Sample records for laboratory module aboard

  1. Helms and Usachev in Destiny Laboratory module

    NASA Image and Video Library

    2001-04-05

    ISS002-E-5497 (05 April 2001) --- Astronaut Susan J. Helms (left), Expedition Two flight engineer, pauses from her work to pose for a photograph while Expedition Two mission commander, cosmonaut Yury V. Usachev, speaks into a microphone aboard the U.S. Laboratory / Destiny module of the International Space Station (ISS). This image was recorded with a digital still camera.

  2. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  3. The U.S. Laboratory module arrives at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's 'Super Guppy' aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre- launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS- 98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000.

  4. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  5. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  6. MS Lucid places samples in the TEHOF aboard the Spektr module

    NASA Image and Video Library

    1997-03-26

    STS079-S-082 (16-26 Sept. 1996) --- Cosmonaut guest researcher Shannon W. Lucid and Valeri G. Korzun, her Mir-22 commander, are pictured on the Spektr Module aboard Russia's Earth-orbiting Mir Space Station. Korzun was the third of four commanders that Lucid served with during her record-setting 188 consecutive days in space. Later, Lucid returned to Earth with her fourth commander-astronaut William F. Readdy-and five other NASA astronauts to complete the STS-79 mission. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the space shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  7. Skylab 3 Command Module is hoisted aboard prime recovery ship

    NASA Image and Video Library

    1973-09-25

    S73-36423 (25 Sept. 1973) --- The Skylab 3 Command Module, with astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma still inside, is hoisted aboard the prime recovery ship, USS New Orleans, during recovery operations in the Pacific Ocean. The three crewmen had just completed a successful 59-day visit to the Skylab space station in Earth orbit. The Command Module splashed down in the Pacific about 230 miles southwest of San Diego, California. Earlier in the recovery operations a team of U.S. Navy swimmers attached the flotation collar to the spacecraft to improve its buoyancy. Photo credit: NASA

  8. Apollo 9 Command Module aboard the U.S.S. Guadalcanal

    NASA Image and Video Library

    1969-03-13

    S69-20239 (13 March 1969) --- Close-up view of the Apollo 9 Command Module (CM) as it sets on dolly on the deck of the USS Guadalcanal just after being hoisted from the water. The Apollo 9 spacecraft, with astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart aboard, splashed down at 12:00:53 p.m. (EST), March 13, 1969, only 4.5 nautical miles from the aircraft carrier to conclude a successful 10-day Earth-orbital mission in space.

  9. MS Lucid and Blaha with MGBX aboard the Mir space station Priroda module

    NASA Image and Video Library

    1997-03-26

    STS079-S-092 (16-26 Sept. 1996) --- Astronauts Shannon W. Lucid and John E. Blaha work at a microgravity glove box on the Priroda Module aboard Russia's Mir Space Station complex. Blaha, who flew into Earth-orbit with the STS-79 crew, and Lucid are the first participants in a series of ongoing exchanges of NASA astronauts serving time as cosmonaut guest researchers onboard Mir. Lucid went on to spend a total of 188 days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules, with the cooperation of the Russian Space Agency (RSA). A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  10. Sonication standard laboratory module

    DOEpatents

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  11. Astronaut Eugene Cernan sleeping aboard Apollo 17 spacecraft

    NASA Image and Video Library

    1972-12-17

    AS17-162-24049 (7-19 Dec. 1972) --- A fellow crewman took this picture of astronaut Eugene A. Cernan dozing aboard the Apollo 17 spacecraft during the final lunar landing mission in NASA's Apollo program. Also, aboard Apollo 17 were astronaut Ronald E. Evans, command module pilot, and scientist-astronaut Harrison H. "Jack" Schmitt, lunar module pilot. Cernan was the mission commander.

  12. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  13. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility watch as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  14. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers inside the Multi-Purpose Logistics Module Leonardo complete installation of a laboratory rack. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  15. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers inside the Multi-Purpose Logistics Module Leonardo oversee installation of a laboratory rack. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  16. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Multi-Purpose Logistics Module Leonardo, a worker looks at the placement of a laboratory rack. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  17. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  18. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A worker in the Space Station Processing Facility watches as a laboratory rack moves into the Multi-Purpose Logistics Module Leonardo. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Leonardo will be launched March 1, 2001, on Shuttle mission STS-102 On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  19. Keys to the Common Genera of Marine Plants Taken Aboard the Orange County Floating Marine Laboratory.

    ERIC Educational Resources Information Center

    Williams, H. R.

    Provided is a dichotomous key to the common genera of marine algae and angiosperms which are taken aboard the Orange County Floating Marine Laboratory. It is designed primarily for use by junior and senior high school students. Drawings of representative members of the various genera are included. This work was prepared under an ESEA Title III…

  20. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Rack Insertion Unit lifts another laboratory rack to the Multi-Purpose Logistics Module Leonardo, in the background. The MPLM is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the International Space Station aboard the Space Shuttle. Leonardo will be launched for the first time March 1, 2001, on Shuttle mission STS-102. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  1. Laboratory racks are installed in the MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, another laboratory rack is placed on the arm of the Rack Insertion Unit to lift it to the workstand height of the Multi-Purpose Logistics Module Leonardo (not seen). The MPLM will transport laboratory racks filled with equipment, experiments and supplies to and from the International Space Station aboard the Space Shuttle. Leonardo will be launched for the first time March 1, 2001, on Shuttle mission STS-102. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  2. STS-98 crewmember move rack into U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-07

    STS098-322-0001 (7-20 February 2001) --- Three STS-98 astronauts move a rack into position aboard the newly attached Destiny laboratory. From the left to right are astronauts Robert L. Curbeam, mission specialist; Mark L. Polansky, pilot; and Kenneth D. Cockrell, mission commander.

  3. Module Architecture for in Situ Space Laboratories

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2010-01-01

    The paper analyzes internal outfitting architectures for space exploration laboratory modules. ISS laboratory architecture is examined as a baseline for comparison; applicable insights are derived. Laboratory functional programs are defined for seven planet-surface knowledge domains. Necessary and value-added departures from the ISS architecture standard are defined, and three sectional interior architecture options are assessed for practicality and potential performance. Contemporary guidelines for terrestrial analytical laboratory design are found to be applicable to the in-space functional program. Densepacked racks of system equipment, and high module volume packing ratios, should not be assumed as the default solution for exploration laboratories whose primary activities include un-scriptable investigations and experimentation on the system equipment itself.

  4. STS-55 German Payload Specialist Walter freefloats inside the SL-D2 module

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 1 Ulrich Walter demonstrates the microgravity aboard the Spacelab Deutsche 2 (SL-D2) science module in Columbia's, Orbiter Vehicle (OV) 102's, payload bay (PLB). The module served as his space laboratory and that of his six crewmates for 10 days. Walter represents the German Aerospace Research Establishment (DLR).

  5. Offgassing Characterization of the Columbus Laboratory Module

    NASA Technical Reports Server (NTRS)

    Rampini, riccardo; Lobascio, Cesare; Perry, Jay L.; Hinderer, Stephan

    2005-01-01

    Trace gaseous contamination in the cabin environment is a major concern for manned spacecraft, especially those designed for long duration missions, such as the International Space Station (ISS). During the design phase, predicting the European-built Columbus laboratory module s contribution to the ISS s overall trace contaminant load relied on "trace gas budgeting" based on material level and assembled article tests data. In support of the Qualification Review, a final offgassing test has been performed on the complete Columbus module to gain cumulative system offgassing data. Comparison between the results of the predicted offgassing load based on the budgeted material/assembled article-level offgassing rates and the module-level offgassing test is presented. The Columbus module offgassing test results are also compared to results from similar tests conducted for Node 1, U.S. Laboratory, and Airlock modules.

  6. Photovoltaic module certification and laboratory accreditation criteria development

    NASA Astrophysics Data System (ADS)

    Osterwald, Carl R.; Zerlaut, Gene; Hammond, Robert; D'Aiello, Robert

    1996-01-01

    This paper overviews a model product certification and test laboratory accreditation program for photovoltaic (PV) modules that was recently developed by the National Renewable Energy Laboratory and Arizona State University. The specific objective of this project was to produce a document that details the equipment, facilities, quality assurance procedures, and technical expertise an accredited laboratory needs for performance and qualification testing of PV modules, along with the specific tests needed for a module design to be certified. The document was developed in conjunction with a criteria development committee consisting of representatives from 30 U.S. PV manufacturers, end users, standards and codes organizations, and testing laboratories. The intent is to lay the groundwork for a future U.S. PV certification and accreditation program that will be beneficial to the PV industry as a whole.

  7. STS-65 crewmembers work at IML-2 Rack 5 Biorack (BR) aboard Columbia, OV-102

    NASA Image and Video Library

    1994-07-23

    STS-65 Mission Specialist (MS) Leroy Chiao (top) and MS Donald A. Thomas are seen at work in the International Microgravity Laboratory 2 (IML-2) spacelab science module aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102. The two crewmembers are conducting experiments at the IML-2 Rack 5 Biorack (BR). Chiao places a sample in the BR incubator as Thomas handles another sample inside the BR glovebox. The glovebox is used to prepare samples for BR and slow rotating centrifuge microscope (NIZEMI) experiments.

  8. STS-65 crewmembers work at IML-2 Rack 5 Biorack (BR) aboard Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist (MS) Leroy Chiao (top) and MS Donald A. Thomas are seen at work in the International Microgravity Laboratory 2 (IML-2) spacelab science module aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102. The two crewmembers are conducting experiments at the IML-2 Rack 5 Biorack (BR). Chiao places a sample in the BR incubator as Thomas handles another sample inside the BR glovebox. The glovebox is used to prepare samples for BR and slow rotating centrifuge microscope (NIZEMI) experiments.

  9. Undergraduate Laboratory Module on Skin Diffusion

    ERIC Educational Resources Information Center

    Norman, James J.; Andrews, Samantha N.; Prausnitz, Mark R.

    2011-01-01

    To introduce students to an application of chemical engineering directly related to human health, we developed an experiment for the unit operations laboratory at Georgia Tech examining diffusion across cadaver skin in the context of transdermal drug delivery. In this laboratory module, students prepare mouse skin samples, set up diffusion cells…

  10. Accomplishments in bioastronautics research aboard International Space Station.

    PubMed

    Uri, John J; Haven, Cynthia P

    2005-01-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program. c2005 Published by Elsevier Ltd.

  11. Accomplishments in Bioastronautics Research Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2003-01-01

    The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  12. Space Station Crew Marks the 10th Anniversary of the Launching of the European Columbus Module

    NASA Image and Video Library

    2018-02-07

    Aboard the International Space Station, Expedition 54 Flight Engineers Joe Acaba and Mark Vande Hei of NASA took time to commemorate the 10th anniversary of the launching of the European Columbus module during an in-flight event Feb. 7 with European Space Agency officials gathered in Noordwijk, Netherlands. The Columbus science laboratory was launched on Feb. 7, 2008 aboard the space shuttle Atlantis on the STS-122 mission commanded by former NASA astronaut Stephen Frick.

  13. JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  14. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This closer image of the International Space Station (ISS) showing the newly installed U.S. Laboratory, Destiny (left), was taken from the departing Space Shuttle Atlantis. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  15. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This STS-98 Shuttle mission image shows an overall interior view of the newly attached U.S. Laboratory, Destiny. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  16. STS-102 Onboard Photograph-Multi-Purpose Logistics Module, Leonardo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  17. NASDA President Communicates With Japanese Crew Member Aboard the STS-47 Spacelab-J Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. From the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC), NASDA President, Mr. Yamano, speaks to Payload Specialist Mamoru Mohri, a Japanese crew member aboard the STS-47 Spacelab J mission.

  18. JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  19. Noguchi in Destiny laboratory module wearing yellow hard hat

    NASA Image and Video Library

    2005-07-29

    S114-E-5590 (29 July 2005) --- With somewhat of a tongue in cheek frame of mind, Japanese Aerospace Agency astronaut Soichi Noguchi dons a hard hat aboard the International Space Station. Astronauts James M. Kelly and Wendy Lawrence, STS-114 pilot and mission specialist, respectively, check out work stations, from which they will engineer the movement of Raffaello. Raffaello is the multipurpose logistics module, currently filled with supplies, which will be moved onto the orbital outpost. Noguchi obviously has his muscles and his hardhat ready to assist in the movement of those supplies. Then, in less than 24 hours, Noguchi and astronaut Stephen K. Robinson, out of frame, will participate in the first STS-114 spacewalk.

  20. Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.

    2006-01-01

    A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…

  1. President Nixon welcomes the Apollo 11 astronauts aboard the U.S.S. Hornet

    NASA Technical Reports Server (NTRS)

    1969-01-01

    President Richard M. Nixon welcomes the Apollo 11 astronauts aboard the U.S.S. Hornet. Already confined to the Mobile Quarantine Facility are (left to right) Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot.

  2. Payload Specialist Taylor Wang performs repairs on Drop Dynamics Module

    NASA Image and Video Library

    1985-05-01

    51B-03-035 (29 April-6 May 1985) --- Payload specialist Taylor G. Wang performs a repair task on the Drop Dynamics Module (DDM) in the Science Module aboard the Earth-orbiting Space Shuttle Challenger. The photo was taken with a 35mm camera. Dr. Wang is principal investigator for the first time-to-fly experiment, developed by his team at NASA?s Jet Propulsion Laboratory (JPL), Pasadena, California. This photo was among the first to be released by NASA upon return to Earth by the Spacelab 3 crew.

  3. Apollo 14 prime crew aboard NASA Motor Vessel Retriever during training

    NASA Image and Video Library

    1970-10-24

    S70-51699 (24 Oct. 1970) --- The prime crew of the Apollo 14 lunar landing mission relaxes aboard the NASA motor vessel retriever, prior to participating in water egress training in the Gulf of Mexico. Left to right are astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot. They are standing by a Command Module (CM) trainer which was used in the exercises.

  4. Astronauts Evans and Cernan aboard the Apollo 17 spacecraft

    NASA Image and Video Library

    1972-12-17

    AS17-162-24053 (7-19 Dec. 1972) --- Scientist-astronaut Harrison H. "Jack" Schmitt, lunar module pilot, took this photograph of his two fellow crew men under zero-gravity conditions aboard the Apollo 17 spacecraft during the final lunar landing mission in NASA's Apollo program. That is astronaut Eugene A. Cernan, commander, who is seemingly "right side up." Astronaut Ronald E. Evans, command module pilot, appears to be "upside down." While astronauts Cernan and Schmitt descended in the Lunar Module (LM) "Challenger" to explore the Taurus-Littrow region of the moon, astronaut Evans remained with the Command and Service Modules (CSM) "America" in lunar orbit.

  5. Astronaut Catherine G. Coleman aboard KC-135 aircraft

    NASA Image and Video Library

    1994-05-28

    S94-35542 (June 1994) --- Astronaut Catherine G. Coleman, mission specialist, gets a preview of next year?s United States Microgravity Laboratory (USML-2) mission aboard the Space Shuttle Columbia. The weightless experience was afforded by a special parabolic pattern flown by NASA?s KC-135 ?zero gravity? aircraft.

  6. Apollo 7 crew arrives aboard recovery ship, U.S.S. Essex

    NASA Image and Video Library

    1968-10-15

    S68-49744 (22 Oct. 1968) --- The Apollo 7 crew is welcomed aboard the USS Essex, the prime recovery ship for the mission. Left to right, are astronauts Walter M. Schirra Jr., commander; Donn F. Eisele, command module pilot; and Walter Cunningham, lunar module pilot. In left background is Dr. Donald E. Stullken, NASA Recovery Team Leader from the Manned Spacecraft Center's (MSC) Landing and Recovery Division.

  7. Ford poses at the FIR/LMM/ACE in the U.S. Laboratory

    NASA Image and Video Library

    2013-02-21

    ISS034-E-056144 (21 Feb. 2013) --- Inside the U.S. Laboratory (Destiny) aboard the Earth-orbiting International Space Statio, NASA astronaut Kevin Ford, Expedition 34 commander, is seen with the Fluids Integration Rack (FIR)/Light Microscopy Module (LMM)/Advanced Colloids Experiment (ACE). ACE samples, which produce microscopic images of materials containing small colloidal particles, are scheduled for arrival on SpaceX-2 in the first week of March.

  8. Basic Laboratory Skills. Training Module 5.300.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the basic chemical and microbiological laboratory equipment and procedures used in water and wastewater treatment plant laboratories. Included are objectives, instructor guides, student handouts and transparency masters. This module…

  9. Astronauts Don Lind observes growth of crystals in VCGS aboard orbiter

    NASA Image and Video Library

    1985-04-30

    51B-01-007 (30 April 1985) --- Astronaut Don L. Lind, 51-B Spacelab 3 mission specialist, observes the growth of mercuric iodide crystal in the vapor crystal growth system (VCGS) on the Spacelab 3 science module aboard the orbiter Challenger.

  10. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  11. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  12. Using experimental design modules for process characterization in manufacturing/materials processes laboratories

    NASA Technical Reports Server (NTRS)

    Ankenman, Bruce; Ermer, Donald; Clum, James A.

    1994-01-01

    Modules dealing with statistical experimental design (SED), process modeling and improvement, and response surface methods have been developed and tested in two laboratory courses. One course was a manufacturing processes course in Mechanical Engineering and the other course was a materials processing course in Materials Science and Engineering. Each module is used as an 'experiment' in the course with the intent that subsequent course experiments will use SED methods for analysis and interpretation of data. Evaluation of the modules' effectiveness has been done by both survey questionnaires and inclusion of the module methodology in course examination questions. Results of the evaluation have been very positive. Those evaluation results and details of the modules' content and implementation are presented. The modules represent an important component for updating laboratory instruction and to provide training in quality for improved engineering practice.

  13. Helms with laptop in Destiny laboratory module

    NASA Image and Video Library

    2001-03-30

    ISS002-E-5478 (30 March 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, works at a laptop computer in the U.S. Laboratory / Destiny module of the International Space Station (ISS). The Space Station Remote Manipulator System (SSRMS) control panel is visible to Helms' right. This image was recorded with a digital still camera.

  14. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  15. APOLLO 13 - COMMAND MODULE - RECOVERY - SPLASHDOWN - SOUTH PACIFIC OCEAN

    NASA Image and Video Library

    1970-04-17

    S70-35632 (17 April 1970) --- Crewmen aboard the USS Iwo Jima, prime recovery ship for the Apollo 13 mission, guide the Command Module (CM) atop a dolly onboard the ship. The CM is connected by strong cable to a hoist on the vessel. The Apollo 13 crewmembers, astronauts James A. Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot, were already aboard the USS Iwo Jima when this photograph was made. The CM, with the three tired crewmen aboard, splashed down at 12:07:44 p.m. (CST), April 17, 1970, only about four miles from the recovery vessel in the South Pacific Ocean.

  16. STS-55 German Payload Specialist Walter at the SL-D2 Fluid Physics Module

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 1 Ulrich Walter conducts an experiment using the advanced fluid physics module located in Spacelab Deutsche 2 (SL-D2) Rack 8 Werkstofflabor (WL) (Material Sciences Laboratory) aboard Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Walter uses intravehicular activity (IVA) foot restraints to position himself in front of the rack. Walter represents the German Aerospace Research Establishment (DLR) on the 10-day mission.

  17. KENNEDY SPACE CENTER, FLA. - The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is installed into the payload bay of the Space Shuttle Orbiter Columbia in Orbiter Processing Facility 1. The Spacelab long crew transfer tunnel that leads from the orbiter's crew airlock to the module is also aboard, as well as the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia's payload bay. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments.

    NASA Image and Video Library

    1997-02-13

    KENNEDY SPACE CENTER, FLA. - The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is installed into the payload bay of the Space Shuttle Orbiter Columbia in Orbiter Processing Facility 1. The Spacelab long crew transfer tunnel that leads from the orbiter's crew airlock to the module is also aboard, as well as the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia's payload bay. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments.

  18. STS-88 Onboard Photograph - Unity and Zarya Modules

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph, taken during the STS-88 mission, shows the cornected Unity Module or Node 1 and Zarya or the Functional Cargo Block (FGB) after having been released from the Orbiter Endeavour's cargo bay. The Unity (also called Node 1), the first U.S. Module for the International Space Station (ISS), is a six-sided connector to which all future U.S. Station modules will attach. It was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity Module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  19. Astronaut Edwin Aldrin undergoes zero-gravity training aboard KC-135

    NASA Image and Video Library

    1969-07-15

    S69-39269 (10 July 1969) --- Astronaut Edwin E. Aldrin Jr., lunar module pilot of the Apollo 11 lunar landing mission, undergoes zero-gravity training aboard a U.S. Air Force KC-135 jet aircraft from nearby Patrick Air Force Base, Florida. Aldrin is wearing an Extravehicular Mobility Unit (EMU), the type of equipment which he will wear on the lunar surface.

  20. Expedition Two crewmembers pose in Destiny Laboratory module

    NASA Image and Video Library

    2001-03-31

    ISS002-E-5488 (31 March 2001) --- The Expedition Two crewmembers -- astronaut Susan J. Helms (left), cosmonaut Yury V. Usachev and astronaut James S. Voss -- pose for a photograph in the U.S. Laboratory / Destiny module of the International Space Station (ISS). This image was recorded with a digital still camera.

  1. STS-88 Onboard Photograph - The Unity Module and the Zarya

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph taken during the STS-88 mission, shows the cornected Zarya (top with solar wings) and the Unity Module after having been released from the Orbiter Endeavour's cargo bay. The Unity (also called Node 1), the first U.S. Module for the International Space Station (ISS), is a six-sided connector to which all future U.S. Station modules will attach and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  2. Structural Science Laboratory Supplement. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Luthens, Roger

    This module, a laboratory supplement on the theory of bending and properties of sections, is part of a first-year, postsecondary structural science technical support course for architectural drafting and design. The first part of this two-part supplement is directed at the instructor and includes the following sections: program objectives; course…

  3. Apollo 13 Command Module recovery after splashdown

    NASA Image and Video Library

    1970-04-17

    S70-15530 (17 April 1970) --- Crew men aboard the USS Iwo Jima, prime recovery ship for the Apollo 13 mission, hoist the Command Module (CM) aboard ship. The Apollo 13 crew men, astronauts James A. Lovell Jr., John L. Swigert Jr. and Fred W. Haise Jr., were already aboard the Iwo Jima when this photograph was taken. The CM, with the three tired crew men aboard, splashed down at 12:07:44 p.m. (CST), April 17, 1970, only about four miles from the recovery vessel in the South Pacific Ocean.

  4. Cutting of Gold Foil in the Genesis Laboratory

    NASA Image and Video Library

    2005-02-15

    The facility for storing and examining Genesis solar wind samples consists of two adjacent laboratories. In these laboratories, the cutting of gold foil to be used in the gathering of the solar wind dust aboard the Genesis spacecraft. Views include: The process of cutting gold foil to be used aboard the Genesis spacecraft. The technicians use Gore-Tex suits with filters as to not contaminate the items.

  5. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company, shows Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS), with its hatch door installed. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  6. Microgravity Science Glovebox Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  7. Spacelab Module for USML-1 Mission in Orbiter Cargo Bay

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a photograph of the Spacelab module for the first United States Microgravity Laboratory (USML-1) mission, showing logos of the Spacelab mission on the left and the USML-1 mission on the right. The USML-1 was one part of a science and technology program that opened NASA's next great era of discovery and established the United States' leadership in space. From investigations designed to gather fundamental knowledge in a variety of areas to demonstrations of new equipment, USML-1 forged the way for future USML missions and helped prepare for advanced microgravity research and processing aboard the Space Station. Thirty-one investigations comprised the payload of the first USML-1 mission. The experiments aboard USML-1 covered five basic areas: fluid dynamics, the study of how liquids and gases respond to the application or absence of differing forces; crystal growth, the production of inorganic and organic crystals; combustion science, the study of the processes and phenomena of burning; biological science, the study of plant and animal life; and technology demonstrations. The USML-1 was managed by the Marshall Space Flight Center and launched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.

  8. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

  9. Kelly at SSRMS controls in Destiny laboratory module

    NASA Image and Video Library

    2005-08-05

    S114-E-7484 (5 August 2005) --- Astronaut James M. Kelly, STS-114 pilot, works in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station. Astronauts Kelly and Wendy B. Lawrence (out of frame), mission specialist, joined forces to re-stow the Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) in the cargo bay.

  10. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  11. Helms at photo quality window in Destiny Laboratory module

    NASA Image and Video Library

    2001-03-31

    ISS002-E-5489 (31 March 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, views the topography of a point on Earth from the nadir window in the U.S. Laboratory / Destiny module of the International Space Station (ISS). The image was recorded with a digital still camera.

  12. Six Month Report on Tissue Cultured Avian Skeletal Myofibers in the STL/A Module Aboard STS-77

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1997-01-01

    Space travel is know to effect skeletal muscle, causing rapid and pronounced atrophy in humans and animals, even when strenuous exercise is used as a countermeasure. The cellular and molecular bases of this atrophy are unknown. Space travel may cause muscle atrophy by a direct effect on the muscle fibers and/or indirectly by reducing circulating levels of growth factors such as growth hormone. The recent development of a tissue culture incubator system for Shuttle Middeck basic science experiments [Space Tissue Loss (STL) Module] by the Walter Reed Army Institute of Research (WRAIR) allows the study of the effects of space travel directly on isolated skeletal myofibers. Avian bioartificial skeletal muscle 'organoids' containing differentiated skeletal myofibers and connective tissue fibroblasts were flown aboard the Space Shuttle (Space Transportation System, STS) on Flight STS-77, a repeat of a similar experiment flown on STS-66. The results from these two flight experiments show for the first time that space travel has a direct effect on skeletal muscle cells separate from any systemic effects resulting from altered circulating growth factors.

