Sample records for laboratory mission strategic

  1. National Risk Management Research Laboratory Strategic plan and Implementation - Overview

    EPA Science Inventory

    This publication provides an overview of the strategic plan recently developed by the National Risk Management Research Laboratory (NRMRL). It includes a description of NRMRL's mission and goals and their alignment with Agency goals. Additionally, the overview contains a brief se...

  2. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael (Editor); Shaw, Tianna

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve

  3. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  4. NASA Astrophysics Prioritizes Technology Development Funding for Strategic Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Pham, Bruce; Ganel, Opher

    2017-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope, Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and X-ray Surveyor. The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned L3 gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. Starting in 2016, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of this year’s technology gap prioritization and showcase our current portfolio of technology development projects. To date, 77 COR and 80 PCOS SAT proposals have been received, of which 18 COR and 22 PCOS projects

  5. Mission to Planet Earth. Strategic enterprise plan, 1995-2000

    NASA Astrophysics Data System (ADS)

    1995-05-01

    Mission to Planet Earth (MTPE) provides long-term understanding of the earth system needed to protect and improve our environment, now and for future generations. This MTPE Strategic Enterprise Plan states how NASA intends to meet its responsibility to the Nation for developing a long-term, integrated program of environmental observation in support of informed decision-making. This plan implements the NASA Strategic Plan for the MTPE Enterprise; it is the first version of a rolling 5-year plan that will be updated annually. It is consistent with the interagency program developed by the Committee on Environment and Natural Resources of the National Science and Technology Council and implemented in large part through the U.S. Global Change Research Program. This report consists of the following sections: (1) introduction; (2) scientific foundation; (3) mission (destination and purposes); (4) principle of operation (ethical and quality assurance standards); (5) customer base (to ensure that the right products and services are delivered); (6) internal and external assessments; (7) assumptions; (8) goals, objectives, and strategies; (9) linkages to other strategic enterprises; and (10) summary.

  6. Mission to Planet Earth. Strategic enterprise plan, 1995-2000

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Mission to Planet Earth (MTPE) provides long-term understanding of the earth system needed to protect and improve our environment, now and for future generations. This MTPE Strategic Enterprise Plan states how NASA intends to meet its responsibility to the Nation for developing a long-term, integrated program of environmental observation in support of informed decision-making. This plan implements the NASA Strategic Plan for the MTPE Enterprise; it is the first version of a rolling 5-year plan that will be updated annually. It is consistent with the interagency program developed by the Committee on Environment and Natural Resources of the National Science and Technology Council and implemented in large part through the U.S. Global Change Research Program. This report consists of the following sections: (1) introduction; (2) scientific foundation; (3) mission (destination and purposes); (4) principle of operation (ethical and quality assurance standards); (5) customer base (to ensure that the right products and services are delivered); (6) internal and external assessments; (7) assumptions; (8) goals, objectives, and strategies; (9) linkages to other strategic enterprises; and (10) summary.

  7. Mission to Planet Earth Strategic Enterprise Plan 1996-2002

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Mission to Planet Earth's (MTPE's) first Strategic Enterprise Plan, issued in May 1995, defined the Agency's major goals and objectives as well as constraints. This update of the Strategic Enterprise Plan identifies the following major changes: a focused Science Research Plan that integrates space-based and in situ observational critical science to address critical science uncertainties; a technology infusion plan to reduce the cost of future missions; a series of flight opportunities to infuse new science into the overall program; and a tighter coupling between NASA and NOAA to reduce costs and to improve the overall program. Three important new initiatives are also under development and are described briefly in this plan: MTPE Education Strategy, MTPE Commercial Strategy, and an emerging concept for an Integrated Global Observing Strategy. This first update to the MTPE Strategic Enterprise Plan captures these new developments, and takes a significant step forward in planning this complex Earth system science endeavor. The plan and other information on MTPE may be viewed via the Internet at http://www.hq.nasa.gov/office/mtpe/.

  8. A decision support tool for synchronizing technology advances with strategic mission objectives

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Willoughby, John K.

    1992-01-01

    Successful accomplishment of the objectives of many long-range future missions in areas such as space systems, land-use planning, and natural resource management requires significant technology developments. This paper describes the development of a decision-support data-derived tool called MisTec for helping strategic planners to determine technology development alternatives and to synchronize the technology development schedules with the performance schedules of future long-term missions. Special attention is given to the operations, concept, design, and functional capabilities of the MisTec. The MisTec was initially designed for manned Mars mission, but can be adapted to support other high-technology long-range strategic planning situations, making it possible for a mission analyst, planner, or manager to describe a mission scenario, determine the technology alternatives for making the mission achievable, and to plan the R&D activity necessary to achieve the required technology advances.

  9. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  10. Metrics for NASA Aeronautics Research Mission Directorate (ARMD) Strategic Thrust 3B Vertical Lift Strategic Direction

    NASA Technical Reports Server (NTRS)

    Hochstetler, Ronald D.; Salvano, Dan; Gorton, Susan A.

    2017-01-01

    The NASA Aeronautics Research Mission Directorate (ARMD) Strategic Implementation Plan details an ambitious plan for aeronautical research for the next quarter century and beyond. It includes a number of advanced technologies needed to address requirements of the overall aviation community (domestic and international), with an emphasis on safety, efficiency, operational flexibility, and alternative propulsion air transport options. The six ARMD Strategic Thrust Areas (STAs) represent a specific set of multi-decade research agendas for creating the global aviation improvements most in demand by the aviation service consumers and the general public. To provide NASA with a measurement of the preeminent value of these research areas, it was necessary to identify and quantify the measurable benefits to the aviation community from capabilities delivered by the research programs. This paper will describe the processes used and the conclusions reached in defining the principal metrics for ARMD Strategic Thrust Area 3B "Vertical Lift Strategic Direction."

  11. FY17 Strategic Themes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leland, Robert W.

    2017-03-01

    I am pleased to present this summary of the FY17 Division 1000 Science and Technology Strategic Plan. As this plan represents a continuation of the work we started last year, the four strategic themes (Mission Engagement, Bold Outcomes, Collaborative Environment, and Safety Imperative) remain the same, along with many of the goals. You will see most of the changes in the actions listed for each goal: We completed some actions, modified others, and added a few new ones. As I’ve stated previously, this is not a strategy to be pursued in tension with the Laboratory strategic plan. The Division 1000more » strategic plan is intended to chart our course as we strive to contribute our very best in service of the greater Laboratory strategy. I welcome your feedback and look forward to our dialogue about these strategic themes. Please join me as we move forward to implement the plan in the coming months.« less

  12. Capability Investment Strategy to Enable JPL Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lincoln, William; Merida, Sofia; Adumitroaie, Virgil; Weisbin, Charles R.

    2006-01-01

    The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future missions are ready as needed. The responsibilities include development of a Strategic Plan (Antonsson, E., 2005). As part of the planning effort, a structured approach to technology prioritization, based upon the work of the START (Strategic Assessment of Risk and Technology) (Weisbin, C.R., 2004) team, was developed. The purpose of this paper is to describe this approach and present its current status relative to the JPL technology investment.

  13. Temporal Investment Strategy to Enable JPL Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lincoln, William P.; Hua, Hook; Weisbin, Charles R.

    2006-01-01

    The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has the responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future JPL deep space missions are ready as needed; as such he is responsible for the development of a Strategic Plan. As part of the planning effort, he has supported the development of a structured approach to technology prioritization based upon the work of the START (Strategic Assessment of Risk and Technology) team. A major innovation reported here is the addition of a temporal model that supports scheduling of technology development as a function of time. The JPL Strategic Technology Plan divides the required capabilities into 13 strategic themes. The results reported here represent the analysis of an initial seven.

  14. The Gravity Recovery and Interior Laboratory mission

    NASA Astrophysics Data System (ADS)

    Lehman, D. H.; Hoffman, T. L.; Havens, G. G.

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and Extended Mission in December 2012. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission used twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such as an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  15. The Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  16. Applying Strategic Visualization(Registered Trademark) to Lunar and Planetary Mission Design

    NASA Technical Reports Server (NTRS)

    Frassanito, John R.; Cooke, D. R.

    2002-01-01

    NASA teams, such as the NASA Exploration Team (NEXT), utilize advanced computational visualization processes to develop mission designs and architectures for lunar and planetary missions. One such process, Strategic Visualization (trademark), is a tool used extensively to help mission designers visualize various design alternatives and present them to other participants of their team. The participants, which may include NASA, industry, and the academic community, are distributed within a virtual network. Consequently, computer animation and other digital techniques provide an efficient means to communicate top-level technical information among team members. Today,Strategic Visualization(trademark) is used extensively both in the mission design process within the technical community, and to communicate the value of space exploration to the general public. Movies and digital images have been generated and shown on nationally broadcast television and the Internet, as well as in magazines and digital media. In our presentation will show excerpts of a computer-generated animation depicting the reference Earth/Moon L1 Libration Point Gateway architecture. The Gateway serves as a staging corridor for human expeditions to the lunar poles and other surface locations. Also shown are crew transfer systems and current reference lunar excursion vehicles as well as the Human and robotic construction of an inflatable telescope array for deployment to the Sun/Earth Libration Point.

  17. FY16 Strategic Themes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leland, Robert W.

    2017-03-01

    I am pleased to present this summary of the Division 1000 Science and Technology Strategic Plan. This plan was created with considerable participation from all levels of management in Division 1000, and is intended to chart our course as we strive to contribute our very best in service of the greater Laboratory strategy. The plan is characterized by four strategic themes: Mission Engagement, Bold Outcomes, Collaborative Environment, and the Safety Imperative. Each theme is accompanied by a brief vision statement, several goals, and planned actions to support those goals throughout FY16. I want to be clear that this is notmore » a strategy to be pursued in tension with the Laboratory strategic plan. Rather, it is intended to describe “how” we intend to show up for the “what” described in Sandia’s Strategic Plan. I welcome your feedback and look forward to our dialogue about these strategic themes. Please join me as we move forward to implement the plan in the coming year.« less

  18. Saving Water at Los Alamos National Laboratory

    ScienceCinema

    Erickson, Andy

    2018-01-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  19. Saving Water at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Andy

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility thatmore » supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.« less

  20. An Analysis of the Mission and Vision Statements on the Strategic Plans of Higher Education Institutions

    ERIC Educational Resources Information Center

    Ozdem, Guven

    2011-01-01

    This study aimed to analyze the mission and vision statements on the strategic plans of higher education institutions. The sample of the study consisted of 72 public universities. Strategic plans of the universities were accessed over the internet, and the data collected were analyzed using content analysis. The findings show that statements on…

  1. Advancing mission in the marketplace. Integrated strategic planning and budgeting helps a system remain accountable.

    PubMed

    Smessaert, A H

    1992-10-01

    In the late 1980s Holy Cross Health System (HCHS), South Bend, IN, began to implement a revised strategic planning and budgeting process to effectively link the system's mission with its day-to-day operations. Leaders wanted a process that would help system employees internalize and act on the four major elements articulated in the HCHS mission statement: fidelity, excellence, empowerment, and stewardship. Representatives from mission, strategic planning, and finance from the corporate office and subsidiaries examined planning and budgeting methods. From the beginning, HCHS leaders decided that the process should be implemented gradually, with each step focusing on refining methodology and improving mission integration. As the process evolved. HCHS developed a sequence in which planning preceded budgeting. The system also developed a variety of educational and collaborative initiatives to help system employees adapt to the organization's change of direction. One critical aspect of HCHS's ongoing education is an ethical reflection process that helps participants balance ethical considerations by viewing an issue from three perspectives: social vision, multiple responsibility, and self-interest.

  2. Interlacing Mission, Strategic Planning, and Vision to Lean: Powerful DNA for Change

    ERIC Educational Resources Information Center

    Arnold, Alison; Flumerfelt, Shannon

    2012-01-01

    The authors' purpose for this article is to describe a K-12 public school district's journey to internalize and actualize its mission, strategic planning and vision as one coherent engagement using Lean principles and tools. Lean jointly comprises an organizational philosophy and management toolkit prominent in private, government, and nonprofit…

  3. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Todd Randall; Wright, Virginia Latta

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  4. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  5. Factors Influencing Laboratory Information System Effectiveness Through Strategic Planning in Shiraz Teaching Hospitals.

    PubMed

    Bahador, Fateme; Sharifian, Roxana; Farhadi, Payam; Jafari, Abdosaleh; Nematolahi, Mohtram; Shokrpour, Nasrin

    This study aimed to develop and test a research model that examined 7effective factors on the effectiveness of laboratory information system (LIS) through strategic planning. This research was carried out on total laboratory staff, information technology staff, and laboratory managers in Shiraz (a city in the south of Iran) teaching hospitals by structural equation modeling approach in 2015. The results revealed that there was no significant positive relationship between decisions based on cost-benefit analysis and LIS functionality with LIS effectiveness, but there was a significant positive relationship between other factors and LIS effectiveness. As expected, high levels of strategic information system planning result in increasing LIS effectiveness. The results also showed that the relationship between cost-benefit analysis, LIS functionality, end-user involvement, and information technology-business alignment with strategic information system planning was significant and positive.

  6. Multi-Mission Strategic Technology Prioritization Study

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Rodriquez, G.; Elfes, A.; Derleth, J.; Smith, J. H.; Manvi, R.; Kennedy, B.; Shelton, K.

    2004-01-01

    This viewgraph presentation provides an overview of a pilot study intended to demonstrate in an auditable fashion how advanced space technology development can best impact future NASA missions. The study was a joint project by staff members of NASA's Jet Propulsion Laboratory (JPL), and Goddard Space Flight Center (GSFC). The other goals of the study were to show an approach to deal effectively with inter-program analysis trades, and to explore the limits of these approaches and tools in terms of what can be realistically achieved.

  7. Architectures for mission control at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Davidson, Reger A.; Murphy, Susan C.

    1992-01-01

    JPL is currently converting to an innovative control center data system which is a distributed, open architecture for telemetry delivery and which is enabling advancement towards improved automation and operability, as well as new technology, in mission operations at JPL. The scope of mission control within mission operations is examined. The concepts of a mission control center and how operability can affect the design of a control center data system are discussed. Examples of JPL's mission control architecture, data system development, and prototype efforts at the JPL Operations Engineering Laboratory are provided. Strategies for the future of mission control architectures are outlined.

  8. Strategic Map for Enceladus Plume Biosignature Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent; Yano, Hajime

    The discovery of jets emitting salty water from the interior of Saturn’s small moon Enceladus is one of the most astounding results of the Cassini mission to date. The measured presence of organic species in the resulting plume, the finding that the jet activity is valved by tidal stretching at apochrone, and the modeled lifetime of E-ring particles, all indicate that the textbook conditions for habitability are met at Enceladus today: liquid water, biologically available elements, and source of energy, longevity of conducive conditions. Enceladus may be the best place in our solar system to search for direct evidence of biomarkers, and the plume provides a way to sample for and even return them to Earth for detailed analysis. It is straightforward to imagine a Stardust-like, fly-through, plume particle and gas collection and return mission for Enceladus. An international team (LIFE, Life Investigation For Enceladus) has dedicated itself to pursuing such a flight project. Concept engineering and evaluation indicate that the associated technical, programmatic, regulatory, and cost issues are quite unlike the Stardust precedent however, not least because of such a mission’s Category-V, Restricted Earth Return, classification. The paper presents a strategic framework that systematically integrates the cultivation of science advocacy, resolution of diverse stakeholder issues, development of verifiable and affordable technical solutions, validation of cost estimation methods, alignment with other candidate astrobiology missions, complementarity of international agency goals, and finally the identification of appropriate research and flight-mission opportunities. Resolving and using this map is essential if we are to know the astrobiological state of Enceladus in our lifetime.

  9. 2011 Mars Science Laboratory Mission Design Overview

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2010-01-01

    Scheduled to launch in the fall of 2011 with arrival at Mars occurring in the summer of 2012, NASA's Mars Science Laboratory will explore and assess whether Mars ever had conditions capable of supporting microbial life. In order to achieve its science objectives, the Mars Science Laboratory will be equipped with the most advanced suite of instruments ever sent to the surface of the Red Planet. Delivering the next mobile science laboratory safely to the surface of Mars has various key challenges derived from a strict set of requirements which include launch vehicle performance, spacecraft mass, communications coverage during Entry, Descent, and Landing, atmosphere-relative entry speeds, latitude accessibility, and dust storm season avoidance among others. The Mars Science Laboratory launch/arrival strategy selected after careful review satisfies all these mission requirements.

  10. Lewis Wooten, manager of the Mission Operations Laboratory

    NASA Image and Video Library

    2015-07-20

    LEWIS WOOTEN MANAGES THE MISSION OPERATIONS LABORATORY. MORE THAN 1600 INVESTIGATIONS AND STUDENT EXPERIMENTS FOR OVER 80 COUNTRIES HAVE BEEN COMPLETED WITH THE HELP OF WOOTEN'S TEAM AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA.

  11. Strategic Plan. Volume 2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Mission of the NSBRI will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. To carry out this mission, the NSBRI focuses its activities on three Strategic Programs: Strategic Program 1: Countermeasure Research Strategic Program 2: Education, Training and Outreach Strategic Program 3: Cooperative Research and Development. This document contains the detailed Team Strategic Plans for the 11 research teams focused on Strategic Program 1, and the Education and Outreach Team focused on Strategic Program 2. There is overlap and integration among the Programs and Team Strategic Plans, as described in each of the Plans.

  12. Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session. Volume 2

    NASA Technical Reports Server (NTRS)

    Nahra, Henry (Compiler)

    2004-01-01

    Reports are presented from volume 2 of the conference titled Strategic Research to Enable NASA's Exploration Missions, poster session. Topics included spacecraft fire suppression and fire extinguishing agents,materials flammability, various topics on the effects of microgravity including crystal growth, fluid mechanics, electric particulate suspension, melting and solidification, bubble formation, the sloshing of liquid fuels, biological studies, separation of carbon dioxide and carbon monoxide for Mars ISRU.

  13. Strategic Approaches to Trading Science Objectives Against Measurements and Mission Design: Mission Architecture and Concept Maturation at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Case, K. E.; Nash, A. E., III

    2017-12-01

    Earth Science missions are increasingly challenged to improve our state of the art through more sophisticated hypotheses and inclusion of advanced technologies. However, science return needs to be constrained to the cost environment. Selectable mission concepts are the result of an overlapping Venn diagram of compelling science, feasible engineering solutions, and programmatic acceptable costs, regardless of whether the science investigation is Earth Venture or Decadal class. Since the last Earth Science and Applications Decadal Survey released in 2007, many new advanced technologies have emerged, in instrument, SmallSat flight systems, and launch service capabilities, enabling new mission architectures. These mission architectures may result in new thinking about how we achieve and collect science measurements, e.g., how to improve time-series measurements. We will describe how the JPL Formulation Office is structured to integrate methods, tools, and subject matter experts to span the mission concept development lifecycle, and assist Principal Investigators in maturing their mission ideas into realizable concepts.

  14. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  15. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less

  16. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  17. [The mission].

    PubMed

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense.

  18. Protein crystal growth results from the United States Microgravity Laboratory-1 mission

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Moore, K. M.; Vanderwoerd, M.; Bray, T. L.; Smith, C.; Carson, M.; Narayana, S. V. L.; Rosenblum, W. M.; Carter, D.; Clark, A. D, Jr.

    1994-01-01

    Protein crystal growth experiments have been performed by this laboratory on 18 Space Shuttle missions since April, 1985. In addition, a number of microgravity experiments also have been performed and reported by other investigators. These Space Shuttle missions have been used to grow crystals of a variety of proteins using vapor diffusion, liquid diffusion, and temperature-induced crystallization techniques. The United States Microgravity Laboratory - 1 mission (USML-1, June 25 - July 9, 1992) was a Spacelab mission dedicated to experiments involved in materials processing. New protein crystal growth hardware was developed to allow in orbit examination of initial crystal growth results, the knowledge from which was used on subsequent days to prepare new crystal growth experiments. In addition, new seeding hardware and techniques were tested as well as techniques that would prepare crystals for analysis by x-ray diffraction, a capability projected for the planned Space Station. Hardware that was specifically developed for the USML-1 mission will be discussed along with the experimental results from this mission.

  19. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  20. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizesmore » current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.« less

  1. Through Microgravity and Towards the Stars: Microgravity and Strategic Research at Marshall's Biological and Physical Space Research Laboratory

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2003-01-01

    The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.

  2. Atmospheric Laboratory for Applications and Science (ATLAS), mission 1: Introduction

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The first Atmospheric Laboratory for Applications and Science (ATLAS 1) is a NASA mission with an international payload, with the European Space Agency providing operational support for the European investigations. The ATLAS 1 represents the first of a series of shuttle-borne payloads which are intended to study the composition of the middle atmosphere and its possible variations due to solar changes over the course of an 11-year solar cycle. One of the ATLAS missions will coincide with NASA's Upper Atmospheric Research Satellite (UARS) mission and will provide crucial parameters not measured by the instrument complement on the satellite. A first in this evolutionary program, the ATLAS 1 will carry a payload of instruments originally flown on the Spacelab 1 and Spacelab 3 missions. The ATLAS mission therefore exploits the shuttle capability to return sophisticated instruments to the ground for refurbishment and updating, and the multi-mission reflight of the instruments at intervals required by the scientific goals. In addition to the investigations specific to the ATLAS objectives, the first mission payload includes others that are intended to study or use the near earth environment.

  3. Biological and Physical Space Research Laboratory 2002 Science Review

    NASA Technical Reports Server (NTRS)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  4. Mission hazard assessment for STARS Mission 1 (M1) in the Marshall Islands area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Outka, D.E.; LaFarge, R.A.

    1993-07-01

    A mission hazard assessment has been performed for the Strategic Target System Mission 1 (known as STARS M1) for hazards due to potential debris impact in the Marshall Islands area. The work was performed at Sandia National Laboratories as a result of discussion with Kwajalein Missile Range (KMR) safety officers. The STARS M1 rocket will be launched from the Kauai Test Facility (KTF), Hawaii, and deliver two payloads to within the viewing range of sensors located on the Kwajalein Atoll. The purpose of this work has been to estimate upper bounds for expected casualty rates and impact probability or themore » Marshall Islands areas which adjoin the STARS M1 instantaneous impact point (IIP) trace. This report documents the methodology and results of the analysis.« less

  5. A System Engineering Approach to Strategic Partnership Development: A pilot study with NASA's Orbiting Carbon Observatory-2 (OCO-2) and the National Laboratory for Agriculture and the Environment (NLAE)

    NASA Astrophysics Data System (ADS)

    Yuen, K.; Chang, G.; Basilio, R. R.; Hatfield, J.; Cox, E. L.

    2017-12-01

    The prevalence and availability of NASA remote sensing data over the last 40+ years have produced many opportunities for the development of science derived data applications. However, extending and systematically integrating the applications into decision support models and tools have been sporadic and incomplete. Despite efforts among the research communities and external partners, implementation challenges exist and still remain to be addressed. In order to effectively address the systemic gap between the research and applications communities, steps must be taken to effectively bridge that gap: specific goals, a clear plan, and a concerted and diligent effort are needed to produce the desired results. The Orbiting Carbon Observatory-2 (OCO-2) mission sponsored a pilot effort on science data applications with the specific intent of building strategic partnerships, so that organizations and individuals could effectively use OCO-2 data products for application development. The successful partnership with the USDA/ARS National Laboratory for Agriculture and the Environment (NLAE) has laid the foundation for: 1) requirements and lessons for establishing a strategic partnership for application development, 2) building opportunities and growing partnerships for new missions such as OCO-3, and 3) the development of a methodology and approach for integrating application development into a mission life cycle. This presentation will provide an overview of the OCO-2 pilot effort, deliverables, the methodology, implementation, and best practices.

  6. Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions

    NASA Technical Reports Server (NTRS)

    Salana, Farid; Tan, X.; Cami, J.; Remy, J.

    2006-01-01

    One of the major objectives of Laboratory Astrophysics is the optimization of data return from space missions by measuring spectra of atomic and molecular species in laboratory environments that mimic interstellar conditions (WhitePaper (2002, 2006)). Among interstellar species, PAHs are an important and ubiquitous component of carbon-bearing materials that represents a particularly difficult challenge for gas-phase laboratory studies. We present the absorption spectra of jet-cooled neutral and ionized PAHs and discuss the implications for astrophysics. The harsh physical conditions of the interstellar medium have been simulated in the laboratory. We are now, for the first time, in the position to directly compare laboratory spectra of PAHs and carbon nanoparticles with astronomical observations. This new phase offers tremendous opportunities for the data analysis of current and upcoming space missions geared toward the detection of large aromatic systems (HST/COS, FUSE, JWST, Spitzer).

  7. The Possibilities of Strategic Finance

    ERIC Educational Resources Information Center

    Chaffee, Ellen

    2010-01-01

    Strategic finance is aligning financial decisions--regarding revenues, creating and maintaining institutional assets, and using those assets--with the institution's mission and strategic plan. The concept known as "strategic finance" increasingly is being seen as a useful perspective for helping boards and presidents develop a sustainable…

  8. Pacific Northwest Laboratory Institutional Plan FY 1995-2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-12-01

    This report serves as a document to describe the role PNL is positioned to take in the Department of Energy`s plans for its national centers in the period 1995-2000. It highlights the strengths of the facilities and personnel present at the laboratory, touches on the accomplishments and projects they have contributed to, and the direction being taken to prepare for the demands to be placed on DOE facilities in the near and far term. It consists of sections titled: director`s statement; laboratory mission and core competencies; laboratory strategic plan; laboratory initiatives; core business areas; critical success factors.

  9. Mission and Navigation Design for the 2009 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    D'Amario, Louis A.

    2008-01-01

    NASA s Mars Science Laboratory mission will launch the next mobile science laboratory to Mars in the fall of 2009 with arrival at Mars occurring in the summer of 2010. A heat shield, parachute, and rocket-powered descent stage, including a sky crane, will be used to land the rover safely on the surface of Mars. The direction of the atmospheric entry vehicle lift vector will be controlled by a hypersonic entry guidance algorithm to compensate for entry trajectory errors and counteract atmospheric and aerodynamic dispersions. The key challenges for mission design are (1) develop a launch/arrival strategy that provides communications coverage during the Entry, Descent, and Landing phase either from an X-band direct-to-Earth link or from a Ultra High Frequency link to the Mars Reconnaissance Orbiter for landing latitudes between 30 deg North and 30 deg South, while satisfying mission constraints on Earth departure energy and Mars atmospheric entry speed, and (2) generate Earth-departure targets for the Atlas V-541 launch vehicle for the specified launch/arrival strategy. The launch/arrival strategy employs a 30-day baseline launch period and a 27-day extended launch period with varying arrival dates at Mars. The key challenges for navigation design are (1) deliver the spacecraft to the atmospheric entry interface point (Mars radius of 3522.2 km) with an inertial entry flight path angle error of +/- 0.20 deg (3 sigma), (2) provide knowledge of the entry state vector accurate to +/- 2.8 km (3 sigma) in position and +/- 2.0 m/s (3 sigma) in velocity for initializing the entry guidance algorithm, and (3) ensure a 99% probability of successful delivery at Mars with respect to available cruise stage propellant. Orbit determination is accomplished via ground processing of multiple complimentary radiometric data types: Doppler, range, and Delta-Differential One-way Ranging (a Very Long Baseline Interferometry measurement). The navigation strategy makes use of up to five

  10. Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.

    2004-01-01

    NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.

  11. The PVCC Strategic Plan.

    ERIC Educational Resources Information Center

    Piedmont Virginia Community Coll., Charlottesville, VA.

    Presents Piedmont Virginia Community College's (PVCC's) strategic plan. Contains the following chapters: (1) introduction; (2) statement of mission; (3) summary of the college's strategic initiatives: funding, organization, faculty and staff, curriculum and instruction, enrollment management, students and student services, facilities, technology,…

  12. Strategic Plan. Volume 1

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The purpose of this document is to present the strategic plan and associated organizational structure that the National Space Biomedical Research Institute (NSBRI) will utilize to achieve the defined mission and objectives provided by NASA. Much of the information regarding the background and establishment of the NSBRI by NASA has been provided in other documentation and will not be repeated in this Strategic Plan. This Strategic Plan is presented in two volumes. Volume I (this volume) begins with an Introduction (Section 2) that provides the Institute's NASA-defined mission and objectives, and the organizational structure adopted to implement these through three Strategic Programs: Countermeasure Research; Education, Training and Outreach; and Cooperative Research and Development. These programs are described in Sections 3 to 5. Each program is presented in a similar way, using four subsections: Goals and Objectives; Current Strategies; Gaps and Modifications; and Resource Requirements. Section 6 provides the administrative infrastructure and total budget required to implement the Strategic Programs and assures that they form a single cohesive plan. This plan will ensure continued success of the Institute for the next five years. Volume II of the Strategic Plan provides an in-depth analysis of the current and future strategic programs of the 12 current NSBRI teams, including their goals, objectives, mutual interactions and schedules.

  13. Gravity Recovery and Interior Laboratory (GRAIL): Extended Mission and End-Game Status

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Smith, David E.; Wieczorek, Mark A.; Williams, James G.; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Matsuyama, Isamu; McGovern, Patrick J.; Nimmo, Francis; hide

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) [1], NASA s eleventh Discovery mission, successfully executed its Primary Mission (PM) in lunar orbit between March 1, 2012 and May 29, 2012. GRAIL s Extended Mission (XM) initiated on August 30, 2012 and was successfully completed on December 14, 2012. The XM provided an additional three months of gravity mapping at half the altitude (23 km) of the PM (55 km), and is providing higherresolution gravity models that are being used to map the upper crust of the Moon in unprecedented detail.

  14. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less

  15. Current Status of the International Lunar Network (ILN) Anchor Nodes Mission

    NASA Astrophysics Data System (ADS)

    Cohen, Barbara; Bassler, J.; Harris, D.; Morse, B.; Reed, C.; Kirby, K.; Eng, D.

    2009-09-01

    NASA's Science Mission Directorate's (SMD) International Lunar Network Anchor Nodes Mission continues its concept development and is scheduled to complete the first formal milestone gate of a Mission Concept Review (MCR) in late 2009. The mission will establish two-four nodes of the International Lunar Network (ILN), a network of lunar geophysical stations envisioned to be emplaced by the many nations collaborating on this joint endeavor. This mission will operate over six years or more and make significant progress in satisfying many of the National Research Council's lunar science objectives, while strategically contributing to the U.S. Vision for Space Exploration Policy's objective for a robust robotic lunar program. This paper will provide a status report on the ILN Anchor Nodes mission and overview of the concept to date, which is being implemented jointly by NASA's Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory.

  16. Engaging Students Through Classroom Connection Webinars to Improve Their Understanding of the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Graff, Paige V.; Achilles, Cherie

    2013-01-01

    Planetary exploration missions to other worlds, like Mars, can generate a lot of excitement and wonder for the public. The Mars Science Laboratory Mission is one of the latest planetary missions that has intrigued the public perhaps more than most. How can scientists and educational specialists capitalize on the allure of this mission and involve students and teachers in a way that not only shares the story of the mission, but actively engages classrooms with scientists and improves their understanding of the science? The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center achieves this by facilitating MSL mission focused classroom connection webinars. Five MSL-focused webinars facilitated through EEAB during the 2012 fall semester engaged almost 3000 students and teachers. Involved STEM experts/role models helped translate the science behind the Mars Science Laboratory mission in a comprehensive, exciting, and engaging manner. These virtual events captured participants attention while increasing their science awareness and understanding of the MSL mission.

  17. Strategic planning for neuroradiologists.

    PubMed

    Berlin, Jonathan W; Lexa, Frank J

    2012-08-01

    Strategic planning is becoming essential to neuroradiology as the health care environment continues to emphasize cost efficiency, teamwork and collaboration. A strategic plan begins with a mission statement and vision of where the neuroradiology division would like to be in the near future. Formalized strategic planning frameworks, such as the strengths, weaknesses, opportunities and threats (SWOT), and the Balanced Scorecard frameworks, can help neuroradiology divisions determine their current position in the marketplace. Communication, delegation, and accountability in neuroradiology is essential in executing an effective strategic plan. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. FY16 Strategic Themes White Paper.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leland, Robert W.

    The Science and Technology (S&T) Division 1000 Strategic Plan includes the Themes, Goals, and Actions for FY16. S&T will continue to support the Labs Strategic plan, Mission Areas and Program Management Units by focusing on four strategic themes that align with the targeted needs of the Labs. The themes presented in this plan are Mission Engagement, Bold Outcomes, Collaborative Environment, and the Safety Imperative. Collectively they emphasize diverse, collaborative teams and a self-reliant culture of safety that will deliver on our promise of exceptional service in the national interest like never before. Mission Engagement focuses on increasing collaboration at allmore » levels but with emphasis at the strategic level with mission efforts across the labs. Bold Outcomes seeks to increase the ability to take thoughtful risks with the goal of achieving transformative breakthroughs more frequently. Collaborative environment strives for a self-aware, collaborative working environment that bridges the many cultures of Sandia. Finally, Safety Imperative aims to minimize the risk of serious injury and to continuously strengthen the safety culture. Each of these themes is accompanied by a brief vision statement, several goals, and planned actions to support those goals throughout FY16 and leading into FY17.« less

  19. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    Transfer Browse Technology Portfolios Technology Partnerships Business, Industry, & Non-Profits Agreements Cooperative Research and Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal atmospheric flight with emphasis on aerodynamics; navigation, guidance and control; and thermal protection

  20. NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  1. Learning to think strategically.

    PubMed

    1994-01-01

    Strategic thinking focuses on issues that directly affect the ability of a family planning program to attract and retain clients. This issue of "The Family Planning Manager" outlines the five steps of strategic thinking in family planning administration: 1) define the organization's mission and strategic goals; 2) identify opportunities for improving quality, expanding access, and increasing demand; 3) evaluate each option in terms of its compatibility with the organization's goals; 4) select an option; and 5) transform strategies into action. Also included in this issue is a 20-question test designed to permit readers to assess their "strategic thinking quotient" and a list of sample questions to guide a strategic analysis.

  2. New Brunswick Laboratory: Progress report, October 1993 through September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The mission of the New Brunswick Laboratory of the US Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards and non-proliferation functions in support of multiple program sponsors. During FY 94 New Brunswick Laboratory (NBL) completed development of a Strategic Plan which will aid in better defining performance oriented laboratory goals and objectives in each functional area consistent with the changing needs of the global nuclear community. This annual report describes accomplishments achieved in carrying out NBL`smore » assigned missions. Details of completed projects are reported in separate topical reports or as open-literature publications. Programs discussed here are: (1) safeguards assistance; (2) reference materials program; (3) measurement evaluation; (4) measurement services; and (5) measurement development.« less

  3. Translating a National Laboratory Strategic Plan into action through SLMTA in a district hospital laboratory in Botswana.

