technology

    2011-04-19

    retention facilities ; • connections to adjacent buried utilities consisting of water, electricity, natural gas, telephone/ data , sanitary sewer, and storm...engineering, development, and testing workloads for F-22 and F-35 aircraft. Military construction (MILCON) project data explain existing facilities ...Existing Facilities MILCON project data state there are no facilities on Hill AFB with adequate security to house the specialized laboratory space or

  14. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  15. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy

    PubMed Central

    Held, Kathryn D.; Blakely, Eleanor A.; Story, Michael D.; Lowenstein, Derek I.

    2016-01-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities. PMID:27195609

  16. Use of the NASA Space Radiation Laboratory at Brookhaven National Laboratory to Conduct Charged Particle Radiobiology Studies Relevant to Ion Therapy.

    PubMed

    Held, Kathryn D; Blakely, Eleanor A; Story, Michael D; Lowenstein, Derek I

    2016-06-01

    Although clinical studies with carbon ions have been conducted successfully in Japan and Europe, the limited radiobiological information about charged particles that are heavier than protons remains a significant impediment to exploiting the full potential of particle therapy. There is growing interest in the U.S. to build a cancer treatment facility that utilizes charged particles heavier than protons. Therefore, it is essential that additional radiobiological knowledge be obtained using state-of-the-art technologies and biological models and end points relevant to clinical outcome. Currently, most such ion radiotherapy-related research is being conducted outside the U.S. This article addresses the substantial contributions to that research that are possible at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), which is the only facility in the U.S. at this time where heavy-ion radiobiology research with the ion species and energies of interest for therapy can be done. Here, we briefly discuss the relevant facilities at NSRL and how selected charged particle biology research gaps could be addressed using those facilities.

  17. Quality assurance in the HIV/AIDS laboratory network of China.

    PubMed

    Jiang, Yan; Qiu, Maofeng; Zhang, Guiyun; Xing, Wenge; Xiao, Yao; Pan, Pinliang; Yao, Jun; Ou, Chin-Yih; Su, Xueli

    2010-12-01

    In 2009, there were 8273 local screening laboratories, 254 confirmatory laboratories, 35 provincial confirmatory central laboratories and 1 National AIDS Reference Laboratory (NARL) in China. These laboratories were located in Center for Disease Control and Prevention (CDC) facilities, hospitals, blood donation clinics, maternal and child health (MCH) hospitals and border health quarantine health-care facilities. The NARL and provincial laboratories provide quality assurance through technical, bio-safety and managerial training; periodic proficiency testing; on-site supervisory inspections; and commercial serologic kit evaluations. From 2002 to 2009, more than 220 million HIV antibody tests were performed at screening laboratories, and all reactive and indeterminate samples were confirmed at confirmatory laboratories. The use of highly technically complex tests, including CD4 cell enumeration, viral load, dried blood spot (DBS)-based early infant diagnosis (EID), drug resistance (DR) genotyping, HIV-1 subtyping and incidence assays, have increased in recent years and their performance quality is closely monitored. China has made significant progress in establishing a well-coordinated HIV laboratory network and QA systems. However, the coverage and intensity of HIV testing and quality assurance programmes need to be strengthened so as to ensure that more infected persons are diagnosed and that they receive timely prevention and treatment services.

  18. 40 CFR 160.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Facilities for handling test, control, and reference substances. 160.47 Section 160.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.47 Facilities...

  19. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  20. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  1. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  2. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  3. Model of the NACA's Aircraft Engine Research Laboratory during its Construction

    NASA Image and Video Library

    1942-08-21

    Zella Morewitz poses with a model of the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory, currently the NASA Glenn Research Center. The model was displayed in the Administration Building during the construction of the laboratory in the early 1940s. Detailed models of the individual test facilities were also fabricated and displayed in the facilities. The laboratory was built on a wedge of land between the Cleveland Municipal Airport on the far side and the deep curving valley etched by the Rocky River on the near end. Roughly only a third of the laboratory's semicircle footprint was initially utilized. Additional facilities were added to the remaining areas in the years after World War II. In the late 1950s the site was supplemented by the acquisition of additional adjacent land. Morewitz joined the NACA in 1935 as a secretary in the main office at the Langley Memorial Aeronautical Laboratory. In September 1940 she took on the task of setting up and guiding an office dedicated to the design of the NACA’s new engine research laboratory. Morewitz and the others in the design office transferred to Cleveland in December 1941 to expedite the construction. Morewitz served as Manager Ray Sharp’s secretary for six years and was a popular figure at the new laboratory. In December 1947 Morewitz announced her engagement to Langley researcher Sidney Batterson and moved back to Virginia.

  4. Artist rendition of the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The preliminary design for the Space Experiment Research and Processing Laboratory (SERPL) at Kennedy Space Center is shown in this artist's rendition. The SERPL is a planned 100,000-square- foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  5. Framework for leadership and training of Biosafety Level 4 laboratory workers.

    PubMed

    Le Duc, James W; Anderson, Kevin; Bloom, Marshall E; Estep, James E; Feldmann, Heinz; Geisbert, Joan B; Geisbert, Thomas W; Hensley, Lisa; Holbrook, Michael; Jahrling, Peter B; Ksiazek, Thomas G; Korch, George; Patterson, Jean; Skvorak, John P; Weingartl, Hana

    2008-11-01

    Construction of several new Biosafety Level 4 (BSL-4) laboratories and expansion of existing operations have created an increased international demand for well-trained staff and facility leaders. Directors of most North American BSL-4 laboratories met and agreed upon a framework for leadership and training of biocontainment research and operations staff. They agreed on essential preparation and training that includes theoretical consideration of biocontainment principles, practical hands-on training, and mentored on-the-job experiences relevant to positional responsibilities as essential preparation before a person's independent access to a BSL-4 facility. They also agreed that the BSL-4 laboratory director is the key person most responsible for ensuring that staff members are appropriately prepared for BSL-4 operations. Although standardized certification of training does not formally exist, the directors agreed that facility-specific, time-limited documentation to recognize specific skills and experiences of trained persons is needed.

  6. Assessing Student Learning in a Virtual Laboratory Environment

    ERIC Educational Resources Information Center

    Wolf, T.

    2010-01-01

    Laboratory experience is a key factor in technical and scientific education. Virtual laboratories have been proposed to reduce cost and simplify maintenance of lab facilities while still providing students with access to real systems. It is important to determine if such virtual labs are still effective for student learning. In the assessment of a…

  7. 29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVEGRADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVE-GRADE FLOOR LEVEL. INEEL DRAWING NUMBER 200-0633-00-287-106354. FLUOR NUMBER 5775-CPP-633-A-4. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  8. The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morneau, Rachel Anne; Klasky, Marc Louis

    The U.S. Stockpile Stewardship Program [1] is designed to sustain and evaluate the nuclear weapons stockpile while foregoing underground nuclear tests. The maintenance of a smaller, aging U.S. nuclear weapons stockpile without underground testing requires complex computer calculations [14]. These calculations in turn need to be verified and benchmarked [14]. A wide range of research facilities have been used to test and evaluate nuclear weapons while respecting the Comprehensive Nuclear Test-Ban Treaty (CTBT) [2]. Some of these facilities include the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z machine at Sandia National Laboratories, and the Dual Axismore » Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory. This research will focus largely on DARHT (although some information from Cygnus and the Los Alamos Microtron may be used in this research) by modeling it and comparing to experimental data. DARHT is an electron accelerator that employs high-energy flash x-ray sources for imaging hydro-tests. This research proposes to address some of the issues crucial to understanding DARHT Axis II and the analysis of the radiographic images produced. Primarily, the nature of scatter at DARHT will be modeled and verified with experimental data. It will then be shown that certain design decisions can be made to optimize the scatter field for hydrotest experiments. Spectral effects will be briefly explored to determine if there is any considerable effect on the density reconstruction caused by changes in the energy spectrum caused by target changes. Finally, a generalized scatter model will be made using results from MCNP that can be convolved with the direct transmission of an object to simulate the scatter of that object at the detector plane. The region in which with this scatter model is appropriate will be explored.« less

  9. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizesmore » current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.« less

  10. Research at a European Planetary Simulation Facility

    NASA Astrophysics Data System (ADS)

    Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob

    2016-04-01

    A unique environmental simulation facility will be presented which is capable of re-creating extreme terrestrial or other planetary environments. It is supported by EU activities including a volcanology network VERTIGO and a planetology network Europlanet 2020 RI. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and industrial community. Details of this laboratory facility will be presented and some of the most recent activities will be summarized. For information on access to this facility please contact the author.