  13. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    NASA Astrophysics Data System (ADS)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    A thematic approach to each of the two introductory chemistry laboratory sequences, general and organic chemistry, not only provides an element of cohesion but also stresses the role that chemistry plays as the "central science" and emphasizes the intimate link between chemistry and other science disciplines. Thus, in general chemistry the rubric "Environmental Chemistry" affords connections to the geosciences, whereas experiments on the topic of "Plant Assays" bridge organic chemistry and biology. By establishing links with other science departments, the theme-based laboratory experiments will satisfy the following multidisciplinary criteria: (i) to demonstrate the general applicability of core methodologies to the sciences, (ii) to help students relate concepts to a broader multidisciplinary context, (iii) to foster an attitude of both independence and cooperation that can transcend the teaching laboratory to the research arena, and (iv) to promote greater cooperation and interaction between the science departments. Fundamentally, this approach has the potential to impact the chemistry curriculum significantly by including student decision-making in the experimental process. Furthermore, the incorporation of GC-MS, a powerful tool for separation and identification as well as a state-of-the-art analytical technique, in the modules will enhance the introductory general and organic chemistry laboratory sequences by making them more instrument-intensive and by providing a reliable and reproducible means of obtaining quantitative analyses. Each multifaceted module has been designed to meet the following criteria: (i) a synthetic protocol including full spectral characterization of products, (ii) quantitative and statistical analyses of data, and (iii) construction of a database of results. The database will provide several concrete functions. It will foster the idea that science is a continuous incremental process building on the results of earlier experimentalists

  14. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  15. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  16. Exploring Protein Structure and Dynamics through a Project-Oriented Biochemistry Laboratory Module

    ERIC Educational Resources Information Center

    Lipchock, James M.; Ginther, Patrick S.; Douglas, Bonnie B.; Bird, Kelly E.; Loria, J. Patrick

    2017-01-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant…

  17. Occupational accidents aboard merchant ships

    PubMed Central

    Hansen, H; Nielsen, D; Frydenberg, M

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were identified during a total of 31 140 years at sea. Among these, 209 accidents resulted in permanent disability of 5% or more, and 27 were fatal. The mean risk of having an occupational accident was 6.4/100 years at sea and the risk of an accident causing a permanent disability of 5% or more was 0.67/100 years aboard. Relative risks for notified accidents and accidents causing permanent disability of 5% or more were calculated in a multivariate analysis including ship type, occupation, age, time on board, change of ship since last employment period, and nationality. Foreigners had a considerably lower recorded rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious accidents happened on deck. Conclusions: It was possible to clearly identify work situations and specific risk factors for accidents aboard merchant ships. Most accidents happened while performing daily routine duties. Preventive measures should focus on workplace instructions for all important functions aboard and also on the prevention of accidents caused by walking around aboard the ship. PMID:11850550

  18. Multipurpose Logistics Module, Leonardo, Rests in Discovery's Payload Bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.

  19. Parallels, How Many? Geometry Module for Use in a Mathematics Laboratory Setting.

    ERIC Educational Resources Information Center

    Brotherton, Sheila; And Others

    This is one of a series of geometry modules developed for use by secondary students in a laboratory setting. This module was conceived as an alternative approach to the usual practice of giving Euclid's parallel postulate and then mentioning that alternate postulates would lead to an alternate geometry or geometries. Instead, the student is led…

  20. Astronaut Voss Works in the Destiny Laboratory

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this photograph, Astronaut James Voss, flight engineer of Expedition Two, performs a task at a work station in the International Space Station (ISS) Destiny Laboratory, or U.S. Laboratory, as Astronaut Scott Horowitz, STS-105 mission commander, floats through the hatchway leading to the Unity node. After spending five months aboard the orbital outpost, the ISS Expedition Two crew was replaced by Expedition Three and returned to Earth aboard the STS-105 Space Shuttle Discovery on August 22, 2001. The Orbiter Discovery was launched from the Kennedy Space Center on August 10, 2001.

  1. The payload canister leaves the O&C with the Joint Airlock Module inside

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The payload canister, with the Joint Airlock Module inside, backs out of the Operations and Checkout Building for a short trip to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.

  2. Interior of the U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5113 (11 February 2001) --- This wide shot, photographed with a digital still camera, shows the interior of the newly attached Destiny laboratory. The crews of Atlantis and the International Space Station opened the laboratory on Feb. 11 and spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Station commander William M. (Bill) Shepherd opened the Destiny hatch, and he and shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.

  3. The Joint Airlock Module is moved to a payload canister in the O&C

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Joint Airlock Module is suspended by an overhead crane in the Operations and Checkout Building before being moved and placed into the payload canister for transfer to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.

  4. Hatch leading into U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5114 (11 February 2001) --- This medium close-up shot, photographed with a digital still camera, shows Unity's closed hatch to the newly delivered Destiny laboratory. The crews of Atlantis and the International Space Station opened the laboratory, shortly after this photo was made on Feb. 11, and the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Station commander William M. (Bill) Shepherd opened the Destiny hatch, and he and shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.

  5. STS-42 crewmembers work in the IML-1 module located in OV-103's payload bay

    NASA Image and Video Library

    1992-01-30

    STS042-201-009 (22-30 Jan 1992) --- Canadian Roberta L. Bondar, payload specialist representing the Canadian Space Agency (CSA), works at the International Microgravity Laboratory's (IML-1) biorack while astronaut Stephen S. Oswald, pilot, changes a film magazine on the IMAX camera. The two were joined by five fellow crew members for eight-days of scientific research aboard the Space Shuttle Discovery in Earth-orbit. Most of their on-duty time was spent in this IML-1 Science Module, positioned in the cargo bay and attached via a tunnel to Discovery's airlock.

  6. View of ceremonies welcoming Apollo 16 crew aboard U.S.S. Ticonderoga

    NASA Image and Video Library

    1972-04-27

    S72-36262 (27 April 1972) --- A high-angle view of the Apollo 16 welcoming aboard ceremonies on the deck of the prime recovery ship, USS Ticonderoga. It was soon after the splashdown of the Apollo 16 Command Module (CM) in the central Pacific Ocean approximately 215 miles southeast of Christmas Island. Astronaut John W. Young, commander, is standing at the microphone. Standing behind Young are astronaut Charles M. Duke Jr. (Left), lunar module pilot; and astronaut Thomas K. Mattingly II, command module pilot. The splashdown occurred at 290:37:06 ground elapsed time, 1:45:06 p.m. (CST), Thursday, April 27, 1972. The coordinates were 00:43.2 degrees south latitude and 156:11.4 degrees west longitude. The three crew members were picked up by helicopter and flown to the deck of the USS Ticonderoga.

  7. Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

  8. Cosmonaut Gidzenko Near Hatch Between Unity and Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-10

    Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.

  10. Navy Swimmers Assist - Recovery of Skylab (SL)-3 Command Module (CM) - Pacific

    NASA Image and Video Library

    1973-09-25

    S73-36401 (25 Sept. 1973) --- A team of U.S. Navy swimmers assists with the recovery of the Skylab 3 Command Module following its splashdown in the Pacific Ocean about 230 miles southwest of San Diego, California. The swimmers had just attached a flotation collar to the spacecraft to improve its buoyancy. Aboard the Command Module were astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma, who had just completed a successful 59-day visit to the Skylab space station in Earth orbit. Minutes later the Command Module with the three crewmen still inside was hoisted aboard the prime recovery ship, the USS New Orleans. Photo credit: NASA

  11. STS-42 MS/PLC Norman E. Thagard adjusts Rack 10 FES equipment in IML-1 module

    NASA Image and Video Library

    1992-01-30

    STS042-05-006 (22-30 Jan 1992) --- Astronaut Norman E. Thagard, payload commander, performs the Fluids Experiment System (FES) in the International Microgravity Laboratory (IML-1) science module. The FES is a NASA-developed facility that produces optical images of fluid flows during the processing of materials in space. The system's sophisticated optics consist of a laser to make holograms of samples and a video camera to record images of flows in and around samples. Thagard was joined by six fellow crewmembers for eight days of scientific research aboard Discovery in Earth-orbit. Most of their on-duty time was spent in this IML-1 science module, positioned in the cargo bay and attached via a tunnel to Discovery's airlock.

  12. Peculiarities of ultrastructure of Chlorella cells growing aboard the Bion-10 during 12 days

    NASA Astrophysics Data System (ADS)

    Popova, A. F.; Sytnik, K. M.

    The ultrastructure of Chlorella cells grown in darkness on a solid agar medium with organic additions aboard the Bion-1O biosatellite was studied. Certain differences in submicroscopic organization of organelles in the experimental cells were revealed compared to the Earth control. The changes are registered mainly in ultrastructure of energetic organelles - mitochondria and plastids of the experimental cells, in particular, an increase of mitochondria and their cristae size, as well as an increase of the total volume of mitochondrion per cell were established. The decrease of the starch amount in the plastid stroma and the electron density of the latter was also observed. In many experimental cells, the increase of condensed chromatin in the nuclei has been noted. Ultrastructural rearrangements in cells after laboratory experiment realized according to the thermogram registered aboard the Bion-10 were insignificant compared to the flight experiment. Data obtained are compared to results of space flight experiments carried out aboard the Bion-9 (polycomponent aquatic system) and the orbital station Mir (solid agar medium).

  13. International Space Station (ISS)

    NASA Image and Video Library

    1997-06-01

    This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  14. STS-102 Onboard Photograph Inside Multipurpose Logistics Module, Leonardo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  15. Apollo XI Command Module (CM) - Mobile Quarantine Facility (MQF) - U.S.S. Hornet

    NASA Image and Video Library

    1969-07-24

    S69-40758 (24 July 1969) --- The Apollo 11 spacecraft Command Module (CM) and the Mobile Quarantine Facility (MQF) are photographed aboard the USS Hornet, prime recovery ship for the historic first lunar landing mission. The three crewmen are already in the MQF. Apollo 11 with astronauts Neil A. Armstrong, Michael Collins and Edwin E. Aldrin Jr. aboard splashed down at 11:49 a.m. (CDT), July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet. While astronauts Armstrong, commander, and Aldrin, lunar module pilot, descended in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins, command module pilot, remained with the Command and Service Modules (CSM) "Columbia" in lunar orbit.

  16. Lawrence and Kelly at SSRMS controls in Destiny laboratory module

    NASA Image and Video Library

    2005-08-05

    S114-E-7490 (5 August 2005) --- Astronauts Wendy B. Lawrence (foreground), STS-114 mission specialist, and James M. Kelly, pilot, work with the Mobile Service System (MSS) and Canadarm2 controls in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station. The two were re-stowing the Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) in the cargo bay.

  17. MS Ivins floats through U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5161 (11 February 2001) --- Astronaut Marsha S. Ivins, STS-98 mission specialist, floats into the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.

  18. View of the Apollo 16 Command/Service Module from the Lunar module in orbit

    NASA Image and Video Library

    1971-04-20

    AS16-113-18282 (23 April 1972) --- The Apollo Command and Service Modules (CSM) "Casper" approaches the Lunar Module (LM) "Orion", from which this photograph was made. The two spacecraft are about to make their final rendezvous of the mission, on April 23, 1972. Astronauts John W. Young, commander, and Charles M. Duke Jr., lunar module pilot, aboard the LM, were returning to the CSM, in lunar orbit, after three successful days on the lunar surface. Astronaut Thomas K. (Ken) Mattingly II, command module pilot, remained with the CSM in lunar orbit, while Young and Duke descended in the LM to explore the Descartes region of the moon.

  19. Doubling immunochemistry laboratory testing efficiency with the cobas e 801 module while maintaining consistency in analytical performance.

    PubMed

    Findeisen, P; Zahn, I; Fiedler, G M; Leichtle, A B; Wang, S; Soria, G; Johnson, P; Henzell, J; Hegel, J K; Bendavid, C; Collet, N; McGovern, M; Klopprogge, K

    2018-06-04

    The new immunochemistry cobas e 801 module (Roche Diagnostics) was developed to meet increasing demands on routine laboratories to further improve testing efficiency, while maintaining high quality and reliable data. During a non-interventional multicenter evaluation study, the overall performance, functionality and reliability of the new module was investigated under routine-like conditions. It was tested as a dedicated immunochemistry system at four sites and as a consolidator combined with clinical chemistry at three sites. We report on testing efficiency and analytical performance of the new module. Evaluation of sample workloads with site-specific routine request patterns demonstrated increased speed and almost doubled throughput (maximal 300 tests per h), thus revealing that one cobas e 801 module can replace two cobas e 602 modules while saving up to 44% floor space. Result stability was demonstrated by QC analysis per assay throughout the study. Precision testing over 21 days yielded excellent results within and between labs, and, method comparison performed versus the cobas e 602 module routine results showed high consistency of results for all assays under study. In a practicability assessment related to performance and handling, 99% of graded features met (44%) or even exceeded (55%) laboratory expectations, with enhanced reagent management and loading during operation being highlighted. By nearly doubling immunochemistry testing efficiency on the same footprint as a cobas e 602 module, the new module has a great potential to further consolidate and enhance laboratory testing while maintaining high quality analytical performance with Roche platforms. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Apollo 17 Command/Service modules photographed from lunar module in orbit

    NASA Image and Video Library

    1972-12-14

    AS17-145-22254 (14 Dec. 1972) --- An excellent view of the Apollo 17 Command and Service Modules (CSM) photographed from the Lunar Module (LM) "Challenger" during rendezvous and docking maneuvers in lunar orbit. The LM ascent stage, with astronauts Eugene A. Cernan and Harrison H. Schmitt aboard, had just returned from the Taurus-Littrow landing site on the lunar surface. Astronaut Ronald E. Evans remained with the CSM in lunar orbit. Note the exposed Scientific Instrument Module (SIM) Bay in Sector 1 of the Service Module (SM). Three experiments are carried in the SIM bay: S-209 lunar sounder, S-171 infrared scanning spectrometer, and the S-169 far-ultraviolet spectrometer. Also mounted in the SIM bay are the panoramic camera, mapping camera and laser altimeter used in service module photographic tasks. A portion of the LM is on the right.

  1. MS Jones in U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5137 (11 February 2001) --- Astronauts Thomas D. Jones (foreground), STS-98 mission specialist, and William M. Shepherd, Expedition One mission commander, participate in an impromptu photo shoot onboard the newly opened Destiny laboratory on the International Space Station (ISS). After Shepherd opened the Destiny hatch, he and astronaut Kenneth D. Cockrell (out of frame) ventured inside at 8:38 a.m. (CST), February 11, 2001. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also took some photos and continued equipment transfers from the shuttle to the station.

  2. Krikalev in Service module with tools

    NASA Image and Video Library

    2001-03-30

    ISS01-E-5150 (December 2000) --- Cosmonaut Sergei K. Krikalev, Expedition One flight engineer, retrieves a tool during an installation and set-up session in the Zvezda service module aboard the International Space Station (ISS). The picture was recorded with a digital still camera.

  3. U.S. President Richard Milhous Nixon Arrives Aboard U.S.S. Hornet for Apollo 11 Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    U.S. President Richard Milhous Nixon (center), is saluted by the honor guard of flight deck crewmen when he arrives aboard the U.S.S. Hornet, prime recovery ship for the Apollo 11 mission, to watch recovery operations and welcome the astronauts home. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days following the mission. The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.

  4. An evaluation of outcomes following the replacement of traditional histology laboratories with self-study modules.

    PubMed

    Thompson, Andrew R; Lowrie, Donald J

    2017-06-01

    Changes in medical school curricula often require educators to develop teaching strategies that decrease contact hours while maintaining effective pedagogical methods. When faced with this challenge, faculty at the University of Cincinnati College of Medicine converted the majority of in-person histology laboratory sessions to self-study modules that utilize multiple audiovisual modalities and a virtual microscope platform. Outcomes related to this shift were investigated through performance on in-house examinations, results of the United States Medical Licensing Examination ® (USMLE ® ) Step 1 Examination, and student feedback. Medical School College Admissions Test ® (MCAT ® ) scores were used as a covariate when comparing in-house examinations. Results revealed no significant change in performance on in-house examinations when the content being assessed was controlled (F(2, 506) = 0.676, P = 0.51). A significant improvement in overall practical examination grade averages was associated with the self-study modules (F(6, 1164) = 10.213, P < 0.01), but gradual changes in examination content may explain this finding. The histology and cell biology portion of USMLE Step 1 Examination remained consistent throughout the time period that was investigated. Student feedback regarding the self-study modules was positive and suggested that features such as instructor narrated videos were an important component of the self-study modules because they helped recreate the experience of in-person laboratory sessions. Positive outcomes from the student perspective and no drop in examination performance suggests that utilizing self-study modules for histology laboratory content may be an option for educators faced with the challenge of reducing contact hours without eliminating content. Anat Sci Educ 10: 276-285. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  5. Gidzenko in Service Module with laptop computers

    NASA Image and Video Library

    2001-03-30

    ISS-01-E-5070 (December 2000) --- Astronaut Yuri P. Gidzenko, Expedition One Soyuz commander, works with computers in the Zvezda or Service Module aboard the Earth-orbiting International Space Station (ISS). The picture was taken with a digital still camera.

  6. Helms and Voss in Service Module

    NASA Image and Video Library

    2001-04-10

    ISS002-E-5335 (10 April 2001) --- Astronaut Susan J. Helms (left and astronaut James S. Voss, both Expedition Two flight engineers, pose for a photograph aboard the Zvezda/Service Module of the International Space Station (ISS). This image was recorded with a digital still camera.

  7. Development and Evaluation of a Mass Conservation Laboratory Module in a Microfluidics Environment

    ERIC Educational Resources Information Center

    King, Andrew C.; Hidrovo, Carlos H.

    2015-01-01

    Laboratory-based instruction is a powerful educational tool that engages students in Science, Technology, Engineering and Mathematics (STEM) disciplines beyond textbook theory. This is true in mechanical engineering education and is often used to provide collegiate-level students a hands-on alternative to course theory. Module-based laboratory…

  8. Expedition Two Helms and STS-104 MS Kavandi in Destiny module

    NASA Image and Video Library

    2001-07-22

    STS104-313-016 (12-24 July 2001) --- Astronauts Susan J. Helms (left) and Janet L. Kavandi reunite in the Destiny laboratory aboard the International Space Station (ISS). Kavandi is a mission specialist on the STS-104 Atlantis crew and Helms is a flight engineer for the Expedition Two crew which has been aboard the International Space Station (ISS) for several months.

  9. Expedition One CDR Shepherd in U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5160 (11 February 2001) --- Astronaut William M. (Bill) Shepherd, Expedition One commander, surveys the interior of the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.

  10. MS Curbeam with rack in U.S. Laboratory /Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5157 (11 February 2001) --- Astronaut Robert L. Curbeam, STS-98 mission specialist, installs some of the fixtures in the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.

  11. Hadfield performs regular maintenance on Biolab, in the Columbus Module

    NASA Image and Video Library

    2013-02-20

    ISS034-E-051715 (20 Feb. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, performs routine maintenance on Biolab in the Columbus Module aboard the International Space Station.

  12. Superconducting properties of Pb-Sn-In alloys directionally solidified aboard Skylab

    NASA Technical Reports Server (NTRS)

    Anderson, W. T., Jr.; Reger, J. L.

    1975-01-01

    Superconducting alloys of Pb-Sn-In were directionally solidified in the absence of gravity-induced convection and segregation by processing in a near weightless condition aboard Skylab. Lead-rich and tin-rich lamellar structures were obtained with both high and low G/R (temperature gradient/solidification rate) samples processed at 0-g and at 1-g in a ground-based laboratory. Thinner, higher density lamellae were found with the 0-g specimens. Magnetization curves at 4.2 K showed hysteresis effects with large areas under the curves indicating magnetic flux pinning by the normal state tin-rich phase.

  13. Lawrence and Kelly's hands on controls in the Destiny laboratory module

    NASA Image and Video Library

    2005-08-05

    S114-E-7493 (5 August 2005) --- This image features a close-up view the hands of astronauts Wendy B. Lawrence, STS-114 mission specialist, and James M. Kelly, pilot, at the Mobile Service System (MSS) and Canadarm2 controls in the Destiny laboratory of the International Space Station while Space Shuttle Discovery was docked to the Station. The two were re-stowing the Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) in the cargo bay.

  14. Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system.

    PubMed

    Wang, Shengqian; Rao, Changhui; Xian, Hao; Zhang, Jianlin; Wang, Jianxin; Liu, Zheng

    2011-04-25

    The feasibility and performance of the pyramid wavefront sensor without modulation used in closed-loop adaptive optics system is investigated in this paper. The theory concepts and some simulation results are given to describe the detection trend and the linearity range of such a sensor with the aim to better understand its properties, and then a laboratory setup of the adaptive optics system based on this sensor and the liquid-crystal spatial light modulator is built. The correction results for the individual Zernike aberrations and the Kolmogorov phase screens are presented to demonstrate that the pyramid wavefront sensor without modulation can work as expected for closed-loop adaptive optics system.

  15. Culturally relevant inquiry-based laboratory module implementations in upper-division genetics and cell biology teaching laboratories.

    PubMed

    Siritunga, Dimuth; Montero-Rojas, María; Carrero, Katherine; Toro, Gladys; Vélez, Ana; Carrero-Martínez, Franklin A

    2011-01-01

    Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students' interest in pursuing a research career. In this paper, we present a model for the implementation of laboratory research in the undergraduate teaching laboratory using a culturally relevant approach to engage students. Laboratory modules were implemented in upper-division genetics and cell biology courses using cassava as the central theme. Students were asked to bring cassava samples from their respective towns, which allowed them to compare their field-collected samples against known lineages from agricultural stations at the end of the implementation. Assessment of content and learning perceptions revealed that our novel approach allowed students to learn while engaged in characterizing Puerto Rican cassava. In two semesters, based on the percentage of students who answered correctly in the premodule assessment for content knowledge, there was an overall improvement of 66% and 55% at the end in the genetics course and 24% and 15% in the cell biology course. Our proposed pedagogical model enhances students' professional competitiveness by providing students with valuable research skills as they work on a problem to which they can relate.

  16. Culturally Relevant Inquiry-Based Laboratory Module Implementations in Upper-Division Genetics and Cell Biology Teaching Laboratories

    PubMed Central

    Siritunga, Dimuth; Montero-Rojas, María; Carrero, Katherine; Toro, Gladys; Vélez, Ana; Carrero-Martínez, Franklin A.

    2011-01-01

    Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students’ interest in pursuing a research career. In this paper, we present a model for the implementation of laboratory research in the undergraduate teaching laboratory using a culturally relevant approach to engage students. Laboratory modules were implemented in upper-division genetics and cell biology courses using cassava as the central theme. Students were asked to bring cassava samples from their respective towns, which allowed them to compare their field-collected samples against known lineages from agricultural stations at the end of the implementation. Assessment of content and learning perceptions revealed that our novel approach allowed students to learn while engaged in characterizing Puerto Rican cassava. In two semesters, based on the percentage of students who answered correctly in the premodule assessment for content knowledge, there was an overall improvement of 66% and 55% at the end in the genetics course and 24% and 15% in the cell biology course. Our proposed pedagogical model enhances students’ professional competitiveness by providing students with valuable research skills as they work on a problem to which they can relate. PMID:21885825

  17. Voss in Service module with cycle ergometer

    NASA Image and Video Library

    2001-03-23

    ISS002-E-5734 (23 March 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, gives his arms and upper body a workout with the bicycle ergometer facility in the Zvezda Service Module aboard the International Space Station (ISS). The image was recorded with a digital still camera.

  18. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  19. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is revealed after the top of the crate is removed. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  20. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  1. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    PubMed Central

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  2. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    PubMed

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  3. Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.

    PubMed

    Lipchock, James M; Ginther, Patrick S; Douglas, Bonnie B; Bird, Kelly E; Patrick Loria, J

    2017-09-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant human enzyme, protein tyrosine phosphatase 1B (PTP1B). Over the course of the semester students guide their own mutant of PTP1B from conception to characterization in a cost-effective manner and gain exposure to fundamental techniques in biochemistry, including site-directed DNA mutagenesis, bacterial recombinant protein expression, affinity column purification, protein quantitation, SDS-PAGE, and enzyme kinetics. This project-based approach allows an instructor to simulate a research setting and prepare students for productive research beyond the classroom. Potential modifications to expand or contract this module are also provided. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):403-410, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  4. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... interference aboard ships. (a) A voluntarily equipped ship station receiver must not cause harmful interference...

  5. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... interference aboard ships. (a) A voluntarily equipped ship station receiver must not cause harmful interference...

  6. 47 CFR 80.217 - Suppression of interference aboard ships.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Suppression of interference aboard ships. 80.217 Section 80.217 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... interference aboard ships. (a) A voluntarily equipped ship station receiver must not cause harmful interference...

  7. Cosmonaut Krikalev takes photos in U.S. Laboratory /Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5138 (11 February 2001) --- Cosmonaut Sergei K. Krikalev, Expedition One flight engineer, takes still photographs onboard the newly opened Destiny laboratory on the International Space Station (ISS). After astronaut William M. (Bill) Shepherd, Expedition One commander, opened the Destiny hatch, he and astronaut Kenneth D. Cockrell (out of frame) ventured inside at 8:38 a.m. (CST), February 11, 2001. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also took some photos and continued equipment transfers from the shuttle to the station.

  8. Aboard the Space Shuttle.

    ERIC Educational Resources Information Center

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  9. Technology Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Brame, Ray; And Others

    This guide contains 43 modules of laboratory activities for technology education courses. Each module includes an instructor's resource sheet and the student laboratory activity. Instructor's resource sheets include some or all of the following elements: module number, course title, activity topic, estimated time, essential elements, objectives,…

  10. Veggie Project - Harvesting Chinese Cabbage aboard the ISS

    NASA Image and Video Library

    2017-02-17

    At Kennedy Space Center in Florida, Veggie Project Manager Nicole Dufour instructs astronaut Peggy Whitson during the harvest of Chinese cabbage aboard the International Space Station. While the space station crew will get to eat some of the Chinese cabbage, the rest is being saved for scientific study back at Kennedy Space Center. This is the fifth crop grown aboard the station, and the first Chinese cabbage.