    PubMed

    Ntshambiwa, Keoratile; Ntabe-Jagwer, Winnie; Kefilwe, Chandapiwa; Samuel, Fredrick; Moyo, Sikhulile

    2014-01-01

    The Ministry of Health (MOH) of Botswana adopted Strengthening Laboratory Management Toward Accreditation (SLMTA), a structured quality improvement programme, as a key tool for the implementation of quality management systems in its public health laboratories. Coupled with focused mentorship, this programme aimed to help MOH achieve the goals of the National Laboratory Strategic Plan to provide quality and timely clinical diagnoses. This article describes the impact of implementing SLMTA in Sekgoma Memorial Hospital Laboratory (SMHL) in Serowe, Botswana. SLMTA implementation in SMHL included trainings, improvement projects, site visits and focused mentorship. To measure progress, audits using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist were conducted at baseline and exit of the programme, with scores corresponding to a zero- to five-star scale. Turnaround times, customer satisfaction, and several other health service indicators were tracked. The laboratory scored 53% (zero stars) at the baseline audit and 80% (three stars) at exit. Nearly three years later, the laboratory scored 85% (four stars) in an official audit conducted by the African Society for Laboratory Medicine. Turnaround times became shorter after SLMTA implementation, with reductions ranging 19% to 52%; overall patient satisfaction increased from 56% to 73%; and clinician satisfaction increased from 41% to 72%. Improvements in inventory management led to decreases in discarded reagents, reducing losses from US $18 000 in 2011 to $40 in 2013. The SLMTA programme contributed to enhanced performance of the laboratory, which in turn yielded potential positive impacts for patient care at the hospital.

  4. Laboratory directed research and development fy1999 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R A

    2000-04-11

    Program also enables many collaborations with the scientific community in academia, national and international laboratories, and industry. The projects in the FY1999 LDRD portfolio were carefully selected to continue vigorous support of the strategic vision and the long-term goals of DOE and the Laboratory. Projects chosen for LDRD funding undergo stringent selection processes, which look for high-potential scientific return, emphasize strategic relevance, and feature technical peer reviews by external and internal experts. The FY1999 projects described in this annual report focus on supporting the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs. In the past, LDRD investments have significantly enhanced LLNL scientific capabilities and greatly contributed to the Laboratory's ability to meet its national security programmatic requirements. Examples of past investments include technical precursors to the Accelerated Strategic Computing Initiative (ASCI), special-materials processing and characterization, and biodefense. Our analysis of the FY1999 portfolio shows that it strongly supports the Laboratory's national security mission. About 95% of the LDRD dollars have directly supported LLNL's national security activities in FY1999, which far exceeds the portion of LLNL's overall budget supported by National Security Programs, which is 63% for FY1999.« less

  5. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  6. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, D. K.

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC ismore » the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.« less

  7. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Salama, Farid (Editor)

    2002-01-01

    This document is the proceedings of the NASA Laboratory Astrophysics Workshop, convened May 1-3, 2002 at NASA's Ames Research Center. Sponsored by the NASA Office of Space Science (OSS), this programmatic workshop is held periodically by NASA to discuss the current state of knowledge in the interdisciplinary field of laboratory astrophysics and to identify the science priorities (needs) in support of NASA's space missions. An important goal of the Workshop is to provide input to OSS in the form of a white paper for incorporation in its strategic planning. This report comprises a record of the complete proceedings of the Workshop and the Laboratory Astrophysics White Paper drafted at the Workshop.

  8. NASA Space Sciences Strategic Planning

    NASA Technical Reports Server (NTRS)

    Crane, Philippe

    2004-01-01

    The purpose of strategic planning roadmap is to:Fulfill the strategic planning requirements; Provide a guide to the science community in presenting research requests to NASA; Inform and inspire; Focus investments in technology and research for future missions; and Provide the scientific and technical justification for augmentation requests.

  9. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.« less

  10. Laboratory Directed Research and Development FY2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser

  11. Rapid Cost Assessment of Space Mission Concepts through Application of Complexity Indices

    NASA Technical Reports Server (NTRS)

    Peterson, Craig; Cutts, James; Balint, Tibor; Hall, James B.

    2008-01-01

    In 2005, the Solar System Exploration Strategic Roadmap Conmrittee (chartered by NASA to develop the roadmap for Solar System Exploration Missions for the coming decades) found itself posed with the difficult problem of sorting through several mission concepts and determining their relative costs. While detailed mission studies are the normal approach to costing, neither the budget nor schedule allotted to the conmrittee could support such studies. Members of the Jet Propulsion Laboratory (JPL) supporting the conmrittee were given the challenge of developing a semi-quantitative approach that could provide the relative costs of these missions, without requiring an in depth study of the missions. In response to this challenge, a rapid cost assessment methodology based on a set of mission cost/complexity indexes was developed. This methodology also underwent two separate validations, one comparing its results when applied to historical missions, and another comparing its estimates against those of veteran space mission managers. Remarkably good agreement was achieved, suggesting that this approach provides an effective early indication of space mission costs.

  12. 2015 Enterprise Strategic Vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-08-01

    This document aligns with the Department of Energy Strategic Plan for 2014-2018 and provides a framework for integrating our missions and direction for pursuing DOE’s strategic goals. The vision is a guide to advancing world-class science and engineering, supporting our people, modernizing our infrastructure, and developing a management culture that operates a safe and secure enterprise in an efficient manner.

  13. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    PubMed

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  14. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    PubMed Central

    Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  15. Planning for Space Station Freedom laboratory payload integration

    NASA Technical Reports Server (NTRS)

    Willenberg, Harvey J.; Torre, Larry P.

    1989-01-01

    Space Station Freedom is being developed to support extensive missions involving microgravity research and applications. Requirements for on-orbit payload integration and the simultaneous payload integration of multiple mission increments will provide the stimulus to develop new streamlined integration procedures in order to take advantage of the increased capabilities offered by Freedom. The United States Laboratory and its user accommodations are described. The process of integrating users' experiments and equipment into the United States Laboratory and the Pressurized Logistics Modules is described. This process includes the strategic and tactical phases of Space Station utilization planning. The support that the Work Package 01 Utilization office will provide to the users and hardware developers, in the form of Experiment Integration Engineers, early accommodation assessments, and physical integration of experiment equipment, is described. Plans for integrated payload analytical integration are also described.

  16. 76 FR 4133 - National Environmental Policy Act; Mars Science Laboratory (MSL) Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-008)] National Environmental Policy Act; Mars Science Laboratory (MSL) Mission AGENCY: National Aeronautics and Space Administration (NASA...). SUMMARY: Pursuant to the National Environmental Policy Act, as amended, (NEPA) (42 U.S.C. 4321 et seq...

  17. Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions. A New Generation of Laboratory & Space Studies

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Tan, Xiaofeng; Cami, Jan; Biennier, Ludovic; Remy, Jerome

    2006-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. A long-standing and major challenge for laboratory astrophysics has been to measure the spectra of large carbon molecules in laboratory environments that mimic (in a realistic way) the physical conditions that are associated with the interstellar emission and absorption regions [1]. This objective has been identified as one of the critical Laboratory Astrophysics objectives to optimize the data return from space missions [2]. An extensive laboratory program has been developed to assess the properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space. We present and discuss the gas-phase electronic absorption spectra of neutral and ionized PAHs measured in the UV-Visible-NIR range in astrophysically relevant environments and discuss the implications for astrophysics [1]. The harsh physical conditions of the interstellar medium characterized by a low temperature, an absence of collisions and strong VUV radiation fields - have been simulated in the laboratory by associating a pulsed cavity ringdown spectrometer (CRDS) with a supersonic slit jet seeded with PAHs and an ionizing, penning-type, electronic discharge. We have measured for the {\\it first time} the spectra of a series of neutral [3,4] and ionized [5,6] interstellar PAHs analogs in the laboratory. An effort has also been attempted to quantify the mechanisms of ion and carbon nanoparticles production in the free jet expansion and to model our simulation of the diffuse interstellar medium in the laboratory [7]. These experiments provide {\\it unique} information on the spectra of free, large carbon-containing molecules and ions in the gas phase. We are now, for the first time, in the position to directly compare laboratory spectral data on free, cold, PAH ions and carbon nano-sized carbon particles with astronomical observations in the

  18. Quality indicators and specifications for strategic and support processes in laboratory medicine.

    PubMed

    Ricós, Carmen; Biosca, Carme; Ibarz, Mercè; Minchinela, Joana; Llopis, Maantonia; Perich, Carmen; Alsina, Jesus; Alvarez, Virtudes; Doménech, Vicenta; Pastor, Rosa Ma; Sansalvador, Mireia; Isern, Gloria Trujillo; Navarro, Conrad Vilanova

    2008-01-01

    This work is the second part of a study regarding indicators and quality specifications for the non-analytical processes in laboratory medicine. Five primary care and five hospital laboratories agreed on the indicators for two strategic processes (quality planning and project development) and various support processes (client relationships, instrument and infrastructure maintenance, safety and risk prevention, purchases and storage, personnel training). In the majority of cases, the median values recorded over 1 year is considered to be the state-of-the-art in our setting and proposed as the quality specification for the indicators stated. Values have been stratified according to primary care and hospital laboratory for referred tests and group of personnel for training. In some cases, the specifications have been set equal to zero events, such as serious incidents in the infrastructure maintenance process and number of work accidents in the safety and risk prevention process. In light of this study, an effort is needed to optimize decisions regarding corrective actions and to move from a subjective individual criterion to systematic and comparative management. This preliminary study provides a comprehensive vision of a subject that could motivate further research and advances in the quality of laboratory services.

  19. Integrating Risk Management and Strategic Planning

    ERIC Educational Resources Information Center

    Achampong, Francis K.

    2010-01-01

    Strategic planning is critical to ensuring that institutions of higher education thoughtfully and systematically position themselves to accomplish their mission, vision, and strategic goals, particularly when these institutions face a myriad of risks that can negatively impact their continued financial viability and compromise their ability to…

  20. Mars Science Laboratory (MSL) : the US 2009 Mars rover mission

    NASA Technical Reports Server (NTRS)

    Palluconi, Frank; Tampari, Leslie; Steltzner, Adam; Umland, Jeff

    2003-01-01

    The Mars Science Laboratory mission is the 2009 United States Mars Exploration Program rover mission. The MSL Project expects to complete its pre-Phase A definition activity this fiscal year (FY2003), investigations in mid-March 2004, launch in 2009, arrive at Mars in 2010 during Northern hemisphere summer and then complete a full 687 day Mars year of surface exploration. MSL will assess the potential for habitability (past and present) of a carefully selected landing region on Mars by exploring for the chemical building blocks of life, and seeking to understand quantitatively the chemical and physical environment with which these components have interacted over the geologic history of the planet. Thus, MSL will advance substantially our understanding of the history of Mars and potentially, its capacity to sustain life.

  1. The Clementine Mission science return at the Moon and Geographos

    NASA Astrophysics Data System (ADS)

    Vorderbruegge, R. W.; Davies, M. E.; Horan, D. M.; Lucey, P. G.; Pieters, C. M.; McEwen, A. S.; Nozette, S.; Shoemaker, E. M.; Squyres, S. W.; Thomas, P. C.

    1993-03-01

    The Clementine Mission is being built and flown by the Naval Research Laboratory under the sponsorship of the Strategic Defense Initiative Organization of the United States Department of Defense in joint-cooperation with NASA, and will explore the Moon and the near-Earth asteroid (NEA) 1620 Geographos with lightweight sensors developed by the Lawrence Livermore National Laboratory. A NASA Science Team for this mission will be selected by way of a NRA in April 1993. The instrument suite includes imaging cameras that cover a spectral range from the near-ultraviolet to the mid-infrared, a laser ranger, and, potentially, a charged particle telescope. To be launched in early 1994, Clementine will be in lunar orbit from February through May 1994, at which time it will depart the Moon for a flyby of 1620 Geographos in August 1994. This mission represents an outstanding opportunity for scientists interested in the Moon and asteroids. It is anticipated that the data returned from this mission will permit: an assessment of global lunar crustal heterogeneity and a resolution of less than 1 km; an assessment of the lithologic heterogeneity of Geographos at a scale of 100 m or better; and an assessment of surface processes on Geographos on the order of 10 m. The basic mission of Clementine and some of the key scientific questions that will be addressed are described. Additional material on the Clementine mission, its data handling and processing, and its instrument suite is presented elsewhere.

  2. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoulas, Virginia; Cercy, Michael; Hall, Irin

    2013-07-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility wasmore » needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)« less

  3. Sandia National Laboratories: Strategic Partnership Projects, Non-Federal

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New Sandia Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements Alt text Potential

  4. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.« less

  5. Strategic Analysis Overview

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Earle, Kevin D.; Goodliff, Kandyce E.; Reeves, J. D.; Stromgren, Chel; Andraschko, Mark R.; Merrill, R. Gabe

    2008-01-01

    NASA s Constellation Program employs a strategic analysis methodology in providing an integrated analysis capability of Lunar exploration scenarios and to support strategic decision-making regarding those scenarios. The strategic analysis methodology integrates the assessment of the major contributors to strategic objective satisfaction performance, affordability, and risk and captures the linkages and feedbacks between all three components. Strategic analysis supports strategic decision making by senior management through comparable analysis of alternative strategies, provision of a consistent set of high level value metrics, and the enabling of cost-benefit analysis. The tools developed to implement the strategic analysis methodology are not element design and sizing tools. Rather, these models evaluate strategic performance using predefined elements, imported into a library from expert-driven design/sizing tools or expert analysis. Specific components of the strategic analysis tool set include scenario definition, requirements generation, mission manifesting, scenario lifecycle costing, crew time analysis, objective satisfaction benefit, risk analysis, and probabilistic evaluation. Results from all components of strategic analysis are evaluated a set of pre-defined figures of merit (FOMs). These FOMs capture the high-level strategic characteristics of all scenarios and facilitate direct comparison of options. The strategic analysis methodology that is described in this paper has previously been applied to the Space Shuttle and International Space Station Programs and is now being used to support the development of the baseline Constellation Program lunar architecture. This paper will present an overview of the strategic analysis methodology and will present sample results from the application of the strategic analysis methodology to the Constellation Program lunar architecture.

  6. Shield evaluation and performance testing at the USMB`s Strategic Structures Testing Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barczak, T.M.; Gearhart, D.F.

    1996-12-31

    Historically, shield performance testing is conducted by the support manufacturers at European facilities. The U.S. Bureau of Mines (USBM) has conducted extensive research in shield Mechanics and is now opening its Strategic Structures Testing (SST) Laboratory to the mining industry for shield performance testing. The SST Laboratory provides unique shield testing capabilities using the Mine Roof Simulator (MRS) load frame. The MRS provides realistic and cost-effective shield evaluation by combining both vertical and horizontal loading into a single load cycle; whereas, several load cycles would be required to obtain this loading in a static frame. In addition to these advantages,more » the USBM acts as an independent research organization to provide an unbiased assessment of shield performance. This paper describes the USBM`s shield testing program that is designed specifically to simulate in-service mining conditions using the unique the capabilities of the SST Laboratory.« less

  7. Cypress College Strategic Plan, 2000-2004.

    ERIC Educational Resources Information Center

    Cypress Coll., CA.

    This document outlines Cypress College's Strategic Plan to be used to guide decision-making and resource allocation for the years 2000 through 2004. The Strategic Plan begins with the Cypress College Vision Statement: building a college-wide learning community for student success. The Mission Statement states that Cypress College is committed to…

  8. Ground Contact Model for Mars Science Laboratory Mission Simulations

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  9. Ultra-long Duration Balloon Mission Concept Study: EXIST-LITE Hard X-ray Imaging Survey

    NASA Technical Reports Server (NTRS)

    2003-01-01

    We carried out a mission concept Study for an ultra-long duration balloon (ULDB) mission to conduct a high-sensitivity hard x-ray (approx. 20-600 keV) imaging sky survey. The EXIST-LITE concept has been developed, and critical detector technologies for realistic fabrication of very large area Cd-Zn-Te imaging detector arrays are now much better understood. A ULDB mission such as EXIST-LITE is now even more attractive as a testbed for the full Energetic X-ray Imaging Survey Telescope (EXIST) mission, recommended by the Decadal Survey, and now included in the NASA Roadmap and Strategic Plan as one of the 'Einstein Probes'. In this (overdue!) Final Report we provide a brief update for the science opportunities possible with a ULDB mission such as EXIST-LITE and relate these to upcoming missions (INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift) as well as the ultimate very high sensitivity sky survey mission EXIST. We then review the progress made over this investigation in Detector/Telescope design concept, Gondola and Mission design concept, and Data Handling/Analysis.

  10. Strategic planning for pain practice growth.

    PubMed

    Van Horn, L M

    2000-01-01

    Strategy formation involves understanding the environment and strengths and weaknesses of a practice to develop a game plan to achieve goals. It starts with the creation of a mission statement that defines a long-term vision of what the practice seeks to be and the markets it seeks to serve. Once the mission of the practice is understood, the target markets and competition must be analyzed prior to defining the goals. Once a strategic plan is developed, communication with all employees is crucial. Everything that the practice does should be in support of the strategic plan and in pursuit of obtaining the goals contained within. Once created, the strategic plan is the foundation of the practice and should only be changed for compelling reasons such as a competitive threat, environmental changes, or trends in purchasing behavior. Reviewing the strategic plan once a year, making periodic reappraisals and fine-tuning adjustments as the environment changes is crucial. This helps ensure that the practice avoids complacency and affirms that it is in the right business and achieving the desired results.

  11. Strategic Planning and Open Learning: Turkey Tails and Frogs.

    ERIC Educational Resources Information Center

    Pacey, Lucille

    This paper discusses the principles of strategic planning and how they can be applied in open and distance learning for greater student success. The model selected for discussion is the Applied Strategic Planning Model which proposes nine important steps for strategic planning: planning to plan, values audit, mission formulation, strategic…

  12. Phillips Laboratory small satellite initiatives

    NASA Astrophysics Data System (ADS)

    Lutey, Mark K.; Imler, Thomas A.; Davis, Robert J.

    1993-09-01

    The Phillips Laboratory Space Experiments Directorate in conjunction with the Air Force Space Test Program (AF STP), Defense Advanced Research and Projects Agency (DARPA) and Strategic Defense Initiative Organization (SDIO), are managing five small satellite program initiatives: Lightweight Exo-Atmospheric Projectile (LEAP) sponsored by SDIO, Miniature Sensor Technology Integration (MSTI) sponsored by SDIO, Technology for Autonomous Operational Survivability (TAOS) sponsored by Phillips Laboratory, TechSat sponsored by SDIO, and the Advanced Technology Standard Satellite Bus (ATSSB) sponsored by DARPA. Each of these spacecraft fulfills a unique set of program requirements. These program requirements range from a short-lived `one-of-a-kind' mission to the robust multi- mission role. Because of these diverging requirements, each program is driven to use a different design philosophy. But regardless of their design, there is the underlying fact that small satellites do not always equate to small missions. These spacecraft with their use of or ability to insert new technologies provide more capabilities and services for their respective payloads which allows the expansion of their mission role. These varying program efforts culminate in an ATSSB spacecraft bus approach that will support moderate size payloads, up to 500 pounds, in a large set of orbits while satisfying the `cheaper, faster, better' method of doing business. This technical paper provides an overview of each of the five spacecraft, focusing on the objectives, payoffs, technologies demonstrated, and program status.

  13. A strategic approach to public health workforce development and capacity building.

    PubMed

    Dean, Hazel D; Myles, Ranell L; Spears-Jones, Crystal; Bishop-Cline, Audriene; Fenton, Kevin A

    2014-11-01

    In February 2010, CDC's National Center for HIV/AIDS, Viral Hepatitis, Sexually Transmitted Disease (STD), and Tuberculosis (TB) Prevention (NCHHSTP) formally institutionalized workforce development and capacity building (WDCB) as one of six overarching goals in its 2010-2015 Strategic Plan. Annually, workforce team members finalize an action plan that lays the foundation for programs to be implemented for NCHHSTP's workforce that year. This paper describes selected WDCB programs implemented by NCHHSTP during the last 4 years in the three strategic goal areas: (1) attracting, recruiting, and retaining a diverse and sustainable workforce; (2) providing staff with development opportunities to ensure the effective and innovative delivery of NCHHSTP programs; and (3) continuously recognizing performance and achievements of staff and creating an atmosphere that promotes a healthy work-life balance. Programs have included but are not limited to an Ambassador Program for new hires, career development training for all staff, leadership and coaching for mid-level managers, and a Laboratory Workforce Development Initiative for laboratory scientists. Additionally, the paper discusses three overarching areas-employee communication, evaluation and continuous review to guide program development, and the implementation of key organizational and leadership structures to ensure accountability and continuity of programs. Since 2010, many lessons have been learned regarding strategic approaches to scaling up organization-wide public health workforce development and capacity building. Perhaps the most important is the value of ensuring the high-level strategic prioritization of this issue, demonstrating to staff and partners the importance of this imperative in achieving NCHHSTP's mission. Published by Elsevier Inc.

  14. Strategic Human Resource Planning in Academia

    ERIC Educational Resources Information Center

    Ulferts, Gregory; Wirtz, Patrick; Peterson, Evan

    2009-01-01

    A strategic plan guides a college in successfully meeting its mission. Based on the strategic plan, a college can develop a human resource plan that will allow it to make management decisions in the present to support the future direction of the college. The overall purpose of human resource management is to: (1) ensure the organization has…

  15. An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less

  16. Engineering Forum Strategic Plan

    EPA Pesticide Factsheets

    This Strategic Plan highlights the purpose, mission, goals, and objectives of the U.S. Environmental Protection Agency (EPA) Engineering Forum (EF). It sets forth the principles that guide the EF's decision-making, helps clarify the EF's priorities, and...

  17. Department of Defense Civilian Human Resources Strategic Plan

    DTIC Science & Technology

    2005-04-01

    the strategic plan. A balanced scorecard approach was used to build the strategic plan. The balanced scorecard is a strategic management tool that...in the balanced scorecard format. Details of how the balanced scorecard addresses the DoD Human Capital Initiative are outlined in the Office of...mission- ready civilian workforce 8 GOALS AND OBJECTIVES The balanced scorecard approach reflects the changes the Department is undergoing and

  18. Strategic Planning and the Marketing Process: Library Applications.

    ERIC Educational Resources Information Center

    Wood, Elizabeth J.

    1983-01-01

    Illustrates how basic principles of marketing and strategic market planning can be applied to libraries and discusses some concepts of strategic planning (organization mission, objectives and goals, growth strategy, program portfolio plan) and marketing (opportunity analysis, target market selection, marketing mix strategy, marketing systems…

  19. NCVER's Strategic Plan: 2017-20

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2017

    2017-01-01

    NCVER's latest strategic plan outlines the vision and mission, and 7 strategic objectives and interrelated actions, that will direct company activities for the next 3 years. It also details the values that underpin our culture, our commitment to quality and integrity, measures of success against the objectives, and principles of practice and…

  20. Background and applications of astrodynamics for space missions of the johns hopkins applied physics laboratory.

    PubMed

    Dunham, David W; Farquhar, Robert W

    2004-05-01

    This paper describes astrodynamic techniques applied to develop special orbital designs for past and future space missions of the Applied Physics Laboratory (APL) of Johns Hopkins University, and background about those techniques. The paper does not describe the long history of low Earth-orbiting missions at APL, but rather concentrates on the astrodynamically more interesting high-altitude and interplanetary missions that APL has undertaken in recent years. The authors developed many of their techniques in preparation for, and during, the Third International Sun-Earth Explorer (ISEE-3) halo orbit mission while they worked for the Goddard Space Flight Center (GSFC) of NASA during the 1970s and 1980s. Later missions owed much to the ground breaking work of the trajectory designs for ISEE-3 (later known as the International Cometary Explorer, or ICE). This experience, and other new ideas, were applied to the APL near Earth asteroid rendezvous (NEAR) and comet nucleus tour (CONTOUR) discovery missions, as well as to APL's future MESSENGER, STEREO, and New Horizons missions. These will be described in the paper.

  1. Centralia College Strategic Plan, January 1996. Preliminary Report.

    ERIC Educational Resources Information Center

    Centralia Coll., WA.

    Based on an analysis of the internal and external environment, this report describes the mission, values, and strategic priorities of Centralia College (CC), in Washington. Following introductory materials describing the role of strategic planning, a historical perspective of planning at the college is presented, reviewing previous strategic…

  2. Beyond Strategic Planning: Tailoring District Resources to Needs.

    ERIC Educational Resources Information Center

    Bollin, Thomas D.; Eadie, Douglas C.

    1991-01-01

    The strategic management process tries to create and maintain a dynamic balance between an organization's vision, mission, goals, strategies, and resources and its external environment. One Ohio school district's strategic management process succeeded resulting from a highly committed school board, a strong board-superintendent partnership, active…

  3. Strategic planning for organizational effectiveness during dynamic change.

    PubMed

    Carlson, Susan L; Harris, Melodee; McLeskey, Nanci

    2013-01-01

    The leadership of a professional association is charged with developing a strategic plan to operationalize the organization's goals, tactics, and progress. Within the context of its values and goals, a strategic plan steers the organization toward its mission. While there are a variety of models and approaches used in strategic planning, the National Gerontological Nursing Association (NGNA) has historically used goal-based methodology. This method is congruent with the organization's leadership preferences, consistent with the mission-driven culture of the organization, and collaborative in its approach. In 2009 the NGNA Board of Directors initiated a plan for the organization's transformation to a more dynamic and member-driven association through a deliberate process. This article addresses the process used to arrive at the 2010–2011 NGNA strategic initiatives, including a discussion of pertinent data revealed in the 2011 needs assessment survey and NGNA's future initiatives focused on networking, communication, and membership benefits. This process is relevant for all organizations and groups seeking improvement in serving their constituents.

  4. Laboratory Astrophysics: Enabling Scientific Discovery and Understanding

    NASA Technical Reports Server (NTRS)

    Kirby, K.

    2006-01-01

    NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.

  5. HEFCE Strategic Plan, 2001-06. Report.

    ERIC Educational Resources Information Center

    Higher Education Funding Council for England, Bristol.

    This document outlines the strategic plan of the Higher Education Funding Council for England (HEFCE) for the years 2001 through 2006. The mission of the HEFCE is to promote and fund high quality, cost-effective teaching and research, meeting the diverse needs of students, the economy, and society. To achieve this mission, the HEFCE intends to…

  6. Hospital strategic preparedness planning: the new imperative.

    PubMed

    Ginter, Peter M; Duncan, W Jack; Abdolrasulnia, Maziar

    2007-01-01

    Strategic preparedness planning is an important new imperative for many hospitals. Strategic preparedness planning goes beyond traditional product/market strategic planning by focusing on disaster prevention, containment, and response roles. Hospitals, because of their unique mission, size, complexity, the types of materials they handle, and the types of patients they encounter, are especially vulnerable to natural and human-initiated disasters. In addition, when disasters occur, hospitals must develop well-conceived first responder (receiver) strategies. This paper argues the case for strategic preparedness planning for hospitals and proposes a process for this relatively new and much needed type of planning.

  7. Venus entry probe technology reference mission

    NASA Astrophysics Data System (ADS)

    van den Berg, M. L.; Falkner, P.; Atzei, A. C.; Phipps, A.; Mieremet, A.; Kraft, S.; Peacock, A.

    The Venus Entry Probe is one of ESA's Technology Reference Missions (TRM). TRMs are model science-driven missions that are, although not part of the ESA science programme, able to provide focus to future technology requirements. This is accomplished through the study of several technologically demanding and scientifically meaningful mission concepts, which are strategically chosen to address diverse technological issues. The TRMs complement ESA's current mission specific development programme and allow the ESA Science Directorate to strategically plan the development of technologies that will enable potential future scientific missions. Key technological objectives for future planetary exploration include the use of small orbiters and in-situ probes with highly miniaturized and highly integrated payload suites. The low resource, and therefore low cost, spacecraft allow for a phased strategic approach to planetary exploration. The aim of the Venus Entry Probe TRM (VEP) is to study approaches for low cost in-situ exploration of the Venusian atmosphere. The mission profile consists of two minisats. The first satellite enters low Venus orbit. This satellite contains a highly integrated remote sensing payload suite primarily dedicated to support the in-situ atmospheric measurements of the aerobot. The second minisat enters deep elliptical orbit, deploys the aerobot, and subsequently operates as a data relay, data processing and overall resource allocation satellite. The micro-aerobot consists of a long-duration balloon that will analyze the Venusian middle cloud layer at an altitude of ˜ 55 km, where the environment is relatively benign (T = 20 C and p = 0.45 bars). The balloon will deploy a swarm of active ballast probes, which determine vertical profiles of selected properties of the lower atmosphere. In this presentation, the mission objectives and profile of the Venus Entry Probe TRM will be given as well as the key technological challenges.

  8. A Vision for the Future: Site-Based Strategic Planning.

    ERIC Educational Resources Information Center

    Herman, Jerry J.

    1989-01-01

    Presents a model to help principals with strategic planning. Success hinges on involving stakeholders, scanning for relevant data, identifying critical success factors, developing vision and mission statements, analyzing the site manager's supports and constraints, creating strategic goals and objectives, developing action plans, allocating…

  9. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  10. A strategic informatics approach to autoverification.

    PubMed

    Jones, Jay B

    2013-03-01

    Autoverification is rapidly expanding with increased functionality provided by middleware tools. It is imperative that autoverification of laboratory test results be viewed as a process evolving into a broader, more sophisticated form of decision support, which will require strategic planning to form a foundational tool set for the laboratory. One must strategically plan to expand autoverification in the future to include a vision of instrument-generated order interfaces, reflexive testing, and interoperability with other information systems. It is hoped that the observations, examples, and opinions expressed in this article will stimulate such short-term and long-term strategic planning. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Successful strategic planning: creating clarity.

    PubMed

    Adams, Jim

    2005-01-01

    Most healthcare organizations have a strategic plan of some kind. Many of these organizations also have difficulty translating their strategic plan into specific actions that result in successful performance. In the worst cases, this can jeopardize the viability of the organization. The trouble lies in a lack of clarity in what a strategic plan is and what it should do for the organization. This article will answer key questions such as: What is strategy and how does it fit with other commonly used constructs such as mission, vision, and goals? What criteria can be used to determine if something is truly strategic to the organization? What are the phases of the strategy lifecycle? How do approaches for dealing with uncertainty, such as scenario planning, fit with organizational strategic planning? How can a meaningful IT strategy be developed if the organization strategy is lacking? What principles should guide a good IT planning process?

  12. Relay Support for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D. Jr,; Bell, David J.; Gladden, Roy E.; Ilott, Peter A.; Jedrey, Thomas C.; Johnston, M. Daniel; Maxwell, Jennifer L.; Mendoza, Ricardo; McSmith, Gaylon W.; Potts, Christopher L.; hide

    2013-01-01

    The Mars Science Laboratory (MSL) mission landed the Curiosity Rover on the surface of Mars on August 6, 2012, beginning a one-Martian-year primary science mission. An international network of Mars relay orbiters, including NASA's 2001 Mars Odyssey Orbiter (ODY) and Mars Reconnaissance Orbiter (MRO), and ESA's Mars Express Orbiter (MEX), were positioned to provide critical event coverage of MSL's Entry, Descent, and Landing (EDL). The EDL communication plan took advantage of unique and complementary capabilities of each orbiter to provide robust information capture during this critical event while also providing low-latency information during the landing. Once on the surface, ODY and MRO have provided effectively all of Curiosity's data return from the Martian surface. The link from Curiosity to MRO incorporates a number of new features enabled by the Electra and Electra-Lite software-defined radios on MRO and Curiosity, respectively. Specifically, the Curiosity-MRO link has for the first time on Mars relay links utilized frequency-agile operations, data rates up to 2.048 Mb/s, suppressed carrier modulation, and a new Adaptive Data Rate algorithm in which the return link data rate is optimally varied throughout the relay pass based on the actual observed link channel characteristics. In addition to the baseline surface relay support by ODY and MRO, the MEX relay service has been verified in several successful surface relay passes, and MEX now stands ready to provide backup relay support should NASA's orbiters become unavailable for some period of time.

  13. NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Plan summarizes the Agency's vision, mission, and values. Specific goals are listed for each externally focused Enterprise: Mission to Planet Earth, Aeronautics, Human Exploration and Development of Space, Space Science, and Space Technology. These Enterprises satisfy the needs of customers external to NASA. The Strategic Functions (Space Communications, Human Resources, and Physical Resources) are necessary in order to meet the goals of the Enterprises. The goals of these Functions are also presented. All goals must be met while adhering to the discussed values and operating principles of NASA. A final section outlines the implementing strategy.

  14. User-Focused Strategic Services for Technological University Libraries.

    ERIC Educational Resources Information Center

    Townley, Charles T.

    This paper describes the New Mexico State University (NMSU) Library's strategic plan to develop its services amid an atmosphere of change. A summary of the following components of the strategic plan is given: vision; mission; values; and goals. The revised organizational functions are then illustrated, as well as the role of the selector-liaison…

  15. Small planetary mission plan: Report to Congress

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document outlines NASA's small planetary projects plan within the context of overall agency planning. In particular, this plan is consistent with Vision 21: The NASA Strategic Plan, and the Office of Space Science and Applications (OSSA) Strategic Plan. Small planetary projects address focused scientific objectives using a limited number of mature instruments, and are designed to require little or no new technology development. Small missions can be implemented by university and industry partnerships in coordination with a NASA Center to use the unique services the agency provides. The timeframe for small missions is consistent with academic degree programs, which makes them an excellent training ground for graduate students and post-doctoral candidates. Because small missions can be conducted relatively quickly and inexpensively, they provide greater opportunity for increased access to space. In addition, small missions contribute to sustaining a vital scientific community by increasing the available opportunities for direct investigator involvement from just a few projects in a career to many.

  16. Evaluation of fault-tolerant parallel-processor architectures over long space missions

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1989-01-01

    The impact of a five year space mission environment on fault-tolerant parallel processor architectures is examined. The target application is a Strategic Defense Initiative (SDI) satellite requiring 256 parallel processors to provide the computation throughput. The reliability requirements are that the system still be operational after five years with .99 probability and that the probability of system failure during one-half hour of full operation be less than 10(-7). The fault tolerance features an architecture must possess to meet these reliability requirements are presented, many potential architectures are briefly evaluated, and one candidate architecture, the Charles Stark Draper Laboratory's Fault-Tolerant Parallel Processor (FTPP) is evaluated in detail. A methodology for designing a preliminary system configuration to meet the reliability and performance requirements of the mission is then presented and demonstrated by designing an FTPP configuration.

  17. National Security Technology Incubation Strategic Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This strategic plan contains information on the vision, mission, business and technology environment, goals, objectives, and incubation process of the National Security Technology Incubation Program (NSTI) at Arrowhead Center. The development of the NSTI is a key goal of the National Security Preparedness Project (NSPP). Objectives to achieve this goal include developing incubator plans (strategic, business, action, and operations), creating an incubator environment, creating a support and mentor network for companies in the incubator program, attracting security technology businesses to the region, encouraging existing business to expand, initiating business start-ups, evaluating products and processes of the incubator program, and achievingmore » sustainability of the incubator program. With the events of 9/11, the global community faces ever increasing and emerging threats from hostile groups determined to rule by terror. According to the National Nuclear Security Administration (NNSA) Strategic Plan, the United States must be able to quickly respond and adapt to unanticipated situations as they relate to protection of our homeland and national security. Technology plays a key role in a strong national security position, and the private business community, along with the national laboratories, academia, defense and homeland security organizations, provide this technology. Fostering innovative ideas, translated into relevant technologies answering the needs of NNSA, is the purpose of the NSTI. Arrowhead Center of New Mexico State University is the operator and manager of the NSTI. To develop the NSTI, Arrowhead Center must meet the planning, development, execution, evaluation, and sustainability activities for the program and identify and incubate new technologies to assist the NNSA in meeting its mission and goals. Technology alone does not give a competitive advantage to the country, but the creativity and speed with which it is employed does. For a company

  18. A Strategic Approach to Medical Care for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Canga, Michael A.; Shah, Ronak V.; Mindock, Jennifer A.; Antonsen, Erik L.