  11. Agricultural Mechanics Laboratory Management Professional Development Needs of Wyoming Secondary Agriculture Teachers

    ERIC Educational Resources Information Center

    McKim, Billy R.; Saucier, P. Ryan

    2011-01-01

    Accidents happen; however, the likelihood of accidents occurring in the agricultural mechanics laboratory is greatly reduced when agricultural mechanics laboratory facilities are managed by secondary agriculture teachers who are competent and knowledgeable. This study investigated the agricultural mechanics laboratory management in-service needs…

  12. Mapping Department of Defense laboratory results to Logical Observation Identifiers Names and Codes (LOINC).

    PubMed

    Lau, Lee Min; Banning, Pam D; Monson, Kent; Knight, Elva; Wilson, Pat S; Shakib, Shaun C

    2005-01-01

    The Department of Defense (DoD) has used a common application, Composite Health Care System (CHCS), throughout all DoD facilities. However, the master files used to encode patient data in CHCS are not identical across DoD facilities. The encoded data is thus not interoperable from one DoD facility to another. To enable data interoperability in the next-generation system, CHCS II, and for the DoD to exchange laboratory results with external organizations such as the Veterans Administration (VA), the disparate master file codes for laboratory results are mapped to Logical Observation Identifier Names and Codes (LOINC) wherever possible. This paper presents some findings from our experience mapping DoD laboratory results to LOINC.

  13. Planetary Sample Analysis Laboratory at DLR

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; de Vera, J. P.

    2018-04-01

    Building on the available infrastructure and the long heritage, DLR is planning to create a Planetary Sample Analysis laboratory (PSA), which can be later extended to a full sample curation facility in collaboration with the Robert-Koch Institute.

  14. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  15. Live births achieved via IVF are increased by improvements in air quality and laboratory environment.

    PubMed

    Heitmann, Ryan J; Hill, Micah J; James, Aidita N; Schimmel, Tim; Segars, James H; Csokmay, John M; Cohen, Jacques; Payson, Mark D

    2015-09-01

    Infertility is a common disease, which causes many couples to seek treatment with assisted reproduction techniques. Many factors contribute to successful assisted reproduction technique outcomes. One important factor is laboratory environment and air quality. Our facility had the unique opportunity to compare consecutively used, but separate assisted reproduction technique laboratories, as a result of a required move. Environmental conditions were improved by strategic engineering designs. All other aspects of the IVF laboratory, including equipment, physicians, embryologists, nursing staff and protocols, were kept constant between facilities. Air quality testing showed improved air quality at the new IVF site. Embryo implantation (32.4% versus 24.3%; P < 0.01) and live birth (39.3% versus 31.8%, P < 0.05) were significantly increased in the new facility compared with the old facility. More patients met clinical criteria and underwent mandatory single embryo transfer on day 5 leading to both a reduction in multiple gestation pregnancies and increased numbers of vitrified embryos per patient with supernumerary embryos available. Improvements in IVF laboratory conditions and air quality had profound positive effects on laboratory measures and patient outcomes. This study further strengthens the importance of the laboratory environment and air quality in the success of an IVF programme. Published by Elsevier Ltd.

  16. Mars Science Laboratory Aeroshell with Curiosity Inside

    NASA Image and Video Library

    2011-10-05

    At the Payload Hazardous Servicing Facility at NASA Kennedy Space Center in Florida, the Mars Science Laboratory rover, Curiosity, and the spacecraft descent stage have been enclosed inside the spacecraft aeroshell.

  17. Results of Surveys for Special Status Reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woollett, J J

    2008-09-18

    The purpose of this report is to present the results of a live-trapping and visual surveys for special status reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory (LLNL). The survey was conducted under the authority of the Federal recovery permit of Swaim Biological Consulting (PRT-815537) and a Memorandum of Understanding issued from the California Department of Fish and Game. Site 300 is located between Livermore and Tracy just north of Tesla road (Alameda County) and Corral Hollow Road (San Joaquin County) and straddles the Alameda and San Joaquin County line (Figures 1 and 2). It encompasses portionsmore » of the USGS 7.5 minute Midway and Tracy quadrangles (Figure 2). Focused surveys were conducted for four special status reptiles including the Alameda whipsnake (Masticophis lateralis euryxanthus), the San Joaquin Whipsnake (Masticophis Hagellum ruddock), the silvery legless lizard (Anniella pulchra pulchra), and the California horned lizard (Phrynosoma coronanum frontale).« less

  18. Explosively driven two-shockwave tools with application to ejecta formation at the Los Alamos National Laboratory Proton Radiography Facility

    NASA Astrophysics Data System (ADS)

    Buttler, William

    2013-06-01

    We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to a subsequent shockwave event separated by a time interval on the order of a few microseconds. We explore the possibility of varying the amplitude of both the first and second shockwaves, and we apply the tool in experimental geometries on Sn with a surface roughness of Ra = 0 . 8 μ m. We then evaluate the tool further at the Los Alamos National Laboratory Proton Radiography (pRad) Facility in an application to Sn with larger scale perturbations of wavelength 550 μ m, and various amplitudes that gave wave-number amplitude products of η0 2 π / λ = { 3 / 4 , 1 / 2 , 1 / 4 , 1 / 8 } , where the perturbation amplitude is η0, and the wave-number k = 2 π / λ . The pRad data and velocimetry imply it should be possible to develop a second shock ejecta model based on unstable Richtmyer-Meshkov physics. In collaboration with David Oro, Fesseha Mariam, Alexander Saunders, Malcolm Andrews, Frank Cherne, James Hammerberg. Robert Hixson, Christopher Morris, Russell Olson, Dean Preston, Joseph Stone, Dale Tupa, and Wendy Vogan-McNeil, Los Alamos National Laboratory,

  19. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2018-05-11

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  20. Graduates | Argonne National Laboratory

    Science.gov Websites

    Staff Directory Argonne National Laboratory Educational Programs Connecting today's world-class research , Argonne is the place to be if you are a graduate student. With access to world-class facilities and world -reknowned researchers, graduate students at Argonne can taste the best of the research and development world

  1. Engineering study for closure of 209E facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H.; Heys, W.H.; Johnson, E.D.

    1997-07-07

    This document is an engineering study for evaluating alternatives to determine the most cost effective closure plan for the 209E Facility, Critical Mass Laboratory. This laboratory is located in the 200 East Area of the Hanford Site and contains a Critical Assembly Room and a Mix room were criticality experiments were once performed.

  2. Outreach facilities within a research center

    NASA Astrophysics Data System (ADS)

    Zambon, V.; Thériault, G.; Poulin-Girard, A.-S.

    2012-10-01

    Worldwide, volunteers from student associations and non-profit organizations carry out outreach activities with high school students in their classrooms. Most of the time, these activities highlight optical phenomena but do not provide information about the reality of researchers in companies and universities. To address this issue, Université Laval's OSA and SPIE student chapters set up a demonstration laboratory dedicated to outreach, located in a research center. In this paper, we list the advantages of this type of facility as well as the steps leading to the creation of the laboratory, and we give an overview of the demonstration laboratory.

  3. Facilities and Infrastructure FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Facilities and Infrastructure Program includes EERE’s capital investments, operations and maintenance, and site-wide support of the National Renewable Energy Laboratory (NREL). It is the nation’s only national laboratory with a primary mission dedicated to the research, development and demonstration (RD&D) of energy efficiency, renewable energy and related technologies. EERE is NREL’s steward, primary client and sponsor of NREL’s designation as a Federally Funded Research and Development Center. The Facilities and Infrastructure (F&I) budget maintains NREL’s research and support infrastructure, ensures availability for EERE’s use, and provides a safe and secure workplace for employees.

  4. 3. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY, CAMERA FACING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CONTEXTUAL VIEW OF WASTE CALCINING FACILITY, CAMERA FACING NORTHEAST. SHOWS RELATIONSHIP BETWEEN DECONTAMINATION ROOM, ADSORBER REMOVAL HATCHES (FLAT ON GRADE), AND BRIDGE CRANE. INEEL PROOF NUMBER HD-17-2. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  5. 31. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS ACCESS CORRIDOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS ACCESS CORRIDOR AT MEZZANINE AND LOWER LEVELS. INEEL DRAWING NUMBER 200-0633-00-287-106352. FLUOR NUMBER 5775-CPP-633-A-2. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  6. Technology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  7. Mars Science Laboratory Rover and Descent Stage

    NASA Image and Video Library

    2008-11-19

    In this February 17, 2009, image, NASA Mars Science Laboratory rover is attached to the spacecraft descent stage. The image was taken inside the Spacecraft Assembly Facility at NASA JPL, Pasadena, Calif.

  8. Historical profile, Quality of Water Laboratories, U. S. Geological Survey

    USGS Publications Warehouse

    Durum, W.H.

    1978-01-01

    During the period 1918 to 1973 the U.S. Geological Survey, Water Resources Division, established 22 District-type water quality laboratories. These facilities provided the analytical capability and water-quality information for hydrologic investigations and the national baseline inventory of chemical, physical, fluvial sediment, and biological characteristics of surface and ground waters in the United States. Prior to 1950, most methods used in the laboratory were gravimetric, colorimetric, or titrimetric. Flame photometric equipment was common to most laboratories in the 1950's, and the atomic absorption spectrophotometer was added to larger laboratories in the 1960's. In the late 1960's, the first of the automatic analyzers was installed. Total annual production averaged about 480 adjusted complete analyses during the early years 1919-28, about 7,800 in 1946, and about 50,000 in 1970. Budget estimates for the majority of laboratories ranged from $25,000 to $50,000 (1940-50) and $75,000 to $300,000 (1965-73). Beginning in 1972, major functions of the 22 laboratories have been combined into two comprehensive highly-automated facilities located at Denver (Arvada), Colo., and Atlanta (Doraville), Ga. These laboratories comprise the Central Laboratory System for the U.S. Geological Survey. (Woodard-USGS)

  9. SETTING UP A LABORATORY AB INITIO IN A REMOTE LOCATION

    EPA Science Inventory

    For many years the USEPA's National Risk Management Research Laboratory in Cincinnati, OH has operated a pilot plant approximately 5 kilometers from its main research facility. Originally, this Tet and Evaluation (T&E) facility was sited to be adjacent to the City of Cincinnati's...