  11. Apollo 14 Command Module approaches touchdown in South Pacific Ocean

    NASA Image and Video Library

    1971-02-09

    S71-18753 (9 Feb. 1971) --- The Apollo 14 Command Module (CM), with astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot, aboard, approaches touchdown in the South Pacific Ocean to successfully end a 10-day lunar landing mission. The splashdown occurred at 3:04:39 p.m. (CST), Feb. 9, 1971, approximately 765 nautical miles south of American Samoa. The three crew men were flown by helicopter to the USS New Orleans prime recovery ship.

  12. Apollo 16 lunar module 'Orion' photographed from distance during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is photographed from a distance by Astronaut Chares M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle. Astronauts Duke and John W. Young, commander, were returing from the third Apollo 16 extravehicular activity (EVA-2). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left.

  13. PLT Polansky looks through hatch at U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5115 (11 February 2001) --- This medium shot, photographed with a digital still camera, shows STS-98 pilot Mark L. Polansky looking through the observation port on Unity's closed hatch to the newly attached Destiny laboratory. The crews of Atlantis and the International Space Station opened the laboratory shortly after this photo was made on Feb. 11; and the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Station commander William M. (Bill) Shepherd opened the Destiny hatch, and he and shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.

  14. CDR Shepherd looks in hatch at U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5121 (11 February 2001) --- This digital still camera shot shows Expedition One commander William M. (Bill) Shepherd looking through the observation port on Unity's closed hatch to the newly attached Destiny laboratory. Astronauts Kenneth D. Cockrell and Mark L. Polansky appear at the left and right edges, respectively. The crews of Atlantis and the International Space Station opened the laboratory shortly after this photo was made on Feb. 11, and the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Shepherd opened the Destiny hatch, and he and shuttle commander Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.

  15. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, workers monitor progress as a huge crane is used to remove the top of the crate carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  16. Usachev in hatch at aft end of Service module

    NASA Image and Video Library

    2001-03-22

    ISS002-E-5705 (22 March 2001) --- Cosmonaut Yury V. Usachev of Rosaviakosmos drifts through the forward hatch of the Zvezda Service Module during early days of his tour of duty aboard the International Space Station (ISS). The image was recorded with a digital still camera.

  17. Usachev typing while in sleep station in the Service Module

    NASA Image and Video Library

    2001-03-23

    ISS002-E-5730 (23 March 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander, works at a laptop computer in his crew compartment in the Zvezda Service Module aboard the International Space Station (ISS). The image was recorded with a digital still camera.

  18. MS Kavandi with camera in Service Module

    NASA Image and Video Library

    2001-07-16

    STS104-E-5125 (16 July 2001) --- Astronaut Janet L. Kavandi, STS-104 mission specialist, uses a camera as she floats through the Zvezda service module aboard the International Space Station (ISS). The five STS-104 crew members were visiting the orbital outpost to perform various tasks. The image was recorded with a digital still camera.

  19. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of the...

  20. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of the...

  1. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of the...

  2. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of the...

  3. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of the...

  4. Improved Student Linkage of Mendelian and Molecular Genetic Concepts through a Yeast-Based Laboratory Module

    ERIC Educational Resources Information Center

    Wolyniak, Michael J.

    2013-01-01

    A study of modern genetics requires students to successfully unite the principles of Mendelian genetics with the functions of DNA. Traditional means of teaching genetics are often successful in teaching Mendelian and molecular ideas but not in allowing students to see how the two subjects relate. The laboratory module presented here attempts to…

  5. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  6. APOLLO COMMAND MODULE (CM) - SAFE TOUCHDOWN - PACIFIC OCEAN

    NASA Image and Video Library

    1971-08-07

    S71-41999 (7 Aug. 1971) --- The Apollo 15 Command Module (CM), with astronauts David R. Scott, commander; Alfred M. Worden, command module pilot; and James B. Irwin, lunar module pilot, aboard, nears a safe touchdown in the mid-Pacific Ocean to conclude a highly successful lunar landing mission. Although causing no harm to the crewmen, one of the three main parachutes failed to function properly. The splashdown occurred at 3:45:53 p.m. (CDT), Aug. 7, 1971, some 330 miles north of Honolulu, Hawaii. The three astronauts were picked up by helicopter and flown to the prime recovery ship USS Okinawa, which was only 6 1/2 miles away.

  7. Stealth life detection instruments aboard Curiosity

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.

    2012-10-01

    NASA has often stated (e.g. MSL Science Corner1) that it's Mars Science Laboratory (MSL), "Curiosity," Mission to Mars carries no life detection experiments. This is in keeping with NASA's 36-year explicit ban on such, imposed immediately after the 1976 Viking Mission to Mars. The space agency attributes the ban to the "ambiguity" of that Mission's Labeled Release (LR) life detection experiment, fearing an adverse effect on the space program should a similar "inconclusive" result come from a new robotic quest. Yet, despite the NASA ban, this author, the Viking LR Experimenter, contends there are "stealth life detection instruments" aboard Curiosity. These are life detection instruments in the sense that they can free the Viking LR from the pall of ambiguity that has held it prisoner so long. Curiosity's stealth instruments are those seeking organic compounds, and the mission's high-resolution camera system. Results from any or all of these devices, coupled with the Viking LR data, can confirm the LR's life detection claim. In one possible scenario, Curiosity can, of itself, completely corroborate the finding of life on Mars. MSL has just successfully landed on Mars. Hopefully, its stealth confirmations of life will be reported shortly.

  8. Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, M; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.; Atkins, C.; hide

    2013-01-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission. Four of those modules are being fabricated under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) An additional three flight modules and one spare for the ART-XC Instrument are produced under a Cooperative Agreement between NASA and IKI. The instrument will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module consists of 28 nested thin Ni/Co shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of the first four modules is scheduled for November 2013, while the remaining three modules will be delivered to IKI in January 2014. We present a status of the ART x-ray module development at MSFC.

  9. Development of mirror modules for the ART-XC instrument aboard the Spectrum-Roentgen-Gamma mission

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.; Atkins, C.; Zavlin, V.

    2013-09-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission. Four of those modules are being fabricated under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) An additional three flight modules and one spare for the ART-XC Instrument are produced under a Cooperative Agreement between NASA and IKI. The instrument will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module consists of 28 nested thin Ni/Co shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of the first four modules is scheduled for November 2013, while the remaining three modules will be delivered to IKI in January 2014. We present a status of the ART x-ray module development at MSFC.

  10. A rack is installed in MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers inside the Multi-Purpose Logistics Module Leonardo check installation of a laboratory rack inside the Multi-Purpose Logistics Module Leonardo. The pressurized module is the first of three that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  11. Astronaut Shepherd looks in hatch at U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5120 (11 February 2001) --- This digital still camera shot shows Expedition One commander William M. (Bill) Shepherd looking through the portal on Unity's closed hatch to the newly attached Destiny laboratory. (Note: Astronauts Kenneth D. Cockrell and Mark L. Polansky appear at the left and right edges, respectively, but could possibly be cropped out in some views). The crews of Atlantis and the International Space Station opened the laboratory shortly after this photo was made on February 11; and the astronauts and cosmonauts spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Shepherd opened the Destiny hatch, and he and shuttle commander Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.

  12. STS-55 MS3 Harris holds turbine blade sample at SL-D2 Rack 8 Werkstofflabor

    NASA Image and Video Library

    1993-05-06

    STS055-106-048 (26 April-6 May 1993) --- Astronaut Bernard A. Harris, Jr., mission specialist, works with a sample at the Heater Facility, part of the Werkestofflabor material sciences laboratory in the Spacelab D-2 Science Module aboard the Space Shuttle Columbia. Harris was joined by four other NASA astronauts and two German payload specialists for the 10-day mission aboard the Space Shuttle Columbia.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-11

    This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  14. Gerst in U.S. Laboratory

    NASA Image and Video Library

    2014-06-17

    ISS040-E-012309 (16 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts two flame tests for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.

  15. Voss with globe in Service module

    NASA Image and Video Library

    2001-04-08

    ISS002-E-5136 (8 April 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, holds a globe to be used for assistance in Earth observation duties. Voss is in the Zvezda Service Module aboard the International Space Station (ISS), where's he been working for several weeks along with cosmonaut Yury V. Usachev of Rosaviakosmos and astronaut Susan J. Helms. The image was recorded with a digital still camera.

  16. A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station

    NASA Technical Reports Server (NTRS)

    Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne

    1989-01-01

    This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.

  17. International Space Station United States Laboratory Module Water Recovery Management Subsystem Verification from Flight 5A to Stage ULF2

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Labuda, Laura

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system comprises of seven subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), Vacuum System (VS), Water Recovery and Management (WRM), and Waste Management (WM). This paper provides a summary of the nominal operation of the United States (U.S.) Laboratory Module WRM design and detailed element methodologies utilized during the Qualification phase of the U.S. Laboratory Module prior to launch and the Qualification of all of the modification kits added to it from Flight 5A up and including Stage ULF2.

  18. Pregnancy outcomes after paternal radiofrequency field exposure aboard fast patrol boats.

    PubMed

    Baste, Valborg; Moen, Bente E; Oftedal, Gunnhild; Strand, Leif Age; Bjørge, Line; Mild, Kjell Hansson

    2012-04-01

    To investigate adverse reproductive outcomes among male employees in the Royal Norwegian Navy exposed to radiofrequency electromagnetic fields aboard fast patrol boats. Cohort study of Royal Norwegian Navy servicemen linked to the Medical Birth Registry of Norway, including singleton offspring born between 1967 and 2008 (n = 37,920). Exposure during the last 3 months before conception (acute) and exposure more than 3 months before conception (nonacute) were analyzed. Perinatal mortality and preeclampsia increased after service aboard fast patrol boats during an acute period and also after increased estimated radiofrequency exposure during an acute period, compared with service aboard other vessels. No associations were found between nonacute exposure and any of the reproductive outcomes. Paternal work aboard fast patrol boats during an acute period was associated with perinatal mortality and preeclampsia, but the cause is not clear.

  19. Doing That Thing That Scientists Do: A Discovery-Driven Module on Protein Purification and Characterization for the Undergraduate Biochemistry Laboratory Classroom

    ERIC Educational Resources Information Center

    Garrett, Teresa A.; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer

    2015-01-01

    In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module,…

  20. Apollo 11 spacecraft Command Module hoisted aboard U.S.S. Hornet

    NASA Image and Video Library

    1969-07-24

    The Apollo 11 spacecraft Command Module is photographed being lowered to the deck of the U.S.S. Hornet, prime recovery ship for the historic lunar landing mission. Note the flotation ring attached by Navy divers has been removed from the capsule.

  1. Improving Students' Inquiry Skills and Self-Efficacy through Research-Inspired Modules in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Baloga, Monica; Marcinkowski, Tom; Giannoulis, Christos; Anquandah, George; Cohen, Peter

    2015-01-01

    Research projects conducted by faculty in STEM departments served as the inspiration for a new curriculum of inquiry-based, multiweek laboratory modules in the general chemistry 1 course. The purpose of this curriculum redesign was to improve students' attitudes about chemistry as well as their self-efficacy and skills in performing inquiry…

  2. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  4. KSC - APOLLO-SOYUZ TEST PROJECT (ASTP) COMMAND SERVICE MODULE (CSM) - KSC

    NASA Image and Video Library

    1974-09-08

    S74-32049 (8 Sept. 1974) --- The Apollo Command Module for the Apollo-Soyuz Test Project mission goes through receiving, inspection and checkout procedures in the Manned Spacecraft Operations Building at the Kennedy Space Center. The spacecraft had just arrived by air from the Rockwell International plant at Downey, California. The Apollo spacecraft (Command Module, Service Module and Docking Module), with astronauts Thomas P. Stafford, Vance D. Brand and Donald K. Slayton aboard, will dock in Earth orbit with a Soviet Soyuz spacecraft during the joint U.S.-USSR ASTP flight scheduled for July 1975. The Soviet and American crews will visit one another?s spacecraft.

  5. Light Microscopy Module Imaging Tested and Demonstrated

    NASA Technical Reports Server (NTRS)

    Gati, Frank

    2004-01-01

    The Fluids Integrated Rack (FIR), a facility-class payload, and the Light Microscopy Module (LMM), a subrack payload, are integrated research facilities that will fly in the U.S. Laboratory module, Destiny, aboard the International Space Station. Both facilities are being engineered, designed, and developed at the NASA Glenn Research Center by Northrop Grumman Information Technology. The FIR is a modular, multiuser scientific research facility that is one of two racks that make up the Fluids and Combustion Facility (the other being the Combustion Integrated Rack). The FIR has a large volume dedicated for experimental hardware; easily reconfigurable diagnostics, power, and data systems that allow for unique experiment configurations; and customizable software. The FIR will also provide imagers, light sources, power management and control, command and data handling for facility and experiment hardware, and data processing and storage. The first payload in the FIR will be the LMM. The LMM integrated with the FIR is a remotely controllable, automated, on-orbit microscope subrack facility, with key diagnostic capabilities for meeting science requirements--including video microscopy to observe microscopic phenonema and dynamic interactions, interferometry to make thin-film measurements with nanometer resolution, laser tweezers to manipulate micrometer-sized particles, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure the photonic properties of materials. Vibration disturbances were identified early in the LMM development phase as a high risk for contaminating the science microgravity environment. An integrated FIR-LMM test was conducted in Glenn's Acoustics Test Laboratory to assess mechanical sources of vibration and their impact to microscopic imaging. The primary purpose of the test was to characterize the LMM response at the sample location, the x-y stage within the microscope, to vibration

  6. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Several components for delivery to the International Space Station sit in test stands inside the Space Station Processing Facility highbay. To the right, from back to front, are the Japanese Experiment Module, the Raffaello multi-purpose logistics module, and the European Space Agency's Columbus scientific research module. To the left in front is the starboard truss segment S5. Behind it is the test stand that will hold the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  7. Usachev in Service Module with Russian food cans

    NASA Image and Video Library

    2001-07-16

    STS104-E-5126 (16 July 2001) --- Cosmonaut Yury V. Usachev, Expedition Two commander, appears surrounded by food in the Zvezda service module aboard the International Space Station (ISS). Representing Rosaviakosmos, Usachev, commander, along with two astronauts, are hosting the STS-104 crew of astronauts on the International Space Station (ISS). The image was recorded with a digital still camera.

  8. Plant and animal accommodation for Space Station Laboratory

    NASA Technical Reports Server (NTRS)

    Olson, Richard L.; Gustan, Edith A.; Wiley, Lowell F.

    1986-01-01

    An extended study has been conducted with the goals of defining and analyzing relevant parameters and significant tradeoffs for the accommodation of nonhuman research aboard the NASA Space Station, as well as conducting tradeoff analyses for orbital reconfiguring or reoutfitting of the laboratory facility and developing laboratory designs and program plans. The two items exerting the greatest influence on nonhuman life sciences research were identified as the centrifuge and the specimen environmental control and life support system; both should be installed on the ground rather than in orbit.

  9. Nespolia moving the Neurospat Hardware in the Columbus Module during Expedition 26

    NASA Image and Video Library

    2010-12-20

    ISS026-E-012919 (20 Dec. 2010) --- European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, moves the Neurospat hardware (including light shield and frame) used for the Bodies in the Space Environment (BISE) experiment, in the Columbus Module aboard the International Space Station.

  10. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  11. OA-7 Cargo Module Loading

    NASA Image and Video Library

    2017-02-07

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, thousands of pounds of supplies, equipment and scientific research materials are prepared for loading aboard a Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.

  12. Successful amplification of DNA aboard the International Space Station.

    PubMed

    Boguraev, Anna-Sophia; Christensen, Holly C; Bonneau, Ashley R; Pezza, John A; Nichols, Nicole M; Giraldez, Antonio J; Gray, Michelle M; Wagner, Brandon M; Aken, Jordan T; Foley, Kevin D; Copeland, D Scott; Kraves, Sebastian; Alvarez Saavedra, Ezequiel

    2017-01-01

    As the range and duration of human ventures into space increase, it becomes imperative that we understand the effects of the cosmic environment on astronaut health. Molecular technologies now widely used in research and medicine will need to become available in space to ensure appropriate care of astronauts. The polymerase chain reaction (PCR) is the gold standard for DNA analysis, yet its potential for use on-orbit remains under-explored. We describe DNA amplification aboard the International Space Station (ISS) through the use of a miniaturized miniPCR system. Target sequences in plasmid, zebrafish genomic DNA, and bisulfite-treated DNA were successfully amplified under a variety of conditions. Methylation-specific primers differentially amplified bisulfite-treated samples as would be expected under standard laboratory conditions. Our findings establish proof of concept for targeted detection of DNA sequences during spaceflight and lay a foundation for future uses ranging from environmental monitoring to on-orbit diagnostics.

  13. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    An overhead crane moves the JEM Experiment Logistics Module Pressurized Section above the floor of the Space Station Processing Facility to a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  14. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, an overhead crane moves the JEM Experiment Logistics Module Pressurized Section toward a scale (at left) for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  15. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    The JEM Experiment Logistics Module Pressurized Section is lifted from its shipping crate in the Space Station Processing Facility. The module will be moved to a scale for weight and center-of-gravity measurements and then to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  16. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, the JEM Experiment Logistics Module Pressurized Section is lowered onto a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  17. Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Ramsey, Brian; O'Dell, Stephen L.; Elsner, Ronald F.; Kilaru, Kiranmayee; Atkins, Carolyn; Pavlinskiy, Mikhail N.; Tkachenko, Alexey V.; Lapshov, Igor Y.

    2013-01-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the Astronomical Roengen Telescope- X-ray Concentrator (ART-XC) instrument on board the Spectrum-Roentgen-Gamma Mission. ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module provides an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. We will present a status of the ART x-ray module development at MSFC.

  18. Apollo 12 Command Module nears splashdown in the Pacific Ocean

    NASA Image and Video Library

    1969-11-24

    S69-22728 (24 Nov. 1969) --- The Apollo 12 Command Module, with astronauts Charles Conrad Jr., Richard F. Gordon Jr., and Alan L. Bean aboard, nears splashdown in the Pacific Ocean to conclude the second lunar landing mission. The Apollo 12 splashdown occurred at 2:58 p.m., Nov. 24, 1969, near American Samoa.

  19. STS-40 Payload Specialist Hughes-Fulford "flies" through SLS-1 module

    NASA Image and Video Library

    1991-06-14

    STS040-212-006 (5-14 June 1991) --- Payload specialist Millie Hughes-Fulford floats through the Spacelab Life Sciences (SLS-1) module aboard the Earth-orbiting Columbia. Astronaut James P. Bagian, mission specialist, is at the blood draw station in the background. The scene was photographed with a 35mm camera.

  20. Enhancing Hispanic Minority Undergraduates' Botany Laboratory Experiences: Implementation of an Inquiry-Based Plant Tissue Culture Module Exercise

    ERIC Educational Resources Information Center

    Siritunga, Dimuth; Navas, Vivian; Diffoot, Nanette

    2012-01-01

    Early involvement of students in hands-on research experiences are known to demystify research and promote the pursuit of careers in science. But in large enrollment departments such opportunities for undergraduates to participate in research are rare. To counteract such lack of opportunities, inquiry-based laboratory module in plant tissue…

  1. A rack is installed in MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers inside the Multi-Purpose Logistics Module Leonardo check connections while installing a laboratory rack. Leonardo is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  2. Phillips at Robotics Workstation (RWS) in US Laboratory Destiny

    NASA Image and Video Library

    2009-03-20

    S119-E-006748 (20 March 2009) --- Astronauts Lee Archambault, (foreground), STS-119 commander, John Phillips and Sandra Magnus, both mission specialists, are pictured at the robotic workstation in Destiny or the U.S. laboratory. Magnus is winding down a lengthy tour in space aboard the orbiting outpost, and she will return to Earth with the Discovery crew.

  3. Radon measurements aboard the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.

    1995-01-01

    We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.

  4. Apollo 12 Lunar Module, in landing configuration, photographed in lunar orbit

    NASA Image and Video Library

    1969-11-19

    AS12-51-7507 (19 Nov. 1969) --- The Apollo 12 Lunar Module (LM), in a lunar landing configuration, is photographed in lunar orbit from the Command and Service Modules (CSM). The coordinates of the center of the lunar surface shown in picture are 4.5 degrees west longitude and 7 degrees south latitude. The largest crater in the foreground is Ptolemaeus; and the second largest is Herschel. Aboard the LM were astronauts Charles Conrad Jr., commander; and Alan L. Bean, lunar module pilot. Astronaut Richard R. Gordon Jr., command module pilot, remained with the CSM in lunar orbit while Conrad and Bean descended in the LM to explore the surface of the moon. Photo credit: NASA

  5. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-09

    In this photograph, laboratory technician Bart Ruark visually inspects a Japanese Qail confined within a class III cabinet in the Intervertebrae, Aves, and Fish Laboratory of the Lunar Receiving Laboratory, Building 37 of the Manned Spacecraft Center (MSC) in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.

  6. Appetitive startle modulation in the human laboratory predicts Cannabis craving in the natural environment.

    PubMed

    Mereish, Ethan H; Padovano, Hayley Treloar; Wemm, Stephanie; Miranda, Robert

    2018-07-01

    Drug-related cues evoke craving and stimulate motivational systems in the brain. The acoustic startle reflex captures activation of these motivational processes and affords a unique measure of reactivity to drug cues. This study examined the effects of cannabis-related cues on subjective and eye blink startle reactivity in the human laboratory and tested whether these effects predicted youth's cue-elicited cannabis craving in the natural environment. Participants were 55 frequent cannabis users, ages 16 to 24 years (M = 19.9, SD = 1.9; 55% male; 56% met criteria for cannabis dependence), who were recruited from a clinical trial to reduce cannabis use. Eye blink electromyographic activity was recorded in response to acoustic probes that elicited startle reactivity while participants viewed pleasant, unpleasant, neutral, and cannabis picture cues. Following the startle assessment, participants completed an ecological momentary assessment protocol that involved repeated assessments of cue-elicited craving in real time in their real-world environments. Multilevel models included the presence or absence of visible cannabis cues in the natural environment, startle magnitude, and the cross-level interaction of cues by startle to test whether cue-modulated startle reactivity in the laboratory was associated with cue-elicited craving in the natural environment. Analyses showed that cannabis-related stimuli evoked an appetitive startle response pattern in the laboratory, and this effect was associated with increased cue-elicited craving in the natural environment, b = - 0.15, p = .022, 95% CI [- 0.28, - 0.02]. Pleasant stimuli also evoked an appetitive response pattern, but in this case, blunted response was associated with increased cue-elicited craving in the natural environment, b = 0.27, p < .001, 95% CI [0.12, 0.43]. Our findings support cue-modulated startle reactivity as an index of the phenotypic expression of cue-elicited cannabis craving.

  7. Using a Module-based Laboratory To Incorporate Inquiry into a Large Cell Biology Course

    PubMed Central

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin–La Crosse was undertaken to allow student involvement in experimental design, emphasize data collection and analysis, make connections to the “big picture,” and increase student interest in the field. Multiweek laboratory modules were developed as a method to establish an inquiry-based learning environment. Each module utilizes relevant techniques to investigate one or more questions within the context of a fictional story, and there is a progression during the semester from more instructor-guided to more open-ended student investigation. An assessment tool was developed to evaluate student attitudes regarding their lab experience. Analysis of five semesters of data strongly supports the module format as a successful model for inquiry education by increasing student interest and improving attitude toward learning. In addition, student performance on inquiry-based assignments improved over the course of each semester, suggesting an improvement in inquiry-related skills. PMID:16220145

  8. Apollo 16 lunar module 'Orion' photographed from distance during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is photographed from a distance by Astronaut Chares M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle. Astronauts Duke and John W. Young, commander, were returning from the excursion to Stone Mountain during the second Apollo 16 extravehicular activity (EVA-2). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left. Smoky Mountain rises behind the LM in this north-looking view at the Descartes landing site.

  9. What happens in the lab does not stay in the lab [corrected]: Applying midstream modulation to enhance critical reflection in the laboratory.

    PubMed

    Schuurbiers, Daan

    2011-12-01

    In response to widespread policy prescriptions for responsible innovation, social scientists and engineering ethicists, among others, have sought to engage natural scientists and engineers at the 'midstream': building interdisciplinary collaborations to integrate social and ethical considerations with research and development processes. Two 'laboratory engagement studies' have explored how applying the framework of midstream modulation could enhance the reflections of natural scientists on the socio-ethical context of their work. The results of these interdisciplinary collaborations confirm the utility of midstream modulation in encouraging both first- and second-order reflective learning. The potential for second-order reflective learning, in which underlying value systems become the object of reflection, is particularly significant with respect to addressing social responsibility in research practices. Midstream modulation served to render the socio-ethical context of research visible in the laboratory and helped enable research participants to more critically reflect on this broader context. While lab-based collaborations would benefit from being carried out in concert with activities at institutional and policy levels, midstream modulation could prove a valuable asset in the toolbox of interdisciplinary methods aimed at responsible innovation.

  10. LUNAR RECEIVING LABORATORY (LRL) - CLARK, ROBERT, DR. - JSC

    NASA Image and Video Library

    1973-11-05

    S73-36161 (November 1973) --- In the Radiation Counting Laboratory sixty feet underground at JSC, Dr. Robert S. Clark prepares to load pieces of iridium foil -- sandwiched between plastic sheets -- into the laboratory's radiation detector. The iridium foil strips were worn by the crew of the second Skylab flight in personal radiation dosimeters throughout their 59 1/2 days in space. Inside the radiation detector assembly surrounded by 28 tons of lead shielding, the sample will be tested to determine the total neutron dose to which the astronauts were exposed during their long stay aboard the space station. Photo credit: NASA

  11. Predicting Airborne Particle Levels Aboard Washington State School Buses

    PubMed Central

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Liu, L.-J. Sally

    2008-01-01

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission-reducing retrofits. To assess onboard concentrations, continuous PM2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least square regression models for PM2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM2.5 levels, ambient weather, and bus and route characteristics. Concentrations aboard school buses (21 μg/m3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM2.5 levels between the buses and lead vehicles indicated an average of 7 μg/m3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics. PMID:18985175

  12. Predicting airborne particle levels aboard Washington State school buses

    NASA Astrophysics Data System (ADS)

    Adar, Sara D.; Davey, Mark; Sullivan, James R.; Compher, Michael; Szpiro, Adam; Sally Liu, L.-J.