    2016-01-01

    Exploration missions will present significant new challenges to crew health, including effects of variable gravity environments, limited communication with Earth-based personnel for diagnosis and consultation for medical events, limited resupply, and limited ability for crew return. Providing health care capabilities for exploration class missions will require system trades be performed to identify a minimum set of requirements and crosscutting capabilities, which can be used in design of exploration medical systems. Medical data, information, and knowledge collected during current space missions must be catalogued and put in formats that facilitate querying and analysis. These data are used to inform the medical research and development program through analysis of risk trade studies between medical care capabilities and system constraints such as mass, power, volume, and training. Medical capability as a quantifiable variable is proposed as a surrogate risk metric and explored for trade space analysis that can improve communication between the medical and engineering approaches to mission design. The resulting medical system design approach selected will inform NASA mission architecture, vehicle, and subsystem design for the next generation of spacecraft.

  19. Critical role of developing national strategic plans as a guide to strengthen laboratory health systems in resource-poor settings.

    PubMed

    Nkengasong, John N; Mesele, Tsehaynesh; Orloff, Sherry; Kebede, Yenew; Fonjungo, Peter N; Timperi, Ralph; Birx, Deborah

    2009-06-01

    Medical laboratory services are an essential, yet often neglected, component of health systems in developing countries. Their central role in public health, disease control and surveillance, and patient management is often poorly recognized by governments and donors. However, medical laboratory services in developing countries can be strengthened by leveraging funding from other sources of HIV/AIDS prevention, care, surveillance, and treatment programs. Strengthening these services will require coordinated efforts by national governments and partners and can be achieved by establishing and implementing national laboratory strategic plans and policies that integrate laboratory systems to combat major infectious diseases. These plans should take into account policy, legal, and regulatory frameworks; the administrative and technical management structure of the laboratories; human resources and retention strategies; laboratory quality management systems; monitoring and evaluation systems; procurement and maintenance of equipment; and laboratory infrastructure enhancement. Several countries have developed or are in the process of developing their laboratory plans, and others, such as Ethiopia, have implemented and evaluated their plan.

  20. Integrating multiple publics into the strategic plan. The best plans can be derailed without comprehensive up-front research.

    PubMed

    Peltier, J W; Kleimenhagen, A K; Naidu, G M

    1996-01-01

    The mission of a health care organization represents its vision for the future. The authors present an approach used to develop an organizational mission for a large multispecialty physician clinic. In implementing the strategic planning process, research objectives must be clearly stated that identify in advance how the data will be used. Failure to integrate strategic data from all relevant publics will likely result in a mission statement that misses the significant interests of one or more stakeholders and reduces the effectiveness of the strategic planning process. Although costly, comprehensive research can uncover some surprising differences in perception that, if ignored, might complete defeat strategic planning efforts.

  1. Joint Chiefs of Staff > Directorates > J5 | Strategic Plans and Policy

    Science.gov Websites

    Quadrilateral Logistics Forum J5 | Strategic Plans and Policy J6 | C4 & Cyber J7 | Joint Force Development J8 | Force Structure, Resources & Assessment Contact J5 Strategic Plans and Policy Home : Directorates : J5 | Strategic Plans and Policy Mission The Joint Staff J5 proposes strategies, plans, and

  2. The State University System 2025 System Strategic Plan. Revised

    ERIC Educational Resources Information Center

    Board of Governors, State University System of Florida, 2014

    2014-01-01

    The State University System 2025 Strategic Plan strengthens the Board of Governors' commitment to achieving excellence in the tripartite mission of its state universities--teaching, research, and public service--for the benefit of Florida's citizens, their communities, and the state economy. The Strategic Plan is a living document that helps align…

  3. Multimission Telemetry Visualization (MTV) system: A mission applications project from JPL's Multimedia Communications Laboratory

    NASA Technical Reports Server (NTRS)

    Koeberlein, Ernest, III; Pender, Shaw Exum

    1994-01-01

    This paper describes the Multimission Telemetry Visualization (MTV) data acquisition/distribution system. MTV was developed by JPL's Multimedia Communications Laboratory (MCL) and designed to process and display digital, real-time, science and engineering data from JPL's Mission Control Center. The MTV system can be accessed using UNIX workstations and PC's over common datacom and telecom networks from worldwide locations. It is designed to lower data distribution costs while increasing data analysis functionality by integrating low-cost, off-the-shelf desktop hardware and software. MTV is expected to significantly lower the cost of real-time data display, processing, distribution, and allow for greater spacecraft safety and mission data access.

  4. Scientific Computing Strategic Plan for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Eric Todd

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less

  5. Kentucky's highway incident management strategic plan.

    DOT National Transportation Integrated Search

    2005-06-01

    Kentucky s Highway Incident Management Strategic Plan consists of a mission statement, 4 goals, 16 objectives, and 49 action strategies. The action strategies are arranged by priority and recommended time frame for implementation. When implemented...

  6. The Solar Probe mission - Mission design concepts and requirements

    NASA Technical Reports Server (NTRS)

    Ayon, Juan A.

    1992-01-01

    The Solar Probe concept as studied by the Jet Propulsion Laboratory represents the first mission to combine out-of-the-ecliptic scientific coverage with multiple, close solar encounters (at 4 solar radii). The scientific objectives of the mission have driven the investigation and analysis of several mission design concepts, all optimized to meet the science/mission requirements. This paper reviews those mission design concepts developed, the science objectives that drive the mission design, and the principle mission requirements associated with these various concepts.

  7. Laboratory Directed Research and Development LDRD-FY-2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  8. Endocrine Laboratory Results Apollo Missions 14 and 15

    NASA Technical Reports Server (NTRS)

    Leach, C. S.

    1972-01-01

    Endocrine/metabolic responses to space flight have been measured on the crewmen of Apollo missions 14 and 15. There were significant biochemical changes in the crewmen of both missions immediately postflight. However, the Apollo 15 mission results differed from Apollo 14 and preflight shown by a normal to increased urine volume with slight increases in antidiuretic hormone. Although Apollo 15 was the first mission in which the exchangeable potassium measurement was made (a decrease), results from other missions were indicative of similar conclusions.

  9. FY16-20 Strategic Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwell, Amber Suzanne

    2015-07-01

    Welcome to our FY16–FY20 Strategic Plan, which both refects our continued dedication to the work we do and reinforces the importance of the integrated Laboratories’ strategic framework to our future. This document is the result of the leadership team’s journey over the past few years in response to the needs of our nation. In an external environment that continues to change, sometimes in unexpected ways, it is critical that our mission areas and our foundation become increasingly synergistic, forming a whole whose parts are interdependent.

  10. A Handbook for Strategic Planning

    DTIC Science & Technology

    1994-01-01

    sale; its / 94 dig Is Ulc and Uindo Al. 10oherty, *q** 3 About the TQL Office I ie mission of the Total Quality Leadership 0 QL) Office, Office of the...Strategic Planning DeieL. Wells u.1da M4. Doherty. Ph.D. NI.gpOpmwHG CRA141ZAM01 NAME() AN4D A060111(li; L. PINORUMU4OGNIZAMSN Total Qu~ality Leadership ...Total Quality Leadership , 48 mtrategic direction, strategic intent, organizational planning, 11tinaiCMc MIisiing.mysteusth nking, gap analysis 17 1CUPMtlI

  11. External Strategic Planning Conference.

    ERIC Educational Resources Information Center

    Los Angeles Community Coll. District, CA. Office of Research and Planning.

    In response to a community reputation that has grown increasingly negative, the Los Angeles Community College District (LACCD) devised a strategic plan in 1998 to improve its programs and services and assure the educational success of its students. The planning process involved several steps: (1) revisiting the district mission statement; (2)…

  12. Proposal and Justification for Establishing Strategic Technology Information Analysis Center.

    DTIC Science & Technology

    1981-12-04

    decision to establish a Strategic Technology Information Analysis Center (STIAC). This Center would provide a mission-oriented focus for Strategic Technology...SECTION 1. INTRODUCTION This proposal provides the Defense Logistic Agency with the following critical data to assist them in making the decision on...time consuming for the strategic BID community to acquire. 1.2 EVOLVING NEED FOR STIAC The need for a STIAC has been surfacing along multiple paths

  13. A Strategic Approach to Medical Care for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Antonsen, E.; Canga, M.

    2016-01-01

    Exploration missions will present significant new challenges to crew health, including effects of variable gravity environments, limited communication with Earth-based personnel for diagnosis and consultation for medical events, limited resupply, and limited ability for crew return. Providing health care capabilities for exploration class missions will require system trades be performed to identify a minimum set of requirements and crosscutting capabilities which can be used in design of exploration medical systems. Current and future medical data, information, and knowledge must be cataloged and put in formats that facilitate querying and analysis. These data may then be used to inform the medical research and development program through analysis of risk trade studies between medical care capabilities and system constraints such as mass, power, volume, and training. These studies will be used to define a Medical Concept of Operations to facilitate stakeholder discussions on expected medical capability for exploration missions. Medical Capability as a quantifiable variable is proposed as a surrogate risk metric and explored for trade space analysis that can improve communication between the medical and engineering approaches to mission design. The resulting medical system approach selected will inform NASA mission architecture, vehicle, and subsystem design for the next generation of spacecraft.

  14. Multiple Roles: The Conflicted Realities of Community College Mission Statements

    ERIC Educational Resources Information Center

    Mrozinski, Mark D.

    2010-01-01

    Questions of efficacy have always plagued the use of mission statement as a strategic planning tool. In most planning models, the mission statement serves to clarify goals and guide the formation of strategies. However, little empirical evidence exists validating that mission statements actually improve the performance of organizations, even…

  15. Coordinating Council. Third Meeting: STI Strategic Plans

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA Scientific and Technical Information Program Coordinating Council conducts meetings after which both modified transcripts of presentations and interactive discussions are published. The theme for the November 1990 meeting was 'STI Strategic Plans'. This theme was the focus of recorded discussions by members of the council. The last section of the report presents visuals on strategic goals for the STI Information Division. NASA's vision is to be at the forefront of advancements in aeronautics, space science, and exploration. More specific NASA goals are listed followed by the STI Division mission statement. The Strategic Goals for the STI Division are outlined as follows: Implement effective management strategies, Accomplish rapid deployment of the NASA STI Network, Seek out and develop cooperative partnerships, Establish the STI Program as an integral part of the NASA R&D effort, Enhance the quality of our products and services through a focus on the customer, Build an attitude of quality throughout the enterprise, Expand the existing participant community, Assert a NASA leadership role for STI policy, and Develop a program for information science R&D. The STI division mission statement appears on the document cover as follows 'The mission of the NASA STI Program is to advance aerospace knowledge, contribute to U.S. competitiveness, and become an integral partner in NASA R&D programs to support NASA goals.'

  16. Strategic Implications of Human Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2011-01-01

    The current United States Space Policy [1] as articulated by the White House and later confirmed by the Congress [2] calls for [t]he extension of the human presence from low-Earth orbit to other regions of space beyond low-Earth orbit will enable missions to the surface of the Moon and missions to deep space destinations such as near-Earth asteroids and Mars. Human exploration of the Moon and Mars has been the focus of numerous exhaustive studies and planning, but missions to Near-Earth Asteroids (NEAs) has, by comparison, garnered relatively little attention in terms of mission and systems planning. This paper examines the strategic implications of human exploration of NEAs and how they can fit into the overall exploration strategy. This paper specifically addresses how accessible NEAs are in terms of mission duration, technologies required, and overall architecture construct. Example mission architectures utilizing different propulsion technologies such as chemical, nuclear thermal, and solar electric propulsion were formulated to determine resulting figures of merit including number of NEAs accessible, time of flight, mission mass, number of departure windows, and length of the launch windows. These data, in conjunction with what we currently know about these potential exploration targets (or need to know in the future), provide key insights necessary for future mission and strategic planning.

  17. The Europa Clipper Mission Concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  18. Rapid Cost Assessment of Space Mission Concepts Through Application of Complexity-Based Cost Indices

    NASA Technical Reports Server (NTRS)

    Peterson, Craig E.; Cutts, James; Balint, Tibor; Hall, James B.

    2008-01-01

    This slide presentation reviews the development of a rapid cost assessment models for evaluation of exploration missions through the application of complexity based cost indices. In Fall of 2004, NASA began developing 13 documents, known as "strategic roadmaps," intended to outline a strategy for space exploration over the next 30 years. The Third Strategic Roadmap, The Strategic Roadmap for Solar System Exploration, focused on strategy for robotic exploration of the Solar System. Development of the Strategic Roadmap for Solar System Exploration led to the investigation of a large variety of missions. However, the necessity of planning around scientific inquiry and budgetary constraints made it necessary for the roadmap development team to evaluate potential missions not only for scientific return but also cost. Performing detailed cost studies for each of the large number of missions was impractical given the time constraints involved and lack of detailed mission studies; so a method of rapid cost assessment was developed by us to allow preliminary analysis. It has been noted that there is a strong correlation between complexity and cost and schedule of planetary missions. While these correlations were made after missions had been built and flown (successfully or otherwise), it seemed likely that a similar approach could provide at least some relative cost ranking. Cost estimation relationships (CERs) have been developed based on subsystem design choices. These CERs required more detailed information than available, forcing the team to adopt a more high level approach. Costing by analogy has been developed for small satellites, however, planetary exploration missions provide such varying spacecraft requirements that there is a lack of adequately comparable missions that can be used for analogy.

  19. Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin F.; McGrew, Lynn Craig

    2013-01-01

    The 2011 Mars Science Laboratory was the first Mars guided entry which safely delivered the rover to a landing within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. The guided entry performed as designed without any significant exceptions. The Curiosity rover was delivered about 2.2 km from the expected touchdown. This miss distance is attributed to little time to correct the downrange drift from the final bank reversal and a suspected tailwind during heading alignment. The successful guided entry for the Mars Science Laboratory lays the foundation for future Mars missions to improve upon.

  20. Education and Strategic Research Collaborations

    Science.gov Websites

    Los Alamos National Laboratory National Security Education Center Image Search Site submit LaboratoryNational Security Education Center Menu Program Offices Energy Security Council New Mexico Consortium Geophysics, Planetary Physics, Signatures Events Collaborations for education and strategic research, student

  1. Strategic establishment of an International Pharmacology Specialty Laboratory in a resource-limited setting.

    PubMed

    Mtisi, Takudzwa J; Maponga, Charles; Monera-Penduka, Tsitsi G; Mudzviti, Tinashe; Chagwena, Dexter; Makita-Chingombe, Faithful; DiFranchesco, Robin; Morse, Gene D

    2018-01-01

    A growing number of drug development studies that include pharmacokinetic evaluations are conducted in regions lacking a specialised pharmacology laboratory. This necessitated the development of an International Pharmacology Specialty Laboratory (IPSL) in Zimbabwe. The aim of this article is to describe the development of an IPSL in Zimbabwe. The IPSL was developed collaboratively by the University of Zimbabwe and the University at Buffalo Center for Integrated Global Biomedical Sciences. Key stages included infrastructure development, establishment of quality management systems and collaborative mentorship in clinical pharmacology study design and chromatographic assay development and validation. Two high performance liquid chromatography instruments were donated by an instrument manufacturer and a contract research organisation. Laboratory space was acquired through association with the Zimbabwe national drug regulatory authority. Operational policies, standard operating procedures and a document control system were established. Scientists and technicians were trained in aspects relevant to IPSL operations. A high-performance liquid chromatography method for nevirapine was developed with the guidance of the Clinical Pharmacology Quality Assurance programme and approved by the assay method review programme. The University of Zimbabwe IPSL is engaged with the United States National Institute of Allergy and Infectious Diseases Division of AIDS research networks and is poised to begin drug assays and pharmacokinetic analyses. An IPSL has been successfully established in a resource-limited setting through the efforts of an external partnership providing technical guidance and motivated internal faculty and staff. Strategic partnerships were beneficial in navigating challenges leading to laboratory development and training new investigators. The IPSL is now engaged in clinical pharmacology research.

  2. Health care competition, strategic mission, and patient satisfaction: research model and propositions

    PubMed Central

    Rivers, Patrick A.; Glover, Saundra H.

    2010-01-01

    Purpose In all industries, competition among businesses has long been encouraged as a mechanism to increase value for patients. In other words, competition ensures the provision of better products and services to satisfy the needs of customers This paper aims to develop a model that can be used to empirically investigate a number of complex issues and relationships associated with competition in the health care industry. Design/methodology/approach A literature review was conducted. A total of 50 items of literature related to the subject were reviewed.. Various perspectives of competition, the nature of service quality, health system costs, and patient satisfaction in health care are examined Findings A model of the relationship among these variables is developed. The model depicts patient satisfaction as an outcome measure directly dependent on competition. Quality of care and health care systems costs, while also directly dependent on the strategic mission and goals, are considered as determinants of customer satisfaction as well. The model is discussed in the light of propositions for empirical research. Practical implications Empirical studies based on the model proposed in this paper should help identify areas with significant impact on patient satisfaction while maintaining high quality of service at lower costs in a competitive environment. Originality/value The authors develop a research model which included propositions to examine the complex issues of competition in the health care industry. PMID:19579575

  3. Health care competition, strategic mission, and patient satisfaction: research model and propositions.

    PubMed

    Rivers, Patrick A; Glover, Saundra H

    2008-01-01

    In all industries, competition among businesses has long been encouraged as a mechanism to increase value for patients. In other words, competition ensures the provision of better products and services to satisfy the needs of customers This paper aims to develop a model that can be used to empirically investigate a number of complex issues and relationships associated with competition in the health care industry. A literature review was conducted. A total of 50 items of literature related to the subject were reviewed. Various perspectives of competition, the nature of service quality, health system costs, and patient satisfaction in health care are examined. A model of the relationship among these variables is developed. The model depicts patient satisfaction as an outcome measure directly dependent on competition. Quality of care and health care systems costs, while also directly dependent on the strategic mission and goals, are considered as determinants of customer satisfaction as well. The model is discussed in the light of propositions for empirical research. Empirical studies based on the model proposed in this paper should help identify areas with significant impact on patient satisfaction while maintaining high quality of service at lower costs in a competitive environment. The authors develop a research model which included propositions to examine the complex issues of competition in the health care industry.

  4. Laboratory Astrophysics White Paper: Summary of Laboratory Astrophysics Needs

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Laboratory Astrophysics Workshop (NASA LAW) met at NASA Ames Research Center from 1-3 May 2002 to assess the role that laboratory astrophysics plays in the optimization of NASA missions, both at the science conception level and at the science return level. Space missions provide understanding of fundamental questions regarding the origin and evolution of galaxies, stars, and planetary systems. In all of these areas the interpretation of results from NASA's space missions relies crucially upon data obtained from the laboratory. We stress that Laboratory Astrophysics is important not only in the interpretation of data, but also in the design and planning of future missions. We recognize a symbiosis between missions to explore the universe and the underlying basic data needed to interpret the data from those missions. In the following we provide a summary of the consensus results from our Workshop, starting with general programmatic findings and followed by a list of more specific scientific areas that need attention. We stress that this is a 'living document' and that these lists are subject to change as new missions or new areas of research rise to the fore.

  5. Strategic Planning of Technology Transfer.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    Using the Ohio Technology Transfer Organization (OTTO) as its primary example, this paper offers a strategic planning perspective on technology transfer and human resources development. First, a brief overview is provided of the maturation of mission priorities and planning processes in higher education in the United States, followed by a…

  6. Commerce Laboratory: Mission analysis payload integration study

    NASA Technical Reports Server (NTRS)

    Bannister, T. C.

    1984-01-01

    A mission model which will accommodate commercial users and provide a basic data base for further mission planning is reported. The data bases to be developed are: (1) user requirements; (2) apparatus capabilities and availabilities; and (3) carrier capabilities. These data bases are synthesized in a trades and analysis phase along with the STS flight apparatus, and optimum missions will be identified. The completed work is reported. The user requirements data base was expanded to identify within the six scientific disciplines the areas of investigation, investigation categories and status, potential commercial application, interested parties, process, and experiment requirements. The scope of the apparatus data base was expanded to indicate apparatus status as to whether it is ground or flight equipment and, within both categories, whether the apparatus is: (1) existing, (2) under development, (3) planned, or (4) needed. Applications for the apparatus are listed. The methodology is revised in the areas of trades and analysis and mission planning. The carrier capabilities data base was updated and completed.

  7. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, left, Cassini project scientist at JPL, Linda Spilker, second from left, director of NASA's Jet Propulsion Laboratory, Michael Watkins, center, director of NASA's Planetary Science Division, Jim Green, second from right, and director of the interplanetary network directorate at NASA's Jet Propulsion Laboratory, Keyur Patel, left, are seen in mission control, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Duane Roth, of Cassini's navigation team, left, speaks with director of NASA's Jet Propulsion Laboratory, Michael Watkins, right, after Cassini's mission was declared over, Friday, Sept. 15, 2017 in mission control at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and themore » nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.« less

  10. Nulling interferometry for the darwin mission: laboratory demonstration experiment

    NASA Astrophysics Data System (ADS)

    Ollivier, Marc; Léger, Alain; Sekulic, Predrag; Labèque, Alain; Michel, Guy

    2017-11-01

    The DARWIN mission is a project of the European Space Agency that should allow around 2012 the search for extrasolar planets and a spectral analysis of their potential atmosphere in order to evidence gases and particularly tracers of life. The principle of the instrument is based on the Bracewell nulling interferometer. It allows high angular resolution and high dynamic range. However, this concept, proposed more than 20 years ago, has never been experimentally demonstrated in the thermal infrared with high levels of extinction. We present here a laboratory monochromatic experiment dedicated to this goal. A theoretical and numerical approach of the question highlights a strong difficulty: the need for very clean and homogeneous wavefronts, in terms of intensity, phase and polarisation distribution. A classical interferometric approach appears to be insufficient to reach our goals. We have shown theoretically then numerically that this difficulty can be surpassed if we perform an optical filtering of the interfering beams. This technique allows us to decrease strongly the optical requirements and to view very high interferometric contrast measurements with commercial optical pieces. We present here a laboratory interferometer working at 10,6 microns, and implementing several techniques of optical filtering (pinholes and single-mode waveguides), its realisation, and its first promising results. We particularly present measurements that exhibit stable visibility levels better than 99,9% that is to say extinction levels better than 1000.

  11. Entry Guidance for the 2011 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin F.; Craig, Lynn E.

    2011-01-01

    The 2011 Mars Science Laboratory will be the first Mars mission to attempt a guided entry to safely deliver the rover to a touchdown ellipse of 25 km x 20 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented.

  12. Office of Strategic Programs FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Office of Strategic Programs (OSP) increases the overall effectiveness and impact of all EERE activities through key cross-cutting initiatives and strategic analysis, communications, and technology-to-market activities. OSP’s work directly contributes to EERE’s mission, facilitates and amplifies the successes of EERE technology offices, and soundly and consistently informs the Assistant Secretary’s decisions.

  13. Preparing for Humans at Mars, MPPG Updates to Strategic Knowledge Gaps and Collaboration with Science Missions

    NASA Technical Reports Server (NTRS)

    Baker, John; Wargo, Michael J.; Beaty, David

    2013-01-01

    The Mars Program Planning Group (MPPG) was an agency wide effort, chartered in March 2012 by the NASA Associate Administrator for Science, in collaboration with NASA's Associate Administrator for Human Exploration and Operations, the Chief Scientist, and the Chief Technologist. NASA tasked the MPPG to develop foundations for a program-level architecture for robotic exploration of Mars that is consistent with the President's challenge of sending humans to the Mars system in the decade of the 2030s and responsive to the primary scientific goals of the 2011 NRC Decadal Survey for Planetary Science. The Mars Exploration Program Analysis Group (MEPAG) also sponsored a Precursor measurement Strategy Analysis Group (P-SAG) to revisit prior assessments of required precursor measurements for the human exploration of Mars. This paper will discuss the key results of the MPPG and P-SAG efforts to update and refine our understanding of the Strategic Knowledge Gaps (SKGs) required to successfully conduct human Mars missions.

  14. Assessing the College Mission: An Excellent Starting Point for Institutional Effectiveness.

    ERIC Educational Resources Information Center

    Quinley, John W.

    A community college's mission statement is a beacon that provides strategic direction for the institution and the conceptual framework for the entire organization. The principal tasks in drafting a new mission statement include matching the current mission to actual institutional functioning, and judging whether the statement is adequate to lead…

  15. Investigations Using Laboratory Testbeds to Interpret Flight Instrument Datasets from Mars Robotic Missions

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Sutter, B.; Archer, P. D., Jr.; Achilles, C. N.

    2012-01-01

    The Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center (JSC) has laboratory instrumentation that mimic the capabilities of corresponding flight instruments to enable interpretation of datasets returned from Mars robotic missions. The lab instruments have been and continue to be applied to datasets for the Moessbauer Spectrometer (MB) on the Mars Exploration Rovers (MER), the Thermal & Evolved Gas Analyzer (TEGA) on the Mars Phoenix Scout, the CRISM instrument on the Mars Reconnaissance Orbiter Missions and will be applied to datasets for the Sample Analysis at Mars (SAM), Chemistry and Mineralogy (CheMin) and Chemistry & Camera (ChemCam) instruments onboard the Mars Science Laboratory (MSL). The laboratory instruments can analyze analog samples at costs that are substantially lower than engineering models of flight instruments, but their success to enable interpretation of flight data depends on how closely their capabilities mimic those of the flight instrument. The JSC lab MB instruments are equivalent to the MER instruments except without flight qualified components and no reference channel Co-57 source. Data from analog samples were critical for identification of Mg-Fe carbonate at Gusev crater. Fiber-optic VNIR spectrometers are used to obtain CRISM-like spectral data over the range 350-2500 nm, and data for Fephyllosilicates show irreversible behavior in the electronic transition region upon dessication. The MB and VNIR instruments can be operated within chambers where, for example, the absolute H2O concentration can be measured and controlled. Phoenix's TEGA consisted of a calorimeter coupled to a mass spectrometer (MS). The JSC laboratory testbed instrument consisted of a differential scanning calorimeter (DSC) coupled to a MS configured to operate under total pressure (12 mbar), heating rate (20 C/min), and purge gas composition (N2) analogous to the flight TEGA. TEGA detected CO2 release at both low (400-680 C

  16. Laboratory Directed Research and Development FY2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammeraad, J E; Jackson, K J; Sketchley, J A

    , industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.« less

  17. NASA Program Office Technology Investments to Enable Future Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley; Pham, Thai; Ganel, Opher

    2018-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope (née, Far-IR Surveyor), Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and Lynx (née, X-ray Surveyor). The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned Laser Interferometer Space Antenna (LISA) gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. For the past two years, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of the 2017 technology gap prioritization and showcase our current portfolio of technology development projects. To date, 96 COR and 86

  18. Reflight of the First Microgravity Science Laboratory: Quick Turnaround of a Space Shuttle Mission

    NASA Technical Reports Server (NTRS)

    Simms, Yvonne

    1998-01-01

    Due to the short flight of Space Shuttle Columbia, STS-83, in April 1997, NASA chose to refly the same crew, shuttle, and payload on STS-94 in July 1997. This was the first reflight of an entire mission complement. The reflight of the First Microgravity Science Laboratory (MSL-1) on STS-94 required an innovative approach to Space Shuttle payload ground processing. Ground processing time for the Spacelab Module, which served as the laboratory for MSL-1 experiments, was reduced by seventy-five percent. The Spacelab Module is a pressurized facility with avionics and thermal cooling and heating accommodations. Boeing-Huntsville, formerly McDonnell Douglas Aerospace, has been the Spacelab Integration Contractor since 1977. The first Spacelab Module flight was in 1983. An experienced team determined what was required to refurbish the Spacelab Module for reflight. Team members had diverse knowledge, skills, and background. An engineering assessment of subsystems, including mechanical, electrical power distribution, command and data management, and environmental control and life support, was performed. Recommendations for resolution of STS-83 Spacelab in-flight anomalies were provided. Inspections and tests that must be done on critical Spacelab components were identified. This assessment contributed to the successful reflight of MSL-1, the fifteenth Spacelab Module mission.

  19. Tactical Approaches for Trading Science Objectives Against Measurements and Mission Design: Science Traceability Techniques at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Nash, A. E., III

    2017-12-01

    The most common approaches to identifying the most effective mission design to maximize science return from a potential set of competing alternative design approaches are often inefficient and inaccurate. Recently, Team-X at the Jet Propulsion Laboratory undertook an effort to improve both the speed and quality of science - measurement - mission design trade studies. We will report on the methodology & processes employed and their effectiveness in trade study speed and quality. Our results indicate that facilitated subject matter expert peers are the keys to speed and quality improvements in the effectiveness of science - measurement - mission design trade studies.

  20. Mission Statements: A Thematic Analysis of Rhetoric across Institutional Type

    ERIC Educational Resources Information Center

    Morphew, Christopher C.; Hartley, Matthew

    2006-01-01

    Mission statements are ubiquitous in higher education. Accreditation agencies demand them, strategic planning is predicated on their formulation, and virtually every college and university has one available for review. Moreover, higher education institutions are constantly revisiting and revising their mission statements: as recently as the…

  1. 2016 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs.

  2. Strategic Planning in 2005-2007: Not Your Daddy's Big Thick Binder!

    ERIC Educational Resources Information Center

    Burnham, Peter F.

    2007-01-01

    Effective strategic planning for community colleges contains four key elements: (1) It must be mission driven; (2) It must be integrated with capability and resources; (3) It must define measurable standards for determining outcomes; and (4) It must be transparent in its intent and strategic goals to all levels of the organization. Using a…

  3. 2020 Foresight Forging the Future of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, P.

    2000-01-01

    The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstratemore » LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.« less

  4. A Strategic Plan for Introducing, Implementing, Managing, and Monitoring an Urban Extension Platform

    ERIC Educational Resources Information Center

    Warner, Laura A.; Vavrina, Charlie S.; Campbell, Mary L.; Elliott, Monica L.; Northrop, Robert J.; Place, Nick T.

    2017-01-01

    Florida's Strategic Plan for Extension in Metropolitan Regions reflects an adaptive management approach to the state's urban Extension mission within the context of establishing essential elements, performance indicators, key outcomes, and suggested alternatives for action. Extension leadership has adopted the strategic plan, and implementation…

  5. NASA Astrophysics Funds Strategic Technology Development

    NASA Astrophysics Data System (ADS)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  6. Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond

    NASA Astrophysics Data System (ADS)

    Vasavada, A. R.; Grotzinger, J. P.; Arvidson, R. E.; Calef, F. J.; Crisp, J. A.; Gupta, S.; Hurowitz, J.; Mangold, N.; Maurice, S.; Schmidt, M. E.; Wiens, R. C.; Williams, R. M. E.; Yingst, R. A.

    2014-06-01

    The Mars Science Laboratory mission reached Bradbury Landing in August 2012. In its first 500 sols, the rover Curiosity was commissioned and began its investigation of the habitability of past and present environments within Gale Crater. Curiosity traversed eastward toward Glenelg, investigating a boulder with a highly alkaline basaltic composition, encountering numerous exposures of outcropping pebble conglomerate, and sampling aeolian sediment at Rocknest and lacustrine mudstones at Yellowknife Bay. On sol 324, the mission turned its focus southwest, beginning a year-long journey to the lower reaches of Mt. Sharp, with brief stops at the Darwin and Cooperstown waypoints. The unprecedented complexity of the rover and payload systems posed challenges to science operations, as did a number of anomalies. Operational processes were revised to include additional opportunities for advance planning by the science and engineering teams.

  7. 75 FR 39493 - United States Patent and Trademark Office Draft Strategic Plan for FY 2010-2015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... plan includes the USPTO's mission statement, vision statement and a description of the strategic goals... achieve its vision. Full details on how the USPTO plans to implement the strategic plan, including funding...] United States Patent and Trademark Office Draft Strategic Plan for FY 2010-2015 AGENCY: United States...

  8. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Preston Dyches, media relations specialist at NASA's Jet Propulsion Laboratory, during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Clementine: An inexpensive mission to the Moon and Geographos

    NASA Astrophysics Data System (ADS)

    Shoemaker, Eugene M.; Nozette, Stewart

    1993-03-01

    The Clementine Mission, a joint project of the Strategic Defense Initiative Organization (SDIO) and NASA, has been planned primarily to test and demonstrate a suite of lightweight sensors and other lightweight spacecraft components under extended exposure to the space environment. Although the primary objective of the mission is to space-qualify sensors for Department of Defense applications, it was recognized in 1990 that such a mission might also be designed to acquire scientific observations of the Moon and of Apollo asteroid (1620) Geographos. This possibility was explored jointly by SDIO and NASA, including representatives from NASA's Discovery Program Science Working Group, in early 1991. Besides the direct return of scientific information, one of the benefits envisioned from a joint venture was the development of lightweight components for possible future use in NASA's Discovery-class spacecraft. In Jan. 1992, SDIO informed NASA of its intent to fly a 'Deep Space Program Science Experiment,' now popularly called Clementine; NASA then formed an advisory science working group to assist in the early development of the mission. The Clementine spacecraft is being assembled at the Naval Research Laboratory, which is also in charge of the overall mission design and mission operations. Support for mission design is being provided by GSFC and by JPL. NASA's Deep Space Network will be utilized in tracking and communicating with the spacecraft. Following a recommendation of the COMPLEX committee of the Space Science Board, NASA will issue an NRA and appoint a formal science team in early 1993. Clementine is a 3-axis stabilized, 200 kg (dry weight) spacecraft that will be launched on a refurbished Titan-2G. One of the goals has been to build two spacecraft, including the sensors, for $100M. Total time elapsed from the decision to proceed to the launch will be two years.

  10. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  11. Space science and applications: Strategic plan 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Office of Space Science and Applications (OSSA) 1991 Strategic Plan reflects a transitional year in which we respond to changes and focus on carrying out a vital space science program and strengthening our research base to reap the benefits of current and future missions. The Plan is built on interrelated, complementary strategies for the core space science program, for Mission to Planet Earth, and for Mission from Planet Earth. Each strategy has its own unique themes and mission priorities, but they share a common set of principles and a common goal - leadership through the achievement of excellence. Discussed here is the National Space Policy; an overview of OSSA activities, goals, and objectives; and the implications of the OSSA space science and applications strategy.

  12. Advanced Strategic and Tactical Relay Request Management for the Mars Relay Operations Service

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.; Wallick, Michael N.; Gladden, Roy E.; Wang, Paul; Hy, Franklin H.