  10. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  11. 15. VIEW OF LABORATORY EQUIPMENT IN THE BUILDING 771 ANALYTICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF LABORATORY EQUIPMENT IN THE BUILDING 771 ANALYTICAL LABORATORY. THE LAB ANALYZED SAMPLES FOR PLUTONIUM, AMERICIUM, URANIUM, NEPTUNIUM, AND OTHER RADIOACTIVE ISOTOPES. (9/25/62) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  12. Assessing the security vulnerabilities of correctional facilities

    NASA Astrophysics Data System (ADS)

    Spencer, Debra D.; Morrison, G. Steve

    1998-12-01

    The National Institute of Justice has tasked their satellite facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps identify the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion from outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees. In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.

  13. Calibration Laboratory Capabilities Listing as of April 2009

    NASA Technical Reports Server (NTRS)

    Kennedy, Gary W.

    2009-01-01

    This document reviews the Calibration Laboratory capabilities for various NASA centers (i.e., Glenn Research Center and Plum Brook Test Facility Kennedy Space Center Marshall Space Flight Center Stennis Space Center and White Sands Test Facility.) Some of the parameters reported are: Alternating current, direct current, dimensional, mass, force, torque, pressure and vacuum, safety, and thermodynamics parameters. Some centers reported other parameters.

  14. Space Planning for Laboratory Buildings | Climate Neutral Research Campuses

    Science.gov Websites

    facilities such as warehouses, offices, and high-tech laboratories have very different energy requirements , and a successful climate action plan will set aside adequate space for different activities. The Facility offices are housed in a different portion of the building than labs, resulting in lower cost

  15. Perimeter security for Minnesota correctional facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crist, D.; Spencer, D.D.

    1996-12-31

    For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned newmore » construction at other facilities.« less

  16. Standard Specifications for Language Laboratory.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Administration, Raleigh.

    Specifications are presented covering the components of electronic and electro-mechanical equipment, non-electrical materials for the teacher-student positions, and other items of a miscellaneous nature to provide for a complete, workable language laboratory facility. Instructions for the use of specifications are included for the purchaser,…

  17. Laboratory Directed Research & Development (LDRD)

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  18. Planning for Shops and Laboratories.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of School Planning.

    General guidelines for educators and architects in planning for industrial education, shops, and laboratory facilities necessary to the instructional program, are provided. Characteristics of the environment discussed are as follows--(1) spatial, (2) thermal, (3) visual, (4) sonic, and (5) aesthetic. Utility services covered are electrical power,…

  19. The ESA Laboratory Support Equipment for the ISS.

    PubMed

    Petrivelli, A

    2002-02-01

    The Laboratory Support Equipment (LSE) for the International Space Station (ISS) is a suite of general-purpose items that will be available onboard the Station either as self-standing facilities or as equipment that can be used at defined locations. Dedicated to supporting system maintenance and payload operations, some LSE items are derived from commercial equipment, while others have been specifically developed for the ISS. ESA is currently engaged in developing three pressurised facilities and one pointing mechanism that will become part of the LSE complement, namely: the Minus Eighty degree centigrade Laboratory Freezer for the ISS (MELFI), the Microgravity Science Glovebox (MSG), the cryogenic storage and quick/snap freezer system (Cryosystem), the external-payload pointing system (Hexapod).

  20. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  1. Laboratory security and emergency response guidance for laboratories working with select agents. Centers for Disease Control and Prevention.

    PubMed

    Richmond, Jonathan Y; Nesby-O'Dell, Shanna L

    2002-12-06

    In recent years, concern has increased regarding use of biologic materials as agents of terrorism, but these same agents are often necessary tools in clinical and research microbiology laboratories. Traditional biosafety guidelines for laboratories have emphasized use of optimal work practices, appropriate containment equipment, well-designed facilities, and administrative controls to minimize risk of worker injury and to ensure safeguards against laboratory contamination. The guidelines discussed in this report were first published in 1999 (U.S. Department of Health and Human Services/CDC and National Institutes of Health. Biosafety in microbiological and biomedical laboratories [BMBL]. Richmond JY, McKinney RW, eds. 4th ed. Washington, DC: US Department of Health and Human Services, 1999 [Appendix F]). In that report, physical security concerns were addressed, and efforts were focused on preventing unauthorized entry to laboratory areas and preventing unauthorized removal of dangerous biologic agents from the laboratory. Appendix F of BMBL is now being revised to include additional information regarding personnel risk assessments, and inventory controls. The guidelines contained in this report are intended for laboratories working with select agents under biosafety-level 2, 3, or 4 conditions as described in Sections II and III of BMBL. These recommendations include conducting facility risk assessments and developing comprehensive security plans to minimize the probability of misuse of select agents. Risk assessments should include systematic, site-specific reviews of 1) physical security; 2) security of data and electronic technology systems; 3) employee security; 4) access controls to laboratory and animal areas; 5) procedures for agent inventory and accountability; 6) shipping/transfer and receiving of select agents; 7) unintentional incident and injury policies; 8) emergency response plans; and 9) policies that address breaches in security. The security plan

  2. On the Integration of Remote Experimentation into Undergraduate Laboratories--Pedagogical Approach

    ERIC Educational Resources Information Center

    Esche, Sven K.

    2005-01-01

    This paper presents an Internet-based open approach to laboratory instruction. In this article, the author talks about an open laboratory approach using a multi-user multi-device remote facility. This approach involves both the direct contact with the computer-controlled laboratory setup of interest with the students present in the laboratory…

  3. Investigation of injury/illness data at a nuclear facility. Part II

    DOE PAGES

    Cournoyer, Michael E.; Garcia, Vincent E.; Sandoval, Arnold N.; ...

    2015-07-01

    At Los Alamos National Laboratory (LANL), there are several nuclear facilities, accelerator facilities, radiological facilities, explosives sites, moderate- and high-hazard non-nuclear facilities, biosciences laboratory, etc. The Plutonium Science and Manufacturing Directorate (ADPSM) provides special nuclear material research, process development, technology demonstration, and manufacturing capabilities. ADPSM manages the LANL Plutonium Facility. Within the Radiological Control Area at TA-55 (PF-4), chemical and metallurgical operations with plutonium and other hazardous materials are performed. LANL Health and Safety Programs investigate injury and illness data. In this study, statistically significant trends have been identified and compared for LANL, ADPSM, and PF-4 injury/illness cases. A previouslymore » described output metric is used to measures LANL management progress towards meeting its operational safety objectives and goals. Timelines are used to determine trends in Injury/Illness types. Pareto Charts are used to prioritize causal factors. The data generated from analysis of Injury/Illness data have helped identify and reduce the number of corresponding causal factors.« less

  4. Framework for Leadership and Training of Biosafety Level 4 Laboratory Workers

    PubMed Central

    Anderson, Kevin; Bloom, Marshall E.; Estep, James E.; Feldmann, Heinz; Geisbert, Joan B.; Geisbert, Thomas W.; Hensley, Lisa; Holbrook, Michael; Jahrling, Peter B.; Ksiazek, Thomas G.; Korch, George; Patterson, Jean; Skvorak, John P.; Weingartl, Hana

    2008-01-01

    Construction of several new Biosafety Level 4 (BSL-4) laboratories and expansion of existing operations have created an increased international demand for well-trained staff and facility leaders. Directors of most North American BSL-4 laboratories met and agreed upon a framework for leadership and training of biocontainment research and operations staff. They agreed on essential preparation and training that includes theoretical consideration of biocontainment principles, practical hands-on training, and mentored on-the-job experiences relevant to positional responsibilities as essential preparation before a person’s independent access to a BSL-4 facility. They also agreed that the BSL-4 laboratory director is the key person most responsible for ensuring that staff members are appropriately prepared for BSL-4 operations. Although standardized certification of training does not formally exist, the directors agreed that facility-specific, time-limited documentation to recognize specific skills and experiences of trained persons is needed. PMID:18976549

  5. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  6. 30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE GRADE AND AT LEVEL OF OPERATING CORRIDOR. INEEL DRAWING NUMBER 200-0633-00-287-106351. FLUOR NUMBER 5775-CPP-633-A-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  7. Efficiency of different air filter types for pig facilities at laboratory scale.

    PubMed

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Truyen, Uwe; Speck, Stephanie

    2017-01-01

    Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs.

  8. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  9. The Air Force Phillips Laboratory multimegawatt quasi-steady MPD thruster facility

    NASA Astrophysics Data System (ADS)

    Castillo, Salvador; Tilley, Dennis L.

    1992-07-01

    The operational multimegawatt quasi-steady MPD thruster facility is described in terms of its general design emphasizing the impulse thrust stand and diagnostics capabilities. The vacuum, propellant, and electrical systems are discussed with schematic diagrams of the respective component configurations and explanations of the needs of MPD thruster testing. The impulse thrust stand comprises an accelerometer/pendulum-impulse stand which can be used to correlate thruster impulse with accelerometer readings and thereby reduce measurement uncertainties. The diagnostics of the terminal characteristics of the thruster operation are complemented by diagnostics platforms that study plasma properties in the plume and the thruster. Preliminary tests indicate that the MPD thruster facility is prepared for detailed investigations of MPD thruster performance and plume diagnostics.