    School buses contribute substantially to childhood air pollution exposures yet they are rarely quantified in epidemiology studies. This paper characterizes fine particulate matter (PM 2.5) aboard school buses as part of a larger study examining the respiratory health impacts of emission reducing retrofits. To assess onboard concentrations, continuous PM 2.5 data were collected during 85 trips aboard 43 school buses during normal driving routines, and aboard hybrid lead vehicles traveling in front of the monitored buses during 46 trips. Ordinary and partial least squares regression models for PM 2.5 onboard buses were created with and without control for roadway concentrations, which were also modeled. Predictors examined included ambient PM 2.5 levels, ambient weather, and bus and route characteristics. Average concentrations aboard school buses (21 μg m -3) were four and two-times higher than ambient and roadway levels, respectively. Differences in PM 2.5 levels between the buses and lead vehicles indicated an average of 7 μg m -3 originating from the bus's own emission sources. While roadway concentrations were dominated by ambient PM 2.5, bus concentrations were influenced by bus age, diesel oxidative catalysts, and roadway concentrations. Cross-validation confirmed the roadway models but the bus models were less robust. These results confirm that children are exposed to air pollution from the bus and other roadway traffic while riding school buses. In-cabin air pollution is higher than roadway concentrations and is likely influenced by bus characteristics.

  13. Students' perceptions of laboratory science careers: changing ideas with an education module.

    PubMed

    Haun, Daniel; Leach, Argie; Lawrence, Louann; Jarreau, Patsy

    2005-01-01

    To assess the effectiveness of a Web-based education module in changing students' perceptions of laboratory science careers. Perception was measured with a short examination and then a Web-based exercise was presented. Following the exercise, the test was administered again. Frequency data from the pre-test and post-test were compared for changes in perception. The correlated pre-test/post-test pairs were also examined for opinion changes and these were analyzed for significance. Large parochial high schools in New Orleans, Louisiana. A small team visited the schools during their appointed class times for biology. Study participants were high school biology students in grades 9-10. Two-hundred-forty-five students participated (149 male and 96 female). A Web-based exercise on blood film examination was presented to the students in a classroom setting (www.mclno.org/labpartners/index_03.htm). The exercise contained focused messages about: (1) the numbers of healthcare workers acquiring AIDS from on-the-job exposure and (2) common career paths available to the laboratory science workforce. The shift in perception of: What medical service generates the most diagnostic data. Which professional group performs laboratory tests. The risk of acquiring AIDS while working in the healthcare setting. Interest in a science-related career. How much education is required to work in a science-related field. The intervention significantly shifted perception in all areas measured except that of interest in a science-related career. Many students perceive that the risk of acquiring AIDS while working in the healthcare setting is "high". Web-based presentations and similar partnerships with science teachers can change perceptions that might lead to increased interest in clinical laboratory science careers.

  14. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  15. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  16. 76 FR 76430 - Agency Information Collection Activities: Documents Required Aboard Private Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... certificate of registration, which is also called a ``pink slip'' and is a duplicate copy of the Aircraft... Activities: Documents Required Aboard Private Aircraft AGENCY: U.S. Customs and Border Protection, Department... Required Aboard Private Aircraft. This is a proposed extension of an information collection that was...

  17. ASTP Apollo Command Module nears touchdown in Central Pacific

    NASA Image and Video Library

    1975-07-24

    S75-29719 (24 July 1975) --- The ASTP Apollo Command Module, with astronauts Thomas P. Stafford, Vance D. Brand and Donald K. Slayton aboard, nears a touchdown in the Central Pacific Ocean to conclude the historic joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. The spacecraft splashed down in the Hawaiian Islands area at 4:18 p.m. (CDT), July 24, 1975.

  18. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, an overhead crane lifts the JEM Experiment Logistics Module Pressurized Section from its shipping container and moves it toward a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  19. STS-98 and Expedition One crew with rack in U.S. Laboratory / Destiny module

    NASA Image and Video Library

    2001-02-11

    STS98-E-5159 (11 February 2001) --- Astronaut Mark L. Polansky, STS-98 pilot, works inside the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both the shuttle and station crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.

  20. Unity nameplate added to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers look over the Unity connecting module, part of the International Space Station, after attaching the nameplate. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  1. A rack is installed in MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers (right, left and center) in the Space Station Processing Facility wait to install a laboratory rack in the Multi-Purpose Logistics Module Leonardo (background). Leonardo is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  2. A rack is installed in MPLM Leonardo

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Multi-Purpose Logistics Module Leonardo (right) is ready for installation of a laboratory rack (left center). Leonardo is the first of three such pressurized modules that will serve as the International Space Station's '''moving vans,''' carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. Approximately 21 feet long and 15 feet in diameter, Leonardo will be launched on Shuttle mission STS-102 March 1, 2001. On that flight, Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, being carried to the ISS on the Jan. 19, 2001, launch of STS-98.

  3. Documentation of Plant Growth in an EPO-Kit C Chamber taken during Expedition 15

    NASA Image and Video Library

    2007-08-20

    ISS015-E-23475 (20 Aug. 2007) --- Close-up view of a plant growth experiment in an Education Payload Operations experiment collapsible growth chamber (labeled "Lettuce") photographed in the U.S. Laboratory or Destiny module aboard the International Space Station during Expedition 15.

  4. Official portrait of STS-65 IML-2 Japanese Payload Specialist Chiaki Mukai

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Official portrait of STS-65 International Microgravity Laboratory 2 (IML-2) Japanese Payload Specialist Chiaki Mukai. Mukai represents the National Space Development Agency (NASDA) of Japan and will conduct experiments aboard Columbia, Orbiter Vehicle (OV) 102, inside the IML-2 spacelab module.

  5. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

  6. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Stephen Robinson arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Stephen Robinson arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

  7. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Charles Camarda arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment,to the Space Station, and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Charles Camarda arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment,to the Space Station, and the external stowage platform.

  8. KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  9. Astronauts and cosmonauts in Mir core module

    NASA Image and Video Library

    1995-07-22

    STS071-122-021 (27 June-7 July 1995) --- Three astronauts and a cosmonaut who went into space aboard the space shuttle Atlantis check out the core module living quarters on Russia's Mir Space Station. Sporting a new Houston Rockets T-shirt near frame center is cosmonaut Anatoly Y. Solovyev, Mir-19 mission commander. Astronaut Bonnie J. Dunbar, STS-71 mission specialist, floats into the frame at lower left. Beyond Solovyev are astronauts Ellen S. Baker and Gregory J. Harbaugh, mission specialists.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-09

    In this photograph, a laboratory technician handles a portion of the more than 20 different plant lines that were used within the Lunar Receiving Laboratory, Building 37 of the Manned Spacecraft Center (MSC) in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1969-07-09

    In this photograph, technicians are transferring mice from a support germ free isolator, through a hypochlorite dunk tank, into the class III cabinetry in the Germ-free and Conventional Animal Laboratories of the Lunar Receiving Laboratory, building 37, of the Manned Spacecraft Center in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.

  12. Apollo 16 lunar module "Orion" photographed from distance during EVA

    NASA Image and Video Library

    1972-04-22

    AS16-115-18549 (22 April 1972) --- The Apollo 16 Lunar Module (LM) "Orion" is photographed from a distance by astronaut Charles M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle (LRV). Astronauts Duke and John W. Young, commander, were returning from their excursion to Stone Mountain during the second Apollo 16 extravehicular activity (EVA). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left. Smoky Mountain rises behind the LM in this north-looking view at the Descartes landing site. While astronauts Young and Duke descended in the "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  13. Mir Training Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A full-scale mockup of Russia's Space Station serves as one of the several training aids for cosmonaut flights aboard the orbiting laboratory. The core module - called Mir, for world of space - was launched in February 1986 and now serves as the main livi

  14. Special-Study Modules in a Problem-Based Learning Medical Curriculum: An Innovative Laboratory Research Practice Supporting Introduction to Research Methodology in the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Guner, Gul Akdogan; Cavdar, Zahide; Yener, Nilgun; Kume, Tuncay; Egrilmez, Mehtap Yuksel; Resmi, Halil

    2011-01-01

    We describe the organization of wet-lab special-study modules (SSMs) in the Central Research Laboratory of Dokuz Eylul Medical School, Izmir, Turkey with the aim of discussing the scientific, laboratory, and pedagogical aspects of this educational activity. A general introduction to the planning and functioning of these SSMs is given, along with…

  15. View of the parachutes of Skylab 3 command module during splashdown

    NASA Image and Video Library

    1973-08-06

    SL3-114-1760 (25 Sept. 1973) --? An excellent view of the three main ring sail parachutes of the Skylab 3 command module as they unfurl during descent to a successful splashdown in the Pacific Ocean. This picture was taken by a hand-held 70mm Hasselblad camera, looking up through a window of the command module. These parachutes open at approximately 10,000 feet altitude. Aboard the CM were astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma, who had just completed a 59-day visit to the Skylab space station in Earth orbit. Photo credit: NASA

  16. [Cell biology researches aboard the robotic space vehicles: preparation and performance].

    PubMed

    Tairbekov, M G

    2006-01-01

    The article reviews the unique aspects of preparation and performance of cell biology experiments flown on robotic space vehicles Bion and Foton, and gives an overview of key findings in researches made under the author's leadership over the past decades. Described are the criteria of selecting test objects, and the conditions required for preparation and implementation of space and control (synchronous) experiments. The present-day status and issues of researches into cell responsivity to space microgravity and other factors are discussed. Also, potentialities of equipment designed to conduct experiments with cell cultures in vitro and populations of single-celled organisms are presented, as well as some ideas for new devices and systems. Unveiled are some circumstances inherent to the development and performance of space experiments, setting up laboratory facilities at the launch and landing site, and methods of safe transportation and storage of biosamples. In conclusion, the author puts forward his view on biospecies, equipment and areas of research aboard future space vehicles.

  17. Specialized Laboratory Information Systems.

    PubMed

    Dangott, Bryan

    2015-06-01

    Some laboratories or laboratory sections have unique needs that traditional anatomic and clinical pathology systems may not address. A specialized laboratory information system (LIS), which is designed to perform a limited number of functions, may perform well in areas where a traditional LIS falls short. Opportunities for specialized LISs continue to evolve with the introduction of new testing methodologies. These systems may take many forms, including stand-alone architecture, a module integrated with an existing LIS, a separate vendor-supplied module, and customized software. This article addresses the concepts underlying specialized LISs, their characteristics, and in what settings they are found. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Specialized Laboratory Information Systems.

    PubMed

    Dangott, Bryan

    2016-03-01

    Some laboratories or laboratory sections have unique needs that traditional anatomic and clinical pathology systems may not address. A specialized laboratory information system (LIS), which is designed to perform a limited number of functions, may perform well in areas where a traditional LIS falls short. Opportunities for specialized LISs continue to evolve with the introduction of new testing methodologies. These systems may take many forms, including stand-alone architecture, a module integrated with an existing LIS, a separate vendor-supplied module, and customized software. This article addresses the concepts underlying specialized LISs, their characteristics, and in what settings they are found. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Orion Crew Module Structural Test Article Unbagging

    NASA Image and Video Library

    2016-11-15

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians remove the protective covering from the Orion crew module structural test article (STA). The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article was moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  20. Orion Crew Module Structural Test Article Unbagging

    NASA Image and Video Library

    2016-11-15

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the cover has been removed from the container holding the Orion crew module structural test article (STA). The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article was moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  1. Traffic-Light-Preemption Vehicle-Transponder Software Module

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2005-01-01

    A prototype wireless data-communication and control system automatically modifies the switching of traffic lights to give priority to emergency vehicles. The system, which was reported in several NASA Tech Briefs articles at earlier stages of development, includes a transponder on each emergency vehicle, a monitoring and control unit (an intersection controller) at each intersection equipped with traffic lights, and a central monitoring subsystem. An essential component of the system is a software module executed by a microcontroller in each transponder. This module integrates and broadcasts data on the position, velocity, acceleration, and emergency status of the vehicle. The position, velocity, and acceleration data are derived partly from the Global Positioning System, partly from deductive reckoning, and partly from a diagnostic computer aboard the vehicle. The software module also monitors similar broadcasts from other vehicles and from intersection controllers, informs the driver of which intersections it controls, and generates visible and audible alerts to inform the driver of any other emergency vehicles that are close enough to create a potential hazard. The execution of the software module can be monitored remotely and the module can be upgraded remotely and, hence, automatically

  2. Protein crystallization aboard the Space Shuttle and the Mir space station

    NASA Technical Reports Server (NTRS)

    Delbaere, Louis T. J.; Vandonselaar, Margaret; Prasad, Lata; Quail, J. W.; Birnbaum, George I.; Delucas, Lawrence J.; Moore, Karen; Bugg, Charles E.

    1993-01-01

    Two different protein crystallizations, namely ,the free Fab fragment of the Je142 monoclonal antibody and the complex of Fab fragment/HPr with antigen, were performed aboard the Discovery Space Shuttle flights and the Mir space station, respectively. Medium sized crystals of the Je142 Fab fragment were obtained. The Je142 Fab fragment/Hpr complex produced two medium-sized crystals after two months aboard the Mir space station. Microgravity was found to eliminate the tendency of these crystals to form clusters.

  3. Soyuz 25 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 25. The toxicological assessment of 6 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C-13-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 76, 108 and 88%, respectively. Formaldehyde badges were not returned aboard Soyuz 25.

  4. STS-40 Spacelab Life Science 1 (SLS-1) module in OV-102's payload bay (PLB)

    NASA Image and Video Library

    1991-06-14

    STS040-610-010 (5-14 June 1991) --- The blue and white Earth forms the backdrop for this scene of the Spacelab Life Sciences (SLS-1) module in the cargo bay of the Earth-orbiting Columbia. The view was photographed through Columbia's aft flight deck windows with a handheld Rolleiflex camera. Seven crewmembers spent nine days in space aboard Columbia. Part of the tunnel/airlock system that linked them to the SLS-1 module is seen in center foreground.

  5. Robonaut 2 in the U.S. Laboratory

    NASA Image and Video Library

    2013-01-02

    ISS034-E-013990 (2 Jan. 2013) --- In the International Space Station’s Destiny laboratory, Robonaut 2 is pictured during a round of testing for the first humanoid robot in space. Ground teams put Robonaut through its paces as they remotely commanded it to operate valves on a task board. Robonaut is a testbed for exploring new robotic capabilities in space, and its form and dexterity allow it to use the same tools and control panels as its human counterparts do aboard the station.

  6. Analog FM/FM versus digital color TV transmission aboard space station

    NASA Technical Reports Server (NTRS)

    Hart, M. M.

    1985-01-01

    Langley Research Center is developing an integrated fault tolerant network to support data, voice, and video communications aboard Space Station. The question of transmitting the video data via dedicated analog channels or converting it to the digital domain for consistancy with the test of the data is addressed. The recommendations in this paper are based on a comparison in the signal-to-noise ratio (SNR), the type of video processing required aboard Space Station, the applicability to Space Station, and how they integrate into the network.

  7. DPM and Glovebox, Payload Commander Kathy Thornton and Payload Specialist Albert Sacco in Spacelab

    NASA Image and Video Library

    1995-10-21

    STS073-E-5003 (23 Oct. 1995) --- Astronaut Kathryn C. Thornton, STS-73 payload commander, works at the Drop Physics Module (DPM) on the portside of the science module aboard the Space Shuttle Columbia in Earth orbit. Payload specialist Albert Sacco Jr. conducts an experiment at the Glovebox. This frame was exposed with the color Electronic Still Camera (ESC) assigned to the 16-day United States Microgravity Laboratory (USML-2) mission.

  8. Unity nameplate is attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, a worker checks placement of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  9. Unity nameplate is attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, a worker places the nameplate on the side of the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  10. Orion Crew Module Structural Test Article Unbagging

    NASA Image and Video Library

    2016-11-15

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the protective covering was removed from the Orion crew module structural test article (STA). It remains secured on the bottom of its transport container. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article was moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  11. Orion Crew Module Structural Test Article Unbagging

    NASA Image and Video Library

    2016-11-15

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, technicians with Lockheed Martin look over the Orion crew module structural test article (STA) secured on the bottom of its transport container. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article was moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  12. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-26

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  13. Unity nameplate examined after being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, a worker checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  14. Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions

    NASA Technical Reports Server (NTRS)

    Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi

    2009-01-01

    Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the

  15. Yurchikhin and Parmitano in U.S. Laboratory

    NASA Image and Video Library

    2013-09-18

    ISS037-E-001901 (18 Sept. 2013) --- In the International Space Station’s Destiny laboratory, Russian cosmonaut Fyodor Yurchikhin (right), Expedition 37 commander; and European Space Agency astronaut Luca Parmitano, flight engineer, watch the launch of the Orbital Sciences Corporation Antares rocket, with the Cygnus cargo spacecraft aboard, from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station and will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew.

  16. Orion Crew Module Structural Test Article Lift & Uncrating

    NASA Image and Video Library

    2016-11-15

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the cover has been removed from the container holding the Orion crew module structural test article (STA). The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article was moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  17. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi is happy to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi is happy to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

  18. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.

  19. KENNEDY SPACE CENTER, FLA. - STS-114 Pilot Jim Kelly is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Pilot Jim Kelly is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

  20. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Andrew Thomas is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Andrew Thomas is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.

  1. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Wendy Lawrence is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Wendy Lawrence is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

  2. ASTRONAUT LOUSMA, JACK - EGRESS - SKYLAB 3 COMMAND MODULE - PACIFIC

    NASA Image and Video Library

    1973-09-25

    S73-36435 (25 Sept. 1973) --- Astronaut Jack R. Lousma, Skylab 3 pilot, egresses the Skylab 3 Command Module aboard the prime recovery ship, USS New Orleans, during recovery operations in the Pacific Ocean. Astronauts Lousma; Alan L. Bean, commander; and Owen L. Garriott, science pilot, had just completed a successful 59-day visit to the Skylab space station in Earth orbit. The Skylab 3 spacecraft splashed down in the Pacific about 230 miles southwest of San Diego, California. Photo credit: NASA

  3. Candid view of Astronaut Lucid in the Spektr module

    NASA Image and Video Library

    1996-09-16

    NM22-427-012 (16-26 Sept. 1996) --- During off-duty time on the Spektr Module aboard the Earth-orbiting Mir Space Station, astronaut Shannon W. Lucid, cosmonaut guest researcher, retrieves a book from her personal library. Lucid, dropped off in March by the STS-76 crew members, was nearing the end of 188 consecutive days in space before returning to Earth with the STS-79 crew. She worked with a total of five cosmonauts at various times during that stay.

  4. Using flight simulators aboard ships: human side effects of an optimal scenario with smooth seas.

    PubMed

    Muth, Eric R; Lawson, Ben

    2003-05-01

    The U.S. Navy is considering placing flight simulators aboard ships. It is known that certain types of flight simulators can elicit motion adaptation syndrome (MAS), and also that certain types of ship motion can cause MAS. The goal of this study was to determine if using a flight simulator during ship motion would cause MAS, even when the simulator stimulus and the ship motion were both very mild. All participants in this study completed three conditions. Condition 1 (Sim) entailed "flying" a personal computer-based flight simulator situated on land. Condition 2 (Ship) involved riding aboard a U.S. Navy Yard Patrol boat. Condition 3 (ShipSim) entailed "flying" a personal computer-based flight simulator while riding aboard a Yard Patrol boat. Before and after each condition, participants' balance and dynamic visual acuity were assessed. After each condition, participants filled out the Nausea Profile and the Simulator Sickness Questionnaire. Following exposure to a flight simulator aboard a ship, participants reported negligible symptoms of nausea and simulator sickness. However, participants exhibited a decrease in dynamic visual acuity after exposure to the flight simulator aboard ship (T[25] = 3.61, p < 0.05). Balance results were confounded by significant learning and, therefore, not interpretable. This study suggests that flight simulators can be used aboard ship. As a minimal safety precaution, these simulators should be used according to current safety practices for land-based simulators. Optimally, these simulators should be designed to minimize MAS, located near the ship's center of rotation and used when ship motion is not provocative.

  5. Doing that thing that scientists do: A discovery-driven module on protein purification and characterization for the undergraduate biochemistry laboratory classroom.

    PubMed

    Garrett, Teresa A; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer

    2015-01-01

    In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module, students develop research skills through work on an original research project and gain confidence in their ability to design and execute an experiment while faculty can enhance their scholarly pursuits through the acquisition of original data in the classroom laboratory. Students are prepared for a 6-8 week discovery-driven project on the purification of the Escherichia coli cytidylate kinase (CMP kinase) through in class problems and other laboratory exercises on bioinformatics and protein structure analysis. After a minimal amount of guidance on how to perform the CMP kinase in vitro enzyme assay, SDS-PAGE, and the basics of protein purification, students, working in groups of three to four, develop a protein purification protocol based on the scientific literature and investigate some aspect of CMP kinase that interests them. Through this process, students learn how to implement a new but perhaps previously worked out procedure to answer their research question. In addition, they learn the importance of keeping a clear and thorough laboratory notebook and how to interpret their data and use that data to inform the next set of experiments. Following this module, students had increased confidence in their ability to do basic biochemistry techniques and reported that the "self-directed" nature of this lab increased their engagement in the project. © 2015 The International Union of Biochemistry and Molecular Biology.

  6. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  7. An apparatus for preparing benthic samples aboard ship

    USGS Publications Warehouse

    Pepper, Phillip N.; Girard, Thomas L.; Stapanian, Martin A.

    2001-01-01

    We describe a safe and effective apparatus for washing and reducing the volume of benthic samples collected by grab samplers aboard ship. The sample is transferred directly from the dredge to the apparatus and then washed with water pumped through pipes in the apparatus and from onboard hoses. Wastewater and materials smaller than 0.541 mm in diameter are washed overboard. Larger materials, including benthic organisms, collect on an upper 0.64-cm screen and on a lower 30-mm-mesh stainless steel bolt cloth. A collection jar is screwed into the bottom of the apparatus. Therefore, transfer of sample material from the apparatus to the jar is quick and easy. This apparatus has several advantages for use aboard ship over others described in the literature, especially in rough seas, in cold weather, and at night. The apparatus provides a safe and convenient platform for washing and reducing samples, and samples can be prepared while the vessel is traveling at full speed.

  8. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  9. Orion Crew Module Structural Test Article Lift & Uncrating

    NASA Image and Video Library

    2016-11-15

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, technicians with Lockheed Martin assist as a crane lifts the cover away from the container holding the Orion crew module structural test article (STA). The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article was moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  10. Orion Crew Module Structural Test Article Lift & Uncrating

    NASA Image and Video Library

    2016-11-15

    Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, a crane lifts the cover up from the container holding the Orion crew module structural test article (STA). The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article was moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  11. Robonaut 2 performs tests in the U.S. Laboratory

    NASA Image and Video Library

    2013-01-17

    ISS034-E-031125 (17 Jan. 2013) --- In the International Space Station's Destiny laboratory, Robonaut 2 is pictured during a round of testing for the first humanoid robot in space. Ground teams put Robonaut through its paces as they remotely commanded it to operate valves on a task board. Robonaut is a testbed for exploring new robotic capabilities in space, and its form and dexterity allow it to use the same tools and control panels as its human counterparts do aboard the station.

  12. Robonaut 2 performs tests in the U.S. Laboratory

    NASA Image and Video Library

    2013-01-17

    ISS034-E-031124 (17 Jan. 2013) --- In the International Space Station's Destiny laboratory, Robonaut 2 is pictured during a round of testing for the first humanoid robot in space. Ground teams put Robonaut through its paces as they remotely commanded it to operate valves on a task board. Robonaut is a testbed for exploring new robotic capabilities in space, and its form and dexterity allow it to use the same tools and control panels as its human counterparts do aboard the station.

  13. KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - The U.S. Node 2 is undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  14. Argonne's SpEC Module

    ScienceCinema

    Harper, Jason

    2018-03-02

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  15. 78 FR 67309 - Earth Stations Aboard Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Communications Act of 1934, as amended, 47 U.S.C. 154(i), 154(j), 157(a), 302(a), 303(c), 303(e), 303(f), 303(g... Commission's Earth Station Aboard Aircraft, Report and Order (Order), which adopted licensing and service...-orbit space stations operating in the 10.95-11.2 GHz, 11.45-11.7 GHz, 11.7-12.2 GHz and 14.0-14.5 GHz...

  16. A Case for Hypogravity Studies Aboard ISS

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2014-01-01

    Future human space exploration missions being contemplated by NASA and other spacefaring nations include some that would require long stays upon bodies having gravity levels much lower than that of Earth. While we have been able to quantify the physiological effects of sustained exposure to microgravity during various spaceflight programs over the past half-century, there has been no opportunity to study the physiological adaptations to gravity levels between zero-g and one-g. We know now that the microgravity environment of spaceflight drives adaptive responses of the bone, muscle, cardiovascular, and sensorimotor systems, causing bone demineralization, muscle atrophy, reduced aerobic capacity, motion sickness, and malcoordination. All of these outcomes can affect crew health and performance, particularly after return to a one-g environment. An important question for physicians, scientists, and mission designers planning human exploration missions to Mars (3/8 g), the Moon (1/6 g), or asteroids (likely negligible g) is: What protection can be expected from gravitational levels between zero-g and one-g? Will crewmembers deconditioned by six months of microgravity exposure on their way to Mars experience continued deconditioning on the Martian surface? Or, will the 3/8 g be sufficient to arrest or even reverse these adaptive changes? The implications for countermeasure deployment, habitat accommodations, and mission design warrant further investigation into the physiological responses to hypogravity. It is not possible to fully simulate hypogravity exposure on Earth for other than transient episodes (e.g., parabolic flight). However, it would be possible to do so in low Earth orbit (LEO) using the centrifugal forces produced in a live-aboard centrifuge. As we're not likely to launch a rotating human spacecraft into LEO anytime in the near future, we could take advantage of rodent subjects aboard the ISS if we had a centrifuge that could accommodate the rodent

  17. Unity nameplate examined after being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, Joan Higgenbotham, with KSC's Astronaut Office Computer Support, checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  18. Decision support for clinical laboratory capacity planning.