    2013-01-01

    This software provides a new set of capabilities for the Mars Relay Operations Service (MaROS) in support of Strategic and Tactical relay, including a highly interactive relay request Web user interface, mission control over relay planning time periods, and mission management of allowed strategic vs. tactical request parameters. Together, these new capabilities expand the scope of the system to include all elements critical for Tactical relay operations. Planning of replay activities spans a time period that is split into two distinct phases. The first phase is called Strategic, which begins at the time that relay opportunities are identified, and concludes at the point that the orbiter generates the flight sequences for on board execution. Any relay request changes from this point on are called Tactical. Tactical requests, otherwise called Orbit - er Relay State Changes (ORSC), are highly restricted in terms of what types of changes can be made, and the types of parameters that can be changed may differ from one orbiter to the next. For example, one orbiter may be able to delay the start of a relay request, while another may not. The legacy approach to ORSC management involves exchanges of e-mail with "requests for change" and "acknowledgement of approval," with no other tracking of changes outside of e-mail folders. MaROS Phases 1 and 2 provided the infrastructure for strategic relay for all supported missions. This new version, 3.0, introduces several capabilities that fully expand the scope of the system to include tactical relay. One new feature allows orbiter users to manage and "lock" Planning Periods, which allows the orbiter team to formalize the changeover from Strategic to Tactical operations. Another major feature allows users to interactively submit tactical request changes via a Web user interface. A third new feature allows orbiter missions to specify allowed tactical updates, which are automatically incorporated into the tactical change process

  13. Strategic planning: the first step in the planning process.

    PubMed

    Gelinas, Marc A

    2003-01-01

    Strategic planning is a systematic process through which an organization builds commitment among key stakeholders to goals and priorities which are essential to its mission and vision, and responsive to the operating environment. Strategic planning is the first step in a comprehensive planning process that also includes business planning and implementation planning. If all three steps are carried out in sequence, strategic planning can be a very effective means of educating the stakeholders about where the cancer program is and where it is going, gaining support and commitment for the direction that the cancer program will take, and assuring that everyone's expectations can be managed effectively. Unfortunately, some organizations and cancer program leaders misunderstand the process. Too often, strategic planning is used as a stand-alone activity. This article will describe what strategic planning is, how it should smoothly lead into business planning and implementation planning, and how to avoid the pitfalls that sometimes arise during the strategic planning effort.

  14. Achieving competitive advantage through strategic human resource management.

    PubMed

    Fottler, M D; Phillips, R L; Blair, J D; Duran, C A

    1990-01-01

    The framework presented here challenges health care executives to manage human resources strategically as an integral part of the strategic planning process. Health care executives should consciously formulate human resource strategies and practices that are linked to and reinforce the broader strategic posture of the organization. This article provides a framework for (1) determining and focusing on desired strategic outcomes, (2) identifying and implementing essential human resource management actions, and (3) maintaining or enhancing competitive advantage. The strategic approach to human resource management includes assessing the organization's environment and mission; formulating the organization's business strategy; assessing the human resources requirements based on the intended strategy; comparing the current inventory of human resources in terms of numbers, characteristics, and human resource management practices with respect to the strategic requirements of the organization and its services or product lines; formulating the human resource strategy based on the differences between the assessed requirements and the current inventory; and implementing the appropriate human resource practices to reinforce the strategy and attain competitive advantage.

  15. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, rips up the final contingency plan for the Cassini mission, Friday, Sept. 15, 2017 in mission control at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  16. Gravity Recovery and Interior Laboratory (GRAIL) Mission: Status at the Initiation of the Science Mapping Phase

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Smith, David E.; Asmar, Sami W.; Alomon; Konopliv, Alexander S.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips. Roger J.; Solomon, Sean C.; hide

    2012-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission, a component of NASA's Discovery Program, launched successfully from Cape Canaveral Air Force Station on September 10, 2011. The dual spacecraft traversed independent, low-energy trajectories to the Moon via the EL-1 Lagrange point and inserted into elliptical, 11.5-hour polar orbits around the Moon on December 31, 2011, and January 1, 2012. The spacecraft are currently executing a series of maneuvers to circularize their orbits at 55-km mean altitude. Once the mapping orbit is achieved, the spacecraft will undergo additional maneuvers to align them into mapping configuration. The mission is on track to initiate the Science Phase on March 8, 2012.

  17. Developing Student Potential in the 1990's. A Strategic Plan for Centralia College.

    ERIC Educational Resources Information Center

    Centralia Coll., WA.

    This strategic planning report was prepared by Centralia College (CC) in order to assess the college's internal and external environment, identify problems, and prescribe recommendations. Material for the report was compiled by eight committees/task forces concerned with: (1) strategic planning; (2) institutional mission, philosophy, and goals;…

  18. Nexus: Intellectual Capital--The Most Strategic Asset.

    ERIC Educational Resources Information Center

    Kirk, Camille M.

    2000-01-01

    Discusses the importance of a higher education institution's intellectual capital as a strategic asset in long-range planning. Addresses problems of part-time and graduate student instructors in the context of teaching quality as the institution's fundamental mission. Suggests that tenure encourages research, builds institutional strength, and…

  19. Dosimetry of a Deep-Space (Mars) Mission using Measurements from RAD on the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Hassler, D.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Guo, J.; Matthiae, D.; Reitz, G.

    2017-12-01

    The space radiation environment is one of the outstanding challenges of a manned deep-space mission to Mars. To improve our understanding and take us one step closer to enabling a human Mars to mission, the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been characterizing the radiation environment, both during cruise and on the surface of Mars for the past 5 years. Perhaps the most significant difference between space radiation and radiation exposures from terrestrial exposures is that space radiation includes a significant component of heavy ions from Galactic Cosmic Rays (GCRs). Acute exposures from Solar Energetic Particles (SEPs) are possible during and around solar maximum, but the energies from SEPs are generally lower and more easily shielded. Thus the greater concern for long duration deep-space missions is the GCR exposure. In this presentation, I will review the the past 5 years of MSL RAD observations and discuss current approaches to radiation risk estimation used by NASA and other space agencies.

  20. Education Strategic Plan 2015-2035: Advancing NOAA's Mission through Education

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration, 2016

    2016-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Education Strategic Plan provides a framework to guide collaboration across the NOAA education community and a structure in which to track and report progress. Congress recognized the importance of NOAA's education programs with the passage of the America COMPETES Act. The America COMPETES…

  1. Retailing Laboratory: Delivering Skills through Experiential Learning

    ERIC Educational Resources Information Center

    Franco Valdez, Ana Dolores; Valdez Cervantes, Alfonso

    2018-01-01

    Building from a theoretical foundation of active learning, this article describes how using a retail laboratory in an educational curriculum can benefit both students and strategic partners. Students work alongside strategic partners, and the retail laboratory enables them to probe and design novel retailing strategies, such as launching new…

  2. Solar System Exploration Division Strategic Plan, volume 1. Executive summary and overview

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This first document is the first of a six-volume series presenting the Solar System Exploration Division's Strategic Plan for the 10-year period FY 1994 to FY 2003. The overall strategy is characterized by five fundamental precepts: (1) execute the current program; (2) improve the vitality of the program and the planetary science community; (3) initiate innovative, small, low-cost planetary missions; (4) initiate new major and moderate missions; and (5) prepare for the next generation of missions. This Strategic Plan describes in detail our proposed approach to accomplish these goals. Volume 1 provides first an Executive Summary of highlights of each of the six volumes, and then goes on to present an overview of the plan, including a discussion of the planning context and strategic approach. Volumes 2, 3, 4, and 5 describe in detail the initiatives proposed. An integral part of each of these volumes is a set of responses to the mission selection criteria questions developed by the Space and Earth Science Advisory Committee. Volume 2, Mission From Planet Earth, describes a strategy for exploring the Moon and Mars and sets forth proposed moderate missions--Lunar Observer and a Mars lander network. Volume 3, Pluto Flyby/Neptune Orbiter, discusses our proposed major new start candidate for the FY 1994 to FY 1998 time frame. Volume 4, Discovery, describes the Near-Earth Asteroid Rendezvous, as well as other candidates for this program of low-cost planetary missions. Volume 5, Toward Other Planetary Systems, describes a major research and analysis augmentation that focuses on extrasolar planet detection and the study of planetary system processes. Finally, Volume 6 summarizes the technology program that the division has structured around these four initiatives.

  3. The Mission Project: Building a Nation of Learners by Advancing America's Community Colleges.

    ERIC Educational Resources Information Center

    American Association of Community Colleges, Washington, DC.

    This document describes the American Association of Community Colleges (AACC), its new mission and vision statements, and a recommended set of strategic action areas deemed essential to creating the future described in the mission and vision statements. The proposed AACC mission statement reads: "building a nation of learners by advancing…

  4. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New leadership for the national security community by delivering cutting-edge experimental and operational sensor

  5. Sandia National Laboratories: National Security Missions: Nuclear Weapons

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New , in which fundamental science, computer models, and unique experimental facilities come together so

  6. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    A jar of peanuts is seen sitting on a console in mission control of the Space Flight Operations Center as the Cassini mission team await the final downlink of the spacecraft's data recorder, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Strategic Planning and the Future of Community Colleges.

    ERIC Educational Resources Information Center

    Myran, Gunder A., Ed.; Kelley, Douglas, Ed.

    Designed for institutional leaders facing fundamental questions of changes in mission, goals, external relations, and internal priorities, this collection offers an introduction to strategic planning and descriptions of planning processes at several community colleges. Section I includes the following essays: "What Is Strategic…

  9. Laboratory Directed Research and Development Program Assessment for FY 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities

  10. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  11. Micro-Inspector Spacecraft for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (<3.0 kg) free-flying micro-inspector spacecraft in an effort to enhance safety and reduce risk in future human and exploration missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro

  12. Five biomedical experiments flown in an Earth orbiting laboratory: Lessons learned from developing these experiments on the first international microgravity mission from concept to landing

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Lashbrook, J. J.; Callahan, P. X.; Schaefer, R. L.

    1993-01-01

    There are numerous problems associated with accommodating complex biological systems in microgravity in the flexible laboratory systems installed in the Orbiter cargo bay. This presentation will focus upon some of the lessons learned along the way from the University laboratory to the IML-1 Microgravity Laboratory. The First International Microgravity Laboratory (IML-1) mission contained a large number of specimens, including: 72 million nematodes, US-1; 3 billion yeast cells, US-2; 32 million mouse limb-bud cells, US-3; and 540 oat seeds (96 planted), FOTRAN. All five of the experiments had to undergo significant redevelopment effort in order to allow the investigator's ideas and objectives to be accommodated within the constraints of the IML-1 mission. Each of these experiments were proposed as unique entities rather than part of the mission, and many procedures had to be modified from the laboratory practice to meet IML-1 constraints. After a proposal is accepted by NASA for definition, an interactive process is begun between the Principal Investigator and the developer to ensure a maximum science return. The success of the five SLSPO-managed experiments was the result of successful completion of all preflight biological testing and hardware verification finalized at the KSC Life Sciences Support Facility housed in Hangar L. The ESTEC Biorack facility housed three U.S. experiments (US-1, US-2, and US-3). The U.S. Gravitational Plant Physiology Facility housed GTHRES and FOTRAN. The IML-1 mission (launched from KSC on 22 Jan. 1992, and landed at Dryden Flight Research Facility on 30 Jan. 1992) was an outstanding success--close to 100 percent of the prelaunch anticipated science return was achieved and, in some cases, greater than 100 percent was achieved (because of an extra mission day).

  13. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, center row, calls out the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. The Europa Clipper mission concept

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Lopes, Rosaly

    Jupiter's moon Europa may be a habitable world. Galileo spacecraft data suggest that an ocean most likely exists beneath Europa’s icy surface and that the “ingredients” necessary for life (liquid water, chemistry, and energy) could be present within this ocean today. Because of the potential for revolutionizing our understanding of life in the solar system, future exploration of Europa has been deemed an extremely high priority for planetary science. A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon’s surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite’s ice and ocean, composition, and geology. The set of investigations derived from these science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces

  15. Implementing Knowledge Management as a Strategic Initiative

    DTIC Science & Technology

    2003-12-01

    Quality Management (TQM); Development Metrics Standards; Philosophy Hierarchical, Centralized or Decentralized; Sociolinguistics ...disciplines of operations research, logic, psychology, philosophy, sociolinguistics , management science, management information science, organizational...needs of customers for America and its Allies.” (CECOM AC Strategic Plan, 2001) Given the mission and vision statements, an organization needs to

  16. El Centro College Strategic Plan, 2000-2005.

    ERIC Educational Resources Information Center

    El Centro Coll., Dallas, TX.

    This is the 2000-2005 strategic plan at El Centro College (Texas). It discusses the college's mission, vision, and core values, and provides information on goals and success indicators. Goals include: (1) preparing students for careers and for transfer to four-year institutions; (2) providing quality continuing/workforce education to enrich…

  17. Sandia National Laboratories: Mission

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  18. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  19. The GEOFLOW experiment missions in the Fluid Science Laboratory on ISS

    NASA Astrophysics Data System (ADS)

    Picker, Gerold; Carpy, Rodrigo; Fabritius, Gerd; Dettmann, Jan; Minster, Olivier; Winter, Josef; Ranebo, Hans; Dewandre, Thierry; Castiglione, Luigi; Mazzoni, Stefano; Egbers, Christoph; Futterer, Birgit

    The GEOFLOW I experiment has been successfully performed on the International Space Sta-tion (ISS) in 2008 in the Columbus module in order to study the stability, pattern formation and transition to turbulence in a viscous incompressible fluid layer enclosed in two concentric co-rotating spheres subject to a radial temperature gradient and a radial volumetric force field. The objective of the study is the experimental investigation of large scale astrophysical and geophysical phenomena in spherical geometry stipulated by rotation, thermal convections and radial gravity fields. These systems include earth outer core or mantle convection, differen-tial rotation effects in the sun, atmosphere of gas planets as well as a variety of engineering applications. The GEOFLOW I experimental instrument consists of an experiment insert for operation in the Fluid Science Laboratory, which is part of the Columbus Module of the ISS. It was first launched in February 2008 together with Columbus Module on STS 122, operated periodically for 9 month and returned to ground after 14 month on orbit with STS 119. The primary objective was the experimental modelling of outer earth core convection flow. In order to allow for variations of the characteristic scaling for different physical phenomena, the experiment was designed and qualified for a total of nine flights to the ISS, with ground refurbishment and geometrical or fluid modification after each mission. The second mission of GEOFLOW (II) is currently under preparation in terms of hardware refurbishment and modification, as well as science parameter development in order to allow use of a new experimental model fluid with a strongly temperature dependent viscosity, a adaptation of the experimental thermal parameter range in order to provide a representative model for earth mantle convection. The GEOFLOW II instrument is foreseen to be launched with the second mission of the Eu-ropean Automated Transfer Vehicle (ATV). The flight to ISS

  20. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize packs up his workspace in mission control after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    A computer screen in mission control displays mission elapsed time for Cassini minutes after the spacecraft plunged into Saturn's atmosphere, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen in mission control as the Cassini spacecraft makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of JPL's 2009 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Smart, M.C.; Ratnakumar, B.V.; Whitcanack, L. D.; Dewell, E. A.; Jones, L. E.; Salvo, C. G.; Puglia, F. J.; Cohen, S.; Gitzendanner, R.

    2008-01-01

    In 2009, JPL is planning to launch an unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than three years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar lithium-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. Although comparable in many facets, such as being required to operate over a wide temperature range (-20 to 40 C), the MSL mission has more demanding performance requirements compared to the MER mission, including much longer mission duration (approx. 687 sols vs. 90 sols), higher power capability, and the need to withstand higher temperature excursions. In addition, due to the larger rover size, the MSL mission necessitates the use of a much larger battery to meet the energy, life, and power requirements. In order to determine the viability of meeting these requirements, a number of performance verification tests were performed on 10 Ah Yardney lithium-ion cells (MER design) under MSL-relevant conditions, including mission surface operation simulation testing. In addition, the performance of on-going ground life testing of 10 Ah MER cells and 8-cell batteries will be discussed in the context of capacity loss and impedance growth predictions.

  5. [Challenges for the discussion of a complex institutional mission: the case of a health research institute].

    PubMed

    Artmann, Elizabeth; Andrade, Maria Angélica Carvalho; Rivera, Francisco Javier Uribe

    2013-01-01

    This study is based on an adaptation of the Strategic Démarche Approach applied to the Evandro Chagas Institute of Clinical Research (IPEC) in Brazil, from April to July 2009. The results are related to the experience of the Leishmaniasis Laboratory. A strategic analysis of four homogeneous segments was performed, considering the administration of care and specific teaching and research indicators. In both portfolios, all segments showed competitiveness and an appropriate response to mission goals. However, the second portfolio (teaching/research) showed a greater concentration of production in one segment. A highlight was the presence in the work team of cultural traits consistent with the objectives of cultural change. This experience, by operating indirectly in furtherance of the features of the new culture that emerges, revealed the potential of the method in question, to effect policies, processes and resources in a democratic and communicative way, which contributes to the operationalization of the guidelines of the Brazilian Unified Health System.

  6. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and

  7. Strategies to define performance specifications in laboratory medicine: 3 years on from the Milan Strategic Conference.

    PubMed

    Panteghini, Mauro; Ceriotti, Ferruccio; Jones, Graham; Oosterhuis, Wytze; Plebani, Mario; Sandberg, Sverre

    2017-10-26

    Measurements in clinical laboratories produce results needed in the diagnosis and monitoring of patients. These results are always characterized by some uncertainty. What quality is needed and what measurement errors can be tolerated without jeopardizing patient safety should therefore be defined and specified for each analyte having clinical use. When these specifications are defined, the total examination process will be "fit for purpose" and the laboratory professionals should then set up rules to control the measuring systems to ensure they perform within specifications. The laboratory community has used different models to set performance specifications (PS). Recently, it was felt that there was a need to revisit different models and, at the same time, to emphasize the presuppositions for using the different models. Therefore, in 2014 the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) organized a Strategic Conference in Milan. It was felt that there was a need for more detailed discussions on, for instance, PS for EQAS, which measurands should use which models to set PS and how to set PS for the extra-analytical phases. There was also a need to critically evaluate the quality of data on biological variation studies and further discussing the use of the total error (TE) concept. Consequently, EFLM established five Task Finish Groups (TFGs) to address each of these topics. The TFGs are finishing their activity on 2017 and the content of this paper includes deliverables from these groups.

  8. Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin F.; McGrew, Lynn Craig

    2012-01-01

    The 2011 Mars Science Laboratory was the first successful Mars mission to attempt a guided entry which safely delivered the rover to a final position approximately 2 km from its target within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented. Just prior to the entry and landing of MSL in August 2012, the EDL team examined minute tuning of the reference trajectory for the selected landing site, analyzed whether adjustment of bank reversal deadbands were necessary, the heading alignment velocity trigger was in union with other parameters to balance the EDL risks, and the vertical L/D command limits. This paper details a preliminary postflight assessment of the telemetry and trajectory reconstruction that is being performed, and updates the information presented in the former paper Entry Guidance for the 2011 Mars Science Laboratory Mission (AIAA Atmospheric Flight Mechanics Conference; 8-11 Aug. 2011; Portland, OR; United States)

  9. Flight Team Development in Support of LCROSS - A Class D Mission

    NASA Technical Reports Server (NTRS)

    Tompkins, Paul D.; Hunt, Rusty; Bresina, John; Galal, Ken; Shirley, Mark; Munger, James; Sawyer, Scott

    2010-01-01

    The LCROSS (Lunar Crater Observation and Sensing Satellite) project presented a number of challenges to the preparation for mission operations. A class D mission under NASA s risk tolerance scale, LCROSS was governed by a $79 million cost cap and a 29 month schedule from "authority to proceed" to flight readiness. LCROSS was NASA Ames Research Center s flagship mission in its return to spacecraft flight operations after many years of pursuing other strategic goals. As such, ARC needed to restore and update its mission support infrastructure, and in parallel, the LCROSS project had to newly define operational practices and to select and train a flight team combining experienced operators and staff from other arenas of ARC research. This paper describes the LCROSS flight team development process, which deeply involved team members in spacecraft and ground system design, implementation and test; leveraged collaborations with strategic partners; and conducted extensive testing and rehearsals that scaled in realism and complexity in coordination with ground system and spacecraft development. As a testament to the approach, LCROSS successfully met its full mission objectives, despite many in-flight challenges, with its impact on the lunar south pole on October 9, 2009.

  10. Crystal Growth Furnace System Configuration and Planned Experiments on the Second United States Microgravity Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Srinivas, R.; Hambright, G.; Ainsworth, M.; Fiske, M.; Schaefer, D.

    1995-01-01

    The Crystal Growth Furnace (CGF) is currently undergoing modifications and refurbishment and is currently undergoing modifications and refurbishment and is manifested to refly on the Second United States Microgravity Laboratory (USML-2) mission scheduled for launch in September 1995. The CGF was developed for the National Aeronautics and Space Administration (NASA) under the Microgravity Science and Applications Division (MSAD) programs at NASA Headquarters. The refurbishment and reflight program is being managed by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Funding and program support for the CGF project is provided to MSFC by the office of Life and Microgravity Sciences and Applications at NASA Headquarters. This paper presents an overview of the CGF system configuration for the USML-2 mission, and provides a brief description of the planned on-orbit experiment operation.

  11. GRAIL Mission Briefing

    NASA Image and Video Library

    2011-08-25

    David Lehman, GRAIL project manager, NASA's Jet Propulsion Laboratory, Pasadena, Calif., speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)

  12. A new vision for the study of benign prostate disease: the NIDDK Prostate Research Strategic Plan.

    PubMed

    Mullins, Chris; Kaplan, Steven A

    2009-03-01

    The American population continues to enjoy a steady increase in life expectancy. A major goal for this population is to maintain and improve quality of life as it ages. For men a major source of age related health burden is benign disorders of the prostate which, despite much research, remain poorly defined and require greater advancement in prevention and treatment. Thus, there is a substantial need to develop a long-range vision to focus and promote efforts to better understand and manage benign prostate disease. In response the National Institute of Diabetes and Digestive and Kidney Diseases convened a panel of key opinion leaders including basic researchers, translational scientists, epidemiologists, and clinicians and clinical researchers to develop a comprehensive strategic plan to advance research in benign prostate disease. The overall mission statement of this effort is "To discuss, evaluate, and propose research needs and a long-range research agenda (ie a strategic plan) for NIDDK grant portfolios related to research into benign prostate disease." Implementation and practical application of this strategic plan will require a partnership of the scientific community, the Federal Government, and other public and private organizations and institutions. This focused group of research and thought leaders identified 4 major areas of key significance for future investigation: basic science, epidemiology/population based studies, translational opportunities and clinical sciences. Great opportunities are identified within these 4 areas to develop new insights, and translate findings for benign prostate diseases and related syndromes between the research laboratory and the clinical setting. The product of these efforts, the National Institute of Diabetes and Digestive and Kidney Diseases Prostate Research Strategic Plan, represents a blueprint that researchers and Federal Government can use to review where the field has been, define where the field is and, most

  13. No Free Lunch: A Condensed Strategic Planning Process

    ERIC Educational Resources Information Center

    Kohrmann, Patrick C., II

    2008-01-01

    Most people picture "strategic planning" as endless meetings spent doing SWOT (strengths, weaknesses, opportunities, and threats) analyses, crafting vision and mission statements, and developing goals and action plans. Few look forward to the experience or reflect back on it with pleasure. In this article, the author describes how he…

  14. Trajectory design for the Deep Space Program Science Experiment (DSPSE) mission

    NASA Astrophysics Data System (ADS)

    Carrington, D.; Carrico, J.; Jen, J.; Roberts, C.; Seacord, A.; Sharer, P.; Newman, L.; Richon, K.; Kaufman, B.; Middour, J.

    In 1994, the Deep Space Program Science Experiment (DSPSE) spacecraft will become the first spacecraft to perform, in succession, both a lunar orbiting mission and a deep-space asteroid encounter mission. The primary mission objective is to perform a long-duration flight-test of various new-technology lightweight components, such as sensors, in a deep-space environment. The mission has two secondary science objectives: to provide high-resolution imaging of the entire lunar surface for mapping purposes and flyby imaging of the asteroid 1620 Geographos. The DSPSE mission is sponsored by the Strategic Defense Initiative Organization (SDIO). As prime contractor, the Naval Research Laboratory (NRL) is building the spacecraft and will conduct mission operations. The Goddard Space Flight Center's (GSFC) Flight Dynamics Division is supporting NRL in the areas of The Deep Space Network (DSN) will provide tracking support. The DSPSE mission will begin with a launch from the Western Test Range in late January 1994. Following a minimum 1.5-day stay in a low-Earth parking orbit, a solid kick motor burn will boost DSPSE into an 18-day, 2.5-revolution phasing orbit transfer trajectory to the Moon. Two burns to insert DSPSE into a lunar polar orbit suitable for the mapping mission will be followed by mapping orbit maintenance and adjustment operations over a period of 2 sidereal months. In May 1994, a lunar orbit departure maneuver, in conjunction with a lunar swingby 26 days later, will propel DSPSE onto a heliocentric transfer that will intercept Geographos on September 1, 1994. This paper presents the characteristics, deterministic delta-Vs, and design details of each trajectory phase of this unique mission, together with the requirements, constraints, and design considerations to which each phase is subject. Numerous trajectory plots and tables of significant trajectory events are included. Following a discussion of the results of a preliminary launch window analysis, a

  15. Mars Reconnaissance Orbiter Mission: Systems Engineering Challenges on the Mars Reconnaissance Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Havens, Glen G.

    2007-01-01

    MRO project is a system of systems requiring system engineering team to architect, design, integrate, test, and operate these systems at each level of the project. The challenge of system engineering mission objectives into a single mission architecture that can be integrated tested, launched, and operated. Systems engineering must translate high-level requirements into integrated mission design. Systems engineering challenges were overcome utilizing a combination by creative designs built into MRO's flight and ground systems: a) Design of sophisticated spacecraft targeting and data management capabilities b) Establishment of a strong operations team organization; c) Implementation of robust operational processes; and d) Development of strategic ground tools. The MRO system has met the challenge of its driving requirements: a) MRO began its two-year primary science phase on November 7, 2006, and by July 2007, met it minimum requirement to collect 15 Tbits of data after only eight months of operations. Currently we have collected 22 Tbits. b) Based on current performance, mission data return could return 70 Tbits of data by the end of the primary science phase in 2008.

  16. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Cassini program manager at JPL, Earl Maize, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  17. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, standing, watches telemetry come in from Cassini with Julie Bellerose, left, Duane Roth, second from left, and Mar Vaquero of the Cassini navigation team in the mission control room, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  18. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, is seen in mission control as he monitors the Cassini spacecraft, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    A monitor in mission control shows the time remaining until Cassini makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, embrace after the Cassini spacecraft plunged into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Customer satisfaction assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DN Anderson; ML Sours

    2000-03-23

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists ofmore » nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input--answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data.« less

  2. Strategic Planning for Academic Research: A Canadian Perspective

    ERIC Educational Resources Information Center

    Sa, Creso M.; Tamtik, Merli

    2012-01-01

    This paper reports on an empirical study of research planning in Canadian universities. Drawing on data compiled during interviews with senior administrators from 27 academic units in 10 universities, the paper analyses how strategic planning has been applied to the research mission over the past decade. Findings reveal variability in processes…

  3. Strategic HRD Practices as Key Factors in Organizational Learning

    ERIC Educational Resources Information Center

    Tseng, Chien-Chi; McLean, Gary N.

    2007-01-01

    Relationships between strategic HRD practices and organizational learning were explored through a literature review. Organizations that learn and develop their SHRD practices have more opportunities to obtain and integrate the nine SHRD outcomes in the learning process: organizational missions and goals, top management leadership, environmental…

  4. Strategic Map for Enceladus Plume Biosignature Sample Return

    NASA Astrophysics Data System (ADS)

    Sherwood, B.

    2014-12-01

    The discovery of jets emitting salty water from the interior of Saturn's small moon Enceladus is one of the most astounding results of the Cassini mission to date. The measured presence of organic species in the resulting plume, the finding that the jet activity is valved by tidal stretching at apocrone, the modeled lifetime of E-ring particles, and gravitational inference of a long-lived, deep, large water reservoir all indicate that the textbook conditions for habitability are met at Enceladus today: liquid water, biologically available elements, source of energy, and longevity of conducive conditions. Enceladus may be the best place in our solar system to search for direct evidence of biomarkers, and the plume provides a way to sample, analyze, and even return them to Earth for detailed analysis. For example, it is straightforward to define a Stardust-like, fly-through, plume ice-particle, dust, and gas collection mission. Concept engineering and evaluation indicate that the associated technical, programmatic, regulatory, and cost issues are quite unlike the Stardust precedent however, not least because of such a mission's Category-V, Restricted Earth Return, classification. The poster presents a strategic framework for systematic integration of the enabling issues: cultivation of science advocacy, resolution of diverse stakeholder concerns, development of verifiable and affordable technical solutions, validation of cost estimation methods, alignment with other candidate astrobiology missions, complementarity of international agency goals, and finally the identification of appropriate research and flight-mission opportunities. A strategic approach is essential if we are to know the astrobiological state of Enceladus in our lifetime, and two international teams are already dedicated to implementing key steps on this roadmap.

  5. Terrain Safety Assessment in Support of the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Kipp, Devin

    2012-01-01

    In August 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. The process to select the MSL landing site took over five years and began with over 50 initial candidate sites from which four finalist sites were chosen. The four finalist sites were examined in detail to assess overall science merit, EDL safety, and rover traversability on the surface. Ultimately, the engineering assessments demonstrated a high level of safety and robustness at all four finalist sites and differences in the assessment across those sites were small enough that neither EDL safety nor rover traversability considerations could significantly discriminate among the final four sites. Thus the MSL landing site at Gale Crater was selected from among the four finalists primarily on the basis of science considerations.

  6. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini-Huygens spacecraft is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    director of NASA's Planetary Science Division, Jim Green answers questions a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. The UV Sensor Onboard the Mars Science Laboratory Mission: Correction and Generation of UV Fluxes

    NASA Astrophysics Data System (ADS)

    Vicente-Retortillo, Á.; Martinez, G.; Renno, N. O.; Lemmon, M. T.; Gomez-Elvira, J.

    2017-12-01

    The Rover Environmental Monitoring Station UV sensor (UVS) onboard the Mars Science Laboratory mission has completed more than 1750 sols of measurements, providing an unprecedented coverage ranging from diurnal to interannual times scales [1,2]. The UVS is comprised of six photodiodes to measure the UV flux in the ranges 200-380, 320-380, 280-320, 200-280, 230-290 and 300-350 nm [3]. UV fluxes in units of W/m2 can be found in the NASA Planetary Data System (PDS). However, dust deposition on the UVS and a non-physical discontinuity in the calibration functions when the solar zenith angle is above 30º cause errors in these fluxes that increase with time. We have developed a technique to correct UV fluxes from the effects of dust degradation and inconsistencies in the angular response of the UVS. The photodiode output currents (available in the PDS as lower-level TELRDR products), ancillary data records (available in the PDS as ADR products) and dust opacity values derived from Mastcam observations are used for performing the corrections. The corrections have been applied to the UVA band (320-380 nm) for the first 1000 sols of the mission, providing excellent results [4]. We plan to correct the UV fluxes on each of the six UVS bands and to make these results available in the PDS. Data products generated by this study will allow comparisons of the UV radiation environment at Gale crater with that at the locations of the future missions ExoMars 2020 and Mars 2020, as well as the assessment of the potential survivability of biological contaminants brought to Mars from Earth. References: [1] Smith, M. D., et al. (2016), Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes, Icarus, 280, 234-248. [2] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, Geophys. Res. Lett., 44, 3502-3508. [3] Gómez-Elvira, J., et al. (2012), REMS: The environmental sensor

  14. 2015 Science Mission Directorate Technology Highlights

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  15. Air Force Research Laboratory space technology strategic investment model: analysis and outcomes for warfighter capabilities

    NASA Astrophysics Data System (ADS)

    Preiss, Bruce; Greene, Lloyd; Kriebel, Jamie; Wasson, Robert

    2006-05-01

    The Air Force Research Laboratory utilizes a value model as a primary input for space technology planning and budgeting. The Space Sector at AFRL headquarters manages space technology investment across all the geographically disparate technical directorates and ensures that integrated planning is achieved across the space community. The space investment portfolio must ultimately balance near, mid, and far-term investments across all the critical space mission areas. Investment levels and growth areas can always be identified by a typical capability analysis or gap analysis, but the value model approach goes one step deeper and helps identify the potential payoff of technology investments by linking the technology directly to an existing or potential concept. The value of the technology is then viewed from the enabling performance perspective of the concept that ultimately fulfills the Air Force mission. The process of linking space technologies to future concepts and technology roadmaps will be reviewed in this paper, along with representative results from this planning cycle. The initial assumptions in this process will be identified along with the strengths and weaknesses of this planning methodology.

  16. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Cassini program manager at JPL, Earl Maize, is seen in mission control of the Space Flight Operations Center as the Cassini team wait for the spacecraft to establish a connection with NASA's Deep Space Network to begin the final playback of its data recorder, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  17. Palm Beach Community College Strategic Plan, 1999-2004.

    ERIC Educational Resources Information Center

    Samuels, Seymour

    This report addresses strategies and action plans for Palm Beach Community College (PBCC) (Florida) between 1999-2004. As part of a commitment to achieve specific, measurable end results, the college has set various objectives, including: (1) develop, implement and institutionalize a mission driven strategic budget for the 1999-2000 fiscal year;…

  18. Public Affairs & Strategic Communications (NGB-PA) - Personal Staff - Joint

    Science.gov Websites

    Guard ARNG Media ARNG Public Affairs Family Services Youth Programs Survivor Services Military Funeral General Officer Management Public Affairs Executive Support Services Legislative Liaison Special Staff : Personal Staff : Public Affairs Public Affairs & Strategic Communications (NGB-PA) Mission: Assess

  19. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Director of NASA's Jet Propulsion Laboratory, Michael Watkins speaks during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    PubMed

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  1. The Laboratory Efficiencies Initiative: Partnership for Building a Sustainable National Public Health Laboratory System

    PubMed Central

    Moulton, Anthony D.; Ned, Renée M.; Nicholson, Janet K.A.; Chu, May C.; Becker, Scott J.; Blank, Eric C.; Breckenridge, Karen J.; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners. PMID:23997300

  2. Between Good Intentions and Urgent Stakeholder Pressures: Institutionalizing the Universities' Third Mission in the Swedish Context

    ERIC Educational Resources Information Center

    Benneworth, Paul; de Boer, Harry; Jongbloed, Ben

    2015-01-01

    There is a widespread recognition across Europe, amongst policy-makers, university managers and scholars, that universities' societal roles (the "third mission") are increasingly important. As universities become increasingly strategically managed, it is perhaps unsurprising that attention has turned towards the strategic management of…

  3. Financing strategic plans for not-for-profits.

    PubMed

    Wong-Hammond, Laca; Damon, Lorie

    2013-07-01

    To succeed in today's complex economic environment, a not-for-profit health system requires an effective strategic capital planning process that harmonizes three elements: The organization's long-term business plan and mission. Existing financial resources and finance options available to support the organization's business plan. Financial risk and return on equity to the organization's stakeholders (within acceptable parameters for business risk).