  10. Xerox' Canadian Research Facility: The Multinational and the "Offshore" Laboratory.

    ERIC Educational Resources Information Center

    Marchessault, R. H.; Myers, M. B.

    1986-01-01

    The history, logistics, and strategy behind the Xerox Corporation's Canadian research laboratory, a subsidiary firm located outside the United States for reasons of manpower, tax incentives, and quality of life, are described. (MSE)

  11. Intelligent Intersection Traffic Control Laboratory Fact Sheet

    DOT National Transportation Integrated Search

    2006-07-27

    The Intelligent Intersection 11:affic Control Laboratory (IITCL) is an outdoor facility that supports the Federal Highway Administration's (FHWA) various research programs and research activities conducted by other U.S. Department of 11:ansportation ...

  12. [ISO 15189 medical laboratory accreditation].

    PubMed

    Aoyagi, Tsutomu

    2004-10-01

    This International Standard, based upon ISO/IEC 17025 and ISO 9001, provides requirements for competence and quality that are particular to medical laboratories. While this International Standard is intended for use throughout the currently recognized disciplines of medical laboratory services, those working in other services and disciplines will also find it useful and appropriate. In addition, bodies engaged in the recognition of the competence of medical laboratories will be able to use this International Standard as the basis for their activities. The Japan Accreditation Board for Conformity Assessment (AB) and the Japanese Committee for Clinical Laboratory Standards (CCLS) are jointly developing the program of accreditation of medical laboratories. ISO 15189 requirements consist of two parts, one is management requirements and the other is technical requirements. The former includes the requirements of all parts of ISO 9001, moreover it includes the requirement of conformity assessment body, for example, impartiality and independence from any other party. The latter includes the requirements of laboratory competence (e.g. personnel, facility, instrument, and examination methods), moreover it requires that laboratories shall participate proficiency testing(s) and laboratories' examination results shall have traceability of measurements and implement uncertainty of measurement. Implementation of ISO 15189 will result in a significant improvement in medical laboratories management system and their technical competence. The accreditation of medical laboratory will improve medical laboratory service and be useful for patients.

  13. Multi-modality molecular imaging: pre-clinical laboratory configuration

    NASA Astrophysics Data System (ADS)

    Wu, Yanjun; Wellen, Jeremy W.; Sarkar, Susanta K.

    2006-02-01

    In recent years, the prevalence of in vivo molecular imaging applications has rapidly increased. Here we report on the construction of a multi-modality imaging facility in a pharmaceutical setting that is expected to further advance existing capabilities for in vivo imaging of drug distribution and the interaction with their target. The imaging instrumentation in our facility includes a microPET scanner, a four wavelength time-domain optical imaging scanner, a 9.4T/30cm MRI scanner and a SPECT/X-ray CT scanner. An electronics shop and a computer room dedicated to image analysis are additional features of the facility. The layout of the facility was designed with a central animal preparation room surrounded by separate laboratory rooms for each of the major imaging modalities to accommodate the work-flow of simultaneous in vivo imaging experiments. This report will focus on the design of and anticipated applications for our microPET and optical imaging laboratory spaces. Additionally, we will discuss efforts to maximize the daily throughput of animal scans through development of efficient experimental work-flows and the use of multiple animals in a single scanning session.

  14. Pilot-scale laboratory waste treatment by supercritical water oxidation.

    PubMed

    Oshima, Yoshito; Hayashi, Rumiko; Yamamoto, Kazuo

    2006-01-01

    Supercritical water oxidation (SCWO) is a reaction in which organics in an aqueous solution can be oxidized by O2 to CO2 and H2O at a very high reaction rate. In 2003, The University of Tokyo constructed a facility for the SCWO process, the capacity of which is approximately 20 kl/year, for the purpose of treating organic laboratory waste. Through the operation of this facility, we have demonstrated that most of the organics in laboratory waste including halogenated organic compounds can be successfully treated without the formation of dioxines, suggesting that SCWO is useful as an alternative technology to the conventional incineration process.

  15. Space Food Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.

  16. 24th geotechnical laboratory testing short course

    DOT National Transportation Integrated Search

    2008-02-01

    This is a 3-day workshop/short course to teach practicing professionals techniques and procedures for conducting high quality geotechnical laboratory tests. Transportation facility design and construction begins with an investigation of the type, ext...

  17. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and

  18. Booklice (Liposcelis spp.), Grain Mites (Acarus siro), and Flour Beetles (Tribolium spp.): ‘Other Pests’ Occasionally Found in Laboratory Animal Facilities

    PubMed Central

    Clemmons, Elizabeth A; Taylor, Douglas K

    2016-01-01

    Pests that infest stored food products are an important problem worldwide. In addition to causing loss and consumer rejection of products, these pests can elicit allergic reactions and perhaps spread disease-causing microorganisms. Booklice (Liposcelis spp.), grain mites (Acarus siro), and flour beetles (Tribolium spp.) are common stored-product pests that have previously been identified in our laboratory animal facility. These pests traditionally are described as harmless to our animals, but their presence can be cause for concern in some cases. Here we discuss the biology of these species and their potential effects on human and animal health. Occupational health risks are covered, and common monitoring and control methods are summarized. PMID:27931310

  19. Contamination issues in a continuous ethanol production corn wet milling facility

    USDA-ARS?s Scientific Manuscript database

    Low ethanol yields and poor yeast viability were investigated at a continuous ethanol production corn wet milling facility. Using starch slurries and recycle streams from a commercial ethanol facility, laboratory hydrolysates were prepared by reproducing starch liquefaction and saccharification ste...

  20. Location | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  1. Cruise Stage Testing for Mars Science Laboratory

    NASA Image and Video Library

    2010-09-02

    Testing of the cruise stage for NASA Mars Science Laboratory in August 2010 included a session in a facility that simulates the environment found in interplanetary space. Spacecraft technicians at JPL prepare a space-simulation test.

  2. 21 CFR 58.15 - Inspection of a testing facility.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Inspection of a testing facility. 58.15 Section 58.15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES General Provisions § 58.15 Inspection of a testing...

  3. The NASA JSC Hypervelocity Impact Test Facility (HIT-F)

    NASA Technical Reports Server (NTRS)

    Crews, Jeanne L.; Christiansen, Eric L.

    1992-01-01

    The NASA Johnson Space Center Hypervelocity Impact Test Facility was created in 1980 to study the hypervelocity impact characteristics of composite materials. The facility consists of the Hypervelocity Impact Laboratory (HIRL) and the Hypervelocity Analysis Laboratory (HAL). The HIRL supports three different-size light-gas gun ranges which provide the capability of launching particle sizes from 100 micron spheres to 12.7 mm cylinders. The HAL performs three functions: (1) the analysis of data collected from shots in the HIRL, (2) numerical and analytical modeling to predict impact response beyond test conditions, and (3) risk and damage assessments for spacecraft exposed to the meteoroid and orbital debris environments.

  4. Mars Science Laboratory Spacecraft Assembled for Testing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions.

    These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  5. Laboratory Astrophysics Using High Intensity Particle and Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin

    History has shown that the symbiosis between direct observations and laboratory studies is instrumental in the progress of astrophysics. Recent years have seen growing interests in the laboratory investigation of astrophysical phenomena that can be addressed by high densities and advancement of technologies in lasers as well as high-energy particle beams. We will give examples on how frontier phenomena such as black holes, supernovae, gamma ray bursts, ultra high-energy cosmic rays, etc., can be investigated in the laboratory setting. Finally, we describe a possible laboratory astrophysics facility to be developed at SLAC.

  6. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  7. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE PAGES

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...

    2017-12-04

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  8. National Biomedical Tracer Facility: Project definition study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaton, R.; Peterson, E.; Smith, P.

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPFmore » to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.« less

  9. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science.

    PubMed

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-03-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science.

  10. The data facility of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Nielsen, Pia J.; Green, Robert O.; Murray, Alex T.; Eng, Bjorn T.; Novack, H. Ian; Solis, Manuel; Olah, Martin

    1993-01-01

    AVIRIS operations at the Jet Propulsion Laboratory include a significant data task. The AVIRIS data facility is responsible for data archiving, data calibration, quality monitoring and distribution. Since 1987, the data facility has archived over one terabyte of AVIRIS data and distributed these data to science investigators as requested. In this paper we describe recent improvements in the AVIRIS data facility.