    PubMed

    van Merode, G G; Hasman, A; Derks, J; Goldschmidt, H M; Schoenmaker, B; Oosten, M

    1995-01-01

    The design of a decision support system for capacity planning in clinical laboratories is discussed. The DSS supports decisions concerning the following questions: how should the laboratory be divided into job shops (departments/sections), how should staff be assigned to workstations and how should samples be assigned to workstations for testing. The decision support system contains modules for supporting decisions at the overall laboratory level (concerning the division of the laboratory into job shops) and for supporting decisions at the job shop level (assignment of staff to workstations and sample scheduling). Experiments with these modules are described showing both the functionality and the validity.

  19. Astronaut James S. Voss Performs Tasks in the Destiny Laboratory

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  20. The LSLE echocardiograph - Commercial hardware aboard Spacelab. [Life Sciences Laboratory Equipment

    NASA Technical Reports Server (NTRS)

    Schwarz, R.

    1983-01-01

    The Life Sciences Laboratory Equipment Echocardiograph, a commercial 77020AC Ultrasound Imaging System modified to meet NASA's spacecraft standards, is described. The assembly consists of four models: display and control, scanner, scan converter, and physioamplifiers. Four separate processors communicate over an IEE-488 bus, and the system has more than 6000 individual components on 35 printed circuit cards. Three levels of self test are provided: a short test during power up, a basic test initiated by a front panel switch, and interactive tests for specific routines. Default mode operation further enhances reliability. Modifications of the original system include the replacement of ac power supplies with dc to dc converters, a slide-out keyboard (to prevent accidental operation), Teflon insulated wire, and additional shielding for the ultrasound transducer cable.

  1. Camera aboard 'Friendship 7' photographs John Glenn during spaceflight

    NASA Technical Reports Server (NTRS)

    1962-01-01

    A camera aboard the 'Friendship 7' Mercury spacecraft photographs Astronaut John H. Glenn Jr. during the Mercury-Atlas 6 spaceflight (00302-3); Photographs Glenn as he uses a photometer to view the sun during sunsent on the MA-6 space flight (00304).

  2. STS-47 Mission Specialist (MS) Jemison conducts AFTE in SLJ module on OV-105

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Mission Specialist (MS) Mae C. Jemison, wearing autogenic feedback training system 2 suit, conducts the Autogenic Feedback Training Experiment (AFTE) in Spacelab Japan (SLJ) science module aboard Endeavour, Orbiter Vehicle (OV) 105. AFTE's objective is to teach astronauts to use biofeedback rather than drugs to combat nausea and other effects of space motion sickness. Jemison's physical responses are monitored by sensors attached to the suit.

  3. KSC-98pc1755

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 crew members Pilot Mark Polansky, Mission Specialist Marsha Ivins and Commander Ken Cockrell pose underneath the banner revealing the name Destiny given to the U.S. Lab module. They are part of the five-member crew scheduled to carry the lab into space aboard Space Shuttle Endeavour early in the year 2000 where it will become the centerpiece of scientific research on the International Space Station. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  4. View of the MPLM, Destiny and the UHF antenna taken during the second EVA of STS-100

    NASA Image and Video Library

    2001-04-24

    STS100-398-017 (19 April-1 May 2001) --- Backdropped by the Earth with partial cloud cover, the Raffaello Multi-Purpose Logistics Module (MPLM) and the Ultra High Frequency (UHF) antenna are photographed by a crewmember during this STS-100 mission to the International Space Station (ISS). The Raffaello, which was built by the Italian Space Agency (ASI), is the second of three such pressurized modules that will serve as ISS "moving vans", carrying laboratory racks filled with equipment, experiments and supplies to and from the station aboard the space shuttle. The UHF antenna was attached to the station's U.S. Laboratory Destiny by space walking astronauts Chris A. Hadfield and Scott E. Parazynski during the mission's first spacewalk. The antenna, on a 1.2-meter (4-foot) boom, is part of the UHF Communications Subsystem of the station. It will interact with systems already aboard the station, including the Space-to-Space Station Radio transceivers. A second antenna will be delivered on the STS-115/11A next year.

  5. The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An Airbus Industrie A300-600ST 'Beluga' Super Transporter touches down at the Shuttle Landing Facility to deliver its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  6. The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An Airbus Industrie A300-600ST 'Beluga' Super Transporter lands in the rain at the Shuttle Landing Facility to deliver its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  7. International Space Station (ISS)

    NASA Image and Video Library

    1998-11-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  8. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  9. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  10. Thermal and chemical denaturation of Bacillus circulans xylanase: A biophysical chemistry laboratory module.

    PubMed

    Raabe, Richard; Gentile, Lisa

    2008-11-01

    A number of institutions have been, or are in the process of, modifying their biochemistry major to include some emphasis on the quantitative physical chemistry of biomolecules. Sometimes this is done as a replacement for part for the entire physical chemistry requirement, while at other institutions this is incorporated as a component into the traditional two-semester biochemistry series. The latter is the model used for biochemistry and molecular biology majors at the University of Richmond, whose second semester of biochemistry is a course entitled Proteins: Structure, Function, and Biophysics. What is described herein is a protein thermodynamics laboratory module, using the protein Bacillus circulans xylanase, which reinforces many lecture concepts, including: (i) the denatured (D) state ensemble of a protein can be different, depending on how it was populated; (ii) intermediate states may be detected by some spectroscopic techniques but not by others; (iii) the use and assumptions of the van't Hoff approach to calculate ΔH(o) , ΔS(o) , and ΔG(o) (T) for thermal protein unfolding transitions; and (iv) the use and assumptions of an approach that allows determination of the Gibb's free energy of a protein unfolding transition based on the linear dependence of ΔG(o) on the concentration of denaturant used. This module also requires students to design their own experimental protocols and spend time in the primary literature, both important parts of an upper division lab. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.

  11. STS-55 German payload specialists pose in front of SL-D2 module at KSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, German payload specialists pose in front of the Spacelab Deutsche 2 (SL-D2) science module at a Kennedy Space Center (KSC) processing facility. These two Germans have been assigned to support the STS-55/SL-D2 mission. They are Payload Specialist 2 Hans Schlegel (left) and Payload Specialist 1 Ulrich Walter. Walter and Schlegel are scheduled to fly aboard OV-102 for the mission, joining five NASA astronauts. Clearly visible on the SL-D2 module are the European Space Agency (ESA) insignia, the feedthrough plate, and the D2 insignia.

  12. Results from the first five years of radiation exposure monitoring aboard the ISS

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Semones, E.; Shelfer, T.; Johnson, S.; Zapp, N.; Weyland, M.

    NASA uses a variety of radiation monitoring devices aboard the International Space Station as part of its space flight radiation health program. This operational monitoring system consists of passive dosimeters, internal and external charged particle telescopes, and a tissue equivalent proportional counter (TEPC). Sixteen passive dosimeters, each consisting of TLD-100, TLD-300, TLD-600, and TLD-700 chips in a small acrylic holder, are placed throughout the habitable volume of the ISS. The TEPC and internal charged particle telescopes are portable and can be relocated to multiple locations in the Lab Module or Service Module. The external charged particle telescopes are mounted to a fixed boom attached to the starboard truss. Passive dosimeters were used in eleven monitoring periods over the period 20 May 1999 to 04 May 2003. Over this period exposure rates from TLD-100 measurements ranged from 0.120-0.300 mGy/d. Exposure rates inside the habitable volume are non-uniform: exposures vary by a factor of ˜ 1.7 from minimum to maximum, with the greatest non-uniformity occurring in the Lab Module. Highest daily exposure rates are near the window in the Lab Module, inside the Joint Airlock, and the sleep stations inside the Service Module, while the lowest rates occur inside the polyethylene-lined Temporary Sleep Station in the Lab Module, adjacent to the port ``arm'' of Node 1, and the aft end of the Service Module. The minimum exposure rates as measured by the passive dosimeters occurred in the spring of 2002, very close to the solar F10.7 emission maximum (Feb 2002), and two years after the sunspot maximum (Apr 2000). Exposure rates have since gradually increased as the sun's activity transitions towards solar minimum conditions. Since 01 Jun 2002, dose rates measured by the IV-CPDS, estimated from the count rate in first detector of the telescope's stack, ranged from ˜ 0.170-0.390 mGy/d. The maximum measured dose rate occurred 28 Oct 2003 during the ``Halloween

  13. Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computer-generated drawing shows the relative scale and working space for the Microgravity Science Glovebox (MSG) being developed by NASA and the European Space Agency for science experiments aboard the International Space Station (ISS). The person at the glovebox repesents a 95th percentile American male. The MSG will be deployed first to the Destiny laboratory module and later will be moved to ESA's Columbus Attached Payload Module. Each module will be filled with International Standard Payload Racks (green) attached to standoff fittings (yellow) that hold the racks in position. Destiny is six racks in length. The MSG is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)

  14. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  15. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  16. Case Studies in Sustainability Used in an Introductory Laboratory Course to Enhance Laboratory Instruction

    ERIC Educational Resources Information Center

    Luster-Teasley, Stephanie; Hargrove-Leak, Sirena; Gibson, Willietta; Leak, Roland

    2017-01-01

    This educational research seeks to develop novel laboratory modules by using Case Studies in the Science Teaching method to introduce sustainability and environmental engineering laboratory concepts to 21st century learners. The increased interest in "going green" has led to a surge in the number of engineering students studying…

  17. The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An Airbus Industrie A300-600ST 'Beluga' Super Transporter is reflected in the rain puddles as it comes to a stop at the Shuttle Landing Facility. The Beluga is carrying the Raffaello, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  18. The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An Airbus Industrie A300-600ST 'Beluga' Super Transporter is reflected in the rain puddles as it taxis toward the mate/demate tower at the Shuttle Landing Facility. The Beluga is carrying the Raffaello, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.

  19. STS 134, 135 and 26S Return Samples: Air Quality aboard Shuttle (STS-134) and International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    This is a very limited set of samples on which to perform an air quality assessment. However, based on these samples, we have no reason to believe that nominal ISS air is unsafe to breathe. We must continue to be vigilant when dealing with nominal atmospheres in ISS. New, unmanned modules require special attention when the crew first enters. Carbon Monoxide Accumulation aboard ISS: Beginning in late 2008 the nominal concentrations of CO began increasing gradually (Figure 1). The results from samples returned on this flight indicate that the CO concentrations, after dropping in late 2009, have cycled upward and then settled back to concentrations near 2 mg/m3. In any case, these changes are well below the 180-day SMAC for CO, which is17 mg/m3. There is no threat to crew health. Carbon Dioxide: This anthropogenic compound has drawn much attention recently because of the possibility that it could contribute to the effects of intracranial hypertension experienced because of spaceflight-induced fluid shifts. From now on we will maintain a plot (Figure 2) of carbon dioxide concentrations ( SD) by averaging the values found in the 3-5 mini-GSC samples taken each month in diverse locations of the ISS. This will enable us to estimate the average exposure of crewmembers to carbon dioxide during their stay aboard the ISS. In general, concentrations are being maintained below 3.5 mmHg. Figure 1

  20. Unity with PMA-2 attached awaits further processing in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.

  1. Unity with PMA-2 attached awaits further processing in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.- funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan.

  2. KSC-98pc644

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  3. KSC-98pc645

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  4. Ivins examines Destiny with the processing team in the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility, Marsha Ivins, a mission specialist on the STS-98 crew, inspects the U.S. Laboratory with members of the laboratory's processing team. The laboratory module, considered the centerpiece of the International Space Station (ISS), has been named 'Destiny' in honor of its prominent role in the world's largest science and technology effort. It is planned for launch aboard Space Shuttle Endeavour on the sixth ISS construction flight currently targeted for March 2000. From left to right are Ivins, Jerry Hopkins, Danny Whittington, Melissa Orozco, Vicki Reese and Suzanne Fase.

  5. Ivins examines Destiny with the processing team in the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility, Marsha Ivins, a mission specialist on the STS-98 crew, inspects the U.S. Laboratory with members of the laboratory's processing team. The laboratory module, considered the centerpiece of the International Space Station (ISS), has been named 'Destiny' in honor of its prominent role in the world's largest science and technology effort. It is planned for launch aboard Space Shuttle Endeavour on the sixth ISS construction flight currently targeted for March 2000. From left to right are Ivins, Jerry Hopkins, Danny Whittington, Melissa Orozco, and Suzanne Fase.

  6. Ivins examines Destiny with the processing team in the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility, Marsha Ivins (left), a mission specialist on the STS-98 crew, discusses the U.S. Laboratory with members of the laboratory's processing team, (left to right) James Thews, Suzanne Fase, and Danny Whittington. The laboratory module, considered the centerpiece of the International Space Station (ISS), has been named 'Destiny' in honor of its prominent role in the world's largest science and technology effort. It is planned for launch aboard Space Shuttle Endeavour on the sixth ISS construction flight currently targeted for March 2000.

  7. Revitalizing chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  8. Unity nameplate examined before being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, holding the nameplate for the Unity connecting module are (left) Joan Higginbotham, with the Astronaut Office Computer Support Branch, and (right) Nancy Tolliver, with Boeing-Huntsville. Part of the International Space Station, Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  9. Unity nameplate gets final check before being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, workers make a final check of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  10. Pegasus XL CYGNSS Prepared for Launch Aboard Orbital ATK's L-101

    NASA Image and Video Library

    2016-12-10

    At Cape Canaveral Air Force Station's Skid Strip the Orbital ATK L-1011 Stargazer aircraft is being prepared to launch NASA's Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The eight micro satellites are aboard an Orbital ATK Pegasus XL rocket strapped to the underside of the Stargazer. CYGNSS is scheduled for its airborne launch aboard the Pegasus XL rocket from the Skid Strip on Dec. 12. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  11. 21 CFR 1240.90 - Approval of treatment aboard conveyances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Approval of treatment aboard conveyances. 1240.90 Section 1240.90 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION CONTROL OF...

  12. KSC-98pc1750

    NASA Image and Video Library

    1998-12-02

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and (right) STS-98 Commander Ken Cockrell applaud the unveiling of the name Destiny given the U.S. Lab module. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. Cockrell is part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  13. Modulation of Radiogenic Damage by Microgravity: Results From STS-76

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory; Kazarians, Gayane; Schubert, Wayne; Kern, Roger; Schranck, David; Hartman, Philip; Hlavacek, Anthony; Wilde, Honor; Lewicki, Dan; Benton, Eugene; hide

    1999-01-01

    The STS-76 (Shuttle-Mir 3) spaceflight provided an opportunity to test two questions about radiation responses in C. elegans. First, does the absence of gravity modify the dose-response relation for mutation and chromosome aberration and second, what are the features of the mutation spectrum resulting from exposure to cosmic rays? These questions were put to the test in space using the ESA "Biorack" facility which was housed in the Spacehab module aboard shuttle Atlantis. The mission flew in March, 1996 and was a shuttle rendezvous with the Russian space station Mir.

  14. Orion Crew Module Structural Test Article Transport from SLF to

    NASA Image and Video Library

    2016-11-15

    A transporter carrying the Orion crew module structural test article (STA) in its container arrives at the low bay entrance of the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  15. Orion Crew Module Structural Test Article Transport from SLF to

    NASA Image and Video Library

    2016-11-15

    A transporter carrying the Orion crew module structural test article (STA) in its container arrives inside the low bay of the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be moved inside the facility's high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  16. DSP-Based Hands-On Laboratory Experiments for Photovoltaic Power Systems

    ERIC Educational Resources Information Center

    Muoka, Polycarp I.; Haque, Md. Enamul; Gargoom, Ameen; Negnetvitsky, Michael

    2015-01-01

    This paper presents a new photovoltaic (PV) power systems laboratory module that was developed to experimentally reinforce students' understanding of design principles, operation, and control of photovoltaic power conversion systems. The laboratory module is project-based and is designed to support a renewable energy course. By using MATLAB…

  17. Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Atkins, C.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2013-01-01

    MSFC is developing eight x-ray mirror modules for the ART-XC instrument on board the SRG Mission. The Engineering Unit tests are successful. MSFC is on schedule to deliver flight units in the November of 2013 and January 2014.

  18. Orion EM-1 Crew Module Structural Test Article Move to Birdcage

    NASA Image and Video Library

    2016-11-16

    Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, the Orion crew module structural test article (STA) is secured on a test tool called the birdcage. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will undergo further testing in the high bay. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  19. The Marshall Space Flight Center Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Ramsey, B.; ODell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2012-01-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.

  20. The Marshall Space Flight Center development of mirror modules for the ART-XC instrument aboard the Spectrum-Roentgen-Gamma mission

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2012-09-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.

  1. Raffaello Multi-Purpose Logistics Module (MPLM) in the Endeavour payload bay prior to docking

    NASA Image and Video Library

    2001-04-21

    ISS002-E-5815 (21 April 2001) --- The Raffaello Multi-Purpose Logistics Module (MPLM), built by the Italian Space Agency (ASI), sits in its berthed position in the cargo bay of the Space Shuttle Endeavour as the STS-100 crew eases the vehicle close to the International Space Station (ISS) for docking. The image was recorded with a digital still camera by one of the Expedition Two crew members aboard the Station.

  2. KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - An overview of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  3. KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - A view of the Space Station Processing Facility shows workstands and ISS elements. The most recent additions are the Japanese Experiment Module (JEM)’s pressurized module and the Italian-built Node 2. The pressurized module is the first element of the JEM, Japan’s primary contribution to the Space Station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. Node 2 will be installed on the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS.

  4. STS-47 crew poses for official onboard (in space) portrait in SLJ module

    NASA Image and Video Library

    1992-09-20

    STS047-12-002 (12 - 20 Sept 1992) --- The crew members assemble for their traditional in-flight portrait in this 35mm frame photographed in the Science Module aboard the Earth-orbiting Space Shuttle Endeavour. Left to right (front) are N. Jan Davis, Mark C. Lee and Mamoru Mohri; and (rear) Curtis L. Brown, Jr., Jerome (Jay) Apt, Robert L. Gibson and Mae C. Jemison. The seven spent eight days in space in support of the Spacelab-J mission.

  5. Introductory Industrial Technology I. Laboratory Activities.

    ERIC Educational Resources Information Center

    Towler, Alan L.; And Others

    This guide contains 36 learning modules intended for use by technology teachers and students in grades 7 and 8. Each module includes a student laboratory activity and instructor's resource sheet. Each student activity includes the following: activity topic and overview, challenge statement, objectives, vocabulary/concepts reinforced,…

  6. Introductory Industrial Technology II. Laboratory Activities.

    ERIC Educational Resources Information Center

    Towler, Alan L.

    This guide contains 29 learning modules intended for use by technology teachers and students in grade 8. Each module includes a student laboratory activity and instructor's resource sheet. Each student activity includes the following: activity topic and overview, challenge statement, objectives, vocabulary/concepts reinforced, equipment/supplies,…

  7. DPM, Payload Commander Kathy Thornton works in Spacelab

    NASA Image and Video Library

    1995-11-05

    STS073-143-026 (20 October-5 November 1995) --- Astronaut Kathryn C. Thornton, STS-73 payload commander for the United States Microgravity Laboratory (USML-2), explores the inner workings of the Drop Physics Module (DPM). Thornton was joined by four other NASA astronauts and two guest researchers for almost 16 days of research aboard the Space Shuttle Columbia in Earth-orbit.

  8. Undergraduate Laboratory Experiment Modules for Probing Gold Nanoparticle Interfacial Phenomena

    ERIC Educational Resources Information Center

    Karunanayake, Akila G.; Gunatilake, Sameera R.; Ameer, Fathima S.; Gadogbe, Manuel; Smith, Laura; Mlsna, Deb; Zhang, Dongmao

    2015-01-01

    Three gold-nanoparticle (AuNP) undergraduate experiment modules that are focused on nanoparticles interfacial phenomena have been developed. Modules 1 and 2 explore the synthesis and characterization of AuNPs of different sizes but with the same total gold mass. These experiments enable students to determine how particle size affects the AuNP…

  9. Expedition 22 Change of Command in the U.S. Laboratory

    NASA Image and Video Library

    2010-03-17

    ISS022-E-100364 (17 March 2010) --- Crew members aboard the International Space Station are pictured in the Destiny laboratory during the ceremony of Changing-of-Command from Expedition 22 to Expedition 23. Pictured from the right are NASA astronauts Jeffrey Williams, Expedition 22 commander; and T.J. Creamer, Expedition 22/23 flight engineer; Russian cosmonauts Oleg Kotov, Expedition 22 flight engineer and Expedition 23 commander; and Maxim Suraev, Expedition 22 flight engineer. Not pictured is Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22/23 flight engineer.

  10. Unified Technical Concepts. Module 10: Transducers.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on transducers is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system.…

  11. Unified Technical Concepts. Module 13: Radiation.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on radiation is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system.…

  12. Unified Technical Concepts. Module 5: Resistance.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on resistance is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system.…

  13. Unified Technical Concepts. Module 1: Force.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on force is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. This…

  14. Unified Technical Concepts. Module 6: Power.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on power is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. In this…

  15. Unified Technical Concepts. Module 2: Work.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on work is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. In this…

  16. Unified Technical Concepts. Module 3: Rate.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on rate is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy system. This…

  17. Payroll. Computer Module for Use in a Mathematics Laboratory Setting.

    ERIC Educational Resources Information Center

    Barker, Karen; And Others

    This is one of a series of computer modules designed for use by secondary students who have access to a computer. The module, designed to help students understand various aspects of payroll calculation, includes a statement of objectives, a time schedule, a list of materials, an outline for each section, and several computer programs. (MK)

  18. Airlock Battery Charge module

    NASA Image and Video Library

    2008-06-06

    S124-E-006858 (6 June 2008) --- Astronauts Greg Chamitoff, Expedition 17 flight engineer, and Karen Nyberg, STS-124 mission specialist, use the controls of the International Space Station's robotic Canadarm2 in the Destiny laboratory to maneuver the Kibo Japanese logistics module from atop the Harmony node to the top of the Kibo Japanese Pressurized Module.

  19. The Evaluation of Methicillin Resistance in Staphylococcus aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Pierson, D. L.

    2005-01-01

    The International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction. As community-acquired methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a health concern in environments with susceptible hosts in close proximity, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts aboard ISS or the space station itself. Rep-PCR fingerprinting analysis of archived ISS isolates confirmed our earlier studies indicating a transfer of S. aureus between crewmembers. In addition, this fingerprinting also indicated a transfer between crewmembers and their environment. While a variety of S. aureus were identified from both the crewmembers and the environment, phenotypic evaluations indicated minimal methicillin resistance. However, positive results for the Penicillin Binding Protein, indicative of the presence of the mecA gene, were detected in multiple isolates of archived Staphylococcus epidermidis and Staphylococcus haemolyticus. Phenotypic analysis of these isolates confirmed their resistance to methicillin. While MRSA has not been isolated aboard ISS, the potential exists for the transfer of the gene, mecA, from coagulase negative environmental Staphylococcus to S. aureus creating MRSA strains. This study suggests the need to expand environmental monitoring aboard long duration exploration spacecraft to include antibiotic resistance profiling.

  20. Unity nameplate examined before being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Examining the nameplate for the Unity connecting module, in the Space Station Processing Facility, are (left to right) Joe Schweiger and Tommy Annis, of Boeing-KSC, and Nancy Tolliver, of Boeing-Huntsville. An unidentified worker behind them looks on. Part of the International Space Station, Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  1. Orion EM-1 Crew Module Structural Test Article Move to Birdcage

    NASA Image and Video Library

    2016-11-16

    Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians attach lines from a crane to the Orion crew module structural test article (STA). The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be lifted out of its container and moved to a test tool called the birdcage for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  2. Orion EM-1 Crew Module Structural Test Article Move to Birdcage

    NASA Image and Video Library

    2016-11-16

    Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians monitor the progress as a crane lowers the Orion crew module structural test article (STA) toward a test tool called the birdcage. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be secured on the birdcage for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  3. Orion EM-1 Crew Module Structural Test Article Move to Birdcage

    NASA Image and Video Library

    2016-11-16

    Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians monitor the progress as a crane lowers the Orion crew module structural test article (STA) onto a test tool called the birdcage. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be secured on the birdcage for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  5. The Cylindrical Component Methodology Evaluation Module for MUVES-S2

    DTIC Science & Technology

    2017-04-01

    ARL-TR-7990 ● APR 2017 US Army Research Laboratory The Cylindrical Component Methodology Evaluation Module for MUVES-S2 by...Laboratory The Cylindrical Component Methodology Evaluation Module for MUVES-S2 by David S Butler, Marianne Kunkel, and Brian G Smith...Methodology Evaluation Module for MUVES-S2 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David S Butler, Marianne

  6. STS-55 German payload specialists Walter and Schlegel work in SL-D2 module

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 1 Ulrich Walter, wearing special head gear, conducts Tissue Thickness and Compliance Along Body Axis salt-water balance experiment in the Spacelab Deutsche 2 (SL-D2) science module aboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Walter's activities in front of Rack 9 Anthrorack (AR) are monitored by German Payload Specialist 2 Hans Schlegel. Walter uses intravehicular activity (IVA) foot restraints. Walter and Schlegel represent the German Aerospace Research Establishment (DLR).