  4. Turning Battlefield Victories into Strategic Success

    DTIC Science & Technology

    2008-03-17

    the Secretary of Defense (OSD) that promotes “speed, jointness, knowledge, and precision”.12 Of great concern is that both models clearly lack an...with Commanders on the ground until January 20, 2003.15 Furthermore, inadequate funding, a lack of personnel, and no clear mission guidance hindered...2-4. 42 Condoleezza Rice, Henrietta H. Fore, Transformational Diplomacy, Strategic Plan Fiscal Years 2007-2012, (Washington D.C.: Department of

  5. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Bigmore » Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.« less

  6. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Huntress, Wesley T.

    1990-01-01

    The rationale behind Mission to Planet Earth is presented, and the program plan is described in detail. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to collect muultidisciplinary data. A sophisticated data system will process and archive an unprecedented large amount of information about the earth and how it functions as a system. Attention is given to the space observatories, the data and information systems, and the interdisciplinary research.

  7. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  8. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker answers questions from members of the media during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, center, answers questions from members of the media during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini-Huygens spacecraft is seen in the von Kármán Auditorium during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waites, peaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker, right, looks on as Cassini program manager at JPL, Earl Maize speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Customer Satisfaction Assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale N.; Sours, Mardell L.

    2000-03-20

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. We present the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of 2 major sections, Strategic Value and Project Performance. The Strategic Value section of the questionnaire consists of 5 questions that can be answered with a 5 point Likert scale response. These questions are designed to determine if a project is directly contributing to critical future national needs. The Project Performance section of the questionnaire consistsmore » of 9 questions that can be answered with a 5 point Likert scale response. These questions determine PNNL performance in meeting customer expectations. Many approaches could be used to analyze customer survey data. We present a statistical model that can accurately capture the random behavior of customer survey data. The properties of this statistical model can be used to establish a "gold standard'' or performance expectation for the laboratory, and then assess progress. The gold standard is defined from input from laboratory management --- answers to 4 simple questions, in terms of the information obtained from the CSAP customer survey, define the standard: *What should the average Strategic Value be for the laboratory project portfolio? *What Strategic Value interval should include most of the projects in the laboratory portfolio? *What should average Project Performance be for projects with a Strategic Value of about 2? *What should average Project Performance be for projects with a Strategic Value of about 4? We discuss how to analyze CSAP customer survey data with this model. Our discussion will include "lessons learned" and issues that can invalidate this type of assessment.« less

  14. Mission

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  15. Leadership and Stewardship of the Laboratory (Objective 4.1) Notable Outcome - Phase II Alternative Analysis and PNNL Site Plan Recommendation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittman, Jeffery P.; Cassidy, Stephen R.; Mosey, Whitney LC

    2013-07-31

    Pacific Northwest National Laboratory (PNNL) and the Pacific Northwest Site Office (PNSO) have recently completed an effort to identify the current state of the campus and gaps that exist with regards to space needs, facilities and infrastructure. This effort has been used to establish a campus strategy to ensure PNNL is ready to further the United States (U.S.) Department of Energy (DOE) mission. Ten-year business projections and the impacts on space needs were assessed and incorporated into the long-term facility plans. In identifying/quantifying the space needs for PNNL, the following categories were addressed: Multi-purpose Programmatic (wet chemistry and imaging laboratorymore » space), Strategic (Systems Engineering and Computation Analytics, and Collaboration space), Remediation (space to offset the loss of the Research Technology Laboratory [RTL] Complex due to decontamination and demolition), and Optimization (the exit of older and less cost-effective facilities). The findings of the space assessment indicate a need for wet chemistry space, imaging space, and strategic space needs associated with systems engineering and collaboration space.« less

  16. Strategic Planning: A Practical Primer for the Healthcare Provider: Part I.

    PubMed

    Baum, Neil; Brockmann, Erich N; Lacho, Kenneth J

    2016-01-01

    Entrepreneurs are known for opportunity recognition--that is, "How can I start a business to make money from this opportunity?" However, once a commercial entity is formed to take advantage of an opportunity, the leadership priority shifts from entrepreneurial to strategic. A strategic perspective leverages limited resources to position a business for future success relative to rivals in a competitive environment. Often, the talents needed for one priority are not the same as those needed for the other. This article, the first part of a two-part article, intends to simplify the transition from an entrepreneurial to a strategic focus. It walks an entrepreneur through the strategic management planning process using a fictional business. The various tasks in the process (i.e., mission, vision, internal analysis, external analysis) are illustrated with examples from a typical primary physician's private practice. The examples show how the strategic management tasks are interrelated and ultimately lead to a philosophical approach to managing a business.

  17. Multiple Roles in Responding to Strategic Communications: Wearing Trifocals

    ERIC Educational Resources Information Center

    Forman, Janis

    2004-01-01

    Teaching communication to MBAs often involves focusing on corporate strategic discourse when student projects are intended to help companies move to a more advanced stage of development. This focus on corporate strategy--the language and concepts that concern the mission and direction that an organization should adopt--requires, in turn, that…

  18. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R.; Gard, E.; Sketchley, J.

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas),more » and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.« less

  19. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Principle investigator for the Ion and Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, points to the location of the INMS during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. 2007 Ikhana Western States and Southern California Emergency UAS Fire Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent

    2008-01-01

    Four demonstration and four emergency fire imaging missions completed: a) Thermal infrared imagery delivered in near real-time (5 to 15 minutes) to: 1) SoCal Emergency: FEMA, NIFC, NorthCom, California EOC; 2) Demo Flights: NIFC, Individual Fire Incident Commands. Imagery used for tactical and strategic decision making. Air Traffic Control gave excellent support. Mission plans flown in reverse. Real time requests for revisits of active fires. Added new fire during mission. Moved fire loiter points as fires moved. Real-time reroute around thunderstorm activity. Pre & Post flight telecons with FAA were held to review mission and discuss operational improvements. No issues with air traffic control during the 8 fire missions flown.

  1. Advanced Communication Architectures and Technologies for Missions to the Outer Planets

    NASA Technical Reports Server (NTRS)

    Bhasin, K.; Hayden, J. L.

    2001-01-01

    Missions to the outer planets would be considerably enhanced by the implementation of a future space communication infrastructure that utilizes relay stations placed at strategic locations in the solar system. These relay stations would operate autonomously and handle remote mission command and data traffic on a prioritized demand access basis. Such a system would enhance communications from that of the current direct communications between the planet and Earth. The system would also provide high rate data communications to outer planet missions, clear communications paths during times when the sun occults the mission spacecraft as viewed from Earth, and navigational "lighthouses" for missions utilizing onboard autonomous operations. Additional information is contained in the original extended abstract.

  2. Lunar Missions and Datasets

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.

  3. The statistical treatment implemented to obtain the planetary protection bioburdens for the Mars Science Laboratory mission

    NASA Astrophysics Data System (ADS)

    Beaudet, Robert A.

    2013-06-01

    NASA Planetary Protection Policy requires that Category IV missions such as those going to the surface of Mars include detailed assessment and documentation of the bioburden on the spacecraft at launch. In the prior missions to Mars, the approaches used to estimate the bioburden could easily be conservative without penalizing the project because spacecraft elements such as the descent and landing stages had relatively small surface areas and volumes. With the advent of a large spacecraft such as Mars Science Laboratory (MSL), it became necessary for a modified—still conservative but more pragmatic—statistical treatment be used to obtain the standard deviations and the bioburden densities at about the 99.9% confidence limits. This article describes both the Gaussian and Poisson statistics that were implemented to analyze the bioburden data from the MSL spacecraft prior to launch. The standard deviations were weighted by the areas sampled with each swab or wipe. Some typical cases are given and discussed.

  4. Use of a collaborative tool to simplify the outsourcing of preclinical safety studies: an insight into the AstraZeneca-Charles River Laboratories strategic relationship.

    PubMed

    Martin, Frederic D C; Benjamin, Amanda; MacLean, Ruth; Hollinshead, David M; Landqvist, Claire

    2017-12-01

    In 2012, AstraZeneca entered into a strategic relationship with Charles River Laboratories whereby preclinical safety packages comprising safety pharmacology, toxicology, formulation analysis, in vivo ADME, bioanalysis and pharmacokinetics studies are outsourced. New processes were put in place to ensure seamless workflows with the aim of accelerating the delivery of new medicines to patients. Here, we describe in more detail the AstraZeneca preclinical safety outsourcing model and the way in which a collaborative tool has helped to translate the processes in AstraZeneca and Charles River Laboratories into simpler integrated workflows that are efficient and visible across the two companies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen speaks during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Strategic planning in an academic radiation medicine program.

    PubMed

    Hamilton, J L; Foxcroft, S; Moyo, E; Cooke-Lauder, J; Spence, T; Zahedi, P; Bezjak, A; Jaffray, D; Lam, C; Létourneau, D; Milosevic, M; Tsang, R; Wong, R; Liu, F F

    2017-12-01

    In this paper, we report on the process of strategic planning in the Radiation Medicine Program (rmp) at the Princess Margaret Cancer Centre. The rmp conducted a strategic planning exercise to ensure that program priorities reflect the current health care environment, enable nimble responses to the increasing burden of cancer, and guide program operations until 2020. Data collection was guided by a project charter that outlined the project goal and the roles and responsibilities of all participants. The process was managed by a multidisciplinary steering committee under the guidance of an external consultant and consisted of reviewing strategic planning documents from close collaborators and institutional partners, conducting interviews with key stakeholders, deploying a program-wide survey, facilitating an anonymous and confidential e-mail feedback box, and collecting information from group deliberations. The process of strategic planning took place from December 2014 to December 2015. Mission and vision statements were developed, and core values were defined. A final document, Strategic Roadmap to 2020, was established to guide programmatic pursuits during the ensuing 5 years, and an implementation plan was developed to guide the first year of operations. The strategic planning process provided an opportunity to mobilize staff talents and identify environmental opportunities, and helped to enable more effective use of resources in a rapidly changing health care environment. The process was valuable in allowing staff to consider and discuss the future, and in identifying strategic issues of the greatest importance to the program. Academic programs with similar mandates might find our report useful in guiding similar processes in their own organizations.

  8. EVAL mission requirements, phase 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The aspects of NASA's applications mission were enhanced by utilization of shuttle/spacelab, and payload groupings which optimize the cost of achieving the mission goals were defined. Preliminary Earth Viewing Application Laboratory (EVAL) missions, experiments, sensors, and sensor groupings were developed. The major technological EVAL themes and objectives which NASA will be addressing during the 1980 to 2,000 time period were investigated. Missions/experiments which addressed technique development, sensor development, application development, and/or operational data collection were considered as valid roles for EVAL flights.

  9. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, right, Cassini project scientist at JPL, Linda Spilker, center, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, are seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Third Mission Activities: University Managers' Perceptions on Existing Barriers

    ERIC Educational Resources Information Center

    Koryakina, Tatyana; Sarrico, Cláudia S.; Teixeira, Pedro N.

    2015-01-01

    In the context of increased international competition and financial austerity, an economic development mission has become an important strategic and policy issue for European higher education. This paper aims to contribute to knowledge regarding universities' engagement with the external environment and its impact on internal governance and…

  11. Education Strategic Plan 2015-2035: Advancing NOAA's Mission through Education. Executive Summary

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration, 2016

    2016-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Education Strategic Plan provides a framework to guide collaboration across the NOAA education community and a structure in which to track and report progress. Congress recognized the importance of NOAA's education programs with the passage of the America COMPETES Act. The America COMPETES…

  12. The Joint Staff Strategic Information Technology Plan

    DTIC Science & Technology

    1995-09-01

    analyses or assessments. Gaming Division ( SAGD ) is responsible for: This element also addresses the modification of existing applications necessary to...Joint Military Net Assessment, and the Joint Strategic Planning System. SAGD Gaming Suite: SAGD’s mission has • undergone revision and expansion, As...situations using both gaming and analytical assessments. approaches. Table 3 gives characteristics of some of the types of applications that SAGD has • * 4

  13. Mars Science Laboratory Mission Curiosity Rover Stereo

    NASA Image and Video Library

    2011-07-22

    This stereo image of NASA Mars Science Laboratory Curiosity Rovert was taken May 26, 2011, in Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory in Pasadena, Calif. 3D glasses are necessary to view this image.

  14. Effective real estate management helps IDSs meet strategic objectives.

    PubMed

    Campobasso, F D

    2000-05-01

    As IDSs expand their healthcare delivery networks, they acquire an increasingly diverse array of real estate assets. Managing these assets effectively requires a comprehensive real estate strategy. To develop such a strategy, the IDS should form a strategic real estate planning team. The team's role should be to conduct market research; assess the strategic value of the IDS's real estate portfolio; recommend strategies for disposing of unnecessary, underperforming, or mis-aligned assets; evaluate new real estate acquisitions or development projects that may be required to achieve the organization's mission and/or protect market share; and recommend a financing approach that fits the real estate strategy.

  15. Lawrence Berkeley National Laboratory 2016 Annual Financial Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kim, P.; Williams, Kim, P.

    FY2016 was a year of significant change and progress at Berkeley Lab. In March, Laboratory Director Michael Witherell assumed his new role when former Lab Director Paul Alivisatos became Vice Chancellor for Research at UC Berkeley. Dr. Witherell has solidified the Lab’s strategy, with a focus on long term science and technology priorities. Large-scale science efforts continued to expand at the Lab, including the Dark Energy Spectroscopic Instrument now heading towards construction, and the LUX-ZEPLIN dark matter detector to be built underground in South Dakota. Another proposed project, the Advanced Light Source-Upgrade, was given preliminary approval and will be themore » Lab’s largest scientific investment in years. Construction of the Integrative Genomics Building began, and will bring together researchers from the Lab’s Joint Genome Institute, now based in Walnut Creek, and the Systems Biology Knowledgebase (K-Base) under one roof. Investment in the Lab’s infrastructure also continues, informed by the Lab’s Infrastructure Strategic Plan. Another important focus is on developing the next generation of scientists with the talent and diversity needed to sustain Berkeley Lab’s scientific leadership and mission contributions to DOE and the Nation. Berkeley Lab received $897.5M in new FY2016 funding, a 12.5% increase over FY2015, for both programmatic and infrastructure activities. While the Laboratory experienced a substantial increase in funding, it was accompanied by only a modest increase in spending, as areas of growth were partially offset by the completion of several major efforts in FY2015. FY2016 costs were $826.9M, an increase of 1.9% over FY2015. Similar to the prior year, the indirect-funded Operations units worked with generally flat budgets to yield more funding for strategic needs. A key challenge for Berkeley Lab continues to be achieving the best balance to fund essential investments, deliver highly effective operational mission support

  16. Lunar Ice Cube: Development of a Deep Space Cubesat Mission

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Malphrus, B.; McElroy, D.; Schabert, J.; Wilczewski, S.; Farrell, W.; Brambora, C.; Macdowall, R.; Folta, D.; Hurford, T.; Patel, D.; Banks, S.; Reuter, D.; Brown, K.; Angkasa, K.; Tsay, M.

    2017-10-01

    Lunar Ice Cube, a 6U deep space cubesat mission, will be deployed by EM1. It will demonstrate cubesat propulsion, the Busek BIT 3 RF Ion engine, and a compact instrument capable of addressing HEOMD Strategic Knowledge Gaps related to lunar volatiles.

  17. Evaluation of the NASA Arc Jet Capabilities to Support Mission Requirements

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bruce, Walt; Gage, Peter; Horn, Dennis; Mastaler, Mike; Rigali, Don; Robey, Judee; Voss, Linda; Wahlberg, Jerry; Williams, Calvin

    2010-01-01

    NASA accomplishes its strategic goals through human and robotic exploration missions. Many of these missions require launching and landing or returning spacecraft with human or return samples through Earth's and other planetary atmospheres. Spacecraft entering an atmosphere are subjected to extreme aerothermal loads. Protecting against these extreme loads is a critical element of spacecraft design. The safety and success of the planned mission is a prime concern for the Agency, and risk mitigation requires the knowledgeable use of thermal protection systems to successfully withstand the high-energy states imposed on the vehicle. Arc jets provide ground-based testing for development and flight validation of re-entry vehicle thermal protection materials and are a critical capability and core competency of NASA. The Agency's primary hypersonic thermal testing capability resides at the Ames Research Center and the Johnson Space Center and was developed and built in the 1960s and 1970s. This capability was critical to the success of Apollo, Shuttle, Pioneer, Galileo, Mars Pathfinder, and Orion. But the capability and the infrastructure are beyond their design lives. The complexes urgently need strategic attention and investment to meet the future needs of the Agency. The Office of Chief Engineer (OCE) chartered the Arc Jet Evaluation Working Group (AJEWG), a team of experienced individuals from across the Nation, to capture perspectives and requirements from the arc jet user community and from the community that operates and maintains this capability and capacity. This report offers the AJEWG's findings and conclusions that are intended to inform the discussion surrounding potential strategic technical and investment strategies. The AJEWG was directed to employ a 30-year Agency-level view so that near-term issues did not cloud the findings and conclusions and did not dominate or limit any of the strategic options.

  18. Austin Community College Learning Resource Services Strategic Plan, 1992-1997.

    ERIC Educational Resources Information Center

    Austin Community Coll., TX.

    Designed as a planning tool and a statement of philosophy and mission, this five-part strategic planning report provides information on the activities, goals, and review processes of the Learning Resource Services (LRS) at Austin Community College in Austin, Texas. The LRS combines library services, access to computer terminals, and other…

  19. Corporate culture and the healing mission.

    PubMed

    Clifton, R

    1986-06-01

    The health care revolution of the 1960s was affected not only by changes in government's public policy but also changes in Church teaching. As Medicare and Medicaid helped finance the building of many new facilities, religious institutes--influenced by the decisions of the second Vatican Council--began to redefine themselves. The growth in each area was a hopeful sign of the ability to care for more people and extend Jesus' healing mission. Today health care organizations face pressures to compete, diversify, and reorganize. To ensure that they remain renewed and vital in the midst of change, they must promote their mission and philosophy through reeducation and socialization. The chief executive officer, who ultimately is responsible for ensuring that the organization is value-driven, must not abdicate this responsibility. Maintaining a religious organization's mission is as essential to its survival as meeting the budget, developing a strategic plan, or recruiting physicians.

  20. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Dave Bates, left, and Tom Burk, right, working Cassini's attitude and articulation control subsystems, are seen at their console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Todd Brown, right, working Cassini's attitude and articulation control subsystems, is seen at his console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Todd Brown, working Cassini's attitude and articulation control subsystems, is seen at his console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. San Jose/Evergreen Community College District: Governing Board's Strategic Master Plan.

    ERIC Educational Resources Information Center

    San Jose/Evergreen Community Coll. District, San Jose, CA.

    This report presents San Jose/Evergreen Community College District Governing Board's Strategic Master Plan. This report summarizes the district's mission statement, goal statements, and board priorities. The San Jose/Evergreen Community College District is committed to providing open access and opportunity for success to its multi-ethnic…

  4. Air Power in the New Counterinsurgency Era: The Strategic Importance of USAF Advisory and Assistance Missions

    DTIC Science & Technology

    2006-01-01

    America alone. See Ian F. W. Beckett , Modern Insurgencies and Counter-Insurgencies: Guerrillas and Their Opponents Since 1750, London, UK: Routledge, 2001...3 Ian F. Beckett , Insurgency in Iraq: An Historical Perspective, Carlisle, Pa.: U.S. Army War College Strategic Studies Institute, January 2005, p...Mackinlay, Globalisation and Insurgency, London, UK: Interna- tional Institute for Strategic Studies, Adelphi Paper 352, 2002, p. 79. 17 Beckett (2005, p

  5. Cassini Post End of Mission News Conference

    NASA Image and Video Library

    2017-09-15

    On Sept. 15, NASA held a news conference from the agency’s Jet Propulsion Laboratory, in Pasadena, California, following the final mission activities of the agency’s Cassini mission to Saturn. Cassini, which arrived in orbit around Saturn in 2004 on a mission to study the giant planet, its rings, moons and magnetosphere, concluded its remarkable mission with an intentional plunge into Saturn's atmosphere..

  6. The Strategic Bomber and Low-Intensity Conflict

    DTIC Science & Technology

    1990-05-01

    of combat forces can be limited by current capabilities and other constraints. Aplication for Strategic Bombers Although the total United States...labeled the long-range combat aircraft. (31:1) The bomber’s characteristic of long-range provides mobility and mission flexibility which is not available...Summer 1989, pp. 46-55. 47. Ropelewski, Robert R. "Target Mobility , Arms Control Challenge SAC Modernization," Armed Forces Journo-1 £Dt~raflii~1

  7. FY2007 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W W; Sketchley, J A; Kotta, P R

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted frommore » the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.« less

  8. Proceedings of the Mars Global Network Mission Workshop

    NASA Technical Reports Server (NTRS)

    Sturms, Francis M., Jr. (Editor)

    1990-01-01

    A workshop on the Mars Global Network Mission held at the Jet Propulsion Laboratory (JPL) on February 6 and 7, 1990, was attended by 68 people from JPL, National Aeronautics and Space Administration centers, universities, national laboratories, and industry. Three working sessions on science and exploration objectives, mission and system design concepts, and subsystem technology readiness each addressed three specific questions on implementation concepts for the mission. The workshop generated conclusions for each of the nine questions and also recommended several important science and engineering issues to be studied subsequent to the workshop.

  9. Strategic planning in an academic radiation medicine program

    PubMed Central

    Hamilton, J.L.; Foxcroft, S.; Moyo, E.; Cooke-Lauder, J.; Spence, T.; Zahedi, P.; Bezjak, A.; Jaffray, D.; Lam, C.; Létourneau, D.; Milosevic, M.; Tsang, R.; Wong, R.; Liu, F.F.

    2017-01-01

    Background In this paper, we report on the process of strategic planning in the Radiation Medicine Program (rmp) at the Princess Margaret Cancer Centre. The rmp conducted a strategic planning exercise to ensure that program priorities reflect the current health care environment, enable nimble responses to the increasing burden of cancer, and guide program operations until 2020. Methods Data collection was guided by a project charter that outlined the project goal and the roles and responsibilities of all participants. The process was managed by a multidisciplinary steering committee under the guidance of an external consultant and consisted of reviewing strategic planning documents from close collaborators and institutional partners, conducting interviews with key stakeholders, deploying a program-wide survey, facilitating an anonymous and confidential e-mail feedback box, and collecting information from group deliberations. Results The process of strategic planning took place from December 2014 to December 2015. Mission and vision statements were developed, and core values were defined. A final document, Strategic Roadmap to 2020, was established to guide programmatic pursuits during the ensuing 5 years, and an implementation plan was developed to guide the first year of operations. Conclusions The strategic planning process provided an opportunity to mobilize staff talents and identify environmental opportunities, and helped to enable more effective use of resources in a rapidly changing health care environment. The process was valuable in allowing staff to consider and discuss the future, and in identifying strategic issues of the greatest importance to the program. Academic programs with similar mandates might find our report useful in guiding similar processes in their own organizations. PMID:29270061

  10. Ongoing Mars Missions: Extended Mission Plans

    NASA Astrophysics Data System (ADS)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  11. The clinical chemistry and immunology of long-duration space missions.

    PubMed

    Wu, A H; Taylor, G R; Graham, G A; McKinley, B A

    1993-01-01

    Clinical laboratory diagnostic capabilities are needed to guide health and medical care of astronauts during long-duration space missions. Clinical laboratory diagnostics, as defined for medical care on Earth, offers a model for space capabilities. Interpretation of laboratory results for health and medical care of humans in space requires knowledge of specific physiological adaptations that occur, primarily because of the absence of gravity, and how these adaptations affect reference values. Limited data from American and Russian missions have indicated shifts of intra- and extracellular fluids and electrolytes, changes in hormone concentrations related to fluid shifts and stresses of the missions, reductions in bone and muscle mass, and a blunting of the cellular immune response. These changes could increase susceptibility to space-related illness or injury during a mission and after return to Earth. We review physiological adaptations and the risk of medical problems that occur during space missions. We describe the need for laboratory diagnostics as a part of health and medical care in space, and how this capability might be delivered.

  12. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, answer questions from the media during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. In-Q-Tel, the strategic investment firm for the U.S. Intelligence Community

    NASA Astrophysics Data System (ADS)

    Ulvick, S. J.; Tighe, D. W.

    2008-04-01

    In-Q-Tel is a strategic investment firm that works to identify, adapt, and deliver innovative technology solutions to support the missions of the Central Intelligence Agency and the broader U.S. Intelligence Community (IC). Launched by the CIA in 1999 as a private, independent, not-for-profit organization, IQT's mission is to identify and partner with companies developing cutting-edge technologies that serve the national security interests of the United States. Working from an evolving strategic blueprint defining the Intelligence Community's critical technology needs, IQT engages with entrepreneurs, growth companies, researchers, and venture capitalists to deliver technologies that provide superior capabilities for the CIA and the broader IC. To date, IQT has reviewed more than 6,300 business proposals, invested in more than 100 companies, and delivered more than 140 technology solutions to the U.S. Intelligence Community.

  14. State Board for Community Colleges Strategic Plan, 2000-2002 and Beyond.

    ERIC Educational Resources Information Center

    Virginia State Dept. of Community Colleges, Richmond.

    This report presents the major accomplishments, opportunities, and challenges identified in Virginia Community College System's (VCCS) strategic assessment, as well as goals that address critical issues for the college system. The mission of the VCCS is to provide comprehensive higher education and workforce training programs and services of…

  15. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from right, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, are seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  16. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right, speaks during a press conference previewing Cassini's End of Mission as director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from left, and Cassini project scientist at JPL, Linda Spilker, second from right, look on, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  17. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, left, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Also participating in the press conference were Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from left, and principle investigator for the Ion and Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  18. Strategic Planning: An Imperative Procedure for Educational Leaders to Employ

    ERIC Educational Resources Information Center

    Cloud, Michelle

    2006-01-01

    Strategic planning is a process that educational leaders must utilize to allow the organization to make its vision come into fruition. Bryson asserts that leaders must be masterful in this process to allow the organization to " . . . fulfill (its) mission, meet (its) mandates, and satisfy (its) constituents in the years ahead" (Bryson 1995, pg.…

  19. A Strategic Approach to Board Involvement in Financial Resource Development

    ERIC Educational Resources Information Center

    Herrmann, Siegfried

    2011-01-01

    The new strategic paradigm of resource development described in this paper recognizes that there are a number of important resources, in addition to financial ones, that are important to support the mission and to achieve the vision of a nonprofit organization, such as a college or university. It acknowledges and utilizes board members, with…

  20. The component alignment model: a new approach to health care information technology strategic planning.

    PubMed

    Martin, J B; Wilkins, A S; Stawski, S K

    1998-08-01

    The evolving health care environment demands that health care organizations fully utilize information technologies (ITs). The effective deployment of IT requires the development and implementation of a comprehensive IT strategic plan. A number of approaches to health care IT strategic planning exist, but they are outdated or incomplete. The component alignment model (CAM) introduced here recognizes the complexity of today's health care environment, emphasizing continuous assessment and realignment of seven basic components: external environment, emerging ITs, organizational infrastructure, mission, IT infrastructure, business strategy, and IT strategy. The article provides a framework by which health care organizations can develop an effective IT strategic planning process.

  1. Defense Science Board (DSB) Summer Study Report on Strategic Surprise

    DTIC Science & Technology

    2015-07-01

    against changing priorities. The study focused on potential regrets in eight areas and provides recommendations to avoid strategic surprise in those...explore potential changes for  Department of Defense priorities as well as possible actions and hedges to strategic surprise and  avoid   potential  regrets ...similar surprises—and to  avoid   regretting  actions or lack  of action taken today—the study evaluated several key mission and enterprise areas. Some of

  2. A brief history of Sandia's National security missions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewien, Celeste A.; O'Canna, Myra Lynn; Stikar, John Anthony.

    2014-09-01

    To help members of the workforce understand what factors contribute to Sandia National Laboratories national security mission, the authors describe the evolution of Sandias core mission and its other mission components. The mission of Sandia first as a division of Los Alamos and later as Sandia Corporation underlies our core nuclear weapon mission of today. Sandias mission changed in 1963 and twice more in the 1970s. This report should help staff and management appreciate the need for mission evolution. A clear definition and communication of a consistent corporate mission statement is still needed.

  3. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize speaks during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini project scientist at JPL, Linda Spilker is seen during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini project scientist at JPL, Linda Spilker is seen on a monitor during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    An image of Saturn is seen on a monitor during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Italian Space Agency (ASI) representative, Enrico Flamini, is introduced during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Jia-Rui Cook, media relations representative at JPL, moderates a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Laboratory Directed Research and Development Annual Report FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  10. Laboratory Directed Research and Development Annual Report FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  11. Pennsylvania's Transition to Enterprise Computing as a Study in Strategic Alignment

    ERIC Educational Resources Information Center

    Sawyer, Steve; Hinnant, Charles C.; Rizzuto, Tracey

    2008-01-01

    We theorize about the strategic alignment of computing with organizational mission, using the Commonwealth of Pennsylvania's efforts to pursue digital government initiatives as evidence. To do this we draw on a decade (1995-2004) of changes in Pennsylvania to characterize how a state government shifts from an organizational to an enterprise…

  12. An Overview of the NASA Aeronautics Test Program Strategic Plan

    NASA Technical Reports Server (NTRS)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced

  13. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Wester

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals thatmore » were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.« less

  14. Using a Strategic Plan to Promote Technology in Rural School Districts.

    ERIC Educational Resources Information Center

    VanSciver, James H.

    1994-01-01

    About six years ago, a rural Delaware school district formed a community/staff long-range planning committee to craft a strategic plan that would identify school system values and reallocate resources. As vision and mission statements emerged, technology evolved as a major value, with three goals related to funding and accessibility. Collaborative…

  15. Immersive Environments for Mission Operations: Beyond Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Wright, J.; Hartman, F.; Cooper, B.

    1998-01-01

    Immersive environments are just beginning to be used to support mission operations at the Jet Propulsion Laboratory. This technology contributed to the Mars Pathfinder Mission in planning sorties for the Sojourner rover.

  16. National Center for Combating Terrorism Strategic Plan, September 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Nevada

    2003-09-01

    National Center for Combating Terrorism Strategic Plan is to document the mission, vision, and goals for success; define the build plan; and describe initiatives that support the U.S. Department of Homeland Security, U.S. Department of Defense, U.S. Department of Energy, U.S. Department of Justice, intelligence community, National Governors Association, and other organizations or departments with combating terrorism training, testing, and technology responsibilities.

  17. Spring 2005 Industry Study. Strategic Materials

    DTIC Science & Technology

    2005-01-01

    Research Laboratory, Weapons and Materials Research Center. Presented at ARL, Aberdeen, MD. March 17, 2005. Ashley, Steven. “ Alchemy of a...Spring 2005 Industry Study Final Report Strategic Materials The Industrial College of the Armed Forces National...the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

  18. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, are seen as they watch a replay of the final moments of the Cassini spacecraft during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, react to seeing images of the Cassini science and engineering teams during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  1. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini spacecraft is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Participants in the press conference were: Director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from right, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Cognitive Characteristics of Strategic and Non-strategic Gamblers.

    PubMed

    Mouneyrac, Aurélie; Lemercier, Céline; Le Floch, Valérie; Challet-Bouju, Gaëlle; Moreau, Axelle; Jacques, Christian; Giroux, Isabelle

    2018-03-01

    Participation in strategic and non-strategic games is mostly explained in the literature by gender: men gamble on strategic games, while women gamble on non-strategic games. However, little is known about the underlying cognitive factors that could also distinguish strategic and non-strategic gamblers. We suggest that cognitive style and need for cognition also explain participation in gambling subtypes. From a dual-process perspective, cognitive style is the tendency to reject or accept the fast, automatic answer that comes immediately in response to a problem. Individuals that preferentially reject the automatic response use an analytic style, which suggest processing information in a slow way, with deep treatment. The intuitive style supposes a reliance on fast, automatic answers. The need for cognition provides a motivation to engage in effortful activities. One hundred and forty-nine gamblers (53 strategic and 96 non-strategic) answered the Cognitive Reflection Test, Need For Cognition Scale, and socio-demographic questions. A logistic regression was conducted to evaluate the influence of gender, cognitive style and need for cognition on participation in strategic and non-strategic games. Our results show that a model with both gender and cognitive variables is more accurate than a model with gender alone. Analytic (vs. intuitive) style, high (vs. low) need for cognition and being male (vs. female) are characteristics of strategic gamblers (vs. non-strategic gamblers). This study highlights the importance of considering the cognitive characteristics of strategic and non-strategic gamblers in order to develop preventive campaigns and treatments that fit the best profiles for gamblers.

  3. Sandia National Laboratories: About Sandia: Leadership

    Science.gov Websites

    Working With Sandia Working With Sandia Prospective Suppliers What Sandia Looks For In Our Suppliers What provides leadership and management direction for the safe, secure execution of all Sandia missions. View implement the Labs Director's strategic vision for safe, secure operations at Sandia. View full biography

  4. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a Spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.

  5. Cost efficient operations for Discovery class missions

    NASA Technical Reports Server (NTRS)

    Cameron, G. E.; Landshof, J. A.; Whitworth, G. W.

    1994-01-01

    The Near Earth Asteroid Rendezvous (NEAR) program at The Johns Hopkins University Applied Physics Laboratory is scheduled to launch the first spacecraft in NASA's Discovery program. The Discovery program is to promote low cost spacecraft design, development, and mission operations for planetary space missions. The authors describe the NEAR mission and discuss the design and development of the NEAR Mission Operations System and the NEAR Ground System with an emphasis on those aspects of the design that are conducive to low-cost operations.

  6. Superfund Contract Laboratory Program

    EPA Pesticide Factsheets

    The Contract Laboratory Program (CLP) is a national network of EPA personnel, commercial laboratories, and support contractors whose primary mission is to provide data of known and documented quality to the Superfund program.

  7. Mars Science Laboratory Mission and Science Investigation

    NASA Astrophysics Data System (ADS)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  8. Cloud computing strategic framework (FY13 - FY15).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arellano, Lawrence R.; Arroyo, Steven C.; Giese, Gerald J.

    This document presents an architectural framework (plan) and roadmap for the implementation of a robust Cloud Computing capability at Sandia National Laboratories. It is intended to be a living document and serve as the basis for detailed implementation plans, project proposals and strategic investment requests.

  9. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    GOES-S Mission Science Briefing hosted by Steve Cole, NASA Communications, with Dan Lindsey, GOES-R senior scientific advisor, NOAA; Louis Uccellini, director, National Weather Service, NOAA; Jim Roberts, scientist, Earth System Research Laboratory, Office of Atmospheric Research, NOAA; Kristin Calhoun, research scientist, National Severe Storms Laboratory, NOAA; and George Morrow, deputy director, NASA Goddard Space Flight Center.