  11. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B.; Shuman, Robert

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requiresmore » that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate

  12. NASA Johnson Space Center: White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Kowalski, Robert R.

    2011-01-01

    This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,

  13. The National Ignition Facility and Industry

    NASA Astrophysics Data System (ADS)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  14. Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less

  15. Impact of a in situ laboratory on physician expectancy.

    PubMed

    Brulé, Romain; Sarazin, Marianne; Tayeb, Nicole; Roubille, Martine; Szymanowicz, Anton

    2018-01-01

    Biological examinations are essential for clinicians' medical care. The aim of this study is to assess clinicians' expectations in healthcare facilities and their perception of medical biology in different types of organization. We performed a prospective transversal study by electronic questionnaire conducted among 242 practitioners in four healthcare facilities. The aspects explored were as follows: quality, reliability, rendering time of examination results and biology platform support. Analyses were conducted after rectification of the sample by weight. Sixty one clinicians responded (25.2% [19.7-30.7]). The rendering time of examination is the main criterion mentioned with a requirement of less than one hour in case of emergency (81.5% [71.8-91.2] of the answers) to less than 72 hours for specialized examinations (81.5% [71.8-91.2] of the answers). Better collaboration with biologists is expected by clinicians (54.7% [50.9-58.5]). Satisfaction with the biology platform support and rendering time of emergency cases results was significantly (p <0.005) lower in facilities without an on-site laboratory. In conclusion, although medical biology performance is generally satisfactory within medical facilities, it remains nonetheless affected when the laboratory is not on site. The rendering time of examination, depending on the biology platform support functions and the proximity of the laboratory, remains the main criterion. Clinician-biologist collaboration, which increases of the medico-economic efficiency of patient's healthcare, appears as an essential criterion in a structural conception of medical biology.

  16. Cutting of Gold Foil in the Genesis Laboratory

    NASA Image and Video Library

    2005-02-15

    The facility for storing and examining Genesis solar wind samples consists of two adjacent laboratories. In these laboratories, the cutting of gold foil to be used in the gathering of the solar wind dust aboard the Genesis spacecraft. Views include: The process of cutting gold foil to be used aboard the Genesis spacecraft. The technicians use Gore-Tex suits with filters as to not contaminate the items.

  17. Promoting Good Clinical Laboratory Practices and Laboratory Accreditation to Support Clinical Trials in Sub-Saharan Africa

    PubMed Central

    Shott, Joseph P.; Saye, Renion; Diakité, Moussa L.; Sanogo, Sintry; Dembele, Moussa B.; Keita, Sekouba; Nagel, Mary C.; Ellis, Ruth D.; Aebig, Joan A.; Diallo, Dapa A.; Doumbo, Ogobara K.

    2012-01-01

    Laboratory capacity in the developing world frequently lacks quality management systems (QMS) such as good clinical laboratory practices, proper safety precautions, and adequate facilities; impacting the ability to conduct biomedical research where it is needed most. As the regulatory climate changes globally, higher quality laboratory support is needed to protect study volunteers and to accurately assess biological parameters. The University of Bamako and its partners have undertaken a comprehensive QMS plan to improve quality and productivity using the Clinical and Laboratory Standards Institute standards and guidelines. The clinical laboratory passed the College of American Pathologists inspection in April 2010, and received full accreditation in June 2010. Our efforts to implement high-quality standards have been valuable for evaluating safety and immunogenicity of malaria vaccine candidates in Mali. Other disease-specific research groups in resource-limited settings may benefit by incorporating similar training initiatives, QMS methods, and continual improvement practices to ensure best practices. PMID:22492138

  18. Artist's Concept of NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  19. School Finance and Facilities Study.

    ERIC Educational Resources Information Center

    Kawakami, Alice J., Ed.

    1994-01-01

    This document presents findings of a Pacific Region Educational Laboratory (PREL) study on the status of school finance and facilities in the 10 entities of the Pacific region served by PREL--American Samoa, Commonwealth of the Northern Mariana Islands (CNMI), Federated States of Micronesia, Guam, Hawaii, Republic of the Marshall Islands, and the…

  20. Facilities | Advanced Manufacturing Research | NREL

    Science.gov Websites

    , and black building with two people walking in front of it. Energy Systems Integration Facility Its projects. Photo of a large, warehouse-like, lab space with several people in hard hats operating equipment with a few people and manufacturing equipment, including spools and web lines. Manufacturing Laboratory

  1. DFL, Canada's Space AIT Facilities - Current and Planned Capabilities

    NASA Astrophysics Data System (ADS)

    Singhal, R.; Mishra, S.; Choueiry, E.; Dumoulin, J.; Ahmed, S.

    2004-08-01

    The David Florida Laboratory (DFL) of the Canadian Space Agency is the Canadian national ISO 9001:2000 registered facility for the assembly, integration, and (environmental) testing of space hardware. This paper briefly describes the three main qualification facilities: Structural Qualification Facilities (SQF); Radio Frequency Qualification Facilities (RFQF); and Thermal Qualification Facilities (TQF). The paper also describes the planned/new upgrades/improvements to the DFL's existing capabilities. These include: cylindrical near-field antenna measurement system, current capabilities in multi-frequency multi-band passive intermodulation (PIM) measurement; combined thermal/vibration test facility, improvement in efficiency and performance of the photogrammetry capability, acquisition of an additional mass properties measurement system for small and micro-satellites; combined control and data acquisition system for all existing thermal vacuum facilities, plus a new automatic thermal control system and hypobaric chamber.

  2. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.« less

  3. The national ignition facility: Path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2006-06-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  4. The national ignition facility: path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2007-08-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  5. Experimental Stream Facility: Design and Research

    EPA Science Inventory

    The Experimental Stream Facility (ESF) is a valuable research tool for the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development’s (ORD) laboratories in Cincinnati, Ohio. This brochure describes the ESF, which is one of only a handful of research facilit...

  6. Efficiency of different air filter types for pig facilities at laboratory scale

    PubMed Central

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Truyen, Uwe

    2017-01-01

    Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs. PMID:29028843

  7. Materials Test Laboratory activities at the NASA-Johnson Space Center White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Stradling, J.; Pippen, D. L.

    1985-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.

  8. Earth Systems Questions in Experimental Climate Change Science: Pressing Questions and Necessary Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmond, B.

    2002-05-20

    Sixty-four scientists from universities, national laboratories, and other research institutions worldwide met to evaluate the feasibility and potential of the Biosphere2 Laboratory (B2L) as an inclusive multi-user scientific facility (i.e., a facility open to researchers from all institutions, according to agreed principles of access) for earth system studies and engineering research, education, and training relevant to the mission of the United States Department of Energy (DOE).

  9. Francis Bitter National Magnet Laboratory annual report, July 1989 through June 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    Contents: Reports on laboratory research programs: Magneto-optics and semiconductor physics, Magnetism, Superconductivity, Solid state nuclear magnetic resonance, Condensed matter chemistry, Biomagnetism, Magnet technology, Molecular biophysics; Reports of visiting scientists: Reports of users of the High Magnetic Field Facility, Reports of users of the pulsed field facility, Reports of users of the squid magnetometer and Mossbauer facility, Reports of users of the high field NMR facility; Appendices: Publications and meeting speeches, Organization, Summary of high magnetic field facility use, User tables, Geographic distribution of high magnetic field facility users, Summary of educational activities.

  10. Laboratory challenges conducting international clinical research in resource-limited settings.

    PubMed

    Fitzgibbon, Joseph E; Wallis, Carole L

    2014-01-01

    There are many challenges to performing clinical research in resource-limited settings. Here, we discuss several of the most common laboratory issues that must be addressed. These include issues relating to organization and personnel, laboratory facilities and equipment, standard operating procedures, external quality assurance, shipping, laboratory capacity, and data management. Although much progress has been made, innovative ways of addressing some of these issues are still very much needed.

  11. Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting.more » The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.« less

  12. Summary Report of Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, Gretchen M.; Terusaki, Stan H.

    2013-12-01

    An ecological risk assessment is required as part of the Resource Recovery and Conservation Act (RCRA) permit renewal process for Miscellaneous Units subject to 22 CCR 66270.23. This risk assessment is prepared in support of the RCRA permit renewal for the Explosives Waste Treatment Facility (EWTF) at Site 300 of the Lawrence Livermore National Laboratory (LLNL). LLNL collected soil samples and used the resulting data to produce a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. The scoping-levelmore » ecological risk assessment provides a framework to determine the potential interaction between ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF. A scoping-level ecological risk assessment includes the step of conducting soil sampling in the area of the treatment units. The Sampling Plan in Support of the Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory, (Terusaki, 2007), outlines the EWTF project-specific soil sampling requirements. Soil samples were obtained and analyzed for constituents from four chemical groups: furans, explosives, semi-volatiles and metals. Analytical results showed that furans, explosives and semi-volatiles were not detected; therefore, no further analysis was conducted. The soil samples did show the presence of metals. Soil samples analyzed for metals were compared to site-wide background levels, which had been developed for site -wide cleanup activities pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Total metal concentrations from 28 discrete soil samples obtained in the EWTF area were all below CERCLA-developed background levels. Therefore, following DTSC

  13. THE GREEN DORM: A SUSTAINABLE RESIDENCE AND LIVING LABORATORY FOR STANFORD UNIVERSITY

    EPA Science Inventory

    The Lotus Living Laboratory at Stanford University is exploring sustainable building technologies and sustainable living habits through the design, construction and operation of The Green Dorm, an innovative facility containing residential, laboratory and commons space. Both ...

  14. Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE`s proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) ofmore » approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP.« less

  15. Spectroscopy of X-ray Photoionized Plasmas in the Laboratory

    NASA Astrophysics Data System (ADS)

    Liedahl, Duane A.; Loisel, Guillaume; Bailey, James E.; Nagayama, Taisuke; Hansen, Stephanie B.; Rochau, Gregory; Fontes, Christopher J.; Mancini, Roberto; Kallman, Timothy R.