  7. Ivins examines Destiny with the processing team in the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility, Marsha Ivins, a mission specialist on the STS-98 crew, inspects the U.S. Laboratory with members of the laboratory's processing team. The laboratory module, considered the centerpiece of the International Space Station (ISS), has been named 'Destiny' in honor of its prominent role in the world's largest science and technology effort. It is planned for launch aboard Space Shuttle Endeavour on the sixth ISS construction flight currently targeted for March 2000. From left to right are Ivins, Danny Whittington (face not visible), Melissa Orozco, Jerry Hopkins, and Suzanne Fase.

  8. Environmental testing of terrestrial flat plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Hoffman, A.; Griffith, J.

    1979-01-01

    The Low-Cost Solar Array (LSA) Project at the Jet Propulsion Laboratory has as one objective: the development and implementation of environmental tests for flat plate photovoltaic modules as part of the Department of Energy's terrestrial photovoltaic program. Modules procured under this program have been subjected to a variety of laboratory tests intended to simulate service environments, and the results of these tests have been compared to available data from actual field service. This comparison indicates that certain tests (notably temperature cycling, humidity cycling, and cyclic pressure loading) are effective indicators of some forms of field failures. Other tests have yielded results useful in formulating module design guidelines. Not all effects noted in field service have been successfully reproduced in the laboratory, however, and work is continuing in order to improve the value of the test program as a tool for evaluating module design and workmanship. This paper contains a review of these ongoing efforts and an assessment of significant test results to date.

  9. In-flight and laboratory vacuum-friction test results

    NASA Technical Reports Server (NTRS)

    Devine, E. J.; Evans, H. E.; Leasure, W. A.

    1973-01-01

    Coefficient of friction measurements were made for six unlubricated metal couples exposed to the space environment aboard the OV-1-13 spacecraft and exposed to laboratory vacuum. Materials studied included mutually soluble, partially soluble, and insoluble metal combinations. Two samples of each material couple were tested in space and in the laboratory using the disk and rider technique. Linear velocity was 0.10 cm/s (2.5 in/min) and rider normal load was 4.45 N (1 lb) for the gold versus silver couples and 8.90 N (2lb) for the other combinations. Results showed that friction data obtained in a clean ion-pumped laboratory vacuum of 10 to the minus 10 power materials with low mutual solubility can be correlated to operation in the vicinity of a typical scientific spacecraft that is exposed to an ambient pressure as low as 10 to the minus 12 power torr. The expected increase in coefficient of friction with solubility was shown. Material couples with high mutual solubility present the hazard of unpredictable drastic friction increase in orbit which may not be evident in laboratory testing at levels down to 10 to the minus 10 power torr. It was also shown that gross cold welding of unlubricated metals exposed to a satellite environment does not occur.

  10. Participation of Bell Telephone Laboratories in Project Echo and Experimental Results

    NASA Technical Reports Server (NTRS)

    Jakes, William C., Jr.

    1961-01-01

    On August 12, 1960, Echo I, a 100-foot-diameter spherical balloon, was placed in orbit around the earth by the National Aeronautics and Space Administration. The objective was to demonstrate the feasibility of long-distance communication by microwave reflection from a satellite. A two-way coast-to-coast voice circuit was to be established between the Jet Propulsion Laboratory (JPL) facility in California and a station provided by Bell Telephone Laboratories (STL) in New Jersey. Similar tests were also planned with the Naval Research Laboratory and other stations. This paper describes the general organization and operation of the Holmdel, New Jersey, station, and discusses the results of the experiments performed between the balloon launching and March 1, 1961. Successful voice communication was achieved through a variety of modulation methods including frequency modulation with feedback, amplitude modulation, single-sideband modulation, and narrow-band phase modulation. Careful measurements were also made of the loss in the transmission path.

  11. Unified Technical Concepts. Module 12: Time Constants.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on time constants is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  12. Unified Technical Concepts. Module 9: Energy Convertors.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on energy convertors is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  13. Unified Technical Concepts. Module 8: Force Transformers.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on force transformers is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  14. DPM, Payload Commander Kathy Thornton and Commander Ken Bowersox in Spacelab

    NASA Image and Video Library

    1995-11-05

    STS073-229-014 (20 October - 5 November 1995) --- Astronauts Kathryn C. Thornton, STS-73 payload commander, and Kenneth D. Bowersox, mission commander, observe a liquid drop's activity at the Drop Physics Module (DPM) in the science module aboard the Earth-orbiting Space Shuttle Columbia. The drop is partially visible at the center of the left edge of the frame. The two were joined by three other NASA astronauts and two guest researchers for almost 16-days of in-orbit research in support of the U.S. Microgravity Laboratory (USML-2) mission.

  15. Microgravity

    NASA Image and Video Library

    1992-02-10

    The image shows a test cell of Crystal Growth experiment inside the Vapor Crystal Growth System (VCGS) furnace aboard the STS-42, International Microgravity Laboratory-1 (IML-1), mission. The goal of IML-1, a pressurized marned Spacelab module, was to explore in depth the complex effects of weightlessness of living organisms and materials processing. More than 200 scientists from 16 countires participated in the investigations.

  16. STDCE, Payload Specialist Fred Leslie works at the STDCE rack in USML-2 Spacelab

    NASA Image and Video Library

    1995-11-05

    STS073-103-015 (20 October-5 November 1995) --- Payload specialist Fred W. Leslie works with the Surface Tension Driven Convection Experiment (STDCE) aboard the science module in the cargo bay of the Earth-orbiting Space Shuttle Columbia. Leslie joined another guest researcher and five NASA astronauts for 16 full days of in-space research in support of the United States Microgravity Laboratory (USML-2) mission.

  17. KSC-98pc646

    NASA Image and Video Library

    1998-05-22

    KENNEDY SPACE CENTER, FLA. -- The International Space Station's (ISS) Unity node, with Pressurized Mating Adapter (PMA)-2 attached, awaits further processing by Boeing technicians in its workstand in the Space Station Processing Facility (SSPF). The Unity node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year. Unity has two PMAs attached to it now that this mate is completed. PMAs are conical docking adapters which will allow the docking systems used by the Space Shuttle and by Russian modules to attach to the node's hatches and berthing mechanisms. Once in orbit, Unity, which has six hatches, will be mated with the already orbiting Control Module and will eventually provide attachment points for the U.S. laboratory module; Node 3; an early exterior framework or truss for the station; an airlock; and a multi-windowed cupola. The Control Module, or Functional Cargo Block, is a U.S.-funded and Russian-built component that will be launched aboard a Russian rocket from Kazakstan

  18. Japanese Experiment Module (JEM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Japanese Experiment Module (JEM) pressure module is removed from its shipping crate and moved across the floor of the Space Station Processing Facility at Kennedy Space Center (KSC) to a work stand. A research laboratory, the pressurized module is the first element of the JEM, named 'Kibo' (Hope) to arrive at KSC. Japan's primary contribution to the International Space Station, the module will enhance unique research capabilities of the orbiting complex by providing an additional environment in which astronauts will conduct experiments. The JEM also includes an exposed facility or platform for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  19. Prototyping Instruments for Chemical Laboratory Using Inexpensive Electronic Modules.

    PubMed

    Urban, Pawel L

    2018-05-15

    Open-source electronics and programming can augment chemical and biomedical research. Currently, chemists can choose from a broad range of low-cost universal electronic modules (microcontroller boards and single-board computers) and use them to assemble working prototypes of scientific tools to address specific experimental problems and to support daily research work. The learning time can be as short as a few hours, and the required budget is often as low as 50 USD. Prototyping instruments using low-cost electronic modules gives chemists enormous flexibility to design and construct customized instrumentation, which can reduce the delays caused by limited access to high-end commercial platforms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Expedition 22 Change of Command in the U.S. Laboratory

    NASA Image and Video Library

    2010-03-17

    ISS022-E-100383 (17 March 2010) --- Crew members aboard the International Space Station are pictured in the Destiny laboratory during the ceremony of Changing-of-Command from Expedition 22 to Expedition 23. Pictured are NASA astronauts Jeffrey Williams (right, holding microphone), Expedition 22 commander; and T.J. Creamer (second right), Expedition 22/23 flight engineer; Russian cosmonauts Oleg Kotov (left), Expedition 22 flight engineer and Expedition 23 commander; and Maxim Suraev (mostly obscured at left background), Expedition 22 flight engineer; along with Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 22/23 flight engineer.

  1. Expedition 22 Change of Command in the U.S. Laboratory

    NASA Image and Video Library

    2010-03-17

    ISS022-E-100363 (17 March 2010) --- Crew members aboard the International Space Station are pictured in the Destiny laboratory during the ceremony of Changing-of-Command from Expedition 22 to Expedition 23. Pictured are NASA astronauts Jeffrey Williams (right, holding microphone), Expedition 22 commander; and T.J. Creamer (center background), Expedition 22/23 flight engineer; Russian cosmonauts Oleg Kotov (left), Expedition 22 flight engineer and Expedition 23 commander; and Maxim Suraev (bottom), Expedition 22 flight engineer; along with Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi (mostly out of frame at right), Expedition 22/23 flight engineer.

  2. Langmuir probe measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Kirov, B.; Asenovski, S.; Bachvarov, D.; Boneva, A.; Grushin, V.; Georgieva, K.; Klimov, S. I.

    2016-12-01

    In the current work we describe the Langmuir Probe (LP) and its operation on board the International Space Station. This instrument is a part of the scientific complex "Ostonovka". The main goal of the complex is to establish, on one hand how such big body as the International Space Station affects the ambient plasma and on the other how Space Weather factors influence the Station. The LP was designed and developed at BAS-SRTI. With this instrument we measure the thermal plasma parameters-electron temperature Te, electron and ion concentration, respectively Ne and Ni, and also the potential at the Station's surface. The instrument is positioned at around 1.5 meters from the surface of the Station, at the Russian module "Zvezda", located at the farthermost point of the Space Station, considering the velocity vector. The Multi- Purpose Laboratory (MLM) module is providing additional shielding for our instrument, from the oncoming plasma flow (with respect to the velocity vector). Measurements show that in this area, the plasma concentration is two orders of magnitude lower, in comparison with the unperturbed areas. The surface potential fluctuates between-3 and-25 volts with respect to the ambient plasma. Fast upsurges in the surface potential are detected when passing over the twilight zone and the Equatorial anomaly.

  3. One Year Crew Docking to the International Space Station

    NASA Image and Video Library

    2015-05-27

    This video was taken by the crew members aboard the Soyuz TMA-16M spacecraft which docked to the International Space Station at 9:33 p.m. EDT March 27, 2015. NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka arrived just six hours after launching from Baikonur, Kazakhstan, completing four orbits around the Earth before catching up with the orbiting laboratory. The vehicle docked to the Poisk module (also known as the Mini-Research Module 2) on the space-facing side of the Russian Service Module. The spinning object in view is an antenna that is part of the automatic rendezvous and docking system known as KURS.

  4. CM-1 - MS Thomas and PS Linteris in Spacelab

    NASA Image and Video Library

    2012-09-18

    STS083-302-005 (4-8 April 1997) --- Payload specialist Gregory T. Linteris enters data on the progress of a Microgravity Sciences Laboratory (MSL-1) experiment on a lap top computer aboard the Spacelab Science Module while astronaut Donald A. Thomas, mission specialist, checks an experiment in the background. Linteris and Thomas, along with four other NASA astronauts and a second payload specialist supporting the Microgravity Sciences Laboratory (MSL-1) mission were less than a fourth of the way through a scheduled 16-day flight when a power problem cut short their planned stay.

  5. On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers

    PubMed Central

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-01-01

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521

  6. On the use of low-cost radar networks for collision warning systems aboard dumpers.

    PubMed

    González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo

    2014-02-26

    The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system.

  7. Float Package and the Data Rack aboard the DC-9

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Ted Brunzie and Peter Mason observe the float package and the data rack aboard the DC-9 reduced gravity aircraft. The float package contains a cryostat, a video camera, a pump and accelerometers. The data rack displays and record the video signal from the float package on tape and stores acceleration and temperature measurements on disk.

  8. Measurement of OH, H2SO4, MSA, and HNO3 Aboard the P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    2003-01-01

    This paper addresses the measurement of OH, H2SO4, MSA, and HNO3 aboard the P-3B aircraft under the following headings: 1) Performance Report; 2) Highlights of OH, H2SO4, and MSA Measurements Made Aboard the NASA P-3B During TRACE-P; 3) Development and characteristics of an airborne-based instrument used to measure nitric acid during the NASA TRACE-P field experiment.

  9. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  10. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  11. Orion EM-1 Crew Module Structural Test Article Move to Birdcage

    NASA Image and Video Library

    2016-11-16

    Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians prepare to attach lines from a crane to the Orion crew module structural test article (STA). The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be lifted out of its container and moved to a test tool called the birdcage for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  12. Orion EM-1 Crew Module Structural Test Article Move to Birdcage

    NASA Image and Video Library

    2016-11-16

    Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians monitor the progress as a crane begins to lift the Orion crew module structural test article (STA) up from the base of its transport container. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be moved to a test tool called the birdcage for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  13. Orion EM-1 Crew Module Structural Test Article Move to Birdcage

    NASA Image and Video Library

    2016-11-16

    Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians monitor the progress as a crane moves the Orion crew module structural test article (STA) along the center aisle of the high bay. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be moved to a test tool called the birdcage for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  14. Orion EM-1 Crew Module Structural Test Article Move to Birdcage

    NASA Image and Video Library

    2016-11-16

    Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians monitor the progress as a crane lifts the Orion crew module structural test article (STA) up from the base of its transport container. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be moved to a test tool called the birdcage for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  15. Orion EM-1 Crew Module Structural Test Article Move to Birdcage

    NASA Image and Video Library

    2016-11-16

    Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians check the lines attached from a crane to the Orion crew module structural test article (STA). The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be lifted out of its container and moved to a test tool called the birdcage for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  16. Orion EM-1 Crew Module Structural Test Article Move to Birdcage

    NASA Image and Video Library

    2016-11-16

    Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians monitor the progress as a crane lifts the Orion crew module structural test article (STA) away from the base of its transport container. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be moved to a test tool called the birdcage for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.

  17. Recent NASA research accomplishments aboard the ISS

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; North, Regina M.

    2004-01-01

    The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations. Published by Elsevier Ltd.

  18. KSC-98pc1752

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges, Program Manager of the International Space Station (ISS) Randy Brinkley, and STS-98 crew members Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialist Marsha Ivins wait for the unveiling of the name "Destiny" for the U.S. Lab module, which is behind them on a workstand. The lab, scheduled to be launched on Space Shuttle Endeavour in early 2000, will become the centerpiece of scientific research on the ISS. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  19. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  20. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  1. Carbon Dioxide Removal Troubleshooting aboard the International Space Station (ISS) during Space Shuttle (STS) Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.; Cover, John M.

    2009-01-01

    The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.

  2. Occupational Safety and Health Conditions Aboard Small- and Medium-Size Fishing Vessels: Differences among Age Groups

    PubMed Central

    Zytoon, Mohamed A.; Basahel, Abdulrahman M.

    2017-01-01

    Although marine fishing is one of the most hazardous occupations, research on the occupational safety and health (OSH) conditions aboard marine fishing vessels is scarce. For instance, little is known about the working conditions of vulnerable groups such as young and aging fishermen. The objective of the current paper is to study the OSH conditions of young and aging fishermen compared to middle-aged fishermen in the small- and medium-size (SM) marine fishing sector. A cross-sectional study was designed, and 686 fishermen working aboard SM fishing vessels were interviewed to collect information about their safety and health. The associations of physical and psychosocial work conditions with safety and health outcomes, e.g., injuries, illnesses and job satisfaction, are presented. The results of the current study can be utilized in the design of effective accident prevention and OSH training programs for the three age groups and in the regulation of working conditions aboard fishing vessels. PMID:28245578

  3. Occupational Safety and Health Conditions Aboard Small- and Medium-Size Fishing Vessels: Differences among Age Groups.

    PubMed

    Zytoon, Mohamed A; Basahel, Abdulrahman M

    2017-02-24

    Although marine fishing is one of the most hazardous occupations, research on the occupational safety and health (OSH) conditions aboard marine fishing vessels is scarce. For instance, little is known about the working conditions of vulnerable groups such as young and aging fishermen. The objective of the current paper is to study the OSH conditions of young and aging fishermen compared to middle-aged fishermen in the small- and medium-size (SM) marine fishing sector. A cross-sectional study was designed, and 686 fishermen working aboard SM fishing vessels were interviewed to collect information about their safety and health. The associations of physical and psychosocial work conditions with safety and health outcomes, e.g., injuries, illnesses and job satisfaction, are presented. The results of the current study can be utilized in the design of effective accident prevention and OSH training programs for the three age groups and in the regulation of working conditions aboard fishing vessels.

  4. KSC-08pd3751

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the mast deployment on the SEDA-AP or Space Environment Data Acquisition equipment--Attached Payload. SEDA-AP will measure space environment in ISS orbit and environmental effects on materials and electronic devices to investigate the interaction with and from the environment at the Kibo exposed facility. The payload will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15. Photo credit: NASA/Cory Huston

  5. KSC-08pd3750

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers deploy the mast on the SEDA-AP or Space Environment Data Acquisition equipment--Attached Payload. SEDA-AP will measure space environment in ISS orbit and environmental effects on materials and electronic devices to investigate the interaction with and from the environment at the Kibo exposed facility. The payload will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15. Photo credit: NASA/Cory Huston

  6. KSC-08pd3752

    NASA Image and Video Library

    2008-11-19

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the mast deployment on the SEDA-AP or Space Environment Data Acquisition equipment--Attached Payload. SEDA-AP will measure space environment in ISS orbit and environmental effects on materials and electronic devices to investigate the interaction with and from the environment at the Kibo exposed facility. The payload will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15. Photo credit: NASA/Cory Huston

  7. Working aboard the Mir space station.

    PubMed

    Reiter, T

    1996-11-01

    For more than ten years, the Mir station has been the World's only permanently manned laboratory in low earth orbit. With an orbital inclination of 51.6 degrees, its ground track covers more than 85% of the Earth's surface, where approximately 95% of the population lives. For the transfer of up to three crew members per trip to and from Mir, the 6.9 t Soyuz spacecraft is used. In general, the station's crew is changed every six months, with an overlap during the exchange of between one and two weeks. A Progress spacecraft (an unmanned derivative of the Soyuz vehicle) visits the station every three months to resupply it, with up to 2.1 t of payload, and to reboost it to maintain its nominal orbital altitude. The station's core module, injected into orbit in February 1986, contains the central control post for most onboard systems, the computer for attitude control, and the telemetry and communications system. It also contains the station's largest work space, which is 7.0 m long and varies in width between 1.5 and 2.5 m.

  8. Long distance telementoring. A novel tool for laparoscopy aboard the USS Abraham Lincoln.

    PubMed

    Cubano, M; Poulose, B K; Talamini, M A; Stewart, R; Antosek, L E; Lentz, R; Nibe, R; Kutka, M F; Mendoza-Sagaon, M

    1999-07-01

    As general surgeons perform a growing number of laparoscopic operations in increasingly specialized environments, the ability to obtain expert advice during procedures becomes more important. Technological advances in video and computer communications are enabling surgeons to procure expertise quickly and efficiently. In this article, we present laparoscopic procedures completed through an intercontinental telementoring system and the first telementored laparoscopic procedures performed aboard a naval vessel. Video, voice, and data streams were linked between the USS Abraham Lincoln Aircraft Carrier Battlegroup cruising the Pacific Ocean and locations in Maryland and California, creating the Battlegroup Telemedicine (BGTM) system. Three modes of BGTM communication were used: intraship, ship to ship, and ship to shore. Five laparoscopic inguinal hernia repairs were completed aboard the Lincoln under telementoring guidance from land-based surgeons thousands of miles away. In addition, the BGTM system proved invaluable in obtaining timely expertise on a wide variety of surgical and medical problems that would otherwise have required a shore visit. Successful intercontinental laparoscopic telementoring aboard a naval vessel was accomplished using "off-the-shelf" components. In many instances, the high risk and cost of transporting patients to land-based facilities was averted because of the BGTM system. Also, the relationship between the on-site and telementoring surgeon was critical to the success of this experiment. Long-distance telementoring is an invaluable tool in providing instantly available expertise during laparoscopic procedures.

  9. Direct Signal-to-Noise Quality Comparison between an Electronic and Conventional Stethoscope aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas; Cole, Richard; Ebert, Doug; Bauer, Pete

    2014-01-01

    Introduction: Evaluation of heart, lung, and bowel sounds is routinely performed with the use of a stethoscope to help detect a broad range of medical conditions. Stethoscope acquired information is even more valuable in a resource limited environments such as the International Space Station (ISS) where additional testing is not available. The high ambient noise level aboard the ISS poses a specific challenge to auscultation by stethoscope. An electronic stethoscope's ambient noise-reduction, greater sound amplification, recording capabilities, and sound visualization software may be an advantage to a conventional stethoscope in this environment. Methods: A single operator rated signal-to-noise quality from a conventional stethoscope (Littman 2218BE) and an electronic stethoscope (Litmann 3200). Borborygmi, pulmonic, and cardiac sound quality was ranked with both stethoscopes. Signal-to-noise rankings were preformed on a 1 to 10 subjective scale with 1 being inaudible, 6 the expected quality in an emergency department, 8 the expected quality in a clinic, and 10 the clearest possible quality. Testing took place in the Japanese Pressurized Module (JPM), Unity (Node 2), Destiny (US Lab), Tranquility (Node 3), and the Cupola of the International Space Station. All examinations were conducted at a single point in time. Results: The electronic stethoscope's performance ranked higher than the conventional stethoscope for each body sound in all modules tested. The electronic stethoscope's sound quality was rated between 7 and 10 in all modules tested. In comparison, the traditional stethoscope's sound quality was rated between 4 and 7. The signal to noise ratio of borborygmi showed the biggest difference between stethoscopes. In the modules tested, the auscultation of borborygmi was rated between 5 and 7 by the conventional stethoscope and consistently 10 by the electronic stethoscope. Discussion: This stethoscope comparison was limited to a single operator. However, we

  10. Living at Sea: Learning from Communal Life Aboard Sail Training Vessels

    ERIC Educational Resources Information Center

    McCulloch, Ken

    2007-01-01

    This paper considers features of domestic and social life aboard sail training vessels, exploring the particular character of life at sea, and how these features contribute to the distinctive character of sail training experience as a context for learning. Methodologically, the study lies in the sociological tradition of ethnography, focusing on…

  11. Unified Technical Concepts. Module 11: Vibrations and Waves.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on vibrations and waves is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  12. 47 CFR 25.227 - Blanket licensing provisions for Earth Stations Aboard Aircraft (ESAAs) receiving in the 10.95-11...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Aboard Aircraft (ESAAs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), and 11.7-12.2 GHz (space-to-Earth) frequency bands and transmitting in the 14.0-14.5 GHz (Earth-to... SATELLITE COMMUNICATIONS Technical Standards § 25.227 Blanket licensing provisions for Earth Stations Aboard...

  13. 47 CFR 25.227 - Blanket licensing provisions for Earth Stations Aboard Aircraft (ESAAs) receiving in the 10.95-11...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Aboard Aircraft (ESAAs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), and 11.7-12.2 GHz (space-to-Earth) frequency bands and transmitting in the 14.0-14.5 GHz (Earth-to... SATELLITE COMMUNICATIONS Technical Standards § 25.227 Blanket licensing provisions for Earth Stations Aboard...

  14. The effects of background noise on cognitive performance during a 70 hour simulation of conditions aboard the International Space Station.

    PubMed

    Smith, D G; Baranski, J V; Thompson, M M; Abel, S M

    2003-01-01

    A total of twenty-five subjects were cloistered for a period of 70 hours, five at a time, in a hyperbaric chamber modified to simulate the conditions aboard the International Space Station (ISS). A recording of 72 dBA background noise from the ISS service module was used to simulate noise conditions on the ISS. Two groups experienced the background noise throughout the experiment, two other groups experienced the noise only during the day, and one control group was cloistered in a quiet environment. All subjects completed a battery of cognitive tests nine times throughout the experiment. The data showed little or no effect of noise on reasoning, perceptual decision-making, memory, vigilance, mood, or subjective indices of fatigue. Our results suggest that the level of noise on the space station should not affect cognitive performance, at least over a period of several days.

  15. Stability of Formulations Contained in the Pharmaceutical Payload Aboard Space Missions

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Du, Brian; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick

    2008-01-01

    Efficacious pharmaceuticals with adequate shelf life are essential for successful space medical operations in support of space exploration missions. Physical and environmental factors unique to space missions such as vibration, G forces and ionizing radiation may adversely affect stability of pharmaceuticals intended for standard care of astronauts aboard space missions. Stable pharmaceuticals, therefore, are of paramount importance for assuring health and wellness of astronauts in space. Preliminary examination of stability of formulations from Shuttle and International Space Station (ISS) medical kits revealed that some of these medications showed physical and chemical degradation after flight raising concern of reduced therapeutic effectiveness with these medications in space. A research payload experiment was conducted with a select set of formulations stowed aboard a shuttle flight and on ISS. The payload consisted of four identical pharmaceutical kits containing 31 medications in different dosage forms that were transported to the International Space Station (ISS) aboard the Space Shuttle, STS 121. One of the four kits was stored on the shuttle and the other three were stored on the ISS for return to Earth at six months intervals on a pre-designated Shuttle flight for each kit; the shuttle kit was returned to Earth on the same flight. Standard stability indicating physical and chemical parameters were measured for all pharmaceuticals returned from the shuttle and from the first ISS increment payload along with ground-based matching controls. Results were compared between shuttle, ISS and ground controls. Evaluation of data from the three paradigms indicates that some of the formulations exhibited significant degradation in space compared to respective ground controls; a few formulations were unstable both on the ground and in space. An increase in the number of pharmaceuticals from ISS failing USP standards was noticed compared to those from the shuttle

  16. Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1992-01-01

    The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism

  17. The use of models to predict potential contamination aboard orbital vehicles

    NASA Technical Reports Server (NTRS)

    Boraas, Martin E.; Seale, Dianne B.