  10. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    NASA Technical Reports Server (NTRS)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This viewgraph presentation reviews the architectural description of the Mission Data Processing and Control System (MPCS). MPCS is an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is designed with these factors (1) Enabling plug and play architecture (2) MPCS has strong inheritance from GDS components that have been developed for other Flight Projects (MER, MRO, DAWN, MSAP), and are currently being used in operations and ATLO, and (3) MPCS components are Java-based, platform independent, and are designed to consume and produce XML-formatted data

  11. Negotiation in the New Strategic Environment: Lessons From Iraq

    DTIC Science & Technology

    2007-08-01

    Andrew Terrell , Reconstructing Iraq: Insights, Challenges, and Missions for Military Forces in a Post- Conflict Scenario, Carlisle Barracks, PA...Negotiation, Ann Arbor, MI: University of Michigan Press, 2000, pp. 271-273 (hereafter Zartman and Rubin, Symmetry and Assymmetry). 80. As discussed...122. See Mnookin, Beyond Winning, pp. 28-31. 123. See Anne L. Lytle, Jeanne M. Brett, and Debra L. Shapiro, “The Strategic Use of Interests, Rights

  12. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  13. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    NASA Technical Reports Server (NTRS)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This paper details an architectural description of the Mission Data Processing and Control System (MPCS), an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is developed based on a set of small reusable components, implemented in Java, each designed with a specific function and well-defined interfaces. An industry standard messaging bus is used to transfer information among system components. Components generate standard messages which are used to capture system information, as well as triggers to support the event-driven architecture of the system. Event-driven systems are highly desirable for processing high-rate telemetry (science and engineering) data, and for supporting automation for many mission operations processes.

  14. Lofty missions, down-to-earth plans.

    PubMed

    Rangan, V Kasturi

    2004-03-01

    Most nonprofits make program decisions based on a mission rather than a strategy. They rally under the banner of a particular cause, be it "fight homelessness" or "end hunger." And since their causes are so worthwhile, they support any programs that are related--even tangentially--to their core missions. It's hard to fault people for trying to improve the state of the world, but that approach to making decisions is misguided. Acting without a clear long-term strategy can stretch an agency's core capabilities and push it in unintended directions. The fundamental problem is that many nonprofits don't have a strategy; instead, they have a mission and a portfolio of programs. But they hardly make deliberate decisions about which programs to run, which to drop, and which to turn down for funding. What most nonprofits call "strategy" is really just an intensive exercise in resource allocation and program management. This article outlines for nonprofits a four-step process for developing strategy. The first step is to create a broad, inspiring mission statement. The second step is to translate that core mission into a smaller, quantifiable operational mission. For instance, an agency whose core mission is to fight homelessness must decide if its focus is rural or urban and if it should concentrate on low-income housing loans or on establishing more shelters. The third step is to create a strategy platform; that is, the nonprofit decides how it will achieve its operational mission. Decisions about funding and about client, program, and organizational development are all made here. Once that platform is established, the nonprofit is ready to move to step four--making reasoned, strategic decisions about which programs to run and how to run them. The agency that follows these steps will improve its focus and its effectiveness at fulfilling its mission.

  15. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Decoupling the use and meaning of strategic plans in public healthcare

    PubMed Central

    2013-01-01

    Background The culture of New Public Management has promoted the diffusion of strategic management tools throughout Public Healthcare Organisations (PHOs). There is consensus that better strategic planning tools are required to achieve higher levels of organisational performance. This paper provides evidence and understanding of the emergent uses and scope of strategic planning in PHOs, in order to answer three research questions: (i) has the New Public Management approach changed the organisational culture of PHOs in terms of how they adopt, diffuse, and use strategic planning documents? (ii) how coherent are strategic planning documents in PHOs? and (iii) what are the main purposes of strategic documents in PHOs? Methods An analysis was carried out in three Italian Local Health Authorities. We analysed the number and types of formal strategic documents adopted between 2004 and 2012, evaluating their degree of coherence and coordination, their hierarchy, their degree of disclosure, and the consistency of their strategic goals. A content analysis was performed to investigate overlap in terms of content and focus, and a qualitative analysis was carried out to study and represent the relationships between documents. Results The analysis showed that a rich set of strategic documents were adopted by each PHO. However, these are often uncoordinated and overlap in terms of content. They adopt different language and formats for various stakeholders. The presence of diverse external drivers may explain the divergent focus, priorities and inconsistent goals in the strategic documents. This planning complexity makes it difficult to determine how the overall goals and mission of an organisation are defined and made visible. Conclusions The evidence suggests that PHOs use a considerable number of strategic documents. However, they employ no clear or explicit overarching strategy currently, and strategic planning appears to be externally oriented. All the documents communicate

  17. Decoupling the use and meaning of strategic plans in public healthcare.

    PubMed

    Lega, Federico; Longo, Francesco; Rotolo, Andrea

    2013-01-04

    The culture of New Public Management has promoted the diffusion of strategic management tools throughout Public Healthcare Organisations (PHOs). There is consensus that better strategic planning tools are required to achieve higher levels of organisational performance. This paper provides evidence and understanding of the emergent uses and scope of strategic planning in PHOs, in order to answer three research questions: (i) has the New Public Management approach changed the organisational culture of PHOs in terms of how they adopt, diffuse, and use strategic planning documents? (ii) how coherent are strategic planning documents in PHOs? and (iii) what are the main purposes of strategic documents in PHOs? An analysis was carried out in three Italian Local Health Authorities. We analysed the number and types of formal strategic documents adopted between 2004 and 2012, evaluating their degree of coherence and coordination, their hierarchy, their degree of disclosure, and the consistency of their strategic goals. A content analysis was performed to investigate overlap in terms of content and focus, and a qualitative analysis was carried out to study and represent the relationships between documents. The analysis showed that a rich set of strategic documents were adopted by each PHO. However, these are often uncoordinated and overlap in terms of content. They adopt different language and formats for various stakeholders. The presence of diverse external drivers may explain the divergent focus, priorities and inconsistent goals in the strategic documents. This planning complexity makes it difficult to determine how the overall goals and mission of an organisation are defined and made visible. The evidence suggests that PHOs use a considerable number of strategic documents. However, they employ no clear or explicit overarching strategy currently, and strategic planning appears to be externally oriented. All the documents communicate similar topics to different

  18. Mission, Vision, Values

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  19. USGS Information Technology Strategic Plan: Fiscal Years 2007-2011

    USGS Publications Warehouse

    ,

    2006-01-01

    Introduction: The acquisition, management, communication, and long-term stewardship of natural science data, information, and knowledge are fundamental mission responsibilities of the U.S. Geological Survey (USGS). USGS scientists collect, maintain, and exchange raw scientific data and interpret and analyze it to produce a wide variety of science-based products. Managers throughout the Bureau access, summarize, and analyze administrative or business-related information to budget, plan, evaluate, and report on programs and projects. Information professionals manage the extensive and growing stores of irreplaceable scientific information and knowledge in numerous databases, archives, libraries, and other digital and nondigital holdings. Information is the primary currency of the USGS, and it flows to scientists, managers, partners, and a wide base of customers, including local, State, and Federal agencies, private sector organizations, and individual citizens. Supporting these information flows is an infrastructure of computer systems, telecommunications equipment, software applications, digital and nondigital data stores and archives, technical expertise, and information policies and procedures. This infrastructure has evolved over many years and consists of tools and technologies acquired or built to address the specific requirements of particular projects or programs. Developed independently, the elements of this infrastructure were typically not designed to facilitate the exchange of data and information across programs or disciplines, to allow for sharing of information resources or expertise, or to be combined into a Bureauwide and broader information infrastructure. The challenge to the Bureau is to wisely and effectively use its information resources to create a more Integrated Information Environment that can reduce costs, enhance the discovery and delivery of scientific products, and improve support for science. This Information Technology Strategic Plan

  20. GRAIL Mission Briefing

    NASA Image and Video Library

    2011-08-25

    Leesa Hubbard, teacher in residence, Sally Ride Science, San Diego, speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)

  1. GRAIL Mission Briefing

    NASA Image and Video Library

    2011-08-25

    Jim Green (left), director, Planetary Science Division at NASA Headquarters, speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)

  2. GRAIL Mission Briefing

    NASA Image and Video Library

    2011-08-25

    Jim Green, director, Planetary Science Division at NASA Headquarters, speaks at a press conference about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)

  3. GRAIL Mission Briefing

    NASA Image and Video Library

    2011-08-25

    Maria Zuber, GRAIL principal investigator, Massachusetts Institute of Technology, Cambridge, answers a reporter's question at a press briefing about the upcoming launch to the moon of the Gravity Recovery and Interior Laboratory (GRAIL) mission, Thursday, Aug. 25, 2011 in Washington. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. The mission will place two spacecraft into the same orbit around the moon which will gather information about the its gravitational field enabling scientists to create a high-resolution map. Photo Credit: (NASA/Carla Cioffi)

  4. Library Web Site Administration: A Strategic Planning Model For the Smaller Academic Library

    ERIC Educational Resources Information Center

    Ryan, Susan M.

    2003-01-01

    Strategic planning provides a useful structure for creating and implementing library web sites. The planned integration of a library's web site into its mission and objectives ensures that the library's community of users will consider the web site one of the most important information tools the library offers.

  5. Lcross Lunar Impactor - Lessons Learned from a Small Satellite Mission

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel

    2010-01-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) launched with the Lunar Reconnaissance Orbiter (LRO) on June 18, 2009. While the science purpose of the LCROSS mission was to determine the presence of water-ice in a permanently-shadowed crater on the moon, the functional purpose was to be a pioneer for future low-cost, risk-tolerant small satellite NASA missions. Recent strategic changes at the Agency level have only furthered the importance of small satellite missions. NASA Ames Research Center and its industry partner, Northrop-Grumman, initiated this spacecraft project two-years after its co-manifest mission had started, with less than one-fifth the budget. With a $79M total cost cap (including operations and reserves) and 31-months until launch, LCROSS needed a game-changing approach to be successful. At the LCROSS Confirmation Review, the ESMD Associate Administrator asked the Project team to keep a close record of lessons learned through the course of the mission and share their findings with the Agency at the end of the mission. This paper summarizes the Project, the mission, its risk position, and some of the more notable lessons learned.

  6. LCROSS Lunar Impactor - Lessons Learned from a Small Satellite Mission

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel R.

    2010-01-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) launched with the Lunar Reconnaissance Orbiter (LRO) on June 18, 2009. While the science function of the LCROSS mission was to determine the presence of water-ice in a permanently-shadowed crater on the moon, the operational purpose was to be a pioneer for future low-cost, risk-tolerant small satellite NASA missions. Recent strategic changes at the Agency level have only furthered the importance of small satellite missions. NASA Ames Research Center and its industry partner, Northrop-Grumman, initiated this spacecraft project two-years after its co-manifest mission had started, with less than one-fifth the budget. With a $79M total cost cap (including operations and reserves) and 31-months until launch, LCROSS needed a game-changing approach to be successful. At the LCROSS Confirmation Review, the ESMD Associate Administrator asked the Project team to keep a close record of lessons learned through the course of the mission and share their findings with the Agency at the end of the mission. This paper summarizes the Project, the mission, its risk position, and some of the more notable lessons learned.

  7. Peace-enforcement: Mission, strategy, and doctrine. Monograph report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, J.B.

    This monograph examines a new military mission-peace-enforcement. It does so through a five part strategic process that links national interests and national security strategy to tactical operations. it asserts that US national security strategy is evolving as a result of the end of the Cold War and that a new strategy will lead to new military missions. The monograph first describes a limited spectrum of military operations that comprise a peace-enforcement mission. Next, it reviews enduring US national interests then analyzes evolving national security strategy to determine if these elements of strategy support the need for a peace-enforcement mission. Themore » monograph then examines national military strategy, operational level strategy and joint guidance, and finally, US tactical doctrine to determine if peace-enforcement is a mission the US military can execute today. The monograph concludes that national interests and evolving national security strategy will emphasize promotion of democracy and stability in lieu of Cold War deterrence. The national military strategy partially supports this shift; support should increase as the Clinton administration clarifies its policy and solidifies the shift from containment. Lastly, the monograph finds there is sufficient operational and tactical level guidance to conduct the mission and recommends formal acceptance of the peace-enforcement mission into joint doctrine.« less

  8. Deedee Montzka of the National Center for Atmospheric Research checks out the NOxyO3 instrument on NASA's DC-8 flying laboratory before the ARCTAS mission

    NASA Image and Video Library

    2008-03-07

    Climate researchers from the National Center for Atmospheric Research (NCAR) and several universities install and perform functional checkouts of a variety of sensitive atmospheric instruments on NASA's DC-8 airborne laboratory prior to beginning the ARCTAS mission.

  9. Ionospheric Disturbances Originating From Tropospheric and Ground Activities: A new Strategic Research Program at the Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Shao, X. M.

    2015-12-01

    It has been increasingly recognized and observed that activities within the troposphere, either natural (e.g., thunderstorm, earthquake, volcano) or anthropogenic (e.g., explosion above or below ground), can substantially disturb the ionosphere in the forms of atmosphere gravity wave, infrasonic acoustic wave, and electric-field-induced ionospheric chemical reaction. These disturbances introduce plasma density variations in the ionosphere that adversely distort the transionospheric radio signals for communication, navigation, surveillance, and other national security missions. A new three-year strategic research program has been initiated at LANL in FY16 to investigate, understand, and characterize the interwoven dynamic and electrodynamic coupling processes from the source in the troposphere to the disturbances in the ionosphere via comprehensive observation and model simulation. The planned study area is chosen to be over the US Great Plains where severe thunderstorms occur frequently and where the necessary atmospheric and ionospheric observations are conducted routinely. In this presentation, we will outline our program plan, technical approaches, and scientific goals, and will discuss opportunities of possible inter-institute collaborations.

  10. Emirates Mars Mission (EMM) 2020 Overview

    NASA Astrophysics Data System (ADS)

    Amiri, S.; Sharaf, O.; AlMheiri, S.; AlRais, A.; Wali, M.; Al Shamsi, Z.; Al Qasim, I.; Al Harmoodi, K.; Al Teneiji, N.; Almatroushi, H. R.; Al Shamsi, M. R.; Altunaiji, E. S.; Lootah, F. H.; Badri, K. M.; McGrath, M.; Withnell, P.; Ferrington, N.; Reed, H.; Landin, B.; Ryan, S.; Pramann, B.; Brain, D.; Deighan, J.; Chaffin, M.; Holsclaw, G.; Drake, G.; Wolff, M. J.; Edwards, C. S.; Lillis, R. J.; Smith, M. D.; Forget, F.; Fillingim, M. O.; England, S.; Christensen, P. R.; Osterloo, M. M.; Jones, A. R.

    2017-12-01

    United Arab Emirates (UAE) has entered the space exploration race with the announcement of Emirates Mars Mission (EMM), the first Emirati mission to another planet, in 2014. Through this mission, UAE is to send an unmanned probe, called Hope probe, to be launched in summer 2020 and reach Mars by 2021 to coincide with UAE's 50th anniversary. The mission should be unique, and should aim for novel and significant discoveries that contributed to the ongoing work of the global space science community. EMM has passed its Mission Concept Review (MCR), System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR) phases. The mission is led by the Mohammed Bin Rashid Space Centre (MBRSC), in partnership with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP), University of California Berkeley Space Sciences Laboratory (SSL), and Arizona State University (ASU) School of Earth and Space Exploration. The mission is designed to answer the following three science questions: (1) How does the Martian lower atmosphere respond globally, diurnally, and seasonally to solar forcing? (2) How do conditions throughout the Martian atmosphere affect rates of atmospheric escape? (3) How does the Martian exosphere behave temporally and spatially?. Each question is aligned with three mission objectives and four investigations that study the Martian atmospheric circulation and connections through measurements done using three instruments that image Mars in the visible, thermal infrared and ultraviolet wavelengths. Data will be collected around Mars for a period of an entire Martian year to provide scientists with valuable understanding of the changes to the Martian atmosphere today. The presentation will focus on the overviews of the mission and science objectives, instruments and spacecraft, as well as the ground and launch segments.

  11. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    One of the final images of Saturn's moon Titan, that was taken by the Cassini spacecraft on Sept. 11, is seen as Cassini project scientist at JPL, Linda Spilker, second from right, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Also participating in the press conference were director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from left, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, left. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  13. Sandia National Laboratories: News: Publications: Strategic Plan

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Mars Science Laboratory's Descent Stage

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of NASA's Mars Science Laboratory, called the descent stage, does its main work during the final few minutes before touchdown on Mars.

    The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground.

    The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  15. Mission Continuity Planning: Strategically Assessing and Planning for Threats to Operations.

    ERIC Educational Resources Information Center

    Qayoumi, Mohammad H.

    This book covers the principles of risk and risk management and offers a framework for analyzing the significant, often unforeseen threats facing higher education institutions today. It examines the critical elements of a disaster preparedness plan and addresses business continuity and mission continuity planning. The book also provides tools for…

  16. Community of Practice: A Path to Strategic Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nancy M. Carlson

    2003-04-01

    To explore the concept of community of practice, the research initially concentrates on a strategic business process in a research and applied engineering laboratory discovering essential communication tools and processes needed to cultivate a high functioning cross-disciplinary team engaged in proposal preparation. Qualitative research in the human ecology of the proposal process blends topic-oriented ethnography and grounded theory and includes an innovative addition to qualitative interviewing, called meta-inquiry. Meta-inquiry uses an initial interview protocol with a homogeneous pool of informants to enhance the researcher's sensitivity to the unique cultures involved in the proposal process before developing a formal interview protocol.more » In this study the preanalysis process uses data from editors, graphic artists, text processors, and production coordinators to assess, modify, enhance, and focus the formal interview protocol with scientists, engineers, and technical managers-the heterogeneous informants. Thus this human ecology-based interview protocol values homogeneous and heterogeneous informant data and acquires data from which concepts, categories, properties, and both substantive and formal theory emerges. The research discovers the five essential processes of owning, visioning, reviewing, producing, and contributing for strategic learning to occur in a proposal community of practice. The apprenticeship, developmental, and nurturing perspectives of adult learning provide the proposal community of practice with cohesion, interdependence, and caring, while core and boundary practices provide insight into the tacit and explicit dimensions of the proposal process. By making these dimensions explicit, the necessary competencies, absorptive capacity, and capabilities needed for strategic learning are discovered. Substantive theory emerges and provides insight into the ability of the proposal community of practice to evolve, flourish, and adapt to the

  17. Life Sciences Laboratories for the Shuttle/Spacelab

    NASA Technical Reports Server (NTRS)

    Schulte, L. O.; Kelly, H. B.; Secord, T. C.

    1976-01-01

    Space Shuttle and Spacelab missions will provide scientists with their first opportunity to participate directly in research in space for all scientific disciplines, particularly the Life Sciences. Preparations are already underway to ensure the success of these missions. The paper summarizes the results of the 1975 NASA-funded Life Sciences Laboratories definition study which defined several long-range life sciences research options and the laboratory designs necessary to accomplish high-priority life sciences research. The implications and impacts of Spacelab design and development on the life sciences missions are discussed. An approach is presented based upon the development of a general-purposs laboratory capability and an inventory of common operational research equipment for conducting life sciences research. Several life sciences laboratories and their capabilities are described to demonstrate the systems potentially available to the experimenter for conducting biological and medical research.

  18. Chief of Mission Authority as a Model for National Security Integration (INSS Strategic Perspectives, Number 2, December 2010)

    DTIC Science & Technology

    2010-12-01

    unclassified b. ABSTRACT unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Institute for...Strategic Studies Strategic Perspectives, No. 2 Series Editor: Phillip C . Saunders National Defense University Press Washington, D.C. December 2010 by...on this subject by Ambassador Robert Oakley and Michael Casey reviewed this question in some detail, arriving at telling insights. Citing the

  19. Using multi-disciplinary strategic master facilities planning for organizations experiencing programmatic re-direction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heubach, J.G.; Weimer, W.C.; Bruce, W.A.

    Facility master planning is critical to the future productivity of a laboratory and the quality of worklife for the laboratory staff. For organizations undergoing programmatic re-direction, a master facility planning approach linked to the organization`s strategic planning process is even more important. Major changes in an organization such as programmatic re-direction can significantly impact a broad range of variables which exceed the expertise of traditional planning teams, e.g., capacity variability, work team organization, organizational culture, and work process simplification. By expanding the diversity of the participants of the planning team, there is a greater likelihood that a research organization`s scientific,more » organizational, economic, and employees` needs can be meshed in the strategic plan and facility plan. Recent recommendations from facility planners suggest drawing from diverse fields in building multi-disciplinary planning teams: Architecture, engineering, natural science, social psychology, and strategic planning (Gibson,1993). For organizations undergoing significant operational or culture change, the master facility planning team should also include members with expertise in organizational effectiveness, industrial engineering, human resources, and environmental psychology. A recent planning and design project provides an example which illustrates the use of an expanded multi-disciplinary team engaged in planning laboratory renovations for a research organization undergoing programmatic re-direction. The purpose of the proposed poster session is to present a multi-disciplinary master facility planning process linked to an organization`s strategic planning process or organizational strategies.« less

  20. Exploration Laboratory Analysis - ARC

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Fung, Paul P.

    2012-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL). The SMEMCL provided diagnosis and treatment for the evidence-based medical conditions and hence, a basis for developing ELA functional requirements.

  1. STS-94 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The flight crew of STS-94, Cmdr. James D. Halsell, Jr., Pilot Susan L. Still, Payload Cmdr. Janice E. Voss, Mission Specialists Micheal L. Gernhardt and Donald A. Thomas, and Payload Specialists Gregory T. Linteris and Roger K. Crouch can be seen preforming pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. The crew is seen continuing the payload activation process, as the research efforts of the Microgravity Science Laboratory (MSL) mission get into full swing. The crew is seen in the Microgravity Science Laboratory aboard Space Shuttle Columbia activating the final experiment facility and beginning additional experiments, among the more than 30 investigations to be conducted during the 16-day mission. The tape concludes with the re-entery and landing of the Shuttle.

  2. SCOS 2: ESA's new generation of mission control system

    NASA Technical Reports Server (NTRS)

    Jones, M.; Head, N. C.; Keyte, K.; Howard, P.; Lynenskjold, S.

    1994-01-01

    New mission-control infrastructure is currently being developed by ESOC, which will constitute the second generation of the Spacecraft Control Operations system (SCOS 2). The financial, functional and strategic requirements lying behind the new development are explained. The SCOS 2 approach is described. The technological implications of these approaches is described: in particular it is explained how this leads to the use of object oriented techniques to provide the required 'building block' approach. The paper summarizes the way in which the financial, functional and strategic requirements have been met through this combination of solutions. Finally, the paper outlines the development process to date, noting how risk reduction was achieved in the approach to new technologies and summarizes the current status future plans.

  3. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  4. Managing the Civil-Military Relationship: A Study of Lincoln’s Management of the Army of the Potomac Within the Context of Mission Command

    DTIC Science & Technology

    2017-06-09

    to illuminate how mission command concepts can be applied to strategic military and political relationships. Important to this study is that the...Lincoln’s philosophy of leadership and his management of both strategic relationships and operational action as both developed concurrently throughout...relationship management can or should be applied to a strategic level of the federal government. Further, if applicable, how can this leadership

  5. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2015-06-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Helping Texans Turn Information into Knowledge: Agency Strategic Plan, Fiscal Years 2003-2007.

    ERIC Educational Resources Information Center

    Texas State Library and Archives Commission, Austin.

    This document presents the Texas State Library and Archives Commission Agency Strategic Plan for fiscal years 2003-2007. Contents include an overview outlining the vision, mission, philosophy and goals of the Texas State Government and the Texas State Library and Archives Commission and eight chapters: Overview of Our Agency Scope and Functions;…

  7. Strategic Planning as an Educational Enterprise: Modeling Entrepreneurship in the Comprehensive Public College.

    ERIC Educational Resources Information Center

    Ross, Linda W.

    Rowan College of New Jersey has adopted an "enterprise model" for strategic planning that is seen as central to attaining the mission of the college during a time involving a substantial decline in state support. Rowan pursued a strategy termed "growth by substitution." This new process was cast in a more entrepreneurial mold…

  8. Deep space network: Mission support requirements

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose is to provide NASA and Jet Propulsion Laboratory management with a concise summary of information concerning the forecasting of the necessary support and requirements for missions described here, including the Earth Radiation Budget Experiment, the Cosmic Background Explorer, the Comet Rendezvous Asteroid Flyby, the Cassini, and the Dynamics Explorer-1. A brief description of various missions along with specific support requirements for each are given.

  9. Laboratory-Directed Research and Development 2016 Summary Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear

  10. Mars Science Laboratory Rover Taking Shape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The rover is about 9 feet wide and 10 feet long.

    Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin.

    JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.

  11. Strategic Studies Quarterly: Volume 10, No. 4 Winter 2016

    DTIC Science & Technology

    2016-01-01

    capabilities for intelligence col- lection, communications , and missile warning-capabilities largely in- tended to support strategic nuclear forces. 1...WINTER 2016 NASA in the Second Space Age: Exploration, Partnering, and Security declined by 12 percent in real terms from FYlO to FY15. 11 The BCA...orbit as part of the Apollo program, six of which landed on the moon, while there have been hun- dreds of manned missions to LEO. The risks to humans

  12. Advanced Environmental Monitoring and Control Program: Strategic Plan

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory

    1996-01-01

    Human missions in space, from short-duration shuttle missions lasting no more than several days to the medium-to-long-duration missions planned for the International Space Station, face a number of hazards that must be understood and mitigated for the mission to be carried out safely. Among these hazards are those posed by the internal environment of the spacecraft itself; through outgassing of toxic vapors from plastics and other items, failures or off-nominal operations of spacecraft environmental control systems, accidental exposure to hazardous compounds used in experiments: all present potential hazards that while small, may accumulate and pose a danger to crew health. The first step toward mitigating the dangers of these hazards is understanding the internal environment of the spacecraft and the compounds contained within it. Future spacecraft will have integrated networks of redundant sensors which will not only inform the crew of hazards, but will pinpoint the problem location and, through analysis by intelligent systems, recommend and even implement a course of action to stop the problem. This strategic plan details strategies to determine NASA's requirements for environmental monitoring and control systems for future spacecraft, and goals and objectives for a program to answer these needs.

  13. Creating a living document: developing the National Association of School Nurses Mission Statement for the new millennium.

    PubMed

    Brandt, C M

    1999-12-01

    The second in a series of three articles devoted to the development, maintenance, and implementation of the National Association of School Nurses 1998-2001 Strategic Plan and how it relates to the practice of school nurses. Information about the development of a mission/vision statement for the organization is given along with strategies for developing a local school district school health program strategic plan. A previous Nursing Practice Management section article discussed the development of the Association's strategic plan considering the changing health care climate, the shifting needs of school children, and the economic climate for school funding. A future Nursing Practice Management section article will discuss the implementation of the seven goal areas in the National Association of School Nurses 1998-2001 Strategic Plan.

  14. Managing the Implementation of Mission Operations Automation

    NASA Technical Reports Server (NTRS)

    Sodano, R.; Crouse, P.; Odendahl, S.; Fatig, M.; McMahon, K.; Lakin, J.

    2006-01-01

    Reducing the cost of mission operations has necessitated a high level of automation both on spacecraft and ground systems. While automation on spacecraft is implemented during the design phase, ground system automation tends to be implemented during the prime mission operations phase. Experience has shown that this tendency for late automation development can be hindered by several factors: additional hardware and software resources may need to be procured; software must be developed and tested on a non-interference basis with primary operations with limited manpower; and established procedures may not be suited for automation requiring substantial rework. In this paper we will review the experience of successfully automating mission operations for seven on-orbit missions: the Compton Gamma Ray Observatory (CGRO), the Rossi X-Ray Timing Explorer (RXTE), the Advanced Composition Explorer (ACE), the Far Ultraviolet Spectroscopic Explorer (FUSE), Interplanetary Physics Laboratory (WIND), Polar Plasma Laboratory (POLAR), and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). We will provide lessons learned in areas such as: spacecraft recorder management, procedure development, lights out commanding from the ground system vs. stored command loads, spacecraft contingency response time, and ground station interfaces. Implementing automation strategies during the mission concept and spacecraft integration and test phase as the most efficient method will be discussed.

  15. Mission Control, 1964

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. When spacecraft in deep space "phone home," they do it through NASA's Deep Space Network. Engineers in this room at NASA's Jet Propulsion Laboratory -- known as Mission Control -- monitor the flow of data. This image was taken in May 1964, when the building this nerve center is in, the Space Flight Operations Facility (Building 230), was dedicated at JPL. http://photojournal.jpl.nasa.gov/catalog/PIA21120

  16. Strategic Planning: What's so Strategic about It?

    ERIC Educational Resources Information Center

    Strong, Bart

    2005-01-01

    The words "strategic" and "planning" used together can lead to confusion unless one spent the early years of his career in never-ending, team-oriented, corporate training sessions. Doesn't "strategic" have something to do with extremely accurate bombing or a defensive missile system or Star Wars or something? Don't "strategic" and "planning" both…

  17. Taking Charge of the Future: The Strategic Plan for the Association of American Medical Colleges.

    ERIC Educational Resources Information Center

    Association of American Medical Colleges, Washington, DC.

    This report outlines five strategic commitments that the Association of American Medical Colleges (AAMC) has adopted to help academic medicine's leaders uphold their institutional missions while adapting to the changes restructuring American medicine. It discusses the achievements and challenges of academic medicine in the changing health care…

  18. Laboratory manager's financial handbook. The laboratory's importance to the financial stability of a health-care organization.

    PubMed

    Travers, E M

    1996-01-01

    From a financial standpoint, one of the most valuable assets in the survival of a health-care organization is the clinical laboratory. Laboratory directors, managers, and supervisors have indicated their overwhelming need to understand finance, especially cost management, to CLMA and to the author at national meetings and workshops, Tremendous financial pressures are being applied in health-care organizations across the country. Two strategic factors in their successful move into the 21st century are more appropriate test utilization and cost control in the laboratory.

  19. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  20. Crystal Growth Furnace - An overview of the system configuration and planned experiments on the First United States Microgravity Laboratory mission

    NASA Technical Reports Server (NTRS)

    Srinivas, R.; Schaefer, D. A.

    1992-01-01

    The Crystal Growth Furnace (CGF) system configuration for the First United States Microgravity Laboratory (USML-1) mission is reviewed, and the planned on-orbit experiments are briefly described. The CGF is configured to accommodate four scientific experiments involving crystal growth which are based on the classical Bridgman method and CVT method, including vapor transport crystal growth of mercury cadmium telluride; crystal growth of mercury zinc telluride by directional solidification; seeded Bridgman growth of zinc-doped cadmium telluride; and Bridgman growth of selenium-doped gallium arsenide.

  1. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  2. NASA's Laboratory Astrophysics Workshop: Opening Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2002-01-01

    The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.

  3. Commerce Lab: Mission analysis and payload integration study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.

  4. Development and implementation of a comprehensive strategic plan for medical education at an academic medical center.

    PubMed

    Schwartzstein, Richard M; Huang, Grace C; Coughlin, Christine M

    2008-06-01

    Despite their vital contributions to the training of future physicians, many academic teaching hospitals have grown operationally and financially distinct from affiliated medical schools because of divergent missions, contributing to the erosion of clinical training. Some institutions have responded by building hybrid organizations; others by creating large health care networks with variable relationships with the affiliated medical school. In this case, the authors wished to establish the future educational mission of their medical center as a core element of the institution by creating data-driven recommendations for reorganization, programs, and financing. They conducted a self-study of all constituents, the results of which confirmed the importance of education at their institution but also revealed the insufficiency of incentives for teaching. They underwent an external review by a committee of prominent educators, and they involved administrators at the hospital and the medical school. Together, these inputs composed an informed assessment of medical education at their teaching hospital, from which they developed and actualized an institution-wide strategic plan for education. Over the course of three years, they centralized the administrative structure for education, implemented programs that cross departments and reinforce the UME-GME continuum, and created transparency in the financing of medical education. The plan was purposefully aligned with the clinical and research strategic plans by supporting patient safety in programs and the professional development of faculty. The application of a rigorous strategic planning process to medical education at an academic teaching hospital can focus the mission, invigorate faculty, and lead to innovative programs.

  5. A Wet Chemistry Laboratory Cell

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Strategic Planning as a Tool for Achieving Alignment in Academic Health Centers

    PubMed Central

    Higginbotham, Eve J.; Church, Kathryn C.

    2012-01-01

    After the passage of the Patient Protection and Affordable Care Act in March 2010, there is an urgent need for medical schools, teaching hospitals, and practice plans to work together seamlessly across a common mission. Although there is agreement that there should be greater coordination of initiatives and resources, there is little guidance in the literature to address the method to achieve the necessary transformation. Traditional approaches to strategic planning often engage a few leaders and produce a set of immeasurable initiatives. A nontraditional approach, consisting of a Whole-Scale (Dannemiller Tyson Associates, Ann Arbor, MI) engagement, appreciative inquiry, and a balanced scorecard can, more rapidly transform an academic health center. Using this nontraditional approach to strategic planning, increased organizational awareness was achieved in a single academic health center. Strategic planning can be an effective tool to achieve alignment, enhance accountability, and a first step in meeting the demands of the new landscape of healthcare. PMID:23303997

  7. Strategic planning as a tool for achieving alignment in academic health centers.

    PubMed

    Higginbotham, Eve J; Church, Kathryn C

    2012-01-01

    After the passage of the Patient Protection and Affordable Care Act in March 2010, there is an urgent need for medical schools, teaching hospitals, and practice plans to work together seamlessly across a common mission. Although there is agreement that there should be greater coordination of initiatives and resources, there is little guidance in the literature to address the method to achieve the necessary transformation. Traditional approaches to strategic planning often engage a few leaders and produce a set of immeasurable initiatives. A nontraditional approach, consisting of a Whole-Scale (Dannemiller Tyson Associates, Ann Arbor, MI) engagement, appreciative inquiry, and a balanced scorecard can, more rapidly transform an academic health center. Using this nontraditional approach to strategic planning, increased organizational awareness was achieved in a single academic health center. Strategic planning can be an effective tool to achieve alignment, enhance accountability, and a first step in meeting the demands of the new landscape of healthcare.

  8. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini project scientist at JPL, Linda Spilker, center, speaks about a montage of images, made from data obtained by Cassini's visual and infrared mapping spectrometer, shows the location on Saturn where the NASA spacecraft entered Saturn's atmosphere, Friday, Sept. 15, 2017 during a press conference at NASA's Jet Propulsion Laboratory in Pasadena, California. Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, also participated in the press conference. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Review of the Draft 2014 Science Mission Directorate Science Plan

    NASA Technical Reports Server (NTRS)

    2013-01-01

    At the request of NASA's Science Mission Directorate (SMD), the National Research Council's (NRC's) Space Studies Board (SSB) initiated a study to review a draft of the SMD's 2014 Science Plan. The request for this review was made at a time when NASA is engaged in the final stages of a comprehensive, agency-wide effort to develop a new strategic plan and at a time when NASA's budget is under considerable stress. SMD's Science Plan serves to provide more detail on its four traditional science disciplines-astronomy and astrophysics, solar and space physics (also called heliophysics), planetary science, and Earth remote sensing and related activities-than is possible in the agency-wide Strategic Plan. In conducting its review of the draft Science Plan, the Committee on the Assessment of the NASA Science Mission Directorate 2014 Science Plan was charged to comment on the following specific areas: (1) Responsiveness to the NRC's guidance on key science issues and opportunities in recent NRC reports; (2) Attention to interdisciplinary aspects and overall scientific balance; (3) Identification and exposition of important opportunities for partnerships as well as education and public outreach; (4) Integration of technology development with the science program; (5) Clarity on how the plan aligns with SMD's strategic planning process; (6) General readability and clarity of presentation; and (7) Other relevant issues as determined by the committee. The main body of the report provides detailed findings and recommendations relating to the draft Science Plan. The highest-level, crosscutting issues are summarized here, and more detail is available in the main body of the report.