    2018-06-01

    The physical processes operating in astrophysical plasmas --- heating, cooling, ionization, recombination, level population kinetics, and radiation transport --- are all accessible to observation in the laboratory. What distinguishes X-ray photoionized plasmas from the more common case of high-temperature collisionally-ionized plasmas is the elevated level of importance of the radiation/matter interaction. The advent of laboratory facilities with the capability to generate high-powered X-ray sources has provided the means by which to study this interaction, which is also fundamental to active galactic nuclei and other accretion-powered objects. We discuss recent and ongoing experiments, with an emphasis on X-ray spectroscopic measurements of silicon plasmas obtained at the Sandia Z Pulsed Power Facility.

  16. External quality assessment of malaria microscopy diagnosis in selected health facilities in Western Oromia, Ethiopia.

    PubMed

    Sori, Getachew; Zewdie, Olifan; Tadele, Geletta; Samuel, Abdi

    2018-06-18

    Accurate early diagnosis and prompt treatment are one of the key strategies to control and prevent malaria disease. External quality assessment is the most effective method for evaluation of the quality of malaria microscopy diagnosis. The aim of this study was to assess the quality of malaria microscopy diagnosis and its associated factors in selected public health facility laboratories in East Wollega Zone, Western Ethiopia. Facility-based cross-sectional study design was conducted in 30 randomly selected public health facility laboratories from November 2014 to January 2015 in East Wollega Zone, Western Ethiopia. Ten validated stained malaria panel slides with known Plasmodium species, developmental stage and parasite density were distributed. Data were captured; cleaned and analyzed using SPSS version 20 statistical software-multivariate logistic regressions and the agreement in reading between the peripheral diagnostic centers and the reference laboratory were done using kappa statistics. A total of 30 health facility laboratories were involved in the study and the overall quality of malaria microscopy diagnosis was poor (62.3%). The associated predictors of quality in this diagnosis were in-service training [(AOR = 16, 95% CI (1.3, 1.96)], smearing quality [(AOR = 24, 95% CI (1.8, 3.13)], staining quality [(AOR = 15, 95% CI (2.35, 8.61), parasite detection [(AOR = 9, 95% CI (1.1, 8.52)] and identification skills [(AOR = 8.6, 95% CI (1.21, 1.63)]. Eighteen (60%) of health facility laboratories had in-service trained laboratory professionals on malaria microscopy diagnosis. Overall quality of malaria microscopy diagnosis was poor and a significant gap in this service was observed that could impact on its diagnostic services.

  17. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  18. Preliminary Authorization Basis Documentation for the Proposed Bio Safety Level 3 (BSl-3) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altenbach, T J; Nguyen, S N

    2003-09-20

    Lawrence Livermore National Laboratory (LLNL) is proposing to construct a biosafety level (BSL-3) facility at Site 200 in Livermore, California. Biosafety level 3 (BSL-3) is a designation assigned by the Centers for Disease Control and Prevention (CDC) and National Institutes Health (NIH) for handling infectious organisms based on the specific microorganisms and associated operations. Biosafety levels range from BSL-1 (lowest hazard) to BSL-4 (highest hazard). Details about the BSL-3 criteria are described in the Center of Disease Control and Prevention (CDC)/National Institutes of Health (NIH)'s publication ''Biosafety Microbiological and Biomedical Laboratories'' (BMBL), 4th edition (CDC 1999): The BSL-3 facility willmore » be built in accordance with the required BMBL guidelines. This Preliminary Authorization Basis Documentation (PABD) for the proposed BSL-3 facility has been prepared in accordance with the current contractual requirements at LLNL. This includes the LLNL Environment, Safety, and Health Manual (ES&H Manual) and applicable Work Smart Standards, including the biosafety standards, such as the aforementioned BMBL and the NIH Guidelines for Research Involving Recombinant DNA Molecules: The proposed BSL-3 facility is a 1,100 ft{sup 2}, one-story permanent prefabricated facility, which will have three individual BSL-3 laboratory rooms (one of which is an animal biosafety level-3 [ABSL-3] laboratory to handle rodents), a mechanical room, clothes-change and shower rooms, and small storage space (Figure 3.1). The BSL-3 facility will be designed and operated accordance with guidelines for BSL-3 laboratories established by the CDC and the NIH. No radiological, high explosives, fissile, or propellant material will be used or stored in the proposed BSL-3 facility. The BSL-3 facility will be used to develop scientific tools to identify and understand the pathogens of medical, environmental, and forensic importance. Microorganisms that are to be handled in

  19. A whole body counting facility in a remote Enewetak Island setting.

    PubMed

    Bell, Thomas R; Hickman, David; Yamaguchi, Lance; Jackson, William; Hamilton, Terry

    2002-08-01

    The U.S. Department of Energy (DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection programs for resettled and resettling populations. As part of this new initiative, DOE agreed to design and construct a radiological laboratory on Enewetak Island, and help develop the necessary local resources to maintain and operate the facility. This cooperative effort was formalized in August 2000 between the DOE, the Republic of the Marshall Islands (RMI), and the Enewetak/Ujelang Local Atoll Government (EULGOV). The laboratory facility was completed in May 2001. The laboratory incorporates both a permanent whole body counting system to assess internal exposures to 137Cs, and clean living space for people providing 24-h void urine samples. DOE continues to provide on-going technical assistance, training, and data quality review while EULGOV provides manpower and infrastructure development to sustain facility operations on a full-time basis. This paper will detail the special construction, transportation and installation issues in establishing a whole body counting facility in an isolated, harsh environmental setting.

  20. 30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF SOUTH SIDE OF FACILITY, INCLUDING BUNKER, CABLE CHASE, SHIELDING TANK, AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-2. INEL INDEX CODE NUMBER: 075 0701 851 151971. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  1. 28. MAP SHOWING LOCATION OF ARVFS FACILITY AS BUILT. SHOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. MAP SHOWING LOCATION OF ARVFS FACILITY AS BUILT. SHOWS LINCOLN BOULEVARD, BIG LOST RIVER, AND NAVAL REACTORS FACILITY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-101-2. DATED OCTOBER 12, 1965. INEL INDEX CODE NUMBER: 075 0101 851 151969. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  2. System for memorizing maximum values

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  3. System for memorizing maximum values

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J., Jr.

    1992-08-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  4. System for Memorizing Maximum Values

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1996-01-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either liner or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  5. Capabilities of the Large-Scale Sediment Transport Facility

    DTIC Science & Technology

    2016-04-01

    experiments in wave /current environments. INTRODUCTION: The LSTF (Figure 1) is a large-scale laboratory facility capable of simulating conditions...comparable to low- wave energy coasts. The facility was constructed to address deficiencies in existing methods for calculating longshore sediment...transport. The LSTF consists of a 30 m wide, 50 m long, 1.4 m deep basin. Waves are generated by four digitally controlled wave makers capable of producing

  6. Testing of materials from the Minnesota Cold Regions pavement research test facility

    DOT National Transportation Integrated Search

    1996-09-01

    The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted various laboratory tests on pavement materials from the Mn/ ROAD facility. The tests helped to characterize the behavior of materials under season frost conditions, and ...

  7. Commissioning a materials research laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAVAGE,GERALD A.

    2000-03-28

    This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented inmore » a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.« less

  8. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science

    PubMed Central

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-01-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science. PMID:25836964

  9. Podiatric Medical Education: The Physical Facilities.

    ERIC Educational Resources Information Center

    Rubin, Abe

    1979-01-01

    A gross inventory of the teaching and clinical learning resources of the five U.S. colleges of podiatric medicine is described. A descriptive breakdown is provided along with illustrations of facilities. Some categories included in space allocation data are instructional staff, administrative staff, laboratory, outpatient clinic, learning…

  10. Accidental fires in clinical laboratories.

    PubMed

    Hoeltge, G A; Miller, A; Klein, B R; Hamlin, W B

    1993-12-01

    The National Fire Protection Association, Quincy, Mass, estimates that 169 fires have occurred annually in health care, medical, and chemical laboratories. On the average, there are 13 civilian injuries and $1.5 million per year in direct property damage. Most fires in which the cause or ignition source can be identified originate in malfunctioning electrical equipment (41.6%) or in the facility's electrical distribution system (14.7%). The prevalence of fire safety deficiencies was measured in the College of American Pathologists Laboratory Accreditation Program. Of the 1732 inspected laboratories, 5.5% lacked records of electrical receptacle polarity and ground checks in the preceding year. Of these inspected laboratories, 4.7% had no or incomplete documentation of electrical safety checks on laboratory instruments. There was no evidence of quarterly fire exit drills in 9% of the laboratories. Deficiencies were also found in precautionary labeling (6.8%), in periodic review of safe work practices (4.2%), in the use of safety cans (3.7%), and in venting of flammable liquid storage areas (2.8%). Fire preparedness would be improved if all clinical laboratories had smoke detectors and automatic fire-extinguishing systems. In-service training courses in fire safety should be targeted to the needs of specific service areas.