    1989-01-01

    A model of fungal growth on air-exposed, nonnutritive solid surfaces, developed for utilization aboard orbital vehicles is presented. A unique feature of this testable model is that the development of a fungal mycelium can facilitate its own growth by condensation of water vapor from its environment directly onto fungal hyphae. The fungal growth rate is limited by the rate of supply of volatile nutrients and fungal biomass is limited by either the supply of nonvolatile nutrients or by metabolic loss processes. The model discussed is structurally simple, but its dynamics can be quite complex. Biofilm accumulation can vary from a simple linear increase to sustained exponential growth, depending on the values of the environmental variable and model parameters. The results of the model are consistent with data from aquatic biofilm studies, insofar as the two types of systems are comparable. It is shown that the model presented is experimentally testable and provides a platform for the interpretation of observational data that may be directly relevant to the question of growth of organisms aboard the proposed Space Station.

  18. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  19. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    NASA Astrophysics Data System (ADS)

    Singh, K. P.; Stewart, G. C.; Westergaard, N. J.; Bhattacharayya, S.; Chandra, S.; Chitnis, V. R.; Dewangan, G. C.; Kothare, A. T.; Mirza, I. M.; Mukerjee, K.; Navalkar, V.; Shah, H.; Abbey, A. F.; Beardmore, A. P.; Kotak, S.; Kamble, N.; Vishwakarama, S.; Pathare, D. P.; Risbud, V. M.; Koyande, J. P.; Stevenson, T.; Bicknell, C.; Crawford, T.; Hansford, G.; Peters, G.; Sykes, J.; Agarwal, P.; Sebastian, M.; Rajarajan, A.; Nagesh, G.; Narendra, S.; Ramesh, M.; Rai, R.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Subbarao, K.; Gupta, T.; Thakkar, N.; Singh, A. K.; Bajpai, A.

    2017-06-01

    The Soft X-ray focusing Telescope (SXT), India's first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3-8.0 keV are focussed on to a cooled charge coupled device thus providing medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its characterization during the performance verification phase.

  20. The ship as laboratory: making space for field science at sea.

    PubMed

    Adler, Antony

    2014-01-01

    Expanding upon the model of vessels of exploration as scientific instruments first proposed by Richard Sorrenson, this essay examines the changing nature of the ship as scientific space on expedition vessels during the late nineteenth century. Particular attention is paid to the expedition of H.M.S. Challenger (1872-1876) as a turning point in the design of shipboard spaces that established a place for scientists at sea and gave scientific legitimacy to the new science of oceanography. There was a progressive development in research vessel design from "ship as instrument" to "ship as laboratory" and changing spatial practices aboard these vessels were paralleled by changes in shipboard culture. I suggest that the "ship as laboratory" has now in turn been supplanted by a new model, the "ship as invisible technician", as oceanographic research vessels deploy remote-sensing equipment and gather data that are no longer analyzed on board.

  1. KSC-98pc1694

    NASA Image and Video Library

    1998-11-13

    KENNEDY SPACE CENTER, FLA. -- NASA's "Super Guppy" aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre-launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS-98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000

  2. Peru-Bolivia border, part of Amazon Basin, and the SLS-2 laboratory module

    NASA Image and Video Library

    1993-10-24

    STS058-76-041 (18 Oct-1 Nov 1993) --- Backdropped against the Peru-Bolivia border and part of the Amazon basin, the Spacelab Life Sciences (SLS-2) laboratory module was captured with a 70mm camera, by one of the seven crew members inside the Space Shuttle Columbia's cabin. Part of the tunnel-like passageway is visible in the foreground. Six NASA astronauts and a veterinarian from the private sector spent two weeks devoted to medical research in Earth-orbit. Lake Titicaca, the largest high-altitude lake in the world lies in the Altiplano of Bolivia and Peru. Space Shuttle photography has been used to document fluctuations of several meters of the level of Lake Titicaca during the past decade, as well as to document the eutrophication of the north end of the lake, which is primarily due to increased population in the Peruvian shoreline areas. This view shows the effect of abnormally heavy precipitation of the region for the third successive year. Meteorologists feel this precipitation increase, which may portend another increase of the lake level, is due to the third successive El Nino - Southern Oscillation phenomenon in the 1993 - 94 southern hemisphere summertime. This global phenomenon is now resulting in major weather disturbances in Indonesia, California, Texas and elsewhere.

  3. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  4. Unified Technical Concepts. Module 7: Potential and Kinetic Energy.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…

  5. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... broadband services, including Internet access, to passengers and flight crews aboard commercial airliners... available for download over the Internet at http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-12-161A1...

  6. Nature's Energy, Module B. Fourth Grade. Pilot Form.

    ERIC Educational Resources Information Center

    Pasco County Schools, Dade City, FL.

    This booklet is one of a set of learning modules on energy for use by students and teachers in the fourth grade. This module examines man's use of fossil fuels, electricity production, and other energy sources. Included are laboratory activities and values exercises. (BT)

  7. Integrating Oracle Human Resources with Other Modules

    NASA Technical Reports Server (NTRS)

    Sparks, Karl; Shope, Shawn

    1998-01-01

    One of the most challenging aspects of implementing an enterprise-wide business system is achieving integration of the different modules to the satisfaction of diverse customers. The Jet Propulsion Laboratory's (JPL) implementation of the Oracle application suite demonstrates the need to coordinate Oracle Human Resources Management System (HRMS) decision across the Oracle modules.

  8. STS-55 crewmembers work in the SL-D2 module onboard OV-102

    NASA Image and Video Library

    1993-05-06

    STS055-22-004 (26 April-6 May 1993) --- Four of the seven crew members who spent 10 days aboard the Space Shuttle Columbia are pictured during a brief shift overlap period in the Spacelab D-2 Science Module. Left to right are Jerry L. Ross, Ulrich Walter, Bernard A. Harris, Jr. and Hans Schlegel. Ross, STS-55 payload commander, is changing a sample in a materials processing furnace; Walter, a German payload specialist is in the midst of a baroreflex test and fellow payload specialist Schlegel assists mission specialist and physician Harris with a physiological test at the "Anthrorack".

  9. Space biology initiative program definition review. Trade study 6: Space Station Freedom/spacelab modules compatibility

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Blacknall, Carolyn; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom are identified. The feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the U.S. laboratory module to be used in other locations is assessed.

  10. Making Comparisons: Ratios. Topical Module for Use in a Mathematics Laboratory Setting.

    ERIC Educational Resources Information Center

    Andersen, Lyle; And Others

    The objectives of this module on making comparisons and ratios include using ratios to compare sets of objects and expressing ratios as decimals or fractions in lowest terms. The module provides six experiments. An envelope of manipulatives accompanies each of the first three experiments. The fourth experiment requires a multispeed bicycle. The…

  11. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  12. KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility is attached to the U.S. Node 2 to lift it out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility is attached to the U.S. Node 2 to lift it out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  13. KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility lifts the U.S. Node 2 out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

    NASA Image and Video Library

    2003-06-03

    KENNEDY SPACE CENTER, FLA. - An overhead crane in the Space Station Processing Facility lifts the U.S. Node 2 out of its shipping container. The node will be moved to a workstand. The second of three connecting modules on the International Space Station, the Italian-built Node 2 attaches to the end of the U.S. Lab and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet.

  14. Cryogenic Pressure Calibrator for Wide Temperature Electronically Scanned (ESP) Pressure Modules

    NASA Technical Reports Server (NTRS)

    Faulcon, Nettie D.

    2001-01-01

    Electronically scanned pressure (ESP) modules have been developed that can operate in ambient and in cryogenic environments, particularly Langley's National Transonic Facility (NTF). Because they can operate directly in a cryogenic environment, their use eliminates many of the operational problems associated with using conventional modules at low temperatures. To ensure the accuracy of these new instruments, calibration was conducted in a laboratory simulating the environmental conditions of NTF. This paper discusses the calibration process by means of the simulation laboratory, the system inputs and outputs and the analysis of the calibration data. Calibration results of module M4, a wide temperature ESP module with 16 ports and a pressure range of +/- 4 psid are given.

  15. Man and Energy, Module C. Fourth Grade. Pilot Form.

    ERIC Educational Resources Information Center

    Pasco County Schools, Dade City, FL.

    This booklet is one of a set of learning modules on energy for use by students and teachers in the fourth grade. This module investigates solar energy, ecology, and fossil fuels. Included are laboratory activities and values exercises. (BT)

  16. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  17. Creation and Evaluation of a Laboratory Administration Curriculum for Pathology Residents.

    PubMed

    Guarner, Jeannette; Hill, Charles E; Amukele, Timothy

    2017-10-01

    A clinical laboratory management (CLM) curriculum that can objectively assess the Accreditation Council for Graduate Medical Education pathology systems-based practice milestones and can provide consistent resident training across institutions is needed. Faculty at Emory University created a curriculum that consists of assay verification exercises and interactive, case-based online modules. Beta testing was done at Emory University and Johns Hopkins. Residents were required to obtain a score of more than 80% in the online modules to achieve levels 3 to 4 in the milestones. In addition, residents shadowed a laboratory director, performed an inspection of a laboratory section, and completed training in human subjects research and test utilization. Fourteen residents took and evaluated the laboratory administration curriculum. The printed certificates from the modules were used for objective faculty evaluation of mastery of concepts. Of all the activities the residents performed during the rotation, the online modules were ranked most helpful by all residents. A 25-question knowledge assessment was performed before and after the rotation and showed an average increase of 8 points (P = .0001). The multimodal CLM training described here is an easily adoptable, objective system for teaching CLM. It was well liked by residents and provided an objective measurement of mastery of concepts for faculty. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. KSC-98pc1751

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before unveiling the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him), and (left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  19. STS-55 German payload specialist Schlegel and MS3 Harris work in SL-D2 module

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 German Payload Specialist 2 Ulrich Walter, wearing special head gear, finds plenty of room to 'spread out' (head to the floor, feet at the ceiling) while conducting Tissue Thickness and Compliance Along Body Axis salt-water balance experiment in the Spacelab Deutsche 2 (SL-D2) science module aboard the Earth-orbiting Columbia, Orbiter Vehicle (OV) 102. Schlegel represents the German Aerospace Research Establishment (DLR). In the background, Mission Specialist 3 (MS3) Bernard A. Harris, Jr monitors an experiment in Rack 11, an experiment rack.

  20. Observation Platform for Dynamic Biomedical and Biotechnology Experiments Using the International Space Station (ISS) Light Microscopy Module (LMM)

    NASA Technical Reports Server (NTRS)

    Kurk, Michael A. (Andy)

    2015-01-01

    Techshot, Inc., has developed an observation platform for the LMM on the ISS that will enable biomedical and biotechnology experiments. The LMM Dynamic Stage consists of an electronics module and the first two of a planned suite of experiment modules. Specimens and reagent solutions can be injected into a small, hollow microscope slide-the heart of the innovation-via a combination of small reservoirs, pumps, and valves. A life science experiment module allows investigators to load up to two different fluids for on-orbit, real-time image cytometry. Fluids can be changed to initiate a process, fix biological samples, or retrieve suspended cells. A colloid science experiment module conducts microparticle and nanoparticle tests for investigation of colloid self-assembly phenomena. This module includes a hollow glass slide and heating elements for the creation of a thermal gradient from one end of the slide to the other. The electronics module supports both experiment modules and contains a unique illuminator/condenser for bright and dark field and phase contrast illumination, power supplies for two piezoelectric pumps, and controller boards for pumps and valves. This observation platform safely contains internal fluids and will greatly accelerate the research and development (R&D) cycle of numerous experiments, products, and services aboard the ISS.

  1. OA-7 Veggie Series 1 Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  2. Bilingual Skills Training Program. Barbering/Cosmetology. Module 1.0: Bacteriology.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on bacteriology is the first of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  3. Evaluation of the Virtual Physiology of Exercise Laboratory Program

    ERIC Educational Resources Information Center

    Dobson, John L.

    2009-01-01

    The Virtual Physiology of Exercise Laboratory (VPEL) program was created to simulate the test design, data collection, and analysis phases of selected exercise physiology laboratories. The VPEL program consists of four modules: (1) cardiovascular, (2) maximal O[subscript 2] consumption [Vo[subscript 2max], (3) lactate and ventilatory thresholds,…

  4. Apollo 17 - Command Module (CM) - Pre-Recovery Operations - South Pacific Ocean

    NASA Image and Video Library

    1972-12-19

    S72-56147 (19 Dec. 1972) --- A water-level view of the Apollo 17 Command Module (CM) floating in the Pacific Ocean following splashdown and prior to recovery. The prime recovery ship, the USS Ticonderoga, is in the background. When this picture was taken, the three-man crew of astronauts Eugene A. Cernan, Ronald E. Evans and Harrison H. Schmitt, had already been picked up by helicopter and flown to the deck of the recovery ship. The spacecraft was later hoisted aboard the USS Ticonderoga. A United States Navy UDT swimmer stands on the flotation collar. Apollo 17 splashdown occurred at 1:24:59 p.m. (CST), Dec. 19, 1972, about 350 nautical miles southeast of Samoa.

  5. Investigation of Mycobacterium tuberculosis transmission aboard the U.S.S. Ronald Reagan, 2006.

    PubMed

    Buff, Ann M; Deshpande, Swati J; Harrington, Theresa A; Wofford, Taylor S; O'Hara, Timothy W; Carrigan, Kenichi; Martin, Nicholas J; McDowell, Jackie C; Ijaz, Kashef; Jensen, Paul A; Lambert, Lauren A; Moore, Marisa; Oeltmann, John E

    2008-06-01

    Pulmonary tuberculosis (TB) was diagnosed in a sailor aboard the U.S.S. Ronald Reagan; an investigation was conducted to determine a screening strategy for 1,172 civilian passengers who were aboard during a temporary guest rider program. Sailors were screened for latent TB infection (LTBI) and TB disease. A case-control study was conducted among sailors to determine factors associated with new LTBI. No secondary TB disease was identified; 13% of close contacts had new LTBI. Factors associated with new LTBI among sailors were having been born outside the United States (adjusted odds ratio = 2.80; 95% confidence interval, 1.55--5.07) and being a carrier air wing member (adjusted odds ratio = 2.89; 95% confidence interval, 1.83--4.58). Among 38 civilian passengers berthed near the patient, 1 (3%) had LTBI. The investigation results indicated that Mycobacterium tuberculosis transmission was minimal and eliminated unnecessary TB screening for 1,134 civilians which saved public health resources.

  6. A Novel Device Addressing Design Challenges for Passive Fluid Phase Separations Aboard Spacecraft

    NASA Astrophysics Data System (ADS)

    Weislogel, M. M.; Thomas, E. A.; Graf, J. C.

    2009-07-01

    Capillary solutions have long existed for the control of liquid inventories in spacecraft fluid systems such as liquid propellants, cryogens and thermal fluids for temperature control. Such large length scale, `low-gravity,' capillary systems exploit container geometry and fluid properties—primarily wetting—to passively locate or transport fluids to desired positions for a variety of purposes. Such methods have only been confidently established if the wetting conditions are known and favorable. In this paper, several of the significant challenges for `capillary solutions' to low-gravity multiphase fluids management aboard spacecraft are briefly reviewed in light of applications common to life support systems that emphasize the impact of the widely varying wetting properties typical of aqueous systems. A restrictive though no less typifying example of passive phase separation in a urine collection system is highlighted that identifies key design considerations potentially met by predominately capillary solutions. Sample results from novel scale model prototype testing aboard a NASA low-g aircraft are presented that support the various design considerations.

  7. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  8. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-08-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  9. Pilot Kent Rominger floats in tunnel

    NASA Image and Video Library

    1995-10-24

    STS073-E-5053 (26 Oct. 1995) --- Astronaut Kent V. Rominger, STS-73 pilot, floats through a tunnel connecting the space shuttle Columbia's cabin and its science module. Rominger is one of seven crewmembers in the midst of a 16-day multi-faceted mission aboard Columbia. For the next week and a half, the crew will continue working in shifts around the clock on a diverse assortment of United States Microgravity Laboratory (USML-2) experiments located in the science module. Fields of study include fluid physics, materials science, biotechnology, combustion science and commercial space processing technologies. The frame was exposed with an Electronic Still Camera (ESC).

  10. Characterization benches for neutrino telescope Optical Modules at the APC laboratory

    NASA Astrophysics Data System (ADS)

    Avgitas, Theodore; Creusot, Alexandre; Kouchner, Antoine

    2016-04-01

    As has been demonstrated by the first generation of neutrino telescopes Antares and IceCube, precise knowledge of the photon detection efficiency of optical modules is of fundamental importance for the understanding of the instrument and accurate event reconstruction. Dedicated test benches have been developed to measure all related quantities for the Digital Optical Modules of the KM3NeT neutrino telescope being currently deployed in the Mediterranean sea. The first bench is a black box with robotic arms equipped with a calibrated single photon source or laser which enable a precise mapping of the detection efficiency at arbitrary incident angles as well as precise measurements of the time delays induced by the photodetection chain. These measurement can be incorporated and compared to full GEANT MonteCarlo simulations of the optical modules. The second bench is a 2 m×2 m ×2 m water tank equipped with muon hodoscopes on top and bottom. It enables to study and measure the angular dependence of the DOM's detection efficiency of the Cherenkov light produced in water by relativistic muons, thus reproducing in situ detection conditions. We describe these two benches and present their first results and status.

  11. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 [IB Docket No. 12-376; FCC 12-161] Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule; correction. SUMMARY: The Federal...

  12. Field failure mechanisms for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.; Shumka, A.

    1981-01-01

    Beginning in 1976, Department of Energy field centers have installed and monitored a number of field tests and application experiments using current state-of-the-art photovoltaic modules. On-site observations of module physical and electrical degradation, together with in-depth laboratory analysis of failed modules, permits an overall assessment of the nature and causes of early field failures. Data on failure rates are presented, and key failure mechanisms are analyzed with respect to origin, effect, and prospects for correction. It is concluded that all failure modes identified to date are avoidable or controllable through sound design and production practices.

  13. Using a Thematic Laboratory-Centered Curriculum to Teach General Chemistry

    ERIC Educational Resources Information Center

    Hopkins, Todd A.; Samide, Michael

    2013-01-01

    This article describes an approach to general chemistry that involves teaching chemical concepts in the context of two thematic laboratory modules: environmental remediation and the fate of pharmaceuticals in the environment. These modules were designed based on active-learning pedagogies and involve multiple-week projects that dictate what…

  14. Prepare, Do, Review: A skills-based approach for laboratory practical classes in biochemistry and molecular biology.

    PubMed

    Arthur, Peter; Ludwig, Martha; Castelli, Joane; Kirkwood, Paul; Attwood, Paul

    2016-05-06

    A new laboratory practical system is described which is comprised of a number of laboratory practical modules, each based around a particular technique or set of techniques, related to the theory part of the course but not designed to be dependent on it. Each module comprises an online recorded pre-lab lecture, the laboratory practical itself and a post-lab session in which students make oral presentations on different aspects of the practical. Each part of the module is assessed with the aim of providing rapid feedback to staff and students. Each laboratory practical is the responsibility of a single staff member and through this "ownership," continual review and updating is promoted. Examples of changes made by staff to modules as a result of student feedback are detailed. A survey of students who had experienced both the old-style laboratory course and the new one provided evidence of increased satisfaction with the new program. The assessment of acquired shills in the new program showed that it was much more effective than the old course. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:276-287, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory.

    PubMed

    Horowitz, Gary L; Zaman, Zahur; Blanckaert, Norbert J C; Chan, Daniel W; Dubois, Jeffrey A; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W; Nilsen, Olaug L; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2005-01-01

    MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality.

  16. MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory

    PubMed Central

    Zaman, Zahur; Blanckaert, Norbert J. C.; Chan, Daniel W.; Dubois, Jeffrey A.; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W.; Nilsen, Olaug L.; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L.; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2005-01-01

    MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality. PMID:18924721

  17. Apollo XVII Command Module (CM) - Splashdown - South Pacific Ocean

    NASA Image and Video Library

    1972-12-19

    S72-55834 (19 Dec. 1972) --- The Apollo 17 Command Module (CM), with astronauts Eugene A. Cernan, Ronald E. Evans and Harrison H. Schmitt aboard, nears splashdown in the South Pacific Ocean to successfully concludes the final lunar landing mission in NASA's Apollo program. This overhead view was taken from a recovery aircraft seconds before the spacecraft hit the water. The splashdown occurred at 304:31:59 ground elapsed time, 1:24:59 p.m. (CST) Dec. 19, 1972, at coordinates of 166 degrees 8 minutes west longitude and 27 degrees 53 minutes south latitude, about 350 nautical miles southeast of the Samoan Islands. The splashdown was only .8 miles from the target point. Later, the three crewmen were picked up by a helicopter from the prime recovery ship, USS Ticonderoga.

  18. Static feed water electrolysis module

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schubert, F. H.; Jensen, F. C.

    1974-01-01

    An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.

  19. Apollo 9 crewmen arrive aboard U.S.S. Guadelcanal

    NASA Image and Video Library

    1969-03-13

    S69-27921 (13 March 1969) --- The Apollo 9 crewmen arrive aboard the USS Guadalcanal as they step from a helicopter to receive a red-carpet welcome. Two of the crewmen salute the crowd of newsmen, Navy and NASA personnel gathered to greet them. Left to right, are astronauts Russell L. Schweickart, David R. Scott, and James A. McDivitt. Splashdown occurred at 12:00:53 p.m. (EST), March 13, 1969, only 4.5 nautical miles from the USS Guadalcanal, prime recovery ship, to conclude a successful 10-day Earth-orbital space mission. Photo credit: NASA

  20. STS-98 U.S. Lab payload is moved to stand for weight determination

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the 'key' to the U.S. Laboratory Destiny is officially handed over to NASA during a brief ceremony while workers look on. Suspended overhead is the laboratory, being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Behind the workers at left is the Joint Airlock Module. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the International Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.

  1. Chlorine Analysis - Wastewater. Training Module 5.125.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the laboratory procedures for determining the combined chlorine residual of a wastewater sample. Included are objectives, instructor guides, student handouts, and transparency masters. This module considers the amperometric, DPD,…

  2. STS 129 Return Samples: Assessment of Air Quality aboard the Shuttle (STS-129) and International Space Station (ULF3)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    Reports on the air quality aboard the Space Shuttle (STS-129), and the International Space station (ULF3). NASA analyzed the grab sample canisters (GSCs) and the formaldehyde badges aboard both locations for carbon monoxide levels. The three surrogates: (sup 13)C-acetone, fluorobenzene, and chlorobenzene registered 109, 101, and 109% in the space shuttle and 81, 87, and 55% in the International Space Station (ISS). From these results the atmosphere in both the Space Shuttle and the International Space Station (ISS) was found to be breathable.

  3. 'Sea legs': sharpened Romberg test after three days on a live-aboard dive boat.

    PubMed

    Gibbs, Clinton R; Commons, Katherine H; Brown, Lawrence H; Blake, Denise F

    2010-12-01

    The sharpened Romberg test (SRT) is commonly used by diving and hyperbaric physicians as an indicator of neurological decompression illness (DCI). People who spend a prolonged time on a boat at sea experience impairment in their balance on returning to shore, a condition known as mal de debarquement ('sea legs'). This conditioning of the vestibular system to the rocking motion of a boat at sea may impact on the utility of the SRT in assessing a diver with potential DCI after a live-aboard dive trip. To assess the impact 'sea legs' has on the SRT after three days on a live-aboard dive trip. Thirty-nine staff and passengers of a three-day, live-aboard dive trip performed a SRT before and after their journey, with assessment of potential variables, including middle ear barotrauma, alcohol consumption, sea-sickness and occult DCI. There was no statistically significant impact on SRT performance, with 100% completion pre-trip and 35 out of 36 divers (97.2%) post-trip. There were trends towards more attempts being required and time needed for successful SRT post-trip, but these were not statistically significant. There was a small, but noteworthy incidence of middle-ear barotrauma, with seven people affected pre-trip, and 13 post-trip. There was a higher incidence in student divers. Middle-ear barotrauma did not appear to have a direct impact on SRT performance. There was no significant impact on SRT performance resulting from 'sea legs' after three days at sea. Recreational divers, especially dive students, have a substantial incidence of mild middle ear barotrauma.

  4. Designing Online Resources in Preparation for Authentic Laboratory Experiences

    PubMed Central

    Boulay, Rachel; Parisky, Alex; Leong, Peter

    2013-01-01

    Professional development for science teachers can be benefited through active learning in science laboratories. However, how online training materials can be used to complement traditional laboratory training is less understood. This paper explores the design of online training modules to teach molecular biology and user perception of those modules that were part of an intensive molecular biology “boot camp” targeting high school biology teachers in the State of Hawaii. The John A. Burns School of Medicine at the University of Hawaii had an opportunity to design and develop professional development that prepares science teachers with an introduction of skills, techniques, and applications for their students to conduct medical research in a laboratory setting. A group of 29 experienced teachers shared their opinions of the online materials and reported on how they used the online materials in their learning process or teaching. PMID:24319698

  5. All Aboard the "Titanic": Character Journals Are Just the Tip of the Iceberg.

    ERIC Educational Resources Information Center

    Mercurio, Mia Lynn

    1999-01-01

    Describes how a 7th-grade reading class used character journals to explore the sailing and the sinking of the "Titanic." Describes how the students took ownership of their research and enjoyed reading and writing about actual events as they became a passenger or crew member aboard the "Titanic," explored the ship, experienced…

  6. Apollo 17 lunar module "Challenger" liftoff from Taurus-Littrow landing site

    NASA Image and Video Library

    1972-12-14

    S72-55421 (14 Dec. 1972) --- The Apollo 17 Lunar Module (LM) "Challenger" ascent stage leaves the Taurus-Littrow landing site as it makes its spectacular liftoff from the lunar surface, as seen in this reproduction taken from a color television transmission made by the color RCA TV camera mounted on the Lunar Roving Vehicle (LRV). The LRV-mounted TV camera, remotely controlled from the Mission Control Center (MCC) in Houston, made it possible for people on Earth to watch the fantastic event. The LM liftoff was at 188:01:36 ground elapsed time, 4:54:36 p.m. (CST), Thursday, Dec. 14, 1972. The LM ascent stage, with astronauts Eugene A. Cernan and Harrison H. Schmitt aboard, returned from the lunar surface to rejoin the Command and Service Modules (CSM) orbiting the moon. Astronaut Ronald E. Evans remained with the CSM in lunar orbit while Cernan and Schmitt explored the moon. The LM descent stage is used as a launching platform and remains behind on the moon. Here, the two stages have completely separated and the ascent stage is headed skyward.