  10. Sandia National Laboratories: Contact Us

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New )* Non-mail deliveries: 1515 Eubank SE Albuquerque, NM 87123 Sandia National Laboratories, California P.O

  11. A Summary fo Solar Sail Technology Developments and Proposed Demonstration Missions

    NASA Technical Reports Server (NTRS)

    Garner, Charles; Diedrich, Benjamin; Leipold, Manfred

    1999-01-01

    NASA's drive to reduce mission costs and accept the risk of incorporating innovative, high payoff technologies into it's missions while simultaneously undertaking ever more difficult missions has sparked a greatly renewed interest in solar sails. From virtually no technology or flight mission studies activity three years ago solar sails are now included in NOAA, NASA, DOD, DLR, ESA and ESTEC technology development programs and technology roadmaps. NASA programs include activities at Langley Research Center, Jet Propulsion Laboratory, Marshall Space Flight Center, Goddard Space Flight Center, and the NASA Institute for Advanced Concepts; NOAA has received funding for a proposed solar sail mission; DLR is designing and fabricating a 20-m laboratory model sail, there are four demonstration missions under study at industry, NASA, DOD and Europe, two new text books on solar sailing were recently published and one new test book is planned. This paper summarizes these on-going developments in solar sails.

  12. Lunar Exploration Missions Since 2006

    NASA Technical Reports Server (NTRS)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  13. Planning the FUSE Mission Using the SOVA Algorithm

    NASA Technical Reports Server (NTRS)

    Lanzi, James; Heatwole, Scott; Ward, Philip R.; Civeit, Thomas; Calvani, Humberto; Kruk, Jeffrey W.; Suchkov, Anatoly

    2011-01-01

    Three documents discuss the Sustainable Objective Valuation and Attainability (SOVA) algorithm and software as used to plan tasks (principally, scientific observations and associated maneuvers) for the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. SOVA is a means of managing risk in a complex system, based on a concept of computing the expected return value of a candidate ordered set of tasks as a product of pre-assigned task values and assessments of attainability made against qualitatively defined strategic objectives. For the FUSE mission, SOVA autonomously assembles a week-long schedule of target observations and associated maneuvers so as to maximize the expected scientific return value while keeping the satellite stable, managing the angular momentum of spacecraft attitude- control reaction wheels, and striving for other strategic objectives. A six-degree-of-freedom model of the spacecraft is used in simulating the tasks, and the attainability of a task is calculated at each step by use of strategic objectives as defined by use of fuzzy inference systems. SOVA utilizes a variant of a graph-search algorithm known as the A* search algorithm to assemble the tasks into a week-long target schedule, using the expected scientific return value to guide the search.

  14. Monitoring the implementation of the national institutes of Health Strategic Plan for Women's Health and Sex/gender Differences research: Strategies and Successes

    PubMed Central

    Tingen, Candace; Nagel, Joan D.

    2013-01-01

    Building upon the legacy of the previous two National Institutes of Health (NIH) women's health research agenda–setting reports,1,2 the Office of Research on Women's Health (ORWH) released the third NIH scientific agenda for women's health and sex differences research in September 2010, entitled Moving Into The Future With New Dimensions and Strategies: A Vision for 2020 For Women's Health Research.3 Within NIH, ORWH is part of the Division of Program Coordination, Planning, and Strategic Initiatives, residing in the Office of the Director; ORWH is charged with coordinating women's health research in collaboration with the 27 Institutes and Centers (ICs) that make up NIH, each of which has a distinct mission and identity. Of note, the 2010 research agenda, or strategic plan, is the women's health research agenda for NIH overall, cutting across the missions of all the ICs. As such, it serves as a map to guide new efforts as well as continue collaborations within NIH in order to fulfill the NIH mission to seek fundamental knowledge about the nature and behavior of living systems and to apply that knowledge to enhance health, lengthen life, and reduce illness and disability. Through the framework of the strategic plan, in partnership with the NIH ICs, the Office of the Director, and the Advisory Committees (Figure 1), ORWH leads efforts to meet this mission as it relates to women's health. PMID:24416693

  15. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.

    PubMed

    Michalski, Joseph R; Jean-PierreBibring; Poulet, François; Loizeau, Damien; Mangold, Nicolas; Dobrea, Eldar Noe; Bishop, Janice L; Wray, James J; McKeown, Nancy K; Parente, Mario; Hauber, Ernst; Altieri, Francesca; Carrozzo, F Giacomo; Niles, Paul B

    2010-09-01

    The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.

  16. Mission Operations of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bass, Deborah; Lauback, Sharon; Mishkin, Andrew; Limonadi, Daniel

    2007-01-01

    A document describes a system of processes involved in planning, commanding, and monitoring operations of the rovers Spirit and Opportunity of the Mars Exploration Rover mission. The system is designed to minimize command turnaround time, given that inherent uncertainties in terrain conditions and in successful completion of planned landed spacecraft motions preclude planning of some spacecraft activities until the results of prior activities are known by the ground-based operations team. The processes are partitioned into those (designated as tactical) that must be tied to the Martian clock and those (designated strategic) that can, without loss, be completed in a more leisurely fashion. The tactical processes include assessment of downlinked data, refinement and validation of activity plans, sequencing of commands, and integration and validation of sequences. Strategic processes include communications planning and generation of long-term activity plans. The primary benefit of this partition is to enable the tactical portion of the team to focus solely on tasks that contribute directly to meeting the deadlines for commanding the rover s each sol (1 sol = 1 Martian day) - achieving a turnaround time of 18 hours or less, while facilitating strategic team interactions with other organizations that do not work on a Mars time schedule.

  17. Delivery to the Wet Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of a picture acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera documents the delivery of soil to one of four Wet Chemistry Laboratory (WCL) cells on the 30th Martian day, or sol, of the mission. Approximately one cubic centimeter of this soil was then introduced into the cell and mixed with water for chemical analysis. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Open Source Next Generation Visualization Software for Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Rinker, George

    2016-01-01

    Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).

  19. Spacelab D-1 mission

    NASA Technical Reports Server (NTRS)

    Dunbar, Bonnie J.

    1990-01-01

    The Spacelab D-1 (Deutchland Eins) Mission is discussed from the points of view of safety, materials handling, and toxic materials; the laboratory and equipment used; and some of the different philosophies utilized on this flight. How to enhance scientific return at the same time as being safe was examined.

  20. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  1. National Aeronautics and Space Administration. 2003 Strategic Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins to unfold, NASA will focus, with renewed vigor, on the challenges and opportunities before us and on developing the unique capabilities that strengthen America and address our national needs. Our Mission is driven by science, exploration, and discovery, and it will be carried out with a firm commitment to fiscal responsibility. We will study climate change and the natural and human-induced hazards to Earth's ecosystem. We will help to counter the threat of international terrorism by developing technologies that can improve the security and safety of our air transportation system. We will lead the world into a new understanding of our planet, our solar system, and the universe around us, and in so doing, we will begin to understand whether life may have developed elsewhere in the cosmos. This strategic plan lays out our hopes for the future and the important things we seek to accomplish for America. We are privileged to be entrusted with these pursuits and thrilled to be able to carry them out. We invite you to join us on this great adventure. Releasing this strategic plan with our 2004 budget request represents our new commitment to the integration of budget and performance reporting. In this way, we will ensure that strategic priorities are aligned with and influence budget priorities. Our new Integrated Budget and Performance Document, a companion volume to this strategic plan, expands on the goals and objectives presented here and identifies the specific long-term and annual performance measures for which we will be held accountable.

  2. Asteroid Impact Mission (aim) & Deflection Assessment: AN Opportunity to Understand Impact Dynamics and Modelling

    NASA Astrophysics Data System (ADS)

    Galvez, A.; Carnelli, I.; Fontaine, M.; Corral Van Damme, C.

    2012-09-01

    ESA's Future Preparation and Strategic Studies Office has carried out the Asteroid Impact Mission (AIM) study with the objective of defining an affordable and fully independent mission element that ESA could contribute to an Asteroid Impact Deflection Assessment campaign (AIDA), a joint effort of ESA, JHU/APL, NASA, OCA and DLR. The mission design foresees two independent spacecraft, one impactor (DART) and one rendezvous probe (AIM). The target of this mission is the binary asteroid system (65803) Didymos (1996 GT): one spacecraft, DART, would impact the secondary of the Didymos binary system while AIM would observe and measure any the change in the relative orbit. For this joint project, the timing of the experiment is set (maximum proximity of the target to Earth allowing for ground-based characterisation of the experiment) but the spacecraft are still able to pursue their missions fully independently. This paper describes in particular the AIM rendezvous mission concept.

  3. NASA's Physics of the Cosmos and Cosmic Origins programs manage Strategic Astrophysics Technology (SAT) development

    NASA Astrophysics Data System (ADS)

    Pham, Thai; Thronson, Harley; Seery, Bernard; Ganel, Opher

    2016-07-01

    The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" "How did galaxies, stars, and planets come to be?" and "Are we alone?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos2 (PCOS), Cosmic Origins3 (COR), and Exoplanet Exploration Program4 (ExEP) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the

  4. Contributions of the Clementine mission to our understanding of the processes and history of the Moon

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.; Lucey, Paul G.

    1993-01-01

    The Clementine mission will provide us with an abundance of information about lunar surface morphology, topography, and composition, and it will permit us to infer the history of the Moon and the processes that have shaped that history. This information can be used to address fundamental questions in lunar science and allow us to make significant advances towards deciphering the complex story of the Moon. The Clementine mission will also permit a first-order global assessment of the resources of the Moon and provide a strategic base of knowledge upon which future robotic and human missions to the Moon can build.

  5. Neurocognitive dysfunction in strategic and non-strategic gamblers.

    PubMed

    Grant, Jon E; Odlaug, Brian L; Chamberlain, Samuel R; Schreiber, Liana R N

    2012-08-07

    It has been theorized that there may be subtypes of pathological gambling, particularly in relation to the main type of gambling activities undertaken. Whether or not putative pathological gambling subtypes differ in terms of their clinical and cognitive profiles has received little attention. Subjects meeting DSM-IV criteria for pathological gambling were grouped into two categories of preferred forms of gambling - strategic (e.g., cards, dice, sports betting, stock market) and non-strategic (e.g., slots, video poker, pull tabs). Groups were compared on clinical characteristics (gambling severity, and time and money spent gambling), psychiatric comorbidity, and neurocognitive tests assessing motor impulsivity and cognitive flexibility. Seventy-seven subjects were included in this sample (45.5% females; mean age: 42.7±14.9) which consisted of the following groups: strategic (n=22; 28.6%) and non-strategic (n=55; 71.4%). Non-strategic gamblers were significantly more likely to be older, female, and divorced. Money spent gambling did not differ significantly between groups although one measure of gambling severity reflected more severe problems for strategic gamblers. Strategic and non-strategic gamblers did not differ in terms of cognitive function; both groups showed impairments in cognitive flexibility and inhibitory control relative to matched healthy volunteers. These preliminary results suggest that preferred form of gambling may be associated with specific clinical characteristics but are not dissociable in terms of cognitive inflexibility and motor impulsivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Object-oriented technologies in a multi-mission data system

    NASA Technical Reports Server (NTRS)

    Murphy, Susan C.; Miller, Kevin J.; Louie, John J.

    1993-01-01

    The Operations Engineering Laboratory (OEL) at JPL is developing new technologies that can provide more efficient and productive ways of doing business in flight operations. Over the past three years, we have worked closely with the Multi-Mission Control Team to develop automation tools, providing technology transfer into operations and resulting in substantial cost savings and error reduction. The OEL development philosophy is characterized by object-oriented design, extensive reusability of code, and an iterative development model with active participation of the end users. Through our work, the benefits of object-oriented design became apparent for use in mission control data systems. Object-oriented technologies and how they can be used in a mission control center to improve efficiency and productivity are explained. The current research and development efforts in the JPL Operations Engineering Laboratory are also discussed to architect and prototype a new paradigm for mission control operations based on object-oriented concepts.

  7. Attitude Drift Analysis for the WIND and POLAR Missions

    NASA Technical Reports Server (NTRS)

    Crouse, Patrick

    1996-01-01

    The spin axis attitude drift due to environmental torques acting on the Global Geospace Science (GGS) Interplanetary Physics Laboratory (WIND) and the Polar Plasma Laboratory (POLAR) and the subsequent impact on the maneuver planning strategy for each mission is investigated. A brief overview of each mission is presented, including mission objectives, requirements, constraints, and spacecraft design. The environmental torques that act on the spacecraft and the relative importance of each is addressed. Analysis results are presented that provide the basis for recommendations made pre-launch to target the spin axis attitude to minimize attitude trim maneuvers for both spacecraft over their respective mission lives. It is demonstrated that attitude drift is not the dominant factor in maintaining the pointing requirement for each spacecraft. Further it is demonstrated that the WIND pointing cannot be met pas 4 months due to the Sun angle constraint, while the POLAR initial attitude can be chosen such that attitude trim maneuvers are not required during each 6 month viewing period.

  8. Mission for Mitchell

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    In honor of a life of pioneering efforts to use satellite altimetry for geophysical studies, the U.S. Navy announced on December 16, 1996, that it will dedicate its next satellite altimeter—the follow-on to Geosat—to deceased AGU member Jimmy Mitchell. The announcement was made during a special session dedicated to Mitchell's research at the AGU Fall Meeting.Mitchell first won renown at the Jet Propulsion Laboratory in the 1970s and 1980s while conducting research associated with Voyager missions. But it was his work in later years at the Naval Research Laboratory at Stennis Space Center, Mississippi, that led the Navy to honor him with the satellite.

  9. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  10. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure successmore » in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.« less

  11. Catalyzing Graduate Teaching Assistants' Laboratory Teaching through Design Research

    ERIC Educational Resources Information Center

    Bond-Robinson, Janet; Rodriques, Romola A. Bernard

    2006-01-01

    We report on a study of a laboratory teaching apprenticeship program designed to improve graduate teaching assistant (GTA) performance. To catalyze GTAs as laboratory teachers we constructed learning goals, synthesized previous literature into a design model and a developmental path, and built two instruments to measure 12 strategic pedagogical…

  12. NASA Laboratory Astrophysics Workshop 2006 Introductory Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2006-01-01

    NASA Laboratory Astrophysics Workshop 2006, is the fourth in a series of workshops held at four year intervals, to assess the laboratory needs of NASA's astrophysics missions - past, current and future. Investigators who need laboratory data to interpret their observations from space missions, theorists and modelers, experimentalists who produce the data, and scientists who compile databases have an opportunity to exchange ideas and understand each other's needs and limitations. The multi-wavelength character of these workshops allows cross-fertilization of ideas, raises awareness in the scientific community of the rapid advances in other fields, and the challenges it faces in prioritizing its laboratory needs in a tight budget environment. Currently, we are in the golden age of Space Astronomy, with three of NASA s Great Observatories, Hubble Space Telescope (HST), Chandra X-Ray Observatory (CXO), and Spitzer Space Telescope (SST), in operation and providing astronomers and opportunity to perform synergistic observations. In addition, the Far Ultraviolet Spectroscopic Explorer (FUSE), XMM-Newton, HETE-2, Galaxy Evolution Explorer (GALEX), INTEGRAL and Wilkinson Microwave Anisotropy Probe (WMAP), are operating in an extended phase, while Swift and Suzaku are in their prime phase of operations. The wealth of data from these missions is stretching the Laboratory Astrophysics program to its limits. Missions in the future, which also need such data include the James Webb Space Telescope (JWST), Space Interferometry Mission (SIM), Constellation-X (Con-X), Herschel, and Planck. The interpretation of spectroscopic data from these missions requires knowledge of atomic and molecular parameters such as transition probabilities, f-values, oscillator strengths, excitation cross sections, collision strengths, which have either to be measured in the laboratory by simulating space plasma and interactions therein, or by theoretical calculations and modeling. Once the laboratory

  13. Accelerating Clean Energy Commercialization. A Strategic Partnership Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Richard; Pless, Jacquelyn; Arent, Douglas J.

    Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort ismore » needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.« less

  14. Spacelab 3 Mission Science Review

    NASA Technical Reports Server (NTRS)

    Fichtl, George H. (Editor); Theon, John S. (Editor); Hill, Charles K. (Editor); Vaughan, Otha H. (Editor)

    1987-01-01

    Papers and abstracts of the presentations made at the symposium are given as the scientific report for the Spacelab 3 mission. Spacelab 3, the second flight of the National Aeronautics and Space Administration's (NASA) orbital laboratory, signified a new era of research in space. The primary objective of the mission was to conduct applications, science, and technology experiments requiring the low-gravity environment of Earth orbit and stable vehicle attitude over an extended period (e.g., 6 days) with emphasis on materials processing. The mission was launched on April 29, 1985, aboard the Space Shuttle Challenger which landed a week later on May 6. The multidisciplinary payload included 15 investigations in five scientific fields: material science, fluid dynamics, life sciences, astrophysics, and atmospheric science.

  15. Mission Systems Open Architecture Science and Technology (MOAST) program

    NASA Astrophysics Data System (ADS)

    Littlejohn, Kenneth; Rajabian-Schwart, Vahid; Kovach, Nicholas; Satterthwaite, Charles P.

    2017-04-01

    The Mission Systems Open Architecture Science and Technology (MOAST) program is an AFRL effort that is developing and demonstrating Open System Architecture (OSA) component prototypes, along with methods and tools, to strategically evolve current OSA standards and technical approaches, promote affordable capability evolution, reduce integration risk, and address emerging challenges [1]. Within the context of open architectures, the program is conducting advanced research and concept development in the following areas: (1) Evolution of standards; (2) Cyber-Resiliency; (3) Emerging Concepts and Technologies; (4) Risk Reduction Studies and Experimentation; and (5) Advanced Technology Demonstrations. Current research includes the development of methods, tools, and techniques to characterize the performance of OMS data interconnection methods for representative mission system applications. Of particular interest are the OMS Critical Abstraction Layer (CAL), the Avionics Service Bus (ASB), and the Bulk Data Transfer interconnects, as well as to develop and demonstrate cybersecurity countermeasures techniques to detect and mitigate cyberattacks against open architecture based mission systems and ensure continued mission operations. Focus is on cybersecurity techniques that augment traditional cybersecurity controls and those currently defined within the Open Mission System and UCI standards. AFRL is also developing code generation tools and simulation tools to support evaluation and experimentation of OSA-compliant implementations.

  16. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  17. Incorporating healthcare informatics into the strategic planning process in nursing education.

    PubMed

    Sackett, Kay; Jones, Janice; Erdley, W Scott

    2005-01-01

    The purpose of this article is to describe the incorporation of healthcare informatics into the strategic planning process in nursing education. An exemplar from the University at Buffalo, the State University of New York School of Nursing, is interwoven throughout the article. The challenges and successes inherent in a paradigm shift embracing the multifaceted adoption of technology in higher education are illustrated. The paradigm shift that necessitated this change, the need for informatics standards and competencies identified by regulatory agencies and the relationship of the triad mission of the Academy which includes research, teaching and service are then elucidated. Information pertinent to the strategic planning process is described including the use of a strengths, weaknesses, opportunities and threats (SWOT) analysis to facilitate the integration of a healthcare informatics model into a nursing curriculum.

  18. Measuring the Strategic Value of the Armed Forces Health Longitudinal Technology Application (AHLTA)

    DTIC Science & Technology

    2008-01-01

    Mission Centered Care IP2 Beneficiaries partner with us to improve health outcomes IP1 Evidence - based medicine is used to improve quality, safety, and...Battlefield” IP6 Comprehensive globally accessible health and business information enable medical surveillance, evidence - based medicine and effective...information enables medical surveillance, evidence - based medicine , and effective healthcare operations. 4 OASD (2007a). Measures for the MHS Strategic

  19. Strategic Planning for Sustainable Forests: The Plan Drives the Budgets Which Drive Results

    Treesearch

    Paul Brouha; Elisabeth Grinspoon

    2006-01-01

    The USDA Forest Service is among the pioneers incorporating the Montreal Process criteria and indicators into its programs. Among its initial efforts is the adaptation of a criteria and indicators framework for its national strategic plan, which is the primary instrument for setting the course to achieve the Forest Service mission of sustaining the nation’s forests and...

  20. The need for strategic tax planning among nonprofit hospitals.

    PubMed

    Smith, Pamela C

    2005-01-01

    Strategic tax planning issues are important to the nonprofit health care sector, despite its philanthropic mission. The consolidation of the industry has led management to fight for resources and develop alternative strategies for raising money. When management evaluates alternative collaborative structures to increase efficiency, the impact on governance structures must also be considered. The increased governmental scrutiny of joint ventures within the health care sector warrants management's attention as well. The financial incentives must be considered, along with the various tax policy implications of cross-sector collaborations.

  1. Developing and executing a strategic plan.

    PubMed

    Morley, Glenn

    2010-02-01

    Because of the historic economic crisis, the past 18 months--2008 and the first half of 2009--have been challenging for many plastic surgery practices. Prior to the economic crisis in 2008, many practices enjoyed success with little synchronization between financial and productivity results, practice goals, and strategic planning. Now, suddenly, there is a great deal of interest in the alignment of budgets and financial reporting, marketing return on investment (ROI), staff accountability, and overhead management. The process of developing a business plan can serve to bring clarity and objectivity to the assessment of practice goals and market dynamics. The business planning process also provides assurance of more efficient use of the practice's human and capital resources. Ultimately, the process will bring order, discipline, and focus to practice stakeholders, thus increasing the likelihood of meeting or exceeding practice goals. The process: (1) defining the mission of the practice; (2) completing a competitive analysis for your market; (3) completing an assessment of your current environment; (4) completing an assessment of the financial health of your practice; (5) preparation of a SWOT (strengths, weakness, opportunity, threat) analysis; and (6) a translation of your mission statement into specific long-term goals and short-term performance objectives. The outcome of completing these tasks should be an actionable plan that will serve as a guide or road map for the practice. A well-articulated plan will solidify staff confidence, continue the advancement of a strong business foundation, and provide clear navigation through this new economic landscape in a way that preserves your ability to provide the care you have devoted yourselves to deliver. Today's needs, and yesterday's lessons, dictate that a well-documented strategic action plan be undertaken. Thieme Medical Publishers.

  2. Strategic planning for employee happiness: a business goal for human service organizations.

    PubMed

    Howard, B; Gould, K E

    2000-09-01

    Employee happiness can impact substantially on an organization's performance. It can influence employee retention, absenteeism, and work performance. Because of this importance, such happiness is inseparable from the real business of the organization and should be considered a business goal. Implementation and development of the strategic plan associated with this goal becomes the responsibility of a highly placed project team that has as its mission ensuring employee satisfaction. The strategic plan includes procedures that allow management to listen effectively to employees, assessing and responding to their values and needs. In this paper we discuss the workforce and environmental characteristics that are involved planning for employee happiness and the steps in creating an organizational culture in which this can become a business goal.

  3. Strategic Leadership

    ERIC Educational Resources Information Center

    Davies, Barbara; Davies, Brent

    2004-01-01

    This article explores the nature of strategic leadership and assesses whether a framework can be established to map the dimensions of strategic leadership. In particular it establishes a model which outlines both the organizational abilities and the individual characteristics of strategic leaders.

  4. LDRD Highlights at the National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then,more » this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.« less

  5. Mars Comm/Nav MicroSat Network Using the Multi-Mission Bus Launched Piggyback by Ariane 5

    NASA Technical Reports Server (NTRS)

    Hastrup, R. C.; Cesarone, R. J.; Morabito, D. D.

    1999-01-01

    Recently, NASA's Jet Propulsion Laboratory completed a Mars Exploration Program Architecture Definition Study with strong international participation. The recommendations of this study include establishment of a low cost in-situ communications and navigation satellite network to provide enabling and enhancing support for the international exploration of Mars. This would be the first step toward establishing a "virtual presence throughout the solar system" as called for in NASA's Strategic Plan. Response to the proposed comm/nav satellite network has been very favorably received, as reflected by the inclusion of a line item in NASA's budget submittal to Congress, which provides funding for implementation of the network with first launch in the 2003 opportunity. Funding has already been provided for a phase A study being conducted this year. This paper presents the planned implementation of the comm/nav network, which will utilize microsats based on a multi-mission spacecraft bus being designed for launch by the Ariane 5 as a secondary payload. A companion paper at this conference, entitled "The Multi-Purpose Mars Micro-Mission System Design Utilizing Ariane 5 Piggyback Launch", describes the multimission bus design. This paper addresses the application of the multi-mission bus to the comm/nav microsat mission. Following an introduction, which provides the background that has led to the proposed comm/nav network, the paper discusses the projected user needs with emphasis on the various possible robotic missions (landers, rovers, ascent vehicles, balloons, aircraft, etc.) progressing toward eventual piloted missions. Next, the paper describes the concept for an evolving network of comm/nav microsats and the expected capability to satisfy the user needs. Results of communications and navigation performance analysis are summarized for attractive satellite constellation configurations. The important comm/nav microsat functional requirements on the multi-mission

  6. Laboratory Directed Research and Development Program FY2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports themore » Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.« less

  7. Engaging a University in Self-Assessment and Strategic Planning to Build Partnership Capacity: The UCSF Experience

    ERIC Educational Resources Information Center

    Wortis, Naomi; Goldstein, Ellen; Vargas, Roberto Ariel; Grumbach, Kevin

    2006-01-01

    In an effort to better fulfill its public service mission, the University of California, San Francisco, has undertaken an intensive assessment and strategic planning process to build institutional capacity for civic engagement and community partnership. The first stage was a qualitative assessment focused primarily on three local communities,…

  8. Multi-Mission Radioisotope Thermoelectric Generator Heat Exchangers for the Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Mastropietro, A. J.; Beatty, John S.; Kelly, Frank P.; Bhandari, Pradeep; Bame, David P.; Liu, Yuanming; Birux, Gajanana C.; Miller, Jennifer R.; Pauken, Michael T.; Illsley, Peter M.

    2012-01-01

    The addition of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to the Mars Science Laboratory (MSL) Rover requires an advanced thermal control system that is able to both recover and reject the waste heat from the MMRTG as needed in order to maintain the onboard electronics at benign temperatures despite the extreme and widely varying environmental conditions experienced both on the way to Mars and on the Martian surface. Based on the previously successful Mars landed mission thermal control schemes, a mechanically pumped fluid loop (MPFL) architecture was selected as the most robust and efficient means for meeting the MSL thermal requirements. The MSL heat recovery and rejection system (HRS) is comprised of two Freon (CFC-11) MPFLs that interact closely with one another to provide comprehensive thermal management throughout all mission phases. The first loop, called the Rover HRS (RHRS), consists of a set of pumps, thermal control valves, and heat exchangers (HXs) that enables the transport of heat from the MMRTG to the rover electronics during cold conditions or from the electronics straight to the environment for immediate heat rejection during warm conditions. The second loop, called the Cruise HRS (CHRS), is thermally coupled to the RHRS during the cruise to Mars, and provides a means for dissipating the waste heat more directly from the MMRTG as well as from both the cruise stage and rover avionics by promoting circulation to the cruise stage radiators. A multifunctional structure was developed that is capable of both collecting waste heat from the MMRTG and rejecting the waste heat to the surrounding environment. It consists of a pair of honeycomb core sandwich panels with HRS tubes bonded to both sides. Two similar HX assemblies were designed to surround the MMRTG on the aft end of the rover. Heat acquisition is accomplished on the interior (MMRTG facing) surface of each HX while heat rejection is accomplished on the exterior surface of

  9. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team

  10. Advanced power sources for space missions

    NASA Technical Reports Server (NTRS)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  11. Strategic Budgeting.

    ERIC Educational Resources Information Center

    Jones, Dennis P.

    1993-01-01

    An approach to college budgeting that encompasses strategic as well as operational decisions is proposed. Strategic decisions focus on creation and maintenance of institutional capacity, whereas operational decisions focus on use of that capacity to accomplish specific purposes. Strategic budgeting must emphasize institutional assets and their…

  12. Strategic growth decisions in helper cichlids.

    PubMed Central

    Heg, Dik; Bender, Nicole; Hamilton, Ian

    2004-01-01

    Recently, it has been shown that group-living subordinate clownfish Amphiprion percula increase their growth rate after acquiring the dominant breeder male position in the group. Evidence was found for strategic growth adjustments of subordinate fishes depending on the threat of eviction, i.e. subordinates adjust their growth rates so they remain smaller than the dominant fish and thereby limit the threat of being expelled from the territory. However, it is impossible to exclude several alternative factors that potentially could have influenced the observed changes in growth, owing to the nature of that experiment (removing the second-ranking fish--the breeder male--caused the third-ranking fish to change sex to become breeder male and change rank). We studied strategic growth decisions in the group-living Lake Tanganyika cichlid Neolamprologus pulcher under controlled laboratory conditions with ad libitum food availability. First, we show that male breeders grow faster than subordinate male helpers of the same initial size and confirm that N. pulcher shows status-dependent growth. Second, we improved on the experimental design by not removing the dominant breeder male in the group; instead we replaced the breeder male with a new breeder male in a full factorial design and measured growth of the subordinate male helpers is a function of the size difference with the old and the new breeder male. As predicted, male helpers showed strategic growth adjustments, i.e. growing faster when the size difference with the breeder male is large. Strategic growth adjustments were less pronounced than status-dependent growth adjustments. PMID:15801617

  13. Strategic growth decisions in helper cichlids.

    PubMed

    Heg, Dik; Bender, Nicole; Hamilton, Ian

    2004-12-07

    Recently, it has been shown that group-living subordinate clownfish Amphiprion percula increase their growth rate after acquiring the dominant breeder male position in the group. Evidence was found for strategic growth adjustments of subordinate fishes depending on the threat of eviction, i.e. subordinates adjust their growth rates so they remain smaller than the dominant fish and thereby limit the threat of being expelled from the territory. However, it is impossible to exclude several alternative factors that potentially could have influenced the observed changes in growth, owing to the nature of that experiment (removing the second-ranking fish--the breeder male--caused the third-ranking fish to change sex to become breeder male and change rank). We studied strategic growth decisions in the group-living Lake Tanganyika cichlid Neolamprologus pulcher under controlled laboratory conditions with ad libitum food availability. First, we show that male breeders grow faster than subordinate male helpers of the same initial size and confirm that N. pulcher shows status-dependent growth. Second, we improved on the experimental design by not removing the dominant breeder male in the group; instead we replaced the breeder male with a new breeder male in a full factorial design and measured growth of the subordinate male helpers is a function of the size difference with the old and the new breeder male. As predicted, male helpers showed strategic growth adjustments, i.e. growing faster when the size difference with the breeder male is large. Strategic growth adjustments were less pronounced than status-dependent growth adjustments.

  14. Laboratory Directed Research and Development Program Assessment for FY 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, Diane; Barkigia, K.; Giacalone, P.

    2016-03-01

    This report provides an overview of the BNL LDRD program and a summary of the management processes, project peer review, a financial overview, and the relation of the portfolio of LDRD projects to BNL's mission, initiatives, and strategic plan. Also included are a summary of success indicators and a self-assessment.

  15. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  16. KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  17. STS-90 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-90 crew patch reflects the dedication of the mission to neuroscience in celebration of the decade of the brain. Earth is revealed through a neuron-shaped window, which symbolizes new perspectives in the understanding of nervous system development, structure and function, both here on Earth and in the microgravity environment of space. The Space Shuttle Columbia is depicted with its open payload bay doors revealing the Spacelab within. An integral component of the mission, the laboratory/science module provided by the European Space Agency (ESA), signifies the strong international involvement in the mission. The seven crew members and two alternate payload specialists, Chiaki Naito-Mukai and Alexander W. Dunlap, are represented by the nine major stars of the constellation Cetus (the whale) in recognition of the International Year of the Ocean. The distant stars illustrate the far reaching implications of the mission science to the many sponsoring agencies, helping prepare for long-duration space flight aboard the International Space Station (ISS). The moon and Mars are depicted to reflect the crew's recognition that those two celestial bodies will be the next great challenges in human exploration of space and represent the key role that life science research will play in supporting such missions.

  18. Aeroshell for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver.

    This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested.

    The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent.

    The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet.

    In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell.

    The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in

  19. Annual Report on Our Call to Action: Strategic Plan for the Montgomery County Public Schools

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2004

    2004-01-01

    In June 2003 the Board of Education adopted "Our Call to Action, Pursuit of Excellence," the second edition of the school system's strategic plan. This update of the original November 1999 Our Call to Action, while remaining focused on the core mission of providing every student with a high-quality, world-class education, strengthened the…

  20. The National Strategic Plan and Action Agenda for Agricultural Education: Reinventing Agricultural Education for the Year 2020. Creating the Preferred Future for Agricultural Education.

    ERIC Educational Resources Information Center

    National Council for Agricultural Education, Alexandria, VA.

    The Reinventing Agricultural Education for the Year 2020 initiative, a project conducted during 1996-1999 with a diverse group of more than 10,000 people from across the United States, resulted in this strategic plan designed to achieve the mission set by the initiative. That mission has a two-part focus: preparing students for career success in…

  1. Developing a heart institute: the execution of a strategic plan.

    PubMed

    Krawczeski, Catherine D; McDonald, Mark B

    2013-01-01

    The Heart Institute at Cincinnati Children's Hospital Medical Center was chartered in July 2008 with the purpose of integrating clinical cardiovascular medicine with basic science research to foster innovations in care of patients with congenital heart problems. The initial administrative steering committee included representation from a basic scientist, a cardiologist, and a cardiothoracic surgeon and was charged with the development of a strategic plan for the evolution of the Institute over a five-year horizon. Using structured focus groups and staff interviews, the vision, mission, and goals were identified and refined. An integrated implementation plan addressing recruitment, capitalization, infrastructure, and market opportunities was created and executed. The preliminary results demonstrated clinical outcome improvements, increased scientific and academic productivity, and financial sustainability. All of the goals identified in the initial planning sequence were achieved within the five-year time frame, prompting an early evaluation and revision of the strategic plan.

  2. A concept for NASA's Mars 2016 astrobiology field laboratory.

    PubMed

    Beegle, Luther W; Wilson, Michael G; Abilleira, Fernando; Jordan, James F; Wilson, Gregory R

    2007-08-01

    The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.

  3. 75 FR 67695 - U.S. Strategic Command Strategic Advisory Group Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... DEPARTMENT OF DEFENSE Office of the Secretary of Defense U.S. Strategic Command Strategic Advisory... meeting notice of the U.S. Strategic Command Strategic Advisory Group. DATES: December 9, 2010: 8 a.m. to..., intelligence, and policy-related issues to the Commander, U.S. Strategic Command, during the development of the...