  11. Albuquerque Seismological Laboratory--50 years of global seismology

    USGS Publications Warehouse

    Hutt, C.R.; Peterson, Jon; Gee, Lind; Derr, John; Ringler, Adam; Wilson, David

    2011-01-01

    The U.S. Geological Survey Albuquerque Seismological Laboratory is about 15 miles southeast of Albuquerque on the Pueblo of Isleta, adjacent to Kirtland Air Force Base. The Albuquerque Seismological Laboratory supports the Global Seismographic Network Program and the Advanced National Seismic System through the installation, operation, and maintenance of seismic stations around the world and serves as the premier seismological instrumentation test facility for the U.S. Government.

  12. Development opportunities for hospital clinical laboratory joint ventures.

    PubMed

    Van Riper, J A

    1995-01-01

    Regional health-care providers are being given the opportunity to collaborate in specialty health-care services. Collaboration to achieve superior economies of scale is very effective in the clinical laboratory industry. National laboratory chains are consolidating and enhancing their control of the industry to ensure their historic profitability. National companies have closed many laboratory facilities and have laid off substantial numbers of laboratory personnel. Health-care providers can regain control of their locally generated laboratory health-care dollars by joining forces with clinical laboratory joint ventures. Laboratorians can assist the healthcare providers in bringing laboratory services and employment back to the local community. New capital for operational development and laboratory information systems will help bring the laboratory to the point of care. The independent regional laboratory is focused on supporting the medical needs of the community. The profit generated from a laboratory joint venture is shared among local health-care providers, supporting their economic viability. The laboratories' ability to contribute to the development of profit-making ventures will provide capital for new laboratory development. All of the above will ensure the clinical laboratories' role in providing quality health care to our communities and employment opportunities for laboratory personnel.

  13. The Portuguese gamma irradiation facility

    NASA Astrophysics Data System (ADS)

    Mendes, C. M.; Almeida, J. C.; Botelho, M. L.; Cavaco, M. C.; Almeida-Vara, E.; Andrade, M. E.

    A Gamma Radiation Facility was built up in the National Laboratory of Industrial Technology and Engineering (LNETI), Lisbon, Portugal. This plant (UTR GAMA-Pi) is a Cobalt-60 dry storage continuous facility with a nominal capacity of 1.5X10 16 Bq. The initial activity is 1.1X10 16 Bq and the troughput capacity 10 3 ton/year for product with a bulk density of 0.2 g/cm 3 treated with a minimum absorbed dose of 25 kGy. Complementary control devices were installed: ventilation system, closed water refrigeration circuit, internal TV system, detection and extinction fire system and emergency power group. It must be emphasized that the best attention was given to the conception and efficiency of the interlock safety systems. This facility will be utilized mainly for radiosterilization of medical articles and decontamination of wine cork stoppers.

  14. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  15. Flat panel display test and evaluation: procedures, standards, and facilities

    NASA Astrophysics Data System (ADS)

    Jackson, Timothy W.; Daniels, Reginald; Hopper, Darrel G.

    1997-07-01

    This paper addresses flat panel display test and evaluation via a discussion of procedures, standards and facilities. Procedures need to be carefully developed and documented to ensure that test accomplished in separate laboratories produce comparable results. The tests themselves must not be a source of inconsistency in test results when such comparisons are made in the course of procurements or new technology prototype evaluations. Standards are necessary to expedite the transition of the new display technologies into applications and to lower the costs of custom parts applied across disparate applications. The flat panel display industry is in the course of ascertaining and formulating such standards as they are of value to designers, manufacturers, marketers and users of civil and military products and equipment. Additionally, in order to inform the DoD and industry, the test and evaluation facilities of the Air Force Research Laboratory Displays Branch are described. These facilities are available to support procurements involving flat panel displays and to examine new technology prototypes. Finally, other government display testing facilities within the Navy and the Army are described.

  16. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.K.; Freemerman, R.L.

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less

  17. A Selected Bibliography on Microbiological Laboratory Design.

    ERIC Educational Resources Information Center

    Laboratory Design Notes, 1967

    1967-01-01

    Reference sources on microbiological laboratory design are cited. Subjects covered include--(1) policies and general requirements, (2) ventilated cabinets, (3) animal isolation equipment, (4) air handling, ventilation, and filtration, (5) germicidal ultraviolet irradiation, (6) aerosol test facilities, (7) process production of microorganisms, and…

  18. Implementing and measuring the level of laboratory service integration in a program setting in Nigeria.

    PubMed

    Mbah, Henry; Negedu-Momoh, Olubunmi Ruth; Adedokun, Oluwasanmi; Ikani, Patrick Anibbe; Balogun, Oluseyi; Sanwo, Olusola; Ochei, Kingsley; Ekanem, Maurice; Torpey, Kwasi

    2014-01-01

    The surge of donor funds to fight HIV&AIDS epidemic inadvertently resulted in the setup of laboratories as parallel structures to rapidly respond to the identified need. However these parallel structures are a threat to the existing fragile laboratory systems. Laboratory service integration is critical to remedy this situation. This paper describes an approach to quantitatively measure and track integration of HIV-related laboratory services into the mainstream laboratory services and highlight some key intervention steps taken, to enhance service integration. A quantitative before-and-after study conducted in 122 Family Health International (FHI360) supported health facilities across Nigeria. A minimum service package was identified including management structure; trainings; equipment utilization and maintenance; information, commodity and quality management for laboratory integration. A check list was used to assess facilities at baseline and 3 months follow-up. Level of integration was assessed on an ordinal scale (0 = no integration, 1 = partial integration, 2 = full integration) for each service package. A composite score grading expressed as a percentage of total obtainable score of 14 was defined and used to classify facilities (≤ 80% FULL, 25% to 79% PARTIAL and <25% NO integration). Weaknesses were noted and addressed. We analyzed 9 (7.4%) primary, 104 (85.2%) secondary and 9 (7.4%) tertiary level facilities. There were statistically significant differences in integration levels between baseline and 3 months follow-up period (p<0.01). Baseline median total integration score was 4 (IQR 3 to 5) compared to 7 (IQR 4 to 9) at 3 months follow-up (p = 0.000). Partial and fully integrated laboratory systems were 64 (52.5%) and 0 (0.0%) at baseline, compared to 100 (82.0%) and 3 (2.4%) respectively at 3 months follow-up (p = 0.000). This project showcases our novel approach to measure the status of each laboratory on the integration continuum.

  19. 40 CFR 792.47 - Facilities for handling test, control, and reference substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Facilities for handling test, control, and reference substances. 792.47 Section 792.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities...

  20. Biocontainment laboratory risk assessment: perspectives and considerations.

    PubMed

    Patterson, Amy; Fennington, Kelly; Bayha, Ryan; Wax, Diane; Hirschberg, Rona; Boyd, Nancy; Kurilla, Michael

    2014-07-01

    The ability to respond to public health emergencies involving infectious diseases as well as our ability to adequately prepare for as yet unknown or unrecognized emerging infectious diseases requires suitable facilities within which scientific investigations can take place. To ensure the safe conduct of such investigations so that laboratory workers and the general public are protected from potential consequences of accidental or intentional release of high consequence pathogens, special containment facilities have been designed and constructed. Evaluation of the adequacy of containment for these types of investigations requires a risk assessment (RA) as part of the overall construction project for these types of laboratories. A discussion of the RA process along with considerations that impact the design of such studies and the overall results is presented. Published 2014. This article is a US Government work and is in the public domain in the USA.

  1. Francis Bitter National Magnet Laboratory annual report, July 1990 through June 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    The contents include: reports on laboratory research programs--magneto-optics and semiconductor physics, magnetism, superconductivity, solid state nuclear magnetic resonance, condensed matter chemistry, biomagnetism, magnet technology, instrumentation, molecular biophysics; reports of visiting scientists--reports of users of the high magnetic field facility, reports of users of the pulsed field facility, reports of users of the SQUID magnetometer and Mossbauer facility, reports of users of the high field NMR facility; appendices--publications and meeting speeches, organization, summary of high magnetic field facility use, user tables, geographic distribution of high magnetic field facility users, summary of educational activities.

  2. Instrument Systems Analysis and Verification Facility (ISAVF) users guide

    NASA Technical Reports Server (NTRS)

    Davis, J. F.; Thomason, J. O.; Wolfgang, J. L.

    1985-01-01

    The ISAVF facility is primarily an interconnected system of computers, special purpose real time hardware, and associated generalized software systems, which will permit the Instrument System Analysts, Design Engineers and Instrument Scientists, to perform trade off studies, specification development, instrument modeling, and verification of the instrument, hardware performance. It is not the intent of the ISAVF to duplicate or replace existing special purpose facilities such as the Code 710 Optical Laboratories or the Code 750 Test and Evaluation facilities. The ISAVF will provide data acquisition and control services for these facilities, as needed, using remote computer stations attached to the main ISAVF computers via dedicated communication lines.

  3. Holifield Heavy-Ion Research Facility at Oak Ridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, C.M.

    1977-01-01

    A new heavy-ion accelerator facility is now under construction at the Oak Ridge National Laboratory. A brief description of the scope and schedule of this project is given, and the new large tandem accelerator, which will be a major element of the facility is discussed in some detail. Several studies which have been made or are in progress in Oak Ridge in preparation for operation of the tandem accelerator are briefly described.