  7. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY... geostationary satellites in the fixed-satellite service on a primary basis. This proposed footnote would grant... licensees and operators, and thus are unable to estimate the number of geostationary space station licensees...

  8. Bilingual Skills Training Program. Barbering/Cosmetology. Module 8.0: Excretory System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the excretory system is the eighth (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  9. Veggie Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, at right, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  10. KSC-04PD-1472

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Ted Hartka, MESSENGER lead mechanical engineer, with The Johns Hopkins University Applied Physics Laboratory (APL), talks about the MESSENGER spacecrafts mission to Mercury for the media at a special presentation at Astrotech Space Operations in Titusville, Fla. The spacecraft, mated to the Delta II third stage Payload Assist Module, is in the background. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.

  11. KSC-04pd1472

    NASA Image and Video Library

    2004-07-14

    KENNEDY SPACE CENTER, FLA. - Ted Hartka, MESSENGER lead mechanical engineer, with The Johns Hopkins University Applied Physics Laboratory (APL), talks about the MESSENGER spacecraft’s mission to Mercury for the media at a special presentation at Astrotech Space Operations in Titusville, Fla. The spacecraft, mated to the Delta II third stage Payload Assist Module, is in the background. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.

  12. Applied Physics Modules Selected for Automotive and Diesel Technologies.

    ERIC Educational Resources Information Center

    Waring, Gene

    Designed for individualized use in an applied physics course in postsecondary vocational-technical education, this series of ten learning modules is equivalent to the content of a five-credit hour class in automotive technology or diesel technology. Almost all the modules contain technological application in the form of laboratory experiments or…

  13. Microgravity

    NASA Image and Video Library

    2001-06-05

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  14. Microgravity

    NASA Image and Video Library

    2001-06-05

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).

  15. Microgravity

    NASA Image and Video Library

    2001-06-05

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).

  16. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  17. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).

  18. Microgravity

    NASA Image and Video Library

    2001-06-05

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  19. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  20. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  1. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).

  2. Calculated WIMP signals at the ANDES laboratory: comparison with northern and southern located dark matter detectors

    NASA Astrophysics Data System (ADS)

    Civitarese, O.; Fushimi, K. J.; Mosquera, M. E.

    2016-12-01

    Weakly interacting massive particles (WIMPs) are possible components of the Universe’s dark matter (DM). The detection of WIMPs is signaled by the recoil of the atomic nuclei which form a detector. CoGeNT at the Soudan Underground Laboratory (SUL) and DAMA at the Laboratori Nazionali del Gran Sasso (LNGS) have reported data on annual modulation of signals attributed to WIMPs. Both experiments are located in laboratories in the Northern Hemisphere. DM detectors are planned to operate (or already operate) in laboratories in the Southern Hemisphere, including SABRE at Stawell Underground Physics Laboratory (SUPL) in Australia, and DM-ICE in Antarctica. In this work we have analyzed the dependence of diurnal and annual modulation of signals, pertaining to the detection of WIMP, on the coordinates of the laboratory, for experiments which may be performed in the planned new Agua Negra Deep Experimental Site (ANDES) underground facility, to be built in San Juan, Argentina. We made predictions for NaI and Ge-type detectors placed in ANDES, to compare with DAMA, CoGeNT, SABRE and DM-ICE arrays, and found that the diurnal modulation of the signals, at the ANDES site, is amplified at its maximum value, both for NaI (Ge)-type detectors, while the annual modulation remains unaffected by the change in coordinates from north to south.

  3. Honey Bee Swarms Aboard the USNS Comfort: Recommendations for Sting Prevention, Swarm Removal, and Medical Readiness on Military Ships.

    PubMed

    Dunford, James C; Kronmann, Karl C; Peet, Luke R; Stancil, Jeffrey D

    2016-01-01

    The article provides observations of multiple honey bee (Apis mellifera) swarms aboard the USNS Comfort (TAH-20) during the Continuing Promise 2015 mission. A brief overview of swarming biology is given along with control/removal recommendations to reduce sting exposures. The observations suggest that preventive medicine personnel should provide adequate risk communications about the potential occurrence of bee swarms aboard military ships, and medical department personnel should be prepared for the possibility of treating of multiple sting exposures, especially in the Southern Command Area of Operations where the Africanized genotype of A mellifera is common.

  4. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  5. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  6. KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  7. Bilingual Skills Training Program. Barbering/Cosmetology. Module 9.0: Respiratory System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the respiratory system is the ninth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experiences. Module objectives are for students to…

  8. Bilingual Skills Training Program. Barbering/Cosmetology. Module 5.0: Nervous System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the nervous system is the fifth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  9. Bilingual Skills Training Program. Barbering/Cosmetology. Module 6.0: Muscular System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the muscular system is the sixth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  10. Bilingual Skills Training Program. Barbering/Cosmetology. Module 4.0: Skeletal System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the skeletal system is the fourth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skill training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  11. Bilingual Skills Training Program. Barbering/Cosmetology. Module 7.0: Endocrine System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the endocrine system is the seventh of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory epxerience. Module objectives are for students to…

  12. Bilingual Skills Training Program. Barbering/Cosmetology. Module 10.0: Circulatory System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the circulatory or vascular system is the tenth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for…

  13. Historical Analysis of Champion Photovoltaic Module Efficiencies

    DOE PAGES

    Kurtz, Sarah; Repins, Ingrid; Metzger, Wyatt K.; ...

    2018-02-14

    Champion photovoltaic (PV) cell and module efficiencies have been reported in Progress in PV since 1993. Following the evolution of these efficiencies enables researchers to track the progress of various technologies. National Renewable Energy Laboratory has maintained a historical chart of the champion cell efficiencies, but has not published a similar chart of champion module efficiencies. Here, we analyze champion module efficiencies and compare them to champion cell efficiencies to better understand technology trends over the last three decades, highlighting that, in some cases, module efficiencies exceed 90% of cell efficiencies. Recommendations are provided on how to change the datamore » collection and reporting for champion efficiencies to increase the value of these records.« less

  14. Historical Analysis of Champion Photovoltaic Module Efficiencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah; Repins, Ingrid; Metzger, Wyatt K.

    Champion photovoltaic (PV) cell and module efficiencies have been reported in Progress in PV since 1993. Following the evolution of these efficiencies enables researchers to track the progress of various technologies. National Renewable Energy Laboratory has maintained a historical chart of the champion cell efficiencies, but has not published a similar chart of champion module efficiencies. Here, we analyze champion module efficiencies and compare them to champion cell efficiencies to better understand technology trends over the last three decades, highlighting that, in some cases, module efficiencies exceed 90% of cell efficiencies. Recommendations are provided on how to change the datamore » collection and reporting for champion efficiencies to increase the value of these records.« less

  15. Overview of EO polymers and polymer modulator stability

    NASA Astrophysics Data System (ADS)

    Lindsay, Geoffrey A.; Ashley, Paul R.; Guenther, Andrew P.; Sanghadasa, Mohan

    2005-09-01

    This is a brief overview of the technology of nonlinear optical polymers (NLOP) and their use in electro-optic (EO) modulators. This paper also covers preliminary results from the authors' laboratories on highly active CLD- and FTC-type chromophores in guest-host films of APC amorphous polycarbonate. Emphasis will be given to thermal stability and long-term EO modulator aging.

  16. Search for time modulations in the decay constant of 40K and 226Ra at the underground Gran Sasso Laboratory

    NASA Astrophysics Data System (ADS)

    Bellotti, E.; Broggini, C.; Di Carlo, G.; Laubenstein, M.; Menegazzo, R.

    2018-05-01

    Time modulations at per mil level have been reported to take place in the decay constant of several nuclei with period of one year (most cases) but also of about one month or one day. On the other hand, experiments with similar or better sensitivity have been unable to detect any modulation. In this letter we give the results of the activity study of two different sources: 40K and 226Ra. The two gamma spectrometry experiments have been performed underground at the Gran Sasso Laboratory, this way suppressing the time dependent cosmic ray background. Briefly, our measurements reached the sensitivity of 3.4 and 3.5 parts over 106 for 40K and 226Ra, respectively (1 sigma) and they do not show any statistically significant evidence of time dependence in the decay constant. We also give the results of the activity measurement at the time of the two strong X-class solar flares which took place in September 2017. Our data do not show any unexpected time dependence in the decay rate of 40K in correspondence with the two flares. To the best of our knowledge, these are the most precise and accurate results on the stability of the decay constant as function of time.

  17. Microgravity Emissions Laboratory Testing of the Light Microscopy Module Control Box Fan

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Samorezov, Sergey; Haecker, Anthony H.

    2003-01-01

    The Microgravity Emissions Laboratory (MEL) was developed at the NASA Glenn Research Center for the characterization, simulation, and verification of the International Space Station (ISS) microgravity environment. This Glenn lab was developed in support of the Fluids and Combustion Facility (FCF). The MEL is a six-degrees-of-freedom inertial measurement system that can characterize the inertial response forces (emissions) of components, subrack payloads, or rack-level payloads down to 10 7g. The inertial force output data generated from the steady-state or transient operations of the test article are used with finite element analysis, statistical energy analysis, and other analysis tools to predict the on-orbit environment at specific science or rack interface locations. Customers of the MEL have used benefits in isolation performance testing in defining available attenuation during the engineering hardware design phase of their experiment s development. The Light Microscopy Module (LMM) Control Box (LCB) fan was tested in the MEL in June and July of 2002. The LMM is planned as a remotely controllable on-orbit microscope subrack facility that will be accommodated in an FCF Fluids Integrated Rack on the ISS. The disturbances measured in the MEL test resulted from operation of the air-circulation fan within the LCB. The objectives of the testing were (1) to identify an isolator to be added to the LCB fan assembly to reduce fan-speed harmonics and (2) to identify the fan-disturbance forcing functions for use in rack-response analysis of the LMM and Fluids Integrated Rack facility. This report describes the MEL, the testing process, and the results from ground-based MEL LCB fan testing.

  18. Apollo 17 crew arrive aboard the U.S.S. Ticonderoga

    NASA Image and Video Library

    1972-12-19

    S72-55937 (19 Dec. 1972) --- The three Apollo 17 crewmembers arrive aboard the prime recovery ship, the USS Ticonderoga, to successfully conclude the final lunar landing mission in NASA's Apollo program. They are astronauts Eugene A. Cernan (waving), Harrison H. Schmitt (on Cernan's left), and Ronald E. Evans (standing in back). VIP's, dignitaries, officials and Navy personnel gave the three crew men a red-carpet welcome. Apollo 17 splashed down at 1:24:59 p.m. (CST), Dec. 19, 1972, about 350 nautical miles southeast of Samoa.

  19. Instructional Efficiency of Tutoring in an Outreach Gene Technology Laboratory

    ERIC Educational Resources Information Center

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-01-01

    Our research objective focused on examining the instructional efficiency of tutoring as a form of instructional change as opposed to a non-tutoring approach in an outreach laboratory. We designed our laboratory based on cognitive load (CL) theory. Altogether, 269 twelfth-graders participated in our day-long module "Genetic Fingerprinting." In a…

  20. Hot-spot qualification testing of concentrator modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current, forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator-module hot-spot qualification test is the test developed for flat-plate modules, issues such as providing cell illumination introduce additional complexities into the testing procedure. The results indicate that the same general guidelines apply to protecting concentrator modules from hot-spot stressing as apply to flat-plate modules, and recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. A method for determining the cell temperature in the laboratory or in the field is discussed.

  1. Performance of Skutterudite-Based Modules

    NASA Astrophysics Data System (ADS)

    Nie, G.; Suzuki, S.; Tomida, T.; Sumiyoshi, A.; Ochi, T.; Mukaiyama, K.; Kikuchi, M.; Guo, J. Q.; Yamamoto, A.; Obara, H.

    2017-05-01

    Due to their excellent thermoelectric (TE) performance, skutterudite materials have been selected by many laboratories and companies for development of TE modules to recover power from waste heat at high temperatures (300°C to 600°C). After years of effort, we have developed reliable n- and p-type skutterudite materials showing maximum figure of merit ( ZT) of 1.0 at 550°C and 0.75 at 450°C, respectively. In this work, we systematically investigated the performance of a module made using these two kinds of skutterudite. We demonstrate ˜7.2% conversion efficiency for temperature of 600°C at the hot side of the module and 50°C at the cold side, and show that the module had excellent stability in the high-temperature environment. Further improving the TE performance of our skutterudites, the conversion efficiency reached ˜8.5% under the same condition.

  2. Guided Inquiry in a Biochemistry Laboratory Course Improves Experimental Design Ability

    ERIC Educational Resources Information Center

    Goodey, Nina M.; Talgar, Cigdem P.

    2016-01-01

    Many biochemistry laboratory courses expose students to laboratory techniques through pre-determined experiments in which students follow stepwise protocols provided by the instructor. This approach fails to provide students with sufficient opportunities to practice experimental design and critical thinking. Ten inquiry modules were created for a…

  3. Spatial Light Modulators and Applications. 1988 Technical Digest Series, Volume 8

    DTIC Science & Technology

    1988-06-01

    presence of an applied field but without run- ning gratings; then the fringes are allowed to move, with a velocity that optimizes self- in which F0...Laboratories. The optimization of an MQW modulator for both phase and amplitude modulation is reported, along with preliminary structural N.J design for a...Canyon Road Malibu, California 90265 ABSTRACT The optimization of an MOW modulator for both phase and amplitude modulation is reported,along with

  4. eComLab: remote laboratory platform

    NASA Astrophysics Data System (ADS)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  5. [Noise-related occupational risk aboard fishing vessels: considerations on prevention and the protection of exposed workers].

    PubMed

    Rapisarda, V; Valentino, M; Bolognini, S; Fenga, C

    2004-01-01

    Recent legislation regarding the safety of workers aboard fishing vessels requires the appointment by ship owners of a Reference Physician in charge of health surveillance, preventive inspections and related tasks. As maritime workers, especially fishermen, have always been excluded from legal protection of occupational health, there are no exhaustive data on the incidence of their occupational disease. Several epidemiological studies of fishermen have evidenced a high prevalence and incidence of occupational conditions, among which noise-related hypoacousia. We report data of a phonometric survey conducted aboard six fishing vessels carrying a crew of less than six fishing in the mid-Adriatic. Measurements were performed during fishing and navigation aboard five vessels fitted with a fixed-pitch propeller and during fishing only aboard one vessel fitted with an controllable pitch propeller. Measurements were conducted: 1) in the engine rooms; 2) in the work area on deck; 3) at the winch; 4) in the wheelhouse; 5) in the mess-room and kitchen; 6) in the sleeping quarters. Results show that the equivalent sound pressure level in the engine rooms consistently exceeded 90 dBA on all vessels. The speed of the vessels fitted with the fixed-pitch propeller is 3-4 knots in the fishing phase and around 10 knots during navigation to and from the fishing grounds; noise emission is lower with the former regimen because of the smaller number of engine revolutions per minute. Our survey demonstrated considerably different noise levels in the various areas of vessels. One key element in workers' exposure, the tasks assigned and the environmental working conditions is of course the type of fishing in which the vessel is engaged. Further phonometric studies are required to assess the daily level of exposure per crew member, which represents the reference for the noise-related risk of each subject. Knowledge of the sound pressure levels in the work environment and the length of

  6. Logic. Geometry Module for Use in a Mathematics Laboratory Setting.

    ERIC Educational Resources Information Center

    Brotherton, Sheila; And Others

    Within this single module there are two approaches to this brief survey of logic. Since most geometry textbooks fail to give an adequate discussion of logic, a "textbook" treatment of the subject has been included. This is found as explanations interspersed in the exercises and these can be used as a textbook approach. However, also included is an…

  7. External quality assessment of medical laboratories in Croatia: preliminary evaluation of post-analytical laboratory testing.

    PubMed

    Krleza, Jasna Lenicek; Dorotic, Adrijana; Grzunov, Ana

    2017-02-15

    Proper standardization of laboratory testing requires assessment of performance after the tests are performed, known as the post-analytical phase. A nationwide external quality assessment (EQA) scheme implemented in Croatia in 2014 includes a questionnaire on post-analytical practices, and the present study examined laboratory responses in order to identify current post-analytical phase practices and identify areas for improvement. In four EQA exercises between September 2014 and December 2015, 145-174 medical laboratories across Croatia were surveyed using the Module 11 questionnaire on the post-analytical phase of testing. Based on their responses, the laboratories were evaluated on four quality indicators: turnaround time (TAT), critical values, interpretative comments and procedures in the event of abnormal results. Results were presented as absolute numbers and percentages. Just over half of laboratories (56.3%) monitored TAT. Laboratories varied substantially in how they dealt with critical values. Most laboratories (65-97%) issued interpretative comments with test results. One third of medical laboratories (30.6-33.3%) issued abnormal test results without confirming them in additional testing. Our results suggest that the nationwide post-analytical EQA scheme launched in 2014 in Croatia has yet to be implemented to the full. To close the gaps between existing recommendations and laboratory practice, laboratory professionals should focus on ensuring that TAT is monitored and lists of critical values are established within laboratories. Professional bodies/institutions should focus on clarify and harmonized rules to standardized practices and applied for adding interpretative comments to laboratory test results and for dealing with abnormal test results.

  8. Video- Making a Film of Water Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates how to make films of pure water. Watch the video to see how he does it, see his two-dimensional beaker, and marvel along with him at how tenacious the films are.

  9. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare to install the micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  10. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    A technician with Orbital ATK prepares to install another micro satellite on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  11. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK install the first two sets of micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  12. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK prepares the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) for micro satellites installation in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  13. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK checks out the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  14. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-13

    All of the micro satellites have been fully installed on the deployment module by Orbital ATK for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  15. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare the micro satellites for installation on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  16. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    Technicians with Orbital ATK continue to install the micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  17. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    Technicians with Orbital ATK continue to install micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  18. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK assembles the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  19. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK check assemble the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  20. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare a set of micro satellites for installation on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  1. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK check out the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  2. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare to install micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  3. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    A technician with Orbital ATK checks the installation of the micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  4. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK install the first set of micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  5. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK prepares a set of micro satellites for installation on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  6. Apollo 12 Mission image - Astronaut Alan L. Bean,lunar module pilot,and two U.S. spacecraft

    NASA Image and Video Library

    1969-11-20

    AS12-48-7134 (20 Nov. 1969) --- This unusual photograph, taken during the second Apollo 12 extravehicular activity (EVA), shows two U.S. spacecraft on the surface of the moon. The Apollo 12 Lunar Module (LM) is in the background. The unmanned Surveyor 3 spacecraft is in the foreground. The Apollo 12 LM, with astronauts Charles Conrad Jr. and Alan L. Bean aboard, landed about 600 feet from Surveyor 3 in the Ocean of Storms. The television camera and several other pieces were taken from Surveyor 3 and brought back to Earth for scientific examination. Here, Conrad examines the Surveyor's TV camera prior to detaching it. Astronaut Richard F. Gordon Jr. remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while Conrad and Bean descended in the LM to explore the moon. Surveyor 3 soft-landed on the moon on April 19, 1967.

  7. Polarization Effects Aboard the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

    2006-01-01

    For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

  8. KSC-98pc1753

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before lowering the banner to unveil the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him on the left), and (the other side, left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrel and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights

  9. STS-55 Columbia, OV-102, crew poses for onboard portrait in SL-D2 module

    NASA Image and Video Library

    1993-05-06

    STS055-203-009 (26 April-6 May 1993) --- The seven crew members who spent 10 days aboard the space shuttle Columbia pose for the traditional in-flight portrait in the Spacelab D-2 Science Module. Front, left to right, are Terence T. (Tom) Henricks, Steven R. Nagel, Ulrich Walter and Charles J. Precourt. In the rear are (left to right) Bernard A. Harris Jr., Hans Schlegel and Jerry L. Ross. Nagel served as mission commander; Henricks was the pilot and Ross, the payload commander. Harris and Precourt were mission specialists and Schlegel and Walter were payload specialists representing the German Aerospace Research Establishment (DLR). Photo credit: NASA

  10. KSC-04pd1473

    NASA Image and Video Library

    2004-07-14

    KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., members of the media, wearing clean room suits, gather around Ted Hartka, MESSENGER lead mechanical engineer, with The Johns Hopkins University Applied Physics Laboratory (APL). Hartka is talking about the MESSENGER spacecraft’s mission to Mercury. The spacecraft, mated to the Delta II third stage Payload Assist Module, is in the background. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.

  11. Shrink-film microfluidic education modules: Complete devices within minutes

    PubMed Central

    Nguyen, Diep; McLane, Jolie; Lew, Valerie; Pegan, Jonathan; Khine, Michelle

    2011-01-01

    As advances in microfluidics continue to make contributions to diagnostics and life sciences, broader awareness of this expanding field becomes necessary. By leveraging low-cost microfabrication techniques that require no capital equipment or infrastructure, simple, accessible, and effective educational modules can be made available for a broad range of educational needs from middle school demonstrations to college laboratory classes. These modules demonstrate key microfluidic concepts such as diffusion and separation as well as “laboratory on-chip” applications including chemical reactions and biological assays. These modules are intended to provide an interdisciplinary hands-on experience, including chip design, fabrication of functional devices, and experiments at the microscale. Consequently, students will be able to conceptualize physics at small scales, gain experience in computer-aided design and microfabrication, and perform experiments—all in the context of addressing real-world challenges by making their own lab-on-chip devices. PMID:21799715

  12. Shrink-film microfluidic education modules: Complete devices within minutes.

    PubMed

    Nguyen, Diep; McLane, Jolie; Lew, Valerie; Pegan, Jonathan; Khine, Michelle

    2011-06-01

    As advances in microfluidics continue to make contributions to diagnostics and life sciences, broader awareness of this expanding field becomes necessary. By leveraging low-cost microfabrication techniques that require no capital equipment or infrastructure, simple, accessible, and effective educational modules can be made available for a broad range of educational needs from middle school demonstrations to college laboratory classes. These modules demonstrate key microfluidic concepts such as diffusion and separation as well as "laboratory on-chip" applications including chemical reactions and biological assays. These modules are intended to provide an interdisciplinary hands-on experience, including chip design, fabrication of functional devices, and experiments at the microscale. Consequently, students will be able to conceptualize physics at small scales, gain experience in computer-aided design and microfabrication, and perform experiments-all in the context of addressing real-world challenges by making their own lab-on-chip devices.

  13. Photovoltaic module hot spot durability design and test methods

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Gonzalez, C. C.

    1981-01-01

    As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, the susceptibility of fat-plate modules to hot-spot problems is investigated. Hot-spot problems arise in modules when the cells become back-biased and operate in the negative-voltage quadrant, as a result of short-circuit current mismatch, cell cracking or shadowing. The details of a qualification test for determining the capability of modules of surviving field hot-spot problems and typical results of this test are presented. In addition, recommended circuit-design techniques for improving the module and array reliability with respect to hot-spot problems are presented.

  14. Bilingual Skills Training Program. Barbering/Cosmetology. Module 2.0: Sterilization and Sanitation.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on sterlization and sanitation is the second of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to…

  15. A Virtual Laboratory for Aviation and Airspace Prognostics Research

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh

    2017-01-01

    Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X

  16. Structural Analysis of the QCM Aboard the ER-2

    NASA Technical Reports Server (NTRS)

    Jones, Phyllis D.; Bainum, Peter M.; Xing, Guangqian

    1997-01-01

    As a result of recent supersonic transport (SST) studies on the effect they may have on the atmosphere, several experiments have been proposed to capture and evaluate samples of the stratosphere where SST's travel. One means to achieve this is to utilize the quartz crystal microbalance (QCM) installed aboard the ER-2, formerly the U-2 reconnaissance aircraft. The QCM is a cascade impactor designed to perform in-situ, real-time measurements of aerosols and chemical vapors at an altitude of 60,000 - 70,000 feet. The ER-2 is primarily used by NASA for Earth resources to test new sensor systems before they are placed aboard satellites. One of the main reasons the ER-2 is used for this flight experiment is its capability to fly approximately twelve miles above sea level (can reach an altitude of 78,000 feet). Because the ER-2 operates at such a high altitude, it is of special interest to scientists interested in space exploration or supersonic aircraft. Some of the experiments are designed to extract data from the atmosphere around the ER-2. For the current flight experiment, the QCM is housed in a frame that is connected to an outer pod that is attached to the fuselage of the ER-2. Due to the location of the QCM within the housing frame and the location of the pod on the ER-2, the pod and its contents are subject to structural loads. In addition to structural loads, structural vibrations are also of importance because the QCM is a frequency induced instrument. Therefore, a structural analysis of the instrument within the frame is imperative to determine if resonance and/or undesirable deformations occur.

  17. New mud gas monitoring system aboard D/V Chikyu

    NASA Astrophysics Data System (ADS)

    Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki

    2013-04-01

    Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.

  18. Qualification testing of flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Griffith, J. S.; Ross, R. G., Jr.

    1982-01-01

    The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.

  19. 21 CFR 862.2100 - Calculator/data processing module for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calculator/data processing module for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2100 Calculator/data processing module for clinical use. (a) Identification. A calculator...

  20. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    DTIC Science & Technology

    2016-03-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption-Edge-Modulated Transmission Spectra for Water Contaminant ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring...Unlimited Unclassified Unlimited 35 Samuel G. Lambrakos (202) 767-2601 Monitoring of contaminants associated with specific water resources using