  4. Low Cost Entry, Descent, and Landing (EDL) Instrumentation for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Munk, M. M.; Dillman, R. A.; Mahzari, M.; Swanson, G. T.; White, T. R.

    2016-01-01

    Missions that involve traversing through a planetary atmosphere are unique opportunities that require elements of entry, descent, and landing (EDL). Many aspects of the EDL sequence are qualified using analysis and simulation due to the inability to conduct appropriate ground tests, however validating flight data are often lacking, especially for missions not involving Earth re-entry. NASA has made strategic decisions to collect EDL flight data in order to improve future mission designs. For example, MEDLI1 and EFT-1 gathered hypersonic pressure and in-depth temperature data in the thermal protection system (TPS). However, the ability to collect EDL flight data from the smaller competed missions, such as Discovery and New Frontiers, has been limited in part due to the Principal Investigator-managed cost-caps (PIMCC). The recent NASA decision to consider EDL instrumentation earlier in the mission design cycle led to the inclusion of a requirement in the Discovery 2014 Announcement of Opportunity which requires all missions that involve EDL to include an Engineering Science Investigation (ESI).2 The ESI would involve sensors for aerothermal environment and TPS; atmosphere, aerodynamics, and flight dynamics; atmospheric decelerator; and/or vehicle structure.3 The ESI activity would be funded outside of the PIMCC.

  5. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  6. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the downselection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institute's rHEALTH X and Intelligent Optical System's lateral flow assays combined with Holomic's smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements. The technology demonstrations and metrics for success will be finalized in FY16. Also, the downselected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  7. Preliminary Report on Mission Design and Operations for Critical Events

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Tumer, Irem

    2005-01-01

    Mission-critical events are defined in the Jet Propulsion Laboratory s Flight Project Practices as those sequences of events which must succeed in order to attain mission goals. These are dependent on the particular operational concept and design reference mission, and are especially important when committing to irreversible events. Critical events include main engine cutoff (MECO) after launch; engine cutoff or parachute deployment on entry, descent, and landing (EDL); orbital insertion; separation of payload from vehicle or separation of booster segments; maintenance of pointing accuracy for power and communication; and deployment of solar arrays and communication antennas. The purpose of this paper is to report on the current practices in handling mission-critical events in design and operations at major NASA spaceflight centers. The scope of this report includes NASA Johnson Space Center (JSC), NASA Goddard Space Flight Center (GSFC), and NASA Jet Propulsion Laboratory (JPL), with staff at each center consulted on their current practices, processes, and procedures.

  8. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfillmore » its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.« less

  9. Strategic conservation planning for the Eastern North Carolina/Southeastern Virginia Strategic Habitat Conservation Team

    USGS Publications Warehouse

    Alexander-Vaughn, Louise B.; Collazo, Jaime A.; Drew, C. Ashton

    2014-01-01

    The Eastern North Carolina/Southeastern Virginia Strategic Habitat Conservation Team (ENCSEVA) is a partnership among local federal agencies and programs with a mission to apply Strategic Habitat Conservation to accomplish priority landscape-level conservation within its geographic region. ENCSEVA seeks to further landscape-scale conservation through collaboration with local partners. To accomplish this mission, ENCSEVA is developing a comprehensive Strategic Habitat Conservation Plan (Plan) to provide guidance for its members, partners, and collaborators by establishing mutual conservation goals, objectives, strategies, and metrics to gauge the success of conservation efforts. Identifying common goals allows the ENCSEVA team to develop strategies that leverage joint resources and are more likely to achieve desired impacts across the landscape. The Plan will also provide an approach for ENCSEVA to meet applied research needs (identify knowledge gaps), foster adaptive management principles, identify conservation priorities, prioritize threats (including potential impacts of climate change), and identify the required capacity to implement strategies to create more resilient landscapes. ENCSEVA seeks to support the overarching goals of the South Atlantic Landscape Conservation Cooperative (SALCC) and to provide scientific and technical support for conservation at landscape scales as well as inform the management of natural resources in response to shifts in climate, habitat fragmentation and loss, and other landscape-level challenges (South Atlantic LCC 2012). The ENCSEVA ecoregion encompasses the northern third of the SALCC geography and offers a unique opportunity to apply landscape conservation at multiple scales through the guidance of local conservation and natural resource management efforts and by reporting metrics that reflect the effectiveness of those efforts (Figure 1). The Environmental Decision Analysis Team, housed within the North Carolina Cooperative

  10. Using SFOC to fly the Magellan Venus mapping mission

    NASA Technical Reports Server (NTRS)

    Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.

    1993-01-01

    Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.

  11. Benchmarking 10 Major Canadian Universities at the Divisional Level: A Powerful Tool for Strategic Decision Making

    ERIC Educational Resources Information Center

    Proulx, Roland

    2010-01-01

    A consortium of 10 Canadian research-intensive universities launched a data exchange program in 1999 to share information that could be used to identify and evaluate the best practices of each institution and to help each institution position itself strategically to achieve its mission. One part of the program was devoted to collecting…

  12. Strategic Employee Development (SED) Program

    NASA Technical Reports Server (NTRS)

    Nguyen, Johnny; Guevara (Castano), Nathalie; Thorpe, Barbara; Barnett, Rebecca

    2017-01-01

    As with many other U.S. agencies, succession planning is becoming a critical need for NASA. The primary drivers include (a) NASAs higher-than-average aged workforce with approximately 50 of employees eligible for retirement within 5 years; and (b) employees who need better developmental conversations to increase morale and retention. This problem is particularly concerning for Safety Mission Assurance (SMA) organizations since they traditionally rely on more experienced engineers and specialists to perform their organizations functions.In response to this challenge, the Kennedy Space Center (KSC) SMA organization created the Strategic Employee Development (SED) program. The SED programs goal is to provide a proactive method to counter the primary drivers by creating a deeper bench strength and providing a more comprehensive developmental feedback experience for the employee. The SED is a new succession planning framework that enables customization to any organization, and in this case, specifically for an SMA organization. This is accomplished via the identification of key positions, the corresponding critical competencies, and a process to help managers have relevant and meaningful development conversations with the workforce. As a result of the SED, several tools and products were created that allows management to make better strategic workforce decisions. Although there are opportunities for improvement for the SED program, the most important impact has been on the quality of developmental discussions for employees.

  13. Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.

    1977-01-01

    A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.

  14. Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.

    PubMed

    Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco

    2004-04-01

    The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. c2003 Elsevier Ltd. All rights reserved.

  15. Langley Research Center Strategic Plan for Education

    NASA Technical Reports Server (NTRS)

    Proctor, Sandra B.

    1994-01-01

    Research assignment centered on the preparation of final draft of the NASA Langley Strategic Plan for Education. Primary research activity consisted of data collection, through interviews with LaRC Office of Education and NASA Headquarters staff, university administrators and faculty, and school administrators / teachers; and documentary analysis. Pre-college and university programs were critically reviewed to assure effectiveness, support of NASA and Langley's mission and goals; National Education Goals; and educational reform strategies. In addition to these mandates, pre-college programs were reviewed to address present and future LaRC activities for teacher enhancement and preparation. University programs were reviewed with emphasis on student support and recruitment; faculty development and enhancement; and LaRC's role in promoting the utilization of educational technologies and distance learning. The LaRC Strategic Plan for Education will enable the Office of Education to provide a focused and well planned continuum of education programs for students, teachers and faculty. It will serve to direct and focus present activities and programs while simultaneously offering the flexibility to address new and emerging directions based on changing national, state, and agency trends.

  16. Land-based air in a national maritime strategy: the need for a joint strategic doctrine. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staley, R.S.

    This paper examines the role of land-based air power within a national maritime strategy. Corbett taught that naval strategy is a subsidiary aspect of a national maritime strategy; and the increasing speed, range, and accuracy of aircraft, weapons, detection, and communications ensure that an important part of maritime air control will be land-based. To evaluate that claim, this paper examines the unity of sea control and air control; examines the Air Force missions that affect sea control; discusses the strategic concerns directing land-based air in maritime strategy; and explains why joint strategic doctrine will better integrate our military forces.

  17. Healthier students are better learners: high-quality, strategically planned, and effectively coordinated school health programs must be a fundamental mission of schools to help close the achievement gap.

    PubMed

    Basch, Charles E

    2011-10-01

    To discuss implications for educational policy and practice relevant to closing the achievement gap based on the literature review and synthesis presented in 7 articles of the October 2011 special issue of the Journal of School Health. Implications for closing the achievement gap are drawn from analyses of current literature. During the past several decades, school reform efforts to close the achievement gap have focused on various strategies, yielding very limited progress. Educationally relevant health disparities influence students' motivation and ability to learn, but reducing these disparities has been largely overlooked as an element of an overall strategy for closing the achievement gap. If these health problems are not addressed, the educational benefits of other school reform efforts will be jeopardized. Healthier students are better learners. School health programs and services that are evidence based, strategically planned to influence academic achievement, and effectively coordinated warrant validation as a cohesive school improvement initiative for closing the achievement gap. National, state, and local responsibilities for supporting school health are outlined, including shared strategies; leadership from the U.S. Department of Education; policy development; guidance, technical assistance, and professional development; accountability and data and software systems; and a research agenda. To date, the U.S. Department of Education has not provided leadership for integrating evidence-based, strategically planned, and effectively coordinated school health programs and services into the fundamental mission of schools. Now is an opportune time for change. © 2011, American School Health Association.

  18. Strategic financial analysis: the CFO's role in strategic planning.

    PubMed

    Litos, D M

    1985-03-01

    Strategic financial analysis, the financial information support system for the strategic planning process, provides information vital to maintaining a healthy bottom line. This article, the third in HCSM's series on the organizational components of strategic planning, reviews the role of the chief financial officer in determining which programs and services will best meet the future needs of the institution.

  19. Recasting NATO’s Strategic Concept. Possible Directions for the United States

    DTIC Science & Technology

    2009-01-01

    the end of the Cold War, these missions have proven more and more challenging for the alliance as their distance from Brus - sels increases. Meanwhile...www.basicint.org/europe/NATO/afghanistan.pdf Sherwood-Randall, Elizabeth , Alliances and American National Security, Strategic Studies Institute, U.S. Army War...Huffington Post, April 1, 2008. As of July 14, 2009: http://www.huffingtonpost.com/ elizabeth -sherwoodrandall/is-nato-dead-or alive_b_94469.html Sky, Emma

  20. New Brunswick Laboratory progress report, October 1994--September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL`s assigned missions.

  1. Solar composition from the Genesis Discovery Mission

    PubMed Central

    Burnett, D. S.; Team, Genesis Science

    2011-01-01

    Science results from the Genesis Mission illustrate the major advantages of sample return missions. (i) Important results not otherwise obtainable except by analysis in terrestrial laboratories: the isotopic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects. The N isotopic composition is the same as that of Jupiter. Genesis has resolved discrepancies in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments have been applied to Genesis samples, including some developed specifically for the mission. (iii) The N isotope result has been replicated with four different instruments. PMID:21555545

  2. Contracting with the Frederick National Laboratory | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Our Acquisitions Directorate supports the national laboratory with high quality products and services to achieve its national mission. In addition to engaging large subcontractors, we are also committed to working with small businesses, minority- and

  3. The Use of Special Operations Forces in Support of American Strategic Security Strategies

    DTIC Science & Technology

    2013-01-28

    Operations Command (USSOCOM) global threats have morphed. The world has evolved from a bi-polar conflict characterized by the Cold War through what may be...the community of nations and create a more stable and thus, prosperous, world . This paper sets the strategic context for future operations, defines...transported gamers into the world of SOF on daring missions to save humanity from rogue states and international terrorists. While each is entertaining

  4. 78 FR 55762 - National Environmental Policy Act; Mars 2020 Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... set of soil and rock samples that could be returned to Earth in the future, and test new technology to... include the use of one multi-mission radioisotope thermoelectric generator (MMRTG) for rover electrical... would use the proven design and technology developed for the Mars Science Laboratory mission and rover...

  5. Training hospital managers for strategic planning and management: a prospective study.

    PubMed

    Terzic-Supic, Zorica; Bjegovic-Mikanovic, Vesna; Vukovic, Dejana; Santric-Milicevic, Milena; Marinkovic, Jelena; Vasic, Vladimir; Laaser, Ulrich

    2015-02-26

    Training is the systematic acquisition of skills, rules, concepts, or attitudes and is one of the most important components in any organization's strategy. There is increasing demand for formal and informal training programs especially for physicians in leadership positions. This study determined the learning outcomes after a specific training program for hospital management teams. The study was conducted during 2006 and 2007 at the Centre School of Public Health and Management, Faculty of Medicine, University of Belgrade and included 107 participants involved in the management in 20 Serbian general hospitals. The management teams were multidisciplinary, consisting of five members on average: the director of the general hospital, the deputy directors, the head nurse, and the chiefs of support services. The managers attended a training program, which comprised four modules addressing specific topics. Three reviewers independently evaluated the level of management skills at the beginning and 12 months after the training program. Principal component analysis and subsequent stepwise multiple linear regression analysis were performed to determine predictors of learning outcomes. The quality of the SWOT (strengths, weaknesses, opportunities and threats) analyses performed by the trainees improved with differences between 0.35 and 0.49 on a Likert scale (p < 0.001). Principal component analysis explained 81% of the variance affecting their quality of strategic planning. Following the training program, the external environment, strategic positioning, and quality of care were predictors of learning outcomes. The four regression models used showed that the training program had positive effects (p < 0.001) on the ability to formulate a Strategic Plan comprising the hospital mission, vision, strategic objectives, and action plan. This study provided evidence that training for strategic planning and management enhanced the strategic decision-making of hospital

  6. Risk Factors Detection for Strategic Importance Objectives in Littoral Areas

    NASA Astrophysics Data System (ADS)

    Slămnoiu, G.; Radu, O.; Roşca, V.; Pascu, C.; Surdu, G.; Curcă, E.; Damian, R. G.; Rădulescu, A.

    2017-06-01

    With the invention and development of underwater explosive devices the need to neutralize them has also appeared, both for enemy and for own devices once conflicts are finished. The fight against active underwater explosive devices is a very complicated action that requires a very careful approach. Also, in the current context, strategic importance objectives located in the littoral areas can also become targets for divers or fast boats (suicidal actions).The system for detection, localization, tracking and identification of risk factors for strategic importance objectives in littoral areas has as one of its components an AUV and a hydro-acoustic sub-system for determining the ‘fingerprints’ of potential targets. The overall system will provide support for main missions such as underwater environment surveillance (detection, monitoring) in harbor areas and around other coast objectives, ship anchorage areas, mandatory pass points and also provide warnings about the presence of underwater and surface dangers in the interest areas.

  7. ISECG Mission Scenarios and Their Role in Informing Next Steps for Human Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Culbert, Christopher J.; Mongrard, Olivier; Satoh, Naoki; Goodliff, Kandyce; Seaman, Calvin H.; Troutman, Patrick; Martin, Eric

    2011-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy (GES): The Framework for Coordination developed by fourteen space agencies* and released in May 2007. This GES Framework Document recognizes that preparing for human space exploration is a stepwise process, starting with basic knowledge and culminating in a sustained human presence in deep space. ISECG has developed several optional global exploration mission scenarios enabling the phased transition from human operations in Low Earth Orbit (LEO) and utilization of the International Space Station (ISS) to human missions beyond LEO leading ultimately to human missions to cis-lunar space, the Moon, Near Earth Asteroids, Mars and its environs. Mission scenarios provide the opportunity for judging various exploration approaches in a manner consistent with agreed international goals and strategies. Each ISECG notional mission scenario reflects a series of coordinated human and robotic exploration missions over a 25-year horizon. Mission scenarios are intended to provide insights into next steps for agency investments, following on the success of the ISS. They also provide a framework for advancing the definition of Design Reference Missions (DRMs) and the concepts for capabilities contained within. Each of the human missions contained in the scenarios has been characterized by a DRM which is a top level definition of mission sequence and the capabilities needed to execute that mission. While DRMs are generally destination focused, they will comprise capabilities which are reused or evolved from capabilities used at other destinations. In this way, an evolutionary approach to developing a robust set of capabilities to sustainably explore our solar system is defined. Agencies also recognize that jointly planning for our next steps, building on the accomplishments of ISS, is important to ensuring the robustness and sustainability of any human

  8. Addressing the University's Tripartite Mission through an Early Childhood Movement Program.

    ERIC Educational Resources Information Center

    Marston, Rip

    2002-01-01

    Describes the University of Northern Iowa's early childhood motor laboratory, which brings together college students, preschoolers, and parents while contributing to each strand of the university's three-strand mission of teaching, scholarly endeavors, and service. The article describes program sessions, highlights the tripartite mission, and…

  9. Long-range strategic planning: a case study.

    PubMed

    Moller-Tiger, D

    1999-05-01

    In highly competitive healthcare markets, integrated delivery systems (IDSs) that have exhausted traditional means of maintaining market competitiveness are challenged to identify effective new strategies that will ensure market success in an uncertain future. Finding itself facing this challenge, Legacy Health System, a Portland, Oregon-based IDS, undertook an innovative, long-range, strategic-planning initiative based on an evaluation of key market trends. Legacy discovered that it might benefit from making some changes in the way it approached its mission. These changes included focusing on specific customer segments, developing products and services aimed at those customers, and broadening physician and insurer relationships to enhance service and improve customers' access to health care.

  10. Scientific Value of a Saturn Atmospheric Probe Mission

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Lunine, J. I.; Atreya, S. K.; Spilker, T. R.; Coustenis, A.; Atkinson, D. H.

    2012-01-01

    Atmospheric entry probe mISSions to the giant planets can uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres. This provides for important comparative studies of the gas and ice giants, and to provide a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. As outlined in the recent Planetary Decadal Survey, a Saturn Probe mission - with a shallow probe - ranks as a high priority for a New Frontiers class mission [1].

  11. Portable Diagnostics Technology Assessment for Space Missions. Part 1; General Technology Capabilities for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Chait, Arnon

    2010-01-01

    The changes in the scope of NASA s mission in the coming decade are profound and demand nimble, yet insightful, responses. On-board clinical and environmental diagnostics must be available for both mid-term lunar and long-term Mars exploration missions in an environment marked by scarce resources. Miniaturization has become an obvious focus. Despite solid achievements in lab-based devices, broad-based, robust tools for application in the field are not yet on the market. The confluence of rapid, wide-ranging technology evolution and internal planning needs are the impetus behind this work. This report presents an analytical tool for the ongoing evaluation of promising technology platforms based on mission- and application-specific attributes. It is not meant to assess specific devices, but rather to provide objective guidelines for a rational down-select of general categories of technology platforms. In this study, we have employed our expertise in the microgravity operation of fluidic devices, laboratory diagnostics for space applications, and terrestrial research in biochip development. A rating of the current state of technology development is presented using the present tool. Two mission scenarios are also investigated: a 30-day lunar mission using proven, tested technology in 5 years; and a 2- to 3-year mission to Mars in 10 to 15 years.

  12. The DSN view periods for a mission

    NASA Technical Reports Server (NTRS)

    Kehrbaum, J. M.; Kim, K.

    2002-01-01

    The Jet Propulsion Laboratory Resource Allocation, Planning and Scheduling Office (JPL-RAPSO) is chartered to allocate the limited amount of tracking hours among the various missions in as equitable allotment as can be achieved. The communication windows that can be used for communication between the ground and the Project/spacecraft are called 'viewperiods.' The concept of the viewperiods for (any) mission is presented in this paper, along with the levels of refinement over time (Forecasting/Project/Mid- Range/NSS) associated with those viewperiods.

  13. Evolution of Training in NASA's Mission Operations Directorate

    NASA Technical Reports Server (NTRS)

    Hutt, Jason

    2012-01-01

    NASA s Mission Operations Directorate provides all the mission planning, training, and operations support for NASA's human spaceflight missions including the International Space Station (ISS) and its fleet of supporting vehicles. MOD also develops and maintains the facilities necessary to conduct training and operations for those missions including the Mission Control Center, Space Station Training Facility, Space Vehicle Mockup Facility, and Neutral Buoyancy Laboratory. MOD's overarching approach to human spaceflight training is to "train like you fly." This approach means not only trying to replicate the operational environment in training but also to approach training with the same mindset as real operations. When in training, this means using the same approach for executing operations, responding to off-nominal situations, and conducting yourself in the operations environment in the same manner as you would for the real vehicle.

  14. Army Roles, Missions, and Doctrine in Low Intensity Conflict (ARMLIC). Preconflict Period

    DTIC Science & Technology

    1971-02-01

    conflict. 196F r . Bruce Russett, Hayward Alker, Jr., Karl Deutsch, and Harold D. Lasswell, World Handbook of Political and Social Indicators New Haven...Strategic Studies Institute r + e=u idJj Ich I =’ P 1 -4II.NI9*L COMBAT DEVELOPMENTS C0OMWAD Fort Belvoir, Virginla 22060 I AINY ROLES, MISSIONS, AND DOCTRINE...179 IX - REFERENCES ...... ................... .... 201 X - DISTRIBUTION ...... .................. ... 211 DOCUMENT CONTROL DATA - R &D

  15. Wind Lidar Edge Technique Shuttle Demonstration Mission: Anemos

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Bundas, David J.; Martino, Anthony J.; Carnahan, Timothy M.; Zukowski, Barbara J.

    1998-01-01

    A NASA mission is planned to demonstrate the technology for a wind lidar. This will implement the direct detection edge technique. The Anemos instrument will fly on the Space Transportation System (STS), or shuttle, aboard a Hitchhiker bridge. The instrument is being managed by the Goddard Space Flight Center as an in-house build, with science leadership from the GSFC Laboratory for Atmospheres, Mesoscale Atmospheric Processes Branch. During a roughly ten-day mission, the instrument will self calibrate and adjust for launch induced mis-alignments, and perform a campaign of measurements of tropospheric winds. The mission is planned for early 2001. The instrument is being developed under the auspices of NASA's New Millennium Program, in parallel with a comparable mission being managed by the Marshall Space Flight Center. That mission, called SPARCLE, will implement the coherent technique. NASA plans to fly the two missions together on the same shuttle flight, to allow synergy of wind measurements and a direct comparison of performance.

  16. Origin and evolution of US Naval strategic nuclear policy to 1960. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreitlein, H.C.

    1986-12-01

    This thesis treats the impact of the atomic bomb on traditional naval strategy as that strategy had developed under the influence of Captain Alfred T. Mahan, how traditional naval strategy was modified by the development of naval aviation, the lessons of World War II, and the leadership of James Forrestal, and how the adoption of atomic weapons into naval strategic planning was integrally tied to naval aviation. The growth of the Soviet Union as a threat to world peace, and interservice rivalry over roles and missions are compared as factors that influenced the development of post-World War II naval strategicmore » thinking. The Navy's reaction to the adoption of massive retaliation as the foundation of the national strategic nuclear policy is discussed and analyzed.« less

  17. Hydrogen Sorption Cryocoolers for the Planck Mission

    NASA Technical Reports Server (NTRS)

    Wade, L.; Bhandari, P.; Bowman, R.; Paine, C.; Morgante, G.; Lindensmith, C.; Crumb, D.; Prina, M.; Sugimura, R.; Rapp, D.

    1999-01-01

    Two continuous opertation 18K/20K sorption coolers are being developed by the Jet Propulsion Laboratory (JPL) as a NASA contribution to the European Space Agency (ESA) Planck mission that is currently planned for a 2007 launch.

  18. NASA Strategic Roadmap: Origin, Evolution, Structure, and Destiny of the Universe

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2005-01-01

    The NASA strategic roadmap on the Origin, Evolution, Structure and Destiny of the Universe is one of 13 roadmaps that outline NASA s approach to implement the vision for space exploration. The roadmap outlines a program to address the questions: What powered the Big Bang? What happens close to a Black Hole? What is Dark Energy? How did the infant universe grow into the galaxies, stars and planets, and set the stage for life? The roadmap builds upon the currently operating and successful missions such as HST, Chandra and Spitzer. The program contains two elements, Beyond Einstein and Pathways to Life, performed in three phases (2005-2015, 2015-2025 and >2025) with priorities set by inputs received from reviews undertaken by the National Academy of Sciences and technology readiness. The program includes the following missions: 2005-2015 GLAST, JWST and LISA; 2015-2025 Constellation-X and a series of Einstein Probes; and >2025 a number of ambitious vision missions which will be prioritized by results from the previous two phases.

  19. Transportation technology program: Strategic plan

    NASA Astrophysics Data System (ADS)

    1991-09-01

    The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.

  20. Transportation technology program: Strategic plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.

  1. Tour by Saudi prince Salman Abdelazize Al-Saud prior to mission

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Tour by Saudi prince Salman Abdelazize Al-Saud, payload specialists for STS 51-G mission, prior to mission. Al-Saud and Abdulmohsen Hamad Al-Bassam, the backup payload specialist, man the controls on the flight deck of the crew compartment trainer in the Shuttle mockup and integration laboratory (29788); the Saudi payload specialists share the hatch of the crew compartment trainer (29789); Portrait view of Abdulmohsen Hamad Al-Bassam during a visit to the Shuttle mockup and integraion laboratory (29790); Don Sirroco, left, explains the middeck facilities in the Shuttle mockup and integration laboratory (29791); Portrait view of Sultan Salman Abdelazize Al-Saud in the Shuttle Mockup and Integration laboratory (29792); The Saudi payload specialists witness a space food demonstration in the life sciences laboratory at JSC. Al-Saud (left) and Al-Bassam (second left) listen as Rita M. Rapp, food specialist, discusses three preparations of re-hydratable food for space travelers. Lynn S. Coll

  2. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. The NASA X-Ray Mission Concepts Study

    NASA Technical Reports Server (NTRS)

    Petre, Robert; Ptak, A.; Bookbinder, J.; Garcia, M.; Smith, R.; Bautz, M.; Bregman, J.; Burrows, D.; Cash, W.; Jones-Forman, C.; hide

    2012-01-01

    The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.

  4. Advanced Spacecraft Designs in Support of Human Missions to Earth's Neighborhood

    NASA Technical Reports Server (NTRS)

    Fletcher, David

    2002-01-01

    NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by The NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a lunar transfer vehicle (LTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the LTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the LTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP.

  5. The Cassini-Huygens Mission Overview

    NASA Technical Reports Server (NTRS)

    Vandermey, Nancy; Paczkowski, Brian G.

    2006-01-01

    The Cassini-Huygens Program is an international science mission to the Saturnian system. Three space agencies and seventeen nations contributed to building the Cassini spacecraft and Huygens probe. The Cassini orbiter is managed and operated by NASA's Jet Propulsion Laboratory. The Huygens probe was built and operated by the European Space Agency. The mission design for Cassini-Huygens calls for a four-year orbital survey of Saturn, its rings, magnetosphere, and satellites, and the descent into Titan's atmosphere of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 45 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that are performing a wide range of observations on a multitude of designated targets. The Huygens probe carried six additional instruments that provided in-situ sampling of the atmosphere and surface of Titan. The multi-national nature of this mission poses significant challenges in the area of flight operations. This paper will provide an overview of the mission, spacecraft, organization and flight operations environment used for the Cassini-Huygens Mission. It will address the operational complexities of the spacecraft and the science instruments and the approach used by Cassini-Huygens to address these issues.

  6. Radioisotope Electric Propulsion Missions Utilizing a Common Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    A study was conducted that shows how a single Radioisotope Electric Propulsion (REP) spacecraft design could be used for various missions throughout the solar system. This spacecraft design is based on a REP feasibility design from a study performed by NASA Glenn Research Center and the Johns Hopkins University Applied Physics Laboratory. The study also identifies technologies that need development to enable these missions. The mission baseline for the REP feasibility design study is a Trojan asteroid orbiter. This mission sends an REP spacecraft to Jupiter s leading Lagrange point where it would orbit and examine several Trojan asteroids. The spacecraft design from the REP feasibility study would also be applicable to missions to the Centaurs, and through some change of payload configuration, could accommodate a comet sample-return mission. Missions to small bodies throughout the outer solar system are also within reach of this spacecraft design. This set of missions, utilizing the common REP spacecraft design, is examined and required design modifications for specific missions are outlined.

  7. Making adaptable systems work for mission operations: A case study

    NASA Technical Reports Server (NTRS)

    Holder, Barbara E.; Levesque, Michael E.

    1993-01-01

    The Advanced Multimission Operations System (AMMOS) at NASA's Jet Propulsion Laboratory is based on a highly adaptable multimission ground data system (MGDS) for mission operations. The goal for MGDS is to support current flight project science and engineering personnel and to meet the demands of future missions while reducing associated operations and software development costs. MGDS has become a powerful and flexible mission operations system by using a network of heterogeneous workstations, emerging open system standards, and selecting an adaptable tools-based architecture. Challenges in developing adaptable systems for mission operations and the benefits of this approach are described.

  8. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov Websites

    Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  9. 11. Strategic planning.

    PubMed

    2014-05-01

    There are several types of planning processes and plans, including strategic, operational, tactical, and contingency. For this document, operational planning includes tactical planning. This chapter examines the strategic planning process and includes an introduction into disaster response plans. "A strategic plan is an outline of steps designed with the goals of the entire organisation as a whole in mind, rather than with the goals of specific divisions or departments". Strategic planning includes all measures taken to provide a broad picture of what must be achieved and in which order, including how to organise a system capable of achieving the overall goals. Strategic planning often is done pre-event, based on previous experience and expertise. The strategic planning for disasters converts needs into a strategic plan of action. Strategic plans detail the goals that must be achieved. The process of converting needs into plans has been deconstructed into its components and includes consideration of: (1) disaster response plans; (2) interventions underway or planned; (3) available resources; (4) current status vs. pre-event status; (5) history and experience of the planners; and (6) access to the affected population. These factors are tempered by the local: (a) geography; (b) climate; (c) culture; (d) safety; and (e) practicality. The planning process consumes resources (costs). All plans must be adapted to the actual conditions--things never happen exactly as planned.

  10. Pluto Express: Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Giuliano, J. A.

    1996-01-01

    Pluto is the smallest, outermost and last-discovered planet in the Solar System and the only one that has never been visited by a spacecraft from Earth. Pluto and its relatively large satellite Charon are the destinations of a proposed spacecraft mission for the next decade, being developed for NASA by scientists and engineers at NASA's Jet Propulsion Laboratory.

  11. The Strategic Attitude: Integrating Strategic Planning into Daily University Worklife

    ERIC Educational Resources Information Center

    Dickmeyer, Nathan

    2004-01-01

    Chief financial officers in today's universities are so busy with the challenges of day-to-day management that strategic thinking often takes a back seat. Planning for strategic change can go a long way toward streamlining the very daily tasks that obscure the "big picture." Learning how to integrate strategic thinking into day-to-day management…

  12. The Status of Ka-Band Communications for Future Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Edwards, C.; Deutsch, L.; Gatti, M.; Layland, J.; Perret, J.; Stelzried, C.

    1997-01-01

    Over the past decade, the Jet Propulsion Laboratory's Telecommunications and Mission Operations Directorate has invested in a variety of technologies, targeted at both the flight and ground sides of the communications link, with the goal of developing a Ka-band (32 GHz) communications capability for future deep space missions.

  13. NASA's strategic plan for education. A strategy for change, 1993-1998

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA's education vision is to promote excellence in America's education system through enhancing and expanding scientific and technological competence. In doing so, NASA strives to be recognized by the education community as the premier mission agency in support of the National Education Goals and in the development and implementation of education standards. To realize this vision, NASA has clearly defined and developed three specific goals to promote excellence in education. Specific objectives and milestones are defined for each goal in the body of this strategic plan.

  14. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Science.gov Websites

    Safety & Security Sandia National Laboratories Exceptional service in the national interest & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Twitter YouTube Flickr RSS Top Nuclear Weapons About Nuclear Weapons at Sandia Safety & Security

  15. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Tim Larson, EPOXI Project Manager from the Jet Propulsion Laboratory in Pasadena, Calif., speaks during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  16. Strategic planning for skills and simulation labs in colleges of nursing.

    PubMed

    Gantt, Laura T

    2010-01-01

    While simulation laboratories for clinical nursing education are predicted to grow, budget cuts may threaten these programs. One of the ways to develop a new lab, as well as to keep an existing one on track, is to develop and regularly update a strategic plan. The process of planning not only helps keep the lab faculty and staff apprised of the challenges to be faced, but it also helps to keep senior level management engaged by reason of the need for their input and approval of the plan. The strategic planning documents drafted by those who supervised the development of the new building and Concepts Integration Labs (CILs) helped guide and orient faculty and other personnel hired to implement the plan and fulfill the vision. As the CILs strategic plan was formalized, the draft plans, including the SWOT analysis, were reviewed to provide historical perspective, stimulate discussion, and to make sure old or potential mistakes were not repeated.

  17. Science Data Center concepts for moderate-sized NASA missions

    NASA Technical Reports Server (NTRS)

    Price, R.; Han, D.; Pedelty, J.

    1991-01-01

    The paper describes the approaches taken by the NASA Science Data Operations Center to the concepts for two future NASA moderate-sized missions, the Orbiting Solar Laboratory (OSL) and the Tropical Rainfall Measuring Mission (TRMM). The OSL space science mission will be a free-flying spacecraft with a complement of science instruments, placed in a high-inclination, sun synchronous orbit to allow continuous study of the sun for extended periods. The TRMM is planned to be a free-flying satellite for measuring tropical rainfall and its variations. Both missions will produce 'standard' data products for the benefit of their communities, and both depend upon their own scientific community to provide algorithms for generating the standard data products.

  18. A Recipe for Streamlining Mission Management

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Semancik, Susan K.

    2004-01-01

    This paper describes a project's design and implementation for streamlining mission management with knowledge capture processes across multiple organizations of a NASA directorate. Thc project's focus is on standardizing processes and reports; enabling secure information access and case of maintenance; automating and tracking appropriate workflow rules through process mapping; and infusing new technologies. This paper will describe a small team's experiences using XML technologies through an enhanced vendor suite of applications integrated on Windows-based platforms called the Wallops Integrated Scheduling and Document Management System (WISDMS). This paper describes our results using this system in a variety of endeavors, including providing range project scheduling and resource management for a Range and Mission Management Office; implementing an automated Customer Feedback system for a directorate; streamlining mission status reporting across a directorate; and initiating a document management, configuration management and portal access system for a Range Safety Office's programs. The end result is a reduction of the knowledge gap through better integration and distribution of information, improved process performance, automated metric gathering, and quicker identification of problem areas and issues. However, the real proof of the pudding comes through overcoming the user's reluctance to replace familiar, seasoned processes with new technology ingredients blended with automated procedures in an untested recipe. This paper shares some of the team's observations that led to better implementation techniques, as well as an IS0 9001 Best Practices citation. This project has provided a unique opportunity to advance NASA's competency in new technologies, as well as to strategically implement them within an organizational structure, while wetting the appetite for continued improvements in mission management.

  19. The Plant Genetic Engineering Laboratory For Desert Adaptation

    NASA Astrophysics Data System (ADS)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  20. The Science and Technology of Future Space Missions

    NASA Astrophysics Data System (ADS)

    Bonati, A.; Fusi, R.; Longoni, F.

    1999-12-01

    The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data