  4. Practical considerations for disaster preparedness and continuity management in research facilities.

    PubMed

    Mortell, Norman; Nicholls, Sam

    2013-10-01

    Many research facility managers, veterinarians and directors are familiar with the principles of Good Laboratory Practice, requirements of the Association for Assessment and Accreditation of Laboratory Animal Care International, tenets of biosecurity and standards of animal welfare and housing but may be less familiar with the ideas of business continuity. But business continuity considerations are as applicable to research facilities as they are to other institutions. The authors discuss how business continuity principles can be applied in the research context and propose that such application, or 'research continuity management,' enables a focused but wide-reaching approach to disaster preparedness.

  5. Recent Upgrades at the Safety and Tritium Applied Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee Charles; Merrill, Brad Johnson; Stewart, Dean Andrew

    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety atmore » the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.« less

  6. The Vanderbilt University nanoscale science and engineering fabrication laboratory

    NASA Astrophysics Data System (ADS)

    Hmelo, Anthony B.; Belbusti, Edward F.; Smith, Mark L.; Brice, Sean J.; Wheaton, Robert F.

    2005-08-01

    Vanderbilt University has realized the design and construction of a 1635 sq. ft. Class 10,000 cleanroom facility to support the wide-ranging research mission associated with the Vanderbilt Institute for Nanoscale Science and Engineering (VINSE). By design we have brought together disparate technologies and researchers formerly dispersed across the campus to work together in a small contiguous space intended to foster interaction and synergy of nano-technologies not often found in close proximity. The space hosts a variety of tools for lithographic patterning of substrates, the deposition of thin films, the synthesis of diamond nanostructures and carbon nanotubes, and a variety of reactive ion etchers for the fabrication of nanostructures on silicon substrates. In addition, a separate 911 sq. ft. chemistry laboratory supports nanocrystal synthesis and the investigation of biomolecular films. The design criteria required an integrated space that would support the scientific agenda of the laboratory while satisfying all applicable code and safety concerns. This project required the renovation of pre-existing laboratory space with minimal disruption to ongoing activities in a mixed-use building, while meeting the requirements of the 2000 edition of the International Building Code for the variety of potentially hazardous processes that have been programmed for the space. In this paper we describe how architectural and engineering challenges were met in the areas of mitigating floor vibration issues, shielding our facility against EMI emanations, design of the contamination control facility itself, chemical storage and handling, toxic gas use and management, as well as mechanical, electrical, plumbing, lab security, fire and laboratory safety issues.

  7. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  8. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  9. Predictive Analytics to Support Real-Time Management in Pathology Facilities.

    PubMed

    Lessard, Lysanne; Michalowski, Wojtek; Chen Li, Wei; Amyot, Daniel; Halwani, Fawaz; Banerjee, Diponkar

    2016-01-01

    Predictive analytics can provide valuable support to the effective management of pathology facilities. The introduction of new tests and technologies in anatomical pathology will increase the volume of specimens to be processed, as well as the complexity of pathology processes. In order for predictive analytics to address managerial challenges associated with the volume and complexity increases, it is important to pinpoint the areas where pathology managers would most benefit from predictive capabilities. We illustrate common issues in managing pathology facilities with an analysis of the surgical specimen process at the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital, which processes all surgical specimens for the Eastern Ontario Regional Laboratory Association. We then show how predictive analytics could be used to support management. Our proposed approach can be generalized beyond the DPLM, contributing to a more effective management of pathology facilities and in turn to quicker clinical diagnoses.

  10. Radiochemical Processing Laboratory (RPL) at PNNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peurrung, Tony; Clark, Sue; Bryan, Sam

    2017-03-23

    Nuclear research is one of the core components of PNNL's mission. The centerpiece of PNNL's nuclear research is the Radiochemical Processing Laboratory (RPL), a Category 2 nuclear facility with state-of-the-art instrumentation, scientific expertise, and specialized capabilities that enable research with significant quantities of fissionable materials and other radionuclides—from tritium to plutonium. High impact radiological research has been conducted in the RPL since the 1950's, when nuclear weapons and energy production at Hanford were at the forefront of national defense. Since then, significant investments have been made in the RPL to maintain it as a premier nuclear science research facility supportingmore » multiple programs. Most recently, PNNL is developing a world-class analytical electron microscopy facility dedicated to the characterization of radiological materials.« less

  11. Using multi-disciplinary strategic master facilities planning for organizations experiencing programmatic re-direction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heubach, J.G.; Weimer, W.C.; Bruce, W.A.

    Facility master planning is critical to the future productivity of a laboratory and the quality of worklife for the laboratory staff. For organizations undergoing programmatic re-direction, a master facility planning approach linked to the organization`s strategic planning process is even more important. Major changes in an organization such as programmatic re-direction can significantly impact a broad range of variables which exceed the expertise of traditional planning teams, e.g., capacity variability, work team organization, organizational culture, and work process simplification. By expanding the diversity of the participants of the planning team, there is a greater likelihood that a research organization`s scientific,more » organizational, economic, and employees` needs can be meshed in the strategic plan and facility plan. Recent recommendations from facility planners suggest drawing from diverse fields in building multi-disciplinary planning teams: Architecture, engineering, natural science, social psychology, and strategic planning (Gibson,1993). For organizations undergoing significant operational or culture change, the master facility planning team should also include members with expertise in organizational effectiveness, industrial engineering, human resources, and environmental psychology. A recent planning and design project provides an example which illustrates the use of an expanded multi-disciplinary team engaged in planning laboratory renovations for a research organization undergoing programmatic re-direction. The purpose of the proposed poster session is to present a multi-disciplinary master facility planning process linked to an organization`s strategic planning process or organizational strategies.« less

  12. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility watch as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  13. Laboratory services series: a programmed maintenance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuxbury, D.C.; Srite, B.E.

    1980-01-01

    The diverse facilities, operations and equipment at a major national research and development laboratory require a systematic, analytical approach to operating equipment maintenance. A computer-scheduled preventive maintenance program is described including program development, equipment identification, maintenance and inspection instructions, scheduling, personnel, and equipment history.

  14. Safety in Academic Chemistry Laboratories. Fourth Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This booklet provides guidelines for safety in the chemical laboratory. Part I, "Guides for Instructors and Administrators," includes safety rules, safety practices and facilities, preparation for emergencies, safety committees, accident reporting, fire insurance, and listings of some hazardous chemicals. Part II, "Student Guide to…

  15. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2018-02-14

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  16. Steam Plant at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-09-21

    The Steam Plant at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory supplies steam to the major test facilities and office buildings. Steam is used for the Icing Research Tunnel's spray system and the Engine Research Building’s desiccant air dryers. In addition, its five boilers supply heat to various buildings and the cafeteria. Schirmer-Schneider Company built the $141,000 facility in the fall of 1942, and it has been in operation ever since.

  17. The Antaeus Project - An orbital quarantine facility for analysis of planetary return samples

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Bagby, J. R.; Devincenzi, D. L.

    1983-01-01

    A design is presented for an earth-orbiting facility for the analysis of planetary return samples under conditions of maximum protection against contamination but minimal damage to the sample. The design is keyed to a Mars sample return mission profile, returning 1 kg of documented subsamples, to be analyzed in low earth orbit by a small crew aided by automated procedures, tissue culture and microassay. The facility itself would consist of Spacelab shells, formed into five modules of different sizes with purposes of power supply, habitation, supplies and waste storage, the linking of the facility, and both quarantine and investigation of the samples. Three barriers are envisioned to protect the biosphere from any putative extraterrestrial organisms: sealed biological containment cabinets within the Laboratory Module, the Laboratory Module itself, and the conditions of space surrounding the facility.

  18. FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING REMOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL LABORATORY, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-008-105065. ALTERNATE ID NUMBER 4272-14-102. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  19. Liquid Metal Fast Breeder Reactor Program: Argonne facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, S. V.

    1976-09-01

    The objective of the document is to present in one volume an overview of the Argonne National Laboratory test facilities involved in the conduct of the national LMFBR research and development program. Existing facilities and those under construction or authorized as of September 1976 are described. Each profile presents brief descriptions of the overall facility and its test area and data relating to its experimental and testing capability. The volume is divided into two sections: Argonne-East and Argonne-West. Introductory material for each section includes site and facility maps. The profiles are arranged alphabetically by title according to their respective locationsmore » at Argonne-East or Argonne-West. A glossary of acronyms and letter designations in common usage to describe organizations, reactor and test facilities, components, etc., involved in the LMFBR program is appended.« less

  20. Multi-year Content Analysis of User Facility Related Publications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Robert M; Stahl, Christopher G; Hines, Jayson

    2013-01-01

    Scientific user facilities provide resources and support that enable scientists to conduct experiments or simulations pertinent to their respective research. Consequently, it is critical to have an informed understanding of the impact and contributions that these facilities have on scientific discoveries. Leveraging insight into scientific publications that acknowledge the use of these facilities enables more informed decisions by facility management and sponsors in regard to policy, resource allocation, and influencing the direction of science as well as more effectively understand the impact of a scientific user facility. This work discusses preliminary results of mining scientific publications that utilized resources atmore » the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory (ORNL). These results show promise in identifying and leveraging multi-year trends and providing a higher resolution view of the impact that a scientific user facility may have on scientific discoveries.« less